140 If *f* is an isomorphism we call *f* an *isometry*. If $q_i = q_{B_i}$ then we define $q_1 \perp q_2 = q_{B_1 \perp B_2}$ on $P_1 \oplus P_2$, and $q_1 \otimes q_2 = q_{B_1 \otimes B_2}$ on $P_1 \otimes P_2$. It is easily checked that these definition are unambiguous.

2 The hyperbolic functor

Let *P* be a *k*-module and define

$$B_0^P \in \text{Bil}((P \oplus P^*) \times (P \oplus P^*))$$
 by $B_0^P((x_1, y_1), (x_2, y_2)) = \langle y_1, x_2 \rangle_P$,

and let $q^P = q_{B_0^P}$ be the induced quadratic form:

$$q^P(x, y) = \langle y, x \rangle_P$$
 $(x \in P, y \in P^*).$

Let $B^P = B_0^P + (B_0^P)^*$ be the associated bilinear form, $B^P = B_{q^P}$. Then

$$B^{P}((x_1, y_1), (x_2, y_2)) = \langle y_1, x_2 \rangle_{P} + \langle y_2, x_1 \rangle_{P}.$$

If $d_P : P \to P^{**}$ is the natural map then it is easily checked that

$$d_{B^P}: P \oplus P^* \to (P \oplus P^*)^* = P^* \oplus P^{**}$$

is represented by the matrix

$$\begin{pmatrix} 0 & 1_{P^*} \\ d_P & 0 \end{pmatrix}.$$

Consequently, B^P is non-singular if and only if *P* is reflexive. If, in this case, we identify $P = P^{**}$ then the matrix above becomes $\begin{pmatrix} 0 & 1_{P^*} \\ 1_P & 0 \end{pmatrix}$.

We will write

$$\mathbb{H}(P) = (P \oplus P^*, q^P)$$

and call this quadratic module the *hyperbolic form* on *P*.

Suppose $f: P \rightarrow Q$ is an isomorphism of k-modules. Define

$$\begin{split} \mathbb{H}(f) &= f \oplus (f^*)^{-1} : \mathbb{H}(P) \to \mathbb{H}(Q). \\ q^Q(\mathbb{H}(f)(x,y)) &= q^Q(fx, (f^*)^{-1}y) = \langle (f^{-1})^*y, fx \rangle_Q \end{split}$$

141

$$= \langle y, f^{-1}fx \rangle_P = q^P(x, y)$$
, so $\mathbb{H}(f)$ is an isometry.

If we identify $(P_1 \oplus P_2)^* = P_1^* \oplus P_2^*$ so that

$$\langle (y_1, y_2), (x_1, x_2) \rangle_{P_1 \oplus P_2} = \langle y_1, x_1 \rangle_{P_1} + \langle y_2, x_2 \rangle_{P_2}$$

then the natural homomorphism

$$f: \mathbb{H}(P_1) \perp \mathbb{H}(P_2) \to \mathbb{H}(P_1 \oplus P_2),$$

 $f((x_1, y_1), (x_2, y_2)) = ((x_1, x_2), (y_1, y_2))$. is an isometry.

Summarizing the above remarks, \mathbb{H} is a product preserving functor (in the sense of chapter 1) from (modules, isomorphisms, \oplus) to (quadratic modules, isometries, \perp). We now characterize non-singular hyperbolic forms.

Lemma 2.1. A non-singular quadratic module (P,q) is hyperbolic if and only if P has a direct summand U such that q|U = 0 and $U = U^{\perp}$. In this case $(P,q) \approx \mathbb{H}(U)$ (isometry).

Suppose P is finitely generated and projective. If U is a direct summand such that q|U = 0 and $[P : k] \le 2[U : k]$ then $(P, q) \approx \mathbb{H}(U)$.

Proof. If $(P,q) \approx \mathbb{H}(U) = (U \oplus U^*, q^U)$ then the non-singularity of (P,q) implies U is reflexive, and it is easy to check that $U \subset U \oplus U^*$ satisfies $q^U | U = 0$ and $U = U^{\perp}$.

