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Abs t rac t .  There is a standard syntax for Girard's linear logic, due to 
Abramsky, and a standard semantics, due to Seely. Alas, the former is 
incoherent with the latter: different derivations of the same syntax may 
be assigned different semantics. This paper reviews the standard syntax 
and semantics, and discusses the problem that arises and a standard 
approach to its solution. A new solution is proposed, based on ideas 
taken from Girard's Logic of Unity. The new syntax is based on pattern 
matching, allowing for concise expression of programs. 

1 I n t r o d u c t i o n  

Somewhere inside linear logic, there is a programming language struggling to 
get out. We wish to define an analogue of lambda calculus to solve the following 
equat ion:  

lambda calculus 

in tu i t ionis t ic  logic -- l inear logic 

What  does this language look like? 
One would think the answer should be straightforward by now. There is the 

linear logic of Girard [Gir87], there is the syntax of Abramsky [Abr90], and there 
is the semantics of Seely [See89]. Each of these has become a standard. 

Abramsky was inspired by the earlier work of Lafont [Laf88] and HolmstrSm 
[Ho188], and in turn inspired related systems by Chirimar, Gunter, and Riecke 
[CGR92], Lincoln and Mitchell [LM92], Mackie [Mac91], Troelstra [Tro92], and 
Wadler [Wad90, Wad91]. 

Seely provided a categorical model, that  subsumes other models such a s  
coherence spaces [Gir87], event spaces [Pra91], games [LS91], and the Geometry  
of Interaction [AJ92]. 

Unfortunately, Abramsky's syntax is incoherent  with Seely's semantics: dif- 
ferent derivations of the same term may yield different semantics. The basic 
problem is tha t  Promotion does not commute with substitution. All of the above 
syntaxes suffer from a similar problem in one form or another, meaning that  it is 
difficult to assign them a meaning in any of the above models. (While the above 
rightly credits Abramsky's  influence, it would be wrong to burden him with too 
much blame. His syntax is coherent with the operational model he uses.) 

This difficulty was spotted previously by myself [Wad92]. Other researchers 
have not only observed the problem, but also proposed a solution in the form of 
a syntax that  'boxes' the Promotion rule, in much the same way that  boxes are 
used in proof nets. Notable in this regard is the work of Benton, Bierman, de 
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Paiva, and Hyland [BBdPH92], which provides a thorough introduction to nat- 
ural deduction and sequent versions of linear logic, their categorical semantics, 
and the associated proof theory. 

This paper presents a new syntax for linear logic that resolves the Promotion 
problem. The new syntax follows naturally from the idea of using patterns in 
sequents to represent destructors. It is closely related to Girard's Logic of Unity, 
LU (though without the polarities) [Gir91]. Indeed, the syntax presented here 
is based on a suggestion from Jean-Yves Girard, who pointed out to me that 
the problems I had noted with the standard syntax are resolved in the syntax of 
LU. The syntax also bears a passing resemblance to Moggi's calculus for monads 
[Mog89]. 

The syntax has been expressed in a way such that Dereliction and Promotion 
are made explicit, but Contraction and Weakening are left implicit. Even though 
linear logic is a 'resource conscious' logic, it seems adequate to be conscious of 
Dereliction and Promotion alone. The semantics introduces sufficient coherence 
properties so that the precise order in which Contraction and Weakening is 
applied is irrelevant. Such details may safely be omitted from the programme, 
yielding a more economic mode of expression. For those who truly desire to 
control all the details, a variant syntax that makes Contraction and Weakening 
explicit is given at the end. 

Another approach to giving a syntax for linear logic based on LU appears 
in more recent work [Wad93]. That paper presents a more tutorial introduction: 
it is based on natural deduction rather than sequent calculus, so it takes less 
advantage of pattern matching, and it stresses the syntactic aspects of proof 
reduction while ignoring the semantics. 

The remainder of this paper is organised as follows. Section 2 presents 
Abramsky's syntax. Section 3 presents Seely's semantics. Section 4 presents the 
new syntax. Section 5 compares the new syntax with Girard's Logic of Unity. 
Section 6 sketches some variations on the new syntax. 

2 O l d  s y n t a x  

For simplicity, we restrict ourself to the connectives | (tensor product), --o 
(linear implication), & (product), and ] (of course). A type (or proposition) is 
built from these connectives and base types. 

