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Preface
A Lorentzian manifold is a pair (Mn+1, g), whereMn+1 is a (n+1)-dimensional differentiable
manifold and g a Lorentz metric such that g assigns to each point p ∈ M a non-degenerate
symmetric bilinear form gp of index 1 on TpM .

b
p

TpM

M

Here "index 1" means that there is a basis e0, . . . , en of TpM such that

gp(ei, ej) :=


−1, i = j = 0,
1, falls i = j = 1, . . . , n,
0, otherwise.

The metric g depends smoothly (C∞) on p, i.e. for local coordinates x0, . . . , xn on M , the
functions g

(
∂
∂xi
, ∂
∂xj

)
=: gij are smooth.

M

U
(dx|p)−1(e2)

(dx|p)−1(e1)bp
e2
e1

b

x(p)

≈
x V ⊂ R2

One writes

g =
n∑

i,j=0

gijdx
i ⊗ dxj.

In general relativity, the spacetime (i.e. the set of all events) is modelled by a four-dimensional
Lorentzian manifold. The Einstein equations on such spacetimes are of the form:

curvature expression = energy-momentum-tensor.



vi Contents

This equation provides the following correspondence:

world lines of massless particles (e.g. photons) = lightlike geodesics

world lines of particles with mass = timelike geodesics

The aim of the lecture is to investigate the global properties of Lorentz manifolds.



1 Important Examples

1.1 The Minkowski space

Notation 1.1. On Rn, we define the Euclidean scalar product via

⟨x, y⟩ :=
n∑
i=1

xiyi.

On Rn+1, we define the Minkowski scalar product via

⟨⟨x, y⟩⟩ := −x0y0 +
n∑
i=1

xiyi.

We then denote the "Euclidean part" by x̂ := (x1, . . . , xn).

Definition 1.2. An (n+ 1)-dimensional Lorentzian manifold is called Minkowski space if
it is isometric to

(
Rn+1, ⟨⟨·, ·⟩⟩

)
.

Remark 1.3. The Minkowski space is the spacetime of special relativity. Here, all gij are
constant, that is all Christoffel symbols and thus the curvature tensor R vanish. The geodesic
equation reads c̈i = 0, where ci := xi ◦ c, so the geodesics are the affin-linearly parametrized
straight lines.

Definition 1.4. The light cone is defined as the set

C :=
{
x ∈ Rn+1

∣∣ ⟨⟨x, x⟩⟩ = 0
}
.

Definition 1.5. A vector x ∈ Rn+1\{0} is called timelike or lightlike or spacelike if
⟨⟨x, x⟩⟩ < 0 or ⟨⟨x, x⟩⟩ = 0 or ⟨⟨x, x⟩⟩ > 0. We call x causal if it is timelike or lightlike. The
zero vector is considered as spacelike.
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Definition 1.6. The set of timelike vector I consists of two connected components and we
choose a time-orientation by picking one component I+ and call its members future di-
rected. The members of the other component I− are called past directed. Correspondingly,
we define

C± := ∂I±, J± := I±.

The sets of future/past directed lightlike and causal vectors are given by
C±\{0} and J±\{0}, respectively. Moreover, the set of spacelike vectors equals
Rn+1\J ∪ {0}.

b0
Span{e1, e2}

e0

I−

C−

I+

C+

Lemma 1.7. Let x, y ∈ Rn+1 and t > 0.

(i) For A ∈ {I±, C±, J±,Rn+1\J±}, we have: x ∈ A =⇒ tx ∈ A.

(ii) For A ∈ {I±, J±}, we have: x, y ∈ A =⇒ x+ y ∈ A.

Proof. (i) Since ⟨⟨tx, tx⟩⟩ = t2 ⟨⟨x, x⟩⟩, the sign of ⟨⟨x, x⟩⟩ and hence the causal type of x is
preserved. Moreover, due to t > 0, the orientation of causal vectors does not change.

(ii) Clearly, if x, y are both future/past directed, then so is x + y, so we just check the causal
type. For x, y timelike and equally oriented, the Cauchy-Schwarz-inequality provides(

x0 + y0
)2

=
(
x0
)2

+ 2x0y0 +
(
y0
)2
> ∥x̂∥2 + 2 · ∥x̂∥ · ∥ŷ∥+ ∥ŷ∥2

≥ ∥x̂∥2 + 2 ⟨x̂, ŷ⟩+ ∥ŷ∥2 = ∥x̂+ ŷ∥2 = ∥x̂+ y∥2.

The proof for causal vectors is obtained by replacing ">" by "≥".
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Corollary 1.8. The subsets I±, J± of Rn+1 are convex.

Proof. ForA ∈ {I±, J±}, let x, y ∈ A and t ∈ (0, 1), i.e. t, (1− t) > 0. Then tx, (1− t)y ∈ A
by (i), and tx+ (1− t)y ∈ A by (ii) of Lemma 1.7.

Definition 1.9. A map ϕ : Rn+1 → Rn+1 is called Lorentz transformation if

⟨⟨ϕ(x), ϕ(y)⟩⟩ = ⟨⟨x, y⟩⟩ , x, y ∈ Rn+1.

Definition 1.10. A basis b0, . . . , bn of Rn+1 is called Lorentz-orthonormal, if

⟨⟨b0, b0⟩⟩ = −1, ⟨⟨b0, bi⟩⟩ = 0, ⟨⟨bi, bj⟩⟩ = δij, i, j = 1, . . . , n.

Example 1.11. The standard basis e0 = (1, 0, . . . , 0)t, . . . , en = (0, . . . , 0, 1)t is a Lorentz
orthonormal basis of Rn+1.

Proposition 1.12. A map ϕ : Rn+1 → Rn+1 is a Lorentz transformation if and only if it is
linear and ϕ(e0), . . . , ϕ(en) is a Lorentz orthonormal basis.

Proof. "=⇒": Let ϕ be a Lorentz transformation, then by definition, we have that
ϕ(e0), . . . , ϕ(en) is a Lorentz orthonormal basis, so we just have to show linearity. Let
v =

∑n
i=0 v

iei ∈ Rn+1 and ϕ(v) =
∑n

i=0w
iϕ(ei), so that

⟨⟨v, ej⟩⟩ = σjv
j, ⟨⟨ϕ(v), ϕ(ej)⟩⟩ = σjw

j,

where σ0 = −1 and σj = 1 if j = 1, . . . , n. Therefore,

ϕ(v) =
n∑
i=0

σi ⟨⟨ϕ(v), ϕ(ei)⟩⟩ϕ(ei) =
n∑
i=0

viϕ(ei).

"=⇒": For ϕ linear and ϕ(e0), . . . , ϕ(en) a Lorentz orthonormal basis directly follows

⟨⟨ϕ(x), ϕ(y)⟩⟩ =
n∑

i,j=0

xiyi ⟨⟨ϕ(ei), ϕ(ej)⟩⟩ = −x0y0 +
n∑
i=1

xiyi = ⟨⟨x, y⟩⟩ .



4 1 Important Examples

Let Jn :=

(
−1 0
0 1n

)
, and hence ⟨⟨x, y⟩⟩ = ⟨x, Jny⟩ for all x, y ∈ Rn+1. It follows that a

matrix Λ represents a Lorentz transformation if

⟨x, Jny⟩ = ⟨⟨x, y⟩⟩ = ⟨⟨Λx,Λy⟩⟩ = ⟨Λx, JnΛy⟩ =
⟨
x,ΛtJnΛy

⟩
,

that is, if and only if Jn = ΛtJnΛ. Thus, we just showed

Proposition 1.13. Let Λ ∈ Mat(n+ 1,R). Then the following statements are equivalent:

• Λ represents a Lorentz transformation.

• The columns of Λ yield a Lorentz orthonormal basis of Rn+1.

• Jn = ΛtJnΛ.

Proposition 1.14.

(i) Let L (n+ 1) denote the set of all Lorentz transformations on Rn+1.
Then (L , ◦) is a group.

(ii) The matrix Λ of a Lorentz transformation satisfies detΛ = ±1.

Proof. (i): By Proposition 1.12, every Lorentz transformation is an isomorphism and simple
calculations show that id, ϕ−1, ϕ ◦ψ ∈ L for all ϕ, ψ ∈ L . (ii): Proposition 1.13 (iii) implies

1 = − det Jn = − det
(
ΛtJnΛ

)
=
(
detΛ

)2
=⇒ detΛ = ±1.

Example 1.15.
1. Let A be an orthogonal n × n-matrix, i.e. AtA = 1n. Then Λ :=

(
1 0
0 B

)
represents a

Lorentz transformation, since

ΛtJnΛ =

(
1 0
0 At

)(
−1 0
0 1n

)(
1 0
0 A

)
=

(
−1 0
0 AtA

)
= Jn.

2. Let Λ :=

coshα sinhα 0
sinhα coshα 0

0 0 1n−1

, that is the matrix of a Lorentz boost. Due to

cosh2 α− sinh2 α = 1, this represents a Lorentz transformation.

3. The matrices Jn and −1n+1 represent Lorentz transformations.
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Theorem 1.16. For all x, y ∈ Rn+1, the following statements are equivalent:

(i) ⟨⟨x, x⟩⟩ = ⟨⟨y, y⟩⟩

(ii) There is some ϕ ∈ L (n+ 1) such that ϕ(x) = y.

Proof. "⇐": ⟨⟨y, y⟩⟩ = ⟨⟨ϕ(x), ϕ(x)⟩⟩ = ⟨⟨x, x⟩⟩.
"⇒": Let x and thus y be timelike, and set −c2 := ⟨⟨x, x⟩⟩ = ⟨⟨y, y⟩⟩, where c > 0. It suffices
to consider y = ce0. Without loss of generality, let x be future directed (otherwise replace it
by Jnx), i.e. x =

(
x0, x̂

)t with x0 > 0. Since there is some A ∈ O(n) such that Ax̂ = λe1, we
can assume that x =

(
x0, x1, 0, . . . , 0)t, so we have

−(x0)2 + (x1)2 = ⟨⟨x, x⟩⟩ = ⟨⟨y, y⟩⟩ = −c2 =⇒ −
(
x0

c

)2

+

(
x1

c

)2

= −1.

The solutions of this equation yield a hyperbola, for which we have the parametrization
α 7→

(
sinhα, coshα

)
. Hence, there is some α ∈ R such that

(
x0

c
, x

1

c

)
=
(
sinhα, coshα

)
,

i.e.

Λx =

coshα sinhα 0
sinhα coshα 0

0 0 1n−1



c coshα
c sinhα

0
...
0

 =


c
0
...
0

 = y.

Lemma 1.17 (Cauchy-Schwarz inequality). Let z be timelike and x, y ∈ Rn+1 such that
⟨⟨x, z⟩⟩ = 0 = ⟨⟨y, z⟩⟩. Then the Cauchy Schwarz inequality holds:

| ⟨⟨x, y⟩⟩ | ≤
√

| ⟨⟨x, x⟩⟩ |
√

| ⟨⟨y, y⟩⟩ |.

Furthermore, equality holds if and only if x, y are linearly dependent.

Proof. Without loss of generality, we can assume that z = ce0 for some c ̸= 0. Then by
assumption, we have x0 = 0 = y0, and hence ⟨⟨x, y⟩⟩ = ⟨x̂, ŷ⟩, so the statement follows from
the familiar Cauchy Schwarz inequality for ⟨·, ·⟩.

Lemma 1.18 (inverse Cauchy-Schwarz inequality). For x, y ∈ I+, we have

| ⟨⟨x, y⟩⟩ | ≥
√

| ⟨⟨x, x⟩⟩ |
√

| ⟨⟨y, y⟩⟩ |.

Furthermore, equality holds if and only if x, y are linearly dependent.
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Proof. By application of some Lorentz transformation, without loss of generality, we can
assume that y = ce0 for some c > 0. Then we have

⟨⟨x, y⟩⟩2 − | ⟨⟨x, x⟩⟩ ⟨⟨y, y⟩⟩ | = c2
(
(x0)2 − | ⟨⟨x, x⟩⟩ |

)
= c2∥x̂∥2 ≥ 0.

Moreover, linear dependence is equivalent to x̂ = 0, for which equality holds.

Note that if ⟨⟨x, y⟩⟩ = 0 for x timelike, the inverse Cauchy Schwarz inequality particularly
implies that y is spacelike. On the other hand for n ≥ 3, there are spacelike x, y such that
⟨⟨x, y⟩⟩ = 0.

Proposition 1.19. Let Λ = (λij)i,j=0,...,n represent a Lorentz transformation. The the fol-
lowing statements are equivalent:

(i) λ00 > 0

(ii) Λe0 ∈ I+

(iii) Λ(I+) ⊂ I+

Proof. By definition, Lorentz transformations do not change the causal type of vectors since
⟨⟨·, ·⟩⟩ is preserved, and hence Λe0 ∈ I . On the other hand,

(
Λe0
)0

= a00, that is, (i) and (ii)
are equivalent. Furthermore, the implication (iii) ⇒ (ii) is trivial.
(ii) ⇒ (iii): Let x ∈ I+ and hence c(t) := tx + (1 − t)e0 ∈ I+ for all t ∈ [0, 1] due to
convexity of I+ (Corollary 1.8). Then from (ii) follows Λc(t) ∈ I+ and thus Λx ∈ I+ again
by convexity.

In the following, we will not distinguish between Lorentz transformations and the matrices
representing them.

Definition 1.20. The elements of the subset L ↑(n + 1) := {λ00 > 0} ⊂ L (n + 1) are
called time-orientation preserving Lorentz transformations.

Corollary 1.21. L ↑(n+1) yields a subgroup of L (n+1), and for all Λ ∈ L ↑(n+1), we
have Λ(I±) = I±.

Proof. Let Λ1,Λ2 ∈ L ↑(n + 1), then Λ1

(
Λ2(I+)

)
⊂ Λ1(I+) ⊂ I+ by Proposition 1.19,

and hence Λ1Λ2 ∈ L ↑(n+ 1). Furthermore, if Λ−1e0 ∈ I− for Λ ∈ L ↑(n + 1), we had
Λ−1(−e0) = −Λ−1(e0) ∈ I+, that is, −e0 = Λ

(
− Λ−1e0

)
∈ I+, which is a contradiction due
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to I+ ∩ I− = ∅. It follows that Λ−1e0 ∈ I+, i.e. Λ−1 ∈ L ↑(n+ 1), and hence L ↑(n+ 1) is a
subgroup of L (n+ 1) since clearly 1n+1 ∈ L ↑(n+ 1).
Moreover, the equality can be directly seen via

I+ = Λ−1Λ(I+) ⊂ Λ−1(I+) ⊂ I+,

and similarly Λ(I−) = I− by I− = −I+ and linearity of Λ.

Example 1.22. 1. Let A ∈ O(n), then
(
1 0
0 A

)
∈ L ↑(n+ 1).

2. Let A ∈ O(n), then
(
−1 0
0 A

)
∈ L ↓(n+ 1) := L (n+ 1)\L ↑(n+ 1).

3. All Lorentz-Boosts (Example 1.15, 2) are in L ↑(n+ 1).

We define the following subsets of L (n+ 1):

L±(n+ 1) :=
{
Λ ∈ L (n+ 1)

∣∣ detΛ = ±1
}
,

L ↑
± := L ↑(n+ 1) ∩ L±(n+ 2), L ↓

±(n+ 1) := L ↓(n+ 1) ∩ L±(n+ 1).

Definition 1.23. A map ψ : Rn+1 → Rn+1 is called Poincaré transformation, if it is of the
form

ψ(x) = Λx+ b

for some Λ ∈ L (n+ 1) and b ∈ Rn+1.
We denote the set of all Poincaré transformations of Rn+1 by P(n+ 1).

Proposition 1.24. The isometry group of Minkowski space is given by P(n+ 1).

Proof. Let η := − dx0 ⊗ dx0 +
∑n

i=1 dxi ⊗ dxi the standard Minkowski metric on Rn+1.
For all ψ ∈ P(n + 1), we have dψ = Λ and each Lorentz transformation is an isometry of
the Minkowski space by definition. Therefore, P(n+ 1) ∈ Isom

(
Rn+1

Mink

)
.

Let ψ ∈ Isom
(
Rn+1

Mink

)
and c(t) = expx(tX), i.e. the unique geodesic with c(0) = p and

ċ(0) = X . Thenψ◦c is a geodesic as well with (ψ◦c)(0) = ψ(x) and d
dt

∣∣
t=0

(ψ◦c) = dψx(X),
that is

ψ
(
expx(tX)

)
= expψ(x)

(
t · dψx(X)

)
. (1.1)

Recall that X 7→ x + X represents the canonical isomorphism TxRn+1 ∼= Rn+1, so (1.1)
provides for x = 0:

ψ(X) = ψ
(
exp0(X)

)
= expψ(0)

(
dψ0(X)

)
= dψ0(X) + ψ(0) =: ΛX + b.

Note that dψ0 ∈ L (n+ 1) since ⟨⟨ dψ0(X), dψ0(X)⟩⟩ = ⟨⟨X,X⟩⟩ as an isometry.



8 1 Important Examples

We define the analogous subsets P↑,↓
± (n+ 1) of P(n+ 1) by correspondingly restricting dψ

to L ↑,↓
± .

Example 1.25. Apart from Minkowski space, there are several other flat Lorentzian manifolds:

• Open subsets of Minkowski space

• The quotients

T n+1 := Rn+1/Zn+1, S1 × Rn = Rn+1/Ze0, R× T n = Rn+1/Ze1 ⊕ . . .⊕ Zen.

Here the quotient Rn+1/ ∼ is equipped with the unique Lorentz metric, with respect to
which Rn+1 → Rn+1/ ∼ is a local isometry.

1.2 The de Sitter space
Consider the smooth function x 7→ γ(x) := ⟨⟨x, x⟩⟩ with dγx = −2x0 dx0 + 2

∑n
i=1 x

i dxi.
In particular, all x ̸= 0 are regular points for γ and all c ∈ R\{0} regular values.

Definition 1.26. For fixed r > 0 the hypersurface

Sn1 (r) := γ−1(r2) ⊂ Rn+1

is called n-dimensional de Sitter space.

As a differentiable manifold, Sn1 (r) is diffeo-
morphic to R× Sn−1 via

Sn1 (r) −→ R× Sn−1,

(x0, x̂) 7−→

(
x0,

x̂√
r2 + (x0)2

)
,

where Sn−1 denotes the (n − 1)-dimensional
standard sphere. The inverse map is then given
by (y0, ŷ) 7→

(
y0,
√

(y0)2 + r2 · ŷ
)
.

Sn1 (r)

γ−1(0) = C

As a hypersurface, Sn1 (r) possesses a trivial normal bundle spanned by

gradxγ = −2x0
(
− ∂

∂x0

)
+ 2

n∑
i=1

xi
∂

∂xi
= 2

n∑
i=0

xi
∂

∂xi
. (1.2)
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The normal bundle is spacelike since

η
(
gradxγ, gradxγ

)
= 4γ(x) = 4r2 > 0,

so the Minkowski metric η induces a Lorentz metric g on Sn1 (r). Furthermore, a unit normal
field is given by ν := 1

2r
gradγ, which by (1.2) induces a map

Sn1 (r) −→ Sn1 (1), ν(x) =
x

r
. (1.3)

By identifying Tν(x)S
n
1 (1) = ν(x)⊥ = TxS

n
1 (r), we consider dνx as the endomorphism

1
r
id : TxS

n
1 (r) → TxS

n
1 (r), which is the shape operator of TxSn1 (r) at x given byW (X) = X

r
.

Here and in the following X, Y, Z denote vector fields on Sn1 (r). For the curvature, Gauß’
formula provides

RSn
1 (r)(X,Y )Z =

=0︷ ︸︸ ︷
RRn+1

Mink(X, Y )Z +g(W (X), Z)W (X)− g(W (X), Z)W (Y )

=
1

r2
(
g(Y, Z)X − g(X,Z)Y

)
,

and for E a non-degenerate plane spanned by the vectors X, Y , we obtain that the sectional
curvature of Sn1 (r) is constant:

K(E) =
g
(
R(X, Y )Y,X

)
g(X,X)g(Y, Y )− g(X,Y )2

=
1
r2
g
(
g(Y, Y )X − g(X,Y )Y,X

)
g(X,X)g(Y, Y )− g(X,Y )2

=
1

r2
.

Let (e0, . . . , en−1) be a Lorentz orthonormal basis of TxSn1 (r) and set εi := g(ei, ei) ∈ {−1, 1}.
It follows for the Ricci curvature

ric(X,Y ) =
n−1∑
i=0

εig(R(X, ei)ei, Y ) =
1

r2

n−1∑
i=0

εig
(
g(ei, ei)X − g(X, ei)ei, Y

)
=

1

r2
(
ng(X, Y )− g(X,Y )

)
=
n− 1

r2
g(X,Y )

and therefore
ric =

n− 1

r2
g, scal =

n(n− 1)

r2
.

Remark 1.27. For n = 4, we obtain the Einstein tensor G = ric − 1
2
scal · g = −3

r
g, so the

Lorentzian manifold S4
1(r) is a vacuum solution of Einstein’s field equations with cosmological

constant 3
r2

.

We proceed with the geodesics of Sn1 (r). For given x ∈ Sn1 (r) and X ∈ TxS
n
1 (r)\{0}, i.e.

⟨⟨x,X⟩⟩ = 0 due to (1.3), let E ⊂ Rn+1 be the plane spanned by x and X . Let X be non-
lightlike, that is, E is non-degenerate and hence Rn+1 = E ⊕ E⊥, and A the reflection about
E, i.e. A

∣∣
E
= idE and A

∣∣
E⊥ = −idE⊥ . This yields a Lorentz transformation since
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⟨⟨Ax,Ay⟩⟩ = ⟨⟨A(xE + xE⊥), A(yE + yE⊥)⟩⟩ = ⟨⟨xE − xE⊥ , yE − yE⊥⟩⟩

= ⟨⟨xE, yE⟩⟩+ ⟨⟨xE⊥ , yE⊥⟩⟩ = ⟨⟨x, y⟩⟩ .

It follows that γ(Ax) = γ(x) and hence A
(
Sn1 (r)

)
⊂ Sn1 (r), so A

∣∣
Sn
1 (r)

is an isometry on
Sn1 (r) with fixed point set Sn1 (r)∩E. Therefore, the components of Sn1 (r)∩E, considered as
point sets, are geodesics of Sn1 (r).
For X ∈ TxS

n
1 (r) lightlike, we choose a sequence (Xj)j∈N ⊂ TxS

n
1 (r) of non-lightlike

vectors such that Xj → X . Then Ej := span(x,Xj) converges to the plane E spanned by x
and E, and we have expx(tXj) → expx(tX) for all t. Hence, the connected components of
Sn1 (r) ∩ E, again considered as point sets, are lightlike geodesics of Sn1 (r). Let us interpret
this geometrically:

Let X be spacelike. Since x is spacelike as well, γ
∣∣
E

is
positive definite, so the intersection

Sn1 (r) ∩ E =
{
y ∈ E

∣∣ γ(y) = r2
}

is a closed spacelike geodesic.

E

Sn1 (r)

Let X be lightlike. Then γ
∣∣
E

is positive semidefinite and
degenerate, and Sn1 (r) ∩ E consists of two parallel straight
lines:

Sn1 (r) ∩ E =
{
αx+ βX

∣∣ γ(αx+ βX) = α2γ(x)
!
= r2}

=
{
αx+ βX

∣∣ α = ±1, β ∈ R}

=
{
± x+ βX

∣∣ β ∈ R
}
.

E

Sn1 (r)

Let X be timelike, so γ
∣∣
E

is indefinite and non-degenerate.
Then Sn1 (r) ∩ E is given by two hyperbola components:

Sn1 (r) ∩ E =
{
αx+ βX

∣∣ α2γ(x) + β2γ(X)
!
= r2}

=
{
αx+ βX

∣∣ α2 + β2 γ(X)

r2︸ ︷︷ ︸
<0

= 1}.

Hence, the two hyperbolas correspond to α > 1, α < −1.

E

Sn1 (r)
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Note that the second case (X lightlike) is contained in the third one (X timelike) since γ(X) = 0
implies α = ±1 and arbitrary choice of β ∈ R.

The determination of the geodesics particularly implies geodesical completeness of Sn1 (r), i.e.
expx is defined on all of TxSn1 (r) for all x ∈ Sn1 (r). Now for some fixed x ∈ Sn1 (r), we
investigate, which y ∈ Sn1 (r) can be reached from x via some geodesic.
The cases y = ±x are trivial since for any spacelike X , we have ±x ∈ Sn1 (r) ∩ span{x,X}.
In all other cases, x, y are linearly independent, and hence they uniquely determine some plane
E := span{x, y}. The geodesic connecting x and y therefore has to run in
Sn1 (r) ∩ E, which yields two connected components if the
starting vector of the geodesic is causal. It follows that
the points y, which can not be reached via some geodesic
from x, are exactly those points, which can be reached from
−x via some causal geodesic, i.e. lie in the other connected
component. For y = αx+βX with causalX , that is |α| ≥ 1,
we have ⟨⟨x, x+ y⟩⟩ = (1 + α)r2, and thus the set points on
Sn1 (r), which can not be reached from x via some geodesic,
is given by{

y ∈ Sn1 (r)
∣∣ ⟨⟨x, x+ y⟩⟩ ≤ 0, y ̸= ±x

}
.

b

−x

b
x

Sn1 (r)

unreachable
points

Remark 1.28. This property yields an important distinction from the Riemannian world. On a
connected and geodesically complete Riemannian manifold, every pair of points can be joined
by some geodesic according to the Hopf-Rinow-Theorem.

Proposition 1.29. LetM be some connected semi-Riemannian manifold, p ∈M and ψ1, ψ2

isometries of M with ψ1(p) = ψ2(p) and dψ1|p = dψ2|p. Then we have ψ1 = ψ2.

Proof. Let ψ := ψ−1
2 ◦ ψ1 ∈ Isom(M), so that ψ(p) = p and dψ|p = idTpM . We show that

then ψ = idM . The subset

U :=
{
q ∈M

∣∣ ψ(q) = q, dψ|q = idTqM
}
⊂M

is non-empty since p ∈ U , and is closed due to continuity of ψ and dψ. For q ∈ U , expq
is a local diffeomorphism, i.e. expq : Ω′ → Ω is a diffeomorphism for some neighborhoods
Ω ⊂M, Ω′ ∈ TqM of q and 0. Recalling (1.1) provides

ψ
(
expp(tX)

)
= expψ(p)

(
t · dψ

∣∣
p
(X)

)
= expp(tX),

that is V ⊂ U . Since M is connected, we obtain U =M .
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Proposition 1.30. The map

L (n+ 1) −→ Isom
(
Sn1 (r)

)
, Λ 7−→ Λ

∣∣
Sn
1 (r)

(1.4)

is a group isomorphism. Moreover, Isom
(
Sn1 (r)

)
acts transitively on Sn1 (r), that is, for all

x, y ∈ Sn1 (r), there is some ψ ∈ Isom
(
Sn1 (r)

)
such that ψ(x) = y.

Furthermore, for all X,Y ∈ TSn1 (r) with ⟨⟨X,X⟩⟩ = ⟨⟨Y, Y ⟩⟩, there is some ψ ∈
Isom

(
Sn1 (r)

)
such that dψ(X) = Y .

Proof. Clearly, we have Λ
∣∣
Sn
1 (r)

∈ Isom
(
Sn1 (r)

)
and injectivity of the map (1.4). For all

x, y ∈ Sn1 (r), Theorem 1.16 implies existence of some Λ ∈ L (n + 1) such that ϕ(x) = y.
Hence, without loss of generality, we can assume that X, Y ∈ TpS

n
1 (r) (otherwise replace Y

by Λ−1Y ). Let A ∈ L (n) such that AX = Y and define

B :=

(
A 0
0 1

)
∈ L (n+ 1).

Due to TxSn1 (r) = x⊥, the map ψ := B
∣∣
Sn
1 (r)

satisfies ψ(x) = x and dψ(X) = BX = Y ,
which proves the second claim.
For the first property, it remains to show surjectivity of (1.4). Let ψ ∈ Isom

(
Sn1 (r)

)
, fix some

x ∈ Sn1 (r) and set y := ψ(x). For Λ ∈ L (n + 1) satisfying Λx = y, x is a fixed point of
ψ1 := Λ−1 ◦ ψ ∈ Isom

(
Sn1 (r)

)
, so we obtain a linear isometry dψ1 : TxS

n
1 (r) → TxS

n
1 (r).

Choose B ∈ L (n + 1) such that Bx = x and dB
∣∣
x
= dψ1

∣∣
x
, then ψ2 := B−1Λ−1 ◦ ψ ∈

Isom
(
Sn1 (r)

)
fulfills ψ2(x) = x and dψ2

∣∣
x
= idTxSn

1 (r)
. Now from Proposition 1.29 follows

ψ2 = idSn
1 (r)

, that is ψ = ΛB
∣∣
Sn
1 (r)

.

Remark 1.31. Proposition 1.30 states that Sn1 (r) is a homogeneous (first property) and
isotropic (second property) space.

1.3 The anti-de Sitter space

We equip Rn+1 with the semi-Riemannian metric g := −
1∑
i=0

dxi ⊗ dxi +
n∑
i=2

dxi ⊗ dxi of

index 2 and consider the smooth function x 7→ g(x, x) =: γ̃(x).

Definition 1.32. For fixed r > 0, the n-dimensional anti-de Sitter space is defined by

Hn
1 (r) := γ̃−1(−r2).
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Just like Sn1 (r), Hn
1 (r) is a smooth hypersurface of Rn+1, which is diffeomorphic to R× Sn−1

via

Hn
1 (r) −→ R× Sn−1, (x0, x1, x̃) 7−→

(
x0√

∥x̃∥2 + r2
,

x1√
∥x̃∥2 + r2

, x̃

)
.

The inverse map is then given by y 7−→
(√

∥ỹ∥2 + r2 · y0,
√

∥ỹ∥2 + r2 · y1, ỹ
)
. The normal

bundle of Hn
1 (r) is similarly generated by

gradxγ̃ = 2
n∑
i=0

xi
∂

∂xi
,

which, considered as an element of the Minkowski space, is equal to 2x. It follows

η
(
gradxγ̃, gradxγ̃

)
= 4g(x, x) = 4γ̃(x) = −4r2 < 0,

so unlike Sn1 (r), the normal bundle of Hn
1 (r) is timelike. Hence, the induced metric g on

Hn
1 (r) has index 1 and therefore is a Lorentz metric. Furthermore, the curvature quantities of

Hn
1 (r) coincides with those of Sn1 (r) up to a sign:

R(X, Y )Z = − 1

r2
(
g(Y, Z)X − g(X,Z)Y

)
,

K = − 1

r2
, ric = −n− 1

r2
g, scal = −n(n− 1)

r2
,

for vector fields X,Y, Z on Hn
1 (r). The universal cover H̃n

1 (r) of Hn
1 (r), which is diffeomor-

phic to Rn, is also called anti-de Sitter space.

Remark 1.33. The manifoldsH4
1 (r), H̃

4
1 (r) are vacuum solutions of Einstein’s field equations

with cosmological constant − 3
r2

.

Similarly to Sn1 (r), geodesics are obtained as point sets Hn
1 (r) ∩ E, where E ⊂ Rn+1 some

two-dimensional subspace. Also in anti-de Sitter space, there are pairs of points, which can
not be joined by some geodesic. Finally, the isometry group

Isom
(
Hn

1 (r)
) ∼= O(2, n− 1)

acts transitively on Hn
1 (r) and isometries of Hn

1 (r) can be lifted to isometries of H̃n
1 (r).
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1.4 Robertson-Walker spacetimes

Definition 1.34. An (n+ 1)-dimensional Lorentzian manifold (M, g) is called Robertson-
Walker spacetime if it is of the form

M = I × S, g = − dt⊗ dt+ f(t)2gS,

where I ⊂ R is an open interval, (S, gS) a complete and connected Riemannian manifold
with constant sectional curvature KS ≡ κ, and f : I → R a smooth and positive function.