Conversely, suppose given a direct summand U of P such that q|U = 0 and $U = U^{\perp}$. Write $q = q_{B_0}$, so that $B_q = B_0 + B_0^*$. According to Lemma 1.4 we can write $P = U^{\perp} \oplus V = U \oplus V$ and B_q induces a non-singular pairing on $U \times V$. Moreover we can arrange that $B_0(v, v) = 0$ for all $v \in V$, i.e. that q|V = 0. Let $d : V \to U^*$ be the isomorphism induced by B_q ; $\langle dv, u \rangle_U = B_q(v, u)$ for $u \in U, v \in V$.

Let

142

$$f = 1_U \oplus d : P = U \oplus V \to U \oplus U^*.$$

This is an isomorphism, and we want to check that

$$q^{U}((u, dv)) = q(u, v) \text{ for } u \in U, v \in V. q^{U}((u, dv)) = \langle dv, u \rangle_{U} = B_{q}(v, u),$$

112

while $q(u, v) = q(u) + q(v) + B_q(u, v) = B_q(u, v)$, since q/U = 0 and q/V = 0.

The last assertion reduces to the preceding ones we show that $U = U^{\perp}$. Lemma 1.2 shows that U^{\perp} is a direct summand of rank $[U^{\perp} : k] = [P : k] - [U : k] \le [U : k]$, because, by assumption, $[P : k] \le 2[U : k]$. But we also have q/U = 0 so $U \subset U^{\perp}$, and therefore $U = U^{\perp}$, as claimed.

Lemma 2.2. A quadratic module (*P*, *q*) is non-singular if and only if

$$(P,q) \perp (P,-q) \approx \mathbb{H}(P),$$

provided P is reflexive.

Proof. P reflexive implies $\mathbb{H}(P)$ is non-singular, and hence likewise for 143 any orthogonal summand.

Suppose now that (P,q) is non-singular. Then so is $(P,q) \perp (P,-q) = (P \oplus P, q_1 = q \perp (-q)).$

Let $U = \{(x, x) \in P \oplus P | x \in P\}$. Then $q_1/U = 0$, and U is a direct summand of $P \oplus P$, isomorphic to P. If $U \subsetneq U^{\perp}$ we can find a $(0, y) \in U^{\perp}$, $y \neq 0$. Then, for all $x \in P$,

$$0 = B_{q_1}((x, x), (0, y)) = q_1(x, x + y) - q_1(x, x) - q_1(0, y)$$

= $q(x) - q(x + y) + q(y)$
= $-B_q(x, y)$.

Since B_q is non-singular this contradicts $y \neq 0$. Now the Lemma follows from Lemma 2.1.

Lemma 2.3. Let *P* be a reflexive module and let (Q, q) be a non-singular quadratic module with *Q* finitely generated and projective. Then

$$\mathbb{H}(P) \otimes (Q,q) \approx \mathbb{H}(P \otimes Q).$$

Proof. The hypothesis on Q permits us to identify $(P \otimes Q)^* = P^* \otimes Q^*$, so it follows that $(W, q_1) = \mathbb{H}(P) \otimes (Q, q)$ is non-singular. We shall apply Lemma 2.1 by taking

 $U = P \otimes Q \subset W = (P \otimes Q) \oplus (P^* \otimes Q). \text{ If } \sum x_i \otimes y_i \in U, \text{ then } q_1(\Sigma x_i \otimes y_i) = \Sigma q^P(x_i)q(y_i) + \sum_{i < j} B_{q_1}(x_i \otimes y_i, x_j \otimes y_j) = \sum_{i < j} B^P(x_i, x_j)B_q(y_i, y_j) = 0,$ because $q^P/P = 0$ in $\mathbb{H}(P)$. Thus $U \subset U^{\perp}$, and to show equality it suffices clearly to show that $(P^* \otimes Q) \cap U^{\perp} = 0.$ If $\Sigma x_i \otimes y_i \in U$ and $\Sigma w_j \otimes z_j \in (P^* \otimes Q) \cap U^{\perp}$ then $0 = B_{q_1}(\Sigma x_i \otimes y_i, \Sigma w_j \otimes z_j) = \sum_{i,j} B^P(x_i, w_j)B_q(y_i, z_j).$

144

Since $(P^* \otimes Q)^* = P \otimes Q^*$ (*P* is reflexive) the non-singularity of *q* guarantees that all linear functionals on $P^* \otimes Q$ have the form $\sum_i B^P(x_i,) B_q(y_i,)$, so $\Sigma w_j \otimes z_j$ is killed by all linear functionals, hence is zero. We have now shown $U = U^{\perp}$ so the lemma follows from Lemma 2.1.