A,B,C::=XI(A| I(A-oB) (A&B) I!A 

Let A, B, C range over types, and X range over base types. 
For each of these types, there are terms to construct and destruct values of 

that type. 

t, u ::= ~ I (t,  u) I (let (~,  y) = t in u) I (~x .  t) t (t ~) I 
(t, u) I (let ( x , _ )  = t in u) I (let (_, y) = t in u) I 
It I (let !x = t in u) I (let ( x @ y )  = t in u) I (let _ =tinu) 
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Let t, u range over terms, and f ,  x, y, z range over variables. The use here of 
' let (x, y) = t in u '  in comparison with Abramsky ' s  'let t be x | y in u'  merely 
reflects a preference for the tradit ional  notation, not any significant difference. 

An a s s u m p t i o n  has the form xl : At ,  . . . ,  x~ : Am where all the variables 
are distinct, and n > 0. Let F and A range over assumptions.  Write s A for 
the catenation of two assumptions; whenever this appears it is assumed tha t  the 
variables of F and A are disjoint. Finally, a j u d g e m e n t  has the form F F t : A. 

The  rules for this version of linear logic are shown in Figure 1. Each rule has 
zero or more hypotheses above the horizontal line, and a conclusion below. There 
is one rule for each te rm form, with the exception of the two rules Exchange and 
Cut.  The Exchange rule expresses that  the order of assumptions is irrelevant. 
The  Cut rule uses the notat ion u [ t / x ]  to stand for the te rm derived from u by 
subst i tut ing t for all occurrences of z. 

Id 
x : A F ' x : A  

Exchange F, x : A, y . B,  `6 f- t : C 
F , y  B , x  A , _ 4 ~ - t  C 

s  x : A , , 6 ~ - u : B  Cut 
Jr, ,6 ~- ~ [ t / x ]  : B 

F I - t : A  , 6 t - u : B  
| | /~, ,6 P (t, u) : (A | B) 

F , x : A , y : B ~ - t :  C 
f, z : ( A |  b(let ( x , y ) = z i n  t): C 

- - o - R  _F, x : A F t : B 
/~ F (~x. t): (A-o B) -o -L  

F F t : A  y : B ,  A t - u : C  
F, f :  (A ---o B),  ,6 F- u[(] t ) /y]  : C 

& - R  
F b t : A  I ~ F u : B  

_P F (t, u) : (A & B) 

&-L F , x : A b  t :  C 
L z: (A*: B) F 0et (x,_) = z in t): C 

1 ~ , y : B t - t : C  
F , z : ( A & B )  F(let ( _ , y ) = z i n  t):  C 

Promotion xt : !A1, . . . ,  x ,  : !An F- t : B Dereliction 
xl : ! A I , . . . , x ~ : ! A n F ! t : ! B  

_F, x : A F  t : B 
P, z:!A~-(let ! x = z i n  t ) : B  

Contraction F, x : !A, y : !A b t : B 
/~, z: !A F- (let (x@y) = z in t): B 

F F t : B  
Weakening P, z : ! A t - ( l e t _ = z i n  t ) :B  

Fig. I. Old syntax 

The rules are given in sequent calculus style, so constructors are represented 
by rules (such as Q-R) where the connective appears in the consequent of the 
conclusion (to the right of F), and destructors are represented by rules (such as 
|  where the connective appears  in the antaceedent of the conclusion (to the 
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left of k). Promot ion constructs a term with 'of  course' type: it is a !-R rule. 
Dereliction uses a variable with 'of  course' type once, Contraction duplicates it, 
and Weakening discards it: we refer to these collectively as !-L rules. 

The -o -L  rule only allows one to apply a variable to a term. Readers may  be 
more familiar with the application rule of Natural  Deduction, which allows one 
to apply a te rm to a term. 

F F - t : ( A - o B )  A F - u : A  
.--o-F, 

v, A~- (t u) : B 

This rule is derived as follows. 

F k  t : ( A - ~ B )  

A F u : A  y : B F y : B  

A , f  : (A --r F- ( f u ) :  B 

Id 

---o-L 

Cut 
V, A k  (ra u) : B 

Id 
x : ! A F x : ! A  

Dereliction 
(*) z :  !!A F- (let !z = z in x ) :  !A 

Promotion 
z :!!A F- !(let !z = z in z) :!!A 

and also the derivation 
Id Id 

x : !A t- x : !A y : !A k y : !A 
Dereliction Promot ion 

(**) z : !!A k (let !x = z in z) : !A y :  [A k !y:  !!A 
Cut 

z : [!A k [(let !J: = z in z) : !!A. 

At first this may  seem vaguely disturbing. ~Ve shall see shortly that  it is pro- 
foundly disturbing, because each of these derivations is at tached to a different 
semantics. 

has the derivation 

z : ! ! A / ! ( l e t  !x = z in z) : !!A 

Note the central role played here by Cut. Sequent and natural  deduction versions 
of linear calculus are presented and shown equivalent by Lincoln and Mitchell 
[LM92]. Various mixtures of the two systems have been used by various re- 
searchers [BBdPH92, CGR92, Wadg0, Wadgl].  