I
S

Mν

St

Examples for S are the model spaces, i.e. the standard sphere Sn (κ = 1), Euclidean space Rn

(κ = 0) and the hyperbolic spaceHn (κ = −1), as well as quotients of these like real projective
space RPn = Sn/Z2, lense spaces or the torus T n = Rn/Zn. Unlike for κ < 0, there is a
complete classification of complete and connected Riemannian manifold with constant and
non-negative sectional curvature, for κ < 0, there is a huge amount of such manifolds and no
classification available.

Example 1.35.

1. For S = Rn, I = R, f ≡ 1, we obtain the Minkowski space M = Rn+1.

2. For S = Sn, I = R, f ≡ 1, we obtain Einstein’s static universe.

Let St := {t} × S ⊂ M and ν := ∂
∂t

. We determine the shape operator W of St with respect
to ν. Let X, Y, Z be vector fields along St such that, without loss of generality, the pairwise
Lie brackets of X,Y, ν vanish. Then Koszul’s formula leads to

g
(
W (X), Y

)
= g
(
∇M
X ν, Y

)
=

1

2

(
∂X g(ν, Y )︸ ︷︷ ︸

=0

+∂νg(X, Y )− ∂Y g(X, ν)︸ ︷︷ ︸
=0

)
=

1

2

∂

∂t

(
f 2 · gS(X, Y )

)
= f ′f · gS(X,Y ) =

f ′

f
· g(X, Y ),

that is W = f ′

f
· id.
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We proceed by investigating the geodesics of Robertson-Walker spacetimes and start with the
special case c(t) := (t, x0) for some fixed x0 ∈ S.

b

b
b

x0

I
S

M

Let σ denote the geodesic reflection in S about x0, which
is an isometry of S (at least in some neighborhood of
x0), so the map

φ : M −→M, (t, x) 7→
(
t, σ(x)

)
is an isometry ofM . Hence, the fixed point set R×{x0}
of φ is a geodesic as a point set. On the other hand, c is
the parametrization by proper time of this set and hence
a geodesic.

b
x0

b
x b

σ(x)

S

Now let us consider a general geodesic c of (M, g). We write c(s) :=
(
t(s), γ(s)

)
with t, γ

mapping into I and S, respectively. It follows c′(s) = t′(s)ν + γ′(s) and thus

∇M
c′ c

′ = ∇M
c′ (t

′ν + γ′) = t′′ν + t′∇M
t′ν+γ′ν +∇M

t′ν+γ′γ
′

= t′′ν + (t′)2∇M
ν ν︸ ︷︷ ︸
=0

+ t′∇M
γ′ ν + t′∇M

ν γ
′︸ ︷︷ ︸

=2t′∇M
γ′ ν

+∇M
γ′ γ

′

= t′′ν + 2t′W (γ′) +∇S
γ′γ

′ +∇S
γ′γ

′ + g
(
∇M
γ′ γ

′, ν
)︸ ︷︷ ︸

=g
(
W (γ′),γ′

) ν
Here we used [γ′, ν] = 0 and that c̃ : t 7→

(
t, γ(s0)

)
is a geodesic of the form we discussed

before with ˙̃c(t) = ν and hence ∇M
ν ν = 0. Therefore, demanding c to be geodesic leads to the

following system of equations

0 = t′′ + g
(
W (γ′), γ′

)
= t′′ + f ′fgS

(
W (γ′), γ′

)
= ∇S

γ′γ
′ + 2t

f ′

f
γ′ = ∇S

γ′γ
′ + 2

(f ◦ t)′

f ◦ t
γ′.
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Hence, we just showed

Proposition 1.36. A smooth curve c = (t, γ) in M is a geodesic if and only if

t′′ = −f ′fgS
(
W (γ′), γ′

)
, ∇S

γ′γ
′ = −2

(f ◦ t)′

f ◦ t
γ′.

In particular, up to reparametrization, γ is then a geodesic of (S, gS).

Proof. Choose a parametrization t such that f ◦ t = const.

Corollary 1.37. For lightlike geodesics, the function s 7→ t′(s) · f
(
t(s)
)

is constant.

Proof. This is implied by the first equation in Proposition 1.36:

0 = f ′ · g(c′, c′) = −(t′)2f ′ + f ′f 2gS(γ
′, γ′) = −(t′)2f ′ + f ′t′′ = −(t′ · f)′.

Remark 1.38.
Explanation of the cosmic redshift:
The world line of a photon is a lightlike
geodesic c. Its energy measured by an
observer ν is −g(c′, ν) = t′. Then for
the wavelength λ := ℏ

t′
of the photon, we

obtain

t′(s1)f
(
t(s1)

)
= t′(s2)f

(
t(s2)

)
=⇒ λ(s1)

λ(s2)
=
f
(
t(s1)

f
(
t(s2)

.

b

b

t(s1)

t(s2)

worldline of
a photon
(lightlike
geodesic)

our
worldline

worldline of
a galaxy far,

far away

∂
∂t

Let us investigate the curvature of (M, g). Recall that for semi-Riemannian manifolds (S, gS)
with constant section curvature κ, it reduces to the simple expressions

RS(X, Y )Z = κ
(
gS(Y, Z)X − gS(X,Z)Y

)
,

ricS(X, Y ) = κ(n− 1) · gS(X,Y ),

scalS = κn(n− 1).

From that we extract the curvature of (M, g). Recall that RM is completely determined by its
tangential and normal component as well as g

(
RM(X, ν)ν, Y

)
:
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• Tangential part for vector fields X, Y, Z on St via Gauß’ Formula:

tan
(
RM(X,Y )Z

)
= RS(t)(X,Y )Z + g

(
W (Y ), Z

)
·W (X)− g

(
W (X), Z

)
·W (Y )

= κ
(
gS(Y, Z)X − gS(X,Z)Y

)
+

(
f ′

f

)2

· f 2
(
gS(Y, Z)X − gS(X,Z)Y

)
=
(
κ+ (f ′)2

)(
gS(Y, Z)X − gS(X,Z)Y

)
=
κ+ (f ′)2

f 2

(
g(Y, Z)X − g(X,Z)Y

)
.

• Let II denote the second fundamental form of St, which is linked to W via
g
(
W (X), Y

)
=
(
II(X,Y ), ν

)
. For vector fields X,Y, Z on St define

(∇XII)(Y, Z) := ∇XII(Y, Z)− II(∇XY, Z)− II(Y,∇XZ).

Then the Codazzi equation provide

nor
(
R(X, Y )Z

)
= −(∇XII)(Y, Z) + (∇Y II)(X,Z),

which, due to metricity of g, results in

g
(
R(X, Y )Z, ν

)
= g
(
∇XW (Y )−W (∇XY )−∇YW (X)−W (∇YX), Z

)
= 0,

since ∇XW (Y )−W (∇XY ) = ∂X
f ′

f
· Y = 0.

• It remains the mixed term

RM(X, ν)ν = ∇M
X ∇M

ν ν︸ ︷︷ ︸
=0

−∇M
ν ∇M

X ν︸ ︷︷ ︸
=W (X)

−∇M
[X,ν]ν = −∇M

ν

(
W (X)

)
−∇M

W (X)−∇M
ν Xν

= −
(
∇M
ν W

)
(X)−W

(
∇M
ν X

)
−W (W (X)) +W

(
∇M
ν X

)
= −

(
∇ ∂

∂t
W
)
(X)−W (W (X)) = −f

′′f − (f ′)2

f 2
X −

(
f ′

f

)2

X = −f
′′

f
X.

We proceed with the Ricci curvature. Let (e1, . . . , en) be a local orthonormal frame of TSt.

• For vector fields X,Y on St, we obtain

ricM(X,Y ) = −g
(
RM(X, ν)ν, Y

)
+

n∑
i=1

g
(
RM(X, ei)ei, Y

)
=
f ′′

f
g(X, Y ) +

κ+ (f ′)2

f 2

n∑
i=1

(
g(ei, ei)g(X,Y )− g(X, ei)g(ei, Y )︸ ︷︷ ︸

=(n−1)g(X,Y )

=

(
f ′′

f
+

(n− 1)
(
κ+ (f ′)2

)
f 2

)
g(X,Y ).
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• It directly follows

ricM(X, ν) = −g
(
RM(X, ν)ν︸ ︷︷ ︸

=0

, ν
)
+

n∑
i=1

g
(
RM(X, ei)ei, ν

)

=
(n− 1)

(
κ+ (f ′)2

)
f 2

g(X, ν) = 0.

• For the remaining part, we obtain

ricM(ν, ν) = −g
(
RM(ν, ν)︸ ︷︷ ︸

=0

ν, ν
)
+

n∑
i=1

g
(
RM(ei, ν)ν︸ ︷︷ ︸

=− f ′′
f
ei

, ei
)
= −nf

′′

f
.

Consequently, the scalar curvature is given by

scalM = −ricM(ν, ν) +
n∑
i=1

ricM(ei, ei) = n

(
2f ′′

f
+

(n− 1)
(
κ+ (f ′)2

)
f 2

)
.

Remark 1.39. From the derivation of RM(X, ν)ν, we can somehow derive a more general
principle: For any Lorentzian manifold, which is foliated by spacelike hypersurfaces with
normal field ν such that ∇M

ν ν = 0 (we call this a Riemannian foliation), then the shape
operator W of the hypersurfaces satisfies the following Riccati equation

RM(·, ν)ν +∇M
ν W +W 2 = 0.

Let us now give a physical interpretation of these formulas via Einstein’s field equations.
Certain terms in the energy momentum tensor have a physical interpretation, which can be
now expressed in geometric terms:

(
ricM − scalM

2
g
)
(X, Y ) =

{(
1− n

2

)
(n− 1)

(
κ

f 2
+

(
f ′

f

)2
)

− (n− 1)
f ′′

f

}
︸ ︷︷ ︸

=:p pressure

g(X,Y ),

(
ricM − scalM

2
g
)
(ν, ν) =

n(n− 1)

2
· κ+ (f ′)2

f 2︸ ︷︷ ︸
=:ϱ mass density

,

where X,Y are vector field on St.

Definition 1.40. A Robertson-Walker spacetime is called Friedman cosmos if p = 0.
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Remark 1.41. The condition p = 0 leads to a second order ODE in f , which can be solved.
For n = 3, we obtain

(i) κ = 0 : Neil’s parabola

f(t) = C(t− t0)
2
3 .

(ii) κ = 1 : cycloid

t(θ) = C(θ−sin θ), f
(
t(θ)−t0

)
= C(1−cos θ).

(iii) κ = −1 :

t(θ) = C(θ−sinh θ), f
(
t(θ)−t0

)
= C(1−cosh θ).

κ = 1

κ = 0

κ = −1

t

f

Remark 1.42. Let (M, g) a Robertson-Walker spacetime and c(s) :=
(
t(s), γ(s)

)
a lightlike

geodesic. Then c′ = t′ν + γ′ provides

0 = g(c′, c′) = −(t′)2 + (f ◦ t)2 · ∥γ′∥2 =⇒ ∥γ′∥ =
|t′|
f ◦ t

.

Now let t′ > 0, then for fixed s0 ∈ R, the last equation provides

L[γ] =

∞∫
s0

∥γ′(s)∥S ds =
∞∫
s0

t′(s)

f
(
t(s)
) ds ≤ ∞∫

t(s0)

dt

f(t)
.

γ(s0)

I
S

M

b

B
(
γ(s0), L[γ]

)

For f growing sufficiently fast, i.e. t2 or et, we have L[γ] < ∞, so the curve γ does not leave
the ball with radius L[γ] around γ(s0). Therefore, from any spacetime point, there are parts of
the universe, which can not be observed, a phenomenon known as the Horizon problem.
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1.5 The Schwarzschild half-plane
In this section, fixm > 0, which we physically interpret as the mass of a rotationally symmetric
black hole.

Definition 1.43. The Lorentzian manifold

M := R×
(
(0, 2m) ∪ (2m,∞)

)
, g := −h(r) dt× dt+

1

h(r)
dr ⊗ dr,

where h(r) := 1− 2m
r

, is called Schwarzschild half-plane.

The non-vanishing Christoffel symbols are

Γ1
00 =

h · h′

2
, Γ0

01 = Γ0
10 =

h′

2h
, Γ1

11 = − h′

2h
,

and hence, for the sectional curvature, we obtain

K =
R0

101

g11
= h

(
− ∂1Γ

0
10 + Γ0

01Γ
0
11 − Γ0

10Γ
0
01

)
= −h

′′

2
=

2m

r3
.

Let us determine the lightcone of the tan-
gent space in (t, r), i.e. the set of all light-
like vectors. For X = a ∂

∂t
+ b ∂

∂r
, this is

the case if

0 = g(t,r)(X,X) = −a2 · h(r) + b2

h(r)

⇐⇒ b = ±h(r) · a.

The lightlike curves c(s) :=
(
t(s), r(s)

)
of

M satisfy c′(s) = t′(s) ∂
∂t
+ r′(s) ∂

∂r
with

r′ = ±h(r) · t′, that is, for fixed s0 ∈ R,
we have

0

t

r
|

m 2m

t(s)− t(s0) =

s∫
s0

t′(s) ds = ±
s∫

s0

r′(s) ds

h
(
r(s)

) = ±
r(s)∫

r(s0)

r dr

h(r)

= ±
r(s)−2m∫

r(s0)−2m

ρ+ 2m

ρ
dρ = ±

(
r(s)− r(s0) + 2m log

r(s)− 2m

r(s0)− 2m

)
.
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Due to lim
r→0

K = ∞, M cannot be extended to
r = 0. Furthermore, there are geodesics, which
reach r = 0 within "finite time", so M fails to
be geodesically complete.
The singularity at r = 2m, on the other hand, is
removable by some change of coordinates, the
so-called "Kruskal-coordinates".

For fixed t0 ∈ R, the maps

(t, r) 7−→ (t+ t0, r), (t, r) 7−→ (−t, r).

are isometries and hence, the subsets {t0} × (0, 2m) and {t0} × (2m,∞) provide a timelike
and a spacelike geodesic, respectively.





2 Causality

2.1 Fundamental Notions

Definition 2.1. Let M be a Lorentzian manifold and P(TM) denote the power set of the
tangent bundle. A time-orientation of M is a map

ζ : M → P(TM)

such that, for all p ∈M ,

• ζ(p) is one of the connected components I±(p) of TpM and

• there is a chart (x, U) around p such that ∂
∂x0

∣∣
q
∈ ζ(q) for all q ∈ U .

b

p

U

M

b p

M

TpM

M is called time-orientable if it admits a time-orientation ζ , and a pair (M, ζ) is called
time-oriented Lorentzian manifold.

Proposition 2.2. LetM be a Lorentzian manifold. Then the following statements are equiv-
alent:

(i) M is time-orientable.

(ii) M admits a continuous timelike vector field.

(iii) M admits a smooth timelike vector field.

Proof. (iii) ⇒ (ii): trivial.

(ii) ⇒ (i): Let X be a continuous timelike vector field and for all p, define ζ(p) as the
connected components that contains X(p). For fixed p, choose (x, U) such that ∂

∂x0

∣∣
q
∈ ζ(p),
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and hence g
(
X, ∂

∂x0

)
< 0 in p. By possibly shrinking U and due to continuity of X and ∂

∂x0
,

we obtain g
(
X, ∂

∂x0

)
< 0 on all of U and thus ∂

∂x0

∣∣
q
∈ ζ(q) for all q ∈ U .

(i) ⇒ (iii): Let ζ be a time-orientation and {pα}α ⊂M such that {Uα}α yields a locally finite
cover of M with corresponding partition of unity {ρα}α and ∂

∂x0α

∣∣∣
q
∈ ζ(q) for all q ∈ Uα and

α. Then the convex linear combination X :=
∑

α ρα
∂
∂x0α

is a well-defined and smooth vector
field on all of M and thus X(p) ∈ ζ(p) for all p ∈ M since ζ(p) is convex, so in particular X
is timelike.

All examples considered in chapter one are time-orientable. Note that, unlike orientablity, time-
orientablity not only depends on the topological space M but also on the metric g. Moreover,
there is no connection between both orientablity properties as the following examples show:

Example 2.3.

Glue together

orientable
&

time-orientable

not orientable
&

not time-orientable

orientable
&

not time-orientable

not orientable
&

time-orientable

From now on let (M, ζ) always be a connected and time-oriented Lorentzian manifold, which
we address simply byM . A curve c inM is always considered to be continuous and piecewise
smooth. Furthermore, we call a causal curve future or past directed if for all s, we have
c′(s) ∈ ζ

(
c(s)

)
or c′(s) ∈ −ζ

(
c(s)

)
, respectively.
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Notation 2.4. For p, q ∈M , we define the following relations:

p≪ q :⇐⇒ ∃ future directed timelike curve from p to q.

p < q :⇐⇒ ∃ future directed causal curve from p to q.

p ≤ q :⇐⇒ p < q or p = q.

For A ⊂M , we define

I+(A) :=
{
q ∈M

∣∣ ∃p ∈ A : p≪ q
}

the chronological future of A,

J+(A) :=
{
q ∈M

∣∣ ∃p ∈ A : p ≤ q
}

the causal future of A.

Analogously, one defines the chronological and causal past I−(A) and J−(A) of A, respec-
tively. Moreover, for A = {p}, we write I±(p), J±(p).

Remark 2.5. We have I±(A) =
∪
p∈A I±(p) and J±(A) =

∪
p∈A J±(p).

Example 2.6.

M := R2
Mink

t

xbc

I+(p)

p

J−(A)

A

M := R2
Mink/Ze0

∼=
(
S1 × R,− dθ2 + dr2

)
=⇒ I±(p) =M = J±(p).

b
Identifyp

The relation "≪" is transitive, i.e. p ≪ q and q ≪ r imply p ≪ r, since one can always
connect future directed timelike and causal curves, respectively. Even a stronger version of
transitivity holds:

Proposition 2.7. LetM be a connected time-oriented Lorentzian manifold and p, q, r ∈M .
Then the following two statements hold:

p≪ q and q ≤ r =⇒ p≪ r, p ≤ q and q ≪ r =⇒ p≪ r.
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Proof. We merely prove the second statement (the proof of the first one is similar). Since the
case p = q is trivial, we assume p < q. Let c1 : [0, 1] → M be a causal future directed curve
from p to q, and c2 : [1, 2] → M a timelike future directed curve from q to r. The idea is to
consider the concatination and find a timelike future directed deformation of it. Let t 7→ E(t)
be the parallel vector field along c1 with E(1) = ċ2(1) and X(t) := t · E(t). Furthermore, let
c1,s denote a variation of c1 with

c1,s(0) = p, c1,s(1) = c2(1 + s),
∂c1,s
∂s

∣∣∣∣
s=0

(t) = X(t)

b

b

b

r

q

p
c1

c2

E

X

By assumption, we have g
(
ċ1,s, ċ1,s

)∣∣
s=0

≤ 0 and moreover, due to freeness of torsion of the
Levi-Civita connection,

∂

∂s
g
(
ċ1,s(t), ċ1,s(t)

)∣∣∣∣
s=0

= 2g

(
∇
∂s

∂c1,s
∂t

(t),
∂c1,s
∂t

(t)

)∣∣∣∣
s=0

= 2g

(
∇
∂t

∂c1,s
∂s

(t)︸ ︷︷ ︸
=X(t)=tE(t)

, ċ1(t)

)∣∣∣∣
s=0

= 2g
(
E(t), ċ1(t)

)
< 0

since E is parallel and both, E and ċ1, are timelike and future directed. Hence, for s > 0
suitably small and all t ∈ [0, 1], we obtain ∂

∂s
g
(
ċ1,s(t), ċ1,s(t)

)
< 0. It follows that, again for

s > 0 suitably small, c1,s : [0, 1] →M is timelike and future directed and thus, so is

c : [0, 2− s] →M, t 7−→

{
c1,s(t), t ∈ [0, 1]

c2(t+ s), t ∈ [1, 2− s]
,

which connects p and r, i.e. p≪ r.

Corollary 2.8. For all A ⊂M , we have

I+(A) = I+
(
I+(A)

)
= J+

(
I+(A)

)
= I+

(
J+(A)

)
J+
(
J+(A)

)
= J+(A).

Proof. We start with the first statement for which it suffices to show

I+(A) ⊂ I+
(
I+(A)

)
⊂ J+

(
I+(A)

)
⊂ I+(A).

The second inclusion is trivial and the third one follows directly from the Proposition. This
remains true if we replace J+

(
I+(A)

)
by I+

(
J+(A)

)
. However, for the first inclusion, we

consider p ∈ I+(A), i.e. there is some future directed, timelike curve c : [0, 1] →M connecting
A and p. For some t ∈ (0, 1), let r := c(t) ∈ I+(A), that is p ∈ I+(r) ⊂ I+

(
I+(A)

)
.

For the second statement, recall A ⊂ J+(A) and furthermore J+
(
J+(A)

)
⊂ J+(A) due to

transitivity of "≤", i.e. J+(A) ⊂ J+
(
J+(A)

)
⊂ J+(A).
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Proposition 2.9 (Gauß-Lemma). Let M be a Lorentzian manifold, p ∈ M and x ∈ TpM
in the domain of expp. For some t0 ∈ R, let furthermore v := t0x ∈ TpM and w ∈ TpM ,
and we obtain

g
(
dx expp(v), dx expp(w)

)
= g(v, w).

b

b

b

b

b

b

M

TpM

p

0 xv
v

w

d expp |x(w)
d expp |x(v)

expp(x)

expp

Proof.
Note that the identity, which we would like to
prove, is homogeneous in v, so without loss of
generality, we assume t0 = 1, that is v = x.
We start by defining

ψ : [0, 1]× (−ε, ε) −→M

(t, s) 7−→ expp
(
t(v + sw)

)
.

This map satisfies

b

b

b

b

M

TpM

p

0
x

v

w

expp

∂ψ

∂t
(1, 0) = dx exp(v),

∂ψ

∂s
(1, 0) = dx exp(w),

i.e. it remains to show g
(
∂ψ
∂t
(1, 0), ∂ψ

∂s
(1, 0)

)
= g(v, w). For each s, the curve t 7→ ψ(t, s) is a

geodesic with velocity vector v + sw at t = 0, so it follows

∂

∂t
g

(
∂ψ

∂t
,
∂ψ

∂s

)
= g

( =0︷ ︸︸ ︷
∇
∂t

∂ψ

∂t
,
∂ψ

∂s

)
+ g

(
∂ψ

∂t
,
∇
∂t

∂ψ

∂s

)
= g

(
∂ψ

∂t
,
∇
∂s

∂ψ

∂t

)
=

1

2

∂

∂s
g

(
∂ψ

∂t
,
∂ψ

∂t

)
︸ ︷︷ ︸
=g(v+sw,v+sw)

= g(v, w) + sg(w,w).

For f(t) := g
(
∂ψ
∂t
(t, 0), ∂ψ

∂s
(t, 0)

)
, we obtain ḟ(t) = g(v, w) and f(0) = 0, that is

f(1) = g

(
∂ψ

∂t
(1, 0),

∂ψ

∂s
(1, 0)

)
= g(v, w).
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For any differentiable curve c : [0, 1] → M and differentiable vector field X on M , recall the
notations

∇(X ◦ c)
∂t

:= ∇ċ(t)X,
∇ċ
dt

(t) := ∇ċ(t)ċ.

Remark 2.10. Note that this only holds if one vector is "radial", i.e. a multiple of the vector,
where the differential is evaluated. Hence, the Gauß-Lemma allows the exponential map to be
understood as a radial isometry.

Lemma 2.11. Let M be a time-oriented Lorentzian manifold, p ∈M and γ : [0, b] → TpM
a curve running in the domain of expp such that γ(0) = 0 and c := expp ◦γ is timelike and
future (past) directed. Then γ(t) ∈ I+(I−) for all t ∈ (0, b].

Proof. a) We merely prove γ(t) ∈ I+ since the other case is completely similar. Let q(x) :=
g(x, x) the corresponding quadratic form on TpM , i.e. in Minkowski coordinates

q(x) = −(x0)2 +
n∑
i=1

(xi)2,

which are chosen such that ∂
∂x0

is future directed. Note that for ξ ∈ TxTpM ,

g
(
gradxq, ξ

)
= dxq(ξ) = −2x0ξ0 + 2

n∑
i=1

xiξi =⇒ gradxq = 2x.

Then for v = w = 2x, the Gauß-Lemma provides

g
(
dx expp(gradxq), dx expp(gradxq)

)
= g
(
gradxq, gradxq

)
= 4q(x),

so P (x) := dx expp(gradxq) is timelike for all x ∈ I ⊂ TpM . Furthermore, it is future
directed if x is.
b) Consider the case of γ being smooth, so q

(
γ(0)

)
= q(0) = 0 and ċ(0) = d0 expp

(
γ̇(0)

)
,

i.e. γ̇(0) is timelike. Hence, for ε > 0 suitably small, we have γ(t) ∈ I+, so in particular
q
(
γ(t)

)
< 0, for all t ∈ (0, ε]. Therefore, it remains to show that q

(
γ(t)

)
< 0 for all t ∈ (0, b].

Assume there exists some t1 ∈ (0, b] such that q(γ(t1)) = 0 and without loss of generality let
it be the smallest one. By the mean value theorem there has to be some t0 ∈ (0, t1), where
q ◦ γ assumes an minimum, that is γ(t0) ∈ I+ and d(q◦γ)

dt
(t0) = 0. On the other hand, the

Gauß-Lemma then yields

d

dt
q
(
γ(t)

)
= dγ(t)q

(
γ̇(t)

)
= g
(
gradγ(t)q, γ̇(t)

)
= g
(
dγ(t) expp

(
gradγ(t)q

)
, dγ(t) expp

(
(γ(t)

))
= g
(
P (γ(t)), ċ(t)

)
,

so d(q◦γ)
dt

(t0) < 0 due to a). It follows that such a t1 does not exist, so q
(
γ(t)

)
< 0 and hence

γ(t) ∈ I+ for all t ∈ (0, b].
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c) Now let γ be piecewise smooth and 0 := b0 < b1 < . . . < bN := b a partition of [0, b] such
that γ is smooth on (bi, bi+1) for all i. Due to b), we have γ(t) ∈ I+ for all t ∈ (0, b1] and we
assume γ

(
(0, bk]

)
⊂ I+ for some k = 1, . . . , N − 1. Due to a), we obtain for the right-sided

derivative

lim
δ→0

q
(
γ(bk + δ)

)
− q
(
γ(bk)

)
δ

= g
(
P (γ(bk)), ċ(γ(bk))

)
< 0

since by assumption, ċ(t) is timelike and future directed for all t. Applying b) leads to
γ
(
[bk, bk+1]

)
⊂ I+ and thus completes the proof.

Notation 2.12. For Ω ⊂M and any A ⊂ Ω, we define

IΩ+(A) :=
{
q ∈ Ω

∣∣ ∃p ∈ A : p≪ q in A
}

and analogously IΩ−(A) and JΩ
±(A).

Corollary 2.13. Let M be a time-oriented Lorentzian manifold and p ∈ M . Furthermore,
let Ω ⊂ M and Ω′ ⊂ TpM be open neighborhoods of p and 0, respectively, such that Ω′ is
starshaped with respect to 0 and expp : Ω

′ → Ω a diffeomorphism. Then we have

IΩ±(p) = expp
(
I±(0) ∩ Ω′), JΩ

±(p) = expp
(
J±(0) ∩ Ω′).

Ω′
I+(0) ∩ Ω′

b

b

Ω
IΩ+(p)

M

TpM

p

0

expp

Proof. We only prove the statements for "+" since "−" works analogously. We start with "⊂"
in the first equality, so let q ∈ IΩ+(p), i.e. p ≪ q. Let c : [0, 1] → Ω be the timelike future
directed curve with c(0) = p and c(1) = q. Since expp is a diffeomorphism, we obtain a curve
γ := exp−1

p ◦c : [0, 1] → Ω′, which, due to the Lemma, maps to I+(0), and thus

exp−1
p (q) = γ(1) ∈ I+(0) =⇒ q ∈ expp

(
I+(0) ∩ Ω′).

Let x ∈ I+(0)∩Ω′ and consider the ray t 7→ tx, t > 0, in I+(0)∩Ω′. Hence, t 7→ expp(tx) is
a timelike and future directed geodesic connecting pwith expp(x) inΩ, that is expp(x) ∈ IΩ+(p).
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For the second equation, one proves "⊃" similarly, so it remains "⊂". Let q ∈ J+(p) and
(qi)i∈N ⊂ Ω a sequence of points with qi ≪ q and qi → q. From Proposition 2.7 follows
p ≪ qi, i.e. qi ∈ IΩ+(p) and thus exp−1

p (qi) ∈ I+(0) ∩ Ω′ from the first equation. On the other
hand, we obtain exp−1

p (qi) → exp−1
p (q), i.e. exp−1

p (q) lies in the closure of I+(0) ∩ Ω′ in Ω′,
which is J+(0) ∩ Ω′ and we conclude q ∈ exp−1

p

(
J+(0) ∩ Ω′).

Proposition 2.14. "≪" is an open relation, i.e. p ≪ q implies the existence of neighbor-
hoods U, V of p and q, respectively, such that p′ ≪ q′ for all p′ ∈ U and q′ ∈ V .

Proof.
Let p ≪ q with corresponding timelike and future di-
rected curve c : [0, 1] → M . Set p′ := c(ε) with ε > 0
chosen small enough such that there is an open neighbor-
hoodΩ of p′ with p ∈ Ω and so that expp′ : Ω′ → Ω yields
a diffeomorphism for some suitable starshaped neighbor-
hood Ω′ of 0 in Tp′M . Then U := IΩ−(p

′) is an open
neighborhood of p in M . Analogously, define V . Then
for all p′′ ∈ U and q′′ ∈ V , we have p′′ ≪ p′ ≪ q′ ≪ q′′

and thus p′′ ≪ q′′.
b

b

b

b

b

b

p′′

q′′

U

V

p′

q′

p

q

c

Corollary 2.15. For any subset A ⊂M , the subsets I±(A) ⊂M are open.

Proof. The Proposition shows that I±(A) is open in Ω and so is I±(A) =
∪
p∈A I±(p).

Attention! I±(A) and J±(A) need not be closed
even if A ⊂M is.

Example 2.16.
Let M = R2\{(1, 1)} with Minkowski metric.
Then J+

(
(0, 0)

)
is not closed.

b

bc
J+((0, 0))

(1, 1)

(0, 0)

t

x

Proposition 2.17. For any A ⊂M , we have

I±(A) = J̊±(A), J±(A) ⊂ I±(A),

and equality holds in the last statement if and only if J±(A) is closed.
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Proof. We start with the first statement, for which "⊂" is trivial since I±(A) is open and
contained in J±(A). For the other direction, let p ∈ J̊+(A) and choose q ≪ p such that
q ∈ J̊+(A). Hence, there is some r ∈ A with r < q ≪ p, which implies r ≪ p and thus
p ∈ I+(A). The proof for "−" is similar.
For the second statement, we start with J+(p) ⊂ I+(p)", so let q ∈ J+(p). Since clearly
p ∈ I+(p), we assume p < q. Let c : [0, 1] → M be the corresponding causal and future
directed curve and for all i ∈ N, set qi := c

(
1− 1

i

)
. Furthermore, choose ri such that ri → q,

which implies p < qi ≪ ri and hence p ≪ ri, that is ri ∈ I+(p). For any A ⊂ M it thus
follows

J+(A) =
∪
p∈A

J+(A) ⊂
∪
p∈A

I+(p)︸ ︷︷ ︸
⊂I+(A)

⊂ I+(A).

If we have equality, then J+(A) is obviously closed. Conversely, if J+(A) is closed, then
equality is implied by I+(A) ⊂ J+(A) = J+(A).

Proposition 2.18. Any compact and time-oriented Lorentzian manifold contains a closed
timelike curve.

