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If f is an isomorphism we callf an isometry. If qi = qBi then we140

defineq1 ⊥ q2 = qB1⊥B2 on P1 ⊕ P2, andq1 ⊗ q2 = qB1⊗B2 on P1 ⊗ P2.
It is easily checked that these definition are unambiguous. �

2 The hyperbolic functor

Let P be ak-module and define

BP
0 ∈ Bil((P⊕ P∗) × (P⊕ P∗)) by BP

0((x1, y1), (x2, y2)) = 〈y1, x2〉P,

and letqP
= qBP

0
be the induced quadratic form:

qP(x, y) = 〈y, x〉P (x ∈ P, y ∈ P∗).

Let BP
= BP

0 + (BP
0)∗ be the associated bilinear form,BP

= BqP. Then

BP((x1, y1), (x2, y2)) = 〈y1, x2〉P + 〈y2, x1〉P.

If dP : P→ P∗∗ is the natural map then it is easily checked that

dBP : P⊕ P∗ → (P⊕ P∗)∗ = P∗ ⊕ P∗∗

is represented by the matrix

(

0 1P∗

dP 0

)

.

Consequently,BP is non-singular if and only if P is reflexive. If, in this
case, we identifyP = P∗∗ then the matrix above becomes

(

0 1P∗

1P 0

)

.
We will write 141

H(P) = (P⊕ P∗, qP)

and call this quadratic module thehyperbolic formon P.
Supposef : P→ Q is an isomorphism ofk-modules. Define

H( f ) = f ⊕ ( f ∗)−1 : H(P)→ H(Q).

qQ(H( f )(x, y)) = qQ( f x, ( f ∗)−1y) = 〈( f −1)∗y, f x〉Q
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= 〈y, f −1 f x〉P = qP(x, y), soH( f ) is an isometry.

If we identify (P1 ⊕ P2)∗ = P∗1 ⊕ P∗2 so that

〈(y1, y2), (x1, x2)〉P1⊕P2 = 〈y1, x1〉P1 + 〈y2, x2〉P2

then the natural homomorphism

f : H(P1) ⊥ H(P2)→ H(P1 ⊕ P2),

f ((x1, y1), (x2, y2)) = ((x1, x2), (y1, y2)). is an isometry.
Summarizing the above remarks,H is a product preserving functor

(in the sense of chapter 1)from (modules, isomorphisms, ⊕) to (quadra-
tic modules, isometries,⊥). We now characterize non-singular hyper-
bolic forms.

Lemma 2.1. A non-singular quadratic module(P, q) is hyperbolic if
and only if P has a direct summand U such that q|U = 0 and U = U⊥.
In this case(P, q) ≈ H(U) (isometry).

Suppose P is finitely generated and projective. If U is a direct sum-142

mand such that q|U = 0 and [P : k] ≤ 2[U : k] then(P, q) ≈ H(U).

Proof. If (P, q) ≈ H(U) = (U⊕U∗, qU) then the non-singularity of (P, q)
impliesU is reflexive, and it is easy to check thatU ⊂ U ⊕ U∗ satisfies
qU |U = 0 andU = U⊥. �

Conversely, suppose given a direct summandU of P such thatq|U =
0 andU = U⊥. Write q = qB0, so thatBq = B0 + B∗0. According to
Lemma 1.4 we can writeP = U⊥ ⊕ V = U ⊕ V andBq induces a non-
singular pairing onU × V. Moreover we can arrange thatB0(v, v) = 0
for all v ∈ V, i.e. thatq|V = 0. Let d : V → U∗ be the isomorphism
induced byBq; 〈dv, u〉U = Bq(v, u) for u ∈ U, v ∈ V.

Let
f = 1U ⊕ d : P = U ⊕ V → U ⊕ U∗.

This is an isomorphism, and we want to check that

qU((u, dv)) = q(u, v) for uǫU, vǫV.qU ((u, dv)) = 〈dv, u〉U = Bq(v, u),
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while q(u, v) = q(u) + q(v) + Bq(u, v) = Bq(u, v), sinceq/U = 0 and
q/V = 0.

The last assertion reduces to the preceding ones we show thatU =
U⊥. Lemma 1.2 shows thatU⊥ is a direct summand of rank [U⊥ : k] =
[P : k] − [U : k] ≤ [U : k], because, by assumption, [P : k] ≤ 2[U : k].
But we also haveq/U = 0 so U ⊂ U⊥, and thereforeU = U⊥, as
claimed.

Lemma 2.2. A quadratic module(P, q) is non-singular if and only if

(P, q) ⊥ (P,−q) ≈ H(P),

provided P is reflexive.

Proof. Preflexive impliesH(P) is non-singular, and hence likewise for143

any orthogonal summand.
Suppose now that (P, q) is non-singular. Then so is (P, q) ⊥ (P,−q) =

(P⊕ P, q1 = q ⊥ (−q)).
Let U = {(x, x)ǫP ⊕ P|x ∈ P}. Thenq1/U = 0, andU is a direct

summand ofP⊕P, isomorphic toP. If U & U⊥ we can find a (0, y)ǫU⊥,
y , 0. Then, for allx ∈ P,

0 = Bq1((x, x), (0, y)) = q1(x, x+ y) − q1(x, x) − q1(0, y)

= q(x) − q(x+ y) + q(y)

= −Bq(x, y).

