Holomorphic symplectic geometry

Arnaud Beauville

Université de Nice

Lisbon, March 2011

Definition

A symplectic form on a manifold X is a 2-form φ such that:

Definition

A symplectic form on a manifold X is a 2-form φ such that:

• $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in Alt(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in Alt(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow \text{positions}$, $p_i \leftrightarrow \text{velocities}$)

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in Alt(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow \text{positions}, p_i \leftrightarrow \text{velocities}$)

Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in Alt(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow \text{positions}$, $p_i \leftrightarrow \text{velocities}$)

→ Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

All this makes sense with X complex manifold, φ holomorphic.

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in Alt(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow \text{positions}, p_i \leftrightarrow \text{velocities}$)

→ Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

All this makes sense with X complex manifold, φ holomorphic. global $\rightsquigarrow X$ compact, usually projective or Kähler.

Definition: holomorphic symplectic manifold

Definition: holomorphic symplectic manifold

• X compact, Kähler, simply-connected;

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- ullet X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^* .

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- ullet X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^* .

Consequences : $\dim_{\mathbb{C}} X = 2r$;

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- ullet X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^* .

Consequences: $\dim_{\mathbb{C}} X = 2r$; the canonical bundle $K_X := \Omega_X^{2r}$ is trivial, generated by $\varphi \wedge \ldots \wedge \varphi$ (r times).

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- ullet X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^* .

Consequences: $\dim_{\mathbb{C}} X = 2r$; the canonical bundle $K_X := \Omega_X^{2r}$ is trivial, generated by $\varphi \wedge \ldots \wedge \varphi$ (r times).

(Note: on X compact Kähler, holomorphic forms are closed)

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- ullet X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^* .

Consequences: $\dim_{\mathbb{C}} X = 2r$; the canonical bundle $K_X := \Omega_X^{2r}$ is trivial, generated by $\varphi \wedge \ldots \wedge \varphi$ (r times).

(Note: on X compact Kähler, holomorphic forms are closed)

Why is it interesting?

Decomposition theorem

X compact Kähler with $K_X = \mathcal{O}_X$. $\exists \ \tilde{X} \to X$ étale finite and

$$\tilde{X} = T \times \prod_{i} Y_{i} \times \prod_{j} Z_{j}$$

Decomposition theorem

X compact Kähler with $K_X = \mathcal{O}_X$. $\exists \ \tilde{X} \to X$ étale finite and

$$\tilde{X} = T \times \prod_{i} Y_{i} \times \prod_{j} Z_{j}$$

• T complex torus (= \mathbb{C}^g /lattice);

Decomposition theorem

X compact Kähler with $K_X=\mathcal{O}_X.\ \exists\ ilde{X} o X$ étale finite and

$$\tilde{X} = T \times \prod_{i} Y_{i} \times \prod_{j} Z_{j}$$

- T complex torus (= \mathbb{C}^g /lattice);
- *Y_i* holomorphic symplectic manifolds;

Decomposition theorem

X compact Kähler with $K_X = \mathcal{O}_X$. $\exists \ \tilde{X} \to X$ étale finite and

$$\tilde{X} = T \times \prod_{i} Y_{i} \times \prod_{j} Z_{j}$$

- T complex torus (= \mathbb{C}^g /lattice);
- Y_i holomorphic symplectic manifolds;
- Z_j simply-connected, projective, dim ≥ 3 , $H^0(Z_j,\Omega^*)=\mathbb{C}\oplus\mathbb{C}\omega$, where ω is a generator of K_{Z_j} .

(these are the Calabi-Yau manifolds)

Decomposition theorem

X compact Kähler with $K_X = \mathcal{O}_X$. $\exists \ \tilde{X} \to X$ étale finite and

$$\tilde{X} = T \times \prod_{i} Y_{i} \times \prod_{j} Z_{j}$$

- T complex torus (= \mathbb{C}^g /lattice);
- *Y_i* holomorphic symplectic manifolds;
- Z_j simply-connected, projective, dim ≥ 3 , $H^0(Z_j,\Omega^*)=\mathbb{C}\oplus\mathbb{C}\omega$, where ω is a generator of K_{Z_j} . (these are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial,

Decomposition theorem

X compact Kähler with $K_X = \mathcal{O}_X$. $\exists \ \tilde{X} \to X$ étale finite and

$$\tilde{X} = T \times \prod_{i} Y_{i} \times \prod_{j} Z_{j}$$

- T complex torus (= \mathbb{C}^g /lattice);
- Y_i holomorphic symplectic manifolds;
- Z_j simply-connected, projective, dim ≥ 3 , $H^0(Z_j,\Omega^*)=\mathbb{C}\oplus\mathbb{C}\omega$, where ω is a generator of K_{Z_j} . (these are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial, which are themselves building blocks in the classification of projective (or compact Kähler) manifolds.

Many examples of Calabi-Yau manifolds,

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

• dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\Longleftrightarrow} X$ K3 surface.

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

• dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\Longleftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\Longleftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)
- dim > 2? Idea: take S^r for S K3. Many symplectic forms:

$$\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S$$
, with $\lambda_1, \ldots, \lambda_r \in \mathbb{C}^*$.

