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Abstract

We investigate the Feynman-diagram perturbative expansion of the Chem-Simons 

topological quantum field theory.

After introducing the theory, we compute the one-loop expectation value for knots 

and links, recovering Gauss1 linking number formula for links and the self-linking 

number of a framed knot. The self-linking formula is shown to suffer from an anomaly 

proportional to the total torsion of the knot, whose definition requires ‘framing1 the 

knot. This explains the appearance of framings. In an appendix, we use these results 

to characterize the total torsion of a  curve as the only parametrization independent 

quantity of vanishing scaling dimension having 'local1 variation, explaining why no 

further anomalies are expected.

We then treat rigorously the two loop expectation value of a knot, finding it to 

be finite and invariant under isotopy. We identify the resulting knot invariant to 

essentially be the second coefficient of the Conway polynomial, in agreement with 

Witten's earlier non-perturbative computation.

We give 'formal1 (namely, algebraic with missing analytical details) proofs that the 

perturbative expansion gives manifold and link invariants and suggest that a slight 

generalization of the Feynman rules of the Chern-Simons theory might still give knot 

invariants, possibly new.

We discuss the relation between perturbation theory and the Vassiliev knot in­

variants, solving a  related algebraic problem posed by Birman and Lin.

We compute the stationary phase approximation to the Chem-Simons path in­

tegral with compact and non-compact gauge group, explaining the appearance of 

framings of 3-manifolds and the so called ‘shift in k \  and finding the result in the 

non-compact case not to be a  simple analytic continuation of the result in the compact 

case.

Finally we outline our expectation for the behavior of the theory beyond the one- 

and two-loop rigorous results.
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Chapter 1

The basic idea

1.1 The Chern-Simons path integral

The aim of this thesis is to explain some techniques originally developed by physicists 

studying quantum field theory, and to show how they can be used to derive three 

manifold and knot invariants. The basic idea is simple and to make it even simpler 

we will ignore knots for a  moment and explain it first for the case of a bare three 

manifold. Our invariants will be complex numbers. To get a complex number out of 

a bare three manifold, that has no additional structure on it, is hard. It is a  lot easier 

to get numerical quantities when there is more structure to play with. So we look at 

a three manifold with an additional piece of structure, generate a complex number 

using this additional structure, and then try to integrate our complex number over all 

possible choices of such an additional structure. The additional structure that we will 

pick will be a connection on some pre-picked bundle1 on an oriented three manifold 

M 3, and the complex number that we will generate, the integrand in our program, 

will essentially be the exponential of the ‘Lagrangian’ — the Chern-Simons number 

[18, 20] associated with the connection A:

cs(j4) =  ^  Jf  k(A  A dA + |^4 A A  A v4),

‘Namely, a principal G-bundle for some Lie group G. We also assume that G comes equipped 

with a bilinear non-degenerate invariant form <r on its Lie algebra Q.
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and so our invariant will be3:

W(M3,k) = J^VA  ef t / * » ( 1.1)

(Jfc is an integer parameter whose importance for our purposes will be made clear 

shortly).

To incorporate a  link X  — into the above picture, we have to pick a list

of finite dimensional representations of Q, and supplement the integrand:

W ( M \ X t k ) * l f [ 0Xlf i )  =  J  v A  neW>iy'*“(A) (1-2)
\t« 1  /  7*1

Where3

Ox ,r(A) = truVexp ( J <l»#(g)A,(*(g))) = dimR -  J  dŝ (s)A?{X(s))iC«
+  / -  • • • • (1.3)
J* i<«a

(1.3) is, of course, just the trace of the holonomy of the connection A  along X  in the 

representation fZ, expanded in powers of the connection A.

1.2 Perturbation theory and Feynman diagrams

1.2.1 Introduction

Luckily, the space of all connections A is an affine space and so there should be a 

canonical choice for a measure on it — the Lesbegue measure. Unluckily, A  is an 

infinite dimensional space and so that measure doesn’t really exist. To go around 

this we will use perturbation theory techniques that were originally developed by

3For historical reasons, such integrals over infinite dimensional spaces are called path integrals.

For the origin of the name, check [25].
3In this formula, as throughout the rest of this thesis, the Einstein summation convention applies

— there is an implicit summation over indices (such as i, a, a , ...)  that are repeated twice. Also

notice the difference between try and tr — in this thesis fr will always refer to an invariant bilinear

form on a Lie-algebra, while try is just the usual matrix trace in End[Vj. Many times the subscript

V  will be omitted and matrix traces will simply be denoted by tr.
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physicists to be used in quantum field theory. Instead of attempting to calculate the 

integral (1 .1 ) as it is, we will try to  investigate its asymptotic behavior as Jfc/2 xi —► oo. 

It will turn out that (assuming that infinite dimensional Lesbegue measures do exist) 

to determine this asymptotic behavior requires only evaluating finite dimensional 

integrals represented by so-called “Feynman diagrams”, and therefore it is possible 

to define the asymptotic behavior of (1.1) to be given by those “Feynman diagrams”, 

without ever giving meaning to  the integral (1 .1 ) itself. I will very briefly present 

these techniques here. Further information can be found in any quantum field theory 

textbook such as [39, 24, 32].

To illustrate the technique of Feynman diagrams, let us first look at a simpler 

finite dimensional analogue — let £  be a smooth real-valued function with finitely 

many stationary points {x »}/=i on Euclidean space R w (a ‘Morse* function), and let 

us try to understand the k —f oo asymptotics of:

Z k = [
h

dNx e ikC.

Namely, we will try to find constants Wo, W i , . . .  so that asymptotically

Z - = L

oo
~  £ w f V “ <"> £  (1.4)

R k -too fel m=l K

1.2.2 The stationary phase approximation

The first step, even before Feynman diagrams are introduced, is to use the station­

ary phase principle which says that to zeroth order in 1 /fc, the large k  behavior of 

/  exp ikC  is given by

Here £(x,) is the Hessian matrix of £  at x,-. In other words, det L(xi) is the deter­

minant of the operator £(x,-) : TR  ̂ —► 7*R£[ defining (using the Euclidean inner 

product) the quadratic approximation to /(x )  around x,-. sign L(x.) is the signature
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of that quadratic approximation, i.e. the difference between the number of positive 

and the number of negative eigenvalues of L(x,-).

The intuitive justification of (1.5) is the following. When k  is positive and large 

and x is not near a stationary point, kC varies very rapidly around x, exp ik£  oscillates 

very rapidly, and therefore the points near x  contribute very little to  /  exp ik£ . If x 

is near the stationary point x,-, then in a coordinate system {£„} around x; in which 

L(xi) is diagonal with eigenvalues {A„} we can approximate

£(x)  ~  £(xi) + £  A„£[.
nsl

This means that the contribution to /  exptfcl from the pointB near x,- can be approx­

imated by

Urn dNi  exp ( g  ikU l  ~  * ’)  . (!•«)

where the convergence factor was inserted to account for the cancellations arising

from the rapid oscillations of the integrand for large (. Computing the Gaussian

integral (1 .6 ) and then taking the e —> 0  limit, we get
N

(1 .6 ) =  eikC{li) ( I
n=l 2^xfc|An|

Summing over the stationary points, this is exactly (1.5).

A rigorous and more complete treatment of the stationary phase principle can be 

found in section 7.7 of Hormander’s book [31].

1.2.3 Feynman diagrams

Having computed the k independent constant factor Z  in (1.4), we will next try to 

understand the part of (1.4) that does depend on k. For simplicity, let us now assume 

that £  has just a single stationary point on R w, that this point is the origin, that 

£ ( 0 ) =  0 , and that £  near 0  is given by the sum of a non-degenerate quadratic 

form and a cubic correction to it. Therefore, the integral whose large k  asymptotic 

behavior we want to determine is:

Z k =  dNx  (1.7)
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The general case is not any harder. 

By a simple change of variables,

x  —+ x1 = V kx , (1 .8 )

(suppressing primes)

Z k = k~Nf2 j ^ N dNx  (1 ,9 )

-  / E,  t  ; ^ ( W z ’* T -  ( 1 .1 0 )

And so the m th term in our asymptotic expansion will be given up to a multiplicative 

constant by:

d*xe<i A«e,r, (Ay**’V V ) m =  

this is a simple Gaussian integral, which we can evaluate using standard methods:

/sO

/sO
( i . i i )

dJi dJj dJk ‘

1 [ n  . ~ id  ~ id ~ i9 )m - iiv ij j j ,
(2xi)JV/a\/detA V '1 9Jt dJj dJk }

where Ay is the inverse of Ay: AyA,fc =  S{k.

Now there are no more integrations to perform. The expression that we obtained 

can clearly be expanded further. The result of applying a differential operator to an 

exponential is a polynomial times that same exponential, and as we are evaluating 

this polynomial at 0 , we are interested in its constant term. If we apply the 3m differ­

entiations in (1.11) one at a time and use Leibnitz’ rule to separate the derivatives to 

‘those that act on the exponential’ and ‘those that act on the polynomial’ we see that 

the two types of differentiations have to be paired together — each differentiation 

that acts on the exponential ‘brings down’ a factor J ,  and each differentiation that 

acts on the polynomial eliminates such a factor. Remembering from (1.11) that the 

differentiations come in triples coupled by a Ayt, we can represent the 3m differen­

tiations in (1 .1 1 ) by m ‘cubic’ vertices, and every pairing that contributes to (1 .1 1 ) 

can be represented by a  way of connecting-ihese 3m vertices to make a graph. The
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graphes that are created in this way are called Feynman diagrams. Each vertex in

such a diagram contributes a factor Ay*, and each edge a factor A'* (coming from

the exponent in (1.11)). In summary, to  evaluate (1.11) we calculate a sum over all 

Feynman diagrams with m cubic vertices of order three where the contribution of 

each such diagram is a  product of Ay*’s for each vertex and A'J’s for each arc. 

E xam ple The term with m =  2  will be computed as follows:

w ’ -
_  1  L  - i d - i d - i d „ % - i d - i d  J
_  (2T«)w/»v^tA dJi dJi dJkn d h d J j ,d J v ] J /=0

“= ” 6 ^Ay* di dj dk |  di> dji j  e"

(
l i 3 \  /  a 3  3  \

Ay* di dj dk J I Xi'j'u di> dj> dk> J e‘"

=  ( M p ^ i A  ( « « * W ' V C A "  +  •

The pairings in the last equation are represented by the following diagrams:

*/jb

+9

It is not hard to see that in general m  is also equal to the number of independent loops 

in a diagram. Therefore we will also call the m ’th order term in such an asymptotic 

expansion the m-loop term. It is customary to call the arcs of a  Feynman diagram 

propagators.

1.2.4 Expectation values of polynomials

Recall from (1.2) that the quantity that we are trying to compute is not just J  V A  e,kC, 

but it is the expectation value of a certain function I] <3x,,/i,(A) of A  with respect to 

the measure e,kcV A . The functions O are written explicitly in (1.3) in terms of their 

Taylor series expansion. Therefore, to understand the integral (1 .2 ) we first have to
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understand integrals as in (1.7), only with an additional polynomial P(S) multiplying 

the integrand. Moreover, after rescaling i  as in (1.8) and carrying out exactly the 

same analysis as in (1.9) -  (1.10) with an additional P[x) multiplying each integrand 

we see that in the mth order term in our revised asymptotic expansion will be given 

by:

E  L  d" x (*)(W * * * * ) 'rm« Xm*

where Pmi (z) denotes the part of P(x) which is homogeneous of degree mi in x. 

Noticing that just as before we ended up having to calculate the expectation value 

of a polynomial (Pm, (*)(Ay*a:':rJx*)m2) with respect to a Gaussian measure, we can 

now use the same tricks and replace the above integral by a  sum of ‘revised* Feynman 

diagrams that are also allowed to have a single exceptional vertex of some order mi, 

weighted by the coefficients of Pmt (x).

1.3 The gauge-fixed Lagrangian

1.3.1 Gauge invariance

Recall that M 3 is an oriented three manifold, G is a  Lie group with an invariant 

integral bilinear form tr on its Lie algebra Q and P  —* M 3 a principal G-bundle on 

M \

The Chem-Simons Lagrangian cs(A) is defined for a connection4 A  by:

=  j -  JM3 *(>l A dA  +  | a  A A  A A ),

where k(A i A A t  A j43) j(frj4i A [Aj, A3]) =  jfc([Ai, Aj] A A3), and so relative to 

some choice of coordinates and a trivialization of P 3

« (A ) =  ±  JM/ k* (M d jA k -  dkAi) +  \A i[A h  A*]).

4We will be slightly imprecise and regard A as a (7-valued 1-form on M3.
•in the formula below denotes the totally antisymmetric tensor in three dimensions — =

sign (ijk) if ijk  is a permutation of (1,2,3) and =  0 otherwise.
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• • clefIt is invariant under infinitesimal gauge transformations in which 6A =  —Dc =  

—(<fc +  [A, c]):

4x6cs =  — jf^fc((dc+[A ,c]) AdA +AA d[A ,c]

+2(dc +  [A, c]) A A  A A)

=  — /  *([A, c] A dA  +  A  A [dA, c) — A  A [A, dc] +  2dc A A A A)
Jm *

—2 J^fc[A,c] A A A A 

= / m.*cA[A,[A,A]] = 0.

This implies that cs(A) is invariant under gauge transformations that can be pathwise 

connected to the identity transformation. As it turns out (see [18]), cs(A) is not 

invariant under general gauge transformations and, in fact, in our normalization it is 

defined only up to a  multiple of 2jr. This explains our choice of the normalization — 

we have chosen precisely that normalization for which the exponential in (1 .1 ) is well 

defined.

The gauge invariance of cs(A) has an unpleasant consequence — the stationary 

points of are necessarily not isolated, and the quadratic part of cs(A) near a stationary 

point cannot be non-degenerate. The discussion of Feynman diagrams in the previous 

chapter depended in an essential way on the invertibility of that quadratic part, and 

therefore cannot be applied here without modification.

1.3.2 The Faddeev-Popov procedure

To resolve the above complication we will once again look at our finite dimensional 

analogue, assume that the Lagrangian there, |A jjx'x* +  A i s  invariant under 

the isometrical non-degenerate action of an /-dimensional Lie group G, and try to  

evaluate the integral (1.7) without redundant integration over the orbits of G.

We will visit each orbit of G just once by choosing a function F  : R n -» R* that 

has a unique zero on each (7-orbit, and inserting a S \F (x))  into the integral. If we 

want the result to be the same as the full integration and independent of F  we need 

to add a correction term that corresponds-to the volume of the (7-orbit through x

11



and as the action of G is by isometries this term can be calculated locally at a point 

x  satisfying F(x) = 0. It is given by the inverse ratio of the volume element of the 

Lie-algebra Q of G and its image in R* under the action of G composed with F. That 

is to say — we have to look at8:

Z  =  dNx  W(,F(£)) det (*)•

a  ^  of generators for Q)

We will try to find a  diagrammatic representation for the asymptotic expansion 

of Z . The first additional term in the integral is easy — we can just replace it by its 

Fourier representation:

and then incorporate F tt(x)<f>a as a new term in the Lagrangian. The other new 

term, det (§j)» can be dealt with in two equivalent ways. The first way is to do the 

usual rescaling (1 .8 ) and then to expand det in powers of ^  by first separating 

d e t . ( |0  to a constant part Jo and a part J\(x) which is a series in and then 

using

det ( jo  +  =  detW  £  <r(A”  Jo1)(Am*M®))• (1 -1 2 )

(Am J  is the m th exterior power of the matrix J). Notice that Jq is just a constant 

matrix, while Ji(x) depends on z. It will now be possible to regard (1.12) as a 

polynomial in z  and get a Feynman diagram expansion. It is an exercise in elementary 

algebra to show that the polynomial ( 1 .1 2 ) can itself be incorporated into the the 

Feynman diagrams by introducing a new type of propagator denoted by directed 

dotted lines that corresponds to Jq1 and a collection of new types of vertices each 

connecting two dotted propagators with Bome dashed propagators — depending on 

the exact form of Ji(z). (There will also be some alteration to the combinatorial rule 

of determining the numerical factor multiplying each diagram).

The other way of dealing with det ( § 0  is the one commonly used in the physics 

literature and the one that we will be using here. It involves the idea of anti- 

commutative integration. Non-commutative integration is treated in many places

®This expression for 2  was first derived by Faddeev and Popov in [23].
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(see e.g. [9, 39, 24, 32]), and I will not explain it here in detail. Very briefly, ‘anti- 

commuting’ variables (called ‘ghosts’) and {c*}^ are introduced together

with a reasonable set of rules of integration with respect to them, and it is shown 

that for any matrix J%

J  d'cd'ce'-'V* «  det(J). (1.13)

(This is analogous and complementary to standard Gaussian integration — in which 

the resulting determinant is in the denominator).

Using this, Z  can finally be written as

Z o c j ^  dNx  JRt <t<t> j =  J  eiCtot.

Now we can use almost the same procedure as in (1.9) -  (1.11) to get a diagrammatic 

expansion for the asymptotic behavior of Z . Again it turns out that this involves 

introducing a new propagator and some new vertices.

As we will see below for the case of interest for us — the Chem-Simons Lagrangian 

— we will be able to choose F  in a way so that the quadratic part of the supplemented 

Lagrangian will indeed be invertible.

1.3.3 Gauge-fixing for the Chern-Simons action

Let Ao be an arbitrary stationary point for os, i.e.: (Ao) =  0, which means F** =

dAo +  |[Ao, Ao] =  dAo +  Ao A Ao =  0, let D  denote the exterior derivative d twisted 

by Ao, and for A an ad(P)-valued 1-form on M 3  define C(A) =  cs(Ao +  A):

£(A) =s cs(Ao +  A) =  cs(Ao) +  —  /  te(A A D A  +  |jA A A A A).4jt Jms 3

Choose a trivialization of P, local coordinates {z‘} and a metric gy on M 3 with 

g == det(y.j), and get

(DA)y — diAj -  djAi +  [Ao;, Aj],

and

D< =  y/gg'iDj = J g g %  +  ^ ' [ A o , ,  •].
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Pick the gauge condition £ ZJjA* =  0, and get using the Faddeev-Popov procedure as 

described in the previous subsection:

£tot(A, <f>, C, c) =  kC + -/Ln«, +  £ tk»tU

=  kc3(Ao) + ^ - f  *(j4 A DA  +  A A A)
4x Jm* 3

+ “  JM * (M A *  -  icDi(D' +  ad A{)c) (1.14)

4>, c, and c are Lie-algebra valued fields — <f> =  °̂£?0> c =  c°£?a, and c =  ?*(/„ for a set 

of generators {&} of Q.
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Chapter 2 

The Feynman rules

In this chapter we will write the Feynman rules for the Chern-Simons theory, defined 

by the total Lagrangian (1.14). Looking at (1.14) we see that the quadratic part of 

our total Lagrangian decouples to a  sum of two quadratic forms, one involving A  and 

<f>, and one involving c and c. Therefore, in the diagrammatic expansion of /  e,£*•,

there will be two types of propagators — a dashed line ( ------------ ) representing the

inverse of the A<f> quadratic form, and a directed solid line (----------- ») representing

the inverse of the cc quadratic form. One can also see that the cubic part of Cm  is 

the sum of two terms. The first of these two terms is §A A A  A A  and it corresponds 

to  an order 3 vertex connecting three dashed lines. The second is c.D,[A',c] and 

it corresponds to an order 3 vertex connecting an incoming directed solid line, an 

outgoing directed solid line, and a dashed line. Also, recall that we are not just 

computing /  but something slightly more complicated — f [ \O e ,Cut. Looking 

at equation (1.3), we see that the inclusion of the O'a amounts to adding a vertex of 

a  third type in which a dashed line ends on an ellipse that represents a component of 

the knot.

Other then what was said above, I will skip the precise derivation of the Feynman 

rules, and just describe the end result in the next few pages. For simplicity we will 

restrict our attention to the case of a single (directed) knot X  = {X}. There is no 

difficulty to restrict the rules given below to the case were there is no knot and we 

are trying to compute a 3-manifold invariant, or to enhance these rules to the case
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of a many-component link. X  will be given by a  parametrization X ( a ) : S 1 M 3, 

where S 1 is the oriented unit circle.

2.1 The diagrams

Pick an integer m, the order, the number of loops. To obtain the m1th invariant 

Wm(X), first write all inequivalent connected1 Feynman diagrams of order m. A 

Feynman diagram of order m is a diagram made of a  single9 directed ellipse (called a 

Wilson loop) representing the knot X ,  a total of 2m cubic vertices of three different 

types — type X*A, type cAc, and type A9, and lines (called propagators) connecting 

those vertices. There are two types of propagators. The gauge propagators denoted

by dashed lin e s ------------ , and the ghost propagators denoted by directed solid lines

------------►. The three types of vertices differ by the types of propagators they axe

allowed to connect. In a type X 2A  vertex a gauge propagator meets the Wilson loop 

representing the knot. A type cAc connects a gauge propagator with one incoming and 

one outgoing ghost propagators. Finally, in a type A9 vertex three gauge propagators 

meet. Figure 2.1 is an example for such a diagram. When looking at that figure, 

remember that our diagrams are not allowed to have higher than cubic vertices. It is 

therefore implicitly understood that when four or more lines meet at the same point, 

that point is not a vertex and those lines pass each other without "interaction”.