SinceBq is non-singular this contradictsy , 0. Now the Lemma follows
from Lemma 2.1. �

Lemma 2.3. Let P be a reflexive module and let(Q, q) be a non-singular
quadratic module with Q finitely generated and projective. Then

H(P) ⊗ (Q, q) ≈ H(P⊗ Q).

Proof. The hypothesis onQ permits us to identify (P⊗ Q)∗ = P∗ ⊗ Q∗,
so it follows that (W, q1) = H(P)⊗ (Q, q) is non-singular. We shall apply
Lemma 2.1 by taking
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U = P⊗Q ⊂ W = (P⊗Q)⊕(P∗⊗Q). If
∑

xi⊗yiǫU, thenq1(Σxi⊗yi) =
ΣqP(xi)q(yi ) +

∑

i< j Bq1(xi ⊗ yi , x j ⊗ y j) =
∑

i< j BP(xi , x j)Bq(yi , y j) = 0,
becauseqP/P = 0 in H(P). ThusU ⊂ U⊥, and to show equality it
suffices clearly to show that (P∗ ⊗ Q) ∩ U⊥ = 0. If Σxi ⊗ yi ∈ U
andΣw j ⊗ zj ∈ (P∗ ⊗ Q) ∩ U⊥ then 0 = Bq1(Σxi ⊗ yi , Σw j ⊗ zj) =
∑

i, j
BP(xi ,w j)Bq(yi , zj). �

Since (P∗ ⊗ Q)∗ = P ⊗ Q∗ (P is reflexive) the non-singularity ofq144

guarantees that all linear functionals onP∗⊗Q have the form
∑

i BP(xi , )
Bq(yi , ), soΣw j ⊗ zj is killed by all linear functionals, hence is zero. We
have now shownU = U⊥ so the lemma follows from Lemma 2.1.

A quadratic spaceis a non-singular quadratic module (P, q) with
P finitely generated and projective, i.e.Pǫ objP

=
, the category of such

modules. We define the category

Quad= Quad(k)

with

objects : quadratic spaces

morphisms : isometries

product :⊥

The discussion at the beginning of this section shows that

H : P
=
→ Quad

is a product preserving functor of categories with product (in the sense
of chapter 1), and Lemma 2.1 shows thatH is cofinal. We thus obtain
an exact sequence from Theorem 4.6 of chapter 1. We summarizethis:

Proposition 2.4. The hyperbolic functor

H : P
=
→ Quad

is a cofinal functor of categories with product. It thereforeinduces (The-
orem 4.6 of chapter 1) an exact sequence

K1P
=
→ K1Quad→ K0ΦH→ K0P

=
→ K0Quad→Witt(k)→ 0,
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where we define Witt(k) = coker(K0H).

We close this section with some remarks about the multiplicative 145

structures. Tensor products endowK0Quadwith a commutative multi-

plication, and Lemma 2.3 shows that the image ofK0H is an ideal, so
Witt (k) also inherits a multiplication. The difficulty is that, if 2 is not
invertible in k, then these are rings without identity elements. For the
identity should be represented by the formq(x) = x2 on k. But then
Bq(x, y) = 2xy is not non-singular unless 2 is invertible.

Here is one natural remedy. Let Symbildenote the category of

non-singular symmetric bilinear forms, (P, B) with Pǫ objP
=
. If (P, B) ∈

Symbil and (Q, q)ǫQuaddefine

(P, B) ⊗ (Q, q) = (P⊗ Q, B⊗ q), (2.5)

whereB⊗ q is the quadratic formqB⊗B0, for someB0ǫ Bil(Q× Q) such
thatq = qB0. It is easy to see thatB⊗ q does not depend on the choice
of B0. Moreover, the bilinear form associated toB⊗ q is (B⊗B0)+ (B⊗
B0)∗ = (B⊗ B0)+ (B∗ ⊗ B∗0) = B⊗ (B0⊗ B∗0) = B⊗ Bq, becauseB = B∗.
SinceB andBq are non-singular so isB⊗ Bq so (P⊗ Q, B⊗ q) ∈ Quad.

If aǫk write 〈a〉 for the bilinear module (k, B) with B(x, y) = axy for
x, yǫk. If a is a unit then〈a〉ǫSymbil.

Tensor products in SymbilmakeK0Symbila commutative ring, with 146

identity〈1〉, and (2.5) makesK0QuadaK0Symbil−module. The “forget-

ful” functor Quad→ Symbil, (P, q) 7−→ (P, Bq), induces aK0 Symbil-

homomorphismK0Quad→ K0Symbil, so its image is an ideal. The

hyperbolic forms generate aK0Symbil submodule, imageK0H), of

K0Quad, so Witt (k) is a K0Symbil-module. This follows from an ana-

logue of Lemma 2.3 for the operation (2.5)
Similarly, the hyperbolic forms, (P ⊕ P∗, BP), generate an ideal in

K0Symbil which annihilatesWitt(k). Lemma 2.2 says that〈1〉 ⊥ 〈−1〉

also annihilates Witt (k).
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