
Elementary Axioms for Lo
al Maps of ToposesSteven Awodey� Lars BirkedalyJanuary 24, 2001Dedi
ated to Saunders Ma
 Lane on his 90th birthday.Abstra
tWe present a 
omplete elementary axiomatization of lo
al maps oftoposes.1 Introdu
tionWe re
all the de�nition of a lo
al map of toposes [9, 10, 7℄ (see in parti
ular [7,Proposition 1.4℄).De�nition 1.1. Let E and F be elementary toposes. A geometri
 morphismf = (f�; f�) : E ! F is lo
al if it is bounded and the dire
t image fun
tor f�has a right adjoint f ! whi
h is full and faithful.There are many examples of lo
al maps of toposes, the 
lassi
al one being(the stru
ture map of sheaves on) the spe
 of a lo
al ring (arising, e.g., fromlo
alization at a point). See, e.g., [7℄ for many other topologi
al and presheafexamples. See [1℄ for an example of a lo
ali
 lo
al map between realizabilitytoposes; this example is the one that gave rise to this work.Suppose (�;�): E ! F is a lo
al map of toposes. Then sin
e the rightadjoint, 
all it r, of � is full and faithful, it follows easily that the inverse imagefun
tor � is full and faithful. Thus the geometri
 morphism is 
onne
ted.Moreover, �� �= 1 �= �r. Therefore there is a geometri
 in
lusion (�;r) : F !E and thus there is a Lawvere-Tierney topology j on E and an equivalen
eF ' ShjE su
h that (�;r), under this equivalen
e, is identi�ed with (a; i), theasso
iated sheaf fun
tor and the in
lusion of sheaves. Sin
e � has a left exa
tleft adjoint �, it follows that a has the same (namely ��i). Summarizing, alo
al map from E is essentially a sheaf subtopos with a left exa
t left adjoint toshea��
ation.Next, re
all that a sheaf subtopos ShjE of E 
an be 
hara
terized as the fullsub
ategory of obje
ts orthogonal to all morphisms inverted by the asso
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sheaf fun
tor a [4, 6℄. Dually, de�ne an obje
t D 2 E to be dis
rete i� Dis 
oorthogonal to all morphisms inverted by a. (Re
all that an obje
t X is
oorthogonal to a morphism f : A ! B in a 
ategory C , written f > X , if, forall b : X ! B, there exists a unique a : X ! A su
h that the diagramAf
��X a >>~

~
~

~ b // B
ommutes.) We let DjE denote the full sub
ategory of E on the dis
rete obje
ts.By Theorem 2.4 of Kelly and Lawvere [8℄ it follows that DjE is equivalent toShjE just in 
ase DjE is 
ore
e
tive in E , making ShjE an essential lo
alization.Hen
e to show that there is a lo
al map from E to ShjE it suÆ
es to show thatthe in
lusion of DjE � � //E of the dis
rete obje
ts has a right adjoint and isitself left exa
t. This, �nally, is the approa
h we shall take to axiomatizing lo
almaps|we assume given a topos E with a topology j and �nd 
onditions on Eand j su
h that the in
lusion of DjE into E is left exa
t and has a right adjoint.The �nal se
tion of the paper is devoted to analysing the \internal logi
"of a lo
al map of toposes. This is determined to be a modal logi
 with twopropositional operations, one of whi
h is an S4 box operation and the other, itsright adjoint.A
knowledgmentsSome of the work presented here forms part of the se
ond author's PhD thesis [2℄,written under the guidan
e of Prof. Dana S
ott. We refer the reader to lo
. 
it.for more details than we 
an in
lude here. We are both grateful for usefuldis
ussions with Dana S
ott, Andrej Bauer, Martin Hyland, Peter Johnstone,Jaap van Oosten, and Pino Rosolini. We also thank the organizers of CT'99 inCoimbra, Portugal, for a ni
e 
onferen
e.2 PreliminariesThroughout this se
tion, let E be an elementary topos with a Lawvere-Tierneytopology j, and write ShjE for the sub
ategory of sheaves, with asso
iatedsheaf fun
tor a : E ! ShjE . Write DjE for the sub
ategory of dis
rete obje
tsas de�ned above.Observe that sin
e DjE is de�ned by a 
oorthogonality 
ondition, the 
at-egory DjE is 
losed under 
olimits in E and the in
lusion fun
tor DjE � � //Epreserves them.We write V 7! V for the j-
losure operation on subobje
ts V � X .De�nition 2.1. We say j is prin
ipal if, for all X 2 E , the 
losure operationon Sub(X) has a left adjoint U 7! UÆ, 
alled interior; that is,UÆ � V () U � V in Sub(X). (1)2



