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Abstract

It has been observed by several people that, in certain contexts; the free symmetric algebra
construction can provide a model of the linear modality !. This construction arose indepen-
dently in quantum physics, where it is considered as a canonical model of quantum field theory.
In this context, the construction is known as (bosonic) Fock space. Fock space is used to analyze
such quantum phenomena as the annihilation and creation of particles. There i1s a strong intu-
itive connection to the principle of renewable resource, which is the philosophical interpretation
of the linear modalities.

In this paper, we examine Fock space in several categories of vector spaces. We first consider
vector spaces, where the Fock construction induces a model of the ®, &, ! fragment in the cat-
egory of symmetric algebras. When considering Banach spaces, the Fock construction provides
a model of a weakening cotriple in the sense of Jacobs. While the models so obtained model a
smaller fragment, 1t is closer in practice to the structures considered by physicists. In this case,
Fock space has a natural interpretation as a space of holomorphic functions. This suggests that
the “nonlinear” functions we arrive at vie Fock space are not merely continuous but analytic.

Finally, we also consider fermionic Fock space, which corresponds algebraically to skew sym-
metric algebras. By considering fermionic Fock space on the category of finite-dimensional vec-
tor spaces, we obtain a model of full propositional linear logic, although the model is somewhat
degenerate in that certain connectives are equated.

1 Introduction

Linear logic was introduced by Girard [G87] as a consequence of his decomposition of the traditional
connectives of logic into more primitive connectives. The resulting logic is more resource sensitive;
this is achieved by placing strict control over the structural rules of contraction and weakening,

*Research supported in part by FCAR of Quebec.
'Research supported in part by an NSERC Research Grant.
{Research supported in part by an NSERC Research Grant and by FCAR of Quebec.



introducing a new “modal” operator OF COURSE (denoted !) to indicate when a formula may be
used in a resource-insensitive manner—i.e. when a resource is renewable. Without the ! operator,
the essence of linear logic is carried by the multiplicative connectives; at its most basic level, linear
logic is a logic of monoidal-closed categories (in much the same way that intuitionistic logic is a
logic of cartesian-closed categories). In modelling linear logic, one begins with a monoidal-closed
category, and then adds appropriate structure to model linear logic’s additional features. To model
linear negation, one passes to the x-autonomous categories of Barr [B79]. To model the additive
connectives, one then adds products and coproducts. Finally, to model the exponentials, and
so regain the expressive strength of traditional logic, one adds a triple and cotriple, satisfying
properties to be outlined below. This program was first outlined by Seely in [Se89].

Linear logic bears strong resemblance to linear algebra (from which it derives its name), but
one significant difference is the difficulty in modelling !. The category of vector spaces over an
arbitrary field is a symmetric monoidal closed category, indeed in some sense the prototypical
monoidal category, and as such provides a model of the intuitionistic variant of multiplicative
linear logic. Furthermore, this category has finite products and coproducts with which to model
the additive connectives. It thus makes sense to look for models of various fragments of linear
logic in categories of vector spaces. However, modelling the exponentials is more problematic. It is
the primary purpose of this paper to present methods of modelling exponential types in categories
arising from linear algebra. We study models of the exponential connectives in categories of linear
spaces which have monoidal (but generally not monoidal-closed) structure. (We shall also include
a model in finite-dimensional vector spaces which is closed.)

The construction which will be used to model the exponential formulas, although standard in
algebra, arose independently in quantum field theory, and is known as Fock space. It was designed
as a framework in which to consider many-particle states. The key point of departure for quantum
field theory was the realization that elementary particles are created and destoyed in physical
processes and that the mathematical formalism of ordinary quantum mechanics needs to be revised
to take this into account. The physical intuitions behind the Fock construction will also be familiar
to mathematicians in that it corresponds to the free symmetric algebra on a space. As such, it
induces a pair of adjoint functors, and hence a cotriple in the algebra category. It is this cotriple
which will be used to model !. It should be noted that this category of algebras inherits the
monoidal structure from the underlying category of spaces, but there is no hope that this category
could have a monoidal-closed structure.

While Fock space has an abstract representation in terms of an infinite direct sum, physicists
such as Ashtekar, Bargmann, Segal and others, see [AM-A80, Ba61, S62] have analyzed concrete
representations of Fock space as certain classes of holomorphic functions on the base space. Thus,
these models further the intuition that the exponentials correspond to the analytic properties of
the space. In fact, there is a clear sense in which morphisms in the Kleisli category for the cotriple
can be viewed as generalized holomorphic functions. Thus, there should be an analogy to coherence
spaces where the Kleisli category corresponds to the stable maps.

Fock space also has two additional features which correspond to additional structure, not ex-
pressible in the syntax of linear logic. These are the annihilation and creation operators, which
are used to model the annihilation and creation of particles in a field. These may give a tighter
control of resources not expressible in the pure linear logic. Thus, these models may be closer to
the bounded linear logic of Girard, Scedrov and Scott [GSS91].

A possible application of this work is that the refined connectives of linear logic may lend
insight into certain aspects of quantum field theory. For example, there are two distinct methods of
combining particle states. One can superimpose two states onto a single particle, or one can have
two particles coexisting. The former seems to correspond to additive conjunction and the latter



to the multiplicative. This physical imagery is missing in quantum mechanics, which was specially
designed to handle a single particle; it only shows up in quantum field theory.

In this paper, we begin by reviewing the categorical structure necessary to model linear logic,
and specifically exponential types. We then describe the Fock construction on vector spaces and
explain the properties of the resulting model. We next consider Fock space on normed vector
spaces. While the model so obtained has weaker properties, this case is closer to that considered by
physicists. In fact, in this case the Fock construction gives a model of a weakening cotriple in the
sense of Jacobs [J93]. We next describe the interpretation of Fock space as a space of Holomorphic
functions. Finally, the physical meaning of the Fock construction is discussed.

We wish to point out that this paper corrects an error in an earlier draft [BPS]. This is discussed
in section 6.

2 Linear Logic and Monoidal Categories

We shall begin with a few preliminaries concerning linear logic. We shall not reproduce the formal
syntax of linear logic, nor the usual discussion of its intuitive interpretation or utility—for this the
reader is referred to the standard references, such as [G87]. We do recall [Se89] that a categorical
semantics for linear logic may be based on Barr’s notion of *-autonomous categories [B79]. If only
to establish notation, here is the definition.

Definition 1 A category C is x-autonomous if it satisfies the following:

1. C is symmetric monoidal closed; that is, C has a tensor product A @ B and an internal hom
A —o B which is adjoint to the tensor in the second variable

Hom(A® B,C) = Hom(B,A — C)

2. C has a dualizing object —; that is, the functor ( )1:C°P — C defined by AL = A —o — is an
involution (viz. the canonical morphism A — ((A —o —) —o —) is an isomorphism).

In addition various coherence conditions must hold—a good account of these may be found in
[M-OMS9]. Coherence theorems may be found in [BCST, BI92]. An equivalent characterization of
k-autonomous categories is given in [CS91], based on the notion of weakly distributive categories.
That characterization is useful in contexts where it is easier to see how to model the tensor ®,
the “par” @ and linear negation, and the coherence conditions may be expressed in terms of those
operations.

The structure of a *-autonomous category models the evident eponymous structure of linear
logic: the categorical tensor @ is the linear multiplicative @ and the internal hom —o is linear
implication. The dualizing object — is the unit for linear “par” %, or equivalently, is the dual of
the unit I for the tensor!.