Two diagrams are called equivalent if one can set a bijective type-preserving corre­

spondence between their vertices, in a way that corresponding vertices are connected 

by the same type, same orientation, and the same number of propagators and Wilson 

loop segments.

For example, if m =  2, the five3  diagrams that we write in this stage are illustrated

1 Restricting our attention to connected diagrams corresponds to computing the asymptotics of

W(M3, X, k)/W (M a, k) instead of that of W(MS, X , It).

3Of course, if we were dealing with a link with T components we would have had T Wilson loops.
sActually, few more such diagrams can be written — but the ones that are not shown in the

figure are all singly connected — namely, they can be broken apart into two components by the

removal of a single arc. It is easy to see that such diagrams have a vanishing Lie-algebraic coefficient
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Figure 2.1. An example for a Feynman diagram of order 4, having 5 type X 2A 

vertices, 2 type eAc vertices, one type A3 vertex, 5 gauge propagators, and 2 

ghost propagators.

in figure 2 .2 .

Figure 2.2. The five diagrams of order 2.

2.2 The procedure

Our invariant Wm(X) will be a sum of finite dimensional integrals, one corresponding 

to each Feynman diagram. Let us concentrate in a single diagram D, and see how to 

write the finite dimensional integral corresponding to it. This will be done in several 

steps:

1. Mark the parts D  as follows. Mark every end of every gauge propagator with a

lowercase letter from i, j , . . .  (thought to represent a  spatial index — an integer

in {1,2,3}). Mark every type cAc or type A3 vertex by a  letter from at, y, . . .

(thought to represent a point in Af3). Add a lowercase letter from a, b, . . .

(thought to represented a basis element of Q) to every end of every propagator.

Finally pick a base point on the Wilson loop and follow the loop according to its

orientation marking the X 2A  vertices encountered along the way by *i, sj, . . .

if the connection Ao of the section 1.3.3 is the zero connection on a trivial bundle. We will ignore 

these diagrams below.



(representing points in the parameter space S l of A1) and marking the segments 

of the Wilson loop cut by these vertices by lowercase greek letters such as a , 

0 , . . .  (thought to represented a  basis element of the representation R). For an 

example, see figure 2.3.

> —

Figure 2.3. An unmarked diagram and its marking.

2. If D  is a  marked diagram, construct an algebraic expression £(D) by taking a 

product of terms, each corresponding to a  part of the diagram D  as follows:

• a i* a#
(a) For each gauge propagator in D, marked, say, as  ------- -■ take the term

(2.1)

V jj(x t y) is defined to be the inverse of the bosonic free part of the La­

grangian C. The symbols “7” and V ” are either numbers t , j  in the range 

1 — 3, or the symbol and with this understood V  is defined by the 

relations: (the differentiations4 are all with respect to x.)

tabDiy/9 9 {iV ^ (x ,y )  = 2wi6ca6(xt y),

ta b D iy /g g V V ^ y )  =  0 ,

tab(ciikD iV ^(x ,y )  + D % ( x ,y ) )  = 2 x i6 $ S (* ,yh  

t a b ^ D j V f o x ^  + V V t i f r y ) )  = 0 .

If one (or both) of the ends of a certain gauge propagator is an X 2A  vertex, 

marked by a point a in the parameter space of X ,  for the purposes of this

4Remember that D  is the covariant derivative with respect to the connection Ag.
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construction simply replace it by the point X(a) €  M 3. For example,

r  - - i  —  v , x ( „ ) ) .

(b) For each ghost propagator in D, marked, say, as £----------* take the term

G is defined to be the inverse of the ghost free part of the Lagrangian C 

— that is to say, it is defined by the relation: (the differentiations are all 

with respect to x.)

UiDiD'CP =  -2 * 6 cJ (x ,y ) .

(c) For each marked A3 vertex in D  use the rule

S'1" <22>
/  m

The symbol tafce essentially represents the structure constants of Q — to 

define t„tc we pick a basis {{?„} of G, compute the structure constants 

[Ga i Gb[ =  SlbGc and use the bilinear form fc to ‘lower’ the index c: t abc =  

ffo ic  where toi =  *(&&)•

(d) For each cAc vertex in D use the rule

Here Dlt  denotes differentiation with respect to z \

acting only on the z-dependence o f the term coming from the ghost propaga­

tor leaving the vertex. For a better understanding, let us look at this term 

together with the terms corresponding to the propagators surrounding our
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vertex:

A

(e) For each marked X 2A  vertex in D  use the rule

- r j — X l’(st ). (2.4)

Here R%p is simply the representation R  expressed in terms of matrices — 

if is a  basis of R, then R(Ga)ra — R%0r0-

(f) Notice that by the restrictions we have on the types of allowed vertices in 

D , the ghost propagators must form a set of disjoint closed loops. The last 

term in £ (£ )  will be

( -1 )" , (2.5)

where F  is the number of such loops.

3. Now integrate the variables s i, sji • • • over S 1 preserving their cyclic order.

4. Divide the resulting integral by a combinatorial factor, S(D). For a diagram 

D, S(D ) is the total number of symmetries of D. A symmetry of a digram D 

is a bijective self-map on the set of vertices and arcs in D, which sends a vertex 

to a vertex of the same type, a propagator to a propagator of the same type, 

a Wilson loop segment to a Wilson loop segment, and preserves beginning and 

end points — the image of the beginning and end points of an arc have to be 

the beginning and end points of the image of that arc. For example, the weights 

S(D ) of the five diagrams in figure 2.2 are 4, 2 , 2 , 4, and 3 respectively, while 

that of the diagram in figure 2.3 is 1.
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Exam ple The complete expression corresponding to the diagram in figure 2.3 is

J  dsj-3 J  d'Wfyd8*
.X l\ 9l)X i,{*2)X*{»3) (D$G**(y,zj) (D [G "'(z,y)) 

■V^\zty)V//{z,X(sl))V^(xyX(s2))Vii:(x,X(s3))

(In this integral the domain definition si <  Sj <  S3  should be read as ‘the set of all 

si.3,3 €  S 1 for which 3 3  is between si and S3  in the chosen orientation of S l \  and not 

as a linear ordering relation).
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Chapter 3

The one-loop contribution

3.1 W hen M3 = R3

Having developed a general technique in the previous chapters, let us now try to apply 

it in few particular cases, and let us start from the simplest case — the contribution 

of order 1/Jfc to W(flat R 3,# )  where X  is a one- or two-component link in R 3. There 

is just one flat connection on R 3 — the trivial one — and we take it to be the 

background connection A0. In this simple case the ghosts and the interaction term 

A  A A A A  don’t  yet come into play, and of the infinitely many terms in the expansion 

of Vexp  only terms up to the second order term will be relevant. That is to say, we 

just need to understand

W  =  J  V A V i j )

n  (dim Ry + j  dsX ^s)A 1(X a{s))I^aa
7=1 V J

>'»»<»* '  
This is just a simple Gaussian integral. We can regard ^ as a (Lie algebra valued) 

three-form on R 3, A as a one-form, and write the quadratic form in our Gaussian 

integral as

\ ■̂ ■l -  ( * ) )
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for L -  = (d+++d)J, where JA = * A  and Jtf> =: —4>. Clearly {LJ)% = A  and therefore 

V, which is essentially the inverse of £_ , is given by V  *= 2*tZ>_ o G& where G& is 

the Green’s function of the (vector +  scalar) Laplacian A. In the Euclidean case this 

Green’s function G& is given by

fai
(tab is the inverse of tab == *(& & ))

4 * \x - y \

for both the scalar and the vector cases, and so the A  part of our propagator is given 

by

~  d  -  ’ s f r . r t  -  m v m =

The terms of order l / k  are given by the diagrams in figure 3.1.

Figure 3.1.

X,
1

Figure 3.1. First order diagrams

3.2 The linking number o f two knots

Let us first consider the left most diagram. Ignoring the constant numerical coefficient 

that the representations R i j  contribute it corresponds to the integral

£ (X l t X i)  = J  ds1ds2Vij(X l (sl ) ,X 3 {si ))X [X i (3.1)

which is the well known Gauss integral representation for 2?ri times the linking number 

of two knots [41]. For the sake of completeness, and also as a preparation for the next 

chapter where we will use similar but more complicated considerations to deal with
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the two loop contribution, we will review here the proof of the invariance of (3.1) 

under isotopies and show that indeed it coincides with the linking number.

It is possible to view V^(x,y) is as a (1, Inform1 on R 3x R 3 where (z, y) €  R 3x R 3, 

* is the one form index for the variable x , and j  is the one form index for the variable 

y. Viewed this way, (3.1) is just that form V  evaluated on the cycle X i  relative to its 

left variable and on the cycle X i  relative to its right variable:

£  = {Xi\V \X3)

The key property required for the invariance proof iB that there exists a (2 ,0)-form 

F  for which

dLV m d*F  (3.2)

away from the diagonal, where dL is the exterior derivative with respect to the left 

variable and dR is the exterior derivative with respect to the right variable. Assuming 

such an F, under an infinitesimal deformation of Xi  we will have (using Stoke’s 

theorem twice)

M  = « * .! V \x ,) = = (S H * W  = »• (3-3)

As for the existence of F, notice that by our derivation of V, V =  2rr i * d o G v

where Gv is the vector part of G&, and therefore *LdLV  =  2xt * d * d  o Gv. By

the commutativity of *d and Gv one gets ★£dLV =  2xtGv o *d* d .  Remembering 

that (?„ is given by an integral kernel, one can integrate by parts Gv o *d*  d to get 

+LdLV = 2 rt *R dR ** dRGv =  2xi(A *+ d R*R dR*R)Gv =  2 x i / + 2  xidR *R dR+R Gv. 

Multiplying from the left by *L we obtain:

dLV  =  dR (2xt *£ *RdR *R G0) +  2xt *L I  =f dRF  +  2x i *L / .

The formula we just got for F  can be expanded to give

ci / v _ ,  i ( x - v ) k 
Ftj,-(xty) —  e'i*2 |a: — y |3 ’

1 An (m, n)-form on M  X AT where M  and N  are smooth manifolds is a section of x^/TM  ®t 'nTN
where x «  : M x N  -* M  and t s  : M  x N  —* N  are the projections. Clearly, one can define operators
dL : {(m,n)-formB} -+ {(m+l,n)-forms}, dR : {(m,n)-forms} —► {(m,n+l)-forms}, etc. in analogy 

with the standard definitions of de-Rham theory.
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and this can be used to verify (3.2) directly. Don’t  let yourself be mislead by the 

apparent equivalence of the formulae for V  and for FI The indices are arranged a 

little differently and verifying (3.2) is a little more than just playing around with 

these indices — some differentiations do have to be carried out and the verification 

is essentially the same calculation as the derivation in this paragraph.

Having shown that /  is indeed an isotopy invariant we can now use it to show 

that it coincides with 2xt times the linking number. Deform the knot so that it will 

be almost planar with only ‘perpendicular crossings’. Now flip one of those crossings 

us shown in figure 3.2. Clearly, when comparing the contribution to £  from before

Figure 3.2. Flipping a crossing

and from after the flip we can integrate the propagator with its endpoints only nearby 

the crossing. If the crossed arcs are e apart,

(after) -  /(before) =  i J =  2ffi. (3.4)

This is exactly the same relation is satisfied by 2tri times the linking number, and 

together with /(unlinked circles) =  0 (3.4) proves that /  is indeed 2xi times the 

linking number. To see that indeed /(unlinked circles) =  0, use the already proven 

isotopy invariance to make sure that the two circles are very small relative to the 

separation between them and then the integral defining /  will tend to zero.
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3.3 The self-linking of a single knot

The situation with the other diagrams in figure 3.1 is a bit more complicated. Let 

£ ,{X \)  be the ‘self-linking’ of X it

£,{Xx) *  = ~ J ds1ds3Vij(X1(si)1X1(s3))A:'(s1) ^ '( s 2). (3.5)

(We have suppressed here the Lie-algebra coefficient which for R  being the defining 

representation of G  =  SU (N) in C u  and for tc being the usual matrix trace can be 

seen to equal N 2 — 1. For more details see chapter 8).

For three vectors A, B , C  it will be convenient to denote eijkA*B2Ckt the volume 

of the parallelepiped spanned by 0, A t B , C  by det(j4|£|C). Using this notation 

  .■ f .  . de t ( x ( . , ) - * ( » , ) i * ( . , )!>•(,,))
* ~ 4  y ’ ■

This integral appears at first sight to be divergent because of the cubic term in the 

denominator. Nevertheless when si and a2 are close, say e apart, X (s i)  — X(s%) ~  c 

and the three vectors Jf(ai) — Jf(s2), AT(si), and X (s2) are within a cone of opening 

~  e. Therefore the volume of the parallelepiped spanned by these three vectors is 

~  e3 which is enough to suppress the singularity of the denominator. Unluckily, the 

argument in (3.3) doesn’t  go through — the key relation (3.2) holds only away from 

the diagonal, and in (3.5) our integration domain does intersect the diagonal.

This point has already been treated by C&alugareanu [14,15] (see also Pohl [37]) 

and later from a physical viewpoint by Polyakov [38] (see also Tze [43]). They found 

that indeed (3.5) is not an invariant, but yet it can be renormalized by the addition 

of a local term (essentially the total torsion of X )  to give an invariant. It turns out 

that to properly define the torsion everywhere X  needs to be ‘framed’, and therefore 

£ ,  wili just be an invariant of framed knots. We will arrive at the same results using 

a somewhat different regularization which makes the current calculation a bit less 

transparent but has a more straightforward generalization for the two-loop case to be 

treated in the next chapters. Let us define £ t by the integral (3.6) that defines £„  

only with the integration domain restricted to

A . =^[|si — s j | >  e].
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Assume that X  undergoes an infinitesimal deformation X  -» X  + SX  = X  +  w. As 

in the invariance proof for the case of a  link, (3.3), Stoke’s theorem was used twice it 

will fail twice for this new case and ££t will pick up four non-zero contributions — 

one from each boundary term in each of the usages of Stoke’s theorem. Denoting the 

evaluation of differential forms on A, by ( 11 )a and on its two boundaries [sj—s2 =  ±e] 

by ( 11 )± we will get: (5  again is the surface spanned by the infinitesimal deformation 

of X )

S£t m

=  (S|dLVpf>A +  <u»M*>+ "  M V |* > -

=  (S[d*F\X)*  +  (u\V\X)+  -

=  (S |F |- )+  -  ( 5 | f  |->_ +  (u \V \X )+ -  (« |V |jr)_ . (3.7)

We will try to understand the e —► 0 limit of 6 £ ,  by expanding (3.7) in powers of 

e. For a a variable in S 1 let X  = A"(s), X  = X (s), u  — w(«),. . . ,

Jf±« =  X ( s ± £ )  ~  X ± e X  + £ x ± £ j t
2 6

Xfct =  X ( s ± e )  ~  X ± e X  + ^ J t

Using these notations, with the dummy integration variable a picked to  be at the 

point where u  is evaluated,

/ * r ■ M  ( -X tiM * .. - -e)
(“ ! ! >* 2 J  |j f  — JCi.1*

< t  d * ( x ± < j t + £ f l u l ± c X  +  £ J t ± f J t )
~ 2 J d‘ -------------------------------------------------------

i f l  e3 d e t f t j y ± | X H X ± § X )

~ 2  J  |e |-3 |X |-3 ( lT £ ^ )

Therefore (notice that the terms of order \  cancel!)

MV|X)+ -  M * W -  + f  •
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Similarilly

i m - l . . J . I J S & S f O l

and therefore (notice that again there is no term of order £)

< s |F |- ) t  -  ( s |F | - ) .  ~ i / ^ j  ■

This finally gives that the e -* 0 limit of S£t is2

“ • = 5 / j f F ( _3W drt(* M* )+ ^ (* l"l* )) (3 ' 8 )

and we can see that indeed 6 £ ,  ^  0 and £ ,  is not a knot invariant.

3.4 The appearance of framings

Vet, some further investigation of S£ , shows that this can be corrected quite easily. 

Define r  to be i/2  times the total torsion of the curve X  — that is to  say i/2  times 

the integral with respect to arc length of the local torsion r (s )  (see [21, pp. 22]) of 

the curve, given by the standard formula

l* M  x * (« )l2

whenever the denominator is non-zero. As I will comment below, under X  —► X  +  w 

one can show that 6 £ ,  and —S t  are given by exactly the same formula (3.8) so if one 

defines

£r = £, + T

then £ t is invariant under isotopies, so long as the denominator in (3.9) remains 

non-zero.
JIt is not hud  to verify that the operations of taking the vuiation under X  —*■ X  +  u  and of 

taking the t  —► 0 limit commute. A huder check of the same kind is described at the end of section 

4.3.3.
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What if that denominator is equal to zero? On the normal bundle of X  there is a 

canonically defined connection defined by the projection back to the normal bundle 

of the usual differentiation along the knot of vector functions normal to it. i f 2 times 

the total holonomy of that connection along the knot is some imaginary number, 

well defined up to a  multiple of x i which depends on a choice of a  trivialization for 

the normal bundle, and whenever r  is defined, it will be shown below to coincide 

with that number. Hence £ r is an invariant of framed knots — a framing is just a 

trivialization of the normal bundle which can be used to  render r  and therefore £ ,  

well-defined. This necessity of framing the knot X  agrees with the results of Witten 

[45], but makes £ r quite useless for an unframed knot — it is a  multiple of xi which 

is well-defined only up to a multiple of xi. For a framed knot it can be shown along 

the same lines as in (3.4) to be xi times the self-linking of a  framed knot — xi times 

the linking number of that knot with its framing.

To complete the discussion we need to demonstrate the two differential geometric 

assertions made above. Very briefly, if n(s) is any vector not tangent to the knot X  

then the holonomy discussed above can be calculated by measuring how much the 

projection of n to the normal bundle fails to be parallel. It is an elementary exercise 

to then find that relative to the framing given by n,

T /  l l  (,jxi»| |X xn |-  J ’ (310)

Setting n =  X  it is easy to see that (3.10) coincides with (3.9) and choosing n to 

be a constant vector that is not parallel to X(a) for any value of s  simplifies it the 

most. One can then vary (3.10) under X  -» X  +  w and integrate by parts until all 

the derivatives of u  disappear. One is left with a huge and unfriendly expression 

that with a tremendous amount of labor and juggling with vector identities can be 

shown to equal (3.8). I could not verify this equality without the aid of a symbolic 

mathematics computer program [51]. Alternatively, one can simplify the formulae 

a bit further by passing to arc-length parametrization and using the FYenet frame 

(T ,N ,B ) (see [21]) where the computation is more tractable.
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3.5 Appendix: The torsion of a space curve

Why is it that the relatively complicated calculation of (3.7)-(3.8) gives the relatively 

simple answer (3.8)? How can we be assured that when considering higher order per- 

turbative invariants we will not get uglier formulas for 6 £ ,  for which the correcting 

procedure of the previous section will not work? A partial answer to these ques­

tions will be presented in this appendix — we will see that 6 £ ,  can essentially be 

characterized as the only functional that has certain invariance properties, and that 

these invariance properties can be deduced directly from the definition of 6 £ ,  as the 

variation of (3.5).

Let us start with a  definition. A 1-form 0  on the space S  of smoothly immersed 

parametrized curves in R 3 will be called a load variation form  if it has the following 

properties:

1 . It is load. Namely, if X  : S 1 —► R 3  is a  smoothly immersed parametrized curve 

and u  : S 1 -» T R 3  =  R 3 is a tangent to E, then fix(u>) is given given by the 

inner product of u> with a  vector valued polynomial P  in (AT|—1 and finitely 

many derivatives of X:

f tx M  =  J p d s  < P ( | * r S X , X , . . . ) , " ) •

The coefficients of P  are, of course, expected to be independent of X  and of w. 

The polynomial P  is uniquely determined by fl.

2. It is invariant — it is independent of the parametrization of X . Namely, if 

/ :  5* —» 5* is an orientation preserving diffeomorphism, then

P ( X o f )  = f P ( X ) o f . (3.11)

3. It is closed as a  1-form on E. Namely, if S denotes exterior differentiation on E, 

then 6 ft — 0 .

4. It is 50(3)-invariant. Namely, if r  is a rotation in 50(3), then P(r o X)  = 

r o P ( X ) .
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S. It has a vanishing scaling dimension. Namely, if C : R 3 —» R 3 is the map given 

by multiplication by a constant c, C(x)  — cz, then P( C  o X )  =  C~1P(X) .

It is easy to verify on apriori grounds that 6 £ ,  is a  local variation form — the 

last four properties follow immediately from the definition of £ ,  in (3.5), while the 

first property follows after a  short glance at (3.7).

T heorem  1 The form  (1° given by

w =L  •“  ( if f  ( #  * * + * * * )." )
is a local variation form and every local variation form is a constant multiple thereof.

P ro o f The fact that ft0 is a local variation form follows from the fact that S£ , is 

such a form, and the computation in section 3.3 which identified 6 £ ,  to be f2°/4vr. 

The uniqueness of ft0  will be proven by writting the most general SO(3)-invariant P  

of vanishing scaling dimension and adjusting the coefficients so that it will be closed 

and parametrization independent.