Remark 2.2. The interior operation is not assumed to 
ommute with pullba
k.It follows that in general, unlike 
losure, the interior operation is not indu
edby an internal map on the subobje
t 
lassi�er 
 in the topos E . Indeed, theinterior operation is indu
ed by an internal map if and only if the topology j isopen.Lemma 2.3. A topology j in a topos E is prin
ipal i�, for all X 2 E, thereexists a least dense subobje
t UX of X.Proof. Given a prin
ipal topology, the least dense subobje
t UX of X is XÆ.Conversely, given least dense subobje
ts UX , de�ne V Æ = UV � V � X . The
ondition (1) then follows easily.For the remainder of this se
tion, we assume j is a prin
ipal topology. Observethat, then, for all X 2 E and all V 2 Sub(X), V Æ = V and V Æ = V Æ in Sub(X).The interior operation X 7! XÆ extends to a fun
tor on E as follows: givenf : X ! Y , 
onsider the diagramXÆ //___

##

##GG
GG

GG
GG

G
f�(Y Æ) //

��

��

Y Æ
��

��X f // Y;where the right hand square is a pullba
k. Sin
e pullba
k preserves dense sub-obje
ts, we have that f�(Y Æ) is dense in X ; hen
e XÆ � f�(Y Æ) as shown in thediagram. Letting fÆ be the 
omposite morphism a
ross the top of the diagram,we 
learly get a fun
tor on E . We refer to this fun
tor as the interior fun
tor;it 
learly preserves monomorphisms.For f : X ! Y in E we write 9f for the left adjoint to the pullba
k fun
torf� : Sub(Y ) ! Sub(X). Sin
e 
losure 
ommutes with pullba
k, by taking leftadjoints we see that, when j is prin
ipal, 9f (V Æ) �= (9fV Æ), for all X;Y 2 E ,V 2 Sub(X), and f : X ! Y in E (this is why the interior V Æ � X does notdepend on the superobje
t X). Thus:Lemma 2.4. The interior fun
tor X 7! XÆ : E ! E preserves epis.Proof. If f : X � Y , then 9f (X) = Y , so 9f (XÆ) = (9fX)Æ = Y Æ. ThusXÆ fÆ // // Y Æ // // Yis the epi-mono fa
torization ofXÆ // // X f // Y:De�nition 2.5. An obje
t X 2 E is open if XÆ �= X .3



Lemma 2.6. Every dis
rete obje
t is open.Proof. Sin
e UX � X is inverted by a, if X is dis
rete, then idX : X ! X mustfa
tor through UX .Lemma 2.7. A quotient of an open obje
t is open.Proof. Suppose X is open and e : X � Y . Then we haveY �= Im(e) = 9eX �= 9e(XÆ) �= (9eX)Æ �= Y Æ:We de�ne OjE to be the full sub
ategory of E of open obje
ts. Note that OjEis a 
ore
e
tive sub
ategory of E , the 
ore
e
tor being, of 
ourse, the interiorfun
tor.To determine whether an obje
t is a sheaf, one does not need to 
onsiderorthogonality with respe
t to all morphisms inverted by a, but 
an restri
tattention to dense monos, as in the usual de�nition of a sheaf. We next showthat in the 
ase of dis
rete obje
ts, we need not require 
oorthogonality withrespe
t to all morphisms inverted by a, but just with respe
t to the smaller
lass of 
odense epis.De�nition 2.8. Let e : X � Y be an epi. Write �X � X�X for the diagonaland write Ke for the kernel of e, viewed as a subobje
t of X �X . We say thate is 
odense if �X � Ke is dense.Lemma 2.9. Let e : X � Y be an epi. Then e is 
odense i� KeÆ = �XÆ inSub(X �X), i� a(e) is iso, i� e is bidense (the latter by [6℄).Proposition 2.10. An obje
t C is dis
rete if and only if C is 
oorthogonal toall 
odense epis in E.To prove the proposition we shall make use of the following lemma.Lemma 2.11. Let C 2 E be 
oorthogonal to all 
odense epis in E. Then C is
oorthogonal to all dense monos.Proof. Let C, m : Y � X , and f : C ! X be as in the diagram:Y
�� m
��C f 0 >>}