Here are a few example judgements.  

k (Ax. Ay. l e t _ =  y in x) : A--o ! B - o  A 
k (At. As. Ax. let !f = r in let !g = s in let (y@z) = x in f y ! ( g z ) ) :  

!(!A -o  !B --o C) ---o !(!A --~ B) ---o !A ---o C 
F- (Ax. let (y, z) = x in 

! { l e t ! r = y i n l e t _ = z i n r ,  let ! s = z i n l e t _ = z i n s ) ) :  
(!A | !B) --o !(A & U) 

Because of the Cut rule, an unnerving property of this system is that  terms 
do not uniquely encode derivations. For example,  the judgement  
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This section presents Seely's model of linear logic, restricted to the case of in- 
tuitionistic linear logic. Seely's model is normally thought  of as deriving f rom 
. - au tonomous  categories, but  the dualising object * is only required to model 
classical linear logic. 

Anticipating that  objects will model types and assumptions,  and that  arrows 
will model  terms, let A, B, C and F, A range over objects, and t, u, v range over 
arrows. 

A model  of intuitionistic linear logic is provided by a category with the 
following structure. 

- I t  is symmetr ic  monoidal  closed, with unit object 1, tensor | and internal 
hom --o. The transpose of t : F | A ~ B is curry( t )  : F --~ (A -o  B) ,  and 
the counit is apply : (A --o B)  | A --* B. 

- I t  possesses finite products,  with terminal  T and product  &. The unique 
arrow to the terminal  is () : F --+ T, the mediat ing morphism of t : F --~ A 
and u : F ---+ B is (t, u) : F --* A ~ B ,  and the projections are fst : A ~ z B  --~ A 
and snd : A & B --* B.  

- I t  possesses a comonad !. The Kleisli operator  of t : !A ~ B is kleisli(l)  : 
!A ---* !B, and the counit is counit : !A --* A. 

- There are isomorphisms 1 -~ !T and !A | !B _ !(A & B). These induce a 
comonoid structure on each object !A that  is natural  in A, given by 

!A discard 1 = !A ~ !T ~_ 1, 

!A duplicate)!A| !A !A !(id,id}) 
= !(A ~ A)  ~ !A | !A. 

A categorical model is obtained by associating with each base type an object 
in our category, inducing a map  from types to objects. Write A for both  a 

t y p e  and its corresponding object. Each assumption F = xl : A1,  . . . ,  Xn : An 
possesses a corresponding object F = AI |  | A~; the empty  assumption 
corresponds to the unit object 1. 

Each judgement  F t- t : A corresponds to an arrow t : F ~ A. Figure 2 
shows how each derivation induces an arrow which is its semantics. 

Since a given judgement  may  have more than one derivation, we must  verify 
tha t  all possible derivations of a judgement  assign it the same semantics. This 
proper ty  is called coherence, and its importance was noted by Breazu-Tannen, 
Coquand,  Gunter  and Scedrov [BCGS91]. In our case, two derivations of a judge- 
ment  can differ only in their use of the Exchange or Cut rules, since uses of all 
other rules are encoded in the term. Coherence is guaranteed for Exchange by 
the fact tha t  | is symmetr ic  monoidal.  

Unfortunately,  the Cut  rule does indeed introduce incoherence, when used 
in conjunction with Promotion.  The derivation ( . )  given previously induces the 
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--o-L 

I d - -  id  

A - - ~ A  
Exchange 

t 

F O A | 1 7 4  C 
t 

F | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  C 

Cut 

t u 
F --* A A | A -~  B 

F O  A *| A |  ~ B 

t ~ 
F - ~ A  A - - + B  

| t| | 
F |  A |  

t 

F O A |  C 
t 

F |  ~ _ F | 1 7 4  -~  C 

t 

F | 2 4 7  B 
--o-R 

1" ~ ( A - |  

t u 
.F .--+ A B | A --* C 

F O (A -o B) O A t|174 ,wp~v@ia ,~ A | 1 7 4 1 7 4  , , B |  

t u 

F - ~ A  F----+B 
& -R  (t,,,) 

F , ( A & B )  