There are a number of variants of linear logic whose categorical semantics is based on this.
First is full “classical” linear logic, which includes the additive operations. These correspond to
requiring that the category C have products and coproducts. (If C is *-autonomous, one of these
will imply the other by de Morgan duality.) There is also Girard’s notion of “intuitionistic” linear

'In other papers we have used the notation T for the unit for ®, and @ instead of %. Here we shall try to
avoid controversy by using notation traditional in the context of Banach spaces, and by generally ignoring the “par”.
So in this paper, ® means direct sum, which coincides with Girard’s notation. We use x for cartesian product,
corresponding to Girard’s &. And we shall use the usual notation for the appropriate spaces when referring to the
units.



logic [GL87], which omits linear negation and “par”—this corresponds to merely requiring that C be
autonomous, that is to say, symmetric monoidal closed (with or without products and coproducts,
depending on whether or not the additives are wanted). There is an intermediate notion, “full
intuitionistic linear logic” due to de Paiva [dP89], in which the morphism A — A1+ need not
be an isomorphism. And as mentioned above, there is the notion of weakly distributive category
[CS91, BCST], where negation and internal hom are not required.

One important class of *-autonomous categories are the compact categories [KL.80] where the
tensor is self-dual: (A@B)J- ~ AL@ BL. These categories form the basis for Abramsky’s interaction
categories [Abr].

In this paper we shall model various fragments of linear logic; we shall describe the fragments
in terms of the categorical structure present, without explicitly identifying the fragments.

Finally, in order to be able to recapture the full strength of classical (or intuitionistic) logic,
one must add the “exponential” ! (and its de Morgan dual 7). (All our structures will model !.)
We saw in [Se89] that this amounts to the following.

Definition 2 A monoidal category C with finite products admits (Girard) storage if there is a
[
cotriple ':C — C (with the usual structure maps A R G | A), satisfying the following:

1. for each object A € C, ' A carries (naturally) the structure of a (cocommutative) ®-comonoid

d
N I S I @ YA (and the coalgebra maps are comonoid maps), and

2. there are natural comonoidal isomorphisms

I =11 and 'A® !B 1(AXB) .

Some remarks: First, it is not hard to see that the first condition above is redundant, the
comonoidal structure on ! A being induced by the isomorphisms of the second condition. However,
the first condition is really the key point here, as may be seen from several generalizations of
this definition, to the intuitionistic case without finite products in [BBPH], and to the weakly
distributive case, again without finite products, [BCS93]. The main point here is that without
products one replaces the second condition with the requirement that the cotriple ! (and the
natural transformations ¢, ) be comonoidal. And second, one ought not drown in the categorical
terminology—terms like “comonoidal” in essence refer to various coherence (or commutativity)
conditions which may be looked up when needed. Readers not interested in coherence questions
can follow the discussion by just noting the existence of appropriate maps, and believe that all the
“right” diagrams will commute. They can regard it as somebody else’s business to ensure that this
is indeed the case.

(In this vein we ought to cite [Bi94], where the definition above is improved by requiring that
the induced adjunction between C and Cy is monoidal, in order to guarantee the soundness of term
equalities.)

In the mid-1980’s, Girard studied coherence spaces as a model of system F, and realized the
following fact, which led directly to the creation of linear logic. Of course Girard did not put the
matter in these categorical terms at the time, but the essential content remains the same—ordinary
implication factors through linear implication via the cotriple !. (Another way of expressing this
is to say that a model of full classical linear logic induces an interpretation of the typed A-calculus.)

Theorem 1 IfC is a x-autonomous category with finite products admitting Girard storage !, then
the Kleisli category Cy is cartesian closed.



This result is virtually folklore, but a proof may be found in [Se89].

One of the problems with finding models of linear logic comes from the difficulty of finding well-
behaved (in the above sense) cotriples on *-autonomous categories. For example, one of the main
problems with vector spaces as a model of linear logic is the lack of any natural interpretation of
!'. (We shall soon return to this point, and indeed, in a sense this is the main point of this paper.)
This question seems closely bound up with questions of completeness. Barr [B91] has shown how
in certain cases one can get appropriate cotriples (via cofree coalgebras) from a subcategory of the
Chu construction [B79]. One case where this route works out fairly naturally is if the *-autonomous
category is compact. The following is proved in [B91].

Theorem 2 Given a complete compact closed category, one can construct cofree coalgebras by the
formula

'A=TXAX (A@:; A) X (A@s A@s A) X -+~
(where the tensors ®4 are the symmetric tensor powers discussed below).

We observe that a compact category which is complete is also cocomplete, by self-duality. This
theorem is the basis for Abramsky’s modeling of the exponentials in interaction categories [Abr].

3 Fock Space

In this section, we describe the basic construction of Fock space; the exposition follows [Ge85]
closely. Fock space is one of the crucial constructions of quantum field theory, and is designed
to treat quantum systems of many identical, noninteracting particles. One of the crucial notions
of quantum field theory is that particles may be created or annihilated, and Fock space will be
equipped with canonical operators to model this phenomenon. We should observe that generally
physicists consider Fock space on Hilbert spaces, but for the purposes of this discussion, vector
spaces are sufficient.

The states of a quantum system form a complex vector space. Given two such systems, they
may be combined via the operator ®. So if the first system is in state vy and the second in state
vg, then the combined system would be in state vy ® vo. Note that when we say we are combining
the systems, we are only viewing them as a single system. We are not allowing interaction. So, if V'
represents a one-particle system, then V @ V represents a two-particle system. To model quantum
field theory, one wishes to consider a system of many particles. A natural candidate would be:

CavaVaoV)a(VavaV)...

However, this is not quite correct. We wish the particles of the system to be indistinguishable.
This leads us to replace the abve tensor with either the symmetrized or antisymmetrized tensor.

3.1 Symmetric and Antisymmetric Tensors
First, we introduce the symmetric tensor product of a vector space with itself.

Definition 3 Let A be a vector space. The vector space A @, A is defined to be the following
coequalizer:

1d
ARATZ AQRA — AR, A

-
Note that 7 is the twist map, a ® b — b ® a.



This is the general definition of symmetrized tensor. It turns out that in categories of vector
spaces, this quotient is canonically isomorphic to the equalizer of these two maps, and that this
equalizer is split by the map:

a®b|—>%(a®b—|—b®a)

We will frequently use this representation in the sequel.

The ntt symmetric power is defined analogously. The vector space ®" A has n! canonical
endomorphisms, and the vector space @ A is the coequalizer of all of these. Again, it is isomorphic
to the equalizer, and there is a splitting, as above. A good way to view the symmetrized tensor is
to observe that the symmetric group acts on the space @™ A, and that the symmetrized tensor is
the invariant subspace. As such, an appropriate notation for the symmetrized tensor is:

X" A

n!

We will also freely use this representation, as well.

The antisymmetric tensor will be defined in a similar fashion. Again, we first define the anti-
symmetric tensor of a vector space B with itself. It will be denoted B ® 4 B. It is the coequalizer
of the following diagram:

vd
BB _——B@B-—B@4B

—T

Here, —7 is the map a ® b — —b ® a.
Members of this space can canonically be viewed as elements of the ordinary tensor product, of
the form:

x:%(a@b—b@a)

The n'** antisymmetric power is defined analogously, and is denoted ®’.