Proof. Let M be a compact and time-oriented Lorentzian manifold, so
{
I+(p)

}
p∈M yields

an open cover of M . Due to compactness, we find a finite subcover
{
I+(p)

}
p1,...,pN

, which,
without loss of generality, can be chosen such that no element of this cover contains another
one. Hence, if p1 ∈ I+(pi) for some i ≥ 2, then I+(p1) ⊂ I+(pi), which is a contradiction.
Therefore, p1 has to be covered by I+(p1), i.e. p1 ∈ I+(p1), which implies the existence of a
timelike and future directed curve that is closed.

Definition 2.19. Let M be a connected and time-oriented Lorentzian manifold. Then M
satisfies the

• chronology condition if it does not contain any closed timelike curves.

• causality condition if it does not contain any closed causal curves.

• strong causality condition if for any p ∈ M and any neighborhood U of p, there is
a neighborhood V ⊂ U of p such that any causal curve that starts and ends in V is
completely contained in U .

b
b

b p
V U

forbidden!
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Remark 2.20. We have

strong causality condition =⇒ causality condition =⇒ chronology condition.

In general, the converse implication do not hold.

Let M := R2/
(
Z · (1, 1)

)
with metric and time-orientation induced by the Minkowski space

R2. This satisfies the choronology condition but not the causality condition since the ray
t 7→ t · (1, 1) yields a closed lightlike curve.

Example 2.21.
1) Due to Proposition 2.18, any compact and time-oriented Lorentzian manifold does not
satisfy any of these conditions.

2) Let M := R2/
(
Z · (1, 1)

)
with metric

and time-orientation induced by the Minkowski
space R2. This satisfies the choronology con-
dition but not the causality condition since the
ray t 7→ t · (1, 1) yields a closed lightlike curve.

b

Identify
closed
lightlike
curve

t x

3) Let M :=
{
R2/

(
Z · (1, 0)

)}
\(G1 ∪ G2),

where G1 :=
{(

1
8
, s
) ∣∣ s ≥ −1

8

}
and

G2 :=
{(

− 1
8
, s
) ∣∣ s ≤ 1

8

}
. Then M satis-

fies the causality condition but not the strong
causality condition.

b

b
bb b

Identify

G2

G1

p

Definition 2.22. The length of a curve c : [a, b] →M is defined via

L[c] :=

b∫
a

√∣∣g(ċ(t), ċ(t))∣∣ dt.

Remark 2.23. Lightlike curves have length zero.

Definition 2.24. For p, q ∈M , the function

τ(p, q) :=

{
sup

{
L[c]

∣∣ c is a causal and future directed curve from p to q
}
, p < q

0, p ≮ q

is called time difference between p and q.
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Example 2.25.
1) For (M, g) the Minkowski space, we have

τ(p, q) =
√∣∣ ⟨⟨p− q, p− q⟩⟩

∣∣.
Consider the line segment t 7→ tq+ (1− t)p on [0, 1], which clearly yields a causal and future
directed curve connecting p and q of length

√∣∣ ⟨⟨p− q, p− q⟩⟩
∣∣.

For p − q lightlike, we have
√∣∣ ⟨⟨p− q, p− q⟩⟩

∣∣ = 0. On the other hand, all causal curves
connecting p and q are necessarily lightlike and hence of length 0, that is τ(p, q) = 0.
Now let p − q be timelike. After applying some Poincaré transformation and without loss of
generality, we can assume that p = 0 and q = (t, 0, . . . , 0) for some T > 0. Let c be a causal
and future directed curve connecting p and q, i.e. ċ0 > 0. After some reparametrization, we
may assume c0(t) = t, i.e. c(t) =

(
t, x(t)

)
for some curve x : [0, T ] → Rn. For the length of

c, we obtain

L[c] =

T∫
0

√∣∣− 1 + ∥ẋ(t)∥2
∣∣ dt = T∫

0

√
1− ∥ẋ(t)∥2︸ ︷︷ ︸

≤1

dt ≤ T =
√∣∣ ⟨⟨p− q, p− q⟩⟩

∣∣.
2) For M the Lorentz cylinder, we have

τ(p, q) = ∞

for all p, q ∈M .

b

b

Identify
closed
lightlike
curve

p
q

Proposition 2.26. For any time-oriented Lorentzian manifold M , we have

1. τ(p, q) > 0 ⇐⇒ p≪ q.

2. If p ≤ q and q ≤ r, then τ(p, q) + τ(q, r) ≤ τ(p, r) (inverse triangle inequality).

3. The function τ : M ×M → R is lower semi-continuous.

Proof. 1) "⇐": If p≪ q, then there is a timelike and future directed curve c connecting p and
q, which therefore is of positive length.
"⇒": Let τ(p, q) > 0, i.e. there is some causal and future directed curve of positive length.
Thus, it contains some timelike segment, on which we choose some p1, q1 such that p1 ≪ q1.
It follows p ≤ p1 ≪ q1 ≤ q, that is p≪ q due to Proposition 2.7.
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2) We first consider the case τ(p, q), τ(q, r) < ∞. For any ε > 0, there are causal and future
directed curves c1, c2 from p to q of length L[c1] ≥ τ(p, q) − ε and from q to r of length
L[c2] ≥ τ(q, r)− ε, respectively. It follows

τ(p, r) ≤ L[c1 ∪ c2] = L[c1] + L[c2] ≥ τ(p, q)− ε+ τ(q, r)− ε

and hence the claim since ε can be chosen arbitrarily small.
Now let τ(p, q) = ∞, i.e. there are arbitrarily long causal and future directed curves from p
to q. Then concatination with any fixed causal and future directed curve from q to r shows
τ(p, r). The case τ(q, r) = ∞ can be treated similarly.

3) Let p, q ∈M . We distinguish 3 cases:
(i) τ(p, q) = 0: Nothing to show here.
(ii) 0 < τ(p, q) < ∞: Choose ε > 0 such that, without loss of generality, ε < τ(p,q)

2
. Let

c : [0, 1] → M be a causal and future directed curve from p to q with L[c] ≥ τ(p, q) − ε
2
.

Furthermore, choose δ1, δ2 ∈ (0, 1) such that L
[
c|[0,δ1]

]
, L
[
c|[δ2,1]

]
< ε

4
. For i = 1, 2, set

pi := c(δi) and Ui := I−(pi), which are open neighborhoods of p and q, respectively.
Then for any p′ ∈ U1 and q′ ∈ U2, we have

τ(p′, q′) ≥ τ(p′, p1) + τ(p1, q1) + τ(q1, q
′)

≥ 0 + L
[
c|[δ1,δ2]

]
+ 0

≥ L[c]− L
[
c|[0,δ1]

]
− L

[
c|[δ2,1]

]
≥ τ(p, q)− ε

2
− ε

4
− ε

4

≥ τ(p, q)− ε.

b

b

b

b

b

b

p′

q′

U1

U2

p1

p2

p

q

c

(iii) τ(p, q) = ∞: It follows that there are arbitrarily long causal and future directed curves
from p to q. The same construction as in (ii) leads to neighborhoods of p and q, respectively,
such that elements of these neighborhoods are similarly connected by arbitrarily long causal
and future directed curves.

In general, τ is not continuous, i.e. not upper semi-
continuous, as the following example shows:
LetM := R2\

(
{0}× [−1, 1]

)
and arrange p, q ∈M as in the

picture. Any causal curve connecting both (red curve) has to
run entirely in J−(q) ∩ J+(p) (shaded region), so for ε > 0
small, every causal is almost lightlike, hence short. However,
if we shift q to the right, at some point new causal curves
(blue) of large length appear.

b b

b

b

b

b b

ε

q q′

p
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2.2 Curve deformation

Definition 2.27. A curve c : [a, b] → M , so which we find a function α : [a, b] → R such
that

∇
dt
ċ(t) = α(t)ċ(t)

for all t ∈ [a, b], is called pregeodesic.

Clearly, geodesics are pregeodesics with α = 0, and every reparametrization of a geodesic is
a pregeodesic since for any geodesic c and c̃ := c ◦ ϕ, we have

∇
dt

˙̃c =
∇
dt

(
ϕ̇ · (ċ ◦ ϕ)

)
= ϕ̈ · (ċ ◦ ϕ)

)
+ ϕ̇2 ·

(
∇
dt
ċ︸︷︷︸

=0

◦ϕ
)

=
ϕ̈

ϕ̇
· ˙̃c.

Conversely, if c̃ is a pregeodesic, then setting

ϕ(t) =

t∫
a

exp

( τ∫
a

α(s) ds

)
dτ =⇒ α(t) =

ϕ̈(t)

ϕ̇(t)

provides a geodesic c := c̃ ◦ ϕ.

Remark 2.28. The proof of Proposition 2.7 already showed: If c : [a, b] → M is a causal
curve, cs a variation of c with s ∈ (−ε, ε) and variational fieldX such that g

(∇X
dt
, ċ
)
< 0, then

cs is timelike for s suitably small.

Lemma 2.29. Let c : [a, b] →M be a causal curve, which is not a lightlike pregeodesic. In
each neighborhood of c, with respect to the compact-open topology, we find a timelike curve
with the same start and endpoint.

Proof. Without loss of generality, we consider [a, b] = [0, 1].
a) If there is some t0 ∈ [0, 1] such that ċ(t0) is timelike, then c contains a timelike segment
and we can deform it to some timelike curve like in the proof of Propsition 2.7.

b) Let c be smooth and lightlike but not a pregeodesic. We obtain g(ċ, ċ) = 0 and thus
0 = d

dt
g(ċ, ċ) = 2g

( ∇
dt
ċ, ċ
)
, i.e. ∇

dt
ċ(t)⊥ċ(t) for all t ∈ [0, 1]. On the other hand, for any

lightlike Minkowski vector v, we have the decomposition v⊥ = Rv ⊕ E for some spacelike
subspace E. Therefore, if both, ∇

dt
ċ(t) and ċ(t), were lightlike for all t, then c would be a

pregeodesic, which is ruled out by assumption. Hence, ∇
dt
ċ has to be spacelike somewhere, in

particular g
( ∇

dt
ċ, ∇

dt
ċ
)

does not vanish everywhere.
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Choose some timelike Y0 ∈ Tc(0)M such that g
(
Y0, ċ(0)

)
< 0, and let Y be the parallel vector

field along c determined by Y (0) = Y0. It follows that Y (t) is timelike and g
(
Y (t), ċ(t)

)
< 0

for all t ∈ [0, 1]. If we find some X(t) := a(t)Y (t) + b(t) ∇
dt
ċ(t) with smooth a, b such that

a(0) = b(0) = a(1) = b(1) = 0, g

(
∇X
dt

, ċ

)
< 0,

then X determines a variation of c as in the Remark and hence yields the claim. Recall
g
( ∇

dt
ċ, ċ
)
= 0, which leads to

0 =
d

dt
g

(
∇
dt
ċ, ċ

)
= g

(
∇2

dt2
ċ, ċ

)
+ g

(
∇
dt
ċ,

∇
dt
ċ

)

=⇒ g

(
∇X
dt

, ċ

)
= ȧg(Y, ċ) + ag

( =0︷︸︸︷
∇Y
dt

, ċ

)
+ ḃg

=0︷ ︸︸ ︷(
∇
dt
ċ, ċ

)
+bg

(
∇2

dt2
ċ, ċ

)
= ȧg(Y, ċ)− bg

(
∇
dt
ċ,

∇
dt
ċ

)
.

Then γ :=
g
(

∇
dt
ċ, ∇

dt
ċ
)

g(Y,ċ)
≥ 0, which is non-

zero somewhere, so we find some smooth
b : [0, 1] → R with b(0) = b(1) = 0 and

1∫
0

b(t)γ(t) = −1.

0 1

γ

b

Then a(t) :=
∫ t
0
(bγ + 1)(s) ds satisfies a(0) = a(1) = 0 and furthermore, we obtain

g

(
∇X
dt

, ċ

)
= (bγ + 1)︸ ︷︷ ︸

>bγ

g(Y, ċ)︸ ︷︷ ︸
<0

−bg
(
∇
dt
ċ,

∇
dt
ċ

)
< bg

(
∇
dt
ċ,

∇
dt
ċ

)
− bg

(
∇
dt
ċ,

∇
dt
ċ

)
= 0.

c) Finally, let c be piecewise smooth and lightlike. If one of these smooth segments is not
a pregeodesic, then it can be deformed to a timelike segment following b) and due to a) the
whole curve can be deformed to a timelike one.
Let every segment be a lightlike pregeodesic and let c be not differentiable at t0 ∈ (0, 1), that
is the left- and right-sided derivative ċ(t±0 ) at t0 are lineraly independent. According to a), it
suffices to treat the case of one such t0, i.e. c is smooth on [0, t0) ∪ (t0, 1].
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Let Y ± be the parallel transport of ċ(t±0 ) along
c, so ċ(t), Y −(t) are linear dependent with the
same orientation for all t ∈ [0, t0] and so are
ċ(t), Y +(t) for all t ∈ [t0, 1]. For Y := Y + −
Y −, the Cauchy-Schwarz-inequality provides

g
(
Y (t), ċ(t)

)
={

g
(
Y −(t), ċ(t−)

)
< 0, t ∈ [0, t0]

−g
(
Y +(t), ċ(t+)

)
> 0, t ∈ [t0, 1]

,

since both vectors are lightlike and have the
same orientation.

ċ(t−0 )
ċ(t+0 )

Y

b

p

b c(t0)

b
q

Y −

Y +

Let a : [0, 1] → R be continuous at t0 and smooth everywhere else such that

a(0) = a(1) = 0, a′(t±)

{
> 0 on [0, t0]

< 0 on [t0, 1]
0 1t0

a

Then X(t) := a(t)Y (t) satisfies

X(0) = X(1) = 0, g

(
∇X
dt

, ċ

)
= a′g(Y, ċ) < 0

and hence the corresponding variation with fixed start and endpoint yields the desired timelike
deformation of c.

If c is a lightlike pregeodesic, then, in general, it can not
be deformed into a timelike curve with the same start
and end point. Consider, for instance, the Minkowski
space and p and q connected by some lightlike geodesic
as in the picture. Obviously, there is no timelike curve
connecting p and q that this geodesic can be deformed
into.

bp

bq

Lemma 2.30. Let c be a lightlike geodesic and cs a variation of it with variational field X
such that X⊥ċ at the start and end point. If there is a sequence si → 0 such that csi is
timelike for all i, then we have X⊥ċ everywhere.
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Proof. Let (si)i∈N be such a sequence and without loss of generality, let either all si > 0 or all
si < 0. Since c is lightlike, we obtain

lim
i→∞

g(ċsi , ċsi)

si
= lim

i→∞

g(ċsi , ċsi)− g(ċ, ċ)

si
=

∂

∂s
g(ċs, ċs)

∣∣∣∣
s=0

,

which, due to assumption, is either ≤ 0 or ≥ 0 for all t ∈ [0, 1], respectively. It follows that

∂

∂s
g(ċs, ċs)

∣∣∣∣
s=0

= 2g

(
∇
∂s
ċs

∣∣∣∣
s=0

, ċ

)
= 2g

(
∇
∂t

∂cs
∂s

cs

∣∣∣∣
s=0

, ċ

)
= 2g

(
∇X
∂t

, ċ

)
is either ≤ 0 or ≥ 0 for all t ∈ [0, 1], respectively. On the other hand, we have

1∫
0

g

(
∇X
∂t

, ċ

)
dt =

1∫
0

(
d

dt
g(X, ċ)− g

(
X,

∇ċ
dt︸︷︷︸
=0

))
dt = g(X, ċ)

∣∣1
0
= 0.

Due to the constant sign of g
(∇X
∂t
, ċ
)
, we obtain d

dt
g(X, ċ) = 0, so g(X, ċ) is constant on [0, 1],

that is 0.

If cs is a variation of c such that every cs is a geodesic, then the corresponding variational field
J(t) := ∂cs(t)

∂s

∣∣
s=0

satisfies

∇2J

dt2
=

∇
∂t

∇
∂t

∂cs
∂s

∣∣∣∣
s=0

=
∇
∂t

∇
∂s

∂cs
∂t

∣∣∣∣
s=0

=
∇
∂s

∇
∂t

∂cs
∂t︸ ︷︷ ︸

=0

∣∣∣∣
s=0

+R(ċ, J)ċ.

Definition 2.31. A vector field J along a geodesic c is called Jacobi field, if

∇2J

dt2
+R(J, ċ)ċ = 0. (2.1)

The Jacobi equation (2.1) is a linear, ordinary differential equation of second order in J .
Therefore, a jacobi field can be found along all of c and is determined by the data J(0) and
∇J
dt
(0). The set of jacobi fields constitutes a 2 dim(M)-dimensional vector space.

Lemma 2.32. Let J be a smooth vector field along some geodesic c. Then we have

(i) J is a Jacobi field.

(ii) There is a geodesic variation cs of c with variational field J .
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Proof. We have already seen (ii) ⇒ (i), so it remains to show (i) ⇒ (ii).

Let J be a Jacobi-field along c. We choose a smooth
curve γ with γ(0) = c(0) and γ̇(0) = J(0). Let X1 and
X2 be parallel vector field along γ given byX1(0) = ċ(0)
and X2(0) =

∇J
dt
(0). Set

X(s) := X1(s) + sX2(s), cs(t) := expγ(s)
(
tX(s)

)
.

Then we have

c0(t) = expγ(0)
(
tX(0)

)
= expc(0)

(
tċ(0)

)
= c(t),

so cs is a geodesic variation. Therefore, its variational
field ∂cs

∂s

∣∣
s=0

is a Jacobi field, and we complete the proof
by showing that it coincides with J .

b

γ X1

c(0)

J(0)

J

c

γ

X

c

Since Jacobi fields are determined by their initial data, it suffices to check:

∂cs
∂s

∣∣∣∣
s=t=0

=
∂

∂s
expγ(s)(0)

∣∣∣∣
s=0

= γ̇(0) = J(0),

∇
∂t

∂cs
∂s

∣∣∣∣
s=t=0

=
∇
∂s

∂

∂t
expγ(s)

(
tX(s)

)∣∣∣∣
s=t=0

=
∇X
∂s

(0) =
∇X1

∂s︸ ︷︷ ︸
=0

(0) +X2(0) =
∇J
dt

(0).

Example 2.33.

1. Let c be a geodesic and J(t) := (at+ b)ċ(t) for some a, b ∈ R. Since

∇2J

dt2
(t) =

∇
dt

(
aċ(t) + (at+ b)

∇ċ
dt︸︷︷︸
=0

(t)

)
= a

∇ċ
dt

(t) = 0 = (at+ b)R(ċ, ċ)ċ = R(ċ, J)ċ,

J is a Jacobi field with corresponding geodesic variation cs(t) = c
(
(1 + as)t+ bs

)
, i.e. a

mere reparametrization of c.

2. For M = Rn the Euclidean or Minkowski space, the Jacobi equation reads ∇2J
dt2

= 0 with
solution J(t) = tX(t) + Y (t) for any parallel vector fields X,Y . The corresponding
geodesic variation of the straight line c is then

cs(t) = c(t) + s
(
tX(t) + Y (t)

)
.

3. For M having constant sectional curvature κ, we obtain

R(X, Y )Z = κ
(
g(Y, Z)X − g(X,Z)Y

)
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for vector fieldsX, Y, Z. Let c be a geodesic andX, Y parallel vector fields along c, which
are pointwise orthogonal to ċ. For δ ∈ R, we introduce the generalized sine and cosine
function via

sδ(t) :=


1√
δ
sin
(√

δt
)
, δ > 0,

t, δ = 0

1√
|δ|
sinh

(√
|δ|t
)
, δ < 0

, cδ(t) :=


1√
δ
cos
(√

δt
)
, δ > 0,

1, δ = 0

1√
|δ|
cosh

(√
|δ|t
)
, δ < 0

,

which then satisfy s′′δ = −δsδ and c′′δ = −δcδ. Hence, J(t) := sηκ(t)X(t) + cηκY (t),
where η := g(ċ, ċ), fulfills ∇2J

dt2
= −ηκJ . On the other hand, we have

R(ċ, J)ċ = κ
(
g(J, ċ)︸ ︷︷ ︸

=0

ċ− g(ċ, ċ)︸ ︷︷ ︸
=η

J
)
= −ηκJ,

so J is a Jacobi field.

b b b b

Jκ > 0

b

κ = 0 J

b

κ < 0

J

Let P ⊂M be a semi-Riemannian submanifold and p ∈ P , so for vector fieldsX,Y on P , we
have (

∇XY
)
(p) =

(
∇P
XY
)
(p)︸ ︷︷ ︸

∈TpP

+ IIp
(
X(p), Y (p)

)︸ ︷︷ ︸
∈NpP

.

Recall the second fundamental form IIp : TpP×TpP → NpP , which is bilinear and symmetric,
and we introduce ĨIp : TpP ×NpP → TpP via

g
(
ĨI(X, ν), Y

)
:= −g

(
II(X, Y ), ν

)
,

where X, Y are tangential and ν normal to P . This map is clearly bilinear as well, and for
some fixed X , it is given by ĨI(X, ·) = −II(X, ·)t : NpP → TpP .
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Lemma 2.34. Let P ⊂ M be a semi-Riemannian submanifold, p ∈ P and c a geodesic in
M with c(0) = p and ċ(0) ∈ NpP . For J a Jacobi field along c, the following statements
are equivalent:

(i) J is the variational vector field of some geodesic variation cs of c with cs(0) ∈ P and
ċs(0) ∈ Ncs(0)P for all s.

(ii) J(0) ∈ TpP and tan
(∇J

dt
(0)
)
= ĨIp

(
J(0), ċ(0)

)
, where tan: TpM → TpP is the

orthogonal projection.

Proof.
(i) ⇒ (ii) : The curve γ(s) := cs(0) runs
in P , that is J(0) = γ′(0) ∈ TpP . For X
some tangential vector field on P and since
g
(
X(γ(s)), ċs(0)

)
= 0 for all s, we have

P

γ

c

0 =
d

ds
g
(
X(γ(s)), ċs(0)

)∣∣∣∣
s=0

= g

(
∇(X ◦ γ)

ds
(0), ċ(0)

)
+ g

(
X(p),

∇
∂s

∂cs
∂t

∣∣∣∣
s=t=0

)

= g

(
∇P (X ◦ γ)

ds
(0)︸ ︷︷ ︸

∈TpP

, ċ(0)︸︷︷︸
∈NpP

)
+ g
(
IIp
(
γ′(0), X(p)

)
, ċ(0)

)
+ g

(
X(p),

∇
∂t

∂cs
∂s

∣∣∣∣
s=t=0

)

= g

(
− ĨIp

(
J(0), ċ(0)

)
+

∇J
dt

(0), X(p)

)
.

This holds for any tangential vector field X and hence provides the identity. (ii) ⇒ (i) :
Similar to the proof of Lemma 2.32, the geodesic variation is given by cs(t) = expγ(s)

(
tX(s)

)
with

γ(0) = p, γ′(0) = J(0), X(0) = ċ(0),
∇X
ds

(0) =
∇J
dt

(0),

and it remains to show γ(s) ∈ P and X(s) ∈ Nγ(s)P for all s. Since J(0) ∈ TpP , we can
choose γ such that it runs entirely in P . Let
U(s) ∈ Nγ(s)P be the normal-parallel trans-
port of ċ(0) along γ, i.e. U(0) = ċ(0) and
nor
(∇U

ds

)
= 0, and let V (s) ∈ Nγ(s)P de-

note the corresponding normal-parallel trans-
port of nor

(∇J
dt
(0)
)

along γ. Then X(s) :=
U(s) + sV (s) ∈ Tγ(s)P satisfies

P

c

U
ċ(0)

J

γ

bp

X(0) = ċ(0), nor

(
∇X
ds

(0)

)
= nor

(
∇J
dt

(0)

)
, tan

(
∇X
ds

(0)

)
=

∇U
ds

(0). (2.2)
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Thus, for any tangent vector field Y along γ, we obtain

g

(
tan

(
∇X
ds

(0)

)
, Y (0)

)
= g

(
∇U
ds

(0), Y (0)

)
=

d

ds
g
(
U(s), Y (s)

)︸ ︷︷ ︸
=0

∣∣∣∣
s=0

− g

(
U(0)︸︷︷︸
∈NpP

,
∇Y
ds

(0)

)
= −g

(
U(0)︸︷︷︸
=ċ(0)

, IIp
(
γ′(0)︸︷︷︸
=J(0)

, Y (0)
)

= g
(
ĨIp
(
J(0), ċ(0)

)
, Y (0)

)
= g

(
tan

(
∇J
dt

(0)

)
, Y (0)

)
,

and hence tan
(∇X

ds
(0)
)
= tan

(∇J
dt
(0)
)
, that is ∇X

ds
(0) = ∇J

dt
(0) due to (2.2).

Definition 2.35. Let P ⊂ M be a semi-Riemannian submanifold, p ∈ P and c a geodesic
in M with c(0) = p and ċ(0) ∈ NpP . We say that P has a focal point along c of order µ at
t if

µ :=

{
Jacobi fields J along c

∣∣∣∣ J(0) ∈ TpP, tan

(
∇J
dt

(0)

)
= ĨIp

(
J(0), ċ(0)

)
, J(t) = 0

}
is positive.

We call t the focal value of P along c. P

b

c(t)
c

Example 2.36.

1. For P = {p}, we have µ = dim
{
J(0) = J(t) = 0

}
. In this case, we speak of conjugated

points rather than focal points.

2. Let M := Sn, P := {p} and c a geodesic,
parametrized by arc length with c(0) = p. Then
for any parallel vector fieldE along cwithE⊥ċ,
we obtain a Jacobi field

J(t) := sin(t) · E(t)

with J(0) = J(kπ) = 0 for all k ∈ N. Hence,
along any such geodesic, the point p has a con-
jugated point at t = kπ, k ∈ N, of degree
µ = n− 1.

b
p

b−p

c
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Remark 2.37. Let dim(M) = n and dim(P ) = m. The condition J(0) ∈ TpP reduces
the dimension of the vector space of Jacobi fields along c by n − m. Moreover, the
condition tan

(∇J
dt
(0)
)
= ĨIp

(
J(0), ċ(0)

)
yields a further reduction by m, so the space of

Jacobi fields satisfying both conditions is n-dimensional. This space contains the Jacobi
field J(t) = tċ(t), which does not vanish for any t ̸= 0, and therefore

µ ≤ n− 1.

3. Consider the Euclidean space Rn+1 and P = Sn. For p ∈ P set c(t) := (1 − t)p and
for E ∈ TpP consider the vector field t 7→ E(t) given by parallel transport along c. We
obtain a Jacobi field

J(t) := (1− t)E(t)

with J(0) = E and J(1) = 0 as
well as tan

(∇J
dt
(0)
)

= −E. Further-
more, II(X, Y ) = g(X, Y ) · ċ(0) and thus
ĨI
(
X, ċ(0)

)
= −X . It follows that

tan

(
∇J
dt

(0)

)
= ĨI

(
E, ċ(0)

)
= ĨI

(
J(0), ċ(0)

)
and hence, Sn has focal points along c of
degree n at 0, that is t = 1.

bp

c

0

4. Again in (n+1)-dimensional Euclidean space, consider
the cylinder P := Sk × Rn−k, and for p = (p1, p2) ∈ P ,
let c(t) :=

(
(1 − t)p1, p2

)
. Let E ∈ Tp1S

k and define
the parallel vector field E(t) and the Jacobi field J(t) as
in example 3, which then satisfies

J(0) = E, J(1) = 0, tan

(
∇J
dt

(0)

)
= −E.

Therefore, correspondingly, P has a focal point of order
k along c at t = 1.

Rn−k

b
p

c

5. In M = Rn+1
Mink, consider P = Hn and P = Sn1 . For fixed p ∈ P , let c(t) := (1 − t)p,

which is a geodesic in M and due to elementary properties of the submanifolds Hn, Sn1
(see section 1.2), c stands orthogonal to both with respect to the Minkowski metric, i.e.
ċ(0) ∈ NpP . Considering E(t) and J(t) as in example 3 shows that in both cases P has a
focal point of degree n along c at t = 1.
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Hn

b 0

bp

c

Sn1

b

0

b

p

c

Proposition 2.38. Let M be a Lorentz manifold, P ⊂ M a spacelike submanifold and
c : [0, b] →M a lightlike geodesic in M with c(0) = p ∈ P and ċ(0) ∈ NpP . Set q := c(b).
If P has a focal point along c before q, that is for some t ∈ (0, b), then in every neighborhood
of c, with respect to the compact-open topology, there is a timelike curve from P to q.

The proof of the Proposition needs some preparation and we start with an example:

Example 2.39.
For M := R3

Mink, consider P := {1} × S1 and
point p := (1, 1, 0) ∈ P such that the curve
c(t) := (1 − t)p is a lightlike geodesic. Then
c hits q := (β, β, 0) for any β ∈ R, and for
ε > 0 small and pε :=

(
1, cos(ε), sin(ε)

)
, we

calculate

P

b

b
p

b
pε

b
b

β = 0

c

C :=
{
⟨⟨x, x⟩⟩ = 0

}
⟨⟨q − pε, q − pε⟩⟩

=

⟨⟨ β − 1
β − cos(ε)
− sin(ε)

 ,

 β − 1
β − cos(ε)
− sin(ε)

⟩⟩ = −(β − 1)2 +
(
β − cos(ε)

)2
+ sin2(ε)

= −β2 + 2β − 1 + β2 − 2β cos(ε) + cos2(ε) + sin2(ε) = 2β
(
1− cos(ε)︸ ︷︷ ︸

>0

)
.

For β = 0, the connecting curve

cε(t) := pε +
t

b
(q − pε) =

(
1− t, cos(ε) +

t

b

(
β − cos(ε)

)
, sin(ε)

(
1− t

b

)
is a timelike geodesic, which, on [0, b], converges uniformly to c for ε→ 0.
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Lemma 2.40. LetM be a semi-Riemannian manifold, P ⊂M a semi-Riemannian subman-
ifold and c : [0, b] →M a geodesic with c(0) = p ∈ P and ċ(0) ∈ NpP . Then

T :=
{
t ∈ [0, b]

∣∣ P has a focal point along c at t
}

is compact and contained in (0, b].

Proof. Let V denote the set of Jacobi fields J along c with J(0) ∈ TpP and
tan
(∇J

dt
(0)
)
= ĨI

(
J(0), ċ(0)

)
. For some Riemannian metric h on M and with

∥J∥ := sup
t∈[0,b]

∣∣J(t)∣∣
h
+ sup

t∈[0,b]

∣∣∣∣∇Jdt (t)
∣∣∣∣
h

,

it becomes an n-dimensional normed vector space, where n := dim(M).

We show that T is closed. Consider a sequence {ti}i∈I in T converging to some t ∈ (0, b] and
corresponding Ji ∈ V\{0} with Ji(ti) = 0, i.e. {Ji}i∈I ⊂ T. Without loss of generality, e
assume ∥Ji∥ = 1. Let J ∈ V denote the limit of some subsequence, which therefore fulfills
∥J∥ = 1, and thus, in particular, J ̸= 0.
Let Πs

t : Tc(s)M → Tc(t)M denote the parallel transport along cwith respect to the Levi-Civita-
connection given by the original semi-Riemannian metric on M . Then we have∣∣J(t)∣∣

h
≤
∣∣J(t)− Πti

t J(ti) + Πti
t J(ti)− Πti

t Ji(ti)︸ ︷︷ ︸
=0

∣∣
h

≤
∣∣J(t)− Πti

t J(ti) + Πti
t J(ti)

∣∣
h︸ ︷︷ ︸

→0

+C∥J − Ji∥

for some constant C > 0 and by continuity of J . It follows that J(t) = 0, that is t ∈ T.
Now assume t = 0, i.e. J(0) = 0 and

tan

(
∇J
dt

(0)

)
= ĨI

(
J(0), ċ(0)

)
= 0.