&-L 

t 

F |  C 

F | (A & B)  id| * , F |  C 

t 

F O B - - ~ C  

F O ( A & B )  "~| F O B  *-~ C 

Promotion 

t 

!A1 O " "  O !A,~ ~ !(AI & - "  & A,~) --~ B 

!AI | 1 7 4  !A~ -- !(AI & " "  & A~) ~l,~i~(t) B 

Derefiction 

t 

F O A - +  B 
i d l e |  t 

F |  ~ F O A - - §  B 

Contraction 
F |  

t 

F | 1 7 4  B 
i d @ d u p l i c a t c  - -  . . - -  . - - .  t 

I'6b[[A. . __ . ~_ F O ! A |  --* B 

Weakening 
F O ! A  

t 

F - - ~ B  
id@di.*,~ard t 

, F |  B 

Fig.  2. Semantics 
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semantics 
- -  Id 

id 
!A ~ !A 

Dereliction 
~*~ !!A co~it, !A 

Promotion 
!!A kl~i~ti( co,,,~it)~ !iA. 

The derivation (**) given previously induces the semantics 

(**) 

Id Id 
id id 

!A ---. !A !A ---* !A 
Dereliction Promotion 

counit kleisli( id) 
!!A ~ !A !A ~ !!A 

Cut 
counit kleisli(id) 

!!A ~ !A ~ !!A. 

These are not necessarily equal. The arrow for (*) is necessarily the identity, but 
the arrow for (**) is not. We thus have the following. 

C o u n t e r e x a m p l e .  The syntax of Figure 1 is not coherent with the se- 
mantics of Figure 2. 

This problem arises only with the Promotion rule. 

T h e o r e m .  The syntax of Figure 1 is coherent with the semantics of 
Figure 2 if Promotion is not used. If a term does not contain ! as a 
constructor, then all derivations of it will have the same semantics, even 
if they use Cut. 

The proof is by examination of overlapping rules. 
All of the variations of Abramsky's syntax cited above suffer from this prob- 

lem in one form or another. In a natural deduction system, this problem reveals 
itself in a failure of the Substitution Lemma: substitution does not commute with 
Promotion [Wad92]. The same difficulty is at the root of problems that  Lincoln 
and Mitchell [LM92] and Chirimar, Gunter, and Riecke [CGR92] encountered 
with Subject Reduction theorems, forcing them to be restricted in various ways. 

One way to fix the problems is to restrict the class of categorical models. In an 
earlier paper [Wad92], it was shown that  substitution commutes with Promotion 
if and only if the categorical model satisfies counit; kleisli(id) = id. This is not 
very satisfactory, as none of the models cited at the beginning of this paper 
satisfy this restriction. Nonetheless, similar restrictions appears in the work of 
O'Hearn [O'He91] and Filinski [Fi192], and this may explain why. 

Another fix is to revise the syntax of Promotion, so that  it records explicitly 
what substitutions have occured. This suggestion has been made by Benton, 
Bierman, de Paiva, and Hyland [BBdPH92] and by l~eddy [Red91]. The syntax 
of promotion is changed so that  the term !t is replaced by ! [ u l / x l , . . . ,  u ~ / x , ] t ,  
where x l , . . . ,  x~ are all the free variables of t. Here the square brackets are 
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concrete syntax; this concrete syntax is chosen to resemble the meta -syn tax  for 
substitution, since the roles are similar. The revised Promot ion rule is as follows. 

Promot ion '  zl : !A1, . . . ,  z,~ : !An ~- t : B 
zl : !A1, . . . ,  z~ : !AN ~- ! [ z l / x , , . . . , z ~ / z n ] t  : B 

After promotion,  the free variables of the te rm are z l , . . . ,  z,~, and any substitu- 
tions for these variables will be explicit in the term. By acting as a barrier to 
substitution, the new syntax performs much the same role that  boxing does in 
proof  nets [Gir87]. It is possible to show that  this 'boxed '  syntax is coherent: all 
derivations of a te rm have the same semantics. 

Returning to our example,  the first derivation becomes 

Id 
z : ! A ~ - z : ! A  

(*) y : !!A F- (let !x = y in x) : !A Dereliction 

Promot ion '  
z :  !!A ~- ![z/y](let !x = y in x ) :  !!A 

and the second becomes 
Id Id 

z : ! A I - z  :!A y :!A~- y :!A 
Dereliction Promotion'  

(**) z : ! ! A F - ( l e t ! z = z i n z ) : ! A  w : ! A ~ - ! [ w / y ] y : ! ! A  
Cut 

z :  !!A f- [[(let !z = z in x ) / y ] y :  !!A. 

Now the terms are different, so it is not a problem that  they are assigned different 
semantics. 

The key idea here is that  there is a barrier around Promot ion indicating what 
substi tutions occur. The next section will reveal a different syntax that  erects a 
similar barrier. 