By a simple enumeration, the most general £0(3)-invariant P  of vanishing scaling 

dimension, which furthermore Beales as (3.11) for locally constant rescalings of the 

parameter s is

l * .  x  x | i | J *  . . ( x x ) 1 *
p ( x )  ~  “  j x p * + W  W ‘

Let /  be an orientation preserving diffeomorphism of R. Simple applications of the 

chain rule of elementary calculus yield

( X o f ) '  = f X o f ,  ( X o f ) "  = f X o f  + f ' X o f ,

( X  o f ) m =  f X  o f  +  3 f f X  o f  + f 3X  o f .  (3.13)

It is now an easy task to substitute the derivatives of X  o f  into (3.12) and to look 

for constants a i- 5 , bi$ for which the equality (3.11) holds. The result is that there
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are three linearly independent solutions:

P °(X ) = (3H)
t 1 f  x X < ,  \X\>± ( X - X ) ' ^

p  { x )  -  w  W  ■  W  "  3 F ‘ +  ” W  ( }

P 2(X)  -  ( * * ) 3 v

P° is the polynomial that gives rise to ft0, and we just have to prove that no other 

linear combination of P°, P 1, and P 2 is closed. As P° is odd under a  reversal of the 

orientation of the ambient R 3  while P l and P 2 are even under such a reversal, we can 

restrict our attention to combinations of the form C\Pl +  c^P2. Let us pick such a 

combination P c, and let us denote the corresponding 1-form on 2  by ft* =  Cift1 +caflJ. 

To show that ft* is not closed, it is enough to find two vector fields u>i,2 on 2  and a 

point X  G 2  for which

Pick the point X  € 2  to be the unit circle in the xy-plane with its natural 

parametrization, and let the vector fields u>i,2 be given in a small neighborhood of 

X  by two orthogonal sections of the normal bundle of X  that ‘rotate’ around X  a 

certain number n of times — as shown in figure 3.3. Let as now look for terms of 

order n3 in fiftc(wi,W2 ). As

it is clear that such terms can come only from the variations of terms in P e that 

involve the third derivative of X .  The first such term is ciX/|AT|s, and its variation 

is

+|.Xj3(iDx • u>2 — • wj)^.

Remembering that |X | =  1 and that <Si -utj =  — ~  (const) n3 ^  0, we see that 

the first term in P e gives a non-vanishing contribution of order n3 to S(lc, proportional
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Figure 3.3. The circle X  and two orthogonal infinitesimal deformations thereof 

that 'rotate' around it n =  3 times. One of the vector fields is illustrated by full 

lines and the other by dashed lines.

to ci. Similarly we can compute (keeping only terms of order n3)

Cl ( “* '  ' 5 ^ )  I J j T *  ~ Cl ((* ' * l)(* " =  0

using the orthogonality of X  and wi.j.

Therefore, in order to have =  0 we must have ci =  0, namely fic =

cjfl*. Computations of exactly the same nature as the above now show that in order 

to have no term proportional to n in £ftc(wi,W2 ) we must have Cj =  0 .

□
R em ark  The above theorem and the results of the previous section combine into 

a somewhat amusing property of the total torsion of a  space curve — it can be 

represented as an integral of a local quantity (3.10), but not in a canonical way ((3.10) 

depends on the non canonical choice of n, and (3.9) is ill defined for some curves). 

Yet its variation S t  =  —6 £ ,  =  —ifl°/2 can be represented canonically as the integral 

of a local quantity, and it is the only global quantity (of vanishing scaling dimension) 

whose variation can be represented in a patgmetrization independent manner.
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R em ark  The only direct proof I know for the crucial equality S t  = —i0,°/2 is 

described in the paragraph proceeding (3.10). This proof is very tedious and uses 

a computer for some of the algebra involved. However, there are Bimple arguments 

that establish directly that S t  — —6 £ ,  (see e.g. [37]). In section 3.3 we saw that 

S£ t  =  *n°/2, and the last two facts together constitute a reasonably simple proof of 

the equality S t  =  —if2°/2.

R em ark  In terms of the Frenet frame (T, N , B ), we have

P °(X ) = k B  -  k t N .
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Chapter 4

The two-loop contribution

4.1 Statement of the problem

Let X  be a, parametrized knot in R 3. In this chapter we will try to understand the 

two-loop contribution Wj to W(flat R 3, A*) — the contribution of order —4jt3 / P .  All 

the terms in the Lagrangian Ci0i come in to play now, and on a flat R 3  our W reads

W(flat R 3,* )  =  J  VAD<f>VcVc trRVexp ( J  d s ^ t(s)Ai(X (s ))j

where

CM =  ^ / R j»r (e^A id jA *  +  2 0  At +  At[Ajt Ak] + 2 c d 0 c  + [A*, c]))

If R  is a unimodular1 representation, terms that have only one interaction point 

with X  have a  vanishing coefficient and therefore the only potential contribution at 

two-loops come from the five diagrams in figure 4.1.

The first two diagrams are divergent because of the integration over the location 

of the interaction vertices in R 3. But as is readily verified and as was shown in [27] 

the integrands in these diagrams are exactly the opposites of each other so if we sum 

them before integrating we get zero. (We will accept at face value that A  and B  

cancel and prove that C + D + E  is a topological invariant. It is very likely that the 

full story is a little more elaborate. In the context of a consistent regularization that

1 Namely, a representation by linear operators of trace sero.
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Figure 4.1. The five two-loop diagrams.

could be used to all orders, A  and B  are likely to cancel only up to an imaginary 

multiple of the one loop contribution and thus what is calculated here is just the real 

part of the two-loop contribution. See chapter 9 and [36,2,17]). Also, it is clear that 

if one ignores the Lie-algebra coefficients of diagrams C and D  and the combinatorial 

coefficients S(C) and S(D ) then their sum is equal to the square of the one-loop one- 

knot contribution that was discussed in the previous chapter. It is therefore possible 

to subtract from W j a multiple of (W j)3 in such a way that diagram C will disappear. 

We will call the resulting quantity VVj. The coefficient of diagram D  in VVj will be the 

difference between the coefficients of diagrams D  and C  in W j, and these coefficients 

differ only because the Lie-Algebra indices are contracted in a slightly different way. 

So if tab *{QaGb), tai is the inverse matrix of tab and we use tab and tab to raise and 

lower Lie-algebra indices, we get3:

'  '  '  ' Vtractions Tor 0  ) V tractions for C )

=  -  P f t B b i B l & R b  (4.1)

The fact that R  is a representation is just the relation

-r * X =t'VtftX, - RZX-,)
3Thc Lie-algebra computation below is a particular case of the USTV ” relation of chapter 8.
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and therefore

(4.1) =  =  -C (E ) .

These are exactly the negatives of the Lie-algebra contractions for diagram E. Taking 

into account the different symmetry factors for these diagrams we finally get (after 

dividing by the Lie algebraic coefficient)

^  = -5 / e(iD)
More explicitly, if diagrams D  and E  are marked as in figure 4.2, then Wa is given by 

, i .  I f ,  . ( X i - X ^ r  ( X t - X i ) ”
m  ~  \X ~ x !if Y x 3' ^ x /

“ i i r  I k *
^ - z f i X i - z Y ' i X z - z r  
\ X i ~ z f  \X2 - z f  \X3 - z f  ’ V '

where X{ stands for Jf(s,*), i =  1 , . . . ,  4.

X (s,)

X(s j)

Figure 4.2. The two contributing diagrams.

In the case of G = SU (N ) ; R  = CN one can calculate3  that in Wa the Lie- 

algebraic coefficients of diagrams C, D, and E  are , and N (N 2 — 1)

respectively, and therefore in this case

___________________________________ ( *  -  jJr< W >*) ■

3See chapter 8 for the details.
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Our aim in the rest of this chapter is to prove the following theorem:

T heorem  2 Let X  be a parametrized knot in R 3. (that is to say, X  is a smooth non­

singular function from S 1 to R 9 that has no self intersections). Then the integrals 

represented by the diagrams D and E  o f figure f .S  are convergent, and their sum VVj 

is an isotopy invariant of the knot X .  This invariant can be identified to be — wa / 6  

minus 4r 2 times the second non trivial coefficient o f the Conway polynomial o f X ,  

whose reduction mod S is  the well known A rf invariant o f X .

4.2 The finiteness of W 2

It still isn’t  clear that the integrals represented by the diagrams D  and E  are finite. 

For diagram D  there appears to be a singularity when three of the integration variables 

are close together but exactly the same analysis that has shown that the self-linking 

integral is finite shows that this integral is also finite. In diagram E  there appears to 

be a problem when two or three of the knot integration variables are close together 

and are close to  2  — the variable of the A3 vertex integration. Up to a constant 

factor, diagram E  represents the integral;

j £ ( E )  =  J ^ , liA* * (« i)^ (s 2 )X*(e3)V«fc( ^ ( s 1),Jf(s,) ,^ (e3 )) (4.3)

where

V ijk (x i , zj, X3) ^  e‘ eanntjjiji> ekyk"T i * * ( x x, 22,23) 6ijki“i" k " T l J k ( x i ,X 2, x 3)

and

The integral defining T  is clearly finite for every choice of distinct X1 - 3  in R 9, but 

it blows up rapidly when some of the x ’s coincide. To show that in spite of this the 

integral (4.3) is finite we need to understand the behavior of T  as two or three of its 

arguments coincide.
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4.2.1 A simpler expression for T

Let us first rewrite T  in a way that will make it easier to handle. Using

4  f 00 1

3VW o * -  TV3/ 2

we can rewrite T  as

T ijk =  JQ <?<* JK, M * t  ~  * ) ’’( * 2  ~  * ) j ( * 3  -  z)kt~ .

Introducing the notation:

A  =  i > -  =  ^
* =  £ A mZm 5 » =  5 3 Am|xm- t l a

we get

r y*(ii, *a, *s) =  2 ^ 7a J0  * a  JR 3  dz(Xl ~  Z ) ’ ( X 2 ”  *)*(** “  2)fce""‘<|,_<|,+,)

=  2 7 ^ / 2  Jo ^ ae~At JRi dz^Xx ~ 1 ~  Z ^ X 2  “  * ~  ZW * 3  ” < ”  z)ke~M,?.

This is just a Gaussian integral with respect to z, and it can be evaluated to give

r *  = |  / ” [Jj ((i, - ()■<»+(» - t y su+(*. - <)*««)
+  ( * 1  -  ()'(*! “  0 ’(x3 -  *)*] •

Changing variables from ̂ Pa to <P\dA (there are just two integrations over the A’s be­

cause they are constrained to satisfy £  Am =  1) we pick the Jacobian 

and get (after evaluating the A  integral)

- 4 J  [fee: «fi? * (;■ -/<"+<■» - w
, (zi -  t)*'(x3 -  t)J'(x3 -  t)*

+4- <4.4)
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4.2.2 Bounding the possible divergence

Clearly the integral (4.3) is translation invariant, and invariant under reparametrizar 

tions of X  of the form a —» a +  so* So in the investigation of its possible divergencies 

we can assume that, say, 0  is the midpoint between ea and S3 , s i is farther away from 

sj or s3  than the distance between these two:

s\ = r  ; 8 2 = -r jr  ; s3 = qr

and that Af(0) =  0. In this case we can write
t    r etf*

T iikiX r , X ^ r,X rr) =  4 j  f Xy /XAiX*  +  4 ~ - (4.5)

with

s[*  &  (Xr  -  ty s *  +  (X -VT -  t)>6 ki +  (*„T -  i ) W ,  

s f  ^  ( XT- t ) i( X - „ r - t y ( X rtT- t ) k.

The problematic regions are when 17 or r  are small, and we need to be able to estimate 

integrals like those in (4.5) for such values of 17 and r .

Lem m a 4.2.1 Let A , B , and C be the three vertices o f a triangle with sides |A -B | ~  

\A—C\ ~  r ,  and \B —C\ ~  rjr with 17 <  1/3 (see figure j.S). For positive X 's satisfying

1/2 10

Figure 4.3. The triangle ABC,

Xi +  A3 +  A3  =  1 define:

t  ~  Aii4 +  AjB  +  A3C 

s  =  Aj|j4 — <|a +  Xi[B —1 |2 +  AsiC — <|a
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Finally let A a be one o f { ( 1  — Ai), A3 , A3 }, A b  be one of {Aj, (1 — Aa), A3 }, and A c  

be one o f {Ai,A3,(1 — A3 )},

In this situation there exists constants Ci_* independent o f if and r  for which:

(4.6)

(4.7)

C3 if  neither o f  Ab  or Ac is

1?T* chosen to be Ai,

C4 i f  exactly one o f Ab , Ac is

1)Te chosen to be Ai,

Cs i f  both of A b  and Ac are

T* chosen to be Ai.

(4.8)

P ro o f We will write Aj =  (1 — Ai)0 and A3  =  (1 — Ai)0 where 0 <  0 <  1 and 

0 = 1 — 9. c will denote a positive constant that is allowed to change from line to line. 

It is easy to read from the geometry of figure 4.3 that when Ai <  1/2, (equivalently, 

when t is in the left portion of figure 4.3)

s |Al<j  > c (0P]B -  C \2 +  903\B -  C\* +  Ajr3)  > cr3 ( % 3 +  A , ) . (4.9)

Also, it is clear that the major contribution to (4.6), (4.7), and (4.8) comes from that 

region when Ai <  1/2, and therefore (4.9) can be used to give upper bounds for the 

integrals we are considering.

Taking for example (4.8) with A> =  (1 — Ai), Ab =  (1 — A2), and Ac = (1 -  A3) 

we get

[ 4 ^ 1  <  c f d t f
J  v L a3  J Jo jo T® (M rt +  X .Y

The A] integral can be explicitly evaluated. In fact, for a small a  one has

( ‘ a \  ^  -  ~ V ^  4 . 4 . arctan( ^ )  _ 1
Jo (a 3 +  A) 3 2 (a +  a 3 ) 2 4as ( 0  +  a 3) 4a3  a 3
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and
ra . y/AA _  >/®aa 5>/a 3 a rc ta n (^ )  £

•/o (aJ +  A) 3  2(a +  a 2) 3 4 (a +  a*) 4or <  a

and plugging these two estimates into (4.10) gives the required result. The other 

assertions of the lemma are proved along the same lines.
□

4.2.3 Proof of the finiteness of diagram E

It is sufficient to show that

T iik(X r, X . nT1X VT) <c / T .  (4.11)

Let us first deal with the contribution coming from S[’k. Expanding S[*k in powers 

of Ai,
5 jj* =  s o.ii* +  Ai5 i ,yfc (412)

we can use (4.6) and (4.7) and then all that is left to  prove is:

6  i,« 'i '* '^ i'( ’-)^ >,( - ^ ) ^ * '(» ? r )5 r *  =  0 ( t f1~pT3) ; p  =  0,1. (4.13)

This can be done by expanding all the terms in the above expressions once in powers 

of T) and once in powers of r  and showing that the low order coefficients in each of 

these expansions are zero. It is not hard to do it by hand, but as we are going to 

encounter some very similar but a bit harder expansions later on we will not do it 

here but postpone it to the appendix where it will be shown how all these expansions 

can be carried out in a uniform way using a computer.

The terms involving S ^ k are dealt with in a very similar way. Clearly, each of the 

factors of S'jk is made of three summands, whose coefficients exactly correspond to 

the various possibilities for choosing Ayi, As, and Ac  in the lemma 4.2.1. Keeping 

(X T — t)’ unexpanded and expanding only the last two factors of S ^ k in powers of Ai,

S f  =  S°2" k +  A +  A l S l ’iik, (4.14)
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and keeping in mind (4.8) what is left to prove is

O ( j j t )  for p  =  0 ,

0 ( ijt5) for p  =  1 , (4.15)

0 ( t 5) for p =  2 .

Again, the relevant expansions will be shown to vanish to  the required order in the 

appendix using a computer.

4.3 The invariance of W 2

4.3.1 The regularized W2

We will now show that Wj is indeed a knot invariant — that it is not changed 

under infinitesimal deformations. The proof presented here should be similar in spirit 

to invariance proofs (that are yet to be found) of higher terms in the perturbative 

expansion — we will first write a diagrammatic argument, and then supplement it 

with the required analytical details. As in the case of the analysis of the variation 

of the self linking number in the previous chapter, in analyzing the variation of VVj 

we will need take derivatives of Vm, and of Vij near the diagonal where there are 

singularities which will prevent a straight-forward invariance proof. To avoid these 

singular points define Wj,e to be given by the same integrals f £(D)  and f £ (E)  as 

Wj, only with the integration domain restricted by the condition that the s ’s would 

be at least e apart — for * ^  j  we require

|si -  Sj| >  e. (4.16)

We will denote these integrals by Dt and Etl and the finiteness of Wj that was proven 

above just means

w 2>< =  -  +  j E ,  -► ~ ~ \ j  £(D) + y € ( E )  =  m .  (4.17)
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4.3.2 The variation of W2

We will now vary Dt and Et under an infinitesimal deformation of X  given by X  -♦ 

X + u . It will be a lot more instructive to perform those calculations diagrammatically 

instead of working with the explicit formulae given for D and E  in (4.2). First, let 

us vary Dt . When X  moves to X  +  u  it swaps an infinitesimal surface 5 , and our 

quantity of interest 6 Dt is given by the evaluation of dLV  on S  which after using 

the key relation (3.2) reduces to  diagrams Z73 and X)4 and by two boundary terms, 

diagrams D1 and D2:

D2D1

+ 4

D3 D4

In these diagrams a dashed line represents as before the gauge propagator Vy 

evaluated between the two vectors marked at its ends, a dotted represents the (2 , 0 )- 

form F , a d  symbol stands for exterior differentiation applied to the nearby end of 

the nearby propagator, and an e between two interaction points on the knot means 

that these points are exactly e apart.
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Similarly we can vary Et:

3

The diagram 253 appears because (3.2) is true only off diagonal. Actually dLV  

and —dRF  differ by a of a 6 -function as was shown in the derivation of (3.2). 

Integrating by parts and using Leibnitz’s rule we get:
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E6

■ -E4+E5-

E9

4.3.3 The invariance proof

To show that Wa is indeed an invariant we first need to show that the limit as e —♦ 0 

of 6 (—^De +  |/? e) vanishes. That is, we need to show that

lim —£ 1  +  £ 2  — £ 3  +  £ 4  +  E l  — E2 +  £3  — £4  +  E5 — £ 6  +  E l  +  £ 8  — E9 =  0.e-*0

In fact, we will show that

lim - D l  +  £ 2  +  £3  =  0, (4.18)

lim - £ 3  +  D i -  E l  +  £ 5  =  0, (4.19)

and

lim £ l - £ 2 - £ 6  +  £ 7  +  £ 8 - £ 9  =  0, (4.20)

independently. For convenience, the symbol /( will denote integration in which the 

integration variables are constrained to satisfy the restrictions (4.16), we will write 

X„ for X(s„), and similarly for X v, X v and 

P ro o f of (4.18) Diagram £1  represents the integral

— £1 =  - J t ds1. 34 X i V ij(X 3 ,X 1 )X{Vki{Xt ,X i )X ,3 ; s4 =  s3  +  c, (4.21)
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diagram D2 reads

D2  = J d 3 1. 3X ^ k4 Vii(X 3 tX l )MVu{Xi , X 3)X ,3 ; e4 =  e3 +  e, (4.22) 

and diagram E2 is given by

E3 = -  j d * x ^ X t e ^ ^ V t A X * X M W X z > X t ) $ v  (4.23)

Using

w " “* = « $ - « &

we can write E3 =  E3 '  +  E3" with

E3' =  -  jf  dst^ X izwkVij{X3, X l)X}1Vk,(X3, X 3)X ‘3, (4.24)

and

E3" = j  ds1- 3 X kwiVij(X 3 , X l )XiVki(X3 , X 3)X[.. (4.25)

The nearness of S3 and s4 clearly implies that the integrand in (4.21) converges to the 

integrand of (4.25) and the integrand in (4.22) converges to the integrand of (4.24) as 

e —► 0. At the region where si and S3 are farther from 53,4 than some fixed but small 

positive constant T , there is no problem with commuting integration with talcing the 

c - t  0  limit. Concentrating first on comparing diagrams 171 and E3n we see that 

nothing particularly harmful happens if just |s< — S3 1 is small — as it was shown in 

chapter 3 the integrand in this case remains finite. Otherwise, we are looking at one 

of the following exceptional cases (assuming for simplicity that s4 =  0 , S3 =  —e, and 

* 4  =  0):

Case 1: Disregarding the propagator connecting X 3 and X 4 =  0 the difference

- D l  +  E3" reads:

, t ,  d e t ^ - . ) | i , | x ( - £) - X , )  , T t d e t(u (0 ) |* , |X ( 0 ) - X , )

I  *■  i x m - x . p   I  * ■  iir m - r a 5 ' ( ’

Expanding the integrands in (4.26) in powers of Si we can ignore all terms of order 

smaller than l / s j  — evaluating the integrals in (4.26) for these terms would give a 

result bounded by a constant multiple of T  in the e -> 0  limit, and as T  was chosen
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Figure 4.4. The two exceptional cases for DI «-► EZ".

small we can indeed ignore the contribution to (4.26) coming from these terms. There 

are no terms of order higher than 1/sj in (4.26) and the term of order 1/si reads:

i T d {  1 det (<*(-«) !* (-« )! * ( - « ) )  i det * (° ) )  \
7* ^ ( s j + e )  |X ( - « ) | 3  2si |AT(0) | 3  )

at the £ —* 0  limit we get

det (w(0) |X(0)| X(0)) fTj  (  1 M  det (w(0) JaT(0)| X(0)) log 2 
2pf(0)|3 /  M s , + e  a i / - " -  2|X(0)|3

(4.27)

Reinstalling the propagator connecting X j  and X 4 and the integration over sj we get 

the only non-vanishing contribution to — D I +  E3H.