3.2 Bosonic and Fermionic Fock Space

Definition 4 Let B be a complex vector space. The symmetric Fock space of B is the in-
finite direct sum of the spaces Q) B, where, when n is zero we use the complex numbers. The
antisymmetric Fock space of B is the infinite direct sum of the spaces Q"4 B.

FB)=CoB® -6 QB -
]:A(B)IC@B@---®®ZB@---

The particles of symmetric Fock space are called bosons. Examples of such are photons. Particles
of antisymmetric Fock space are called fermions. Examples of such are electrons and neutrinos.

An interesting property of fermions is revealed in the above construction. Suppose one had a
system of two fermions, each in the same state v. This system would be represented in fermionic
Fock space by the following expression:

1
(0,0,§(v®v—v®v),0,0,...)

This expression is clearly 0. This leads to the observation that one may not have two fermions
existing in the same state. This is known as the Pauli exclusion principle.



Given the nature of infinite direct sums of vector spaces, it is reasonable to think of elements
of Fock space as polynomials. Symmetrizing the tensor ensures that the variables commute. In
the fermionic case, we get anticommuting variables. When we consider categories of normed vector
spaces, this analogy becomes even clearer. Polynomials are replaced by convergent power series.
We will show that the bosonic Fock space of a Banach space has a canonical representation as a
space of holomorphic functions.

3.3 Annihilation and Creation of Particles
For ease of exposition, we consider the unsymmetrized Fock space:
U=CaVaVaeV)ag(VaValV)...

The operators we discuss are easily extended to the bosonic and fermionic cases. Given an
arbitrary nonzero v € V, we define a map

Co:ld = U

Cy((vg, 1,02, ...)) = (0, vv, V20 @ v1,V30 @ vy, . . )

In the above expression, v, € V", This operator is thought of as “creating a particle in state

Similarly one may annihilate particles. Choose an element ¢ of the dual space V*, and define:

Ag((v0, 01,02 @ 3,04 @ v5 @ vg,...)) = (¢(v1), V26(v2)v3, V38(04)05 @ s, . . .)

This operation takes an n particle state to an n— 1 particle state and so on. The square roots in
the above two expressions are “normalization” factors, and are added to make the desired equations
hold. In this expression, each v; is an element of V. The equations expressing the interaction of
the annihilation and creation operators are to be found in [Ge85]. A more complete discussion of
the physical meaning of Fock space is contained in the penultimate section.

4 Fock Space as a Model of Storage

Now we check that the Fock space actually satisfies all the properties that need to be satisfied by
an exponential type, i.e. satisfies the properties of [Se89], discussed in Section 2. This consists
of two parts, verifying that Fock spaces form a cotriple on the category of symmetric algebras
and verifying the so-called exponential law, viz. '(A x B) 2 'A® ! B. We check the former by
displaying a suitable adjunction in the next subsection. Note that in the category of vector spaces,
we have x = 3.

Proposition 3 Let A and B be vector spaces.

F(Ax B)=Z F(A)® F(B)



Proof —
For the purposes of this proof only, we will denote the n-th symmetric tensor by §”™. Let V and
W be vector spaces. We construct a morphism

S* (VYo S™(W) — StV o W)

(v1®5v2...)®(w1®5w2...)»—>(v1®5v2...)®5(w1®5w2...)

On the righthand side of the above expression, we are viewing each v; and w; as an element of
Vaw.

This lifts to an isomorphism:
S VaWw)2PsSU V) SHH(W)
a=0

The inverse map is defined as follows. We now denote vectors in V or W, when considered in
Ve W, by (v;,0) and (0, w;) respectively. (Remember that elements of this form generate V & W.)

(?]1, 0) ®5 (?]2, 0) ®5 ... ®5 (viv 0) ®5 (07 wi-l—l) ®5 ... ®5 (07 wn)
= (vl ®5v2®5---®svi)®(wi+l®s---®swn)

The naturality of these maps, and the fact that they are inverse are left to the reader. We
note at this point that the symmetrization of the tensors is crucial for establishing that this is an
isomorphism, as it was necessary to rearrange terms. Finally, it is straightforward to verify that
this extends to an isomorphism of the desired form. Note that F(A & B) is generated by pure
tensors, 7.e. expressions which are nonzero only on one term of the direct sum. We also note that
the expression P7_, SH(V)®S™%(W) corresponds to the finite rank part of 7(A4)® F(B). By the
definition of the countable direct sum of vector spaces, all elements of F(A)® F(B) are contained
in a finite rank piece. J

The above proof follows [FH], Appendix B, closely. In fact, this argument can be carried out
at a categorical level, as is clear from the previously mentioned theorem of Barr [B91]. The above
is also proved in [BSZ92] for Hilbert spaces.

In the next section, we will see that Fock space corresponds to the free symmetric algebra. It
is also straightforward to verify that the isomorphism constructed in the above proof is in fact an
algebra homomorphism.

Now we consider the antisymmetrized Fock space. We will show that one gets a model of the
exponential types in the category of finite-dimensional vector spaces using the antisymmetrized
Fock space.

Proposition 4 If V is a finite-dimensional vector space of dimension n, then F4(V) is also a
finite-dimensional vector space with dimension 2".

Proof — Consider the vector space @ V with p > n. We claim that this space is the zero vector
space. Since ® is adjoint to internal hom in VECj,4, the space @', V is isomorphic to the space of
completely antisymmetric p-linear maps from V to the scalars. Let f denote such a map. Since V
is only n-dimensional one cannot have p linearly independent arguments to such maps. Thus one
of the arguments must be a linear combination of the others. Thus on any arguments f becomes



a combination of terms of the form f(...,u,...,u,...) where two arguments must be equal. But
antisymmetry makes such a term zero. Thus f is the zero vector and the vector space @ V is the
one-point space. Thus the infinite direct sum becomes a finite direct sum. Now consider p < n. It
is clear that one can only choose ('} sets of p linearly independent vectors given a basis. Thus the
dimensionality of the space ®", V is ¢} and hence, adding the dimensions to get the dimension of
the direct sum, we conclude that the dimension of F4(V') is 2". |

The exponential law for the antisymmetric case can be argued similarly to the symmetric case.
The detailed verification can be found in [BSZ92] in Section 3.2 on exponential laws, or in [F'H] in
appendix B.

4.1 Categories of algebras

In this section we shall review some basic facts about categories of algebras, and see in particular
how these fit into the current context. (See [M71] for a review of the basic categorical facts, and
[L65] for the basic algebra, for instance.) For reference, we do give the following definition here.

Definition 5 A triple consists of a functor F:B — B, together with natural transformations
niid — F and p: FF — F, such that ponF = po Fn=1id and popl = po Fpu.

One simple point to recall is that categories of algebras and of coalgebras are closely connected to
the existence of triples and cotriples. Given a triple F': B — B, (with structure morphisms 7, 1), an
F-algebra is an object B and a morphism h: F'(B) — B (subject to two commutativity conditions,
corresponding to the associative and unit laws). (This notion can be generalized to arbitrary
functors.) There is a canonical category of such algebras, the Eilenberg-Moore category C*', and an
adjunction C = C¥. Any adjunction canonically induces a triple, and this one canonically induces
the original triple. The category of free F-algebras is the Kleisli category Cr of the triple; again,
there is a canonical adjunction C — Cp which induces the original triple. Of course this dualizes
for cotriples, with the corresponding notion of coalgebras. (We shall avoid the unpleasant use of
terms like “coEilenberg-Moore” and “coKleisli”.)