4 N e w  s y n t a x  

The new syntax makes three significant changes. First, it introduces a notion of 
pattern. Whereas previously assumptions paired variables with types, now they 
will pair pat terns  with types. Second, the various instances of ' let '  that  appeared 

previously ,  associated with the Q-L, k-L,  and !-L rules, are now all consolidated 
into a single ' let ' .  Third, there is no explicit indication of Contract ion or Weak- 
ening in the terms. (This third change is convenient but not essential, and we 
will see how to undo it in the next section.) 

For each type, there is now a term to construct values of tha t  type, and a 
pattern to destruct values of that  type. The exception is --% which has terms for 
both  construction and destruction. There is also a ' let '  term. 

p , q : : = x  I (p, q) l ( p , D  l (_, q) l !x 
t,u : : = x ] ( t , u )  l (Ap. t) l (t u) l (t, u) l !t I ( l e t p = t i n  u) 

Let p, q range over patterns,  t, n range over terms, and f ,  z, y, z range over 
variables. Note that  pat terns for the types | and & may  be nested, but pat terns  
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for the type ! may not. We will see below that  this system guarantees coherent 
semantics, but  that  if nested ! patterns were allowed then coherence would again 
be lost. 

An assumption now has the form t)i : A1 , . . . , / ) n  : An where n >_ 0 and no 
variable appears more than once in all of the patterns combined. Again, let F, A 
range over assumptions, and judgements have the form F ~- t : A. 

The rules for this version of linear logic are shown in Figure 3. With the 
exception of the new rule Let, there is a one-to-one correspondence between 
rules in the old syntax and rules in the new syntax. The Q-L, &-L, and !-L rules 
now all introduce patterns rather than 'let '  terms. The introduction of ' let '  terms 
has been factored out into a separate Let rule. The three !-L rules all introduce 
the same pattern,  so there is no explicit indication of Contraction or Weakening. 
The appearance of ! patterns in Contraction helps to explain the restriction to 
variables, since this makes the substitution associated with Contraction easier 
to express. Promotion is changed so that  in addition to requiring that  all types 
in the assumption begin with a !, all patterns in the assumption must also do 
SO. 

This last change is the critical step - the ! patterns will act as a barrier to 
substitution, just  as the 'boxed' syntax at the end of the last section did. What  
was written ! [ u l / x l , . . . ,  Un/Xn]t in the boxed syntax is here written 

let !yi = ul in - . .  let !yn = un in Z [ !ys / z l , . . . , ! yn /xn ] .  

Note that  ![ui/xi]t is concrete syntax, whereas t[!yilxi] is meta-syntax for sub- 
stitution. Although here the new syntax appears less compact than the boxed 
syntax, in practice the new syntax will often be more compact because of pat tern 
matching, and because Contraction and Weakening are not explicitly indicated. 

The Let rule has no logical content, as erasing the terms from the hypothesis 
or the conclusion gives the same logical judgement,  /', A F B. Indeed, the Let 
rule can be simply considered a convenient abbreviation, as it can be derived 
from the - o  rules and Cut. 

�9 I d  I d  
F , p : A ~ - u : B  z : A ~ - x : A  y : B F y : B  

- o -  R --o-  L 
v (A -o B) f :  ( A - o  B), x :  A F ( f x ) :  B 

Cut 
F, x :  A F ((,~p. u) x ) :  B 

Thus, we can take (let /) = x in u) as an abbreviation for ((),p. u) x). 
The  rules in Figure 2 for assigning a semantics to the derivation of a term still 

apply. The Let rule assigns the judgement in the conclusion the same semantics 
as the judgement  in the hypothesis. 

T h e o r e m .  The syntax of Figure 3 is coherent with the semantics of 
Figure 2. 

The proof is by examining the possible overlaps between rules. 
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Id 
x : A ~ - x : A  

Exchange F , p : A ,  q : B ,  z 2 t - t : C  
F,q  B , p ~ A ,  A t - t  C 

F t - t : A  x : A , A ~ - u : B  
Cut 

r ,  ~ ~ u[t /x] : B 
Let 

f , p : A I - u : B  
F , x : A ~ -  ( l e t p = x i n  u ) : B  

|  
F t - t : A  A t - u : B  
11, A F- ( t , u ) :  ( A |  B) | 

F, p:  A, q: B F - t :  C 
/1, (p, q) : (A | B) l- t :  C 

- o - R  F, p : A b t : B -o-L 
/~ ~- (Ap. t ) :  (A --o B) 

F t - t : A  y : B , A ~ - u : C  
_F, ] :  (A --o B), A t- u[(] t)/y]) : C 

&-R 
F t - t : A  F t - u : B  

F b  (t ,u) : (A&  B) 