}
}

} f // X:
4



Consider the following diagrams Y
�� m
��C f 0 88r

r
r

r
r

r f // Xu
��
v

��We
����P

aY
�� am; �=
��aXau
��
a v

��aWa e
����aP;where u; v is the 
okernel pair of m and e is the 
oequalizer of u; v. Sin
e ais a left adjoint, it preserves 
okernel pairs and 
oequalizers, so au; a v is the
okernel pair of am, whi
h is an iso by assumption that m is dense. Hen
eau = a v. Therefore a e is an iso and thus, by Lemma 2.9 e is 
odense. Sin
eeuf = evf : C ! P and sin
e C > e by assumption, we get that uf = vf byuniqueness. Hen
e f fa
tors uniquely through the equalizer of u; v. But m isthe equalizer of u; v as every mono in a topos is the equalizer of its 
okernelpair, so f fa
tors uniquely through m via an f 0 as shown in the diagram.Proof of Proposition 2.10. This follows immediately by the lemma sin
e a mor-phism is bidense i� it fa
tors as a 
odense epi followed by a dense mono.We now de�ne an exterior operation on quotients, whi
h one 
an think of asdual to the 
losure operation on subobje
ts.De�nition 2.12. For an epi e : X � Y , we de�ne the exterior of e, writtenee : X � eY , to be the 
oequalizer of the interior KeÆ of the kernel pair Ke of eas indi
ated in the following diagram:Ke k

%%KK
KK

KK
Kk0 %%KK

KK
KK

K
eY= CoEq(km; k0m)h
�����
�

�

�X ee :: ::vvvvvv e $$ $$IIIIIIKeÆOOm OO km 99rrrrrr k0m 99rrrrrr Y (2)By the universal property of the 
oequalizer, there is a unique map h : eY ! Ysu
h that hee = e, as shown in the diagram. Sin
e e is epi
, h is also epi
.Lemma 2.13. Referring to the diagram (2) above, the epi h is 
odense.Proof. By Lemma 2.9 it suÆ
es to show that ah is iso. Apply a to the dia-gram (2): sin
e m : KeÆ � Ke is dense, am is iso. Hen
e, sin
e a preserveskernel pairs and 
oequalizers, a h is iso.5



3 Axioms for Lo
al MapsWe 
an now state 
onditions under whi
h the 
ategory of dis
rete obje
ts is\lex 
ore
e
tive." For simpli
ity, and be
ause it is an important spe
ial 
ase,we �rst 
onsider the axioms for lo
ali
 lo
al maps. We then brie
y mention howthe axioms 
an be relaxed for arbitrary (bounded) lo
al maps.Let E an elementary topos with a topology j.Axiom 1 j is prin
ipal.Axiom 2 For all X 2 E , there exists a dis
rete obje
t D and a diagramS // //

����

DXin E , presenting X as a subquotient of D.Axiom 3 For all dis
rete D 2 E , if X � D is open, then X is also dis
rete.Axiom 4 For all dis
rete D;D0 2 E , D �D0 is dis
rete.Note that Axiom 2 essentially says that E is lo
ali
 over DjE .Theorem 3.1 (Completeness). Let E be a topos with a topology j satisfyingAxioms 1{4. Then DjE is equivalent to ShjE and there is a lo
ali
 lo
al mapfrom E to DjE ' ShjE.We break the proof down into two steps, designated Propositions 3.2 and 3.3below.Proposition 3.2. Let E be a topos with a topology j satisfying Axioms 1{4.Then the 
ategory of dis
rete obje
ts DjE is 
ore
e
tive in E.Proof. We show how to 
onstru
t an asso
iated dis
rete obje
t for any obje
tX 2 E . By Axiom 2, we have a diagramS // m //e
����

