If $f$ is an isomorphism we call $f$ an isometry. If $q_{i}=q_{B_{i}}$ then we define $q_{1} \perp q_{2}=q_{B_{1} \perp B_{2}}$ on $P_{1} \oplus P_{2}$, and $q_{1} \otimes q_{2}=q_{B_{1} \otimes B_{2}}$ on $P_{1} \otimes P_{2}$. It is easily checked that these definition are unambiguous.

## 2 The hyperbolic functor

Let $P$ be a $k$-module and define

$$
B_{0}^{P} \in \operatorname{Bil}\left(\left(P \oplus P^{*}\right) \times\left(P \oplus P^{*}\right)\right) \text { by } B_{0}^{P}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\langle y_{1}, x_{2}\right\rangle_{P}
$$

and let $q^{P}=q_{B_{0}^{P}}$ be the induced quadratic form:

$$
q^{P}(x, y)=\langle y, x\rangle_{P} \quad\left(x \in P, y \in P^{*}\right)
$$

Let $B^{P}=B_{0}^{P}+\left(B_{0}^{P}\right)^{*}$ be the associated bilinear form, $B^{P}=B_{q^{P}}$. Then

$$
B^{P}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\langle y_{1}, x_{2}\right\rangle_{P}+\left\langle y_{2}, x_{1}\right\rangle_{P}
$$

If $d_{P}: P \rightarrow P^{* *}$ is the natural map then it is easily checked that

$$
d_{B^{P}}: P \oplus P^{*} \rightarrow\left(P \oplus P^{*}\right)^{*}=P^{*} \oplus P^{* *}
$$

is represented by the matrix

$$
\left(\begin{array}{cc}
0 & 1_{P^{*}} \\
d_{P} & 0
\end{array}\right) .
$$

Consequently, $B^{P}$ is non-singular if and only if $P$ is reflexive. If, in this case, we identify $P=P^{* *}$ then the matrix above becomes $\left(\begin{array}{cc}0 & 1 \\ 1_{P} \\ 1_{P} & 0\end{array}\right)$.

We will write

$$
\mathbb{H}(P)=\left(P \oplus P^{*}, q^{P}\right)
$$

and call this quadratic module the hyperbolic form on $P$.
Suppose $f: P \rightarrow Q$ is an isomorphism of $k$-modules. Define

$$
\begin{aligned}
\mathbb{H}(f)=f \oplus\left(f^{*}\right)^{-1}: \mathbb{H}(P) & \rightarrow \mathbb{H}(Q) . \\
q^{Q}(\mathbb{H}(f)(x, y))=q^{Q}\left(f x,\left(f^{*}\right)^{-1} y\right) & =\left\langle\left(f^{-1}\right)^{*} y, f x\right\rangle_{Q}
\end{aligned}
$$

$$
=\left\langle y, f^{-1} f x\right\rangle_{P}=q^{P}(x, y), \text { so } \mathbb{H}(f) \text { is an isometry. }
$$

If we identify $\left(P_{1} \oplus P_{2}\right)^{*}=P_{1}^{*} \oplus P_{2}^{*}$ so that

$$
\left\langle\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle_{P_{1} \oplus P_{2}}=\left\langle y_{1}, x_{1}\right\rangle_{P_{1}}+\left\langle y_{2}, x_{2}\right\rangle_{P_{2}}
$$

then the natural homomorphism

$$
f: \mathbb{H}\left(P_{1}\right) \perp \mathbb{H}\left(P_{2}\right) \rightarrow \mathbb{H}\left(P_{1} \oplus P_{2}\right)
$$

$f\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)$. is an isometry.
Summarizing the above remarks, $\mathbb{H}$ is a product preserving functor (in the sense of chapter from (modules, isomorphisms, $\oplus$ ) to (quadratic modules, isometries, $\perp$ ). We now characterize non-singular hyperbolic forms.

Lemma 2.1. A non-singular quadratic module $(P, q)$ is hyperbolic if and only if $P$ has a direct summand $U$ such that $q \mid U=0$ and $U=U^{\perp}$. In this case $(P, q) \approx \mathbb{H}(U)$ (isometry).

Suppose $P$ is finitely generated and projective. If $U$ is a direct summand such that $q \mid U=0$ and $[P: k] \leq 2[U: k]$ then $(P, q) \approx \mathbb{H}(U)$.

Proof. If $(P, q) \approx \mathbb{H}(U)=\left(U \oplus U^{*}, q^{U}\right)$ then the non-singularity of $(P, q)$ implies $U$ is reflexive, and it is easy to check that $U \subset U \oplus U^{*}$ satisfies $q^{U} \mid U=0$ and $U=U^{\perp}$.