Usually mathematicians have been more interested in the Eilenberg-Moore category of a triple
(or cotriple) than in the Kleisli category; although there has been some interest in Kleisli categories
recently (for instance in the context of linear logic, as mentioned earlier in this paper), we shall
follow this tradition and shall work in Eilenberg-Moore categories. Indeed, it is there that we shall
find some of our models. One reason for this is quite practical: it is often simpler to recognize the
category of algebras and so derive the triple (similarly, once one has a candidate for a triple, it is
often simpler to construct the category of algebras and verify the adjunction than to directly show
the original functor is a triple). But there is another reason: we want to show that the Fock space
functor is a cotriple (so as to model !), but on the categories of spaces we consider, this is not the
case—rather it is a triple. By passing to the algebras, we can fix this, because of the following fact:

F

Fact Given an adjunction C —— D, F - U, the composite UF is a triple on C, and so (dually)
U

the composite F'U is a cotriple on D [BW].

So we obtain our model of ! on the category of algebras.



4.1.1 Algebras for the symmetric (bosonic) Fock space construction

We begin with a more traditional notion of algebra; the connection between these comes wvig the
triple induced by the adjunction given by the free algebra construction, as outlined above. In other
words, the category of (traditional) algebras is equivalent to the category of UF algebras.

Definition 6 An algebra A is a space A equipped with morphisms

mAQA — Aand:C — A

satisfying
AR A®A m © id A®A
1id R m m
AR A m A
[a¥) m [a¥)
A

Here we are supposing the base field to be C; otherwise replace C with the base field £. If in addition
the following diagram commutes, then the algebra A is said to be symmetric or commutative. (7
is the canonical “twist” morphism.)

ARA—T AR A

A

An example of such an algebra comes from the Fock space, the multiplication m is defined by
“multiplication of polynomials” in an evident manner. The use of the symmetrized tensor in the
definition of Fock space guarantees that this will indeed be a symmetric algebra, and it is standard
that this description gives the free such algebra. In other words, we have the following proposition.

Proposition 5 Given a vector space B, the Fock space F(B) canonically carries an algebra struc-
ture, and indeed is the free symmetric algebra generated by B.

It follows from this that we have a cotriple on the category SALG of symmetric algebras, given
by taking the Fock algebra on the underlying space of an algebra. As the details of this are both
standard and similar to the case of the antisymmetric Fock space construction, which we shall
discuss in more detail next, we shall leave the details here to the reader.

10



4.2 Algebras for the antisymmetric (fermionic) Fock space construction

Recall that we work in the context of finite dimensional vector spaces VEC ;4 when considering the
antisymmetric Fock construction. This category is self-dual, and is compact with biproducts: the
product and coproduct coincide. This duality also implies that a triple is also a cotriple, so we can
model ! in the category of spaces. However, to show that the Fock space construction defines a
triple (or cotriple), it is again simpler to consider the category of algebras. Although we are not
familiar with any previous consideration of this category of algebras as such, the context is familiar:
the antisymmetric Fock space construction is usually called (when thought of as an algebra) the
Grassman algebra, or the “alternating” or “exterior” algebra; the multiplication defined on it is
called the “wedge product” (a term derived from the usual notation for this product).

Definition 7 An alternating algebra A is a graded algebra A (with unit) whose multiplication map
satisfies the property that, if .,y are of degree m,n respectively, then xy = (—1)""yx (which by the
grading must be of degree n + m).

Note that the unit must be of degree 0. Morphisms of alternating algebras are just homomorphisms
as algebras.

Proposition 6 There is a canonical alternating algebra structure on F4(V), for any finite dimen-

stonal vector space V. The antisymmelric Fock construction is left adjoint to the forgetful functor
Fa
U:VECys —— AALG, where AALG is the category of alternating algebras. As a consequence, F 4

U
defines a triple (and so cotriple) on VEC ¢4.

Proof — (Sketch) The multiplication on F4(V') is the standard “wedge” product [L65], which to
elements 1 @4 ... ®A Ly, Y1 DA4...D4 Y gives the product 21 R0 4... 042, WAL DA ... QA Y. Here
x ® 4y means the equivalence class of 2 @y in A ®4 A. (Essentially this is the same “multiplication
of power series” we had in the symmetric case, with the alternating product used in place of
the usual tensor.) For a vector space V, define 17:V — UF4(V) as the canonical injection.
Given an alternating algebra A, define e: F4(UA) — A by “adding the terms of the series”:
(vo, 21,23 @4 23,..) — i(20) + 2y + m(al,23) + -+, where i, m are the algebra maps.
To verify that we have an adjunction we must show the following commute:

Fav) 220 Fu v F v
1 “Fa

Fa(V)

vA —W . UF(UA)

UA

11



The second diagram is obvious; to verify the first, notice that F4(n(z)) maps

<$0,x1,x% @4 x%, oo = (zo,
<0, xq, 0, .. .>,
(0,0,23,0,...) @4 (0,0,23,0,...),
)
and it is clear that “adding up this series” just returns the original term. J

It now follows that we can model ! in VECsq with F4, via the formula !V = (Fa(V1))L. In
summary, we have the following theorem:

Theorem 7 In the category of symmetric algebras, we have a model of the fragment ! &, &. In
the category VEC 4, we have a model of full propositional classical linear logic.

We mention that while VEC 4 models the full propositional calculus, it is somewhat degenerate
being a compact category. We now consider Fock space on normed vector spaces. While we
lose some of the expressive power in such models, (in particular, we are no longer able to model
contraction) Fock space is particularly interesting in such categories. We will see that it has a
canonical representation as a space of holomorphic functions.

5 Normed Vector Spaces

Vector spaces are, in some sense, intrinsically finitary structures. Every vector is a finite sum of
multiples of basis vectors, and one is only allowed to take finite sums of arbitrary vectors. It seems
reasonable that to model ! and ?, one should be able to take infinite sums of vectors, thereby
capturing the idea of infinitely renewable resource. However, to do this, one needs a notion of
convergence. And to define convergence, one needs a notion of norm. Once a space is normed, then
it is possible to define limits and Cauchy sequences, and so on. Normed vector spaces, which are
the principal objects of study in functional analysis, should be considered as the meeting ground
of concepts from linear algebra and analysis. They are also an ideal place to model linear logic.

We will now briefly review the basic concepts of the subject. In this paper, we will focus on
Banach spaces. Much of the discussion easily lifts to Hilbert spaces. We will introduce Banach
spaces in detail, and refer the reader to [KR83] for a discussion of Hilbert spaces.

Henceforth all vector spaces are assumed to be over the complex numbers and are allowed to be
infinite-dimensional. We will use Greek letters for complex numbers and lower-case Latin letters
from the end of the alphabet for vectors.

Definition 8 A norm on a vector space V is a function, usually written || ||, from V to R, the
real numbers, which satisfies

1. ||v] >0 forallveV,

2. | vl =0 if and only if v =0,
3 lav || =Tallv],

4o v +wff < floff+ ] wl].
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For finite dimensional vector spaces the norm usually used is the familiar Euclidean norm. As
soon as one has a norm one obtains a metric by the equation d(u,v)= || u — v [|. It turns out that
the spaces that are complete with respect to this metric play a central role in functional analysis.

Definition 9 A Banach space is a complete, normed vector space.