It remains to show nor
(∇J

dt
(0)
)
= 0, which then yields J = 0 and therefore contradicts

∥J∥ = 1. Note that∣∣∣∣nor(Πti
0 J(ti)

ti

∣∣∣∣
h

=

∣∣∣∣nor(Πti
0 J(ti)− J(0)

ti − 0

∣∣∣∣
h

−→
∣∣∣∣nor(∇J

dt
(0)

)∣∣∣∣
h

,

and on the other hand
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∣∣∣∣nor(Πti
0 J(ti)

ti

)∣∣∣∣
h

=
1

ti

∣∣∣∣nor(
τ∫

0

Πτ
0

(
∇J
dτ

(τ)− ∇Ji
dτ

(τ)

)
dτ − Ji(0)︸ ︷︷ ︸

∈TpP

)∣∣∣∣
h

≤ 1

ti

ti∫
0

∣∣∣∣Πτ
0

(
∇(J − Ji)

dτ
(τ)

∣∣∣∣
h

dτ

≤ C

ti

ti∫
0

∥J − Ji∥ dτ = C∥J − Ji∥ −→ 0

for some constant C > 0.

Corollary 2.41. Let M,P, p as in the Lemma. If P has a focal point along c, then there is a
well-defined first focal value minT > 0.

Remark 2.42. Furthermore, one can show

M Riemannian =⇒ T discrete

M Lorentzian and c causal =⇒ T discrete

M Lorentzian and c spacelike =⇒ Every compact subset of (0, b] is the set of
focal points for some choice of M and c.

Proof of Proposition 2.38. Let t0 > 0 be the first focal value of P along c, so there is a Jacobi
field J ̸= 0 along c with

J(0) ∈ TpP, tan

(
∇J
dt

(0)

)
= ĨI

(
J(0), ċ(0)

)
, J(t0) = 0.

Note that since t0 is the first focal value, we have J(t) ̸= 0 for all t0 ∈ (0, t0).

Claim a): There is some δ ∈ (0, b−t0) such that J = f ·U on [0, t0+δ], whereU is a spacelike
unit normal field along c and f a smooth function with f

∣∣
(0,t0)

> 0 and f
∣∣
(t0,t0+δ)

< 0. Since
J is a Jacobi field and c a geodesic, we have

d2

dt2
⟨J, ċ⟩ =

⟨
∇2J

dt2
, ċ

⟩
=
⟨
R(ċ, J)ċ, ċ

⟩
= 0,

so ⟨J, ċ⟩ is a function of the form αt+ β, α, β ∈ R, which, by assumption, vanishes for t = 0
and t = t0. Therefore, ⟨J, ċ⟩ = 0, that is J⊥ċ on all of [0, b].
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This does not rule out that J is tangential to c somewhere since c was assumed to be lightlike.
If there was some t1 ∈ (0, t0) such that J(t1) = aċ(t1), then J̃(t) := J(t) − at

t1
ċ(t) would

provide a Jacobi field along c with J̃(0) = J(0) ∈ TpP and ∇J̃
dt

= ∇J
dt

− a
t1
ċ, which therefore

satisfies

tan

(
∇J̃
dt

(0)

)
= tan

(
∇J
dt

(0)

)
= ĨI

(
J(0), ċ(0)

)
= ĨI

(
J̃(0), ċ(0)

)
.

Furthermore, J̃(t1) = 0, so t1 < t0 would be a focal value, which contradicts the assumption
on t0. Thus, J is nowhere tangential to ċ and hence spacelike on (0, t0).
We write J := φ · Y , where Y is a smooth vector field along c and

φ(t) :=

{
t(t0 − t), J(0) = 0

t0 − t, J(0) ̸= 0
.

By the recent results, Y has to be spacelike on (0, t0) and clearly J(0) ̸= 0 implies Y (0) ̸= 0.
This is also true if J(0) = 0 because then Y (0) = 1

t0
∇J
dt
(0) ̸= 0, and similarly, Y (t0) =

1
φ′(t0)

∇J
dt
(t0) ̸= 0 since φ′(t0) ̸= 0.

Moreover, Y (0), Y (t0) are spacelike. For J(0) ̸= 0, we obviously have Y (0) = 1
t0
J(0), which

is spacelike. For J(0) = 0, ⟨J, ċ⟩ = 0 yields

0 =
d

dt
⟨J, ċ⟩ =

⟨
∇J
dt
, ċ

⟩
=⇒ ∇J

dt
⊥ċ.

If Y (0) was tangential to ċ, i.e. Y (0) = aċ(0), we would have ∇J
dt
(0) = φ′(0)Y (0) = at0ċ(0)

and thus, due to the initial conditions, J(t) = at0 · ċ(t), which contradicts J(t0) = 0.
Analogously Y (t0) = aċ(t0) implies ∇J

dt
(t0) = aφ′(t0) · ċ(t0) and hence J(t) = aφ′(t0) · tċ(t),

which also does not vanish for t = t0.
It follows that Y is a nowhere vanishing smooth and spacelike vector field on [0, t0] and
therefore also on [0, t0 + δ] for some δ > 0. Setting U := Y

|Y | and f := φ · |Y | thus proves
Claim a).

Claim b): There is some δ ∈ (0, b− t0) and a
vector field V along c with V (0) = J(0) and
V (t0 + δ) = 0 such that V⊥ċ on [0, t0 + δ] and⟨∇2V

dt2
+R(V, ċ)ċ, V

⟩
> 0 on (0, t0 + δ).

For f, U as in the proof of claim a), we write
V := (f + h)U = J + hU for some h yet to be
determined. Then (2.1) provides

P

b qUbV

J b
p

b

c(t0)

∇2V

dt2
+R(V, ċ)ċ =

∇2J

dt2
+ h′′U + 2h′

∇U
dt

+ h
∇2U

dt2
+R(J, ċ)ċ+ hR(U, ċ)ċ

= h′′U + 2h′
∇U
dt

+ h

(
∇2U

dt2
+R(U, ċ)ċ

)
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and thus⟨
∇2V

dt2
+R(V, ċ)ċ, V

⟩
= (f + h)

(
h′′ ⟨U,U⟩︸ ︷︷ ︸

=1

+2h′
⟨
∇U
dt
, U

⟩
︸ ︷︷ ︸

=0

+h

⟨
∇2U

dt2
+R(U, ċ)ċ, U

⟩
︸ ︷︷ ︸

=:l

)

= (f + h)(h′′ + hl).

Pick some α > 0 such that l ≥ −α2 on [0, t0 + δ] and set h(t) := β
(
eαt − 1

)
with β :=

−f(t0+δ)
h(t0+δ)

> 0, i.e. f + h > 0 on (0, t0] and (f + h)(t0 + δ) = 0. Without loss of generality,
we assume that f + h has no positive zeros before t0 + δ, that is f + h > 0 on (0, t0 + δ). It
follows that ⟨

∇2V

dt2
+R(V, ċ)ċ, V

⟩
= (f + h)︸ ︷︷ ︸

>0

(h′′ + hl)︸ ︷︷ ︸
>0

> 0

since h′′ + hl = α2h+ α2β + hl ≥ α2β > 0.

Claim c): There is a smooth vector field X along c such that on [t0, t0 + δ], we have

X(0) = II
(
J(0), J(0)

)
, X(t0 + δ) = 0,

d

dt

(⟨
V,

∇V
dt

⟩
+ ⟨X, ċ⟩

)
≤ 0.

We directly calculate⟨
II
(
J(0), J(0

)
), ċ(0)

⟩
= −

⟨
ĨI
(
J(0), ċ(0)

)
, J(0)

⟩
= −

⟨
tan

(
∇J
dt

(0)

)
, J(0)︸︷︷︸
∈TpP

⟩
= −

⟨
∇J
dt

(0), J(0)

⟩

as well as ⟨
V,

∇V
dt

⟩
=

⟨
J + b

(
eαt − 1

)
U,

∇J
dt

+ αβeαtU + b
(
eαt − 1

)∇U
dt

⟩
=

⟨
J,

∇J
dt

⟩
+
⟨
V, αβeαtU

⟩
+ b
(
eαt − 1

)⟨
U,

∇J
dt

⟩
.

This particularly implies
⟨
V (0), ∇V

dt
(0)
⟩
= −

⟨
II
(
J(0), J(0)

)
, ċ(0)

⟩
+ αβ∥J(0)∥.

We assume
⟨
II
(
J(0), J(0)

)
, ċ(0)

⟩
=: −a ̸= 0, so there is some L0 ∈ NpP such that

II
(
J(0), J(0)

)
= aL0 and

⟨
L0, ċ(0)

⟩
= −1. Let L denote the parallel vector field along

c determined by L(0) = L0, for which therefore ⟨L, ċ⟩ = −1 holds. Then

X(t) :=

(⟨
V (t),

∇V
dt

(t)

⟩
+
αβ∥J(0)∥
t0 + δ

(t− t0 − δ)

)
L(t)

yields a vector field along c, which satisfies
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X(0) =
(
a+ αβ∥J(0)∥ − αβ∥J(0)∥

t0 + δ
(t0 + δ)

)
L(0) = aL0 = II

(
J(0), J(0)

)
X(t0 + δ) =

⟨
V (t0 + δ)︸ ︷︷ ︸

=0

,
∇V
dt

(t0 + δ)

⟩
· L(t0 + δ) = 0.

Furthermore, ⟨L, ċ⟩ = −1 ensures

d

dt

(⟨
V,

∇V
dt

⟩
+ ⟨X, ċ⟩

)
=

d

dt

[⟨
V,

∇V
dt

⟩
−
(⟨

V,
∇V
dt

⟩
+
αβ∥J(0)∥
t0 + δ

(t− t0 − δ)

)]
= −αβ∥J(0)∥

t0 + δ
≤ 0.

Now consider the case
⟨
II
(
J(0), J(0)

)
, ċ(0)

⟩
= 0, i.e.

⟨
V (0), ∇V

dt
(0)
⟩
= αβ∥J(0)∥. Here we

choose two parallel vector fieldsL andZ along cwith ⟨L, ċ⟩ = −1 andZ(0) := II
(
J(0), J(0)

)
such that ⟨Z, ċ⟩ = 0. Correspondingly, we set

X(t) :=

(⟨
V (t),

∇V
dt

(t)

⟩
+
αβ∥J(0)∥
t0 + δ

(t− t0 − δ)

)
L(t) +

(
1− t

t0 + δ

)
Z(t)

and analogously to the previous case, we obtain

X(0) = 0 · L(0) + Z0 = II
(
J(0), J(0)

)
, X(t0 + δ) = 0 · L(0) + 0 · Z0 = 0,

d

dt

(⟨
V,

∇V
dt

⟩
+ ⟨X, ċ⟩

)
=
αβ∥J(0)∥
t0 + δ

=−1︷ ︸︸ ︷
⟨L, ċ⟩−

=0︷ ︸︸ ︷
⟨Z, ċ⟩
t0 + δ

≤ 0.

The existence of such V and X now allows
the construction of the claimed timelike curve.
Let γ : (−ε, ε) → P be a smooth curve with
γ(0) = p and

γ̇(0) = J(0) = V (0),
∇P γ̇

dt
(0) = 0.

P

b q

γ

V

V (0) b
p

b

c(t0 + q)

For instance, choose γ(s) := expPp
(
sJ(0)

)
. This satisfies

∇γ̇
dt

(0) =
∇P γ̇

dt
(0)︸ ︷︷ ︸

=0

+II
(
J(0), J(0)

)
= X(0).

Now choose a variation cs of c with

cs(0) = γ(s), cs(t0 + δ) = c(t0 + δ),
∂ċs
∂s

∣∣∣∣
s=0

= V,
∇
∂s

∂ċs
∂s

∣∣∣∣
s=0

= X.
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Since c is lightlike, we have ⟨ċs, ċs⟩
∣∣
s=0

= 0, and moreover

1

2

∂

∂s
⟨ċs, ċs⟩

∣∣
s=0

=

⟨
∇ċs
∂s

, ċs

⟩
=

⟨
∇
∂t

∂cs
∂s

∣∣∣∣
s=0

, ċ

⟩

=

⟨
∇V
dt

, ċ

⟩
=

d

dt
⟨V, ċ⟩︸ ︷︷ ︸

=0

−

⟨
V,

∇ċ
dt︸︷︷︸
=0

⟩
= 0.

For the second derivative, we obtain

1

2

∂2

∂s2
⟨ċs, ċs⟩

∣∣∣∣
s=0

=
∂

∂s

⟨
∇
∂t

∂cs
∂s

, ċs

⟩ ∣∣∣∣
s=0

=

⟨
∇V
dt

,
∇V
dt

⟩
+

⟨
∇
∂s

∇
∂t

∂cs
∂s

∣∣∣∣
s=0

, ċ

⟩
=

⟨
∇V
dt

,
∇V
dt

⟩
+

⟨
∇
∂t

∇
∂s

∂cs
∂s

∣∣∣∣
s=0

, ċ

⟩
︸ ︷︷ ︸

=⟨∇X
dt
,ċ⟩= d

dt
⟨X,ċ⟩

+
⟨
R(V, ċ)V, ċ

⟩

=
d

dt

(⟨
V,

∇V
dt

⟩
+ ⟨X, ċ⟩

)
−
⟨
V,

∇2V

dt2

⟩
−
⟨
R(V, ċ)ċ, V

⟩
c)
≤ −

⟨
∇2V

dt2
+R(V, ċ)ċ, V

⟩
b)
< 0.

It follows ⟨ċs, ċs⟩ < 0, i.e. cs is timelike on [0, t0 + δ] for s ̸= 0 sufficiently small.

Lemma 2.43. LetP ⊂M be a spacelike submanifold and c : [0, b] →M a lightlike geodesic
with c(0) =: p ∈ P , but ċ(0) /∈ NpP .
Then in every neighborhood of c, we find a timelike from P to q := c(b).

Proof.
By assumption, there is someX0 ∈ TpP such that ⟨X0, ċ(0)⟩ ̸=
0, and without loss of generality, we assume ⟨X0, ċ(0)⟩ >
0. Let X be the corresponding parallel vector field along c
determined by X(0) = X0. Then the vector field V (t) :=(
1− t

b

)
X(t) fulfills V (0) = X0 and V (b) = 0. Furthermore,

choose a variation cs of c with ∂cs
∂s

∣∣
s=0

= V , cs(0) ∈ P and
cs(b) = q for all s.
Since c is lightlike, we have

⟨
ċs, ċs

⟩∣∣
s=0

= 0 and moreover

P

bp
b qX

ċ(0)

∂

∂s
⟨ċs(t), ċs(t)⟩ = 2

⟨
∇V
dt

(t), ċ(t)

⟩
= −2

b

⟨
X(t), ċ(t)

⟩
= −2

b
⟨X0, ċ(0)⟩ < 0.

Thus, for s > 0 sufficiently small, we have
⟨
ċs, ċs

⟩
< 0, i.e. cs is timelike.
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Therefore, we just proved

Theorem 2.44. Let M be a Lorentzian manifold, P ⊂ M a spacelike submanifold and
c : [0, b] →M a causal curve with c(0) =: p ∈ P .
Then in every neighborhood of c, we find a timelike curve from P to q := c(b), unless c is,
up to parametrization, a lightlike geodesic with ċ(0) ∈ NpP such that P has no focal values
t0 < b along c.

Remark 2.45. Compare this to the corresponding statement of Riemannian geometry:

Let M be a Riemannian manifold, P ⊂ M a submanifold and c : [0, b] → M a curve with
c(0) =: p ∈ P .
Then in every neighborhood of c, we find a shorter curve from P to q := c(b), unless c is, up to
parametrization, a geodesic with ċ(0) ∈ NpP such that P has no focal values t0 < b along c.

2.3 Convex sets

Definition 2.46. Let M be a semi-Riemannian manifold. An open subset U ⊂ M is called
convex, if for each p ∈ U , there is an open subset Ωp ⊂ TpM , which is starshaped with
respect to 0, such that expp : Ωp → U is a diffeomorphism.

Ωp

b

b

U

M

TpM

p

0

expp

In particular, for every q ̸= p in U , there is, up to reparametrization, exactly one geodesic from
p to q that runs entirely in U .

Example 2.47.

1. Let M = Rn Euclidean or Minkowski space. Then U is convex if and only if for all
p, q ∈ U the segment of the straight line connecting both is contained in U .



52 2 Causality

2. Let M = Sn the standard sphere and U := Br(p0) the ball of radius r centered at p0. For
r ≤ π

2
, U is convex, but not for r > π

2
.

b
p0

U 2 different
geodesics
connecting p
and q

b
p0

U

bp b q

Let M be a semi-Riemannian manifold and D ⊂ TM the maximal domain of exp, which is
open. We set

E : D −→M ×M, X 7−→
(
π(X), exp(X)

)
,

where π : TM →M denotes the footpoint map.
For fixed p ∈M , we write Dp ⊂ TpM for the maximal domain of expp.

Lemma 2.48. LetM be a semi-Riemannian manifold, p ∈M andX ∈ TpM . Furthermore,
let expp : Dp →M be non-singular at X , i.e. d expp

∣∣
X

is invertible. Then also E is
non-singular at X .

Proof. We just have to show injecitivity of dE
∣∣
X

, so let V ∈ ker dE
∣∣
X

⊂ TXTM . For
πi : M ×M →M, i = 1, 2, the projection on the i. factor, we obtain

dπ
∣∣
X
(V ) = d(π1 ◦ E)

∣∣
X
(V ) = dπ1

∣∣
E(X)

(
dE
∣∣
X
(V )︸ ︷︷ ︸

=0

)
= 0,

so V has no component in "horizontal" direction, that is V ∈ TXTpM ∼= TpM . Therefore, we
can apply d expp

∣∣
X

and employ its injectivity:

d expp
∣∣
X
(V ) = d(π2 ◦ E)

∣∣
X
(V ) = dπ2

∣∣
E(X)

(
dE
∣∣
X
(V )
)
= 0 =⇒ V = 0.

M

b
p

TM

π

zero section
D

Dp

V
bX
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Corollary 2.49. If expp is non-singular at X ∈ TpM , then there is a neighborhood of X
in TM that is mapped diffeomorphically to some neighborhood of

(
p, expp(X)

)
in M ×M

under E. In particular, there is a neighborhood of 0 ∈ TpM in TM that is mapped
diffeomorphically to some neighborhood of (p, p) ∈M ×M .

Proposition 2.50. Let M be a semi-Riemannian manifold and p ∈ M . Then every neigh-
borhood of p contains a convex neighborhood of p.

Proof. a) Let V be some neighborhood of p, on which, without loss of generality, Riemannian
normal coordinates are well-defined, i.e. there is a subset of TpM , which is mapped diffeomor-
phically to V under expp. Furthermore, let (e1, . . . , en) be an orthonormal basis of TpM . The
normal coordinates (x1, . . . , xn) of any q ∈ V are characterized by expp

(∑n
i=1 x

iei
)
= q.

For ε > 0, set

Uε :=

{
expp

( n∑
i=1

xiei

) ∣∣∣∣ n∑
i=1

(
xi
)2
< ε

}
,

so for ε suitably small, we haveUε ⊂ V . Thus, due to Corollary 2.49,E = (π, exp)maps some
neighborhood Ω ⊂ TM of 0 ∈ TpM diffeomorphically to Uε×Uε, that is Ω = E−1

(
Uε×Uε

)
.

Hence, for each q ∈ Uε, expq maps Ωq := Ω ∩ TqM diffeomorphically to {q} × Uε ∼= Uε, i.e.
it remains to show that Ωq is starshaped with respect to 0 ∈ TqM .

M×M

TM

b
0 ∈ TpM

ΩΩq

E

V ×V
b
(p,p)

q

Uε×Uε

b) For any q ∈ Uε, consider the symmetric matrix B determined by the components

bij(q) := δij −
n∑
k=1

Γkij
(
x(q)

)
xk.

Then B(p) is the identity matrix and hence positive definite. For ε small enough, we can
assume this also for B(q) for all q ∈ Uε.
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c) Let Ω̂ denote the "starshaped hull" of Ω, which means

Ω̂ :=
{
tv
∣∣ v ∈ Ω, t ∈ [0, 1]

}
.

Again, for ε chosen small enough, we can assume

E
(
Ω̂
)
⊂ V × V.

b
0

Ω

Ω̂

Let v ∈ Ωq and thus tv ∈ Ω̂∩TqM for all t ∈ [0, 1]. Therefore, Riemannian normal coordinates
of expq(tv) exist for all t, for which we write x1(t), . . . , xn(t). Consider

f(t) :=
n∑
k=1

(
xk(t)

)2
=⇒ ḟ = 2

n∑
k=1

xkẋk, f̈ = 2
n∑
k=1

((
ẋk
)2

+ xkẍk
)
.

The geodesic equation and b) provide

f̈ = 2
n∑
k=1

((
ẋk
)2 − xk

n∑
i,j=1

Γkijẋ
iẋj
)

= 2
n∑

i,j=1

bijẋ
iẋj > 0.

It follows that f is concave, so since expq(0) = q ∈ Uε
and expq(v) ∈ expq(Ωq) = Uε, we have f(0), f(1) < ε
and thus f(t) < ε for all t ∈ [0, 1]. Therefore expq(tv) ∈
Uε and thus tv ∈ Ωq for all t ∈ [0, 1], i.e. Ωq is starshaped
with respect to 0. 0 1

ε
bf(0)

b f(1)

Lemma 2.51. Let M be a semi-Riemannian manifold and c : [0, b) → M a geodesic. Then
the following statements are equivalent:

(i) c can be continuously extended to b.

(ii) c can be extended as a geodesic to [0, b+ ε) for some ε > 0.

Proof. We merely prove (i)⇒ (ii) since the other direction is trivial. Let c̄ be the continuous
extension of c to [0, b] and let U be a convex neighborhood of c̄(b). Choose some t0 ∈ [0, b)
such that c(t0) ∈ U . Due to convexity, there is an open subset Ω ⊂ Tc(t0)M such that
expc(t0) : Ω → U is a diffeomorphism.
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b

c(0)

b

c(t0)
b

c(b)

U

Ω

bb

0

expc(t0)

The curve exp−1
c(t0)

◦c is a line segment in Ω, which is continuously extendible to exp−1
c(t0)

(
c̄(b)

)
.

Now we extend this line segment toΩ, so its image under expc(t0) provides the desired extension
as a geodesic.

Remark 2.52. Let U ⊂M be convex and define the map

∆: U × U −→ TM, (p, q) 7−→ ċpq(0), (2.3)

where cp,q : [0, 1] → U denotes the geodesic with c(0) = p and c(1) = q. Then we obtain

E
(
∆(p, q)

)
= E

(
ċpq(0)

)
=
(
p, expc(0)

(
ċpq(0)

))
= (p, q),

so ∆ is the inverse of the local diffeomorphism E and thus in particular smooth.

Warning! Convexity of U, V ⊂ M does not imply that U ∩ V is convex. For instance, on
M := S1, take the subsets

U V

Here U and V are convex but U ∩ V is not even connected.
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On the other hand, this implication holds if additionally their union is contained in another
convex subset:

Lemma 2.53. Let U, V,W ⊂M be convex and U ∪ V ⊂ W . Then U ∩ V is convex.

Proof. Let p ∈ U ∩ V and ΩW := exp−1
p (W ), i.e. ΩW ⊂ TpM is open and starshaped with

respect to 0. Analogously, we define ΩV and ΩU .
For v ∈ ΩU , let q := expp(v) ∈ U , so the unique geodesic connecting p and q in W is
t 7→ expp(tv). Due to convexity, this coincides with the corresponding unique geodesic in U ,
i.e. tv ∈ ΩU for all t ∈ [0, 1]. For the same reasons, we also have tv ∈ ΩV for all t ∈ [0, 1], so
ΩU and ΩV are starshaped with respect to 0 and hence so is ΩU ∩ΩV , which implies convexity
of U ∩ V .

Definition 2.54. An open cover U :=
{
Uα
}
α

of some semi-Riemannian manifold M is
called convex cover of M if all countable intersections of its elements are convex sets, i.e.
Uα1 ∩ . . . , Uαk

is convex for all αj and k ∈ N.

Proposition 2.55. Let M be a semi-Riemannian manifold and U an open cover of M .
Then there is a convex refinement, i.e. there is a convex cover K :=

{
Kβ

}
β
, and for all β,

there is some α such that Kβ ⊂ Uα.

Proof. Define

U1 :=
{
U ⊂M

∣∣ U is convex and U ⊂ Uα for some α
}
,

which is a cover of M due to Proposition 2.50. Let U2 be a refinement of U1 such that for all
U, V ∈ U2 with U ∩ V ̸= ∅, we find some K ∈ U1 containing U ∪ V (recall that the topology
of M is countably generated). Then

K :=
{
U ⊂M

∣∣ U is convex and contained in some element of U2

}
yields another cover of M , from which we show that it is convex.
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For any k ∈ N, let U1, . . . , Uk ∈ K with U1 ∩ . . . ∩ Uk ̸= ∅. Then

U1 ∪ U2 ⊂ W1︸︷︷︸
∈U2

∪ W2︸︷︷︸
∈U2

⊂ K︸︷︷︸
∈U1

=⇒ U1 ∩ U2 is convex,

(
U1 ∩ U2

)
∪ U3 ⊂ U1 ∪ U3 ⊂ K̃︸︷︷︸

∈U1

=⇒ U1 ∩ U2 ∩ U3 is convex,

...

U1 ∩ . . . ∩ Uk is convex.

Lemma 2.56. Let M be a convex and time-oriented Lorentzian manifold and p, q ∈ M .
Then we have

(i) For p ̸= q, we have

q ∈ J+(p)
(
I+(p)

)
⇐⇒ ∆(p, q) ∈ TpM is causal (timelike) and future directed.

(ii) J+(p) = I+(p)

(iii) The relation "≤" is closed, i.e. pn → p, qn → q and pn ≤ qn for all n imply p ≤ q.

(iv) Every causal curve c : [0, b) → M , which runs in some compact subset of M , is
continuously extendible to b.

Proof. For Ω := exp−1
p (M), Corollary 2.13 yields

J+(p) = expp
(
J+(0) ∩ Ω

)
, I+(p) = expp

(
I+(0) ∩ Ω

)
,

so the claims (i) - (iii) follow from the respective statements on Minkowski space.
Let {ti}i∈N be a monotoneously increasing sequence with lim

i→∞
ti = b. Since it is contained in

a compact set,
(
c(ti)

)
i∈N has at least one accumulation point, and we show that there is exactly

one, which then extends c. Let p, q be accumulation points, i.e. there is a monotoneously
increasing subsequence {si}i∈N ⊂ {ti}i∈N such that

c
(
s2i
)
−→ p, c

(
s2i+1

)
−→ q

if i→ ∞. Without loss of generality, we assume c to be future directed, so for all i we have

c
(
s2i
)
≤ c
(
t2i+1

)
≤ c
(
s2i+2

)
and hence p ≤ q ≤ p due to (iii). Therefore, (i) implies that ∆(p, q) is future and past directed,
that is ∆(p, q) = 0, which provides p = q.
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2.4 Quasi-limits

Definition 2.57. Let M be a time-oriented Lorentzian manifold, K a convex cover of M
and (cn)n∈N a sequence of causal and future directed curves.
A limit sequence for (cn)n relative to K is a (finite or infinite) sequence of points
p0 < p1 < . . . such that

1. For each pj , there is a subsequence (cnm)m, and for eachm = m(j), there are parameter
values tm,0 < tm,1 < . . . such that for all j, we have
1a. lim

m→∞
cnm(tm,j) = pj

1b. pj, pj+1 and, for all m ≥ m(j), the segments cnm

(
[tm,j, tm,j+1]

)
are contained in

one element of K.

2. If (pj)j is infinite, it is nonconvergent. If {pj}j is finite, it has more than one point and
no strictly longer sequence satisfies 1.

Remark 2.58. LetKj ∈ K contain pj, pj+1. By assumption,
we have cnm(tm,j) < cnm(tm,j+1), and since "≤" is a closed
relation in convex sets, we obtain pj ≤ pj+1. On the other
hand, pj < pj+1 in M implies pj < pj+1 also in Kj , so the
unique geodesic γj connecting pj and pj+1 is causal. The
broken geodesic

γ := γ0 ∪ γ1 ∪ γ2 ∪ . . .

is called quasi-limit of the sequence (cn)n related to K.

cnm

b

cnm (tm,j)

b
cnm (tm,j+1)

b
pj

b
pj+1

γj

Example 2.59. In all following examples, let M := R2
Mink.

1.) Let Cn, n ∈ N, denote the line seg-
ment connecting (0, 0) with

(
n + 1

n
, n
)
.

Every limit sequence lies on the light-
like geodesic

{
(s, s)

∣∣ s ≥ 0
}

, so up to
parametrization, s 7→ (s, s) is the unique
quasi-limit of the sequence of curves (cn)n.

b(0, 0)

b

b

b
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2.) Let Cn be as in the first example. Ev-
ery accumulation point of

(
cn(tn)

)
n

lies on the
lightlike geodesic

{
(s, s)

∣∣ s ≥ 0
}

, but for a
limit sequence p1 < p2 < . . ., we cannot have

pj = (sj, sj), sj < 1

pj+1 = (sj+1, sj+1), sj+1 > 1

since those points would not be contained
in the same convex set. For example,
pj :=

(
1− 1

j
, 1− 1

j

)
yields a limit sequence

and s 7→ (s, s) on [0, 1] a quasi-limit.

b(0, 0)

b

b

b

bc

3.) ForCn, n ∈ N, the line segment connecting
(0, 0) and

(
n+ 1

n
, (−1)nn

)
, we have two quasi-

limits s 7→ (s,±s), s ≥ 0.

b(0, 0)

b

b

b

4.) ForCn, n ∈ N, the line segment connecting
(0, 0) and

(
1, 1− 1

n

)
, the points

p1 := (0, 0) < p2 := (1, 1)

yield a limit sequence.

b(0, 0)

b b b

Proposition 2.60. Let M be a time-oriented Lorentzian manifold with convex cover K and
cn : In → M,n ∈ N, causal and future directed curves with lim

n→∞
cn(0) = p ∈ M , where

In = [0, bn] if bn < ∞, and In = [0, bn) if bn ≤ ∞. Then the following statements are
equivalent:

(i) The sequence (cn)n has a quasi-limit relative to K with p0 = p.

(ii) There is a neighborhood U of p such that infinitely many cn are not entirely contained
in U , i.e. cn ↛ p.