Case 2: Here the e —> 0 limit is in fact zero. To see that, one does analysis similar to 

the previous case, and notices that « 2  is integrated over an interval of length smaller 

than s i and thus remembering that the propagator connecting and X 4 is finite 

even near the diagonal the S2 integral is ~  Si, and this additional factor is sufficient 

to make the contribution coming from this case vanish.
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A similar analysis to the above shows that the only non-vanishing contribution 

to D2 — £ 3 ' comes from the case parallel to case 1 here, and that, in fact, these 

contributions exactly cancel.
□

P ro o f o f (4.19) Here are the integrals corresponding to the relevant diagrams: 

-D 3  =  -  dsI- aX*Vn (X a,X 4 )X lX iv iF ii,- (X t »*>), ; *  =  4  +  e, (4.28) 

D i =  j f da1. aX k3 Vkl(X 3 ,X i t f l X t e F i j A X i ,X 4), ! *  =  *s +  e, (4.29) 

—E i  =  (43°)

Eb =  j [  d a ^ X U k m n t^ V ^ X a ,  Xa) i ' ^ . . ( X , , X 3)X 'M -  (4-31)

Using

ekmntmnp =  28*

and the nearness of s3  and s+ it is clear that so long as X \  and X? are far away from 

X 3  the integrands of (4.28) and of (4.29) converge to the integrands of (4.31) and of 

(4.30) respectively, and that there is no problem with commuting integration with 

talcing the c —»0 limit. The cases when X \  and X 3 are not far away from X 3  can be 

treated in the same way as in the previous proof.

□
P ro o f o f (4.20) It will be convenient here to replace e by 2e and then take the e —♦ 0 

limit. In all of the relevant diagrams two of the s ’s are constrained to be exactly 2e 

apart and the third to  be farther then 2t from any of the previous two. It is harmless 

to assume that s3 =  —e, s3 = e, Jf(0 ) =  0, and si =  r  with |r | > 3e. We will denote 

the ratio e /r  by t).

With these notations one can see that the integrands corresponding to our dia­

grams can be written in pairs as follows: (ignoring the overall coefficient — 1/16tt)

E I - E 2  =  E 6 v W % u ! jh j g irT tik(X r,X - to r ,X fl9r)
0 =±

- E 6 - E 9  =  £  emni€ij)cX™u;?Xj}llTT i*k(XT, X - ^ X ^ )
P=±

£ 7 +  £ 8  =  £  w < K * - ^ V * T r ,7‘( * r ,
0=±

49



Remembering (4.5), (4.12), (4.14), and lemma 5.1 we see that in considering the 

e - » 0  limit we just need to show that

! i s / r > r  E  (

Sf** -  0 . (4.32)

and that

lim [  =  0 (T )  (4.33)
«-O j3 * < |r |< r  1faT

where T  is some fixed small positive number and a and b are the exponents of q and 

r  as in equations (4.6), (4.7), and (4.8).

As in (4.32) r  is bounded from below we can use e =  jjt to replace the limit there 

by an q - 4  0  limit and then all that is required is to  show that the summand there is 

~  q“+1. The relevant algebra will be carried out in the appendix using a computer.

The integration domain in (4.33) is symmetric and therefore we can replace the 

integration there with an integration over 3c <  r  <  T, replacing the integrand with

E +  em nieijkX^X 1̂  (4.34)
0  = ±
o r =  ±

+ emnjeikiXmff^uZp^ar) ^lfj|T_aT •

Simply integrating over r  now shows that to conclude the invariance proof we just 

need to show that (4.34) =  0(rjaTb). Again, the relevant algebra will be carried out 

in the appendix using a computer.

□
Conclusion o f th e  invariance p roo f W hat we’ve shown so far is that

lim5)V2|£ =  0 (4.35)e-*0

but what we need is

Namely, we need to know that we can “commute” the c —» 0 limit with taking the 

variation 6 / 6 u. This follows from the following fact:
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Fact If .Y^ :-+ R 3; t  €  [-1 ,1] is & smooth family of parametrized knots, then the 

convergences in (4.17) and in (4.35) are uniform in t.

To prove this fact simply observe that all the estimates in section 4.2 and in this 

section were, in fact, uniform for families of parametrized knots having a uniform 

upper bound on their first, second and third derivatives, a uniform lower bound 

on their first derivative, and a  uniform lower bound on their distance from “self- 

intersecting”.

□

4.4 Identifying VV2

The last assertion of theorem 2 is that the invariant W j that we have produced 

is essentially the second non-zero coefficient in the Conway polynomial of X .  The 

Conway polynomial is defined by its behavior under flipping a crossing in a planar 

projection, so we will try to understand how W j changes under such a flip.

Figure 4.5. The change in VV2 under a flip.

Very briefly, it is clear that the difference in the value of VV2 before and after a 

flip comes from a  singularity in either of VJj* or at the point where the flip occurs. 

Using the invariance that we have just proven one can ‘straighten’ the knot near a 

crossing point before flipping, and then it is easy to check in this case Vijk contracted 

with the tangents of the knot in fact vanishes near the crossing point except if one of
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its arguments is on the upper branch of the crossing and the other is on the lower. 

Vijk is then inversely proportional to the distance between its two arguments, and 

the fact that 1/r is integrable on R 3 shows that this singularity can be neglected. 

Similarly considering diagram D  one finds that the only singularity that remains is 

the one that occurs when the two arguments of the same propagator are arranged as 

propagator 1 in figure 4.5, and the other propagator can then be assumed to be away 

from the crossing. Repeating (3.4) for propagator 1 and then integrating over the 

location of the other propagator, marked 2  in the figure, it is clear that effectively we 

are calculating the linking number of the two knots that are created if the original 

knot is cut at the crossing as in the figure. It is easy to check from the definitions (see 

[34]) that this is exactly the same relation as the one that is satisfied by the second 

non-zero coefficient in the Conway polynomial of X , and so they coincide up to a 

constant shift. This constant shift is given by VVj(unknotted circle). By invariance 

we can just calculate VVj(the unit circle in the X Y  plane) and an explicit calculation 

shows (see [28]) that

K3
VVj(the unit circle in the X Y  plane) =  ——.

o

This concludes the proof of theorem 2.

4.5 Appendix: Some algebra

We include here the short computer routine that verifies few assertions that were 

made in sections 4 and 4.3. First, the routine itself. It is written in Mathematical* 

— a symbolic mathematics language. For more information about this language see 

[51].

X[mu_] :■ {Xlbu],X2[mu],X3bu]} ; Xd[mu_] :■ D[XCnu],nu] / .  nu -> mu 
XI [0]*X2[0]"X3f0]»0 ; wDnu_] :■ -frlOmi], w2[mu], «3[mu]> 
sar[axpr_] :■ Ssriaa[#,{var,0 ,ord> ]t /« axpr 
Xdtau ■ sar[Xd[a tau]] ; vtau ■ ser[v[a tau]]
Xdeps ■ sar[Xd[b ata tau]] ; vaps ■ sar[v[b ata tau]]
Xdnegapa ■ sar[Xd[-b ata tau]] ; vnagaps ■ ser[v[-b ata tau]]
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t  •  lambdal X[a tau] ♦ lambda2 X[-b ata tau] ♦ lambdas X[b ata tau] 
z l * X[a tau] -  t  ; z2 ■ X[-b ata tau] -  t  ; z3 ■ X[b ata tau] - t  
dalta * IdsntityMatrix[3]
S-Tabla[sar[Hhich[

var«ata ,< (zl[[i]]dalta[[j,k ]]+z2[[j]]dalta[C k,i]]+z3tC k]]dalta[[i,j]]) 

/ .  lambdal -> c2 ata , 
z l [ [ i ] ]  (Expand [z2[[J]]z3[[k]]]

/ .  <lambdal*2 -> cB s ta ‘3 , lambdal -> c4 ata‘2»/eta"2}, 
var»»tau,<(zl CCi]3dalta[[j ,k]]+z2[[j]]d*lta[D t,i]]

+z3[[k]]d*lta[[i, j] ] ) /ta u , zl[[i]]z2[[j]]z3[C k]]/tau‘3}]]. 
<i,3>,{j.3}.<k,3}]

sign ■ (Signatura /C (perm ■ Permutations[<1,2,3}]))
eps[1_] :-Sum[sign[[p]]sign[[q]] (fC6Join[p«rm[[p]] ,parm[[q]]]) ,<p.6},<q,6}] 
sixCf.] :-eps[f [43,41,44,46,42,4B]ft] + aps[f [46,41,44,42,43,46]ft]

e[type_] :■
siz[S [[« l,i2 ,t3 .type]]Xdtau[[14]]Xdnegeps[[45]]Xdaps[[46]]ft] / .  b-> 1 

a 12 [type.]: -s ix  [S [ [41,42,43 .type]] Xdtau [ [44] ] vnegeps [ [45] ] Xdaps [ [46] ] ft] 
s69 [type.] :»sps [S [ [43,45,46, type] ] vt au [ [41] ] Xdtau [ [42] ] Xdaps [ [44] ] ft] 
e78[type_] :>aps[S[[46,43,45.type]] Xdnegeps [[41]]snagaps[[42]]Xdtau[[44]]t] 
do [type.] :«Sum[al2[typa] + e69[type] + s78[type] , <b,-l,l,2>]

The first paragraph of the routine defines X ,  X ,  w , and their expansions with 

respect to the externally defined variable var to order ord at the points a r ,  — e =  

—0t]T , and e =  f a r .

The second paragraph defines S [[ i,j  ,k ,l  or 2]] to be expanded with re­

spect to the relevant variable. S is defined d ifferen tly for var=ata then for var=tau 

— if v ar-e ta  then (4.6) and (4.7) mean that in one can make the replacement 

lambdal -> c2 s ta  while (4.8) means that in S 2 the replacement <lambdal',2 -> 

cS s ta ‘3 , lambdal -> c4 ata‘2} can be made. It is easy to see that after the latter
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replacement has been made the expansion for S3 will begin at »?J, and this justifies 

dividing it by tjJ and expanding everything to an order two less than is mentioned in 

sections 4 and 4.3. If var=tau the expansions for zl, z2, and z3 begin at r ,  and thus 

the definitions S [ [ i , j ,k , l ] ]=  5JJ*/T and S [[i,j,k ,2 ]]=  S ^ / t * .  This allows us to 

expand S [[l, j ,k ,l] ]  (S [[i,J ,k ,2 ]]) to an order lower by one (three) than the order 

required for S[*k (Si?k).

The third paragraph contains the routines that do the e... and the 6  contractions,

and the last paragraph defines the relevant diagrams.

We now include a Mathematicacu session produced using the above routine, for 

which I have chosen the not very imaginative name “file’'.

Mathaaatica (sun4) 1.2 (Hovanbar 6, 1989) [With pra-loadad data] 
by S. Wolfran, D. Grayson, R. Kaadar, H. Cajtin,

S. Onohundro, 0. Balia an and J. Xalpar 
with I .  Rivin and D. Vithoff 
Copyright 1988,1989 Volfran Rasaarch Inc.

In [l]:«  varaata; ord«l; «  f i la

In[2] :■ ■Ca[l] , a[2]> / .  {a->l , ata->0>

Out[2]" -CO, 0}

In[3] :* -Cda[l] , da[2]> / .  a->l

2 2 

0ut[3]* fO[ata] , Ofata] >

In [4]:* var»tau; ord-1; «  f i la
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Chapter 5 

Some non-perturbative results

In [45] Witten has shown that the computation of (1.2) can be reduced to a problem 

in conformal field theory which can be solved giving a non-perturbative definition for 

the infinite dimensional integral (1.2). Before going into our perturbative analysis, 

let as first review his non-perturbative results.

Witten’s definition is quite successful in that he can show how to use it to evaluate

(1.2) precisely for every three manifold M 3 and link X  in it, and not just calculate 

its leading large k asymptotics for R 3, but it is less elementary and very particular to 

the Chem-Simons theory. There doesn’t seem to be any direct relation between his 

way of calculating and the perturbative calculation shown here, and it is interesting 

to compare the two view points. Let us start by reviewing his results for a link in 

R 3, as presented in [46]. As is shown there, W (R3, A', k) considered as a function of 

k and the gauge group G =  SU{N) is in fact up to a simple change of variable the 

HOMFLY [26] polynomial of the link X , which itself is a  generalization of the Jones 

polynomial of X .

Witten shows that to define W (R3, X , k) unambiguously one needs to consider 

framed links instead of just links. That is to say, each component X , of the link 

has to be accompanied with a prescribed ‘framing’ — a choice up to  homotopy of a 

nowhere vanishing section Fy of the normal bundle of X ,, or, more geometrically, a 

choice of a ‘shadow’ for each component as in the figure 5.1.

According to  Witten, if the framing of link changes by a single twist, W get
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Figure 5.1. A knot with two of its possible framings. (The arrows indicate the 

differences between the two framings)

multiplied by e3” *, where k  is a real number determined by k and the representation 

Ry corresponding to  the component of the link on which the twist was made. This is 

shown schematically in figure 5.2.

Negative twist Positive twist

Figure 5.2. The change in W under a single twist.

In the case where the underlying group G is SU(N) for some positive integer N y 

and all the representations Ay are just the defining representation of SU(N) in C Nt 

k  is given by:

h = 2N Q f + k) (5,1)
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The difference between any two framings of a  single knot is measured using a 

single integer — the number of signed twists required to change one framing to the 

other, and the above relation shows that for a link with several components we can in 

fact consider two framings to be equivalent if the total number of twists required to 

switch from one framing to the other is zero, counting all twists on all the components 

of the given link. With this identification for each link X  — {X7} in R 3 there is a 

unique preferred framing — the framing {£,} for which the total linking number of 

X  is 0:

'fti'B
In this framing, Witten has shown that W (R3, X % k) has the following three properties 

which allows one to calculate it for any given link:

1. For

q = eM s (5.2)

one has
VW  _  o-JV/3

W(unknotted circle in R 3, k )  =  — q -i/i' (5.3)

(In fact, this relation can be derived from the following two by using the third 

relation on the unknot whose planar projection is oo)

2. If the link X  is the unlinked  union of X\ and X% then

W (R3 ,*,Jfc) =  W (R3, ATi, it) W (R3, «%j, k) (5.4)

3. Most important — the so called “skein relation” — if the three links Lo, L+, 

and L -  differ only inside a small ball where they look as in figure 5.3,

then the following relation holds:

-  < ^ aI+  +  (?l/J -  ? - , / 3 ) I 0 +  q~m L .  =  0 (5.5)

where for brevity we wrote L. for W (R3, L., k ) .
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Figure S.3. The links involved in the skein relation.

To compare these results with ours we first need to expand them in powers of 1/k, 

and thus we will write for a link L.

W (R 3 f£ .,* )~JV * +  !  +  i .

From (5.3) and (5.4) it is clear that c. is just the number of components of the link 

L. if L. is the unlinked union of unknotted circles. In addition, the zeroth order part 

of (5.5) reads —N 1*  +  0 +  N c~ =  0 and as L+ and £_ always have the same number 

of components it means that the number of components of an arbitrary L. is given 

by c.. The terms of orders 1/k  and 1/k2 in (5.5) give the following two relations:

a + - a -  = 2xi(N N c* - N co), (5.6)

b+ — =  2xtao +  2iriN(NNc± — Ar°0) — x iN (a+ +  a_). (5.7)

If l t w is the same one component link as L, only with its framing twisted posi­

tively once, expanding the relation in figure 5.2 in powers of 1/k  gives two additional 

relations:

a = atw + x i(N 2- l )  (5.8)

b m 5*®+ 2 + | ( N 2 -  1)) . (5.9)

T heorem  3 The following assertions hold for links in R 3:

1. For a two component link L+, f j ^ z i ) a+ ** times the linking number of its 

two components.
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2. For a single component knot L+ not necessarily with its preferred framing, 

is ki times its self linking number.

S. For a single component knot I  not necessarily with its preferred framing, 

b =F is framing independent, and is in fact equal to our

m ( L ) .

All of these assertions are easy consequences of (5.6)-(5.9). For example:

P ro o f o f 3 To get the framing independence of 6  just use (5.8) and (5.9) to express 

it in terms of a*w and btw, and then notice that the resulting expression differs from 

that of P w only by the real part of an imaginary number. To show that S is equal to 

Wi{L) we just need to show that they satisfy the same skein relation. But for knots 

L± with their preferred framings a± =  0 by 2, and therefore using (5.7) one gets

— » i 2 t i

which by 1 equals to —4xa times the linking number of the two knots obtained by 

cutting L± as in figure 4.5. It is easy to check that 6(the unknot) =  —it2 / 6 .

□
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Chapter 6 

Translating BRST to  Feynman 

diagrams

6.1 The BRST argument

To show that the Lagrangian that we obtained gives rise to a metric independent 

theory in spite of the explicit appearance of a metric in it, we will now introduce the 

‘BRST’ operator Q of Becchi, Rouet, Stora, and Tyupin [8 , 42] — the odd derivation 

acting on the space of all functionals of A,<j>,c, c, defined by the following formula:

Q -  ( - W  +  . (6.1)

Which is more conventionally written as:

QAi =  -{D i  +  ad j4,)c, (6.2)

=  0, (6.3)

Qc =  (6.4)

Qc =  \[c,c] =  ^ 0/ ^ c c. (6.5)

In (6.2) the expression “ad A ” stands for the operator defined by (ad j4,)c^= [v4,-, c], 

in (6.5) and (6.1), /£. are the structure constants of Q, [Q*,&] = /£.£?„, and [c,c] 

doesn't vanish because of the anti-commuta.tivity of c.
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L em m a 6 .1 . 1  QCm(A, <j>,c,c) =  0.

L em m a 6.1.2 There exists a functional A of A, <f>, c and c (that depends on 6gij) 
such that under g'* —* g'* + 6gx*,

— Qh.

L em m a 6.1.3 Q corresponds to a vector field of zero divergence.

L em m a 6.1.4 QO = 0.

Let us first use the above four lemmas to prove that

W  =  J v < p  O eiC>0>

is formally metric independent [48]. Indeed, under g'* —*• gx* + 6gy

6(0) =  6 J  Vtp 0(<p)eiCttt 

= i J  V<p 0(<p)e,Ctot6£tot

= iJv<pQ(0(<p)eiCt°*\). (6.6)

Here we used ip as a collective name for A , (f>, c and c and in the last equality we made 

use of the first two lemmas. Now we just use the third lemma and the well-known fact 

that the integral of a derivative taken using a divergence-free vector field is always 

zero to conclude our proof.

P ro o f o f lem m a 6.1.1 This is just a simple calculation — one just applies Q to Ctot 
and does some algebra. I will present this algebra here in a way that will be useful 

for our later purposes. First, let us decompose Ctot to a sum of it’s 'free1 part and 

it’s ‘interaction’ part, and to a sum of it’s bosonic part and it’s Fermionic part:

Ao« ~  £bo*,free "I" ^bWni

= ~  f  * (A A d A  + 2<f>DiAi) + ~  [  u \ ( A A A A A )  
ixJM * V • ixJM* 3

Aenn =  Aena,ft«e +  Aennjnt ~ ~ 2 x  Jm» * — ^  cl)
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Let us now calculate the variation under Q of each of those parts:

=  — l ^ d c + f a c X l t i d A  + t D i ^  + u iA ^ c  (6.7)

<?̂ bo*4nt = J^*(dc+[A,c])AAAA

= f  kdc A A A A (6.8)
2 r  v ’

QAenn^ee =  ^  j j ^  * (*2>itfc +  ^ A 0 f[c,c]) (6.9)

= ^ j f p f c ( ^ i^ c ] - ^ l ) ,c+[il,,4 e l + ^ [ A lt[e1<4])(6.10)

It is now easy to see that the first term of (6.7) cancels (6 .8 ), that the second term of 

(6.7) cancels the sum of the first term of (6.9) and the first term of (6.10), that the 

second term in (6.9) cancels the second order part of the second term of (6.10), and 

that the remaining terms of 6 . 1 0  cancel each other.

□
P ro o f  of lem m a 6.1.2 Suppose that g'* —> +  Sg'K Then

5 j L v « « .

with

Tij =  fc ((Di<j>)Aj -  i(Di£)(Dj +  ad Aj)c

~ \g ij  ((Dk<f>)gk,A, -  i(Dkc)gu (D, +  ad 4 ,)c ))

and then 7y = QXy for

Ay =  — *tc ( iD ic ) A j  -  ^ g ij{D kc)gu A ^

that is:

6Cm = Q (iD>c)Aj -  \ gii(Dkc)gk,A ^j = Q A.

□
P ro o f  o f lem m a 6.1.3

-  JM3( - f : ^ + o + f : cd ) = o .
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(Notice that for semisimple, Abelian and nilpotent Lie algebras each of the two terms 

above vanishes independently).

□
P ro o f of lem m a 6.1.4 This follows from the interpretation of O  as the holonomy 

of A  along X> and the fact that the Q variation of A  is just the infinitesimal gauge 

transformation corresponding to c. But for later reference, we can already write this 

proof in terms of diagrams. First, let us write the diagrams representinjg O  itself:

+  (• 1+

Next, let us calculate QO term by term:

- f c

Consider the terms that have an A c  vertex in them. There is, of course, integration 

over the position of this Ac> and this is the integral of a gradient which can be 

replaced by a difference of boundary terms. These can be seen to be equal to the 

negatives of the terms that have an [A,-, c] vertex.