Example 1 Consider the space of sequences of complex numbers. We write a for such a sequence,
a={a,};2; and we write || @ ||o, for the supremum of the | a; |.

oo = {a: [l a o < )

This is a Banach space with || a ||~ as the norm.
Another norm is obtained on sequences as follows. Define:

lally =Xz a |
Then let:
Lh={a:]ally <o}
More generally, if p > 0, we may define:
ly=Aa:a|,=( Zozl|a|p)1/p<oo}

All of these will be examples of Banach spaces. Furthermore, these can be defined not only for
sequences of complex numbers, but for sequences obtained from any Banach space.

The following theorem shows one common way in which Banach spaces arise. First we need a
definition.

Definition 10 Suppose that By, By are Banach spaces and that T is a linear map from By to Bs.

HHJ;QCHH exists. We define the norm of T, written || T ||, to

We say that T is bounded if sup,+o

be this number.
If T is indeed bounded, then a standard argument [KR83], establishes
Lemma 8 supju_|| Tz || = | T ||

Thus one can use vectors of unit norm to calculate the norm of a linear function rather than
having to look for the sup over all nonzero vectors. Linear maps from a Banach space to itself are
traditionally called operators, and the norm of such maps is called the operator norm.

Since a Banach space is also a metric space under the induced metric described above, one
wishes to characterize which linear maps are also continuous. In this regard, we have the following
result.

Lemma 9 A linear map from f: A — B is continuous if and only if it is bounded.

The following theorem shows that the category of Banach spaces and bounded linear maps is
enriched over itself.

Theorem 10 If A is a normed vector space and B is a Banach space then the space of bounded
linear maps with the norm above is a Banach space.

13



We will denote this space A —o B.

There are several possible categories of interest with Banach spaces as the objects. The most
obvious one is the category with bounded linear maps as the morphisms. However, it turns out
that the category with contractive maps? is of greater interest and has nicer categorical properties.

Definition 11 A contractive map, 1, from A to B is a bounded linear map satisfying the con-
dition, || Tz || < || z ||. Fquivalently, the contractive maps are those of norm less than or equal to
1.

We will write BANCON for the category of Banach spaces and contractive maps.

5.1 Monoidal Structure of BANCON

We first point out that BANCON has a canonical symmetric monoidal closed structure. We begin
by constructing a tensor product. Let A and B be objects in BANCON: form the tensor of A and
B, A®¢ B, as complex vector spaces. We first define a partial norm for elements of the form a @ b
by the equation:

fa@blf=Ilalllb]

We would like to extend this partial norm to a norm on all of A iy B. Such a norm is called a
cross norm. It turns out that there are many such cross norms, a number of which were discovered
by Grothendieck. The one we will use in this paper is called the projective cross norm. It is in some
sense the least such. A detailed discussion of these issues is contained in [T79]. The projective
cross norm is defined for an arbitrary element, x, of A @¢c B by the following formula:

|z || = inf{]| a ||| b|| such that x = Ya @ b}

One can verify that this is in fact a cross norm on A ®¢ B. Now, the resulting normed space
will not be complete in general, so one obtains a Banach space by completing it. This will act as
the tensor product in the category BANCOAN . It will be denoted simply by A @ B. Furthermore,
we have the following adjunction.

Lemma 11 The functor B ® () is left adjoint to B —o ().
Corollary 12 BANCON is a symmetric monoidal closed category.

As such, BANCON is a model of (at least) the multiplicative fragment of intuitionistic linear
logic.

5.2 Completeness Properties of BANCON
We begin by constructing coproducts.

Definition 12 Let A and B be Banach spaces. The direct sum, A @ B, is the Cartesian product
equipped with the norm ||a @ b= a |+ b].

Then we have the distributivity property of ® over &.

2Strictly speaking, they should be called “non-expansive” maps.
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Proposition 13 A (B& B )2 (A@ B)3 (A B').
We now discuss finite products.

Definition 13 The product of two Banach spaces, A X B, has as its underlying space A & B, but
now with norm given by:

la@b || =maz{]|all,| b}

As a category of vector spaces, BANCON is fairly unique in this respect. While most such
categories model the additive fragment of linear logic, they invariably equate the two connectives,
since finite products and coproducts coincide. In other words, BANCON does not share the
familiar property of being an additive category.

We now present countably infinite products and coproducts.

Definition 14 Let {A4;}:2, be a sequence of Banach spaces. Define 11(A;) to be those sequences
which converge in the l., norm, i.e. bounded sequences equipped with the obvious norm.

Define X(A;) to be all sequences which converge in the Iy norm.

This gives countable products and coproducts in BANCON . Similar constructions can be applied
for uncountable products and coproducts.

Equalizers in BANCON correspond to equalizers in the underlying category of vector spaces.
The fact that bounded maps are continuous implies that the subspace will be complete. Coequal-
izers are obtained as a quotient, with the induced norm being the infimum of the norms of the
elements of the equivalence class. See [C90] for a discussion of quotients of Banach spaces.

Theorem 14 BANCON is complete and cocomplete.

6 BANCON as a Model of Weakening

In the next section, we will show that the Fock space of a Banach space has a canonical interpretation
as a space of holomorphic functions. In this section, we explore the nature of BANCON as a model
of linear logic. We obtain a somewhat weaker model for the following reason. In this category, as
we have previously observed, products and coproducts do not coincide. Thus, the isomorphism:

'A® 'BX (A9 B)

is not useful for modelling the additive fragment. We obtain instead a weakening cotriple in the
sense of Jacobs [J93].
Jacobs denotes a weakening cotriple by V'V Such a cotriple satisfies all of the axioms of modelling
! except that the coalgebras will not have the comonoid structure necessary to model contraction.
Thus, we have syntax of the following form:

I-A I,BF A Ir-A

VTR napra e a0

One models these proof rules as in linear logic, following [Se89].
We point out that the map:
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'A!'B— '(A® B)
necessary to model storage is indeed a contraction. This map is obtained as
A 'B2 1 (AeB)— NAaB)Z2 (1A 'B)— '(A® B)
It is shown in an appendix that this map is contractive.
Theorem 15 In the category BANCON , we obtain a model of the fragment V!V, ®, &.

Remark 16 We wish to point out an error in an earlier draft of this paper [BPS]. In that paper,
it is stated that the Fock construction is functorial on the larger category of Banach spaces and
bounded linear maps. In fact, when one applies the Fock construction to a map of norm greater
than 1, one might obtain a divergent expression. Thus, we are forced to work in the smaller category
of contractions.

7 The Holomorphic-Function Representation
of Fock Space

It has been observed by a number of people that the free symmetric algebra provides a model of
the exponential type. But the observation that this construction corresponds to bosonic Fock space
allows us to relate results in quantum physics to the model theory of linear logic. In this section,
we present one such relationship. The symmetrized Fock space on a Banach space B, turns out
to be a space of holomorphic functions (analytic functions) on B, properly defined. This hints at
possible deeper connections between analyticity and computability which need to be explored.

The ideas here stem from early work by Bargmann [Ba61] on Hilbert spaces of analytic functions
in quantum mechanics. This was extended by Segal [S62, BSZ92] to quantum field theory and
Segal’s extension was used by Ashtekar and Magnon [AM-A80] to develop quantum field theory
in curved spacetimes. (A brief summary of the ideas is contained in an appendix to [P80] and
in [P79].) The latter work involved making sense of the familiar Cauchy-Riemann conditions on
infinite-dimensional spaces.