Proof. (i) =⇒ (ii): Let p0 := p < p1 < p2 < . . . denote the limit sequence and we choose
disjoint neighborhoods U,U1 of p, p1. Due to cnm(tm,1) → p1, we have cnm(tm,1) ∈ U1 for
almost all m, and hence cnm(tm,1) /∈ U , so U does the job.
(ii) =⇒ (i): a) Let U be a locally finite refinement of K such that for all U ∈ U, the closure
U is compact and contained in some K ∈ K. We assume that U0 ∈ U is a neighborhood of p
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such that infinitely many cn are not entirely contained in U .
Let

(
c
(1)
n

)
n

the subsequence of curves, which leave U0, and set

tn,1 := inf
{
t > 0

∣∣ c(1)n (t) /∈ U0

}
,

that is c(1)n
(
tn,1
)
∈ ∂U0. Due to compactness, there is a convergent subsequence, and we define

p1 as the corresponding limit. Then c(1)n (0) < c
(1)
n

(
tn,1
)

implies

p = lim
n→∞

c(1)n (0) ≤ lim
n→∞

c(1)n
(
tn,1
)
= p1

and p0 < p1 follows from p0 ∈ U0 and p1 ∈ ∂U0, that is p0 ̸= p1.
We repeat this procedure as often as possible, where we respect the following convention: If
several U ∈ U contain the point pj , we define Uj as the so far least chosen one. Then property
1 in Definition 2.57 holds by construction.
b) We proceed with property 2 and start with the case that the constructed sequence p <
p1 < p2 < . . . is infinite. Assume that pj converges to some q ∈ M and let V ∈ U be a
neighborhood of q. Then almost all pj are contained in V and hence, almost all corresponding
neighborhoods Uj hit V . Therefore, due to local finiteness, at least one Uj must have been
chosen infinitely many times in the construction. On the other hand, note that V itself would
also serve as such an Uj . Then the convention, we followed in the construction, demands that
V must have been chosen infinitely many times as well, i.e. pj ∈ ∂V for infinitely many j,
which contradicts pj → q.
c) Now assume the construction to break down after finitely many steps, i.e. produces k points
p = p0 < p1 < . . . < pk. Hence, there is a subsequence of curves

(
c
(k+1)
n

)
n
, which entirely

run in Uk ∈ U, and compactness of Uk as well as Lemma 2.56 provide a continuous extension
of c(k+1)

n to bn, if it was not already in the first place. Furthermore, after maybe switching over
to some subsequence, we have c(k+1)

n (bn) → q ∈ Uk.
c1) Assume q = pk and that the finite sequence is extendible by some pk+1 > pk such that
p = p0 < . . . pk < pk+1 has property 1. Then on Uk would have

c(k+1)
n

(
tn,k+1

)︸ ︷︷ ︸
→pk+1

< c(k)n (bn)︸ ︷︷ ︸
→q

=⇒ pk < pk+1 ≤ q = pk,

which implies pk = pk+1, since Uk is contained in some convex set. Therefore, pk+1 does not
yield an extension, so p = p0 < . . . < pk is the limit sequence.
c2) If pk ̸= q, i.e. q > pk, p = p0 < p1 < . . . < pk < pk+1 = q has property 1 by construction
and 2 by c1), so it yields a limit sequence.

Remark 2.61. Due to property 2 in Definition 2.57, any quasi-limit γ is future-inextendible,
i.e. if it is parametrised on [a, b), there is no continuous extension to b (otherwise the sequence
(pj)j would converge to γ(b)).
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2.5 Cauchy hypersurfaces

Definition 2.62. Let M be a connected and time-oriented Lorentzian manifold.
A subset A ⊂ M is called achronal if there no p, q ∈ A such that p ≪ q. In other words,
every timelike curve hits A at most once.
A subset A ⊂ M is called acausal if there no p, q ∈ A such that p ≤ q. In other words,
every causal curve hits A at most once.

Remark 2.63.

1. Acausality implies achronality but not cive verca.

2. Subsets of achronal (acausal) subsets are achronal (acausal).

3. The closure of an achronal set A is achronal: If there were p, q ∈ A with p ≪ q then
choose sequences (pn)n, (qn)n inA converging to p and q, then pn ≪ qn for n large enough
according to Proposition 2.7, which is a contradiction.

Example 2.64.

Let M = Rn
Mink. The subset A1

(spacelike hypersurface),A2 (the (n−
1)-dimensional hyperbolic space) and
A3 (future light cone) are achronal
subsets. A1 and A2 are even acausal.

A3A1

A2

Definition 2.65. The edge of an achronal subset A is defined as the subset

edge(A) :=

{
p ∈ A

∣∣∣∣ for all open neighborhoods U of p, there is a timelike
curve in U from IU− (p) to IU+ (p), which does not hit A

}
.

Abp
U

b

b

IU− (p)

IU+ (p)
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Example 2.66. Let M be n-dimensional Minkowski space.

1. For the subsets in Remark 2.63, we have edge(Ai) = ∅ for i = 1, 2, 3.

2. Let A4 := {0} ×B for some B ⊂ Rn−1, then edge(A4) = {0} × ∂B:
For b ∈ B̊ with some open neighborhood U0 ⊂
B (with respect to Rn−1), let p := (0, b) and
U ⊂ B the double cone over U0, that is

U = I+(U0) ∪ U0 ∪ I−(U0).

Every timelike curve from IU− (p) to IU+ (p) has
to meet {0} ×B and thus p /∈ edge(A4).

Rn−1

R
Bb b

edge(A4)

On the other hand, b ∈ ∂B implies V \B ̸= ∅ for any neighborhood V of b with respect
to Rn−1. Hence, for each open neighborhood U of p (with respect to Rn), we find some
p′ := (b′, 0) ∈ {0} ×

(
V \B ∩ U

)
and a timelike curve connecting IU− (p′) and IU+ (p′)

running through p′. Since {0} × Rn−1 is achronal, it is hit by this curve at most once,
which is in p′, so it does not meet A4, i.e. p ∈ edge(A4).

Remark 2.67. If A is achronal, we have A\A ⊂ edge(A):
For p ∈ A\A and any open neighborhood U of p, there is a timelike curve connecting IU− (p)
and IU+ (p) and running through p. Since A is achronal, there is no other intersection point of
A with this curve, in particular not with A. Therefore, p /∈ A implies that the curve does not
meet A at all, that is p ∈ edge(A).

Lemma 2.68. For every achronal subset A ⊂M , the subset edge(A) is closed.

Proof. We show edge(A) = edge(A), so let p ∈ edge(A) and U a neighborhood of p ∈ M .
Furthermore, let V ⊂ U be an open neighborhood of p contained in IU+

(
IU− (p)

)
∩ IU−

(
IU+ (p)

)
.

Since p ∈ edge(A), there is some p′ ∈ V ∩ edge(A). It follows that there is a timelike curve
c : [−1, 1] → V with

p± := c(±1) ∈ IV± (p
′),

which does not meet A. Note that
p± ∈ V ⊂ IU+

(
IU− (p)

)
∩ IU−

(
IU+ (p)

)
im-

plies that we can extend c to some timelike
and future directed curve c : [−2, 1] → U
such that c(−2) ∈ IU− (p). For similar reasons,
we can moreover extend it a to timelike and
future directed curve c : [−2, 2] → U such that
c(2) ∈ IU+ (p).

Abp
U

IU− (p)

IU+ (p)
VIV+ (p

′)

IV− (p
′)

b
p′

c

b
p+

b p−

b
c(−2)

b

bc(2)

b
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We show that this yields a timelike curve in
U connecting IU+ (p), IU− (p), which does not hit
A, either. Assume it does. Since IV+ (p−) is
a neighborhood of p′ and p′ ∈ edge(A) ∩ A,
there is some p′′ ∈ A∩ IV+ (p−). Then any con-
catination of c

∣∣
[−2,−1]

with some timelike and
future directed curve from p− to p′′ would meet
A twice, which yields a contradiction since A
was assumed to be achronal.

b p−

b p′

IV+ (p−)
bp
′′

c|[−2,−1]

b

b

Vin A

Definition 2.69. A subset S of an n-dimensional differentiable manifold M is called topo-
logical hypersurface, if for each p ∈ S, there is an open neighborhood U of p in M and a
homeomorphism φ : U → V , with some open V ⊂ Rn open, such that

φ
(
U ∩ S

)
= V ∩

(
{0} × Rn−1

)
.

bb

U
φ V ⊂ Rn

{0} × Rn−1

R× {0}

M

S

p
φ(p)

Example 2.70. The subset S := C+(0) ⊂ Rn is a topological hypersurface with, for instance,

φ : Rn → Rn,
(
x0, x1, . . . , xn−1︸ ︷︷ ︸

=:x̂

)
7−→

(
x0 − ∥x̂∥, x̂

)
.

Proposition 2.71. Let A ⊂M be achronal. Then the following statements are equivalent:

(i) A ∩ edge(A) = ∅.

(ii) A is a topological hypersurface.

Proof. (ii) ⇒ (i): Let A be a topological hypersurface with U, V, φ as in Definition 2.69
for some p ∈ A. Without loss of generality, let U be connected, so U\A ≈ V \{x0 = 0}
implies that U\A has two connected components. The subsets IU± (p) are open and connected
and, due to achronality, have empty intersection with A. Moreover, every timelike curve
through p meets both, IU− (p) and IU+ (p), and, again by applying the homeomorphism, also
both connected components. Hence, IU± (p) are contained in different connected components
and since U is separated by A, every continuous timelike curve connecting IU− (p) and IU+ (p)
has to meet A ∩ U , that is p /∈ edge(A).
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(i) ⇒ (ii): For p ∈ A, let Ũ be a neighborhood such that every timelike curve connecting I Ũ− (p)
and I Ũ+ (p) meetsA. Without loss of generality, we assume Ũ to be a coordinate neighborhood,
i.e. there is a diffeomorphism ξ : Ũ → ξ(Ũ) ⊂ Rn, and ∂

∂x0
to be timelike and future directed.

Then Ũ contains a smaller neighborhood U of p such that

1. ξ(U) = (a− δ, b+ δ)×N =: V for some a, b ∈ R, δ > 0 and N ⊂ Rn−1 open,

2.
{
x ∈ Ũ

∣∣ x0 = a
}
⊂ I Ũ− (p) and

{
x ∈ Ũ

∣∣ x0 = b
}
⊂ I Ũ+ (p).

For fixed y ∈ N ⊂ Rn−1, the curve

[a, b] −→ U, s 7−→ ξ−1(s, y),

is timelike and meets A by assumption on Ũ . Since A is achronal, this determines a map
h : N → (a, b) by demanding ξ−1

(
h(y), y

)
∈ A and we obtain

U ∩ A = ξ−1
({(

h(y), y
) ∣∣∣ y ∈ N

)})
.

A

Ũ

U

bp

{x0 = b}

{x0 = a}

s 7→ ξ−1
(
s, y

)

b ξ−1
(
h(y)

)

Assuming continuity of h, the map

φ : U −→ V, p 7−→
(
ξ(p)0 − h

(
ξ̂(p)

)
, ξ̂(p)

)
yields a homeomorphism with φ(p) = (0, y) if p ∈ U ∩ A since then p = ξ−1

(
h(y), y

)
for

some y ∈ N . If h was not continuous, there would exist a sequence (yn)n∈N and y ∈ N
such that yn → y but h(yn) ↛ h(y). Let q := ξ−1

(
h(y), y

)
. Since h(N) is contained in the

compact set [a, b], there is a subsequence (ym)m such that h(ym) converges to some r ̸= h(y),
and hence ξ−1(r, y) ∈ IU− (q) ∪ IU+ (q) =: IU(q). Therefore, IU(q) is an open neighborhood
of ξ−1(r, y), i.e. for m large enough, we have ξ−1

(
h(ym), ym

)
∈ IU(q), which contradicts

achronality of A.
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Corollary 2.72. Let A ⊂M be achronal. Then the following statements are equivalent:

(i) edge(A) = ∅.

(ii) A is a closed topological hypersurface.

Proof. (i) ⇒ (ii): Due to Proposition 2.71, A is a topological hypersurface. It is moreover
closed since A\A ⊂ edge(A), that is A = A.
(ii) ⇒ (i): Proposition 2.71 ensuresA∩ edgeA = ∅. On the other hand, by definition, edge(A)
is a subset of A, so A = A provides the claim.

Definition 2.73. A subset B of a time-oriented Lorentzian manifold M is called future set
or past set if I+(B) ⊂ B or I−(B) ⊂ B, respectively.

Example 2.74. For M = Rn
Mink, an example for a future set would be{(
x0, x̂

)
∈ R× Rn−1

∣∣ x0 − ∥x̂∥ ≥ 0
}
.

Remark 2.75. If B is a future set, then M\B is a past set.

Corollary 2.76. Let M be a connected and time-oriented Lorentzian manifold and B ⊂M
a future set withB /∈ {∅,M}. Then ∂B is an achronal and closed topological hypersurface.

Proof. Regarding Corollary 2.72, we just have to show that ∂B is achronal and edge(∂B) = ∅.
Let p ∈ ∂B and q ∈ I+(p), so I−(q) is an open neighborhood of p, which moreover meets
B and thus q ∈ I+(B). Since I+(B) is open and B a future set, we have I+(B) ⊂ B̊ and in
particular I+(p) ⊂ B̊. Analogously, we obtain I−(p) ⊂ int

(
M\B

)
.

It follows that I+(∂B) ∩ ∂B, so ∂B is achronal since any timelike curve running through ∂B
fails to meet it again. Moreover, every timelike curve connecting I−(p) and I+(p) has to hit
∂B, which shows edge(∂B) = ∅.

Definition 2.77. A subset S ⊂M of a time-oriented Lorentzian manifold is called Cauchy
hypersurface of M if any inextendible timelike curve hits it exactly once.

Example 2.78.
Let M = Rn

Mink and A1, A2, A3 the subsets
of Example 2.64. Although all of them are
achronal, onlyA1 is also a Cauchy hypersurface
since, for instance, the inextendible timelike
curve c does not hit A2 or A3.

A3

A1

A2

c
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Lemma 2.79. Let M be a connected Lorentzian manifold, A ⊂ M closed and
c : [0, b) →M\A a past directed causal curve with c(0) =: p, which is past-inextendible in
M .

(i) For all q ∈ I
M\A
+ (p), there is a timelike past directed curve c̃ : [0, b) → M\A with

c̃(0) = q, which is past-inextendible in M .

(ii) There is a timelike past directed curve c̃ : [0, b) → M\A with c̃(0) = p, which is
past-inextendible in M , unless c is a lightlike pregeodesic without conjugated points.

Proof. Without loss of generality, let b = ∞ and
(
c(n)

)
n

non-convergent. Choose some
metric d on M , which induces the given topology on M .
(i): Let p0 := q ≫ p, where "≫" is with respect to
M\A, so c(1) ≪ p since c(1) ≤ c(0) ≪ p0. On the
corresponding timelike connecting curve, choose some
p1 such that 0 < d

(
p1, c(1)

)
< 1.

Inductively, we find pk with c(k) ≪ pk ≪ pk−1 and
d
(
pk, c(k)

)
< 1

k
, which provides a timelike past directed

curve c̃ through all pk and starting at p0 = q. Further-
more, it is past-inextendible: If c̃was extendible by some
p∞, then pk → p∞ and thus

d
(
p∞, c(k)

)
≤ d
(
p∞, pk

)︸ ︷︷ ︸
→0

+ d
(
pk, c(k)

)︸ ︷︷ ︸
<1/k

−→ 0.

This leads to c(k) → p∞ and hence a contradiction.

bc(0) =: pb
p0 := q

b c(1)

b c(2)

b p1

b

b

bp2

b

b

(ii): Let c not be a lightlike pregeodesic without conju-
gated points, so neither is c

∣∣
[0,a]

for some a > 0. Accord-
ing to Theorem 2.44, there is a timelike curve from c(0)
to c(a) in M\A.
It follows that p ∈ I

M\A
+

(
c(a)

)
, so we can apply the proof

of (i) by replacing c by c
∣∣
[0,a]

, p by c(a) and q by p.

b p := c(0)

c

bc(a)

b

b

Remark 2.80.
The assumption on c in (ii) can not be dropped
as the following example shows: Let M =
Rn

Mink and A = −Hn−1.
Lightlike past directed lines, which start at 0,
do not hit A, but every timelike, past directed
and past-inextendible curve c̃, which starts at 0,
does.

c

A

c̃

b 0



2.5 Cauchy hypersurfaces 67

Proposition 2.81. LetM be a connected and time-oriented Lorentzian manifold and S ⊂M
a Cauchy hypersurface of M . Then we have

(i) S is achronal.

(ii) S is a closed topological hypersurface.

(iii) Every inextendible causal curve hits S.

Proof. (i): If there was a timelike curve hitting S at least twice, each maximal extension as a
timelike curve would do either, which yields a contradiction.
(ii): Through any p ∈ M , we find an inextendible timelike curve, which therefore has to hit
S, so we clearly have M = I−(S) ∪ S ∪ I+(S). This is a disjoint union because if I± ∩ S or
I−(S) ∩ I+(S) were not empty, this would imply the existence of a timelike curve meeting S
twice. It follows that the subsets I±(S)∪S are closed as complements of the open sets I∓(S),
so they contain I±(S), respectively, and hence,

∂I±(S) = I±(S) ∩M\I±(S) ⊂
(
I+(S) ∪ S

)
∩
(
I−(S) ∪ S

)
= S.

This implies ∂I−(S) = S = ∂I+(S) since S ⊂ ∂I±(S) holds for any subset S of a Lorentzian
manifold. Thus, every timelike curve from I−(S) to I+(S) has to meet S, that is edge(S) = ∅
and the claim follows from Corollary 2.72.
(iii): Assume c to be a causal inextendible curve
in M , which does not meet S and, without loss
of generality, runs entirely in I+(S). For some
point p on that curve, let q ∈ I

M\S
+ (p), so due to

Lemma 2.79, there is a past-inextendible curve
(with respect to M ) in M\S, which starts in
q and runs entirely in I+(p) as well. Then the
maximal future extension of c in M also runs
entirely in I+(S) and therefore would yield an
inextendible timelike, which does not meet S
and thus contradicts the assumption on S.

S

I+(S)

I−(S)

b p

c

bq

c̃

Remark 2.82. In general, a Cauchy
hypersurface is not hit exactly once
by any causal curve. Let, for instance,
M = Rn

Mink and consider S and c as
in the picture. Here the intersection is
a whole lime segment.

S

c
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Theorem 2.83. Let M be a connected time-oriented Lorentzian manifold, X a smooth
timelike vector field on M and S ⊂ M a Cauchy hypersurface. Then the map ρ : M → S,
which assigns to each p ∈ M the unique intersection point of the corresponding integral
curve of X with S, is well-defined, continuous and open, and we have ρ

∣∣
S

= idS . In
particular, S is connected.

Proof. a) Let c : (a, b) →M, −∞ ≤ a < 0 < b ≤ ∞, denote the maximal integral curve of
X and p := c(0). It follows that c is inextendible since if c was continuously extendible by q
to b, the integral curve of X through q would extend c as a integral curve, which contradicts
maximality. Therefore, ρ(p) is the unique intersection point of c with S, i.e. ρ is well-defined.
b) Consider the flow Ψ: D×M ×R →M ofX , where D denotes the maximal domain of Ψ.
Since S ⊂M is a topological hypersurface, so is S×R ofM ×R and D(S) := (S × R) ∩D

of D. Note that ψ := Ψ
∣∣
D(S)

is continuous as a restriction of a continuous map and bijective
by assumption on S and X . Since D(S) and M are topological hypersurfaces of the same
dimension, the map ψ : D(S) → M is a homeomorphism by Brouwer’s Theorem ("Every
continuous and injective map between topological manifolds of the same dimension is open").
It follows that ρ = π ◦ ψ−1 is open and continuous since the projection π : M × R →M is.
c) For p ∈ S, the unique intersection point of the corresponding integral curve of X with S is
p, i.e. ρ(p) = p.
Since ρ is continuous and surjective, i.e. ρ(M) = S, and M is connected, S is connected as
well.

Corollary 2.84. Any two Cauchy hypersurfaces S1, S2 of M are homeomorphic.

Proof.
Let X be a smooth timelike vector
field M and ρi : M → Si, i = 1, 2,
maps defined as in Theorem 2.83.
Then the maps

ρ1
∣∣
S2
: S2 −→ S1

ρ2
∣∣
S1
: S1 −→ S2

are inverses of each other and hence
homeomorphisms.

S2

S1

M

X

integral
curves of X
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2.6 Globally hyperbolic subsets
Let M always be a connected and time-oriented Lorentzian manifold.

Definition 2.85. A subset Ω ⊂M is called globally hyperbolic if

1. The strong causality condition (Definition 2.19) holds on Ω.

2. For all p, q ∈ Ω, the causal diamonds

J(p, q) := J+(p) ∩ J−(q)

are compact and contained in Ω.

Example 2.86. Let M = Rn
Mink. For arbitrary subsets

A,B ⊂M , consider

Ω := J+(A) ∩ J−(B).

Clearly, property 1 holds and J(p, q) is compact for all
p, q ∈ Ω. For all p, q ∈ Ω, we moreover have

J(p, q) ⊂ J+(p) ⊂ J+(Ω)

⊂ J+
(
J+(A)

)
= J+(A),

and analogously J(p, q) ⊂ J−(B), that is J(p, q) ⊂ Ω.

Ω B

A

J(p, q)

b

p

b
q

Lemma 2.87. Let K ⊂ M be compact and let the strong causality condition hold on K.
Furthermore, let c : [0, b) → M, 0 < b ≤ ∞, a future-inextendible causal curve starting in
K, i.e. c(0) ∈ K. Then there exists some t0 ∈ (0, b) such that c(t) /∈ K for all t ∈ [t0, b).

Proof. Assume otherwise and let (si)i∈N ⊂ (0, b) be a sequence converging to bwith si < si+1

and c(si) ∈ K for all i, which implies c(si) → p ∈ K for some subsequence. Since c is
future-inextendible, there has to be a sequence (ti)i∈N ⊂ (0, b) converging to b with ti < ti+1

for all i but c(ti) ↛ p. Therefore, by passing on to some subsequence, we find a neighborhood
U of p such that c(ti) /∈ U for all i and s1 < t1 < s2 < t2 < . . ..
On the other hand, we have c(si), c(si+1) ∈ V for all neighborhoods V ⊂ U of p and i
large enough, so the strong causality condition demands c

(
[si, si+1]

)
⊂ U and consequently

c(ti) ∈ U , which yields a contradiction.
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Lemma 2.88. Let K ⊂ M be compact and let the strong causality condition hold on
K. Furthermore, let cn : [0, 1] → K denote future directed causal curves with cn(0) → p,
c(1) → q and p ̸= q.
Then there exists a causal future directed broken geodesic γ from p to q and a subsequence(
cnm

)
m

such that
lim
m→∞

L
[
cnm

]
≤ L[γ].

Proof. Due to Proposition 2.60, (cn)n has a limit sequence p =: p0 < p1 < p2 < . . . and we
start by showing that is is finite.
Assume it was infinite, so the corresponding quasi-limit would be a causal future-inextendible
curve starting in p, which, by Lemma 2.87, leaves K without return, i.e. pi /∈ K for all i large
enough. Since cnm

(
tm,i
)
→ pi, we would have cnm

(
tm,i
)
/∈ K for alle m, i large enough, but

c was assumed to run in K.
We obtain the limit sequence p =: p0 < p1 < . . . < pN := q. The corresponding quasi-limit
therefore is a causal future directed broken geodesic from p to q. The points pi, pi+1 as well as
the segments cnm

(
[tm,i, tm,i+1]

)
are contained in a convex set, which depends on i but not on

m. Then for instance Gauß’ Lemma implies

L
[
cnm

∣∣
[tm,i,tm,i+1]

]
≤
∣∣∆(pm,i, pm,i+1

)∣∣,
where pm,j := cnm

(
tm,j
)
, | · | :=

√
| ⟨·, ·⟩ | and ∆ the map defined in (2.3). It follows that

L
[
cnm

]
≤

N−1∑
i=0

∣∣∆(pm,i, pm,i+1

)∣∣.
For m → ∞, the right hand side converges to

∣∣∆(pi, pi+1

)∣∣ = L[γ]. After passing to some
subsequence,

(
L
[
cnm

])
m

converges as well and we obtain

lim
m→∞

L
[
cnm

]
≤ L[γ].

Lemma 2.89. For p < q in M , let J(p, q) be compact and let the strong causality condition
hold on J(p, q). Then there exists a causal geodesic from p to q of length τ(p, q).

Proof. Let cn : [0, 1] → M denote causal future directed curves with cn(0) = p, cn(1) = q
and L[cn] → τ(p, q). The strong causality condition yields cn

(
[0, 1]

)
⊂ J(p, q) for all n, so

Lemma 2.88 ensures the existence of a causal future directed broken geodesic γ from p to q
with

τ(p, q) = lim
m→∞

L
[
cnm

]
≤ L[γ] ≤ τ(p, q)
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and hence L[γ] = τ(p, q). If γ actually was not smooth in some t0, i.e. not an (unbroken)
geodesic, it is well-known that we would then find a variation with fixed endpoints with non-
zero first variation of arc length. By some similar procedure as in the proof of Lemma 2.29,
we would find a longer causal curve from p to q but by definition of τ , L[γ] = τ(p, q) implies
that γ already is the longest curve.

Remark 2.90. In the Riemannian geometry, this Lemma corresponds to the statement con-
tained in the Theorem of Hopf-Rinow that on a complete Riemannian manifold, any two points
can be connected by some shortest geodesic.

Proposition 2.91. Let Ω ⊂ M be a globally hyperbolic subset. Then τ is continuous and
finite on Ω× Ω.

Proof. Note that τ < ∞ on Ω × Ω follows directly from Lemma 2.89. Furthermore, τ is
always lower semi-continuous, so we just have to check upper semi-continuity. Suppose there
was some (p, q) ∈ Ω × Ω, where τ fails to be upper semi-continuous, i.e. we find δ > 0 as
well as sequences (pn)n∈N, (qn)n∈N converging to p, q such that

τ(pn, qn) ≥ τ(p, q) + δ

for all n. Choose causal future directed curves
cn : [0, 1] → M with cn(0) = pn, cn(1) = qn
and L[cn] ≥ τ(pn, qn) − 1

n
. Since Ω is

open, we therefore find p−, q+ ∈ Ω such that
p− ≪ p, q+ ≪ q. Since I+(p−), I−(q+) are
open neighborhoods of p and q, respectively,
we have pn ∈ I+(p

−) and qn ∈ I−(q
+) for n

large enough, and moreover b

p−

bp

b q

b q+

J(p−, q+)

b pn

b qn

cn

cn
(
[0, 1]

)
⊂ I+(p

−) ∩ I−(q+) ⊂ J(p−, q+). (2.4)

Due to global hyperbolicity of Ω, J(p−, q+) is compact and satisfies the strong causality
condition, so Lemma 2.88 implies the existence of a broken geodesic γ from p to q and a
subsequence

(
cnm

)
m

such that

lim
m→∞

L
[
cnm

]
≤ L[γ] ≤ τ(p, q).

It follows that
L
[
cnm

]
≥ τ

(
pnm , qnm

)
− 1

nm
≥ τ(p, q) + δ − 1

nm
,

which, for m→ ∞, yields τ(p, q) ≥ τ(p, q) + δ and hence a contradiction.
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Proposition 2.92. Let Ω ⊂ M be an open and globally hyperbolic subset. Then "≤" is a
closed relation on Ω.

Proof. Let (pn)n∈N, (qn)n∈N ⊂ Ω converging to some p, q ∈ Ω, respectively, such that pn ≤ qn
for all n. We have to show that then p ≤ q. Since "=" is a closed relation, the statement is
trivial if pn = qn for infinitely many n, so without loss of generality, we assume pn < qn for
all n (otherwise pass on to a suitable subsequence).
Let cn : [0, 1] → M be the corresponding causal future directed curves with cn(0) = pn and
cn(1) = qn. Like in the proof of Proposition 2.91, we choose p−, q+ ∈ Ω such that (2.4) holds,
so we find a causal broken geodesic from p to q and hence, we have p ≤ q.

2.7 Cauchy developments and Cauchy horizones
Let M always be a connected and time-oriented Lorentzian manifold.

Definition 2.93. For A ⊂M achronal, the set

D(A) :=
{
p ∈M

∣∣ Every past-inextendible causal curve through p meets A
}

is called future Cauchy development of A.

Analogously one defines the past Cauchy
development of A and we call

D(A) := D+(A) ∪D−(A)

Cauchy development of A.

A

D+(A)

D−(A)

Remark 2.94.

a) A ⊂ D±(A) ⊂ A ∪ I±(A) ⊂ J±(A).

b) D±(A) ∩ I∓(A) = ∅ since A is achronal.

c) Fom a) and b) follows

A ⊂ D+(A) ∩D−(A) ⊂ D+(A) ∩
(
A ∪ I−(A)

)
= D+(A) ∩ A = A,

and thus A = D+(A) ∩D−(A).

d) D(A) ∩ I±(A) = D±(A)\A.
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Example 2.95. 1. For M = Rn
Mink and A := {0} × Rn−1

Mink, we have

D±(A) = J±(A) = A ∪ I±(A).

2. LetM be any Lorentzian manifold with some Cauchy hypersurface S. By definition, every
inextendible timelike curve meets S, that is I±(S) ∪ S ⊂ D±(S) and a) yields equality.
On the other hand, we found the (disjoint) decomposition M = I−(S)⊔ S ⊔ I+(S), so b)
implies equality and thus M = D(S).

3. For M = Rn
Mink and some B ⊂ M , let A := {0} × B. Then D(A) is the double cone

over B.

{0}×Rn−1A

D(A)

4. For (M, g) =
(
R× S1,− dt2 + dθ2

)
and A = {0} × S1, we clearly have

D±(A) = J±(A).

For p ∈ I+(A) and M̃ := M\{p},
we still have D−(A) = J−(A), but
D+(A) is given by the union ofA and
the open region between S and both
future directed null-geodesics ema-
nating from p, i.e.

D+(A) = J+(A)\J+(p).

b
p

D−(A)

A

D+(A)

J+(p)

Lemma 2.96. Let A ⊂M be an achronal set.

(i) Every causal past directed curve, which starts in D+(A) and leaves D+(A), meets A.

(ii) Every past or future-inextendible causal curve through p ∈ D̊(A) meets I−(A) or
I+(A), respectively.
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Proof. (i): Let c : [0, b] → M be a causal and past directed curve with c(0) ∈ D+(A) and
c(b) /∈ D+(A). Hence, we find some past-inextendible causal curve γ, which starts in c(b) but
does not hit A. Then the concatenation c ∪ γ yields a past-inextendible causal curve through
c(0) ∈ D+(A) and thus meets A, i.e. c does.
(ii): We just prove the first case, since both can be treated
similarly. Remark 2.94 a) yields

D(A) ⊂ A ∪ I+(A) ∪ I−(A).

Let c be a past-inextendible causal curve starting in
p ∈ D̊(A), so for p ∈ I−(A), the claim is trivial.
Let p ∈ A ∪ I+(A) and choose q ∈ I+(p) ∩D(A). The
proof of Lemma 2.79 (i) with A = ∅ shows that there
is a past-inextendible timelike curve c̃ starting in q such
that c meets I

(
c̃(s)

)
for all s. Remark 2.94 d) implies

q ∈ D+(A), so c̃ meets A in some c̃(s) and therefore c
meets I−(A).

b p

c

c̃

bq

b

b

b

b

b

b

b

b

Theorem 2.97. Let A ⊂M be achronal. Then D̊(A) is globally hyperbolic.

Proof. a) We start by showing that D̊(A) has the causality property.
Assume there was a causal loop c through some point in D̊(A), i.e. due to Lemma 2.96 (ii),
we find points q± ∈ I±(A) on c. Hence, there are q′± ∈ A such that q± ∈ I±(q

′
±), that is

q′+ ≪ q+ ≤ q− ≪ q′−. This would imply the existence of a timelike curve meeting both q′±,
which contradicts achronality of A.
b) We show that D̊(A) has the strong causality property.
Assume that it does not hold at some p ∈ D̊(A), i.e. there is a sequence of causal future
directed curves cn : [0, 1] →M, n ∈ N,with lim

n→∞
cn(0) = p = lim

n→∞
cn(1) and a neighborhood

U of p such that for all n, cn does not entirely run in U . Due to Proposition 2.60, there is a
limit sequence p =: p0 < p1 < . . . of (cn)n∈N. If it is finite, then pN = p, that is p < p and
hence a contradiction to the causality condition.
Therefore, suppose the limit sequence is infinite and the corresponding quasi-limit γ
future-inextendible. According to Lemma 2.96 (ii), it meets I+(A) and does not leave it,
that is pi ∈ I+(A) for some element pi of the limit sequence. Possibly passing on to some
subsequence and after a reparametrization, there exists s ∈ (0, 1) such that cn(s) → pi. In
particular, we have cn(s) ∈ I+(A) for n large enough.
Applying Proposition 2.60 to

(
cn
∣∣
[s,1]

)
n

provides a limit sequence p =: q0 > q1 > . . .. If it
was finite, we would have qN ′ = p and again p < pi = qN ′ < q0 = p, which contradicts the
causality condition. Therefore, we consider an infinite
limit sequence with a past-inextendible causal curve γ̂
starting in p ∈ D̊(A) as the corresponding quasi-limit.
From Lemma 2.96 (ii) follows that γ̂ hits I−(A), so we
would find n ∈ N and t ∈ [0, 1] such that cn(t) ∈ I−(A),
which contradicts achronality of A.