DXXin E presenting X as a subquotient of a dis
rete obje
t DX . Now 
onsider thefollowing diagram KeÆÆ // // KeÆ
�� ��SÆ // m //eÆ
����||||xxxxxxxx

S // //e
����

DXfXÆ h // // XÆ // // X6



Sin
e interior preserves epimorphisms by Lemma 2.4, eÆ : SÆ ! XÆ is epi
. Theexterior fXÆ of the interior XÆ of X is obtained as in De�nition 2.12, as the
oequalizer of the interior KeÆÆ of the kernel pair KeÆ of eÆ. By Axiom 3, SÆ isdis
rete and thus alsoKeÆÆ is dis
rete by Axioms 3 and 4. Hen
e fXÆ is obtainedas the 
oequalizer of a diagram of dis
rete obje
ts, namely:KeÆÆ //// SÆ // // fXÆThus fXÆ is also dis
rete. We 
laim that fXÆ � XÆ � X is universal amongarrows from dis
rete obje
ts into X , thus establishing the existen
e of a rightadjoint to the in
lusion DjE � � //E . Indeed, let D be any dis
rete obje
t andlet f : D ! X be arbitrary. Consider the following diagramfXÆ h // XÆ // // XD:f 00 OO�
�

�

�

f 0 >>|
|

|
|

|
|

f 66nnnnnnnnnnnnnnnnnnnnnSin
e D is open by Lemma 2.6 and the interior fun
tor �Æ : E ! OjE is rightadjoint to the in
lusion of open obje
ts into E , as already noted, there is aunique morphism f 0 making the right triangle 
ommute. Then sin
e h is a
odense epi by Lemma 2.13 and D is dis
rete, we have by Proposition 2.10 thatD is 
oorthogonal to h, so there exists a unique f 00 making the left triangle
ommute. This shows the required universality.It follows by Proposition 3.2 and [8℄ that DjE is equivalent to ShjE .Proposition 3.3. Let E be a topos with a topology j satisfying Axioms 1{4.Then the in
lusion DjE � � //E is left exa
t.It is useful to name the in
lusion fun
tor and the 
ore
e
tor, say:DjE L? // E ;Roowhere L a R and R ÆL �= id . Re
all that the asso
iated dis
rete fun
tor R is aknown to have a right adjoint, sin
e by Proposition 3.2, DjE ' ShjE and underthis equivalen
e R is identi�ed with the asso
iated sheaf fun
tor, whi
h has aright adjoint.The proof now pro
eeds by a series of lemmas.Lemma 3.4. The fun
tor LR : E ! E preserves �nite produ
ts, monomor-phisms, and all 
olimits.Proof. LR : E ! E 
learly preserves all 
olimits sin
e both L and R are leftadjoints. To show that it preserves the terminal obje
t 1, it 
learly suÆ
es to7



show that 1 is dis
rete. By Axiom 2, we 
an present 1 as a subquotient of adis
rete obje
t D, S // //

����

D1:Sin
e S � 1 is epi
, it follows that the unique morphism from D to 1 is alsoepi
. Hen
e 1 is a quotient of a dis
rete obje
t, and thus dis
rete by Lemma 2.7.Binary produ
ts are preserved by Axiom 4.It remains to show that LR preserves monos. Thus let m : M � N be amonomorphism in E . For 
larity, let us denote the 
omposite fun
tor LR byd. We write � : d ) id for the 
ounit of the adjun
tion L a R. Consider thefollowing diagramdM dm
���M

..

uÆ
��

u
��

\ Y W T Q
N

K
G

B
=

9
5

2
0

(m�dN)Æv]]

%% a
%%LLLLLLLLL m�dN // 
 //b

��

dN�N
��M // m // N;where the inner square is a pullba
k. The outer (elongated) square 
ommutesby de�nition of dm. Hen
e there exists a unique morphism u : dM ! m�dNsu
h that bu = �M and 
u = dm:Sin
e (m�dN)Æ is an open subobje
t of a dis
rete obje
t dN , (m�dN)Æ is dis
reteby Axiom 3. Hen
e by 
ouniversality of �M , there exists a unique morphismv : (m�dN)Æ ! dM su
h that �Mv = ba:One now shows without diÆ
ulty that:vuÆ = 1 and uÆv = 1;that is, that dM is isomorphi
 to (m�dN)Æ, from whi
h it follows that dm ismoni
, as required.Lemma 3.5. Let E and F be toposes and suppose the fun
tor F : E ! F pre-serves �nite produ
ts, monomorphisms, and pushouts. Then F is left exa
t.8