Conversely, suppose given a direct summand $U$ of $P$ such that $q \mid U=$ 0 and $U=U^{\perp}$. Write $q=q_{B_{0}}$, so that $B_{q}=B_{0}+B_{0}^{*}$. According to Lemma 1.4 we can write $P=U^{\perp} \oplus V=U \oplus V$ and $B_{q}$ induces a nonsingular pairing on $U \times V$. Moreover we can arrange that $B_{0}(v, v)=0$ for all $v \in V$, i.e. that $q \mid V=0$. Let $d: V \rightarrow U^{*}$ be the isomorphism induced by $B_{q} ;\langle d v, u\rangle_{U}=B_{q}(v, u)$ for $u \in U, v \in V$.

Let

$$
f=1_{U} \oplus d: P=U \oplus V \rightarrow U \oplus U^{*}
$$

This is an isomorphism, and we want to check that

$$
q^{U}((u, d v))=q(u, v) \text { for } u \epsilon U, v \epsilon V \cdot q^{U}((u, d v))=\langle d v, u\rangle_{U}=B_{q}(v, u)
$$

while $q(u, v)=q(u)+q(v)+B_{q}(u, v)=B_{q}(u, v)$, since $q / U=0$ and $q / V=0$.

The last assertion reduces to the preceding ones we show that $U=$ $U^{\perp}$. Lemma 1.2 shows that $U^{\perp}$ is a direct summand of $\operatorname{rank}\left[U^{\perp}: k\right]=$ $[P: k]-[U: k] \leq[U: k]$, because, by assumption, $[P: k] \leq 2[U: k]$. But we also have $q / U=0$ so $U \subset U^{\perp}$, and therefore $U=U^{\perp}$, as claimed.

Lemma 2.2. A quadratic module $(P, q)$ is non-singular if and only if

$$
(P, q) \perp(P,-q) \approx \mathbb{H}(P)
$$

provided $P$ is reflexive.
Proof. P reflexive implies $\mathbb{H}(P)$ is non-singular, and hence likewise for any orthogonal summand.

Suppose now that $(P, q)$ is non-singular. Then so is $(P, q) \perp(P,-q)=$ $\left(P \oplus P, q_{1}=q \perp(-q)\right)$.

Let $U=\{(x, x) \epsilon P \oplus P \mid x \in P\}$. Then $q_{1} / U=0$, and $U$ is a direct summand of $P \oplus P$, isomorphic to $P$. If $U \varsubsetneqq U^{\perp}$ we can find a $(0, y) \epsilon U^{\perp}$, $y \neq 0$. Then, for all $x \in P$,

$$
\begin{aligned}
0 & =B_{q_{1}}((x, x),(0, y))=q_{1}(x, x+y)-q_{1}(x, x)-q_{1}(0, y) \\
& =q(x)-q(x+y)+q(y) \\
& =-B_{q}(x, y) .
\end{aligned}
$$

Since $B_{q}$ is non-singular this contradicts $y \neq 0$. Now the Lemma follows from Lemma 2.1

Lemma 2.3. Let $P$ be a reflexive module and let $(Q, q)$ be a non-singular quadratic module with $Q$ finitely generated and projective. Then

$$
\mathbb{H}(P) \otimes(Q, q) \approx \mathbb{H}(P \otimes Q)
$$

Proof. The hypothesis on $Q$ permits us to identify $(P \otimes Q)^{*}=P^{*} \otimes Q^{*}$, so it follows that $\left(W, q_{1}\right)=\mathbb{H}(P) \otimes(Q, q)$ is non-singular. We shall apply Lemma 2.1]by taking
$U=P \otimes Q \subset W=(P \otimes Q) \oplus\left(P^{*} \otimes Q\right)$. If $\sum x_{i} \otimes y_{i} \epsilon U$, then $q_{1}\left(\Sigma x_{i} \otimes y_{i}\right)=$ $\Sigma q^{P}\left(x_{i}\right) q\left(y_{i}\right)+\sum_{i<j} B_{q_{1}}\left(x_{i} \otimes y_{i}, x_{j} \otimes y_{j}\right)=\sum_{i<j} B^{P}\left(x_{i}, x_{j}\right) B_{q}\left(y_{i}, y_{j}\right)=0$, because $q^{P} / P=0$ in $\mathbb{H}(P)$. Thus $U \subset U^{\perp}$, and to show equality it suffices clearly to show that $\left(P^{*} \otimes Q\right) \cap U^{\perp}=0$. If $\Sigma x_{i} \otimes y_{i} \in U$ and $\Sigma w_{j} \otimes z_{j} \in\left(P^{*} \otimes Q\right) \cap U^{\perp}$ then $0=B_{q_{1}}\left(\Sigma x_{i} \otimes y_{i}, \Sigma w_{j} \otimes z_{j}\right)=$ $\sum_{i, j} B^{P}\left(x_{i}, w_{j}\right) B_{q}\left(y_{i}, z_{j}\right)$.