Ab b

b cn(s)

b

cn(t)
cn|[s,1]
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c) We show that J(p, q) is compact for all p, q ∈ D̊(A).
From p ≰ q follows J(p, q) = ∅, so here the claim is trivial. Furthermore, p = q implies
J(p, q) = {p}, since for any r ∈ J(p, p)\{p}, we would have p < r < p, which contradicts
achronality of A.
Thus, we consider p < q and we show that every sequence (xn)n∈N ⊂ J(p, q) has a
subsequence, which converges in J(p, q). Let cn : [0, 1] → M causal future directed curves
from p to q through xn. Furthermore, let K be a cover of M by open and convex subsets U
such that the closures U are compact and contained in some open and convex set and such
that, due to Proposition 2.60, we find a limit sequence p =: p0 < p1 < . . . of (cn)n∈N relative
to K. We show that we can always find a finite one:
c1) Assume that all such limit sequences were infinite. Adopting the approach of b), we find a
subsequence of reparametrised cn such that cn(s) → pi ∈ I+(A) for some fixed s. Again the
sequence

(
cn
∣∣
[s,1]

)
n

provides a limit sequence q =: q0 > q1 > . . ., which has to be infinite
since otherwise we would have found a finite limit sequence

p = p0 < p1 < . . . < pi = qN < . . . < q0 = q

of (cn)n∈N. The corresponding quasi-limit is past-inextendible and as in b), it hits I−(A),
which contradicts achronality of A.
c2) Let p =: p0 < p1 < . . . < pN := q be a finite limit sequence of (cn)n∈N relative to K.
Passing on a subsequence of (cn)n∈N yields xn ∈ cn

(
[sn,i, sn,i+1]

)
for all n and fixed i, so all

xn are contained in some fixed U ∈ K. Due to compactness of U , a subsequence of (xn)n∈N
converges to some x ∈ U ⊂ V , where V is open and convex. Now Lemma 2.56 implies
x ∈ J(p, q) since

cn(sn,i) ≤ xn ≤ cn(sn,i+1) =⇒ pi ≤ x ≤ pi+1 =⇒ p ≤ x ≤ q.

d) It remains to show J(p, q) ⊂ D̊(A) for all p, q ∈ D̊(A).
Clearly, we only have to consider p < q and we start with the case p, q ∈ I+(A). Choose
q+ ∈ I+(q) ∩D(A) ⊂ I+(A) ∩D+(A) and set U := I+(A) ∩ I−(q+). Since

J(p, q) ⊂ J+
(
I+(A)

)
∩ J−

(
I−(q+)

)
= I+(A) ∩ I−(q+) = U,

this yields an open neighborhood of
J(p, q) and we show that it is contained in
D(A). For x ∈ U , let c be a timelike future
directed curve from x to q+, which fails to
meet A due to achronality. Hence, for any
past-inextendible causal curve γ starting
in x, the concatenation c∪ γ yields a past-
inextendible causal curve, which starts in
q+ and therefore meetsA. It follows that γ
meets A and thus x ∈ D+(A).

b

b

b
b

A

q+

q

px

c

γ

U
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Now consider the case p ∈ I−(A), q ∈ I+(A).
Choose p− ∈ I−(p) ∩ D(A) and q+ ∈ I+(q) ∩D(A),
so U := I+(p−) ∩ I−(q+) is again a neighborhood of
J(p, q) and we show U ⊂ D(A). Let x ∈ U . Since
for x ∈ A, the claim directly follows from A ⊂ D(A),
we assume x /∈ A. Let c−, c+ be timelike future directed
curves from p− to x and x to q+, respectively. Due to
achronality of A, at least one of both curves does not
meet A.

b

b
b

b

b

A

U
q+

q
x

p

p−

c+

c−

On page 421, [O’Neill1983] claims that for achronal set A, the causality condition holds on
all of D(A). The following example demonstrates that this is not the case.

Example 2.98. LetM := S1×Rwith coordinates (u, v) and g := − du⊗ dv− dv⊗ du. The
time-orientation is determined by X := ∂

∂u
+ ∂

∂v
and we consider the subset A := S1 × {0}.

v

u

glue together!

A

X

The subset A is achronal: For any timelike curve s 7→
(
u(s), v(s)

)
, we obtain

0 > g

(
u′
∂

∂u
+ v

∂

∂v
, u′

∂

∂u
+ v

∂

∂v

)
= −2u′v′.

Note that v′ ̸= 0, which implies either v′(s) > 0 for all s or v′(s) < 0 for all s. Hence, this
curve meets A at most once.
On the other hand, A fails to be acausal: For each p ∈ M\A, there is a inextendible timelike
curve through p, which does not meet A. It follows that D(A) = A and A does not satisfy the
causality condition since A itself yields a causal loop.

glue together!

A

bp

b

b

b

b

b

b
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Corollary 2.99. Let M be a Lorentzian manifold, which exhibits a Cauchy hypersurface.
Then M is globally hyperbolic.

Proof. Let S ⊂ M be a Cauchy hypersurface of M , so D̊(S) is globally hyperbolic by
Theorem 2.97. On the other hand, we have D(S) =M = M̊ = D̊(S).

Lemma 2.100. Every spacelike achronal (smooth) hypersurface is acausal.

Proof. Suppose there was a causal future directed curve c : [0, 1] → M with c(0), c(1) ∈ S,
where S is a spacelike achronal hypersurface. By Theorem 2.44, there is a timelike curve from
S to c(1), which contradicts achronality of A, unless c is a lightlike pregeodesic without focal
points before c(1) with ċ(0)⊥S. Since S is spacelike, Nc(0)S is timelike, so ċ(0) and thus c is
not lightlike, i.e. c fails to be causal.

Proposition 2.101. Let S ⊂M be an acausal topological hypersurface. ThenD(S) is open
and globally hyperbolic.

Proof. Recall that due to acausality of S, the union I := I−(S) ∪ S ∪ I+(S) is a disjoint one,
since if I−(S) ∩ S or I+(S) ∪ I−(S) were not empty, we would find timelike curves hitting S
at least twice.
a) We show that I ⊂M is open in M , i.e. every p ∈ S is contained in I̊:
By Proposition 2.71, we have S ∩ edge(S) = ∅
and thus p /∈ edge(S). Hence, there exists
a neighborhood U of p such that all time-
like curves in U from IU− (p) to IU+ (p) meet S.
Let x0, . . . , xn−1 be Riemannian normal coor-
dinates around p with timelike x0 and |xj| < εj
for some fixed εj > 0. Choosing the εj suitably
small ensures

{
x0 = ±ε0

}
⊂ U . Then the

x0-coordinate lines meet S and therefore run
entirely in I , so

∩n−1
j=0

{
|xj| < εj

}
yields an

open neighborhood of I .

Sb

U

IU− (p)

IU+ (p) ∩
j

{
|xj| < εj

}
b

p

b) Next we show that S is actually contained in D̊(S):
Suppose p ∈ S\D̊(S) and let U be an open neighborhood of p such that U is compact and
U ⊂ V ∩ I for some convex subset V . Since p /∈ D̊(S), we find a sequence (xn)n∈N in
M\D(S) converging to p. Without loss of generality, for each n, let xn ∈ I+(S) ∩ U , and
since xn /∈ D+(S), there is a past-inextendible timelike curve cn, which starts in xn and
does not meet S. Since U is contained in the convex set V , everys cn hits the boundary ∂U
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(Lemma 2.56 (iv)) and we call the first intersection point yn. Then we have yn ≤ xn and due
to compactness of ∂U , we find a subsequence converging to some y ∈ ∂U . By Lemma 2.56,
the relation "≤" is closed, that is y ≤ p and even y < p since y ̸= p. In particular, y ∈ I .
b1) If y ∈ I+(S), we would find q ∈ S such that q ≪ y and thus q ≪ p, which contradicts
achronality of S.
b2) y ∈ S contradicts y < p sinceS is achronal.

b3) If y ∈ I−(S), there would exist some n such
that yn = cn(tn) ∈ I−(S). On the other hand,
by definition of yn, we have

cn
(
[0, tn]

)
⊂ U ⊂ I = I−(S) ⊔ S ⊔ I+(S).

Recall that cn does not meet S, so cn
(
[0, tn] has

to be contained in I−(S), which contradicts the
assumption cn(0) = xn ∈ I+(S).

Sbcn p

U
b xn

byn

b

b
b

y

c) We show that D(S) is open if S ⊂M is closed:
For S closed, it suffices to show thatD+(S)\S = I+(S)∩D(S) is open since it would directly
follow that D−(S)\S is open and therefore, D(S) can be written as the union of 3 open sets:

D(S) =
(
D+(S)\S

)
∪ S ∪

(
D−(S)\S

)
⊂
(
D+(S)\S

)
∪ D̊(S) ∪

(
D−(S)\S

)︸ ︷︷ ︸
open

⊂ D(S).

Assume p ∈ D+(S)\S was not an inner point. Then we find a sequence (xn)n∈N ̸⊂ D+(S)\S
converging to p such that for each n, there is a past-inextendible causal curve cn : [0, b) → M
starting in xn, which does not meet S (except maybe in xn). Due to b) and since S is closed,{
M\S, D̊(S)

}
yields an open cover of M . By Proposition 2.55, there is a refinement K by

open and convex sets, which therefore either are not contained in D̊(S) or do not meet S. Let
γ be a quasi-limit of (cn)n∈N relative to K starting in p, which is a past-inextendible causal
curve. Due to p ∈ D+(S), γ meets S in some unique point γ(s) and for p = p0 > p1 > . . .
the corresponding limit sequence, let i be the index such that

pi > γ(s) ≥ pi+1.

Hence, the element of K, which contains the corresponding segment of γ, meets S (in γ(s))
and is thus contained in D̊(S) by choice of K. Acausality of S implies pi /∈ S, that is
pi ∈ D+(S)\S = I+(S)∩D(S). It is even contained in the open set I+(S)∩ D̊(S) ⊂ D+(S),
so for n large enough, cn has to meet D+(S). Consequently, as a past-inextendible causal
curve, it also meets S, which yields a contradiction.
d) Finally assume that S is not closed. Note that due to acausality, the Cauchy developments
of different connected components of S are pairwise disjoint, so without loss of generality,
assume S to be connected. Clearly, S is closed in I , so replacing M by its connected open
submanifold I in c) shows thatD(S) is open in I . On the other hand, the Cauchy development
of S in I and inM coincide, i.e. D(S) is an open subset ofM and thus globally hyperbolic by
Theorem 2.97.
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Remark 2.102. Proposition 2.101 becomes wrong if one replaces "acausal" by "achronal" as
is demonstrated in Example 2.98.

Lemma 2.103. For each achronal subset A ⊂ M and p ∈ D̊(S)\I−(A), the intersection
J−(p) ∩D+(A) is compact.

Proof.
Let (xn)n∈N ⊂ J−(p) ∩D+(A) a sequence with no
subsequence converging to p, and for each n, choose
a causal past directed curve cn from p to x. Note
that if such a sequence does not, there is nothing to
proof. By Proposition 2.60, there is a limit sequence
p =: p0 > p1 > . . ..
a) Assume that the limit sequence is finite, i.e.
p > p1 > . . . > pN and we find a subsequence
of (xn)n∈N converging to pN , so it remains to show
pN ∈ D+(A). Let p+ ∈ I+(p) ∩ D+(A), that is
p+ ≫ p ≥ pN and thus p+ ≫ pN , so there is a
timelike past directed curve γ from p+ to pN . If γ
does not meet A, we directly have pN ∈ D+(A). If
γ meets A, then pN ∈ A ∩ I−(A), but pN ∈ I−(A)
would imply also xn ∈ I−(A) for n large enough,
which contradicts xn ∈ D+(A).
b) If the limit sequence is infinite, the quasi-limit γ is
a past-inextendible causal curve curve, which starts
in p and meets I−(A) by Lemma 2.96. Therefore,
pi ∈ I−(A) for i large enough and consequently, for
n large enough, xn ∈ I−(A), which again contra-
dicts xn ∈ D+(A).

A

D+(A)

D−(A)

bpb
J−(p) ∩D+(A)

bp

bp+

b
xn

b b pN

γ

b

b

Definition 2.104. For all p ∈M and A ⊂M , set

τ(A, p) := sup
q∈A

τ(p, q).

Theorem 2.105. Let S ⊂M be a closed, achronal, spacelike and smooth hypersurface and
p ∈ D(S) such that there is a geodesic c from S to p of length τ(S, p). Then c is orthogonal
to S, it has no focal point before p, and it is timelike, unless p ∈ S.
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Proof. Due to Lemma 2.100, S is acausal, and by Proposition 2.101, D(S) is open and
globally hyperbolic. Without loss of generality, we only consider p ∈ D+(S). Furthermore,
Lemma 2.103 implies compactness of J−(p) ∩D+(S) and hence

J−(p) ∩ S = J−(p) ∩D+(S) ∩ S

is compact as well since S is closed. Proposition 2.91
ensures continuity of τ on J−(p) ∩ S, so the maximum
of τ(·, p) on J−(p)∩S is attained at some q. By Lemma
2.89, there is a causal geodesic c of length τ(q, p) con-
necting q and p. If cwas not orthogonal to S or if c had a
focal point before p, this curve could be deformed into a
longer timelike curve from S to p, which contradicts the
maximality of the length of c.

S

b p

c

b

D+(S)

D−(S)

Definition 2.106. Let A ⊂M be achronal. Then we call

H+(A) := D+(A)\I−
(
D+(A)

)
=
{
p ∈ D+(A)

∣∣ I+(p) ∩D+(A) = ∅
}

future Cauchy horizon of A. Analogously, one defines H−(A), the past Cauchy horizon
of A. The Cauchy horizon of A is given by

H(A) := H+(A) ∪H−(A).

Example 2.107. Let M := Rn
Mink.

1. For A1 := {0} × Rn−1, we obtain D±(A1) = J±(A1), and consequently H(A) = ∅.

2. For A2 := Hn−1 the (n − 1)-dimensional hyperbolic space, we have
D(A2) = D+(A2) = I+(0) butD−(A2) = C+(0), soH+(A2) = ∅ andH−(A2) = C+(0).

3. For A3 := C+(0), we have D(A3) = D+(A3) = J+(0) and H±(A3) = H±(A2).

4. For dim(M) = 2 we consider
A4 := {0} × (−1, 1) and obtain
H+(A4) as in the picture.
Particularly note that
H+(A4) ̸⊂ J+(A4) since
(0,±1) ∈ H+(A4)\J+(A4).

A4

J+(A4)

D−(A4)

b b

H+(A4)
D+(A4)
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Lemma 2.108. For all achronal A ⊂M , we have

(i) H±(A) is closed.

(ii) H±(A) is achronal.

(iii) If A is closed, then

D+(A) =
{
p ∈M

∣∣ every past-inextendible timelike curve through p meets A
}
.

(iv) If A is closed, then
∂D±(A±) = A ∪H±(A).

Proof. (i): Since D±(A) is closed and I±
(
D±(A)

)
is open, this follows by definition.

(ii): Since I+
(
H+(A)

)
is open and I+

(
H+(A)

)
∩ D+(A) empty by definition, we obtain

I+
(
H+(A)

)
∩D+(A) = ∅ and therefore I+

(
H+(A)

)
∩ H+(A) = ∅. Note that this implies

achronality of H+(A).
(iii): We introduce the short-hand notation

X :=
{
p ∈M

∣∣ every past-inextendible timelike curve through p meets A
}

and start with "⊂": If there was a p ∈ D+(A)\X , we would find a past-inextendible timelike
curve c : [0, b) → M , which starts in p but does not hit A. In particular p /∈ A, and since A is
closed, there is an open and convex neighborhood U of p such that U ∩ A = ∅.
Choose ε > 0 such that q := c(ε) ∈ U and
thus p ∈ IU+ (q). Since IU+ (q) is an open neigh-
borhood of p and p ∈ D+(A), there is some
r ∈ IU+ (q) ∩ D+(A) with γ the corresponding
timelike and past directed curve from r to q.
Due to convexity, γ runs entirely in U , so it
does not meet A. On the other hand, the con-
catenation γ ∪ c

∣∣
[ε,b)

yields a past-inextendible
timelike curve, which starts in r ∈ D+(A), so
it has to meet A. Contradiction!

br
γ

A

b p
U

c

b q

We proceed with "⊃": Let p ∈ D+(A) and choose q ∈ I
M\D+(A)
− (p), so in particular

q /∈ D+(A). Therefore, we find a past-inextendible causal curve in M , which starts in p but
does not meet A. Lemma 2.79 implies the existence of a past-inextendible timelike curve,
which starts in r ∈ D+(A), i.e. it has to meet A. Contradiction!
(iv): We start with A ⊂ D+(A): We already know that A is contained in D+(A), and if there
was some p ∈ A ∩ D̊+(A), we could choose q ∈ D̊+(A) ∩ I−(p), which implies the existence
of a past-inextendible timelike c starting in q. Since q ∈ D+(A), c must hit A in some r ∈ A,
i.e. r ≪ p. On the other hand, p, r ∈ A, which yields a contradiction.
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Next we show H+(A) ⊂ ∂D+(A): By definition, we have H+(A) ⊂ D+(A). If there was any
p ∈ H+(A) ∩ D̊+(A), the intersection I+(p) ∩D+(A) would not be empty, which contradicts
p ∈ H+(A).
It remains to show ∂D+(A) ⊂ A∪H+(A): Assume there was any p ∈ ∂D+(A)\

(
A∪H+(A)

)
.

Then, in particular, p ∈ D+(A)\A, so (iii) implies p ∈ I+(A). On the other hand,
p ∈ D+(A)\H+(A), so there exists a q ∈ I+(p) ∩ D+(A), and I+(A) ∩ I−(q) is an open
neighborhood of p. We complete the proof by showing that this neighborhood is contained in
D+(A). Then p would have to be an inner point, which contradicts p ∈ ∂D+(A).
Let r ∈ I+(A) ∩ I−(q) and c a past-inextendible causal curve starting in r. Furthermore, let
γ be a timelike and past directed curve from q to r, which necessarily stays in I+(A) due to
r ∈ I+(A) and therefore fails to meet A since achronality of A demands A ∩ I+(A) = ∅. On
the other hand, q ∈ D+(A) implies that γ ∪ c hits A, so c has to hit A and hence r ∈ D+(A).

Proposition 2.109. For any closed and acausal topological hypersurface S ⊂M , we have

(i) H+(S) = I+(S) ∩ ∂D+(S) = D+(S)\D+(S).

(ii) H+(S) ∩ S = ∅.

(iii) H+(S) is a closed and achronal topological hypersurface.

(iv) In each point of H+(S) starts a past-inextendible lightlike geodesic without any con-
jugated points, which runs entirely in H+(S).

Proof. (i): We already know that H+(S) ⊂ D+(S) ⊂ S ∪ I+(S), where the last inclusion
follows from Lemma 2.108 (iii). If there was any p ∈ H+(S)∩D+(S), I+(p) would hit D(S)
since according to Proposition 2.101, D(S) is open, but due to achronality of S, we have
I+(p)∩D−(S) = ∅. Therefore, I+(p) has to meet D+(S), which contradicts p ∈ H+(S), and
thus H+(S) ∩ D+(S) = ∅, that is H+(S) ⊂ ∂D+(S). Moreover, from S ⊂ D+(S) follows
that also H+(S) ∩ S = ∅, so the inclusion, we started with, implies H+(S) ⊂ I+(S). On the
other hand, Lemma 2.108 (iv) provides

I+(S) ∩ ∂D+(S) =
(
S ∪H+(S)

)
∩ I+(S) = H+(S) ∩ I+(S) = H+(S).

It remains to show D+(S)\D+(S) ⊂ H+(S) (we already proved the converse inclusion).
Hence, for all p ∈ D+(S)\D+(S), we show I+(p) ∩ D+(S) = ∅. Let q ∈ I+(p) and γ a
timelike and past directed curve from q to p. Since p /∈ S ∪ I−(S) and p /∈ D+(S), γ does
not meet S and there is a past-inextendible causal curve c starting in p, which does not meet S
either. Therefore, γ ∪ c is past-inextendible causal curve, which starts in q but does not meet
S, that is q /∈ D+(S).
(ii): Follows directly from (i) and achronality of S:

H+(S) ∩ S = ∂D+(S) ∩ I+(S) ∩ S︸ ︷︷ ︸
=∅

= ∅.
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(iii): Consider the past set B := D+(S) ∪ I−(S) (Definition 2.73), so Corollary 2.76 ensures
that ∂B is a topological hypersurface. On the other hand, (i) and I−(S) ∩ I+(S) = ∅ imply

H+(S) = ∂D+(S) ∩ I+(S) = ∂B ∩ I+(S),

so H+(S) is an open subset of a topological hypersurface and thus a topological hypersurface
on its own right. Achronality and closedness of H+(S) follows from Lemma 2.108.
(iv): For p ∈ H+(S), (i) ensures the existence of a past-inextendible causal curve c, which
starts in p and does not meet S. Due to Lemma 2.108, such a curve fails to be timelike, so c
can not be deformed to a timelike curve starting in p and avoiding S. By Lemma 2.79 (ii), c
has to be a lightlike (pre-)geodesic without any conjugated points, and it remains to show that
it does not leave H+(S).
If c hit D+(S), it would hit S as well, which yields a contradiction. If c(s) /∈ D+(S) for some
parameter value s, we would find a past-inextendible timelike curve γ, which starts in c(s) and
does not meet S. Applying Lemma 2.79 (ii) to c

∣∣
[0,s]∪γ provides a timelike, which starts in p

and does not hit S, which contradicts p ∈ D+(S).

Corollary 2.110. For any non-empty, closed and acausal topological hypersurface S ⊂M ,
we have

(i) S is a Cauchy hypersurface if and only if H(S) = ∅.

(ii) S is a Cauchy hypersurface if every non-inextendible lightlike geodesic meets S.

Proof. (i): From Proposition 2.101 we know that D(S) is open. Moreover, S = D+(S) ∩
D−(S) since any non-inextendible timelike curve through some p ∈

(
D+(S) ∩ D−(S)

)
\S

would have to meet S in the future and the past of p /∈ S, which contradicts achronality of S.
It follows that

∂D(S) = D(S)\D(S) =
(
D+(S) ∪D−(S)

)
\D(S) =

(
D+(S)\D(S)

)
∪
(
D−(S)\D(S)

)
=
(
D+(S)\D+(S)

)
∪
(
D+(S)\D−(S)

)
= H+(S) ∪H−(S) = H(S),

where the fourth equality is due to Proposition 2.109 (i). Recall that we M is always assumed
to be connected, which leads to

H(S) = ∅ ⇐⇒ ∂D(S) = ∅ ⇐⇒ D(S) =M,

and the last statement is obviously equivalent to S being a Cauchy hypersurface.
(ii): Regarding (i), we show that for all p ∈ H(S), there is a past-inextendible lightlike geodesic
through p, which does not meet S. Without loss of generality, assume p ∈ H+(S). According
to Proposition 2.109 (iv), there is a past-inextendible lightlike geodesic c, which runs entirely
inH+(S) and does not hit S sinceH+(S)∩S = ∅ due to Proposition 2.109 (ii). If the maximal
extension of c to a future-inextendible geodesic met S in some q ∈ S, then q ≥ p. On the other
hand, p ∈ H+(S) ⊂ I+(S) implies q ∈ I+(S) ∩ S, which contradicts achronality of S.
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Example 2.111.

1. Let M = Sn1 (r) be the de-Sitter space and S := M ∩ X , where X ⊂ Rn+1 a spacelike
hyperplane. It follows that S is an acausal hypersurface.
Moreover, due to the results of section 1.2, every lightlike geodesic is of the form M ∩E
for some degenerate hyperplane E. The intersection X ∩ E therefore is a spacelike
straight line and thus hits M . It follows that S is a Cauchy hypersurface and in particular,
according to Corollary 2.99, M is globally hyperbolic.

X

M

S

E

M

S

2. Let (M, g) be a Robertson-Walker spacetime, i.e.

M = I ×N, g = − dt⊗ dt+ f(t)2gN

for some complete Riemannian manifold (N, gN) and f ∈ C∞(I,R+), and consider
S := {t0} ×N for some fixed t0 ∈ I .

I
N

M

S
|

t0

For any causal curve c(s) =
(
t(s), γ(s)

)
, we obtain

0 ≥ g
(
c′(s), c′(s)

)
= −

(
t′(s)

)2
+ f
(
t(s)
)2 · gN(γ′(s), γ′(s)),

and thus |t′| ≥ g · ∥γ′∥N . Note that t′(s) = 0 would imply γ′(s) = 0 and consequently
c′(s) = 0, which is not causal. Therefore, t′ > 0 on all of I or t′ < 0 on all of I , so S is
acausal since t(s) = t0 for at most one s.
Now let c = (t, γ) : (a, b) → M be an inextendible lightlike geodesic and without loss of
generality, let t′ > 0. Choose s0 ∈ (a, b) and set δ := maxJ f , where

J :=

{ [
t0, t(s0)

]
, t0 ≤ t(s0)[

t(s0), t0
]
, t0 ≥ t(s0)

.
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Due to Corollary 1.37, the function t′(f ◦t) =: η > 0 is constant and thus t′ = η
f◦t ≥

η
δ
> 0

on J . For τ(s) := t(s0) +
η
δ
(s− s0), we obtain t(s0) = τ(s0) and moreover, t(s) ≥ τ(s)

if s ≥ s0 and t(s) ≤ τ(s) if s ≤ s0. Since τ(s1) = t0 for s1 := s0 +
δ
η

(
t0 − t(s0)

)
and

γ is a pregeodesic in the complete Riemannian manifold N , the equation t(s) = t0 has a
solution in the compact interval spanned by s0 and s1 as long as t ∈ J . It follows that S
is a Cauchy hypersurface and hence, M is globally hyperbolic.

2.8 Hawking’s singularity theorem
Reminder: For M a semi-Riemannian manifold and S ⊂ M a p-dimensional submanifold,
for all x ∈ S, the mean curvature vector H(x) is defined by

H(x) :=
1

p

p∑
j=1

εjII(ej, ej),

where e1, . . . , ep denotes a generalized orthonormal basis of TxS and εj := g(ej, ej).

Theorem 2.112 (Hawking’s singularity theorem). Let M be an n-dimensional connected
and time-oriented Lorentzian manifold with

ric(X,X) ≥ 0

for all timelikeX ∈ TM . Let S ⊂M be a Cauchy hypersurface with mean curvature vector
field H and future directed unit normal field ν. Assume that there exists some β > 0 such
that

⟨H, ν⟩ ≥ β.

Then the length of every timelike and future directed curve starting in S is bounded by 1
β
.

Physical interpretation: The Lorentzian manifold M models the spacetime and the Cauchy
hypersurface S the present spacelike universe. Einstein’s field equations in dimension 4 read

8πT = ric− 1

2
scal · g,

where T is the energy-momentum-tensor. This implies 8πtrg(T ) = scal− 1
2
· 4scal = −scal,

so the field equations can be reformulated via

8πT = ric + 4πtrg(T ) · g,

which leads to

ric(X,X) ≥ 0 ⇐⇒ T (X,X) ≥ 1

2
trg(T )g(X,X)
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for all timelike vectors X . This inequality is known as the strong energy inequality, where
T (X,X) is interpreted as the energy density measured by an observer, whose world line has
the tangent vector X . Furthermore, the condition ⟨H, ν⟩ ≥ β stands for a spacelike universe,
which contracts at a rate at least β, so Hawking’s theorem states that the time, such a universe
exists, is at most 1

β
, which therefore stands for the time, a big crunch singularity would occur

at the latest.
For the proof, we need the following proposition:

Proposition 2.113. Let M be a Lorentzian manifold, c : [a, b] → M a timelike geodesic
and cs a smooth variation of c by timelike curves with variational field V := ∂cs

∂s

∣∣
s=0

and
acceleration field A := ∇

∂s
∂cs
∂s

∣∣
s=0

. Then we have

1. d
ds
L[cs]

∣∣
s=0

=
⟨
V (a), ċ(a)|ċ(a)|

⟩
−
⟨
V (b), ċ(b)|ċ(b)|

⟩
,

2. d2

ds2
L[cs]

∣∣∣
s=0

=
⟨
A(a), ċ(a)|ċ(a)|

⟩
−
⟨
A(b), ċ(b)|ċ(b)|

⟩
−

b∫
a

1
|ċ|

(⟨
R(V, ċ)V, ċ

⟩
+
⟨∇V
∂t
, ∇V
∂t

⟩
+
⟨∇V
∂t
, ċ|ċ|
⟩2)

dt.

Proof. Let c : [a, b] →M be a timelike geodesic and cs a smooth variation of cwith variational
field V and acceleration field A.
(1) For Vs = ∂cs

∂s
, we obtain

d

ds
L[cs] =

d

ds

b∫
a

√
−⟨ċs, ċs⟩ dt =

b∫
a

−2
⟨∇ċs
∂s
, ċs
⟩

2
√
−⟨ċs, ċs⟩

dt

= −
b∫

a

⟨
∇
∂s

∂cs
∂t
,
ċs
|ċs|

⟩
dt = −

b∫
a

⟨
∇
∂t

∂cs
∂s

,
ċs
|ċs|

⟩
dt = −

b∫
a

⟨
∇Vs
∂t

,
ċs
|ċs|

⟩
dt,

which, for s = 0, provides the claim:

d

ds
L[cs]

∣∣∣∣
s=0

= −
b∫

a

⟨
∇V
dt

,
ċ

|ċ|

⟩
dt

= −
b∫

a

(
d

dt

⟨
V,

ċ

|ċ|

⟩
−

⟨
V,

∇
∂t

ċ

|ċ|︸ ︷︷ ︸
⟩

=0

)
dt = −

⟨
V,

ċ

|ċ|

⟩ ∣∣∣b
a
.
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(2) The second claim follows directly from direct calculation of the second variation:

d2

ds2
L[cs]

∣∣∣∣
s=0

= − d

ds

b∫
a

⟨
∇Vs
∂t

,
ċs
|ċs|

⟩
dt

∣∣∣∣
s=0

= −
b∫

a

(⟨
∇
∂s

∇Vs
∂t

∣∣∣∣
s=0

,
ċ

|ċ|

⟩
+

⟨
∇V
dt

,
∇
∂s

∣∣∣∣
s=0

ċs
|ċs|

⟩)
dt

= −
b∫

a

(⟨
R(V, ċ)V +

∇
∂t

∇Vs
∂s

∣∣∣∣
0︸ ︷︷ ︸

=A

,
ċ

|ċ|

⟩
+

⟨
∇V
dt

,
1

|ċ|2

(
|ċ|∇ċs

∂s

∣∣∣∣
0

− ∂|ċs|
∂s

∣∣∣∣
0

ċ

⟩)
dt

= −
b∫

a

(⟨
R(V, ċ)V,

ċ

|ċ|

⟩
+

d

dt

⟨
A,

ċ

|ċ|

⟩
−

⟨
A,

∇
dt

ċ

|ċ|︸ ︷︷ ︸
=0

⟩
+

⟨
∇V
dt

,
1

|ċ|
+

⟨∇V
dt
, ċ
⟩
ċ

|ċ|3

⟩)
dt

= −
⟨
A,

ċ

|ċ|

⟩ ∣∣∣∣b
a

−
b∫

a

(⟨
R(V, ċ)V,

ċ

|ċ|

⟩
+

1

|ċ|

⟨
∇V
dt

,
∇V
dt

⟩
+

1

|ċ|3

⟨
∇V
dt

, ċ

⟩2

dt.