&-L F , p : A b t : C  F , q : B b t : C  
F , ( p , _ ) : ( A & B ) t - t : C  F , ( _ , q ) : ( A & B ) f - t : C  

Promotion !xl : !At, . . ,  !x~ : !Am t- t : B Dereliction 
!x/ : ! A 1 , . . . , ! x ~  :!An b ! t : ! B  

F , z : A P t : B  
1 ~, !z:!A~- t:  B 

Contraction F, ! x : A ,  ! y : A b  t : B  
F, !z : A ~ t[z/x,z/y] : B 

_PF-t:B 
Weakening F, !z : !A F- t : B 

Fig. 3. New syntax 

Here are the example  j u d g e m e n t s  of  Section 2 revisited. 

I- (Ax.  A!y. x)  : A - o  !B --o A 
(~!I. ~!g. A!x. f !x !(g !x)): !(!A -o  !B -~  C) -o  !(!A -o  B) -o  !A -o  C 

t- (A(!r, !s). !(r,  s ) ) :  (!A | !B) --o !(A & B) 

T h e  new syn tax  is considerably more  compac t .  
Re tu rn ing  to our ma in  example ,  the first der ivat ion becomes  

(,) 
Id 

z : ! A b z : ! A  
Derelict ion 

!z : !!A F- z : !A 
P r o m o t i o n  

!z : ! !A t- !z :!!A. 

The  second der ivat ion is no longer valid. The  P r o m o t i o n  rule no longer ap- 
plies, because it contains  pa t t e rns  not in the p roper  form.  In order  to ob ta in  the 
s ame  semant ics  as previously,  the der ivat ion mus t  be rewri t ten .  T h e  old use of  
the  Id rule, which yielded x : !A ~- x : !A, is replaced with  a use of  Id, Derelict ion,  
and  P romot ion ,  which yields !y : !A F- !y : !A. Both  der ivat ions  have the  s ame  
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semantics (the identity arrow), but  further promotion is only possible for the 
latter.  

(**) 
Id 

z : ! A t - z : ! A  
Dereliction 

!z : !!At- z : !A 

Id 
z : A P z : A  

Dereliction 
! x : ! A ~ - z : A  

Promotion 
!z : !A ~- !z : !A 

Promotion 
!z : !A t- !!z : !!A 

Let 
w : ! A ~ - l e t ! z = w i n ! ! z : ! ! A  

Cut 
!z :!!A t- (let !x = z in !!z) :!!A. 

The new ( . )  and (**) have the same semantics as the old. As with the boxed 
semantics, we now have distinct terms yielding distinct semantics. Every old 
derivation carries into a new derivation with the same semantics; the only change 
needed may be to replace some uses of Id with Id, Dereliction, and Promotion,  
as above; and to add some uses of Let. 

If nested ! patterns were allowed, the coherence property would again be lost. 
Consider the (i l legal)judgement !!z : !!A t- Ix : !A. There are two different proof 
trees tha t  yield this judgement.  The first applies rules in the order Id, Derelict, 
Promote,  Derelict and has semantics counit; kleisli(counit), which simplifies to 
counir second applies rules in the order Id, Derelict, Derelict, Promote  and 
has semantics kleisli(counit; counit), which does not simplify to counir Hence 
the restriction that  ! patterns cannot be nested. There is no similar problem for 
| or & patterns. 

Since there are no longer explicit terms for Contraction and Weakening, these 
must be checked for coherence. Coherence here is guaranteed by the fact that  
discard and duplicate form a comonoid: duplicating and then discarding is the 
same as the identity; two duplications in different orders have the same meaning, 
and so on. The situation is very similar to that  for Exchange, and indeed there 
appears to be no more reason for textually indicating each use of Contraction 
or Weakening than there is for indicating each use of Exchange. 

The new syntax satisfies a pleasing number of equivalences. In the case where 
the 'let '  is simply binding a variable, it can be replaced by substitution. Further, 
whenever a constructor meets a corresponding destructor, it can be substituted 
out. Finally, ' let '  satisfies a pair of familiar laws. All these points are summarised 
in the following. 
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T h e o r e m .  The following equations hold for the syntax of Figure 3 with 
the semantics of Figure 2. 