We quickly recapitulate the basic notion of analytic function in terms of one complex variable
before presenting the infinite-dimensional case. A very good elementary reference is Complex Anal-
ysis by Ahlfors [Ah66]. Given the complex plane, C, one can define functions from C to C. Let
z be a complex variable; we can think of it as x + ¢y and thus one can think of functions from C
to C as functions from R? to R%. An analytic or holomorphic function is one that is everywhere
differentiable. In the notion of differentiation, the limit being computed, viz.

h—0 h

allows h to be an arbitrary complex number and hence this limit is required to exist no matter in
what direction h approaches 0. This much more stringent requirement makes complex differentia-
bility much stronger than the usual notion of differentiability. If a complex function is differentiable
at a point it can be represented by a convergent power series in a suitable open region about the
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point. If one uses the fact that h can approach zero along either axis one can derive the Cauchy-
Riemann equations for a complex valued function f = u(z,y) + iv(z,y) of the complex variable

z=x+ 1y,
ou dv  Ou ov

dr  dy dy O

What is remarkable about complex functions is that this definition of analyticity yields the
result that a complex-analytic function can be expressed by a convergent power-series in a region
of the complex plane. This is remarkable because only one derivative is involved in the Cauchy-
Riemann equations whereas the statement that a power-series representation exists is stronger, for
real-valued functions, even than requiring infinite differentiability. In real analysis one has examples
of functions that are infinitely differentiable at a point, but do not have a power series representation
in any neighbourhood of that point. A function may have a power series representation that is
valid everywhere, a so-called entire holomorphic function; the complex exponential function is an
example.

There is a formal perspective, due to Wierstrass, that is rather more illuminating. Think of a
complex variable z = « 4+ 1y and its conjugate Z = & — ¢y as being, formally, independent variables.
A function could depend on z and on its complex conjugate, Z, for example, the function that maps
each z to zZ+12Z. An analytic or holomorphic function is one which has no dependance on z. This
is expressed formally by df/dz = 0. When expressed in terms of the real and imaginary parts of
f and z, this equation becomes the familiar Cauchy-Riemann equations. Thus this reinforces the
view that a holomorphic function is properly thought of as a single complex-valued function of a
single variable rather than as two real-valued functions of two real variables.

The theory of functions of finitely many complex variables is a nontrivial extension of the theory
of functions of a single complex variable. Entirely new phenomena occur, which have no analogues
in the theory of a single complex variable. An excellent recent text is the three volume treatise
by Gunning [Gu90]. For our purposes we need only the barest beginnings of the theory. Given

C", we can have functions from C" to C. One can introduce complex coordinates on C"*, zy,..., 2,.

One can define a holomorphic function here as one having a convergent power-series expansion in

Z1y...,%n. The key lemma that allows one to mimic some of the results of the one-dimensional case
3

is Osgood’s lemma-.

Lemma 17 If a complex-valued function is continuous in an open subset D of C* and is holomor-
phic in each variable seperately, then it is holomorphic in D.

From this one can conclude that a holomorphic function in n variables satisfies the Cauchy-Riemann
equations S_Zii = 0. One is free to take either one of (a) satisfying Cauchy-Riemann equations or
(b) having convergent power-series representations as the definition of holomorphicity.

Now we describe how to define holomorphic functions on infinite-dimensional, complex, Banach
spaces. The basic intuition may be summarized thus. One starts with subspaces of finite codi-
mension. Thus the quotient spaces are isomorphic to some C*. One can define what is meant by
a holomorphic function on these quotient spaces as in the preceding paragraph. By composing a
holomorphic function with the canonical surjection from the original Banach space to the quotient
space we get a function on the original Banach space. These functions can all be taken to be

holomorphic.

*There is a considerably harder theorem, called Hartog’s theorem, which drops the requirement of continuity.
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B.

B/~ = C'—C

Intuitively these are the functions that are constant along all but finitely many directions, and
holomorphic in the directions along which they do vary. These functions are called cylindric holo-
morphic functions. Because the sequence of coefficients of a power-series is absolutely convergent,
we can define an /; norm on these functions in terms of the power-series. Finally the collection of
all holomorphic funcitons is defined by taking the [1-norm completion of the cylindric holomorphic
functions.

Given a Banach space B, let U be a subspace with finite codimension n, i.e. the quotient
space B/U is an n complex-dimensional vector space. The space B/U is isomorphic to C". Let
¢ : B/U — C" be an isomorphism; such a map defines a choice of complex coordinates on B/U.
Let 7y be the canonical surjection from B to B/U.

Definition 1 A cylindric holomorphic function on B is a function of the form fo@ony, where
U, and ¢ are as above and f is a holomorphic function from C" to C.

We need to argue that the choice of coordinates does not make a real difference. Of course which
functions get called holomorphic does depend on the choice of coordinates, but the space of holo-
morphic functions has the same structure*. Suppose that U and V are both subspaces of B and
that U is included in V. Suppose that both these spaces are spaces of finite codimension, say n
and m respectively. Clearly n > m. Now we have a linear map 7yy : B/U — B/V given by
x4+ U — x4 V; clearly this is a surjection. Now given coordinate functions ¢ : B/U — C" and
Y : B/V — C™ we can define a function o : C* — C™, given by ¥ o myy o ¢!, which makes
the diagram commute. Thus we do not have to impose “coherence” conditions on the choice of
coordinates, we can always translate back and forth between different coordinate systems.

We will suppress these translation functions in what follows and assume that the coordinates
have been serendipitously chosen to make the form of the functions simple. In other words, we
can fix a family of subspaces {W,|n € N} with W,, having codimension n and W, y; C W,,. The
coordinates can be chosen so that the space B/W,, has coordinates zy, ..., z,.

Suppose that f is a cylindric holomorphic function on B. This means that there is a finite-
codimensional subspace W, and a holomorphic function fy, from W to C, such that f = fiy o 7w .
The function fy regarded as a function of n complex variables has a power-series representation

7 7
Jw(z, .o 2n) = Bag, a2 2k
and furthermore we have the following convergence condition
Ylag,..q| < oc.

Thus with each such cylindric holomorphic function we can define the sum of the absolute values
of the coeflicients in the power-series expansion as the norm of the function. Viewing the sequences
of coefficients as the elements of a complex vector space, we have an /; norm. We write || f || for
this norm of a cylindric holomorphic function.

*This happens even in the one dimensional case. The function % is considered anti-holomorphic traditionally, but
one could have called it holomorphic by interchanging the role of z and Z.
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Definition 2 An/i-holomorphic function on B is the limit of a sequence of cylindric holomorphic
function in the above norm.

The l; emphasizes that the holomorphic functions are obtained by a particular norm completion.
In the corresponding theory of holomorphic functions on Hilbert spaces, one uses the inner-product
to define polynomials and then perform a completion in the Ly norm. A key difference is that our
norm is defined on the sequence of coeflicients whereas in the Hilbert space case, one uses the Lg
norm which is defined in terms of integration.