Proof. Folklore, but see [3, 2.61℄ for a related argument.Corollary 3.6. The fun
tor LR : E ! E is left exa
t.Proof of Proposition 3.3. From Corollary 3.6 it now follows by a familiar ar-gument that L : DjE ! E is left exa
t, whi
h 
ompletes the proof of Proposi-tion 3.3.We leave it to the reader to show that Axioms 1{4 are sound, in the sensethat they are satis�ed by every lo
al map. (For this it is useful to note that theleast dense subobje
t UX of X 2 E is the image of the 
ounit of L a a.)Remark 3.7. The axioms for bounded lo
al maps are as for lo
ali
 lo
almaps, ex
ept that Axiom 2 is repla
ed by the following two Axioms 2a and 2b.Axiom 2a There is an obje
t G 2 E su
h that, for all X 2 E , there exists adis
rete obje
t D and a diagramS // //

����

D �GXin E , presenting X as a subquotient of D �G.Axiom 2b Given G as in 2a, there is a dis
rete obje
t G0 and a diagramG0 // // GÆ // // Gin E .The axioms for bounded lo
al maps are sound and 
omplete, but we omit theproof.4 Logi
 of Lo
al MapsWe now show how the logi
 of the dis
rete obje
ts DjE relates to the logi
 of E .We de�ne OpenSubj(E) to be the full sub
ategory of Sub(E) on the opensubobje
ts, where Sub(E) is the total 
ategory of the subobje
t �bration overE . The proof of the following proposition is a straightforward 
al
ulation.Proposition 4.1. The 
odomain fun
tor 
od : OpenSubj(E)! E is a �brationwith reindexing of X � J along u : I ! J given by u�(X)Æ, the interior of thepullba
k of X along u.We let ClSubj(E)! E denote the �bration of 
losed subobje
ts over E . Wethen have: 9



Proposition 4.2. The interior operation and the 
losure operation establish a�bred equivalen
e, as inOpenSubj(E)
%%KKKKKKKKKK

�
,,' ClSubj(E)

zzuuu
uu

uu
uu

uÆmm E :Proof. Easy using the already noted fa
t that XÆ = XÆ and XÆ = X.Proposition 4.3. The �bration OpenSubj(E)
��E of open subobje
ts is a higher-order�bration [5℄ with extensional entailment, in whi
h the following hold (we labelthe 
onne
tives et
. in OpenSubj(E)

��E with a subs
ript Æ):� ?Æ, _Æ, 9Æ, EqÆ are as for ordinary subobje
ts.� >Æ = >Æ, X ^Æ Y = (X ^ Y )Æ, X �Æ Y = (X � Y )Æ, (8Æ)fX = (8fX)Æ,and thus :Æ(X) = (X � ?)Æ.� true : 1� 
 is a split generi
 obje
t.Hen
e interior (�)Æ de�nes a �bred fun
tor Sub(E) ! OpenSubj(E) over Ewhi
h preserves all this stru
ture, ex
ept the generi
 obje
t.Proof. The �rst-order stru
ture is de�ned 
ategori
ally and thus preserved alongequivalen
es. Therefore, the �rst-order stru
ture is obtained from the well-known des
ription of the logi
al operations of the 
losed subobje
t �bration(expli
itly stated, e.g., in [5℄). For example, for X;Y 2 OpenSubj(E) over I wehave that X_ÆY = X _j Y Æ, where _j is the disjun
tion in the 
losed subobje
t�bration, so X _Æ Y = X _ Y Æ = (X _ Y )Æ = XÆ _Y Æ = X _Y (where we usedthat interior preserves _ as a left adjoint). It is easy to verify that true : 1� 
is a split generi
 obje
t.Proposition 4.4. There is a pullba
kSub(DjE) //