A *quadratic space* is a non-singular quadratic module (P,q) with *P* finitely generated and projective, i.e. $P\epsilon \operatorname{obj} P$, the category of such modules. We define the category

$$\underline{\text{Quad}} = \underline{\text{Quad}}(k)$$

with

objects : quadratic spaces morphisms : isometries product :⊥

The discussion at the beginning of this section shows that

$$\mathbb{H}: \underset{=}{P} \to \underline{\text{Quad}}$$

is a product preserving functor of categories with product (in the sense of chapter 1), and Lemma 2.1 shows that \mathbb{H} is cofinal. We thus obtain an exact sequence from Theorem 4.6 of chapter 1. We summarize this:

Proposition 2.4. The hyperbolic functor

$$\mathbb{H}: \underline{P} \to \underline{\underline{\text{Quad}}}$$

is a cofinal functor of categories with product. It therefore induces (Theorem 4.6 of chapter 1) an exact sequence

$$K_1 \underset{=}{P} \to K_1 \underbrace{\text{Quad}}_{=} \to K_0 \Phi \mathbb{H} \to K_0 \underset{=}{P} \to K_0 \underbrace{\text{Quad}}_{=} \to \text{Witt}(k) \to 0,$$

2. The hyperbolic functor

where we define Witt $(k) = coker (K_0 \mathbb{H})$.

We close this section with some remarks about the multiplicative 145 structures. Tensor products endow K_0 Quad with a commutative multiplication, and Lemma 2.3 shows that the image of $K_0\mathbb{H}$ is an ideal, so Witt (*k*) also inherits a multiplication. The difficulty is that, if 2 is not invertible in *k*, then these are rings without identity elements. For the identity should be represented by the form $q(x) = x^2$ on *k*. But then $B_q(x, y) = 2xy$ is not non-singular unless 2 is invertible.

Here is one natural remedy. Let <u>Symbil</u> denote the category of non-singular symmetric bilinear forms, $\overline{(P, B)}$ with $P\epsilon \operatorname{obj} P$. If $(P, B) \in$ <u>Symbil</u> and $(Q, q)\epsilon \operatorname{Quad}$ define

$$(P,B) \otimes (Q,q) = (P \otimes Q, B \otimes q), \tag{2.5}$$

where $B \otimes q$ is the quadratic form $q_{B \otimes B_0}$, for some $B_0 \epsilon \operatorname{Bil}(Q \times Q)$ such that $q = q_{B_0}$. It is easy to see that $B \otimes q$ does not depend on the choice of B_0 . Moreover, the bilinear form associated to $B \otimes q$ is $(B \otimes B_0) + (B \otimes B_0)^* = (B \otimes B_0) + (B^* \otimes B_0^*) = B \otimes (B_0 \otimes B_0^*) = B \otimes B_q$, because $B = B^*$. Since *B* and B_q are non-singular so is $B \otimes B_q$ so $(P \otimes Q, B \otimes q) \in Q$.

If $a \epsilon k$ write $\langle a \rangle$ for the bilinear module (k, B) with B(x, y) = axy for $x, y \epsilon k$. If a is a unit then $\langle a \rangle \epsilon$ Symbil.

Tensor products in <u>Symbil</u> make K_0 <u>Symbil</u> a commutative ring, with 146 identity $\langle 1 \rangle$, and (2.5) makes \overline{K}_0 <u>Quad</u> a \overline{K}_0 <u>Symbil</u>-module. The "forgetful" functor <u>Quad</u> \rightarrow <u>Symbil</u>, ($\overline{P,q}$) \mapsto ($\overline{P,B}_q$), induces a K_0 <u>Symbil-</u> homomorphism \overline{K}_0 <u>Quad</u> \rightarrow K_0 <u>Symbil</u>, so its image is an ideal. The hyperbolic forms generate a K_0 <u>Symbil</u> submodule, image K_0 H), of K_0 <u>Quad</u>, so Witt (k) is a K_0 <u>Symbil-module</u>. This follows from an analogue of Lemma 2.3 for the operation (2.5)

Similarly, the hyperbolic forms, $(P \oplus P^*, B^P)$, generate an ideal in K_0 Symbil which annihilates Witt(k). Lemma 2.2 says that $\langle 1 \rangle \perp \langle -1 \rangle$ also annihilates Witt (*k*).