In the resulting Banach space there are several formal entities that were adjoined as part of
the norm-completion process. We need to discuss in what sense these formally-defined entities can
be regarded as bona-fide functions. Let Wy, ..., W, ... be an infinite sequence of subspaces of B,
each embedded in the previous. Assume, in addition, that all these spaces have finite codimension.
Now assume that there is a sequence of cylindric holomorphic functions, f,, on B obtained from a
holomorphic function, f(™ on each of the quotient spaces B/W;. Finally, assume that the sequence
| fn || of (real) numbers is convergent. Such a sequence of cylindric holomorphic functions defines
a holomorphic function on B. We call this function f. We need to exhibit f as a map from B to C.
Accordingly, let 2 be a point of B. For each of the functions f,, we have |f,,(2)| <|| f, ||. Since the
sequence of norms converges we have the sequence f,(z) converges absolutely and hence converges.
Thus the function f gua function is given at each x of B by lim, . f.(2). However, in order
to use the word “function” we need to show that the power-series has a domain of convergence.
Unfortunately, it may not have a non-trivial domain of convergence but, in a sense to be made
precise, it comes close to having a non-trivial domain of convergence.

The power-series representation of the function f is given as follows. It depends, in general,
on infinitely many variables but each term in the power series will be a monomial in finitely many
variables. Consider the coefficient of 22]11 .. ZZ]: in the expansion of f. In all but finitely many of the
[ all the indicated variables will appear in their power-series expansions. Consider the coefficients
of this term in each power series; this forms a sequence of complex numbers «,, where a,, is 0 if there
is no such term in the expansion of f,. Since |a,| < || f, || the sequence a,, converges absolutely
and hence converges to, say, a. This is the coeflicient of 22]11 .. ZZ]: in the power-series expansion of
f.

Consider the coordinates z1,...,%,. This defines an n-dimensional subspace of the Banach
space, which we call U,. Now consider the power-series for f. It defines a family of holomorphic
functions f™ where f™ is defined on the subspace U, and is obtained by retaining only those terms
in the power-series expansion of f which involve variables among zy,...,z,. These are analytic
functions on the U, and, as such, have non-trivial domains of convergence. However, as n increases
the radii of convergence could tend to 0. So we have the slightly weaker statement than the usual
finite-dimensional notion; instead of having a non-zero radius of convergence in the Banach space
we have a non-zero radius of convergence on every finite-dimensional subspace. If one uses entire
functions, rather than analytic functions, at the starting point of the construction, then one can
show that the resulting functions are entire; see page 67, theorem 1.13, of the book by Baez, Segal
and Zhou [BSZ92]. Unfortunately when using the representation of elements of Fock space one
may carry out simple operations that do not produce entire functions so we cannot just choose to
work with entire functions. Nevertheless, many common functions, most notably the exponential,
are entire.

Given a bona fide holomorphic function one can express it as a power series. The coeflicients
are calculated in the usual way, viz. by using Taylor’s theorem

F= NS ! ( o )zil 2k
= G W\ Dy L Oy, ) LR
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Since the mixed partial derivatives commute (the functions are holomorphic and hence certainly
differentiable enough) the partial derivatives are, concretely speaking, symmetric arrays. Abstractly
speaking this just means that they are elements of the symmetrized tensor product.

We can write this as follows.

Theorem 18 A holomorphic function can be represented by its power-series expansion where the
w!h term in the power-series expansion is a symmetrized nth derivative:

f=3(1/kYDWf
where the notation DX f means symmetrized Kt derivative of f.

The symmetrized derivatives live in the symmetrized tensor products of B with itself. One
thus has a correspondence with the standard Fock representation and the notion of holomorphic
function since in each case one has a string of symmetrized vectors.

8 The Physical Origin of Fock Space

The Fock space constructions described in the previous sections were independently invented by
physicists and mathematicians. The symmetric Fock space (called the bosonic Fock space by physi-
cists) is well known to mathematicians as the symmetric tensor algebra whereas the antisymmetric
Fock space (fermionic Fock space) was invented by Grassman, at least in the finite-dimensional
case, under the name of exterior algebra or alternating algebra. In this section we describe the
role of Fock space in quantum field theory. In order to prevent intolerable regress in definitions we
assume that the reader has an at least intuitive grasp of differential equations, the definition of a
smooth manifold and associated concepts like that of a smooth vector field.

We begin with a brief discussion of quantum mechanics and classical mechanics. In classical
mechanics one has systems which vary in time. The role of theory is to describe the temporal
evolution of systems. Such temporal evolution is governed by a differential equation. The fact that
one uses differential equations says something fundamental about the local nature of the dynamics of
physical systems, at least according to conventional classical mechanics. In dealing with differential
equations one has to distinguish between quantities that are determined and quantities that may be
freely specified: the so called “initial conditions”. Experiment tells one that systems are described
by second-order differential equations and hence that the functions being described and their first
derivatives, at a given point of time, are part of the initial conditions. The space of all possible
initial conditions is called the space of possible states or “phase” space, and is the kinematical arena
on which dynamical evolution occurs. The points of phase space are called states. If the system
is a collection of, say 7, particles, the states will correspond to the 42 numbers required to specify
the positions and the velocities of each of the particles in three-dimensional space.

Through each point in phase space is a vector giving rise to a smooth vector field called the
Hamiltonian vector field. One can draw a family of curves such that at every point there is exactly
one curve passing through that point and the Hamiltonian is tangent to the curve at that point.
Roughly speaking, the vector field defines a differential equation and the curves represent the
family of solutions where each point represents a possible specification of initial conditions. An
observable is a physical quantity that is determined by the state. As such it corresponds to a
real-valued function on phase space. A typical example is the total energy of a system. Most of
experimental mechanics is aimed at determining the Hamiltonian. In the formal development of
analytical mechanics there is a special antisymmetric 2-form called the symplectic form which plays
a fundamental mathematical role but is hard to describe in an intuitive or purely physical way.
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In quantum mechanics, the above picture changes in the following fundamental ways. The
observables become the fundamental physical entities. These are defined to form a particular
subalgebra of an algebraic structure called a C*-algebra. The key point is that this algebra is not
commutative, unlike the algebra of smooth functions on a manifold. Furthermore, the failure of
commutativity is directly linked to the symplectic form; this was Dirac’s contribution to the theory
of quantum mechanics. Thus, structures available at the classical level provide guidance as to what
the “correct” C*-algebra should be.

There is a representation of this algebra as the algebra of operators on a Hilbert space. The
space of states acquires the structure of a Hilbert space and becomes the carrier of the repre-
sentation of the C*-algebra. One presentation of this abstract Hilbert space is as the space of
square-integrable complex-valued functions on a suitable underlying space; for example the space
of possible configurations of a system. The space of states has acquired linear structure; this means
that one can add states reflecting the intuition that in quantum mechanics a system can be in the
superposition of two (or more) states. The inner product measures the extent to which two states
resemble each other. Finally the fact that one has complex functions is strongly suggested by the
observation of interference phenomena in nature.

An observable is a self-adjoint operator. The link between the mathematics and experiment is
the following. If one attempts to measure the observable O for a system in state 1 one will obtain
an eigenvalue of 0. Self-adjoint operators have real eigenvalues so we will get a real-valued result.
If 1) is an eigenvector with eigenvalue a, then, with no indeterminacy or uncertainty, one will obtain
the value a. If 1 is not an eigenvector, one can express ¢ as a linear combination of eigenvectors in
the form i = Ya;ih; where the 1; are assumed to be eigenvectors with eigenvalues «;. The result
of measuring O will be «; with probability |a;|%. It is important to keep in mind that the absolute
squares of the a; correspond to probabilities but it is the a; themselves that enter into the linear
combinations of states. This interplay between the complex coefficients and the interpretation of
their squares as probabilities is what distinguishes the probabilistic aspects of quantum mechanics
from statistical mechanics which also has a probabilistic aspect but where one directly manipulates
probabilities.