Proof of Theorem 2.112. Let γ be a future directeed timelike curve from S to some p. It
follows that p is an element of I+(S) = D+(S)\S, so due to Theorem 2.105, there is a timelike
geodesic c : [0, b] → M with c(0) ∈ S, ċ(0)⊥S, c(b) = p and L[c] = τ(S, p). Moreover,
without loss of generality, we assume c to be parametrized with respect to proper time, i.e.
|ċ| = 1 and thus L[c] = b. Therefore, it remains to show b ≤ 1

β
.

Let e ∈ Tc(0)S be a unit vector and E the spacelike,
parallel unit vector field along c given byE(0) = e. Fur-
thermore, let cs be a variation of c with variational field
V (t) =

(
1 − t

b

)
E(t), cs(0) ∈ S and cs(0) ∈ S. Since

c is the longest connection of S with p, by Proposition
2.113, we have

S

b pV

e

E

b

c(0)

0 ≥ d2

ds2
L[cs]

∣∣∣∣
s=0

= ⟨A(0), ċ(0)⟩ − 0

−
b∫

0

[(
1− t

b

)2

⟨R(E, ċ)E, ċ⟩+
⟨
−1

b
E,−1

b
E

⟩
+

=0︷ ︸︸ ︷⟨
−1

b
E, ċ

⟩2 ]
dt

=

⟨
∇
∂s

∂cs
∂s

(0), ċ(0)

⟩
−

b∫
0

[(
1− t

b

)2

⟨R(E, ċ)E, ċ⟩+ 1

b2

]
dt

= ⟨II(V, V ), ν⟩+
b∫

0

[(
1− t

b

)2

⟨R(ċ, E)E, ċ⟩ dt− 1

b
.
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To an orthonormal basis e1, . . . , en−1 of Tc(0)S, we obtain corresponding E1, . . . , En−1, and
summation yields

0 ≥ ⟨(n− 1)H, ν⟩+
b∫

0

(
1− t

b

)2

ric(ċ, ċ)︸ ︷︷ ︸
≥0

−n− 1

b
≥ (n− 1)β + 0− n− 1

b
,

that is b ≤ 1
β
.

Example 2.114. 1) Let M be an (n + 1)-dimensional Robertson-Walker spacetime.

I
N

M

S := {t0} ×N
|

t0

ν

We already proved that ric(ν, ν) = −nf ′′
f

, where ν := ∂
∂t

. For the proof of Hawking’s
singularity theorem, we employed the assumption ric(X,X) ≥ 0 merely for x := ċ(t), where
stands c stands for a geodesic that starts in S and orthogonally to it.
Here, we actually have X = ν, so the assump-
tion ric(ν, ν) ≥ 0 is equivalent to f ′′ ≤ 0,
i.e. f being concave. The shape operator of
S := {t0} ×N in M with respect to ν is given
by

W =
f ′(t0)

f(t0)
· id,

and hence, H = f ′(t0)
f(t0)

ν and ⟨H, ν⟩ ≥ β if and
only if f ′(t0)

f(t0)
≤ −β.

t

f

|

t0

b

|

t0 +
1
β

2) Let M be n-dimensional Minkowski space and thus ric = 0. Consider S := −Hn−1(r),
where Hn−1(r) :=

{
x ∈ M

∣∣ ⟨x, x⟩ = −r2, x0 > 0
}

. Then for any p ∈ S, we have
H(p) = − p

r2
and ν = −p

r
, and therefore⟨

H(p), ν(p)
⟩
= − 1

r3
⟨p, p⟩︸ ︷︷ ︸
=−r2

=
1

r
=: β.

On the other hand, we know that the maximal time-
like geodesics that start in S have infinite length!
The reason for that is that S is not a Cauchy hyper-
surface in Rn

Mink, but it is in D(S) = I−(0), where
the maximal timelike geodesics that start inS indeed
have length r = 1

β
. In this example, the estimate in

Hawking’s singularity theorem is sharp.

b 0

S

bp
ν(p)

H(p)
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2.9 Penrose’s singularity theorem

Lemma 2.115. LetH ∈ Rn and ⟨⟨·, ·⟩⟩ the Minkowski product. Then the following statements
are equivalent:

(i) For all future directed and lightlike X ∈ Rn, we have ⟨⟨H,X⟩⟩ > 0.

(ii) For all future directed and causal X ∈ Rn, we have ⟨⟨H,X⟩⟩ > 0.

(iii) H is past directed and timelike.

Proof. (iii) ⇒ (ii): After applying some some time-orientation-preserving Lorentz transfor-
mation, without loss of generality, we may assume H = −ce0 for some c > 0.

b

H

{X | ⟨⟨H,X⟩⟩ > 0}

{X | ⟨⟨H,X⟩⟩ = 0}

{X | ⟨⟨H,X⟩⟩ < 0}

(ii) ⇒ (i): trivial.

(i) ⇒ (iii):

b

X
{H | ⟨⟨H,X⟩⟩ < 0}

{H | ⟨⟨H,X⟩⟩ = 0}

{H | ⟨⟨H,X⟩⟩ > 0}

=⇒
∩

X∈C+(0)\{0}

{
H
∣∣ ⟨H,X⟩ > 0

}
= I−(0).

Definition 2.116. A connected time-oriented Lorentzian manifold is called timelike future-
complete if for all future directed timelike vectorsX ∈ TM , the geodesic t 7→ expπ(X)(tX)
is defined on all of [0,∞). Similarly, one defines timelike past-complete as well as lightlike
future- and past-complete Lorentzian manifolds, respectively.
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Example 2.117. Let M := D
(
− Hn−1

)
= I−(0) ⊂ Rn

Mink. The Lorentzian manifold M is
not timelike or lightlike future-complete but it is timelike and lightlike past-complete.

Definition 2.118. A closed and achronal subset A ⊂ M is called future-trapped or past-
trapped if J+(A)\I+(A) or J−(A)\I−(A) is compact, respectively.

Example 2.119. For

(M, g) :=
(
R×S1,− dt2+dθ2

)
,

the subset A := {p} is both,
future- and past-trapped.

θ

t

identify!

b
p

bb

J+(p) \ I+(p)

b

Remark 2.120.

1. Recall that achronality implies A ∩ I+(A) = ∅, that is A ⊂ J+(A)\I+(A), and hence,
future-trapped subsets have to be compact.

2. For arbitrary A ⊂M , the subset J+(A)\I+(A) is achronal since

p ∈ I+
(
J+(A)\I+(A)

)
⊂ I+

(
J+(A)

)
= I+(A) =⇒ p /∈ J+(A)\I+(A),

and therefore I+
(
J+(A)\I+(A)

)
∩
(
J+(A)\I+(A)

)
= ∅.

Lemma 2.121. LetM be an n-dimensional Lorentzian manifold, p ∈M , ℓ ∈ TpM lightlike
and e1, . . . , en−2 spacelike and orthonormal with ej⊥ℓ for all j. Then we have

ric(ℓ, ℓ) =
n−2∑
j=1

⟨
R(ℓ, ej)ej, ℓ

⟩
.

Proof. Consider some spacelike en−1 and some timelike en such that en+1 + en is a multiple
of ℓ and e1, . . . , en is a generalized orthonormal basis of TpM . By definition, we obtain

ric(ℓ, ℓ) =
n−1∑
j=1

⟨
R(ℓ, ej)ej, ℓ

⟩
−
⟨
R(ℓ, en)en, ℓ

⟩
,

so we have to show
⟨
R(ℓ, en−1)en−1, ℓ

⟩
=
⟨
R(ℓ, en)en, ℓ

⟩
. Note that en−1+en being a multiple

of ℓ implies ⟨
R(ℓ, en−1 + en)en−1, ℓ

⟩
= 0,

⟨
R(ℓ, en−1 + en)en, ℓ

⟩
= 0,

and the claim follows from subtracting the second equation from the first one.
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Proposition 2.122. Let M be a Lorentzian manifold, P ⊂ M a spacelike submanifold of
codimension 2 and mean curvature vector field H . Furthermore, let c : [0, b] → M be a
lightlike geodesic that starts in some p ∈ P such that ċ(0) ∈ NpP . Moreover, we assume

(i) ric
(
ċ(t), ċ(t)

)
> 0 for all t ∈ [0, b],

(ii)
⟨
H(p), ċ(0)

⟩
≥ 1

b
.

Then c has a focal point in (0, b].

Proof. Assume that c has no focal point in (0, b].
a) Let e1, . . . , en−2 be an orthonormal basis of TpP , to which we consider Jacobi fields Ji
along c determined by the initial values Ji(0) = ei and ∇Ji

dt
(0) = ĨI

(
ei, ċ(0)

)
. In addition, let

J0(t) := t · ċ(t) be the Jacobi field given by J0(0) = 0 and ∇J
dt
(0) = ċ(0).

b) We show that J0(t), . . . , Jn−2(t) constitutes a basis of c(t)⊥ for all t ∈ [0, b]. Note that
J0(t)⊥ċ(t)⊥ since c is lightlike. For all i = 1, . . . , n− 2, we have

d2

dt2

⟨
Ji, ċ

⟩
=
⟨ ∇2

dt2
Ji, ċ

⟩
=
⟨
R(ċ, Ji)ċ, ċ

⟩
= 0,⟨

Ji(0), ċ(0)
⟩

= ⟨ei, ċ(0)⟩ = 0,

d
dt

⟨
Ji(t), ċ(t)

⟩∣∣
t=0

=
⟨∇Ji

dt
(0), ċ(0)

⟩
=
⟨
ĨI
(
ei, ċ(0)

)
, ċ(0)

⟩
= 0,

and thus
⟨
Ji, ċ

⟩
= 0 due to well-posedness of the initial value problem, that is Ji(t) ∈ ċ(t)⊥

for all t. It remains to show linear independence of J0(t), . . . , Jn−2(t). Assume it was not
for some t ∈ (0, b], i.e.

∑n−2
i=0 αiJi(t) = 0 for α0, . . . , αn−2 ∈ R not all equal to zero. This

provides a non-trivial Jacobi field J :=
∑n−2

i=0 αiJi satisfying

J(0) =
n−2∑
i=0

αiei ∈ TpP, J(t) = 0,

tan

(
∇J
dt

(0)

)
= tan

( n−2∑
i=1

αiĨI
(
ei, ċ(0)

)
+ α0ċ(0)

)

= tan

( n−2∑
i=1

αiĨI
(
ei, ċ(0)

))
= tan

(
ĨI
(
J(0), ċ(0)

))
,

so t would be a focal point, which contradicts the assumption.
c) We show

⟨∇Ji
dt
, Jj
⟩
=
⟨
Ji,

∇Jj
dt

⟩
for all i, j. The symmetries of R provide

d

dt

(⟨
∇Ji
dt

, Jj

⟩
−
⟨
Ji,

∇Jj
dt

⟩)
=

⟨
∇2Ji
dt2

, Jj

⟩
−
⟨
Ji,

∇2Jj
dt2

⟩
=
⟨
R(ċ, Ji)ċ, Jj

⟩
−
⟨
Ji, R(ċ, Jj)ċ

⟩
= 0,
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and hence,
⟨∇Ji

dt
, Jj
⟩
−
⟨
Ji,

∇Jj
dt

⟩
is constant. Furthermore, by symmetry of II , we obtain⟨

∇Ji
dt

(0), Jj(0)

⟩
−
⟨
Ji(0),

∇Jj
dt

(0)

⟩
=
⟨
ĨI
(
ei, ċ(0), ej

⟩
−
⟨
ei, ĨI

(
ej, ċ(0)

)⟩
= −

⟨
II(ei, ej), ċ(0)

⟩
+
⟨
ej, ei, ċ(0)

⟩
= 0,

for all i, j ≥ 1, and moreover,⟨
∇J0
dt

(0), Jj(0)

⟩
−
⟨
J0(0),

∇Jj
dt

(0)

⟩
= ⟨ċ(0), ej⟩ −

⟨
0,

∇Jj
dt

(0)

⟩
= 0

for all j = 0, . . . , n− 2, which proves the claim.

d) Let V be a smooth vector field along c with V (t)⊥ċ(t) for all t with V (0) ∈ TpP and
V (b) = 0. We show that

b∫
0

(⟨
∇V
dt

,
∇V
dt

⟩
−
⟨
R
(
ċ, V

)
V, ċ
⟩)

dt−
⟨
ċ(0), II

(
V (0), V (0)

)⟩
≥ 0

and equality if and only if V is tangential to c.
Due to b), there are smooth functions fi : (0, b] → R such that V (t) =

∑n−2
i=0 fi(t)Ji(t) for all

t ∈ (0, b], and we introduce the vector fields X :=
∑n−2

i=0 ḟi · Ji and Y :=
∑n−2

i=0 fi ·
∇Ji
dt

. With
them, we have ∇V

dt
= X + Y , and therefore,

d

dt
⟨V, Y ⟩ =

⟨
∇V
dt

, Y

⟩
+

⟨
V,

∇Y
dt

⟩
= ⟨X + Y, Y ⟩+

⟨
V,

∇Y
dt

⟩
= ⟨X + Y, Y ⟩+

⟨
V,

n−2∑
i=0

ḟi ·
∇Ji
dt

⟩
+

⟨
V,

n−2∑
i=0

fi ·
∇2Ji
dt2

⟩

= ⟨X + Y, Y ⟩+
n−2∑
i,j=0

⟨
fj · Jj, ḟi ·

∇Ji
dt

⟩
+

⟨
V,

n−2∑
i=0

fi ·R
(
ċ, Ji

)
ċ

⟩

= ⟨X + Y, Y ⟩+
n−2∑
i,j=0

fj ḟi

⟨
Jj,

∇Ji
dt

⟩
+
⟨
V,R(ċ, V )ċ

⟩
c)
= ⟨X + Y, Y ⟩+ ⟨X, Y ⟩ −

⟨
R(ċ, V )ċ, V

⟩
=

⟨
∇V
dt

,
∇V
dt

⟩
− ⟨X,X⟩ −

⟨
R(ċ, V )ċ, V

⟩
.

For small ε > 0, integration yields

b∫
ε

⟨X,X⟩ dt =
b∫
ε

(⟨
∇V
dt

,
∇V
dt

⟩
−
⟨
R(ċ, V )V, ċ

⟩
− d

dt

⟨
V, Y

⟩)
dt
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=

b∫
ε

(⟨
∇V
dt

,
∇V
dt

⟩
−
⟨
R(ċ, V )V, ċ

⟩)
dt−

⟨
V (ε), Y (ε)

⟩
.

Note that in addition to J0(t), . . . , Jn−2(t), we find a further basis 1
t
J0(t) = ċ(t), . . . , Jn−2(t)

of ċ(t)⊥, which, however, is also the case for t = 0. Hence, tf0(t), f1(t), . . . , fn−2(t) and
continuously extendible to t = 0, and furthermore, V (0) =

∑
i=1 fi(0)Ji(0) =

∑
i=1 fi(0)ei

since V (0) ∈ TpP . It follows that

⟨
V (ε), Y (ε)

⟩
=

⟨
V (ε), f0(ε)ċ(ε) +

n−2∑
i=1

fi(ε) ·
∇Ji
dt

(ε)

⟩
=

⟨
V (ε),

n−2∑
i=1

fi(ε) ·
∇Ji
dt

(ε)

⟩
ε↓0−→

⟨
V (0),

n−2∑
i=1

fi(0) ·
∇Ji
dt

(0)

⟩
=

⟨
V (0),

n−2∑
i=1

fi(0) · ĨI
(
ei, ċ(0)

)⟩
=
⟨
V (0), ĨI

(
V (0), ċ(0)

)⟩
= −

⟨
II
(
V (0), V (0)

)
, ċ(0)

⟩
.

We just proved that
b∫

0

(⟨
∇V
dt

,
∇V
dt

⟩
−
⟨
R(ċ, V )V, ċ

⟩)
dt+

⟨
II
(
V (0), V (0)

)
, ċ(0)

⟩
= lim

ε→0

b∫
ε

⟨X,X⟩ dt.

Since X(t) is defined as a linear combination of J1(t), . . . , Jn−2(t), we have X(t)⊥ċ(t), i.e.
X(t) fails to be timelike. Therefore,

⟨
X(t), X(t)

⟩
≥ 0 for all t ∈ (0, b], which is the desired

inequality. Clearly, equality holds if and only if ⟨X,X⟩ = 0, i.e. X(t) is lightlike for all t
and consequently, ḟ1 = . . . = ḟn−2 = 0. Because fi(b) = 0 for all i, this is equivalent to
f1 = . . . = fn−2 = 0, which leads to V (t) = f0(t)J0(t) = tf0(t)ċ(t), so V is tangential to c.

e) For some unit vector e ∈ TpP , let E denote the corresponding parallel vector field along c
with E(0) = e and consider V (t) :=

(
1− t

b

)
E(t). Then V satisfies the conditions in d) but is

not tangential on c, and hence,

0 <

b∫
0

(⟨
∇V
dt

,
∇V
dt

⟩
−
⟨
R(ċ, V )V, ċ

⟩)
dt−

⟨
ċ(0), II

(
V (0), V (0)

)⟩

=

b∫
0

(
1

b2
−
(
1− t

b

)2⟨
R(ċ, E)E, ċ

⟩)
dt−

⟨
ċ(0), II(e, e)

⟩

=
1

b
−

b∫
0

(
1− t

b

)2⟨
R(ċ, E)E, ċ

⟩
dt−

⟨
ċ(0), II(e, e)

⟩
.

Considering e := ei and summing over all i, Lemma 2.121 provides the desired contradiction:

0 <
n− 2

b
−

b∫
0

(
1− t

b

)2
ric
(
ċ, ċ
)︸ ︷︷ ︸

≥0

dt− (n− 2)
⟨
ċ(0), H(p)

⟩︸ ︷︷ ︸
≥ 1

b

≤ 0.
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Proposition 2.123. Let M be a connected, time-oriented and lightlike future-complete
Lorentzian manifold with ric(X,X) ≥ 0 for all lightlike X ∈ TM . Furthermore, let
P ⊂ M be a compact, achronal and spacelike submanifold of codimension 2. Then P is
future-trapped if the mean curvature vector field H of P is timelike past directed.

Proof. a) For some arbitrary Riemannian metric h on M , set

P̃ :=
{
X ∈ TM

∣∣ X is lightlike future directed and h(X,X) = 1
}
.

The footpoint map π : NP → P turns P̃
into a two-fold cover of P . Moreover, P̃
is compact.

b) For X ∈ P̃ , we have⟨⟨
H
(
π(X)

)
, X
⟩⟩
> 0 by Lemma 2.115,

and due to compactness, we find some
b > 0 such that

⟨⟨
H
(
π(X)

)
, X
⟩⟩

> 1
b

for all X ∈ P̃ .Since M is lightlike
future-complete, t 7→ cX(t) := exp(tX)
is well-defined on [0,∞), i.e. on [0, b], in
particular. Now Proposition 2.122 ensures
that cX has a focal point in (0, b].

P
bp
NpP

b bP̃ ∩NpP

c) Let q ∈ J+(P )\I+(P ). By Theorem 2.44, there is a lightlike and future directed geodesic
c from P to q without any focal points before q and such that ċ(0) ∈ NP . Clearly, we have
c = cX and thus, cX(t) = q for some X ∈ P̃ and t ∈ [0, b]. Therefore, J+(P )\I+(P ) for the
compact subset K :=

{
tX
∣∣ 0 ≤ t ≤ b, X ∈ P̃

}
, so exp(K) is compact as well.

d) For (qn)n∈N ⊂ J+(P )\I+(P ) and after maybe restricting to some subsequence, we have
qn → q∞ ∈ exp(K) ⊂ J+(P ). Suppose q∞ ∈ I+(P ), that is qn ∈ I+(P ) for all n
large enough since I+(P ) is open, which contradicts the assumption on (qn)n∈N. Hence,
q∞ ∈ J+(P )\I+(P ), i.e. J+(P )\I+(P ) is compact.

Lemma 2.124. Let M be a globally hyperbolic Lorentzian manifold and K ⊂M compact.
Then J±(K) is closed.

Proof. For (pi)i∈N ⊂ J+(K) with pi → p ∈ M , we show p ∈ J+(K). Choose (qi)i∈N ⊂ K
with qi ≤ pi, so after maybe passing to some subsequence, (qi)i∈N converges to some q ∈ K.
Recall that≤ is a closed relation by Proposition 2.92, so q ≤ p, and hence, p ∈ J+(q) ⊂ J+(K).
The proof for J−(K) is similar.



2.9 Penrose’s singularity theorem 95

Theorem 2.125 (Penrose’s singularity theorem). Let M be a conneceted and time-
oriented Lorentzian manifold with ric(X,X) ≥ 0 for all lightlike X ∈ TM . Furthermore,
assume that there is a non-compact Cauchy hypersurface S ⊂ M and a non-empty, com-
pact, spacelike and achronal submanifold P ⊂ M of codimension 2 with past directed and
timelike mean curvature vector field. Then M fails to be lightlike future complete.

Proof. Assume that M was lightlike future complete.

a) Since M has a Cauchy hypersurface, it is globally hyperbolic by Corollary 2.99. Moreover,
J+(P ) is closed due to compactness of P by Lemma 2.124, and thus

J+(P )\I+(P ) = J+(P )\J̊+(P ) = ∂J+(P ).

Recall that J+(P ) is a future set, so ∂J+(P ) is closed topological hypersurface by Corollary
2.76. Moreover, due to Proposition 2.123, it is compact, so ∂J+(P ) represents an achronal
and compact topological hypersurface of M .

b) If ∂J+(P ) was empty, we would have J+(P ) = I+(P ), which is open and closed at the
same time, and furthermore non-empty since P ⊂ J+(P ). This implies M = I+(P ) because
M is connected, so particularly P ⊂ I+(P ), which contradicts achronality of P .
c) Let ρ : ∂J+(P ) → S the map given by the flow
of some smooth and time-oriented vector field X
just like in Theorem 2.83, which is well-defined
since S is a Cauchy hypersurface. Furthermore, it
is injective due to achronality of ∂J+(P ), and thus
a continuous and injective map between topological
manifolds of the same dimension. By Brouwer’s
theorem (see for instance [Vick1973]), ρ

(
∂J+(P )

)
is open. On the other hand, ∂J+(P ) is compact,
and therefore, so is its image under ρ. It follows that
ρ
(
∂J+(P )

)
= S sinceM and hence S is connected,

which contradicts compactness of S.

S

∂J+(P )

M

X

Example 2.126. 1) Exterior Schwarzschild model:
For fixed m > 0 and h(r) := 1− 2m

r
, consider the spacetime given by

M := R× (2m,∞)× S2, g := −h(r) dt⊗ dt+
1

h(r)
dr ⊗ dr + r2gS2 , (2.5)

where gS2 stands for the standard metric on S2. Some direct calculation shows ric = 0.
Now let S := {0} × (2m,∞) × S2 ⊂ M , which is a closed and spacelike hypersurface with
unit normal field 1√

h(r)

∂
∂t

. It is non-compact but totally geodesic as the fixed point of the

isometry (t, r, γ) 7→ (−t, r, γ).



96 2 Causality

For c(s) =:
(
t(s), r(s), γ(s) some causal curve in M , we have

0 ≥ g(ċ, ċ) = −h(r) · ṫ2 + ṙ2

h(r)
+ r2∥γ̇∥2S2 =⇒ ṫ2 ≥ ṙ2

h(r)2
+

r2

h(r)
∥γ̇∥2S2 .

Therefore, any zero point s0 of ṫ would directly be a zero point of ṙ and γ̇, which would lead
to ċ(s0) = 0 and thus to a contradiction to causality of c. It follows that ṫ(s) > 0 for all s or
ṫ < 0 for all s, i.e. c hits S at most once, so S is acausal.
Now let c(s) =:

(
t(s), r(s), γ(s) denote some future-inextendible lightlike geodesic (a, b) →

M . It is not hard to see that as long as r stays in some compact interval [r1, r2] ⊂ (2m,∞),
we can solve the geodesic equation, i.e. the case a > −∞ or b < ∞ only occurs if for s → a
or s→ b, we would obtain r(s) → 2m or r(s) → ∞, respectively.
From ṫ2 ≥ ṙ2

h(r)2
follows

t(s1)− t(s0) =

s1∫
s0

ṫ(s) ds ≥
s1∫
s0

ṙ(s)

h
(
r(s)

) ds ≥ r(s0)∫
r(s1)

dr

h(r)
≥
[
r + 2m log(r − 2m)

]r(s1)
r(s0)

,

where, without loss of generality, we assumed ṙ ≥ 0. Note that r + 2m log(r − 2m) → ∞
and r + 2m log(r − 2m) → −∞ for r → ∞ and r → 2m, respectively, and recall that ∂

∂t
is

a Killing, that is d
dt
g
(
ċ, ∂

∂t

)
= g

(
ċ,∇ċ

∂
∂t

)
= 0. Thus, if r stays in the the compact interval

[r0, r1] and hence (a, b) = (−∞,∞), we extract the constant −E := g
(
ċ, ∂

∂t

)
= −h(r)ṫ. In

particular, this implies

ṫ =
E

h(r)
≥ min

r∈[r0,r1]

E

h(r)
=: τ > 0 =⇒ t(s1)− t(s0) ≥ τ(s1 − s0).

In any case, the t-component runs over all of R, so c hits S and hence, S is a Cauchy hypersur-
face by Corollary 2.110.
Now consider P := {0} × {r0} × S2, which is a non-empty, compact and spacelike subman-
ifoldof codimension 2 contained in S. Since S ⊂ M is totally geodesic, the mean curvature
vector field of P in M coincides with the one of P in S, i.e. spacelike, such that we can not
apply Theorem 2.125.

2) Interior Schwarzschild model:
In (2.5), replace (2m,∞) by (0, 2m), so h < 0, and hence, ∂

∂t
is spacelike and ∂

∂r
is timelike.

Let S := R×{r0}×S2 for some r0 ∈ (0, 2m). A similar discussion as in 1) shows that S is a
spacelike, non-compact Cauchy hypersurface and T := {0}× (0, 2m)×S2 is totally geodesic.
Therefore, the mean curvature field of P := {0}×{r0}×S2 inM is the same as in T . Because
HG is normal, we have H = c(r0)

∂
∂r

, where c(r0) does not depend on the point in P since the
group SO3 acts isometrically on M and transitively on P . One calculates c(r0) = − 1

r0
, so the

mean curvature vector field is timelike and, provided the right choice of time-orientation, past
directed. Finally, Theorem 2.125 ensures the existence of lightlike geodesics, whose maximal
domain is not all of R, which are interpreted as the worldlines of photons falling into the black
hole.
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2.10 Structure of globally hyperbolic Lorentzian manifolds
Reminder: A Lorentzian manifold M is globally hyperbolic if J(p, q) := J+(p) ∩ J−(q) is
compact for all p, q ∈M and the strong causality condition holds (Definition 2.85). We already
know that the existence of a Cauchy hypersurface implies global hyperbolicity (Corollary
2.99). Let M always be a connected and time-oriented Lorentzian manifold. Furthermore, let
f : M → R some smooth function with f > 0 and

∫
M
f dvol = 1.

Remark 2.127.

1. Here, dvol denotes the Riemannian volume element. For integrable functions φ with
support contained in some chart x : U → V and coordinates x1, . . . , xn, we have∫

M

φ dvol =

∫
M

φ(x)
√∣∣ det (gij(x))∣∣ dx1 . . . dxn.

2. There exist some f ∈ C∞(M) with f > 0 and
∫
M
f dvol = 1. In the case of finite volume

vol(M) :=
∫
M

dvol < ∞, it is trivially given by the constant function f := 1
vol(M)

.
Otherwise, choose a partition of unity (ρj)j∈N and constants cj :=

(
2j
∫
M
ρj dvol

)−1
> 0.

Then f :=
∑∞

j=1 cjρj is clearly positive and moreover satisfies∫
M

f dvol =
∞∑
j=1

cj

∫
M

ρj dvol =
∞∑
j=1

2−j = 1.

We introduce the functions

v± : M −→ [0, 1], v±(p) :=

∫
I±(p)

f dvol.

Lemma 2.128. For any future directed and timelike curve c : (a, b) → M , v+ ◦ c is mono-
toneously decreasing and v− ◦ c is monotoneously increasing.
For M moreover satisfying the chronology condition, even strict monotonicity holds.

Proof. Clearly, we have c(t1) ≪ c(t2) if t1 < t2, so in particular,

I+
(
c(t2)

)
⊂ I+

(
c(t1)

) f>0
=⇒

∫
I+(c(t2))

f dvol ≤
∫

I+(c(t1))

f dvol,

that is v+
(
c(t2)

)
≤ v+

(
c(t1)

)
. Analogously, we obtain monotonicity of v− ◦ c.

AssumeM to satisfy the chronology condition and consider the open set I−
(
c(t2)

)
∩I+

(
c(t1)

)
,

which is non-empty since it contains c(t) for all t ∈ (t1, t2). Furthermore, it is disjoint with
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I+
(
c(t2)

)
because any element of I−

(
c(t2)

)
∩I+

(
c(t2)

)
would imply the existence of a timelike

closed curve, which contradicts the chronology condition. It follows that

v+
(
c(t2)

)
=

∫
I+(c(t2))

f dvol <

∫
I+(c(t2))∪

(
I−(c(t2))∩I+(c(t1))

)f dvol ≤
∫

I+(c(t1))

f dvol = v+
(
c(t1)

)
.

Remark 2.129. In general, v± fail to be continuous.

Example 2.130. Let

M := R2\
{
(0, x)

∣∣ x ≥ 0
}

be equipped with the Minkowski metric.
Then v− is discontinuous along{

(t, x)
∣∣ t = x > 0

}
and v+ is discontinuous along{

(t, x)
∣∣ t = −x < 0

}
.

b
q

b p

I−(q)

I−(p)

b

Lemma 2.131. The functions v± are lower semi-continuous.

Proof. Let (pi)i∈N ⊂M be a sequence converging to some p ∈M , for which we show

lim inf
i→∞

v±(pi) ≥ v±(p).

We carry out the proof only for v+ since it works similarly for v−. For any q ∈ I+(p), we
have p ∈ I−(q) and thus, for i large enough, pi ∈ I−(q) and I+(q) ⊂ I+(pi). It follows that
v+(pi) ≥

∫
I+(q)

f dvol and therefore

lim inf
i→∞

v+(pi) ≥
∫

I+(q)

f dvol. (2.6)

Choose some future directed timelike curve c : [0, 1] →M with c(0) = p and put qn := c
(
1
n

)
.

Then we directly have I+(qn) ⊂ I+(qn+1) and consequently
∞∪
n=1

I+(qn) ⊂ I+(p).

Conversely, for any z ∈ I+(p), that is p ∈ I−(z) and qn ∈ I−(z) for n large enough, we find
z ∈ I+(qn), so also the converse inclusion holds, i.e. equality. From that, we deduce the claim:

lim inf
i→∞

v+(pi)
(2.6)

≥ lim
n→∞

∫
I+(qn)

f dvol =

∫
I+(p)

f dvol = v+(p).
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Lemma 2.132. If M is globally hyperbolic, then v± are continuous.

Proof. Let (pi)i∈N ⊂M be a sequence converging to some p ∈M , for which we now show

lim sup
i→∞

v±(pi) ≤ v±(p).

Again, we give the proof only for v+ since everything works analogously for v−.

a) For q ∈M\J+(p), we show that I−(q) ∩ I+(pi) = ∅ if i is large enough.
Assume that there exist ri ∈ I−(q) ∩ I+(pi), i.e. q ≪ ri ≪ pi, for infinitely many i. Since
pi → p and "≥" is closed in the globally hyperbolic case, we obtain q ≥ p and hence
q ∈ J+(p), which contradicts the assumption.
b) Due to Lemma 2.124, J+(p) is closed, so

M\J+(P ) =
∪

q∈M\J+(p)

I−(q).