□
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6.2 A simpler finite dimensional analogue

The invariance argument shown above is, of course, quite incomplete. It uses some fa­

miliar rules of integral calculus in an infinite dimensional setting in which the standard 

integration theory does not apply. However, what we have described in section 1.2 

can be seen as being a definition of an integration theory in our infinite dimensional 

setting and we may wish to  find how much of the standard rules of calculus still 

apply. The goal is to show that enough of standard calculus goes through, and that 

the invariance argument of the previous section can be translated into the well-posed 

language of Feynman diagrams. This will be done in the following two sections, 

beginning with a simpler finite dimensional example that highlights one of the key 

points.

In this section, we will show that for any 1 <  q < N  the perturbative expansion

of

JR fldNx (dvP  +  ikPX^x* +  3 ikP \dkxi x k) (6.11) j

vanishes, where dq =  d /d x 9 and P(x) is some monomial in x. Clearly, what we are j
I

now set to show is true — the integrand in the above integral is a derivative,

and if we believe the fundamental theorem of calculus, we are done. But in the 

infinite dimensional context that we really care about we don’t  have the fundamental 

theorem of calculus and therefore we would like to fine a direct combinatorial proof 

at the level of Feynman diagrams that (6 .1 1 ) indeed vanishes.

Define
C «■*■— ■* f  dNx  p ) c«(f ***'*»

expansion of / j *  \ 1 f »

I  [  dNxZikPXqik^ x keik^ ^ +̂ ^ lexpMiion of w

and
^^Diagrammatic /

oxpaiuionof "

It is clear that (6.11) is equal to C  +  F  + 1, We will show below that F  =  —I  — C.
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Following the rules of section 1.2.4, we see that the diagrams in F  have the normal 

\ i j kx ix i x k vertices and A1J propagators, and in addition to them two distinguished 

vertices. The first of these distinguished vertices corresponds to the monomial P  

(see figure 6 .1 ), and the second (denoted by the 'magnet’ symbol 3  ) corresponds 

to iAu-£J (see figure 6.2). Let us take a closer look at the second distinguished

2

Figure 6.1. The vertex corresponding to the monomial s**®.

Figure 6.2. The vertex corresponding to iAw-zJ has only one arc emanating 

from it because i \ j &  is of degree 1. The magnet points to the direction of 

‘attraction’.

vertex ( 5  • When it appears in a diagram, say as in

the Aij in the vertex (§ 1  gets multiplied by its inverse — the propagator connecting 

(§ 1  to  * — and so the whole picture can be replaced by the vertex

which is one of the vertices corresponding to —89* ! Remembering that ©  could 

have been connected to any of the other slots in *, we see that altogether all the ways 

to connect ©  to * add up to give exactly the vertices that correspond to —dq*. Now
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there are two possibilities for what * could be. If * is one of the regular A 

vertices, then the process we just described (of ‘pulling with the magnet’) gives one 

of the diagrams in — / .  If * is the other distinguished vertex, the one corresponding 

to the monomial P, then ‘pulling with the magnet’ gives one of the diagrams in —C.
a

6.3 Translating BRST to Feynman diagrams

Let us repeat the considerations of the previous section in the slightly more compli­

cated case of the BRST invariance proof of section 6.1. Consider

F - Z Z ?  /«v

and

where the subscript “untouched’’ means that when calculating Q £tm  and QC\nt no 

known identities are to be used to simplify the resulting expressions — they should 

just be left as they are.

We will see that:

1 . C  is equal to the variation with respect to the metric of W.

2 . / ’+ /  =  0 .

3. F  = - I  -  C.

These assertions clearly imply j^W  =  0, which is what we’ve been aiming to prove.

Each of F, J, and C is a collection of diagrams made using the usual propagators 

and the usual X 2A, A3, and cAc vertices, only that each of those diagrams has an 

additional distinguished vertex of a form determined by the terms in (Q£&w)1intmirlirrt.
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(QlinOuntoudnd’ QA. In addition, the diagrams in F  and I  will have a second 

distinguished vertex, corresponding to A. For example, as Q \  has in it a term:

“ ! ?  (612) 

some of the diagrams in C  will have in them a single distinguished vertex of the form

59 ~  SMiy / a ^ U  (D?Gib(v ,z j)  D )G ''(x,y)

The other diagrams in C  will have a distinguished vertex of either of the following 

forms:

5g

P ro o f o f 1 . Using

6 ( fT 1) =  -D ~ i (SD)D-1 (6.13)

which holds for every linear operator Z?, one can see that
5 _ _

5g

_5_
5g

5g 

5g

and then for example

_5_ 
6g
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These are exactly the diagrams in C! (And it turns out that the combinatorics 

works out right as well).

□
P ro o f  o f 2. Just remove the subscripts "untouched” and re-read the proof of 

lemma 6 .1 .1 .
□

P ro o f  o f S. Just as in the previous section, the diagrams in F  will all have a 

distinguished vertex of one of the following four kinds, corresponding to  the four 

terms in (6.7) and (6.9):

S I .

In each of those vertices, the slot marked by #  has a differential operator acting 

on it. When a  propagator is connected to one of those slots, the relations defining 

the propagator can be used to replace the propagator and the slot to which it is 

connected by a ^-function, effectively calculating the variation under Q of the vertex 

on the other end of that propagator.

There are now few possibilities as for where does that other end land.

1 . The slot |  on a  @  vertex might be connected by a propagator to another 

slot on the same vertex (3  . Here are the two such possibilities:



When #  is replaced by a 6 -function as explained above, the resulting vertices 

are:

These two vertices are identical but with opposite signs, and therefore they 

cancel. This is exactly the fact proven in lemma 6.1.3 — that div Q = 0.

2. The distinguished vertex marked by a ©  might be connected through the 

slot #  to an X 7A  vertex. After the connecting propagator is replaced by a

6 -function as usual, we get exactly the diagrams in QO. These were shown to 

add up to  zero in the proof of lemma 6.1.4.

3. The distinguished vertex ( 5  might be connected through the slot #  to an 

internal vertex of the diagram, of type A 3 or cAc. In this case the propagator 

connecting the two vertices is replaced by a  6 -function, the resulting diagram

will have a distinguished vertex which appears in — (Q£inA.-. and so we

get just the diagrams in

4. The distinguished vertex 3  might be connected through the slot #  to the

other distinguished vertex - the one corresponding to A. In this case the prop­

agator connecting the two vertices is replaced by a 6 -function, the resulting 

diagram will have a single distinguished vertex, of the form —Qh. These are

exactly the diagrams in —C.

□
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Chapter 7 

The isotopy invariance argument

In this chapter we will prove (algebraidy, without the necessary analysis which is not 

yet done) that the perturbative coefficients Wm(X) are invariants of knots embedded 

in a flat R 3. Of course, if Wm(A’) is a topological invariant (does not depend on the 

metric g), then it has to be invariant under isotopies of the knot X ,  and so what we 

are set to show is actually a corollary of the result of the previous chapter. However, 

the proof below differs in some ways from the proof in chapter 6 , and this makes 

presenting this alternative proof worthwhile. The main advantage of the proof in 

this chapter is that it ‘lives’ entirely in flat space, and therefore it seems that it will 

be easier to supplement it with the necessary convergence analysis. Also, this proof 

is much more explicit, and makes the mechanism by which the variations of some 

diagrams cancel the variations of others much clearer.

7.1 Feynman rules in flat space

The Feynman rules in flat space are, of course, specializations of the rules given 

in chapter 2. However, in flat space1 these rules can be generalized slightly. It 

turns out that the only way perturbation theory (in this case) depends on the Lie- 

algebra is through the numerical weights that are assigned to each diagram D  by the 

contraction of all the Lie-algebra indices in £(D), and that the invariance proof below

‘Or actually, in arbitrary space but relative to the trivial background connection.
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works even if these numerical weights are replaced by arbitrary weights, so long as 

these weights satisfy certain relations that will be described below. Other solutions 

of these relations (that do not necessarily come from a Lie-algebra) might exist, and 

such solutions might correspond to new link invariants.

We therefore Tedefine Wm(X) to be given by

E §t̂ /£(0), (7.i)
D’. of order m <*\U J J

where S(D ) is defined just as in chapter 2, £(D) is defined as in chapter 2 only 

without including the Lie-algebra indices a, b, . . . ,  and the C(D )’s are arbitrary 

weights that ‘blind’ to the difference between gauge and ghost propagators and the 

difference between A 3 find cAc vertices3 and satisfy the following relations:

T he UI H X ” relation : Let the diagrams I , H , and X  be identical outside a small 

domain, inside of which they look as in figure 7.1. Then their weights are expected 

to satisfy

C(I)  = C ( H ) - C ( X ) .  (7.2)

- T  —' I I II I_____I I
1 I

\  / + \ / V /
JL V /

" _a r \  r s
I H X S T U

Figure 7.1. The diagrams I, H, and X,  and the diagrams S, T,  and U.

T he uSTU n relation : Let the diagrams S , T , and U be identical outside a small 

domain, inside of which they look as in figure 7.1. Then their weights are expected 

to satisfy

C (S) =  C{T) -  C(U). (7.3)

R em ark  Actually, a  little more care is necessary. The vertex A3 as it was defined in

(2 .2 ) is symmetric with respect to the three propagators emanating from it, being a 

product of two anti-symmetric terms. In the A3 vertex that we use in this chapter the

3Namely, if in & diagram D a loop of ghost (------------- ►) propagators connected by eAe vertices is
replaced by a loop of gauge ( ------------- ) propagators connected by Aa vertices, then C(Z?befor*) =

C(D*fler).
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tensor tau  is removed, and so our A 3 vertex is antisymmetric. Therefore, if we want 

to  have unambiguous meaning to the Feynman rules, we must choose an orientation 

to each of the A3 vertices in D  — for each A3 vertex, choose one of the two possible 

cyclic orderings of the three propagators meeting in that vertex. We assume that 

C(D) = —C (iy ) if i y  differs from D  only in the orientation of a single vertex, and 

we use the convention that in a  planar projection of a diagram each of the vertices is 

oriented counterclockwise (0 ).

With our simplifying assumptions, some of the rules of chapter 2 become a bit 

simpler:

*>--• I  <&£**, (7.4)
2 ?r Jm»*

V 1” ' — 7 - //  2* Jm* m (7.5)

and

i / v ieijk(x -  y)k . .
2 | t  — yP ’ (7-6>

(M )

7.2 The variation of a diagram and the spider’s 

journey

The m ’th term Wm in the perturbative expansion of W (X , k) is given by a weighted 

sum of integrals of certain algebraic expressions which are most neatly represented 

by Feynman diagrams as in (7.1), (7.4)-(7.7). Our aim in the rest of this chapter is 

to prove3  that under X  X  + 6 X  = X  + w,

To do that, we have to calculate 6J£(D) for an arbitrary diagram D.

3Formally prove. Namely, present the algebra and comlinaforic* without considering the much 

harder analysis problems.
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Let us first describe the ‘main part’ of the computation, disregarding various 

boundary and contact terms which will be the subject of the next section. Checking 

formulae (2 .1 ) and (2.4) we see that the ‘V5j(x ,y )’ connected to each X 2A  vertex in 

D  can be regarded as 1-form (with respect to either the variable x or the variable y), 

and that the X 2A vertex together with the a integration can be interpreted as the 

integral of that 1-form along the 1-cycle represented by a segment of the knot X .  It is 

therefore clear that when the knot X  is deformed, the variation of our integral f£ (D )  

(whose only X  dependence is in the X 2A  vertices) is given4 by the evaluation of the 

exterior derivative of V  on the infinitesimal surface S  spanned by the deformation 

of X .  This statement is reproduced in diagrams in figure 7.2. In that figure, a new

S

Figure 7.2. The six diagrams arising from the computation of 6 f  £(D) for D 

with 3 type X 2A vertices.

vertex is introduced, corresponding to the evaluation of dLV  on 5:

s^ - >  -  (M >

We see that in calculating 6f£(D ) we find expressions that involve dLV . Whenever 

such a  term is encountered, we will use ‘the key relation’ of chapter 3.1 to replace it 

by the right hand side of that relation. Recall that the key relation states that there 

exists a  (2 , 0 )-form F  on R 3 for which

{dLV)ij,k{x, y) = (dRF)ijtk(x, y) +  2 *tey*£(x -  y). (7.9)

4Well, just almost given. There is a boundary correction which will be discussed in the next 

section.
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In diagrams, the relation (7.9) is reexpressed as

1------------=  +  # . (7*10)
ij * V * V*

The last relation that we will use repeatedly is a combination of integration by 

parts and Leibnitz’ rule described by the following diagram:

y/„  ̂ / I

z'J \  dV (7.11)

y'k ri 'A  /  *  d /T  0  |  /

The corresponding formula is:

s  L  i “” r *

~ i x h ? dw emnPFii>-(x'w) ^ H ^ W K  y) -  y)(dLv ) m„,i(ti>, * )) .

Summarizing, we first compute S/£(D ) as in figure 7.2, and then alternate replac­

ing dLV  by dRF  as in (7.10) and integrating by parts as in (7.11). We can visualize

this procedure by imagining a spider walking on our diagram on gauge ( ------------ )

propagators, beginning from some X 2A  vertex, changing every gauge ( ------------ )

propagator that he had followed to a dotted ( ......> .......) propagator as in (7.10), and

deciding whether to turn left or right whenever he reaches an A3  vertex as in (7.11). 

The variation Sf£(D )  is then given by a sum over all possible ‘spider walks’ on D 

of various boundary and contact terms that we have so far ignored and over all the 

‘deadends’ — spider walks that cannot be continued further because the spider ar­

rived at an X*A  vertex or a  cAc vertex, or has stepped on his own footsteps. We will 

consider all these boundary terms, contact terms, and deadends in the next section.
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7.3 Boundary terms, contact terms, and dead­

ends

7.3.1 The beginning of the journey

There are two types of diagrams produced in the evaluation of 6f£(D ) even before 

the spider begins his journey. The first of them is the boundary term in figure 7.2 — 

if the 1-form VC,•(•,!/) was evaluated on a closed cycle, there would have been no need 

for a correction in figure 7.2; But actually, it is evaluated on a cycle whose ends are 

given by two other X 2A  vertices in D, and more care need to be taken near the ends. 

Stokes’ theorem says that the integral of VC,(‘,y) around the complete boundary of 

the part of 5  lying between these two X 3A  vertices is given by (7.8). This boundary 

is made of four pieces — two long and almost parallel pieces that follow X  and whose 

difference is exactly what we are trying to compute, and two infinitesimal pieces near 

the ends (see figure 7.3). The contributions to (7.8) from the two latter pieces needs 

to be subtracted off, and this is done by the following lR V  vertices:

The context: The vertex iil: The formula for iZl:

C - K . r ”V'-J-,
{ X U  -  X lu kJ Vti(X ,y)V kj(X ,z )

The above rectangle is the form in which all the contributions to 6Wm will be 

described. The left most column is the ‘context column’ that describes the context in 

which the presently discussed term appears — our term appears whenever there are 

two neighboring X 2A  vertices in a diagram D, and we are considering one of them as 

the boundary of the other’s domain of integration. The slash (/) on the knot segment 

connecting these two vertices indicates that the present contribution comes when the 

length of this segment vanishes. The center column is a diagram part that serves 

as the symbol of the currently discussed contribution to SJ£(D). To get the precise 

formula for this contribution, replace the symbol iZl by the formula in the right most 

column, and proceed to evaluate the other-parts of D  as in section 7.1.
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Figure 7.3. The boundary term J21: In these diagrams, the solid ellipses rep­

resent the knot X  and the dashed ellipses represent the deformed knot X  +  w. 

The first two diagrams represent the part of the contribution to 6 JS(D)  coming 

from varying the position of one of the X 2A vertices in D. This X 2A  vertex is 

integrated over a range (marked by a double arrow *-*) bounded by two neigh­

boring X 2A vertices. By Stokes' theorem, the quantity that we are interested 

in, the difference of the first two diagrams, is given by an integral of dLV  on the 

variation surface S  (represented by the third diagram), plus the evaluation of V  

on the two short segments connecting the solid and the dashed ellipses near the 

bounding X 2A vertices. This last contribution is given by the term i l l .
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The second contribution to 6J£(D) that arises even before the beginning of the 

spider's journey is the contact term arising from the ^-function in (7.10), when this 

formula is first applied:

The context:

H

The vertex 722:

V -J - .

The formula for iZ2:

e,.tm€mn>wkX % ( X ,  z)Vri(X, y)

7.3.2 The journey

During the journey itself, in which the operations (7.11) and (7.10) are alternated, 

there is only one kind of ‘left over’ contribution — the contact term arising from the 

^-function in (7.10):

The context:

\  /

- x '

The vertex 723: 

,41  y ,

AV' k nt-w

The formula for 723:

•Vkn{y, i u ) V i < ( z ,  u) 

‘V kn iy^V m iw , u)Vjt(z, u)

An example for a term of this sort will be the term

071 •rcyclidy ordered « i.$

<rk,Vmn(X » y)F kl,-(y ,z )

•e’r% ( * 3, z)V„(X 4 , z)Vpt(Xs, z)
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that arises in the variation of the diagrams

Notice that in the translation process in (7.12) we used the following two rules to

deal with dotted ( ......> .......) propagators and the F aA  vertex connecting two dotted

and one gauge propagator, in addition to the standard rules of section 7.1:

1 .

f . . . .> ....?  =  Fij,-(x,y) —I]* )  ’ *7’13^

2.
* ‘41

— > - ^ J R i d w (!mnFijl- ( x t w )V ki(y,u i)F mn ,-(w i !l) (7-14)
y'k

7.3.3 The spider returns to the link

Right before the spider arrives at the link back again we get the following contact 

contribution, as usual from the ^-function in (7.10):

The context: The vertex RA: The formula for A4:

\ A
- 5 «,mnemnp f r F ^ - i z ,  X )Vkl(yt X )

4  / ,  ..«*'■ J
U =  - X 'F ijt- (z ,X )V kl(y ,X )

When the spider arrives at the link, we get the following ‘dead end’ contribution:

(7.15)“ • - A 3 .  _  . ( , , » )
I=X

Notice that here we are taking the line integral of a gradient (gprF;j,_(y,z)) along a 

segment of the knot X . Thus by the fundamental theorem of calculus (7.15) can be
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written as the difference of the values of Fij, _(y,X(a)) at the two end points of the 

line of integration. Such an endpoint might be a  regular X 3A  vertex, in which case 

we get the term:

The context: The vertex iZ5:

z ..*  J
U

The formula for R5:

X % ,- ( z ,X ) V kl(y ,X )

Or else, such an end point might be the special X 3A  vertex from which our spider 

began its journey. The term corresponding to this later possibility is:

The context: The vertex J26:

’ ■■if '

The formula for R6:

F ^ X ^ X ' F u , - ^ )

7.3.4 The spider meets a ghost

As usual, we first have a  contact contribution from right before the spider-ghost 

meeting:

The context:

M

The vertex R7:

‘ V !
/ " S .y^k ^>w

The formula for iZ7:

^  j Ri e'mnemnp(9£G(u, to))G(u, z) 

•Fij,-(x,u)Vu (y,u)

'Vki{y,u)dlG{u,w)

Then we also get a  ‘dead end’ contribution

— t L j ^  dw G{y, to) to)j d*G(to, z), (7.16)
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which can be expanded further by integrating to by parts and using Leibnitz* rules 

similarly to what was done in (7.11). There are two resulting terms. The first one is 

when Leibnitz’ rule instructs us to turn left in (7.16). In this case there isn’t  really 

much that we can do, so we just leave the resulting term as it is:

The context: The vertex R8: The formula for 728:

K
i i r  Jr * dw w))

•dtG(w,z)

The second possibility is that Leibnitz’ rule instructs us to turn right in (7.16). 

In this case we get

=  dw F ij , - (x ,  u)G(w, y)S(w -  z).

Integrating to and bringing into sight the cAc vertex at the z  side of the w-z propa­

gator, we get the following contribution to SfS(D):

The context: The vertex 729: The formula for 729:

X ■ v
^  f RS dw G(u, u)Vkl(y, u)

y-k Xw < G (u ,w )

7.3.5 The spider meets his own footsteps

The contact contribution from right before the meeting is:
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The context:

X f  
'•Pol /

r A . V

The vertex .RIO:

Ij lm 
x s \  , > z

s \y / '  \ w

The formula for iilO:

dj.

'FlmAVl U)Fij,~(x , , U)

•Flm,-(y, w W A y ,  u)

In the above diagram, the ‘footsteps’ are assumed to be the dotted ( .........> ......... )

propagators connecting x to u and u to  ti>, and the spider comes back to  the area 

from the direction of z. This explains the ‘twist’ in the context column.