The dynamics of systems is described by a first-order differential equation called Schroedinger’s
equation. Thus, the evolution of states in quantum mechanics is determinate, just as in classical
mechanics. The indeterminacy usually associated with quantum mechanics appears in the fact that
the state of a system may not be an eigenstate of the observable being measured so the outcome
of the measurement may be indeterminate.

Quantum mechanics is designed to handle systems in which the number of interacting entities
(usually called “particles”) is fixed. On the other hand, experiment tells us that at sufficiently high
energies particles may be created or destroyed. Quantum field theory was invented to account for
such processes. The original formulations of this theory due to Dirac, Heisenberg, Fock, Jordan,
Pauli, Wigner and many others was quite heuristic. Now a reasonably rigourous theory is available;
see the book by Baez, Segal and Zhou [BSZ92] for a recent exposition of quantum field theory.

The first need in a many-particle theory is a space of states which can describe variable numbers
of particles; this is what Fock space is [Ge85]. The second ingredient is the availability of operators
that can describe the creation and annihilation of particles. Of course, there is much more that
needs to be said in order to see how all this formalism translates into calculations of realistic
physical processes but that would require a very thick book which, in any case, has been written
many times over.

Given a Hilbert space H in quantum mechanics representing the states of a single particle one
can construct a many-particle Hilbert space as F(H ). Suppose that 1, ¢ € H; one interprets the
element ¥ @y ¢ of H ®, H as a two-particle state with one particle in the state b and the other
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in the state ¢. Similarly for the other summands of F(H). The reason for the symmetrization
is that one is dealing with indistinguishable particles so that the n-particle states have to carry
representations of the permutation group. Thus one could have particle states that were symmetric
or antisymmetric under interchange leading to the bosonic or fermionic Fock spaces respectively.
It is a remarkable fact that both types of particles are observed in nature. Notice that ¢ A 1 is
identically zero hence one cannot have many-particle states in the antisymmetric Fock space in
which both particles are in the same one-particle state. This is observed in nature as the exclusion
principle. Fock space is the space of states for quantum field theory and is constructed from the
space of states for quantum mechanics.

The presentation of Fock space above emphasized the concept of many-particle states. Math-
ematically, however, F(H) is just a Hilbert space and can be presented differently. As we have
shown in the last section, it can be presented as the space of holomorphic functions of a Hilbert
space (the details are somewhat different from the Banach space case but the ideas are essentially
the same). The space of holomorphic functions has as its inner product

(9.0) = 5 [ f)9(2)e*Fdz =

(See [IZ80] page 435, for example.) What do the creation and annihilation operators look like
from this perspectivel' For simplicity, let us look at power series in a single variable z. This
amounts to only looking at the many-particle states of the form o tensored with itself. The creation
operator is just z * (.) while the annihilation operator is just d(.)/dz. One can easily check that
(AC — CA)f = d(z% f)/dz — z+ df /dz = f; in other words the basic algebraic relation holds.
Furthermore one can ask what the eigenstates of A and C look like. Clearly the eigenstate of (' is
just the zero vector. The eigenstate of A is the state represented by the holomorphic function €.
These states actually exist in nature and are called “coherent” states; they occur, for example, in
lasers. The key point about coherent states is that they “look classical”; one can remove a particle
without changing the state. As such they bear a resemblance to the role of ! formulas in linear
logic.
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Appendix-Contractibility of the Exponential Isomorphism
It is straightforward to verify that the isomorphism:
'(AaB)2!'A® !B

constructed on vector spaces lifts to an isomorphism on Banach spaces. The only issue is whether
the maps so constructed are contractive.

We now show that the two maps in this isomorphism are contractive. We need some preliminary
facts about norms on tensor products of Banach spaces. Suppose that A and B are two Banach
spaces. Let a bein A and bin B. The norm of a @ bis || a .|| b ||; the so-called “cross-norm”. Not
all elements of A ® B are of the form ¢ ® b for some @ in A and some b in B; in general an element
of A ® B will be a sum of such terms. Furthermore there is no unique representation as such a
sum. The norm is then defined as follows

| v llawp = mf{X:] a; ||| b: || : Ya; @ b; = u,Vi.a; € A, b; € B},

Note also that the norm is a continuous, but not linear function. Thus one cannot argue in terms
of basis elements.

We consider g : F(A) x F(B) — F(A @ B) first. Suppose that u and v are pure tensors in
F(A) and F(B) respectively then clearly || f(u @ v) || = || w||.|| v || since 3 just takes the tensor
of u and v and we have the above remark about the norm of such elements in the tensor product
space. Now let y € F(A) and = € F(B) be arbitrary. We consider the action of 5 on y @ z; this
is still not the most general situation. As usual, we write y; for the ith component of y in the
standard basis of Fock space; thus y; is a pure tensor. Similarly for z;.

18y @ 2) || = I %580y @ 2) |l
< Uil By @ 2) | = Bijll (wi @ z) [ = Xjll wa 11 =z [T =Ny [l = =1y @ =

The equalities are obvious, the inequality is the triangle inequality.

Now suppose that we have an element u € F(A) @ F(B) and that u has the decomposition
Yy @ 20 as well, of course, as other such decompositions. Now we have, using the linearity of
3, the triangle inequality and the argument just above,

I8 || < Sill w0 @ 2.

However, we do not know that the right hand side is less than || u [|; in fact using the triangle
inequality we would get the opposite inequality. But since the norm of w is defined as the infimum
of the above sum of norms across all such decompositions. Now if the infimum is actually realized
by such a decomposition then we still have the above inequality but now we know that the right
hand side is indeed || w||. If the infimum is not realized, there is a sequence of decompositions
with the right hand sides as above converging to the infimum and since || f(u) || is less than all
such sums it must be less than the infimum. Thus in all cases || (u) || < || u || and hence j is
contractive.

To show that «a is contractive we need a fact about how symmetrization affects norms. Suppose
that we have u,v € B, where B is any banach space. Now u@s;v = (1/2)(v®@ v+ v ® u). We claim
that

lussoll=llueol.

Clearly one decomposition of v @, v is (1/2)(u @ v + v ® u); if this were the one realizing the
infimum in the definition of the norm we would be done. Now suppose that there were another
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decomposition, ¥;p; @ ¢;, for u @5 v such that || v @sv || = 5| pi @ ¢ || < || w @ v ||. Consider the
expression (2X;p; @ ¢;) —v®@u = u ® v. Computing norms and using the triangle inequality we get

fu@v|l=12%pi @ ¢ —v@ul| <25l pi @ g | + (| wlll] v ]
In other words we have, by simple arithmetic,
fu@vl=[ulllell <Xl pi©gl

This contradicts the assumption above. Thus symmetrization preserves norms. It is clear that the
above argument could have been carried out for symmetrization over more than two elements.

The map a just undoes symmetrization thus, on pure tensors, a is norm preserving. Now
consider an arbitrary element, z, of F(A @, B). We have

| a(z) || = || £xa0,0,...,0,2,,0,0,...) |
< Xl ((0,0,...,0,2,,0,0,...))

:ETLH <0707707$n70,0,> H

= Yol @ | = [l [].
Thus « is contractive as well. It immediately follows that the morphism
'A® !'B— '(A® B)

is a morphism in BANCON and satisfies the necessary properties.
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