��

OpenSubj(E)
��DjE � � // E :Proof. Let X � J be an open subobje
t of a dis
rete obje
t J ; then X itself isdis
rete by Axiom 3. Moreover, sin
e the dis
rete obje
ts are 
losed under �nitelimits in E , the pullba
k u�(X) of X along a map u : I ! J between dis
rete10



obje
ts is dis
rete and hen
e also open. Thus the reindexing of X along u inOpenSubj(E)
��E , namely u�(X)Æ, is equal (as a subobje
t of I) to the reindexing ofX in Sub(DjE), namely u�(X).Combining the above proposition with Proposition 4.2 we have the followingpi
ture, 
omplementing Lawvere's \adjoint 
ylinder" pi
ture of lo
al maps [9℄(where the dis
rete obje
ts 
ome in to E on the left, the sheaves 
ome in to Eon the right, and the 
ategory of dis
rete obje
ts is equivalent to the 
ategoryof sheaves).Sub(DjE) //

��

OpenSubj(E)
%%JJJJJJJJJJJ

%%JJJJJJJJJJJ

�
,,' ClSubj(E)

{{vvvv
vv

vv
vvÆmm Sub(ShjE)oo

��DjE � � // E ShjE? _ooCombining Propositions 4.4 and 4.3, we of 
ourse derive a translation of theinternal logi
 of DjE into the logi
 of E . Sin
e we are restri
ting attention tothe dis
rete obje
ts in the base, we 
an make some simpli�
ations 
ompared towhat we get dire
tly from Proposition 4.3:Proposition 4.5. The internal logi
al operations of DjE are given as follows(we label the 
onne
tives et
. with a subs
ript d):� the geometri
 operations (>d, ^d, ?d, _d, 9d) are, of 
ourse, as for ordi-nary subobje
ts in E� X �d Y = (X � Y )Æ and (8d)fX = (8fX)Æ.Proof. The �rst item is obvious sin
e the in
lusion of dis
rete obje
ts is theinverse image of a geometri
 morphism. To show X �d Y = (X � Y )Æ notethat X �d Y = X � Y , by Propositions 4.4 and 4.3. Now let I be a dis
reteobje
t of E and let X;Y 2 SubE(I) be subobje
ts of I . Suppose that X is open.Then (X � Y )Æ = (X � Y Æ)Æ using Axiom 3 and the fa
t that dis
rete obje
tsare 
losed under �nite limits in E . The 
ase of 8 is similar.Observe the following easy 
orollary of Proposition 4.5.Corollary 4.6. Let u : I ! J be a morphism of dis
rete obje
ts in E and letX 2 SubE(I) be a subobje
t of I. Then (8uXÆ)Æ = (8uX)Æ.4.1 Preservation of Valid Stable FormulasWe now show that a wider 
lass of senten
es than the geometri
 senten
es ispreserved by the in
lusion of the dis
rete obje
ts.Let � ` ' : Prop be a formula (in 
ontext) of �rst-order logi
 over a �rst-order many-sorted language. Suppose that the basi
 types in the 
ontext � of the11