There is also the ‘dead end’ contribution, which we simply leave as it is:

The context:

f » r s\
St A

The vertex J ill: 

k l .

ij * / y

x s

The formula for J ill:

/ r j  dw m )  z)

■dZFk,Av,»)

7.3.6 The journey ends before it really started

The spider’s journey might end before it really gets going if he has a too short chain

of gauge ( -----------------) propagators to travel on —  namely, if that chain is of length

1 —  namely, if the spider starts on an X 2A  vertex that is connected via a gauge 

( -----------------) propagator to anything but an A? vertex. The three possibilities are:

The context: The vertex iZ12: 

<
The formula for Jil2:

- i G ^ x y J x U w d k G ^ z ) ^
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The context: The vertex 5: The formula for 5:

1 - X 3)

and

The context:

* R
The vertex T: 

0

The formula for T:

tijku iX i X k6 (X  -  X )

Notice that the last two contributions differ only by the separation between the 

two ends of the gauge propagator being treated. In T  these two ends are assumed to 

be adjacent, while in S  they are assumed to be separated by some other X 2A  vertices.

7.4 cancellations

In the previous section we computed 6 VVm and found that it is given by a sum of 

14 types of contributions: RI-R12, S , and T. In this section we will see that these 

contributions all cancel each other, and therefore £Wm =  0. Let Tin denote the 

total contribution to £Wm that comes from diagrams of type R n , S  denote the total

contribution of type S , and T  denote the total contribution of type T.

P roposition  7.4.1

f t l  +  ft2  =  0. (7.17)

P ro o f The identity

*um<r* = s w - w r  (7-18)
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shows that vertices of type 722 are, in fact, precisely the negatives of to vertices 

of type 721, while the context columns in the definitions of these two vertices shows 

that 721 comes with weight C(T) — C(U), and that 722 comes with weight C (5). The 

STU  identity (7.3) concludes the proof.
□

P roposition  7.4.2

723 =  0

P ro o f  Diagrams of type 723 come with weights C (I), —C(H), or C (X ), as can be 

read from the context column in the definition of 723. The I H X  identity (7.2) shows 

that these weights cancel each other.

□
P roposition  7.4.3

724 +  725 =  0

P ro o f  Similarly to (7.17) this identity follows from the STU  identity (7.3).

□
The proofs of the following three propositions rely on the observation that a chain

of dotted ( ......> .......) propagators connected by F 2A  vertices is essentially equivalent

to  a chain of ghost (----------- ►) propagators connected by cAc vertices:

/  x yi y2  yp )
d

(  * _yl y2  _ yP ^
1 1 ; w

1 1 ... 1 
1 1 1 dx> 1 1

i
zp!kP ;k z l!kl *2 * 2  zP!kP ; k *l!ki *2 * 2

(7.19)

This identity is an immediate consequence of the definition of the ghost propagator 

(7.7), the definition of the dotted propagator (7.13), the definitions of the F 2A  and 

cAc vertices ((7.14) and (7.5)), and the identity

t lnvenpq = 26\.

P roposition  7.4.4

728 +  7211 =  0.
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P ro o f Immediate from the dotted-ghost relation (7.19), the definition of the RS and 

R l l  vertices, and the fact that the diagrams of type R S  have one more ghost loop 

than their counterparts of type R.W and therefore they get opposite signs from (2.5).

□
P roposition  7.4.5

R S  +  R12 =  0.

P ro o f Immediate from (7.19), (7.18), (2.5), and the STU  relation (7.3).

□
P roposition  7.4.0

R 7  + R.9 + R1Q = Q.

P ro o f Immediate from the dotted-ghost relation (7.19), from (2.5), and from the 

IH X  relation (7.2).

□
P roposition  7.4.7

5  =  0.

P ro o f We just have to remember that the points 1 and 2 in the definition of the 

term S  are always distinct, and therefore S(X\ — X 2) — 0.

□
R em ark  This proof is actually more interesting when it breaks down — when the 

knot X  is deformed in such a way that a self-intersection is created. In this case the 

points 1 and 2 are not necessarily distinct, S(X j — X 2) can be non-zero, and when 

it is non-zero we get a skein-like relation similar to Vassiliev’s relation (8.23). It is 

exactly this term S  that assures that V\?m{X) is a non-trivial knot invariant!

P roposition  7.4.8 I f  one is willing to be a bit naive,

T  = 0.

P ro o f The formula for the term T  is

d e t ^ l w l A : ) ^ * - * ) .
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If one is willing to be a  bit naive, then the determinant in the first part of this 

formula, det(Ar|w|A'), vanishes because it has two equal columns and this cancels the 

infinity of 6(X  -  X ).
□

R em ark  Actually, proposition 7.4.8 is blatantly false. 0 • oo =  0 doesn’t make much 

mathematical sense as it stands, particularly when the oo is such a  ‘large’ oo — it 

is a three dimensional ^-function integrated on just a  line! So clearly, more care 

needs to be taken when considering the vertex T. This is essentially what is done 

in section 3.3, where it is shown that the failure of proposition 7.4.8 is proportional 

to the total torsion r  of X .  I believe that the same “correction” procedure that was 

used there — subtraction of a certain multiple of r  — can be used in the higher loop 

case introducing a framing dependence to Wm- This is yet to  be proven.

Either way, whether by choosing to be naive or by believing that the failure of 

proposition 7.4.8 can be corrected as in section 3.4, propositions 7.4.1-7.4. 8  prove that

«wm(X) = m  + . . . + n n + $ + r  = o,

and therefore W m(X ) should be a knot invariant.

□
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Chapter 8

The Lie-algebraic weights o f 

Feynman diagrams

8.1 Introduction

The purpose of this chapter is to introduce a certain combinatorial-algebraic problem, 

discuss its significance to knot theory (and to a lesser extent, to quantum field theory), 

and present some solutions of it. The most general solution to this problem has not 

yet been found, and finding it is likely to lead to the discovery of new knot and link 

invariants.

In this chapter, the words dosed diagram will always refer to a graph made of 

a certain number of directed ellipses (called Wilson loops) marked by the natural 

numbers 1 and a certain number of dashed lines (called propagators). The 

propagators and the Wilson loops are allowed to meet in two types of vertices — one 

type (called type R 3G) in which a propagator ends on one of the Wilson loops, and 

another (called type Qz) connecting three propagators. We assume that the second 

kind of vertices are oriented — that one of the two possible cyclic orderings of the 

three propagators meeting in such a vertex is specified. The order of such a  diagrams 

will be half the total number of vertices in it.

Figure 8.1 is an example for such a diagram with 1 = 2 .  In this figure (as in 

the rest of this chapter) each of the vertices is oriented counterclockwise (0 ). This
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Figure B.l. An example for a closed diagram of order 6.

convention means that the two diagram parts in figure 8.2 are not equivalent. Also, 

remember that our diagrams are not allowed to have higher than cubic vertices. It is 

therefore implicitly understood that when four or more lines meet at the same point, 

that point is not a vertex and those lines pass each other without “interaction”.

/

— < X  — < ' x  o

t

Figure 8.2. Two diagram parts which differ only by the orientation of one of 

their vertices.

We will be looking for assignments D -* C(D ) that assign a weight C(D ) inside 

some pre-chosen Abelian group to each diagram ZJ, and satisfy the following two 

relations:

T h e  U1H X ” re la tion : Let the diagrams 7, JET, and X  be identical outside a  small 

domain, inside of which they look as in figure 8.3. Then their weights are expected 

to satisfy

C(1) = C ( H ) - C ( X ) .

T he MSTU n rela tion : Let the diagrams S , T , and U be identical outside a small 

domain, inside of which they look as in figure 8.4. Then their weights are expected 

to satisfy

C(S) = C(T) -  C(U).
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I H X

Figure 8.3. The diagrams I, B ,  and X.

S T U  

Figure 8.4. The diagrams S, T, and U.

M ain prob lem  Find all such assignments C.

Such assignments will be called weight systems.

There are very good reasons to believe that each weight system will give rise 

to a  link invariant. When one considers the perturbative expansion of the Chern- 

Simons quantum field theory as described here, one encounters diagrams much like 

the above. The diagrams in the Chem-Simons theory correspond to integrals, and I 

have shown in chapter 7 that (assuming some convergence which is yet to be proven) 

these integrals summed with ‘correct’ weights add up to give link invariants. The 

word ‘correct’ in the previous sentence means exactly “satisfying the relations IH X  

and STU ”. In chapter 4 I have carried out this program for the diagrams of order 

<  2, and in [45, 46] Witten has shown that the HOMFLY polynomial [26] can be 

derived from the Chern-Simons quantum field theory, and therefore can probably be 

re-derived using our techniques. The weight system C  that should correspond to 

the HOMFLY polynomial is presented in section 8.5. I don’t know which are the 

knot invariants corresponding to most of the other weight systems presented in this 

chapter, and I do not know whether there are further weight systems beyond those 

presented here. ~
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As was (implicitly) shown in [45] and discussed in this thesis from the perturbative

point of view, to each weight system should correspond a three-manifold invariant as

well.

In section 8 . 6  a second relation, due to Vassiliev [44] and Birman-Lin [10], between 

those weight systems and knot theory is discussed.

8.2 The method

Let F  be a field, and let D  be a closed diagram. I will now show how, given some 

Lie algebraic data, we can associate an element Cg(D) of F  to  D. Of course, the 

construction below is precisely the ‘Lie-algebraic’ part of the construction in chapter 2.

Let Q be a finite dimensional Lie algebra over,the field F , R i , . . . ,R j  a list of 

finite dimensional representations of Q (one for each Wilson loop in D) of dimensions 

and let fc be a non-degenerate F-valued ad-invariant bilinear form on Q®G, 

where ad denotes the adjoint representation of the Lie algebra Q on its underlying 

vector space. Let {&} be a basis for Q, {r“} a basis of Ri, and define the tensors tak, 

tk , fat,, take, and R tp  by the following formulae:

tab ~  tl(0a,Gb), 

tabt* = Sae,

[Qa, 0b\ ~  fab0e,

tabc = fabric,

To define Cq(D), first mark every Wilson loop segment in D  by a  greek letter 

a, /? ,..., and every end of every propagator by a small letter in the English alphabet 

— a, 5, . . . .

I will now describe how to construct a certain algebraic expression out of D  and 

its marking:

1. To each type Q3 vertex in D  associate a t... symbol with the • • • replaced by the 

letters marking that vertex, picking those letter in an order consistent with the
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a

Figure 1.5. An unmarked diagram and a marked diagram.

orientation of the vertex. Using the invariance of it is easy to check that 

tahc = tbca =  <eafrt and so the particular order chosen is immaterial.

2. To each propagator in D  associate a  t " symbol with the dots replaced by the 

letters marked at the ends of that propagator.

3. To each type R7Q vertex associate an R„ symbol with the dots replaced by the 

letters marking that vertex, as in the figure below:

4. Take the product of all the above mentioned t..., t", and R'„ symbols.

5. Sum over a , /? , . . ., and a ,b , . . . ,  and call the result Cg(D).

For example, if D  is the diagram in figure 8.5, then (summation understood)

Cg(D) =  t .w * ° (8.1)

W ell-definedness We will now check that Cg(D) is independent of the choices 

of bases that were made. Clearly, Cg(D) is independent of the choice of {ra } — as 

is demonstrated in (8.1) the representation R  appears only through matrix traces of 

the form

trR{Qa)R(G,,)R(Gc).

Suppose that {&} is a different basis of Q. One can define P*, tafo and R%p with 

respect to this new basis, and use these tefisors to  define Cg(D). We will show now
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that Cg(D) =  Cg(D). The two bases are related by some linear transformation — 

that is to say, there exists a matrix {A/*} for which

&  =  MlQa

One can check rather easily that the new tensors are given by the old ones through 

the following formulae:

h i  =  MSMlUt 

P 1 =  (M "1);(A P I ){<*1

h i t  =  MSMlMZtaic

= m ; rz0

where (Af-1)* is the inverse matrix of Af£. It is now easy to see that when these

expressions for P®, h ln  and Rip are combined together to form Cg(D), every matrix

cancels every M l.

8.3 Relations between the Cg(D)*s

8.3.1 Tensors and relations between them

So far, we used the fact that the tensors that went into the construction of Cg(D) 

came from a Lie algebra and satisfied certain relations only in a very mild way — in 

checking that taic =  ffcca =  ieab- We will now see what relations among the Cg(DYa 

can be deduced from the relations that f®, f„»c* and Rip are known to satisfy.

First, a  slight generalization. Using more or less the same procedure as before we 

can assign to every non-closed diagram D, which is allowed to have propagators with 

“free” ends and non-closed Wilson lines, a tensor

T  = T (D )  €  0®n ® <g> (Ri ® Ri) . (8 .2 )
fa 1

Here n is the number of propagators with five ends, R i,. .  .R j  are the representations 

corresponding to the non-closed Wilson lines, and the A,’s are their duals. It is clear
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how to define T  — one just needs to  follow the same steps as in the definition of 

Cq, and as D  is not closed some of the indices will appear only once in the resulting 

expression and instead of being summed over these indices will serve as the indices 

of the tensor T .  For example:

C laim  8.3.1 The two diagrams in figure 8.2 correspond to tensors which are the 

negatives of each other.

P ro o f The is simply the fact that the Lie bracket is anti-symmetric.

C laim  8.3.2 Let the diagrams S , T , and U be as in figure 8.4. Then the tensors 

corresponding to them satisfy:

T{S) = T ( T ) - T { U )  (8.3)

P ro o f This is simply the fact that A is a representation. That is, that A([0a>&]) =

R(G a)R(G k) - R ( G i ) R ( G a ) .

□

C laim  8.3.3 Let the diagrams I ,  H , and X  be as in figure 8.8. Then the tensors 

corresponding to them satisfy:

T ( I )  = T ( H ) - T ( X )  (8.4)

P ro o f  Translating I ,  I f,  and X  into their corresponding tensors, it is easy to see that 

this is simply the Jacobi identity! (In fact, this claim can be regarded as a particular 

case of the previous one, asserting that the adjoint action of a Lie-algebra on itself is 

a representation).
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8.3.2 Sewing

Given two open diagrams A  and B  and a  (partial) correspondence y> between their 

open ended lines which sends a propagator to  a propagator and an ingoing (outgoing) 

Wilson line to an outgoing (ingoing) Wilson line labeled by the same representation, 

one can define their join A # B  to be the diagram obtained by sewing the external 

lines of A  with those of B  according to the correspondence (p. It is also possible 

to sew T(A)  to T(B )  by contracting their indices as dictated by <p, (using tab to 

lower the propagator indices). It is clear that the resulting T (A )# T (B )  will equal 

T (A # B ) .  In particular, if A # B  is a closed diagram, then Cq(A # B ) = T (A )# T (B ).  

(See figure 8 .6 ).

Figure 8 .6 . Sewing two diagrams.

Thus (8.4) and (8.3) can be used to derive relations between closed diagrams — 

(8.4) says that if three diagrams 7, H  and X  are identical outside of a small domain 

in which they look like the diagrams I ,  H,  and X  of figure 8.3, then they satisfy

Cg(I) =  Cg(H) -  Cg{X).  (8.5)

Similarly, (8.3) implies

Cg(S) = Cg(T) -  Cg(U). (8.6)

The last two relations show that D —» Cg(D) is a weight system in the sense of 

section 8 .1 .

Lemma 8.3.1 For any open diagram D, T  =  T(D )  is an invariant tensor (with 

respect to the natural action of Q on each o f the components in (8.2)).

Proof The reason why this lemma is true, is that T  can be seen as the contraction 

of a  collection of invariant tensors — the t..r, the t" and the R„ are all invariant. This
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Figure 8.7. A simple invariance proof — the tensor V  is the sum of 1-12. 

Relation I H X  shows that 1 +  2 +  3 a  10 + 1 1  + 12  = 0, relation STU  shows 

that 4 + 5 + 8  = 7 + 8 + 8  =  0, claim 1 shows that 1 + 12 =  2 + 8  = 7+11 — 0, 

and 4  + 0 =  0 by the choice of signs. It follows that 3 +  5 +  8 + 1 0  =  0. This 

is exactly the fact that T  is an invariant tensor.
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statement can be translated into a combinatorial invariance proof. I will just sketch 

this proof here, and supplement this sketch with a  simple example — figure 8.7.

For simplicity, I will disregard ±  signs here. Say D  has n  internal vertices. Pick a  

point P  outside of D  and consider the 3n diagrams obtained by connecting P  using 

a  propagator to each of the three lines emanating from each of the n vertices in D. 

Let D  be the sum of the tensors corresponding to these 3n diagrams. Each internal 

line in D  has two terms corresponding to it in D  coming from the two vertices at the 

ends of that line, and with the proper choice of signs these two terms exactly cancel. 

The only diagrams that still contribute to V  are those in which P  is connected to an 

external line, and, if P  is marked by a, these are exactly the diagrams that represent 

the variation of D with respect to Qa.

On the other hand, the relations (8.4) and (8.3) show that each group of three 

diagrams made by connecting P  to the three lines emanating from a single propagator 

corresponds to tensors that add up to 0. V  is just a sum of such groups, and this 

concludes the proof. (See figure 8.7).

□
R em ark  The behavior of D  -*■T (D) under sewing means that we’ve actually defined 

a topological Quantum Field Theory of dimension 1, satisfying Segal’s axioms (see 

[4, 49]). Lemma 8.3.1 shows that the vector space assigned by our QFT to n +  2J  

points, n of which labeled ‘f/’, J  labeled R i , . . .  R j ,  and J  labeled R i , . . .  R j ,  is the 

space of invariant tensors in

1=1

Every diagram D  with n + 2 J  free ends (of the appropriate kinds) gives a vector T(D)  

in that vector space.

L em m a 8.3.2 I f  the representation R  is irreducible, the factorization property illus­

trated in figure 8.8 holds. (In that figure, the blobs and simply represent 

arbitrary subdiagrams with an arbitrary number o f connections to the Wilson loop).

P ro o f  Clearly, the two sides of the equation in figure 8 . 8  represent two ways of 

contracting the tensors Aap and B fia corresponding to the two open diagrams obtained
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Figure 8.8. The factorization property.

by removing the “bridge” in the left hand side of that equation. But from lemma 

8.3.1 and the irreducibility of R  it follows that A  and B  must be multiples of the 

identity matrix:

A ap = aSafi ; B \  =  bS^.

This reduces figure 8 . 8  to the trivial assertion

da t^bS^ = aS\b6%.

□
R em ark  taking the blobs and to be empty shows that it’s natural to 

define Cg( O ) =  dimfZ =  d.

8.4 Evaluation of some diagrams for simple alge­

bras

In this section Q will be a simple Lie algebra over the real or complex field, and R  

will be an irreducible representation of Q. In this context, it is possible to evaluate 

some diagrams in a relatively simple way.

The key point is that under the above conditions, the spaces of invariant tensors 

in Q ® Q and in R  ® R  are both one-dimensional, and therefore one can speak of 

‘ratios’ of invariant tensors in Q ® Q or in R  ® R.
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D efinition 8.4.1 The constants r  and g a n  given by the following ratios1:

9 =

/ \/ % 

" \ J .... r —

f _ \

\ ............................... \ ♦

(8.7)

(Notice that by lemma 8.S.1 the above tensors a n  all invariant).

In the following few lines, we see how the relations from the previous section can 

be used to evaluate Cg for all closed diagrams with a single Wilson loop and orders 

smaller than three. For brevity, we omit the symbol Cg below.
by the remark after lemma 8.3.2 (8 .8 )

by (8.7) and (8 .8 ) (8.9) 

by (8.7) and (8.9) (8.10) 

(8.11)

©  =  ±dgr by (8.3) (8.12)

v - \ 9) (8-13>
Similarly:

o =  d

0 =  r  O  =  dr

© ~  5  0  =dgr

o II -J © II

© =  | ( © - ® )
® =  0  -  ©  = d r

© = dgr2

© s dr3

0 = dr3

0 = dr2(r -  ^g)

© = \ d 9r>

© = \d g 'r

© = \d?r

0

©

©
©
0

=  \ d g r ( r - ^ g )  

= dr(r — ^g)2 

=  < fo r( r -^ s )

=  4 d9 r

-  0

dr( r ~ 2  9 ) ( r ~ g )

=  dg*r

1 Using the notation of chapter 9, g = cj(G) and r  =  C](A).
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Unfortunately, there are some order four (and higher) diagrams that cannot be 

evaluated using these techniques. One such diagram is ©  .

The following table contains the values of d, gt and r  for some classical Lie algebras 

with their defining representations (and taken to be the matrix trace in those 

representations):

9 R d 9 r

s/(JV,C) 

so(AT,C) 

sp(N, C)

C”

CN

c 2N

N  

N  

2 N

2 N  

N - 2 

2(JV + 1 )

N 2 -  1
N

N -  1 
2

" + 5

R em ark  One can check that if Q is a real Lie algebra and Gc is its complexification 

then Cg = Cgc . Therefore the above table can be used to evaluate d, g, and r  for any 

of the real forms of sl(JV, C), so(N, C), or sp(lV, C) in their defining representations.

8.5 Complete evaluation for the classical algebras

By the remark at the end of the previous section, to calculate Cg for the classical 

algebras (in their defining representations) it is enough to consider the four complex 

classical algebras.

The first step is to use relation STU  repeatedly, with each usage reducing the 

number of Qz vertices by one, until we are left with a diagram D  that has no Q3
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vertices. The basic building block of such diagrams is the tensor

&
This tensor will be evaluated explicitly for each of the complex classical algebras, and 

the results will turn out to have representations in terms of diagrams that have no 

propagators in them. Using this repeatedly, we are left with disjoint unions of circles 

which again are easy to evaluate explicitly.

I will show in detail the computations for ao(N, C), and just state the results for 

gl(N, C), s/(JV, C), and ap(N,C).