(1) (let x = t i n  u) = nil~z] 
(2) (let (p, q) = (l, u) in v) = (let p = t in (let q = u in v)) 
(3) ((Ap. u)1) = (let p = I in u) 
(4) (let (p,_) = (t, u) in v) = (let p = I in v) 
(5) (let {_, q) = (l, u) in v) = (let q = u in v) 
(6) (let !x = !t in u) = u[l/x] 
(7) (let iv = I in p) = 1 
(8) (let q = ( l e t p = t i n u )  in v) = (let p = t in (let q = u i n v ) )  

These laws assume no collision of bound variables; e.g., in law (2), the 
free variables of u must not be bound in p. 

Law (1) is immediate from coherence. Laws (2)-(6) and (8) follow immediately 
from the categorical semantics. Law (7) is proved by induction on the pattern. 

Here are equations (6)-(8) again, with the last two instantiated to the special 
case of ! patterns. 

(let !z = !t in u) = u[t/x] 
(let ! x = l i n ! x ) = t  

(let !y - (let !x = t i n  u) in v) -- (let !x = I in (let !y = u in v)) 

These are reminiscent of the three equations satisfied by Moggi's calculus for 
monads [Mog89]. For our syntax the first equation depends on the right counit 
law for comonads and the second equation depends on the left counit law for 
comonads; while for Moggi's calculus the first equation depends on the left unit 
law for monads, and the second equation depends on the right unit law for 
monads. However, the analogy goes awry with the third equation. Moggi's last 
equation depends on the associative law for monads, while our last equation has 
nothing to do with the associative law for comonads. (However, the associative 
laws for comonads is important in verifying the coherence of the new syntax.) 

5 L o g i c  o f  U n i t y  

The system described here is closely related to Girard's Logic of Unity (LU) 
[Gir91]. Indeed, it was inspired by it: the trick that  avoids coherence problems 
was stolen from LU. To clarify the relation, this section present an appropriately 
simplified version of LU. Major differences from Girard's LU are that  this version 
is restricted to the intuitionistic fragment, and there are no polarities. 

In this variant of LU, there are two sorts of assumptions, linear and intu- 
itionistic. Linear assumptions pair patterns with types, so they have the form 
Pl : A1, . . .p ,~  : A~, while intuitionistic assumptions pair variables with types, 
so they have the form xl : A 1 , . . . x n  : An. Linear assumptions may not be 
contracted or weakened, while intuitionistic assumptions may'. The Contraction 
rule is much more neatly expressed in terms of variables because it involves 
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substitution, which partly explains the restriction to variables in intuitionistic 
assumptions. Let /', A range over linear assumptions, and ~, ~P range over intu- 
itionistic assumptions. A judgement has the form F; �9 t- t : A, where the linear 
and intuitionistic assumptions are separated by a semicolon. 

The rules for this variant of LU are shown in Figure 4. There is a close 
correspondence with our new syntax of Figure 3, here called LL for short. The 
previous Id rule is split into two rules, Id and Id-Int, the first dealing with a 
linear assumption and the second dealing with an intuitionistic one. Similarly, 
the previous Exchange rule is split into Exchange and Exchange-Int. The logical 
rules for | and -o  deal with linear assumptions. Promotion and Deriliction are 
logical rules of ! and deal with the relation between the two sorts of assumptions, 
while Contraction and Weakening have metamorphosed from logical rules of ! to 
structural rules dealing with intuitionistic assumptions. 

Id Id-Int 
x : A ;  F - x : A  ; x : A ~ - x : A  

Exchange F , p : A ,  q : B , A ;  #F- t :  C 
r , q  B , p - - ~ , A ; ~ - t  C 

Exchange-Int F; # , x : A , y : B , ~ -  t :  C 
F; q~,y B , x  A, g J b t  C 

Cut 
F; O ~ - t : A  x : A ,  A; ~ b u : B  

Let F, A; ~, ~ t- u[t/x] : B 

| F; ~ b t : A A ; k ~ b u : B  O-L 
F, A; 4~, ~ b ( t ,u) :  (A | B) 

F , p : A ; ~ I - u : B  
F , x : A ;  O F - ( l e t p = x i n  u): B 

F , p : A ,  q: B; ~ -  t :  C 
F, (p,q): (A| B); ~5~- t :  C 

-o-R 
F, p : A; ~ 5 ~ - t : B  

r ;  �9 e (~v. t): (A --o B) 
-o-L 

1~; q S I - t : A  y : B , A ;  ~ P b u : C  
F, f :  (A-o B), A; ~, ~V b u[(f t)/y]):  C 

&_R F; ~ - t : A  F ; ~ F - u : B  
r ;  �9 s (t, u): (A ~ B) 