Since $\left(P^{*} \otimes Q\right)^{*}=P \otimes Q^{*}(P$ is reflexive $)$ the non-singularity of $q$ guarantees that all linear functionals on $P^{*} \otimes Q$ have the form $\sum_{i} B^{P}\left(x_{i},\right)$ $B_{q}\left(y_{i},\right)$, so $\Sigma w_{j} \otimes z_{j}$ is killed by all linear functionals, hence is zero. We have now shown $U=U^{\perp}$ so the lemma follows from Lemma 2.1

A quadratic space is a non-singular quadratic module $(P, q)$ with $P$ finitely generated and projective, i.e. $P \in \operatorname{obj} \underset{=}{P}$, the category of such modules. We define the category

$$
\underline{\underline{\text { Quad }}}=\underline{\underline{\text { Quad }}}(k)
$$

with

> objects : quadratic spaces
> morphisms : isometries
> product $: \perp$

The discussion at the beginning of this section shows that

$$
\mathbb{H}: \underset{=}{P} \rightarrow \underline{\underline{\text { Quad }}}
$$

is a product preserving functor of categories with product (in the sense of chapter 10, and Lemma 2.1 shows that $\mathbb{H}$ is cofinal. We thus obtain an exact sequence from Theorem 4.6 of chapter 1 We summarize this:

Proposition 2.4. The hyperbolic functor

$$
\mathbb{H}: P \rightarrow \underline{\text { Quad }}
$$

is a cofinal functor of categories with product. It therefore induces (Theorem 4.6 of chapter (1) an exact sequence

$$
K_{1} \underset{=}{P} \rightarrow K_{1} \underline{\underline{\text { Quad }}} \rightarrow K_{0} \Phi \mathbb{H} \rightarrow K_{0} \underset{=}{P} \rightarrow K_{0} \underline{\underline{\text { Quad }}} \rightarrow \text { Witt }(k) \rightarrow 0,
$$

where we define Witt $(k)=\operatorname{coker}\left(K_{0} \mathbb{H}\right)$.

We close this section with some remarks about the multiplicative structures. Tensor products endow $K_{0}$ Quad with a commutative multiplication, and Lemma 2.3 shows that the image of $K_{0} \mathbb{H}$ is an ideal, so Witt ( $k$ ) also inherits a multiplication. The difficulty is that, if 2 is not invertible in $k$, then these are rings without identity elements. For the identity should be represented by the form $q(x)=x^{2}$ on $k$. But then $B_{q}(x, y)=2 x y$ is not non-singular unless 2 is invertible.

Here is one natural remedy. Let Symbil denote the category of non-singular symmetric bilinear forms, $\overline{(P, B)}$ with $P \epsilon$ obj $\underset{=}{P}$. If $(P, B) \in$ Symbil and $(Q, q) \epsilon$ Quad define

$$
\begin{equation*}
(P, B) \otimes(Q, q)=(P \otimes Q, B \otimes q) \tag{2.5}
\end{equation*}
$$

where $B \otimes q$ is the quadratic form $q_{B \otimes B_{0}}$, for some $B_{0} \epsilon \operatorname{Bil}(Q \times Q)$ such that $q=q_{B_{0}}$. It is easy to see that $B \otimes q$ does not depend on the choice of $B_{0}$. Moreover, the bilinear form associated to $B \otimes q$ is $\left(B \otimes B_{0}\right)+(B \otimes$ $\left.B_{0}\right)^{*}=\left(B \otimes B_{0}\right)+\left(B^{*} \otimes B_{0}^{*}\right)=B \otimes\left(B_{0} \otimes B_{0}^{*}\right)=B \otimes B_{q}$, because $B=B^{*}$. Since $B$ and $B_{q}$ are non-singular so is $B \otimes B_{q}$ so $(P \otimes Q, B \otimes q) \in$ Quad.

If $a \epsilon k$ write $\langle a\rangle$ for the bilinear module $(k, B)$ with $B(x, y)=a x y$ for $x, y \in k$. If a is a unit then $\langle a\rangle \epsilon$ Symbil.

Tensor products in Symbil make $K_{0}$ Symbil a commutative ring, with identity $\langle 1\rangle$, and (2.5) makes $K_{0}$ Quad a $\overline{K_{0} \text { Symbil-module. The "forget- }}$ ful" functor Quad $\rightarrow$ Symbil, $\left(\overline{\overline{P, q)}} \longmapsto\left(\overline{\overline{\left.P, B_{q}\right)}}\right.\right.$, induces a $K_{0}$ Symbilhomomorphism $K_{0} \mathrm{Quad} \rightarrow K_{0}$ Symbil, so its image is an ideal. The hyperbolic forms generate a $\overline{\overline{K_{0} \text { Symbil }}}$ submodule, image $K_{0} \mathbb{H}$ ), of $K_{0}$ Quad, so Witt $(k)$ is a $K_{0}$ Symbil-module. This follows from an ana-


Similarly, the hyperbolic forms, $\left(P \oplus P^{*}, B^{P}\right)$, generate an ideal in $K_{0}$ Symbil which annihilates $\operatorname{Witt}(k)$. Lemma 2.2 says that $\langle 1\rangle \perp\langle-1\rangle$ also annihilates Witt ( $k$ ).