8.5.1 The algebra so (N , C).

A convenient choice of generators for so(N, C) are the N  x N  matrices My  (t <  j ), 

given by

—  SfaSjp SipSja*

That is, the i j  entry of My  is +1) the j i  entry of My  is —1, and all other entries 

of My  are zero. The invariant bilinear form that we pick on so(N, C) is the matrix 

trace in the defining representation, and so

f(tj)(M) == tr(MyMu) = —2Sik6ji.

Inverting the x NiNi ~1) matrix t(i;')(U) we get

t & m  -  - I f V ' ,  (8.14)

and so

D  tm k l \ M y ) ap (M yU .  (8.15)

Using (8.14) and some algebraic manipulations we can simplify (8.15), and then rep­

resent it by a diagram:

A

(8.15) =  ^(ScsSpy -  SajSps) -  ^ (8.16)
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The last thing to note is that

C#o(N,C)(fc disjoint circles) =  N k.

Exam ple For 9 o(N, C) in its defining representation we can calculate d, r , and g 

using: (suppressing the ‘C,o(N,C)’ symbob)

d = O  = N ,

= ®  _ i < 8 > - i # + ‘ <8)

8.5.2 The algebra gl(N, C).

Similar considerations lead to the even simpler rule

a
M

m

S  J h

7 /  \

while retaining

Cgi(Ntc)(fc disjoint circles) =  N k. 

Exam ple For gl(N, C) in its defining representation,

® . 0 - 0 - 0 - $  =  N ( N 2 -  1).

8.5.3 The algebra sl(N,C).

The rule here is the so-called “Fierz identity”,

a
M — .

•6 S a

(*/) = f  \
7 PI • 7 P

with the usual

Ctt(N,C)[k disjoint circles) =  N k. 
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Exam ple For sl(JV, C) in its defining representation we can calculate d, r, and g

using:

d = O  = N ,

dr =  ©  =  0  - i  O =  AT9  — 1 ,

* ( , - ! , )  =  ®  =  » 4 § + i O . ^ .

8.5.4 The algebra sp(N, C).

This is the most complicated case. Let D be a diagram with no Q3 vertices. The 

computation of C ^ n ,C)[D) now proceeds in two steps:

1. Mark each Wilson loop segment in D  with either the symbol P  or the symbol 

Q, in such a  way that the number of P's entering each subdiagram of D  of the 

form |'"'t is equal to the number of P's leaving it. (Remember that the Wilson 

loops are directed).

2. Simplify D  using the following rules:

3. Similarly to the usual,

Cn (N,C){k disjoint marked circles) =  N k. 

(Notice that this time dim A =  2N  ^  N).



Exam ple For ap(N, C) in its defining representation we can calculate d, r, and g

using:

d 

dr

Exercise The reader might find it amusing to verify that i,c) =  C*i(a,c), as 

expected from the isomorphism sp (l,C ) =£ al(2,C). Notice that C40(3 ,C) is not equal 

to Ctp{itc) (or C»i(a,c>) because their defining representations are not the same.

8.6 Appendix: The Vassiliev knot invariants

8.6.1 Taking the logarithm

In this appendix we will assume that F  is a field of characteristic zero and that R  is 

an irreducible representation of Q.

D efinition 8 .6 . 1  Let A  be the vector apace o f (infinite) formal linear combinations 

(with coefficients in T ) o f (graph-) isomorphism types of closed diagrams having 1 = 1, 

(i.e. containing exactly one Wilson loop), with a pre-chosen base point on that loop. 

For convenience, we will exclude the trivial diagram O  from A . For example, here 

are the six simplest generators o f A:

0 - 0* 0 - * *

© = ©+©+2©
' \ J  = 2 + 4

-( H
N(1 + 2N).



In fact, A  can be made into an algebra; the product of A  €  A  and B  €  A  will 

essentially be the sum of all the possible ways of merging them into a single diagram:

D efinition 8.6.2 Let Abe  a generator o f A , and let 0 1 , 0 3 , . . . ,  on be Vie list of R2Q 

vertices in A , in the order they are encountered when one travels along the loop 

consistently with its orientation and beginning from the base point. Let B  be another 

generator o f A , and define &i,6 2 , . . . , ( *  in the same way. LetVbe the set o f all possible 

linear orderings o f n  “a" symbols and m  “b” symbols. For every P  6  Vdefine [AB]P 

to be the diagram obtained by marking a based Wilson loop with a ’s and b*s following 

their order in P , and connecting diagrams A and B  (minus their respective loops) to 

that Wilson loop following the marks in the obvious way. Finally, define

a - b  = ' E \ a b )p .
PGP

For an example, see figure 8.9.

0 ' 0 ' 2O +O tj®
Figure 8.9. Taking the product in A  

C laim  8 .6 . 1  The algebra A  is associative and commutative.

Now let Z  €  A  be

Z  = d + £  Oa( D ) D t (8.17)
generator! of A

and let W  €  A  be the formal logarithm of Z,

W  =  log 2 , 

given by the formal power series expansion

w*rlogrf+f ; ( z ! S M ,  (8,8)
£ 4  ~ mdm
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Notice that the order of A  • B  is always bigger than that of A  or B,  and so every

diagram D  appears in the above infinite sum only finitely many times, and hence W

is well defined.

D efinition 8.6.3 Define C'g(D) to be the coefficient of D in W. Namely, define it 

by the equation

W =  logd +  £ C £ (D ).Z > .
D

R em ark  It is easy to check that the weight of a  diagram is independent of the 

position of its base point, which was introduced only for the sake of simplifying 

definition 8.6.2. Therefore, base points will be suppressed from now on.

D efinition 8.6.4 Let D be a generator o f A . A ‘cyclic partition’ o f D will be a 

cyclicly ordered (that is, ordered up to a rotation) partition Z> =  {Di, D j , . . . ,  /}*(£)} 

of the set of all propagators of D into disjoint subsets, such that for any propagator 

p  € D{, all the propagators connected to p by a Q3 vertex will also be in D,. Given 

such a partition, we will denote by the same letter D{ the generator o f A  obtained by 

reinserting the Wilson loop of D around D{.

Claim  8.6.2 The weight Cg(D) of a generator D of A  is given in the following 

formula:
fc<®)cm  = £  s_ a _ j_  jj  C((A). (8.i9)

cyclic partition* !D ,= '

P ro o f This is simply a sum over all the possible ways of writing D  as a product in 

A , with the coefficients taken correctly as in (8.18). The fact that we are restricting 

our attention to “cyclic partitions” corresponds to the factor £  in that equation.

□

Lem m a 8.6.1 Let D be a generator of A  which can be decomposed (in the sense of 

definition 8.6.4) ,n*° ^wo ports such that:

1. The two parts can be separated from each other by cutting the Wilson loop of D 

at just two points.
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2. A t least one o f the parts cannot be decomposed any further. 

In this case,

(For an example, see figure 8.10).

(8.20)

Figure 8.10. An example for a diagram with Cg(D) = 0

P ro o f Let D  =  A U B  be a diagram decomposed into two non-empty separated parts 

such that A  cannot be be decomposed any further. Write

>*(»)+* *(®)
C',(D) =  £  «■(») i <?(»>) = * j m - n w

cyclic partition* S

We will prove (8.20) by finding a fixed point free involution ® —» pl> of the set of all 

cyclic partitions of D  for which c'(pS) is always the negative of «/(©).

Let X) =  {Z?i, D j , . . . ,  Z)*(o)} be a cyclic partition of D. There are two possibilities:

1. A is one o f the D i1s. In this case, define pS) to be the cyclic partition obtained 
by adjoining A  to the component of D  preceding it in X). It is clear that 

k(p® ) =  Jfc(X>) — 1, and therefore using lemma 8.3.2 we find c'(pX)) =  —c'(lD).

2. A  is properly contained in one o f the D{’s. We may assume that A  is properly 

contained in D\. Define pX> =  {Di — A , A , D 2 , . . . , £*(«>)}. It is clear that 

k(p3>) =  Jb(X>) +1, and therefore using lemma 8.3.2 we find c'(pD) = —c'(X)).

It is clear that p  is a  fixed point free involution.
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R em ark  It is easy to show that the second requirement of the above lemma is 

superfluous — even if one of the parts of D  is still decomposable one can always use 

relation STU  to express that part as a  sum of open diagrams, each of which is either 

‘less decomposable’ or ‘more separable’ (i.e. can be separated in the sense of the first 

requirement of the above lemma into two smaller parts).

C laim  8.6.3 The relations (8.5) and (8.6) hold for the Cg(D) ’« as veil;

C£(J) =  C £ (tf)-C £ (X ), (8.21)

C'0{S) = C'0{ f ) - C ,0(U). (8.22)

P ro o f  (8.5) is a linear relation, and it is respected by each term in the sum (8.19). 

Therefore (8 .2 1 ) holds. The same is true for (8.22), only that T  and U have cyclic 

partitions which do not correspond to cyclic partitions of £  — these are the ones in 

which the two propagators in T  or in U of figure 8.4 appear in different components. 

There is natural correspondence p between those exceptional partitions of T  and those 

of U, and clearly c'(po) =  c'(D) for every exceptional partition D of T. The minus 

sign in (8 .2 2 ) then shows that these exceptional partitions can be disregarded.

□
R em ark  The algebra structure of A  can be used to define an algebra structure on 

the space C of all weight systems. Let the generating function Z c  of a weight system 

C  be as in (8.17),

Z 0 = d+  £  C (D )-D ,
generator! of A

and for C\,j €  C define their product C\ • C? by

2c , "C, Z Ci * Zc^ ■

The above proof is essentially a verification of the fact that 2 c vc% is indeed the 

generating function of a weight system that satisfies the relations I H X  and STU.
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Exam ple The following weights can be easily computed using (8.19):

C £ ( © )  = r
Cg( ©  ) 1 a 

-  ~ 4 * r

C J ( @ )  - gr
qK0) 1 a

=

< ? ( © )  =
1

2gr
c & ( © ) ii

‘ 
i

tO
| 

H- I)

cj(®) -
1

~ 2 gr
C & ( @ )

1 2

1 2 
=  2g rOK®) = 1  a 

2g r
C J ( @ )

C J ( ® )  =

it
1  a 
4

C J ( © ) =  j*r

It is easy to check that all the other diagrams of order <  3 have a vanishing Cg.

8.6.2 The Vassiliev knot invariants

In [44] Vassiliev considered the space M  of all the possible embeddings of the ori­

ented circle S 1 in an oriented R 3  as a subspace of the space of all smooth maps 

S l —* R 3, analyzed the possible singularities of such maps, and using that infor­

mation constructed a filtration of M  and a spectral sequence that converges to its 

cohomology. The connected components of M  correspond simply to oriented knot 

types, and therefore each element of H °{M )  is a knot invariant. Vassiliev then uses 

his topological machinery to partially compute and based on his machinery,

Birman and Lin [10] arrived at the following properties which a numerical invariant 

Vi of oriented knots that comes from the t’s level of Vassiliev’s filtration has to satisfy:

1. Vi has an extension (which I will also denote by V£) to an invariant of smooth 

immersed circles, which are allowed to have finitely many transversal self­

intersection. We will call such immersed circles embedded graphs.

2. V5(O) = 0.
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3. Overcrossings, undercrossings and self-intersections are related by:

V5(X)-V|(X)-1*(X). (8.23)
This relation will be called the flip  relation. (As usual in knot theory, when we 

write X » X or X  , we think of them as parts of bigger graphs which are 

identical outside of a  small sphere, inside of which they look as in the figures).

4. If a graph G has more than i self-intersections, then V£((7) =  0.

The third and fourth properties taken together imply that if a  graph G  has exactly 

i self-intersection, than VJ(G) depends only on the abstract graph underlying G, and 

not on its embedding. Such a  graph will be called saturated. A simple way of repre­

senting such a graph is by the diagram underlying it, which is obtained by drawing a 

circle in the plane corresponding to the parameterization of G, and connecting using a 

dashed line every two points of that circle which are identified in G. For an example, 

see figure 8 .1 1 .

^  -

Figure 8.11. The diagram corresponding to a saturated graph with » =  2

Exam ple A somewhat tautological example is easily derived from the Conway poly­

nomial [22, 34]. Fix i >  0, let G an embedded graph with j  self-intersections, and let 

K it • • • > K t> to be the 2 ' possible resolutions of G — the 2J knots obtained by replac­

ing each of the j  self-intersections in G by either an overcrossing or an undercrossing. 

Let r(K)(z) be the Conway polynomial of a knot K , and define

Vf(G ) &  coefficient of z* in £  (~1)* #r underero“ ta«* h  * -  • r(tfm)(z). (8.24)
m=l

I have already defined Vjr  for graphs, and there is nothing to check for property 1. 

Property 2  is the fact that T ^ O ̂  =  1 is independent of z, and property 3 is trivial
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from the definition (8.24). By the defining relation of the Conway polynomial

r (X) -r ( X)  = *r(X)
and property 3, it follows that

and this proves that if j  > i then VJr (G; =  0, as required in property 4. Using the 

results of the previous section one can check that if G  is a  saturated graph and D  is 

its corresponding diagram, then VJr (G) is equal to the coefficient of N  in Ca(n,C)(D).

We saw that underlying the Vassiliev invariants there is an assignment of weights 

to a certain collection of diagrams, D  —» V5(D), just like the assignments Cg and Cg. 

The Vassiliev assignments are not arbitrary — they have to satisfy certain consistency 

conditions: (These conditions were first written explicitly by Birman and Lin in [10])

C laim  8.6.4 Whenever four diagrams S ,  E ,  W , and N  differ only as shown in 

figure 8.12, their weights satisfy

Vi(S) -  Vi(E) =  - Vi(W ) +  Vi(N). (8.25)

Figure 8.12. The diagrams S, E, W, and N.  (The dotted arcs represent parts 

of the diagrams that are not shown in the figure. These parts are assumed to 

be the same in the four diagrams)

P ro o f  Let S W  be the almost saturated (i.e. having i — 1 self-intersections) graph 

shown (partially) in figure 8.13. Pieces of the x  and y axes near the origin serve as 

arcs in that graph, as well as a third line z ' parallel to the z axis but transversing 

the * — y plane South-West of the origin. Let N E  be the same, only with the third 

line z '  moved to transverse the x — y plane North-East of the origin. There are two
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ways to calculate Vi(NE) in terms of V;(SW) and the weights of saturated graphs 

using the flip relation — by moving s ' from SW  to N E  along the two dotted paths 

in figure 8.13. The two ways must yield the same answer, and therefore the four 

saturated graphs corresponding to z' intersecting the x  and y  axes South, East, West 

and North of the origin have diagrams whose weights are related. With the sign 

convention of (8.23), this relation is seen to be (8.25).
□

N

S

Figure 8.13. The graph SW  and the two ways of getting from it to NE. Notice 

that a* is perpendicular to the plane and therefore appears as a single dot.

It is easy to see that the weight systems Cg and C'g satisfy the relation (8.25). 

Simply use the relations (8 .6 ) and (8.22) in two different ways (marked 1 and 2) on 

the diagram:

C laim  8.6.5 (Birman-Lin) I f  a diagram D contains a dashed line whose endpoints 

on the circle are not separated from each other by an endpoint of any other line in D, 

then Vi(D) = 0.

P ro o f  An embedded graph G whose corresponding diagram is D  would have a kink 

. By the flip relation (8.23), V5(<?) =  V5(G°) — V5(G“), where G° (G“) is a version 

of G in which the kink was resolved to an overcrossing (undercrossing). But G° and 

Gu are isotopic, and therefore VJ(G) =  0.

□
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It is a trivial consequence of lemma 8.6.1 that The weights Cg satisfy the relation 

in claim 8.6.5.

We have just solved a  problem posed by Birman and Lin in [10] — to find non­

trivial solutions to the relations in the last two claims.
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Chapter 9 

The stationary phase 

approximation

The purpose of this chapter1 is to compute and examine the consequences of the 

stationary phase approximation of section 1.2.2. In [45] Witten has calculated the 

stationary phase approximation for the Chern-Simons path integral, finding that the 

effective coupling constant is shifted by half the Casimir number3 Cj(f7) of the adjoint 

representation of the underlying group relative to the bare coupling constant k. His 

calculation was restricted to  compact simple gauge groups, and one of the purposes 

of this chapter is to examine the (somewhat different) case of non-compact simple 

groups. The results of this chapter were obtained jointly with E. Witten, and are all 

included (in a somewhat different format) in [7].

1 Actually, in the logical order of things, this chapter deserves to appear before chapters 3 and 4.

However, due to its less complete and less rigorous nature I’ve decided to place it later than those 

two rigorous sections.
3The Casimir number ej(iZ) of a representation A of a simple Lie algebra Q relative to some 

pre-chosen invariant bilinear form fc on Q is the ratio j/te. Namely, cj(it) is the constant for which 

<rn«(&,)«(&) = e3(A)fc0.ft for every &,» 6 Q.
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9.1 Introduction

Recall from section 1.3.3 that the quadratic part of the gauge fixed Chern-Simons 

Lagrangian is given by

it cs(Ao) + dA°A  +  tyD p A *  +  2cD*‘D A°'ic) (9.1)

where £>/t° denotes covariant differentiation with respect to a  background fiat con­

nection Aq. If the gauge group G is simple and compact, then the inner product

(<PU Vi) -  ~  JMS y/9*(ViVi) (9-2)

is positive definite9, and we can rewrite (9.1) as

where A '40 is the covariant Laplacian and is defined as in section 3.1:

J  A  — A
L*° « ( D * *  +  * D * ) J  ;

repeating the same4  analysis as in section 1 .2 .2 , we thus find that to lowest order in

l / k ’ ^  Ab

, k ) ~  Y ,  , tA  fikcrtAa)
J \d e k L ^ \

(Here we have ignored an Ao-independent infinite power of ir k ) .

The problem with the above formula is that as it stands, det A4®, det Ld°, and 

signed0 are all meaningless due to the infinite dimensionality of the spaces involved. 

A way around this was found by Ray and Singer [40] — they show when L  is a suitable 

operator, the sum

C(M « E  * -
eigenvftluea A of £

aHere we have restricted our choice of fc a bit further. Not only do we require that it will be
invariant, namely a multiple of the Killing form, but we also insist that it will be a positive multiple

of the negative definite Killing form.

4But remembering that for Fermionic Gaussiaiflntegrals /  dcdceUt tx det (J) as in (1.13).
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converges for Re(s) large enough, that the resulting function has a meromorphic 

continuation on the entire s plane, and that it is analytic a t s = 0. Finally, they 

define

d e t I  =  e -< W ^ e -< W ).

Clearly, this definition agrees with the usual definition of the determinant in the finite 

dimensional case.

Similarly, one can define (following Atiyah, Patodi, and Singer [5])

ti(L,s)=  A"*signA
eifam luaa X of L

for Re(s) large enough, analytically continue to  s =  0 , and set

s ig n ! =  r)(L) “ ij(£,0).

With these definitions, we can set

£  exp (jC ' ( ( ^ ) 2)  -  <' (A * )) exp-.^T , (Id0) exPikcs(Ao).

(9.3)

In the process of defining we were forced to introduce a  metric on A/3,

and it is now not clear that our definition is independent of the choice of that metric. 

Part of the answer was already given by Ray and Singer in [40] — they proved that 

the ratio of determinants

( j c  ( ( ^ y )  -  c  ( a - ) )

is, in fact, metric independent5.

The signature ij(id°) turns out to be trickier. We will see in the next section 

that for an arbitrary connection A  (not necessarily flat), the variation of ij(L t)  with 

respect to A  is given by

* » ( £ ) — (9.4)

BThey have also conjectured that that ratio is equal to the square root of the Reidemeister-Franz 

torsion of M* with coefficients in the representation of rt(M ’) determined by Ao. This conjecture 

was later proven by Cheeger [16] and Muller [35] independently.
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This implies6

V { & )  ~  V (£ - )  =  —̂ ~ e a ( i4 o ) ,

where is the standard £_ operator (d ★ +  ★ d)J  twisted by the zero connection. 

Therefore, the “second half” of (9.3) can be rewritten as

exp i^rj (i/^0) exp i k ca(Ao) =  exp expi(Jb +  ct(G)/2)cs(Ao). (9.5)

The shift it —► Jb +  0 3 (G) /2 in the above formula is exactly the famous “shift in i ” of 

Chern-Simons theories.

We still have to analyze the metric dependance of yv(j***,*r“ ei — namely, the metric 

dependance of rj(L_). Here we can appeal again to the Atiyah-Patodi-Singer theorem, 

which, in this case, says that

=  1 /  (96) 
Sg 12x3 /w 3 5$ fixfy 1

where iZ® is the curvature of the Levi-Civita connection w® of The situation now is 

similar to that of section 3.4 — VVJt**hTWti ia not invariant, but it can be ‘corrected* 

to give an invariant

at the cost of having to frame M 3 — to choose a homotopy class of trivializations of 

the tangent bundle of M 3 — so that cs(w®) can be defined unambiguously.

9.2 The variation of 77 in the compact case

As a warm-up for the more challenging case of a non-compact group, in this section 

we will prove formula (9.4). For simplicity we will perform all our computations on 

a flat R 3. A more complete treatment can be found in [7].