~-L  I~' P:  A; ~ l - t :  C 
F, (p,_): (A & B); ~SF- t :  C 

F, q: B; ~ t - t :  C 
F, (_, q) : (A & B); ~sb t :  C 

Promotion 
; O t - t : B  

; # ~ - ! t : ! B  
Dereliction 

F , !z : !A;  # F - t : B  
_F; z : A, q~ t- t : B 

Contraction F; ~ , x : A ,  y : A F - t : B  
F; q~, z :  A ~ t [ z / x , z / y ]  : B 

l ~ ; ~ - t : B  
Weakening /~; ~5, z : A b  t : B  

Fig. 4. A version of the Logic of Unity 

It is possible to translate LU into LL. A judgement of the form F; ~ ~- 
I : A in LU corresponds to a judgement F , ! r  ~- t : A in LL, where i f ~  is 
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xl : At ,  . . . ,  xn : An then !~ is !xl : !A1, . . . ,  !xn : tAn. 
Each rule in LU corresponds to the rule of the same name in LL, with two 

spectacular exceptions. Id-Int in LU translates to a combination of Id and Derr 
liction in LL. 

Id-Int ~-~ 
; x : A F x : A  

Id 
x : A t - x : A  

Dereliction 
! x : ! A t - x : A  

On the other hand, both the hypothesis and conclusion of the Dereliction rule 
of LU translate to the same judgement of LL. 

Dereliction F, !z : !A; �9 P t : B 
F; z : A ,  4) F t : B  

~-+ F, !z : !A, !~ k" t : B 

Thus Id-Int in LU corresponds to Dereliction in LL, while Dereliction in LU 
corresponds to nothing at all! 

The translation induces the obvious semantics: the semantics of a judgement  
in LU is the the same as the semantics of the corresponding judgement in LL. 
Analogues of the theorems of Section 4 hold. 

There are a number of rules which one would expect of LU, which can be 
derived from the rules given here. The most important  of these is Cut-Int. 

Cut-Int ; ~ F t : A  A; x : A , ~ F  u : B  
A; # , g , F ( l e t  !x = !t in u) : B 

This rule is derived as follows. 

A; x : A , V / F u : B  
Dereliction 

; r  t : A A, !x :!A; ~ P b u : B  
Promotion Let 

; r  A, y : ! A ;  ~ - l e t  ! x = y i n  u : B  

A;~,~t-(let !x=!tin u):B 

Observe that  the semantics of (let !x = !~ in u) is identical to the semantics of 
u[r which may offer further scope for simplification. 

6 V a r i a t i o n s  

Many programmers are unfamiliar with the -r  rule of the sequent calculus, and 
may find the -o -E  rule of natural deduction more natural. On the other hand, 
the use of sequent calculus seems to naturally capture the pattern matching in 
the | and & rules, so there may be some value in exploring a hybrid of the two 
systems. One variation would simply replace the -o-L rule by --o-E. This might 
be easier for programmers to follow, though important  logical properties such as 
cut-elimination would be lost. 
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The work presented here extends straightforwardly to handle sums. 

| 
F t - t : A  F t - u : B  

F P ( i n l t ) :  (A | B) r e (inr u): (A �9 B) 

F F z : ( A ~ B )  A , p : A ~ - t : C  A , q : B b u : C  
@ - L  

F, A F (case z of{inlp --* t ; inr  q ~ u}) :  C 

These rules do not exploit the power of pattern matching as thoroughly as one 
might hope; for instance, patterns of the form (inlp) and (inr q) cannot appear 
nested inside other patterns. An open question is whether there is a different 
approach that  allows for such nested patterns. One path in this direction is 
indicated by the work of Breazu-Tannen, Kesner, and Puel [BTKP93]. 

Another variation is to include patterns to indicate Contraction and Weak- 
ening. The grammar  of patterns is divided into patterns and of-course patterns,  
the former being a superset of the latter. 

p , q  ::= x I ( p ,q )  L (p ,_)  l (_ ,q)  l o 
o, r ::= (o r) I _  

Let p, q range over patterns, and o, r range over of-course patterns. The new 
rules are as follows. 

Promotion ol : IA1 ,  . . . ,  o,~ :!AN t- t : B Dereliction F, z : A ~- t " B 
ol : !A1, . . . ,  on : !An F It : IB F, !z : !A F t : B 

Contraction F, o : A ,  r : A t- t : B F ~- t : B 
F, (o@r)  : A F t : B Weakening F, _ : IA F t : B 

Dereliction, Contraction, and Weakening introduce the three different sorts of 
of-course pattern,  while Promotion allows any of-course pattern.  This variation 
is included simply to illustrate that  the approach used here does not preclude 
the use of specific patterns to indicate Contraction and Weakening. However, 
in practice there does not seem to be much value in including such detailed 
information. 
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