language are interpreted in E by dis
rete obje
ts and that the atomi
 predi
atesare interpreted by open subobje
ts of dis
rete obje
ts in E , 
orresponding tosubobje
ts in DjE . We then write [['℄℄ for the interpretation of ' in E . Likewise,we write [['℄℄d for the interpretation of ' in DjE , i.e., in the subobje
t �brationover DjE . For notational simpli
ity we allow ourselves to 
onsider [['℄℄d as asubobje
t in E , thus omitting the in
lusion fun
tor from dis
rete obje
ts intoE . Finally, we say that ' is valid in E , written in short as E � ', i� > � [['℄℄in SubE([[�℄℄), where [[�℄℄ is the interpretation of �. Likewise, we say that ' isvalid in DjE , written DjE � ', if >d � [['℄℄d in SubDjE([[�℄℄d).De�nition 4.7. Let ' be a formula of �rst-order logi
 over a �rst-order many-sorted language. We say that ' is stable if, for all subformulas ( � #) of ',the formula  is geometri
.Lemma 4.8. Let ' be a stable formula. Then [['℄℄Æ = [['℄℄d.Proof. The proof is by stru
tural indu
tion on '. Note that [['℄℄d is dis
rete,and thus open, so [['℄℄dÆ = [['℄℄d. For ' atomi
 we 
learly have [['℄℄ = [['℄℄d andthus also [['℄℄Æ = [['℄℄d. Given the result for atomi
 formulas, for ' a geometri
formula, we 
learly also �nd that [['℄℄ = [['℄℄d, and thus also [['℄℄Æ = [['℄℄d. Itremains to 
onsider impli
ation and universal quanti�
ation.Suppose that ' = ( � #). Then we have that[[ � #℄℄d = ([[ ℄℄d � [[#℄℄d)Æ see de�nition of �d, Prop. 4.5= ([[ ℄℄Æ � [[#℄℄Æ)Æ by indu
tion hypothesis= ([[ ℄℄Æ � [[#℄℄)Æ by Prop. 4.5= ([[ ℄℄ � [[#℄℄)Æ sin
e  is geometri
 by stability of ';as required.Finally, suppose that ' = (8x : X:  ). Then we have that[[8x : X:  ℄℄d = (8x : X: [[ ℄℄d)Æ see de�nition of 8d, Prop. 4.5= (8x : X: [[ ℄℄)ÆÆ by indu
tion hypothesis= (8x : X: [[ ℄℄)Æ by Corollary 4.6= [[8x : X:  ℄℄Æ;as required.Theorem 4.9. If ' is stable, then E � ' i� DjE � '.Proof. Let I = [[�℄℄ = [[�℄℄d be the dis
rete obje
t interpreting �, the 
ontext offree variables of '. Then, writing �d for the ordering in SubDjE(I) and � in
12



SubE(I), we have thatDjE � ' () >d �d [['℄℄d() > � [['℄℄d sin
e >d = >() > � [['℄℄Æ by Lemma 4.8() > � [['℄℄ sin
e I is dis
rete and [['℄℄ is thus open() E � ':4.2 A Modal Logi
 for Lo
al MapsWe now 
onsider interior as a logi
al operator. Interior is not a logi
al operationin the subobje
t �bration over E be
ause it does not 
ommute with substitution,see Remark 2.2. (See also Lawvere's dis
ussion of 
o-Heyting operations inpresheaf toposes [11℄, where a similar phenomenon arises.) However, when werestri
t attention to dis
rete obje
ts, interior does 
ommute with substitution:Proposition 4.10. Let u : I ! J be a morphism between dis
rete obje
ts Iand J in E and suppose X � J is a subobje
t of J . Then (u�X)Æ = u�(XÆ) assubobje
ts of I.Proof. First note thatXÆ is dis
rete by Axiom 3 and thus also u�(XÆ) is dis
reteand hen
e open. Thus u�(XÆ) = u�(XÆ)Æ � u�XÆ. The other dire
tion alwaysholds (regardless of I and J being dis
rete): (u�X)Æ � u�(XÆ) i� u�X �u�(XÆ) = u�X.The following de�nition makes pre
ise the idea of 
onsidering the logi
 of Erestri
ted to dis
rete obje
ts.De�nition 4.11. We de�ne the �bration Pred
��DjE of E-predi
ates over DjE by
hange-of-base along DjE � � //E as inPred //

��

Sub(E)
��DjE � � // E :Thus in the internal logi
 of Pred

��DjE , types and terms are interpreted by obje
tsand morphisms of DjE and predi
ates over a type �, interpreted by a dis
reteobje
t I� , are interpreted as subobje
ts of I� in E . In other words, we 
onsiderall the predi
ates of E , but only on types and terms from DjE .13



The pulled-ba
k �bration Pred
��DjE is 
learly a �rst-order �bration. By Proposi-tion 4.10, the interior operation is a logi
al operation in Pred