Since the topology of M has a countable ba-
sis, there is a countable and dense subset
{xn}n∈N ⊂ M\J+(p). To every xn, choose
some qn ∈ M\J+(p) such that xn ∈ I−(qn),
which leads to

M\J+(p) =
∞∪
n=1

I−(qn).

b

p

J+(p)

b
q

For the open sets XN :=
∪N
n=1 I−(qn), we directly obtain XN ⊂ XN+1 and XN ∩ I+(pi) = ∅

for i large enough by a). For every N , we therefore have

lim sup
i→∞

∫
I+(pi)∪XN

f dvol ≤
∫
M

f dvol = 1 =⇒ lim sup
i→∞

v+(pi) ≤ 1−
∫
XN

f dvol. (2.7)

Recall that lim
N→∞

XN =M\J+(p) and ∂I+(p) is a zero set, so taking the limitN → ∞ provides

lim sup
i→∞

v+(pi) ≤ 1−
∫

M\J+(p)

f dvol =

∫
J+(p)

f dvol =

∫
I+(p)

f dvol = v+(p).

Theorem 2.133 (Geroch 1970). Let M be a globally hyperbolic Lorentzian manifold.
Then there is a Cauchy hypersurface S ⊂ M and a homeomorphism R × S → M , under
which any {t} × S is mapped to a Cauchy hypersurface.
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M

S

Proof. a) We start by proving lim
t→b

v+
(
c(t)
)
= 0 for any future-inextendible timelike curve

c : [a, b) →M . Analogously, one shows lim
t→b

v−
(
c(t)
)
= 0 if c is past-inextendible instead.

By assumption, for any q ∈ M , the causal diamond J
(
c(a), q

)
is compact, so according to

Lemma 2.87, we find some t0 ∈ [a, b) such that c(t) /∈ J
(
c(a), q

)
for all t ≥ t0. It follows that

c(t) /∈ J−(q) and consequently, I+
(
c(t)
)
∩ I−(q) = ∅ for all t ≥ t0.

Choose (qn)n∈N ⊂ M such that M =
∪∞
n=1 I−(qn), and set XN :=

∪N
n=1 I−(qn). To each N ,

we find some tN ∈ [a, b) such that I+
(
c(t)
)
∩XN = ∅ for all t ≥ tN . For those t, similarly to

(2.7), we obtain
v+
(
c(t)
)
=

∫
I+(c(t))

f dvol ≤ 1−
∫
XN

f dvol,

which directly leads to

lim sup
t→b

v+
(
c(t)
)
≤ 1−

∫
XN

f dvol
N→∞
=⇒ lim sup

t→b
v+
(
c(t)
)
≤ 1−

∫
M

f dvol = 0.

b) Next we show that S(v0) :=
{
q ∈M

∣∣ v−(q)
v+(q)

= v0
}

is a Cauchy hypersurface for all v0 > 0.
Clearly, it is achronal since v−

v+
◦ c is strictly monotonic for each timelike curve c. Let

c : (a, b) → M non-extendible, future directed and timelike abd choose some t0 ∈ (a, b). For
all t ≥ t0, we obtain

v−
(
c(t)
)

v+
(
c(t)
) ≥

v−
(
c(t0)

)
v+
(
c(t)
) t↑b−→ ∞

as well as
v−
(
c(t)
)

v+
(
c(t)
) ≤

v−
(
c(t)
)

v+
(
c(t0)

) t↓a−→ 0

for all t ≤ t0. It follows that v−
v+

◦ c is strictly monotoneously increasing, which therefore maps
(a, b) bijectively to (0,∞), so for each v0, there is exactly one t ∈ (a, b) such that v−(c(t))

v+(c(t))
= v0.

This implies c(t) ∈ S, i.e. c hits S.
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c) Now let ρv1,v2 : S(v1) → S(v2) denote the homeomorphism induced by the flow of some
smooth and timelike vector field on M . Set

ϕ : M −→ R× S(1), q 7−→
(
log

v−(q)

v+(q)
, ρ v−(q)

v+(q)
,q
(q)

)
.

This map is continuous and maps the Cauchy hypersurfaceS(v) bijectively to
{
log(v)

}
×S(1).

In particular, the map itself is a bijection and therefore a homoemorphism.

Theorem 2.134 (Bernal-Sánchez 2004). Any globally hyperbolic Lorentzian manifold
(M, g) is isometric to (

R× S,−β dτ 2 + gτ

)
,

where β : R× S → R is smooth and positive and gτ a smooth family of Riemannian metric
on S. Furthermore, {τ0} × S is a smooth and spacelike Cauchy hypersurface for all τ0.

The theorem of Bernal and Sánchez provides the last piece for the main result of this section:

Theorem 2.135. Let M be a connected and time-oriented Lorentzian manifold. Then the
following statements are equivalent:

1. M is globally hyperbolic.

2. M has a (topological) Cauchy hypersurface.

3. M has a smooth, spacelike Cauchy hypersurface.

4. M is isometric to (R× S,−β dτ 2 + gτ ) as in Theorem 2.134.

Proof. (4) ⇒ (3) and (3) ⇒ (2) are trivial. (2) ⇒ (1) follows from Corollary 2.99 and
finally, (1) ⇒ (4) is a consequence of Theorem 2.134.

We dedicate the rest of the section to
the proof of the theorem of Bernal and
Sánchez. Let M be globally hyperbolic
and t := log v−

v+
: M → R the continu-

ous and surjective function due to Geroch,
which is strictly monotoneously increas-
ing along each timelike curve and such that
Nt0 := t−1(t0) are Cauchy hypersurfaces
for each t0 ∈ R. Then we obtain M

Nt0

J+(Nt0) = t−1
(
[t0,∞)

)
, J−(Nt0) = t−1

(
(−∞, t0]

)
,

I+(Nt0) = t−1
(
(t0,∞)

)
, I−(Nt0) = t−1

(
(−∞, t0)

)
.
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Lemma 2.136. For all t1 < t2 < t3 < t4, there is a smooth function h : M → R such that

(i) −1 ≤ h ≤ 1.

(ii) If gradph ̸= 0, it is timelike and past directed at p.

(iii) h ≡ −1 on t−1
(
(−∞, t1) and h ≡ 1 on t−1

(
(t4,∞)

)
.

(iv) gradh ̸= 0 on t−1
(
(t2, t3)

)
.

h ≡ −1

h ≡ 1

Nt1

Nt2

Nt3

Nt4

gradh timelike

past directed

We start with the proof of the theorem of Bernal and Sánchez and prove Lemma 2.136
afterwards.

Proof of Theorem 2.134. a) To each k ∈ Z and t1 := k−2, t2 := k−1, t3 := k+1, t4 := k+2,
Lemma 2.136 provides some hk : M → R, and we set τ := h0 +

∑∞
k=1

(
h−k + hk

)
.

t

h−k + hk

| | | | |
−k−2 −k+2 0 k−2 k+2

−2 ∈ [−2, 0] 0 ∈ [0, 2] 2

For each compactK ⊂M , there is some k0 such thatK ⊂ t−1
(
(−k0 +2, k0 − 2)

)
and hence,

h−k + hk = 0 on K for all k ≥ k0. It follows that τ is a well-defined and smooth function.

b) We show that gradτ is timelike and past directed on M .
For all p ∈ M , we either have gradphk = 0 or gradphk is timelike and past directed. Let
p ∈ t−1

(
(k − 1, k + 1)

)
, i.e. gradphk is timelike and past directed. In particular, the level sets

Sτ0 := τ−1(τ0) are spacelike hypersurfaces.
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c) We show that Sτ0 are actually Cauchy hypersurfaces.
Let c : (a, b) →M be an inextendible, timelike and future directed curve, so by b), we have

d

ds
τ
(
c(s)

)
=
⟨

gradc(s)τ, ċ(s)
⟩
> 0.

Therefore, τ ◦ c is strictly monotoneously increasing, that is, every value τ0 is assumed at most
once and thus, c meets Sτ0 at most once. For some suitably fixed t0 and p ∈ t−1

(
[t0,∞)

)
, we

obtain

τ(p) = h0(p) +
∞∑
k=1

(
h−k(p) + hk(p)

)
≥ −1 +

⌊t0−2⌋∑
k=1

2 = −1 + 2⌊t0 − 2⌋ = 2⌊t0⌋ − 5

by the properties of h−k+hk. Choose τ+ such that 2⌊t0⌋−5 > τ+ > τ0. SinceNt0 is a Cauchy
hypersurface, there is some s0 ∈ (a, b) such that c(s0) ∈ Nt0 , and thus, τ

(
c(s0)

)
≥ τ+ > τ0.

One shows analogously that τ ◦ c also takes values ≤ τ0, so indeed, c meets Sτ0 .

d) Consider the diffeomorphism ϕ : R×S0 →M induced by τ and the flow along gradτ . The
corresponding pulled back metric along ϕ on R × S0 is of the form −β dτ 2 + gτ since the
level sets Sτ0 are spacelike and gradτ⊥Sτ because for any differentiable function, its gradient
vector field is always orthogonal to its level sets.

Before proving Lemma 2.136, we need some further technical Lemma and Whitney’s famous
embedding theorem:

Theorem 2.137 (Whitney). Every n-dimensional differentiable manifold can be embedded
in R2n+1 as a closed submanifold.

Proof. (see, for instance, [Whitney1936]).

Corollary 2.138. Every differentiable manifold can be given a complete Riemannian metric.

Proof. Let M be an n-dimensional, differentiable manifold and ι : M ↪→ R2n+1 the differen-
tiable embedding given by Theorem 2.137 such that ι(M) ⊂ R2n+1 is a closed submanifold.
For g0 the Euclidean standard metric on R2n+1, we obtain a complete Riemannian manifold
(M, ι∗g0). In order to see this, it suffices to show that every sequence in ι(M) that is a Cauchy
sequence with respect to ι∗g0, converges. Let (pi)i∈N ⊂ ι(M) be a Cauchy sequence with
respect to g0. Due to completeness, it converges in R2n+1 to some p, and since ι(M) is closed,
we have p ∈ ι(M), so the claim follows from the Hopf-Rinow-theorem.
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Lemma 2.139. Let dR be the Riemannian distance function given by some complete Rie-
mannian auxiliary metric gR on M . Let N ⊂ M be a closed subset covered by a family
W :=

{
Wα ⊂ M

∣∣ α ∈ I
}

of open subsets of M . Furthermore, assume that every Wα

is contained in an open subset Cα with diam(Cα) := sup
{
dR(p, q)

∣∣ p, q ∈ Cα
}
< 1.

Then there is a countable, locally finite subfamily W′ = {Wj}j∈N ⊂ W covering N . The
corresponding subfamily {Cj}j∈N ⊂ C is locally finite as well.

Proof. Let p ∈ M and Bp(r) the open ball centered at p of radius r > 0. Since (M, gR) is
complete, the closure Bp(r) is compact and so are the subsets

Km := Bp(m)\Bp(m− 1), N := Km ∩N

for all m ∈ N. Note that M ⊂
∪
m∈NKm and consequently, N ⊂

∪
m∈NNm. In fact, due to

compactness, Nm is covered already by finitely many subsets W1,m, . . . ,Wkm,m ∈ W, so

W′ :=
{
Wj,m

∣∣m ∈ N, j = 1, . . . , km
}
,

is countable, and therefore so is also the corresponding subfamily of C. Moreover, W′ covers
N and it is locally finite since Wj,m ∩Wj′,m′ = ∅ for |m−m′| ≥ 3.

Proof of Lemma 2.136. We perform the construction in several steps. For that, let M be
always globally hyperbolic and t := log v−

v+
: M → R Geroch’s continuous and surjective ’time

function’:

a) Let t1 < t2, and we write Ni := Nti , i = 1, 2. For p ∈ N2 and Cp ⊂ I+(N1) a convex
neighborhood of p, we show that there is a smooth function Hp : M → [0,∞) such that

(i) Hp(p) = 1.
(ii) supp(Hp) is compact and contained in Cp ∩ I+(N1).
(iii) For q ∈ J−(N2), the gradient gradqHp is either zero or timelike and past directed.

For τ the time difference function (Definition 2.24)
on Cp and p′ ∈ I−(p) ∩ I+(N1) such that
J+(p

′)∩J−(N2) ⊂ Cp, we defineHp on I−(N2) via

Hp(q) :=

{
eτ(p

′,p)−2−τ(p′,q)−2
, q ∈ I−(N2) ∩ Cp,

0, q ∈ I−(N2)\Cp.

and suitably extend it to all of M with compact
support in Cp. By construction, Hp(p) = e0 = 1
andHp(q) = 0 if q /∈ I+(p

′) since then τ(p′, q) = 0,
so (i) and (ii) are satisfied.

M

N1

N2

Cp

b
p

b p′
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For (iii), consider f : q 7→ 1
2
τ(p′, q)2 on Cp, i.e. f = 0 outside of I+(p′). For q ∈ I+(p

′),
let γ : [0, 1] → Cp be the unique timelike, future directed geodesic from p′ to q, so for all
t, t′ ∈ [0, 1] with t′ < t and c :=

√
−g
(
γ̇(1), γ̇(1)

)
, we obtain

τ
(
γ(t′), γ(t)

)
=

t∫
t′

|γ̇(s)| ds = c(t− t′).

It follows that going forward/backward along γ means going in the direction of maximal
increase/decrease of q 7→ τ(p′, q), i.e. gradγ(t)τ is proportional to γ̇(t). In particular, we have
gradqf = α · γ̇(1) for some α ̸= 0, which is

α = α ·
g
(
γ̇(1), γ̇(1)

)
−c2

= −
g
(
gradqf, γ̇(1)

)
c2

= − 1

c2
d

dt
f
(
γ(t)

)︸ ︷︷ ︸
=− 1

2
c2t2

∣∣∣∣
t=1

= 1.

Therefore, gradqf is timelike and future directed. Note that, where it does not vanish, we have

Hp(q) = exp
(
τ(p′, p)−2 +

1

2
f(q)−1

)
=⇒ gradqHp = −1

2
gradqf ·Hp(q),

which proves (iii) since Hp(q) ≥ 0.

b) We show that there is a smooth function H : M → [0,∞) such that

(i) H = 0 on J−(N1).
(ii) H > 1

2
on N2.

(iii) gradH is timelike past directed on V := H−1
((
0, 1

2

))
∩ I−(N2).

Let dR be the auxiliary metric from Lemma 2.139.
For p ∈ N2, let Cp be a convex neighborhood of p
with diam(Cp) < 1 and Hp as defined in a). Then

H−1
p

((
1

2
,∞
))

=: Wp ⊂ Cp,

N2

Cp

b
p

b p′

Wp

since supp(Hp) ⊂ Cp, and W := {Wp}p∈N2 satisfies the assumptions of Lemma 2.139 with
N := N2. Therefore, we find a countable and locally finite subfamily W′ = {Wpj}j∈N ⊂ W,
which covers N2. Let Wj := Wpj and Hj := Hpj the corresponding functions with compact
support in Cj := Cpj , and we set

H :=
∑
j∈N

Hj. (2.8)

Due to local finiteness of {Cj}j∈N due to Lemma 2.139 and hence also
{
supp(Hj)

}
j∈N, this is

a well-defined and smooth function M → [0,∞). Now (i) and (iii) follow from the respective
properties of the Hj by a), and moreover, for all j ∈ N and p ∈ Wj , we have Hj(p) >

1
2
, so

(ii) follows from N2 ⊂
∪
jWj .
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c) For t1 < t0 < t2 with Cauchy hypersurface N := Nt0 , we show that there is an open set U
with J−(N) ⊂ U ⊂ I−(Nt2) and a function H+ : M → [0,∞) with

(i) supp(H+) ⊂ I+(Nt1)

(ii) For p ∈ U such that H+(p) > 0, gradpH+ is timelike past directed.
(iii) We have H+ and thus gradH+ timelike past directed on J+(N) ∩ U .

We construct U as follows: Choose convex neighborhoods, which coverN and are completely
contained in I−(Nt2) (see, for instance, the construction of H in the proof of b)). Define U
as their union united with I−(N) and set N2 := Nt0 , N1 := Nt1 . Then (2.8) provides such a
function H+.

d) For t0 < t2, let N := Nt0 be the corresponding Cauchy hypersurface and U ⊂ I−(Nt2) an
open neighborhood of J−(N). We show that there is a function H− : M → (−∞, 0] with

(i) supp(H−) ⊂ U

(ii) For p ∈ U , we have either gradpH− = 0 or gradpH− is timelike past directed.
(iii) H− ≡ −1 on J−(N).

The proof is similar to the one for b). We adopt all quantities introduced so far but add "∼"
if they refer to the converse time orientation. For instance, τ̃ denotes the time difference with
respect to the converse time orientation, Ĩ−(N) = I+(N) etc. Let N2 := Nt0 and N1 := Nt2 ,
and we cover N by convex neighborhoods Cp as in the proof of b), which are completely
contained in U . Similarly, defineH via (2.8) withHj replaced by −H̃j , which are constructed
analogously to a). This satisfies (i) and (ii). Note that H(p) < −1

2
for all p ∈ N due to b) (ii)

and the sign, and define H− := Φ ◦H , where Φ: R → R denotes a smooth function with

Φ
∣∣(

−∞,− 1
2

) = −1, Φ′∣∣[
− 1

2
,0
] > 0, Φ(0) = 0.

These properties ensure that (i) and (ii) still hold. Note that a timelike gradient points in the
direction of maximal decrease of a function, so H− is decreasing in past direction by (ii) and
thus, (iii) follows from H−

∣∣
N
< −1

2
.

e) For some t0 ∈ R, let N := Nt0 . We show that there is a function Ĥ := Ĥt0 : M → R such
that (i)-(iii) of Lemma 2.136 are satisfied as well as N ⊂ Vt0 := int

(
supp(gradĤ)

)
.

Let U and H± as in c) and d), and note that (H+ −H−)
∣∣
U
> 0. We set

Ĥt0(p) :=
2H+

H+ −H− − 1

which is a smooth function with Ĥt0

∣∣
M\U ≡ 1 due to supp(H−) ⊂ U . Furthermore,

gradĤt0 = 2 · H
+ · gradH− −H− · gradH+

(H+ −H−)2

vanishes or is timelike past directed, so the properties of H± imply that Ĥt0 does the job.
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f) For t1 < t0 < t2 < t3 < t4, consider the compact subset K ⊂ t−1
(
[t1, t2]

)
. We show that

there is a function H̃ : M → R, which satisfies the assumptions on Ĥ in e) and additionally,
K ⊂ V = int

(
supp(gradĤ)

)
.

For each Nt0 with t0 ∈ [t1, t2], according to e), choose the corresponding Ĥt0 , so K can be
covered by the corresponding open setsVt0 . By compactness, there are finitely manyVt01,...,Vt0,m
already cover K, so the function

H̃ :=
1

m

m∑
i=1

Ĥt0,i

does the job.

g) Let (vj)j∈N ⊂ Rn
Mink be a sequence of timelike vectors from the same cone I+ or I−. We

show that if v :=
∑∞

j=1 vj is convergent, v is timelike as well and contained in the same cone.
Since the causal cone is closed,

∑∞
j=2 is causal, so the claim follows from the fact that the sum

v1+
∑∞

j=2 of a timelike and a causal vector, which lie in the same cone, is timelike. h) Finally,
we show the claim of Lemma 2.136:
Let t1 < t2 < t3 < t4 and {Gj}j∈N be an exhaustion of M be relatively compact subsets, i.e.
open sets such that

Gj is compact, Gj ⊂ Gj+1, M =
∞∪
j=1

Gj.

Furthermore, let Kj := Gj ∩ J+(Nt2) ∩ J−(Nt3), and for each Kj , consider the function
H̃j := H̃ with H̃ given as in f) for K := Kj with Kj ⊂ Vj := int

(
gradH̃j

)
. Due to local

normal convergence, the naive ansatz

h :=
∞∑
j=1

1

2j
· H̃j

defines a continuous R-valued function, but it is neither clear whether it is also smooth nor
if partially differentiation and summation commute. We ensure these properties by slight
adaptions:
Choose a countable and locally finite atlas A := {Wj}j∈N orf M such that every chart
(W,x1, . . . , xn) ∈ A is relatively compact and the restriction of some larger chart containsing
W . Every Gj overlaps with only finitely many Wj,1, . . . ,Wj,kj , and since Dj :=

∪kj
i=1Wj,i is

compact, there is some cj > 1 with H̃j < cj on Dj such that

∀s < j, q ∈ Dj, l1, . . . , ls ∈ {1, . . . , n} :

∣∣∣∣∣ ∂sH̃j

∂xl1∂xl2 . . . ∂xls
(q)

∣∣∣∣∣ < cj.

We define

H∗ :=
∑
j

1

2jcj
· H̃j, (2.9)
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which defines a Cs-function on M for all s: Let j0 ∈ N and W ∈ A with p ∈ Gj0 ∩W .
For all j > max{j0, s}, the summand 1

2jcj
· H̃j and all its partial derivatives up to order s are

bounded by 1
2j

onGj0 ∩W . It follows that the series (2.9) and the series’ of the corresponding
partial derivatives converge uniformly in a neighborhood of p, so the partial derivatives of the
series are given by the series of the respective derivatives of the summands. Thus,H∗ satisfies
all demanded properties of h in Lemma 2.136 except (i). Instead, we have

H∗(J−(Nt1)
)
≡ c− < 0 and H∗(J−(Nt4)

)
≡ c+ > 0.

For any smooth ψ : R → R with ψ′ > 0 and ψ(c±) = ±1, h := ψ ◦H∗ does the job.

We close this section and these lecture notes with an overview about rather recent results and
improvements concerning the characterization of globally hyperbolic Lorentzian manifolds.

Definition 2.140. Let M a globally hyperbolic Lorentzian manifold. A Cauchy time-
function is a smooth function t : M → R with timelike past directed gradient at each point
such that t−1({s}) ⊂M is a Cauchy hypersurface for all s ∈ R.

Note that Cauchy time-functions are strictly monotoneously increasing along any causal future
directed curve, and that Geroch’s theorem 2.133, more precisely its proof, provides the existence
of such a function for every globally hyperbolic Lorentzian manifold. By some further result
(see Theorem 1.2 of [Bernal-Sánchez2006]), also the, in some sense, converse statement holds:

Theorem 2.141 (Bernal-Sánchez 2005). Let M be a globally hyperbolic Lorentzian mani-
fold and S ⊂ M be a spacelike smooth Cauchy hypersurface. Then there exists a Cauchy
time-function t such that S = t−1({0}).

It is moreover possible to relax the causality assumptions as it turns out that, provided com-
pactness of the causal diamonds, causality implies strong causality. For this, we introduce
further properties of spacetimes in the "causal hierarchy of spacetimes":

Definition 2.142. A connected and time-oriented Lorentzian manifold M is called

• reflecting if p ∈ J+(q) ⇔ q ∈ J−(p) for all p, q ∈M .

• non-totally vicious if there is some p ∈M , through which no timelike loop passes.

• future (past) distinguishing if I+(−)(p) = I+(−)(q) implies p = q.
If it is both, we just call it distinguishing.

• causally simple if it is distinguishing and J±(p) ⊂M are closed subsets for all p ∈M .
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With the terms introduced so far, this hierarchy reads:

globally hyperbolic ⇒ causally simple ⇒ strongly causal ⇒ distinguishing

⇒ causal ⇒ chronological ⇒ non-totally vicious.
(2.10)

A complete list and proofs can be found, for instance, [Minguzzi-Sánchez2008]. In fact, for
causal simplicity, it suffices to demand causality instead of being distinguishing:

Proposition 2.143. Let J±(p) ⊂ M be closed subsets for all p ∈ M . Then M is causal if
and only if it is distinguishing.

Proof. We only show the implication that does not follow from (2.10). Assume I+(p) = I−(q)
for some p, q ∈ M and let {qj}j∈N ⊂ M be a sequence with qj << q for all j. Closedness of
J+(p) implies q ∈ J+(p) because

q ∈ I+(q)) = I+(p) = J+(p)

due to Proposition 2.17. Analogously, one shows p ∈ J+(q), i.e. p ≪ q ≪ p, that is p = q
due to causality.

Lemma 2.144. Let M be a connected and time-oriented Lorentzian manifold. Then the
following implications hold:

∀p, q : J(p, q) is compact =⇒ ∀p : J±(p) is closed =⇒ M is reflecting.

Proof. We start with the first arrow: Assume J+(p) was not closed for some p ∈M , so there is
some r ∈ J+(p)\J+(p) and we choose q ∈ I+(r). Due to Proposition 2.17, we find a sequence
{rj}j∈N ⊂ I+(p) with rn → r. Since r ∈ I−(q), which is an open subset, we have rj ≪ q
for all j large enough. Hence, there is a subsequence contained in J(p, q), which converges to
r /∈ J(p, q) and thus contradicts compactness of J(p, q).
For the second arrow, recall that p ∈ I+(q) ⇔ q ∈ I−(p) always holds for all p, q ∈ M by
definition of I±, and hence, the claim follows directly from Proposition 2.17.

Theorem 2.145 (Bernal-Sánchez 2006). Let M be a connected and time-oriented
Lorentzian manifold such that J(p, q) is compact for all p, q ∈M . Then the causal condition
and the strong causal condition are equivalent.
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Proof. By Proposition 2.143 and Lemma 2.144, compactness of the causal diamonds and
causality imply causal simplicity and thus strong causality due to the causal hierarchy (2.10).

Therefore, apart from the condition on the J±-subsets, for global hyperbolicity and causal
simplicity it suffices to demand causality, respectively. In fact, in some circumstances, global
hyperbolicity hold even without such a condition:

Proposition 2.146. A reflecting and non-totally vicious Lorentzian manifold M is chrono-
logical.

Proof. Suppose it was not, i.e. there is some p ∈ M with p ≪ p, and let q ∈ M not be
passed by a timelike loop, that is q /∈ I+(q) ∪ I−(q). It follows that either I+(p) ̸= M or
I−(p) ̸=M since otherwise, we would have q ∈ I±(p) and thus q ≪ p≪ q, which contradicts
the assumption on q. Without loss of generality, we assume I+(p) ̸= M , so let r ∈ ∂I+(p),
that is p ∈ ∂I−(r) by reflectivity. Due to p ≪ p, I+(p) is an open neighborhood of p, which
implies r ∈ I+(p), a contradiction.

Theorem 2.147 (Hounnonkpe-Minguzzi 2019). Let M be a connected, non-compact and
time-oriented Lorentzian manifold of dimension ≥ 3 such that J(p, q) is compact for all
p, q ∈M . Then M is globally hyperbolic.

We only sketch the proof and refer to [Hounnonkpe-Minguzzi2019] for a complete argumen-
tation with references.

Sketch of the proof. a) AssumeM = I±(p) for all p ∈M , so particularlyM = J±(p) and thus
M = J(p, q) for all p, q ∈M , which would imply compactness ofM . Hence,M is non-totally
vicious and also reflecting and thus chronological by Lemma 2.144 and Proposition 2.146.

b) Next assume thatM was not causal, so let c : I →M be a causal curve with a, b ∈ I, a < b
such that c(a) = c(b). However, due to chronology, there cannot be any two points p ≪ q
on c since then p ≪ q ≤ p, which would imply p ≪ p. By Lemma 2.29, c is a geodesic
(up to parametrization), and it particularly follows that, once parametrized, c cannot develop
"corners", that is ċ(a) ∝ ċ(b).
Let p, r ∈ M be points on c and thus r ∈ J±(p) as c is a causal loop, which directly leads
to J±(p) = J±(r). Since c is lightlike, we have ∂I+(c) = ∂I+(p), which is non-empty as it
contains c and yields an achronal subset due to the properties of c. Since J+(p) is a future set,
∂I+(p) is an achronal topological hypersurface by Corollary 2.76 and furthermore Lipschitz.



2.10 Structure of globally hyperbolic Lorentzian manifolds 111

Note that lightlike curves have a domain consisting entirely of critical points, so be the Morse-
Sard theorem its image cannot fill a manifold of dimension ≥ 2. Since dimM ≥ 3, we
therefore find q ∈ ∂I+(p)\c, i.e. q ∈ J+(p) due to closedness and the curve connecting p and
q has to be a lightlike geodesic since otherwise q ∈ I+(p). Recall ∂I+(c) = ∂I+(p), so for all
r ∈ c, there is a lightlike curve connecting r and q, which cannot be given by c. Therefore,
there is only a piecewise lightlike curve connecting r, p and q with a corner at p, which can
be deformed into a timelike one, that is q ∈ I+(r) = I+(p) due to closedness of c. This is a
contradiction to the assumption on q, so c fails to exist.

Clearly, we have to demand non-compactness due to Proposition 2.18. The dimensional
condition comes from the Morse-Sard theorem and indeed, there are counterexamples in
dimension 2:

Example 2.148. Let Gj :=
{(

0
j

)
+
(
1
1

)}
⊂ R2 and con-

sider the cylinder M := R2/
∪
j∈NGj together with the

induced Minkowski metric, i.e. oriented in lightlike di-
rection. Due to continuity of the quotient map, the causal
diamonds are compact since they are in R2

Mink, but it is
not hard to find a closed lightlike curve.
The picture shows that for each p ∈ M , the boundary of
I+(p) is indeed represented by only one lightlike loop, so
an argumentation as in the proof of Theorem 2.147 does
not apply. identify

e0 e1

b
p

I+(p)

lightlike loop
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acausal, 61
acceleration field, 86
achronal, 61
anti-de Sitter space, 12

big crunch singularity, 86

Cauchy development (future, past), 72
Cauchy horizon (future, past), 80
Cauchy hypersurface, 65
Cauchy time-function, 108
Cauchy-Schwarz inequality, 5
causal, 1
causal diamond, 69
causal hierarchy of spacetimes, 108
causality condition, 31
causally simple, 108
chronology condition, 31
Codazzi equation, 17
conjugated points, 42
convex subset, 51
cover, convex, 56

de Sitter space, 8
distinguishing (future/past), 108

edge of an achronal subset, 61
Einstein equations , v
Einstein tensor, 9
Einstein’s static universe, 14
energy of a photon, 16
exponential map, 7

focal point, 42
focal value, 42
Friedman cosmos, 18
fundamental form, second, 17

future directed, 2
future set, 65
future, causal, 25
future, chronological, 25
future-inextendible, 60
future-trapped, 90

Gauß’ formula, 9
Gauß-Lemma, 27
globally hyperbolic, 69

homogeneous space, 12
Horizon problem, 19

index (of a symmetric bilinear form), v
inverse Cauchy-Schwarz inequality, 5
isotropic space, 12

Jacobi equation, 38
Jacobi field, 38

length of a curve, 32
light cone, 1
lightlike, 1
lightlike future-complete, 89
lightlike past-complete, 89
limit sequence, 58
Lorentz boost, 4
Lorentz metric, v
Lorentz transformation, 3
Lorentz-orthonormal, 3
Lorentzian manifold, v

mass density, 18
mean curvature vector, 85
Minkowski space, 1
model spaces, 14
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Neil’s parabola, 19

orientability, time-, 23
orientation, time-, 23

past directed, 2
past set, 65
past, causal, 25
past, chronological, 25
past-trapped, 90
Poincaré transformation, 7
pregeodesic, 35
pressure, 18

quasi-limit, 58

redshift, cosmic, 16
Ricci curvature, 9
Riemannian foliation, 18
Robertson-Walker spacetime, 14

scalar product (Euclidean, Minkowski), 1
Schwarzschild half-plane, 20
Schwarzschild model (exterior, interior),

95

sectional curvature, 9
shape operator, 9
spacelike, 1
spacetime, v
starshaped hull, 54
strong causality condition, 31
strong energy inequality, 86

time difference, 32
time-orientation, 2
time-orientation preserving, 6
time-oriented Lorentzian manifold, 23
timelike, 1
timelike future-complete, 89
timelike past-complete, 89
topological hypersurface, 63
triangle inequality, inverse, 33

vacuum solution, 9, 13
variation, geodesic, 38
variational field, 38, 86
volume of a Riemannian manifold, 97

wavelength of a photon, 16
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