The first step is to rewrite L t-

^ - « » ( £ + * ) •

®This result can be deduced directly from the Atiyah-Patodi-Singer theorem [5].
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Here tri, <r2, <r3  are the matrices representing multiplication by the quaternions t, j ,  k 

respectively on the four dimensional real vector space V  underlying the quaternions 

H:
\ / „ \ t  - . \

0 -1 0 0 0 0 -1 0 0 0 0 -1
1 0 0 0 0 0 0 1 0 0 -1 0

; = ; <rz =
0 0 0 -1 1 0 0 0 0 1 0 0

t° 0 1 0 , t° -1 0 0 0 0 ;
This differential operator acts on V  00-valued functions on R 3. The {ff,}’s satisfy 

the following commutation relations:

{<Ti, <Tj} — —2 Sij (9 * 7 )

We will attempt to  calculate t/(L i) using a  result derived in [1] and in [1 1 ], and 

reviewed in [7]:

Lem m a 9.2.1 The variation o f the q-invariant y{D) o f a differential operator D 

acting on a three dimensional space is given by

where the form C -i/i is related to the asymptotic expansion o f the heat kernel of D2

by1
T K S D tx p -tD ')  =  ^  .

If D2 — —(A +  F )  and the operator F  can be considered as ‘small’ relative to A, 

one can determine the coefficients C_ m / 2 using

( x  |e1(A+F)|y^ ~  ( x  Je<A| y) + jf da { x  |e*AFc^_*̂A| y )  H----

To apply lemma 9.2.1, we first need to calculate (L i)2:

{L i)2 =  Oj{Si +  Ai)(dj + Aj) = OiOjdidj +  tr.ffjfl, o Aj +  ff.-rr, A f t  +  O i^AiAj

7The T  of TV in the formula below is capitalised to emphasise the infinite dimensionality of the 

space involved.
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using Leibnitz1 rule

=  ffiffjdidj +  ai<rj(diAj) +  (o&j +  p ^ A id j  +  tritrjAiAj

And replacing each by |  +  [a,-,*,]) =  -6 ij +  tijk<rk we get

=  —A — (ftA1) +  2A|9| AiAi +  CjjifftAjAj.

Now, according to lemma 9.2.1 the variation of il(L t)  under L* —» LA+SA, that is 

to say, under

"(^+j4')_,<"(^+A+<A)
is given by —~ ^ p  where C-1 / 2  is given by:

^ 0 T  =  /  tr< n8A ,£ds  ( * |e 'd Fe<‘-> A|* ) ,  

and where F  is given by:

F  —  (fliA ) “  £ijk&k{diAj) +  2j4jfl, +  AiAi CijktTkAiAj.

There is now no need to  calculate — it is clear that as

tra, -  0 ; tra,(Tk = - i S lk

we will have

^  =  j 4trSA, M M ; )  + djiAiAj) J *  ds (x  |e 'Ae<‘-'>*| x)

(The expressions d;Aj and AiAj can be assumed to be independent of x  — it easy is 

to see that their possible dependence would have anyway lead to lower order contri­

butions). Using now the convolution property of the heat kernel we find that

c -i/2 = 2 ^ 7= J tr tir fM d iA j  +  AiAj) =  j  td jM i  (M i + AiAj)

proving formula (9.4).

R em ark . It is clear from the above calculations that when we calculated (LA)2 we 

could have ignored every term that has no trm atrix in it — because those terms when
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multiplied by aiSAi end up having exactly one a  in them, and thus end up having 

zero trace. In fact, one of those terms, Ajdj, gives a  vanishing contribution to the end 

result for another reason as well. Let us try to calculate the contribution due to it:

J  trtr/SAiJ^ da (z  |e*Ai4,die^_^ A|

Again the dependence of A  in x can be ignored as it leads only to lower order contri­

butions, and we see that we first have to evaluate

Ai (x  x ) .

We can now use the fact that the integral kernel for the solution of the heat equation 

is a symmetric function of z and y to replace the above expression with:

Using the semigroup property of the heat kernel we get

a  &  <* i'“ i » > L = &  (■ C =o-
Clearly, a similar calculation will show that even if F  had any other terms which 

are first order differential operators those would have added no further contributions 

to 6r)(Lt)-

9.3 The variation of 7/ in the non-compact case

If the gauge group G is simple but not compact, then the inner product (9.2) is not 

positive definite, and the analysis of (1.5) breaks down. The reason for that is that in 

section 1 .2 . 2  the phase of the integral was determined by the signature of the quadratic 

form approximating the Lagrangian near a stationary point. This signature is equal 

to the signature of a linear operator representing this form using a positive definite 

inner product, but if the quadratic approximation is written using an operator and 

an indefinite inner product, then its signature is effected both by the indefiniteness 

of the operator and that of the inner prodiict. However, this can be easily resolved
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— all that one has to do is to pick a positive definite inner product and to reexpress 

the quadratic part of the Lagrangian in terms of the new inner product.

Pick a maximal compact subgroup Gc of G, and a positive definite inner product 

on Q invariant under the Adjoint action of Gc, such that if Q is written as the direct 

sum of the Lie algebra Qe of Gc and its orthogonal complement Qnt then the original 

bilinear form that we started with, it, is given by the matrix

/ *  0  \

0 - I m  )  '

( / “  and are, of course, the identity matrices of End[0e] and End[£n], respectively).

Also, it is more convenient to replace the original gauge condition =  0 by

■jfcnDiA* =  0. With these choices made, the operator to consider is not the same I>d°, 

but a slight variation of it L*0, which will presently be described. Let cr; €  End[£ ® V] 

be given by:

.  Set (  1“  ®  0<Tj =
^ 0  /"" ® &i

Where o; € End[V] are given by multiplication by the opposite orientation quater­

nions:

f 0 _1 0 o'' f 0 0 -1 0 ' f 0 0 0 -0
1 0 0 0 0 0 0 -1 0 0 1 0i *2 = ; 3̂ =0 0 0 1 1 0 0 0 0 -1 0 0

0 -1 °; 1 0 0 ; t1 0 0 0 J
It is useful to note that the o 's satisfy the following commutation relations:

{oi,Oj} =  - 2  6ij (9.10)

=  2 ncijkOk (9.11)

After all those preliminaries, we can finally write Zi4°:

)■
(9.9)



Similarly to the compact case, we start our calculation by calculating (LA)2. Re­

membering the remark a t the end of the previous section, we iind that

((^ /‘)a]rd.«uU =  W j d i d j  +  O fi j id iA j)  +  d.fT j/ifM j

(here the superscript dj denotes conjugation by dj — A*’ =? aJ2Afij). Using djdj =  

3 + 1d,•,£,•]) and equation (9.10),(9.11), we see that up to irrelevant pieces,

the last expression equals

- A  + ntijkZkidiAj) +  ntijk&kA** A y

Just as in the compact case treated in the previous section we find now that the 

variation of tj(La ) under LA —* LA+SA, that is to say, under

{ h +A )  SAi)

is given by —~j«A where C -i/i is given by:

- 0 T ~  J  tr*,SA,J0 ( ^ F e ^ \ x )

and where F is given by:

F = -ntijk&k ((^, Aj) + A*’Aj) .

Therefore, we find that

■Jt 6t)(La) =  j  trcijiSApn (diAj + A*’A j} . (9.12)

We will now check that the last result, eq. (9.12) can be easily interpreted to 

be to the variation of the Chern-Simons number of the projection onto the subspace 

of compact generators of the connection A, with a  coefficient proportional to the 

difference of the Casimir numbers of the representations of Gc on Gc and on Gn.

We first wish to understand matrices of the form A*J. Decomposing



according to the decomposition Q =  Qe © C?n, it is easy to check that the answer is:

# ■
(  A f  t j A ?  \

\  M r  )

where Tj == —OjOj = Notice that the matrices Tj are always diagonal with

two l ’s and two — l ’s on the diagonal:

Tj =

r l 0 0  0  ^ f l 0 0
\

0 0 0 0  ^

0 1 0  0 0 - 1 0 0 0 - 1 0 0
; Ta = ; ts =

0 0 - 1  0 0 0 1 0 0 0 - 1 0

0 0  - 1 ; 0 0 - 1 ; 0 0

We now come to understanding ~y/*6t)(LA)/2, that is, to understanding

c-*'’ ■ (4v? I tr“di'+i,)=(4̂  / ‘p£i'i<y,f'" +̂
Writting

\  TitfAf* 6AP )

we see that

/  SAfdiAf -  TiSAf'diA™ * \
1 ~  \  * nSA ^diA f1 -  6A*ndiAf* )  ’

But the traces of the matrices r\ vanishes, and so

trtijiSi = 4treijf (SAfdiAf -  6A^ndiA]n) . (9.13)

Similarly, we perform matrix multiplication and find that (for the same reason as 

before we can ignore terms in which a matrix riarj appears. In fact, we can even 

ignore terms in which a product tjTj appears - this is because the anti-symmetrization 

eiji constrains I and j  to be different, and it is trivial to verify that for different I and 

j  one has frrjTj =  0 .)

/  S A f A f A f  * \
irtijiSi =  treiji I

-6A ?nA*nA*n j
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and so

tr tijfo  m Atrcij, (6A?A?A? -  6A?nA?nA]n)  (9.14)

Equations (9.13) and (9.14) together show that C_i/j is in fact the variation of 

the Chern-Simons number of the projection a of the connection A  onto the subspace 

of compact generators, with a coefficient proportional to the difference of the Casimir 

numbers of the representations of Ge on Qe and on Qn:

=  - i / f « '  {tre.lA?(d<A? +  A f A f )  -  +  * r * 7 ) )

= - a f f i l [ , + « « , )  - -,<>«>■)-o(g-)M«). (9.15)
r* j  r  on

If one ignores the difference between A  and a, the above result means that in the case

of a non-compact gauge group the effective value of Jfc is shifted by (cj(Qc) —ct(Sn))/2

similarly to the shift k —► k + c%{Q)j2 observed in the compact case in (9.5).

The difference between A  and a is a bit disturbing, however. The projection

P  : A —* a depends on a choice of a non-ad-invariant positive definite metric on Q

and is not gauge covariant, making the result (9.15) not gauge invariant. This is a

similar situation to the one encountered in (9.6) where the metric independence was

broken by the regularization and the difficulty can be solved in a  similar way — by

adding to the original Lagrangian a local counter-term AC  that depends only on A,

g and the pointwise choice of the projection P. The required counter-term is

where DA is the covariant exterior derivative twisted by >1, F A is the curvature of A, 

and T  = P  — P x . Indeed one has

+ i £ = 
h *

correcting the non-gauge-invariance of (9.15).
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Chapter 10 

Perturbation theory beyond two 

loops

Following Witten [50], I will sketch here how we expect the perturbation theory of 

the Chern-Simons gauge theory to behave on a general three manifold and to higher 

order in 1  /k .

In [45, 46] W itten used very different techniques than those presented here to 

And a complete non-perturbative definition of the Chern-Simons gauge theory. The 

part of his solution that is relevant for making a comparison with the results proven 

here was reviewed in the previous chapter, and that comparison showed a complete 

agreement between the two approaches. The solution involves three subtleties that 

are hard to predict by just observing the definition of the theory in equation (1 .2 ):

1 . Links have to be framed. According to W itten’s solution W ( M 3, X , k ) cannot 

be defined as it is for a  bare link X ,  but one also has to choose a framing for 

each of the components of X  and only then VV(Af3, X , k) can be defined. Its 

definition will then depend on the choice of the framing in a prescribed manner. 

This point was explained in some more detail in the chapter 9.

2. Three-manifolds have to be framed. According to W itten’s solution W(Af3, X , k) 

cannot be defined as it is for a bare three-manifold Af3, but one also has to 

choose a framing for M 3  — a choice up to homotopy of a trivialization of
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the tangent bundle of Jl/3, and only then W ( M 3, X,  k) can be defined [47, 3]. 

(Actually, something a little less than a  framing of M 3  is enough [47, 3]—it is 

enough, roughly speaking, to  have a  framing modulo torsion.) Its definition will 

then depend on the choice of the framing in a prescribed manner. As we were 

working on a flat R 3  we have not encountered this subtlety in this paper. We 

can consider this subtlety and the previous one as cases of a broken symmetry 

— as framings do not at all appear in (1 .2 ) it is trivialy invariant under a change 

of framing and this symmetry is broken in W itten’s solution.

3. Analyticity near k = oo is lost.1 Naively one sees that as k  -» — k  in (1.2), 

W (M 3, X , k ) transforms to its complex coqjugate. This property of W  together 

with analyticity near k = oo means that we expect the even powers in the l / k  

asymptotics of W  to be real and the odd ones to be imaginary. This property 

is lost in W itten’s solution as can clearly be seen from equations (5.1), (5.2),

(5.3) and (5.5) in which k always appears ‘shifted’ by N .

All of the above mentioned subtleties seem not to appear in a naive Feynman- 

diagrammatic expansion of W, and the purpose of this chapter is to show how these 

points probably do appear in perturbation theory after all.

Formally writing down the sums of Feynman diagrams that we expect to yield 

higher three-manifold and link invariants and translating them into finite dimensional 

integrals is routine and easy. It is also not hard to produce a formal invariance 

proof for these integrals as explained in chapter 6 , ignoring the analytical difficulties 

arising from the divergence of those integrals. We will see below how resolving these 

analytical difficulties is likely to explain the three subtleties listed above.

The origin of the above mentioned analytical difficulties is the singularities Greens’ 

functions have near the diagonal. These get milder for higher order differential op­

erators. This suggests* trying to regularize (1.2) by adding higher order terms to the 

Lagrangian preserving as much symmetries as possible so as not to spoil the metric

1Some authors [20, 30] dispute this point, which is usually referred to as “the shift in Jb”. It is 
very likely that in the context of the regularization suggested below no changes need to be made to 

the assertions in this paper.

125



independence argument of chapter 6 . (Physicists call such a procedure Pauli-Villars 

regularization.) The main ingredient of this argument is BRST invariance (lemma 

3.1), and if we wish to preserve it we can only add terms that preserve gauge invari­

ance. The only such term of order two is the square of the norm of the curvature of 

the connection A  and therefore we will make the replacement

Cm £nt*l*rinJ Cm +  cU-FUU*.

(In fact, to preserve the ellipticity of the quadratic part of Cm *urutJ one also has 

to change the gauge-fixing term of Cm  and this forces changing Q slightly. Making 

those changes is easy and does not affect the rest of our reasoning, so we will ignore 

them.)

Let as now pretend that C ^urite i gives rise to a finite perturbation theory. (Ac­

tually, this is true except for the role of a few low order subdiagrams.) What will 

remain of the invariance argument (6 .6 )?

Lemma 3.1 and lemma 3.3 will still hold because we have preserved gauge invari­

ance, but as the additional term in Cm*uraU is metric dependent, lemma 3.2 will not 

be true any more. Instead, the variation of C ^ u n td  under giJ —» y1J +'6g'’ will be 

given by

SCrtftUnjU =  QA *f e^||PU||a 

and therefore in the notations of (6 .6 ) we will have

*<<?)« =  e(CW||F*|i2)e (1 0 .1 )

where the subscript e in ( • )e is meant to remind us that we are taking expectation 

values with respect to a Lagrangian that depends on e. Of course, equation (10.1) (and 

equations (10.2)-(10.5) as well) should be understood as an equality of perturbative 

asymptotic expansions, and its proof will be based on (6 .6 ) as explained in chapter 

6 . If (0 )t had a limit as e —► 0 and (OA||/7U||2)e was bounded as e -» 0 we could have 

taken this limit and it would have been metric independent. One cannot expect this 

to be true. However, the divergences in (Otf H^Ull3)* for e -» 0 originate from a very 

definite type of contribution to the Feynman diagrams, and by considering how such
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divergences can originate, one can obtain results that are nearly as good as the naive 

results that would have held if there were no divergences. In explaining this, we will 

consider the basic case 0  =  1 .

It is convenient to consider only the connected Feynman diagrams and as is well 

known [39,24,32] the sum of those is just log(l)(. Divergences in Feynman diagram­

matic contributions to  log(l)< and to

{(log(l).) =  ( 1 0 .2 )

come from a  region of integration in which all integration points are separated by 

distances of order c. This means that the divergences can be expanded in terms 

of local differential geometric invariants -  the metric, the curvature tensor, and its 

covariant derivatives. This expansion is analogous to the short time expansion of the 

heat kernel. The most general divergent terms are of the form

log(l)c =  +  finite terms (10.3)

and

=  % SV + %6R  +  - S C  +  finite terms. (10.4)
(1 ), e4 ea e

Here ci, cj, and cs are constants (or more exactly functions of k  only, which must be 

computed order by order in perturbation theory, but do not depend on the particular 

three manifold or metric). Also, V  is the volume of M3, R  is the integral over M 3 of 

its scalar curvature, C  is the Chern-Simons number associated with the Levi-Civita 

connection and SV, SRt SC are the variations of these quantities with respect to 

+  tig'*. The expansion (10.4) is determined by the following principles, (i) 

The terms on the right hand side must be closed one forms on the space of metrics

(since the left hand side of the equation has this property.) (ii) The coefficients of

these closed one forms must be local functionals of the metric. W hat has been written 

on the right hand side of equation (10.4) is the most general expression with these 

properties. The general principles do not determine ci,C2, and cj, which from this 

point of view must simply be computed order by order in perturbation theory.

Equation (10.4) means that (l)e does not converge as e —► 0 to a topological 

invariant. Indeed its variation (10.2) not only does not vanish as e -» 0; it diverges
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in this limit. If, however, we define3

" e x p lim  (lo g (l) ,- ^ V - ^ R - caC?) (10.5)

then (10.3) shows that Ww*»rm«K»rf is finite while (10.1) and (10.4) shows that it is 

an invariant. Here we see where the framing of it/ 9  comes in — to define C  we must 

first pick a trivialization of the tangent bundle and so the invariants that we have 

just produced depend on a choice of such a trivialization.

Notice that SC, in equation (10.4) does not depend on the choice of a  framing, 

but C  does. What is entering here is clearly a sort of local cohomology of the space 

of metrics. The local, closed one forms SV, SR appearing in (10.4) can be written 

as variations (exterior derivatives) of local functionals of the metric. But SC, though 

itself a local functional and a closed one form, cannot be written as the variation of 

a local functional. (If SC were itself not local, it could not arise in the intrinsic local 

evaluation of Feynman diagrams that leads to equation (10.4).)

Similarly, in the case of a non-empty link X  we do not expect that the higher 

order Feynman diagrams will converge to link invariants, but instead we expect them 

to converge to something whose variation with respect to a deformation of X  will be 

equal to some constant multiple of the variation of the total torsion of X.  (The torsion 

will enter just as the Chern-Simons number C entered in the above discussion.) The 

total torsion can then be subtracted out yielding link invariants at the price of having 

to introduce a framing for X  — the total torsion can be defined only given such a 

framing. This agrees with the results of Witten and with the results in chapter 3.

Unfortunately, we were just pretending that the theory defined by £rcf«itru«f >s 

finite. In fact, it is not. One can figure out how badly divergent the theories defined

2This is consistent with what is usually called renormalisation - it just corresponds to adding

- f t V  — s iR  -  esC  to the original Lagrangian as the limit e -*  0 is taken. In fact, the above

paragraph can be summarised by saying that these three terms are the only possible local BRST

invariant additions to the Lagrangian which are of the right dimension. Notice that all three terms

depend on the metric alone and not on the fields, and therefore the n-point functions of the theory

are not renormalised and thus no care needs to be taken of the renormalisation of lower order

diagrams when considering the renormalisation of-a fixed order in perturbation theory.
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by Cut and Cn^uritU are by taking a  diagram with a specified number of vertices 

and arcs, measuring the total degree of singularity of the arcs and vertices, and 

subtracting the number of integrations that the vertices induce. The result, the so- 

called “superficial degree of divergence” A  of a  diagram with Eb  external gauge lines, 

Ef  external ghost lines and L  internal loops is

A(£«o<) =  3 — Eb  — ^E p  ; A (£ rvsjfrfM4) =  4 — L  — Eb  — E f - (1 0 .6 )

Clearly, the regularized theory is less divergent than the original one, but (10.6) 

shows that even in the regularized theory the diagrams with a  small number of loops 

and external lines will be divergent and as these diagrams appear as subdiagrams in 

diagrams with higher complexity we cannot just ignore them. One can check that 

even if higher terms than e||Fx||a are added to Cut and even when considering the 

reduction in the divergence that comes from gauge invariance9  one loop diagrams 

with one, two , or three external legs will remain divergent in the resulting theory. 

Yet, we believe that the following is true:

C on jectu re  1 (Witten, [50]) The analysis in (10.8), (10.]), and (10.5) can be jus­

tified, and the resulting invariants W n*ormtH,u coincide with the expansion in powers 

o f l / k  o f the results in [45, ]6]-

One-loop diagrams in the Chern-Simons theory have been regularized using (- 

function regularization in [45, 7] and in chapter 9 of this thesis, and using Pauli- 

Villars regularization in [2]. In both these regularizations the ‘shift in k' is observed 

consistently with the above conjecture. Partial results concerning the finiteness of 

the perturbative expansion where obtained by F. Delduc, C. Lucchesi, 0 . Piguet and

S.P. Sorella [19], and by A. Blasi and R. Collina [13].

sQc — and therefore (4(*)4(y)) — 0. This together with the structure of the ]A  propagator 
proves that the amputated two-point function is given by -t^d1 of a (1, Inform whose convergence 

properties are by one degree better. For a similar example, see e.g. [12, pp. 299-300].
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