��DjE . So is, of 
ourse,the 
losure operation. We 
an now give axioms for the interior and 
losure op-erations to obtain what we will refer to as a modal logi
 for lo
al maps. In thesynta
ti
 
al
ulus we denote interior by ℄ and 
losure by [. The 
hoi
e of thisnotation 
omes from our realizability model RT(A;A℄) dis
ussed in [1℄.The 
al
ulus is an extension of standard intuitionisti
 �rst-order logi
. Wewrite logi
al entailment as � j ' `  , where � is a 
ontext of the formx1 : �1; : : : ; xn : �n giving types to variables, and where ' and  formulas withfree variables in �. There are two additional logi
al operations: if ' is a formula,also ℄' and [' are formulas. Substitution of terms for variables in these newformulas is de�ned in the obvious way. There are the usual rules of many-sorted�rst-order intuitionisti
 logi
 plus the following axioms and rules:(ml-1)� j ℄' ` ' (ml-2)� j ℄' ` ℄℄'(ml-3)� j > ` ℄(>) (ml-4)� j ℄' ^ ℄ ` ℄(' ^  )� j ℄' `  ======== (ml-5)� j ' ` [ (ml-6)x : �; y : � j x =� y ` ℄(x =� y)Intuitively, Axiom ml-1 says that ℄ is a de
ationary operation, Axiom ml-2then says that ℄ is idempotent, Axioms ml-3 and ml-4 say that ℄ is left exa
t,Rule ml-4 says that ℄ is left adjoint to [, and Axiom ml-6 expresses that all thetypes are dis
rete and hen
e equality is ℄.From the above axioms and rules one 
an easily prove the ne
essitation rule:> ` '> ` ℄'and that ℄ distributes over impli
ation:℄(' �  ) ` ℄' � ℄ Thus ℄ has the formal properties of the box operator in the modal logi
 S4,whi
h is why we refer to the �rst-order logi
 axiomatized here as a modal logi
for lo
al maps.Referen
es[1℄ S. Awodey, L. Birkedal, and D.S. S
ott. Lo
al realizability toposes and amodal logi
 for 
omputability. In L. Birkedal, J. van Oosten, G. Rosolini,14



and D.S. S
ott, editors, Tutorial Workshop on Realizability Semanti
s,FLoC'99, Trento, Italy, 1999, volume 23 of Ele
troni
 Notes in Theoreti
alComputer S
ien
e. Elsevier, 1999.[2℄ L. Birkedal. Developing Theories of Types and Computability. PhD thesis,S
hool of Computer S
ien
e, Carnegie Mellon University, 1999.[3℄ P.J. Freyd. Aspe
ts of topoi. Bull. Austral. Math. So
., 7:1{76, 1972.Corrigendum in same volume, pp. 467{480.[4℄ P.J. Freyd and G.M. Kelly. Categories of 
ontinuous fun
tors, I. Journalof Pure and Applied Algebra, 2:169{191, 1972.[5℄ B. Ja
obs. Categori
al Logi
 and Type Theory, volume 141 of Studies inLogi
 and the Foundations of Mathemati
s. Elsevier S
ien
e PublishersB.V., 1999.[6℄ P.T. Johnstone. Topos Theory. Number 10 in L.M.S. Monographs. A
a-demi
 Press, 1977.[7℄ P.T. Johnstone and I. Moerdijk. Lo
al maps of toposes. Pro
. LondonMath. So
., 3(58):281{305, 1989.[8℄ G.M. Kelly and F.W. Lawvere. On the 
omplete latti
e of essential lo
al-izations. Bull. So
. Math. Belg. Ser. A, XLI(2):289{319, 1989.[9℄ F.W. Lawvere. Categories of spa
es may not be generalized spa
es as exem-pli�ed by dire
ted graphs. Revista Colombiana de Matem�ati
as, XX:179{186, 1986.[10℄ F.W. Lawvere. Toposes generated by 
odis
rete obje
ts in 
ombinatorialtopology and fun
tional analysis. Notes for Colloquium le
tures given atNorth Ryde, New South Wales, Australia on April 18, 1989 and at Madison,USA, on De
ember 1, 1989, 1989.[11℄ F.W. Lawvere. Intrinsi
 
o-heyting boundaries and the leibniz rule in 
er-tain toposes. In A. Carboni, M.C. Pedi

hio, and G. Rosolini, editors, Cat-egory Theory. Pro
eedings of the International Conferen
e held in Como,Italy, July 22{28, 1990, volume 1488 of Le
ture Notes in Mathemati
s,pages 279{281. Springer-Verlag, 1991.
15