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\Longleftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)
- dim > 2? Idea: take S^r for S K3. Many symplectic forms:

$$\varphi = \lambda_1 \, p_1^* \varphi_S + \ldots + \lambda_r \, p_r^* \varphi_S \, , \quad \text{with} \ \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* \, .$$

Try to get unicity by imposing $\lambda_1 = \ldots = \lambda_r$,

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\Longleftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)
- dim > 2? Idea: take S^r for S K3. Many symplectic forms:

$$\varphi = \lambda_1 \, p_1^* \varphi_{\mathcal{S}} + \ldots + \lambda_r \, p_r^* \varphi_{\mathcal{S}} \;, \quad \text{with} \;\; \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* \;.$$

Try to get unicity by imposing $\lambda_1=\ldots=\lambda_r$, i.e. φ invariant under \mathfrak{S}_r ,

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\Longleftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)
- dim > 2? Idea: take S^r for S K3. Many symplectic forms:

$$\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S$$
, with $\lambda_1, \ldots, \lambda_r \in \mathbb{C}^*$.

Try to get unicity by imposing $\lambda_1=\ldots=\lambda_r$, i.e. φ invariant under \mathfrak{S}_r , i.e. φ comes from $S^{(r)}:=S^r/\mathfrak{S}_r=\{\text{subsets of }r\text{ points of }S,\text{ counted with multiplicities}\}$

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\Longleftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)
- dim > 2? Idea: take S^r for S K3. Many symplectic forms:

$$\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S$$
, with $\lambda_1, \ldots, \lambda_r \in \mathbb{C}^*$.

Try to get unicity by imposing $\lambda_1 = \ldots = \lambda_r$, i.e. φ invariant under \mathfrak{S}_r , i.e. φ comes from $S^{(r)} := S^r/\mathfrak{S}_r = \{\text{subsets of } r \text{ points of } S, \text{ counted with multiplicities}\}$

• $S^{(r)}$ is singular, but admits a natural desingularization $S^{[r]}$:= {finite analytic subspaces of S of length r} (Hilbert scheme)

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension 2r.

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension 2r.

Other examples

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension 2r.

Other examples

• Analogous construction with S = complex torus (dim. 2); gives generalized Kummer manifold K_r of dimension 2r.

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension 2r.

Other examples

- **1** Analogous construction with S = complex torus (dim. 2); gives generalized Kummer manifold K_r of dimension 2r.
- 2 Two isolated examples by O'Grady, of dimension 6 and 10.

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension 2r.

Other examples

- **1** Analogous construction with S = complex torus (dim. 2); gives generalized Kummer manifold K_r of dimension 2r.
- 2 Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension 2r.

Other examples

- **4** Analogous construction with S = complex torus (dim. 2); gives generalized Kummer manifold K_r of dimension 2r.
- 2 Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families! Example: $V \subset \mathbb{P}^5$ cubic fourfold. $F(V) := \{\text{lines contained in } V\}$

is holomorphic symplectic, deformation of $S^{[2]}$ with S K3.

A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X,\mathbb{C})$.

A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X,\mathbb{C})$.

Proposition		
		J

A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X,\mathbb{C})$.

Proposition

 $lackbox{1}{\ }\exists \ q: H^2(X,\mathbb{Z})
ightarrow \mathbb{Z}$ quadratic and $f \in \mathbb{Z}$ such that

$$\int_X \alpha^{2r} = f \ q(\alpha)^r \ \text{ for } \alpha \in H^2(X, \mathbb{Z}) \ .$$

A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X,\mathbb{C})$.

Proposition

 $lackbox{1}{\ }\exists \ q:H^2(X,\mathbb{Z}) o \mathbb{Z}$ quadratic and $f\in \mathbb{Z}$ such that

$$\int_X \alpha^{2r} = f \ q(\alpha)^r \ \text{ for } \alpha \in H^2(X, \mathbb{Z}) \ .$$

② For L lattice, there exists a complex manifold \mathcal{M}_L parametrizing isomorphism classes of pairs (X,λ) , where $\lambda: (H^2(X,\mathbb{Z}),q) \stackrel{\sim}{\longrightarrow} L$.

A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X,\mathbb{C})$.

Proposition

 $lackbox{1}{\ }\exists \ q:H^2(X,\mathbb{Z}) o \mathbb{Z}$ quadratic and $f\in \mathbb{Z}$ such that

$$\int_X \alpha^{2r} = f \ q(\alpha)^r \ \text{ for } \alpha \in H^2(X, \mathbb{Z}) \ .$$

② For L lattice, there exists a complex manifold \mathcal{M}_L parametrizing isomorphism classes of pairs (X, λ) , where $\lambda: (H^2(X, \mathbb{Z}), q) \xrightarrow{\sim} L$.

(Beware that \mathcal{M}_L is non Hausdorff in general.)

$$(X,\lambda) \in \mathcal{M}_L$$
, $\lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}$; put $\wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi)$.

$$(X,\lambda) \in \mathcal{M}_L$$
, $\lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}$; put $\wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi)$.
 $\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}})$ is the period map.

$$(X,\lambda) \in \mathcal{M}_L$$
, $\lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}$; put $\wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi)$.
 $\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}})$ is the period map.

Theorem

Let
$$\Omega := \{ x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0 , \ q(x, \bar{x}) > 0 \}.$$

$$(X,\lambda) \in \mathcal{M}_L$$
, $\lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}$; put $\wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi)$.
 $\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}})$ is the period map.

Theorem

Let
$$\Omega := \{ x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0, \ q(x, \bar{x}) > 0 \}.$$

1 (AB) \wp is a local isomorphism $\mathcal{M}_L \to \Omega$.

$$(X,\lambda) \in \mathcal{M}_L$$
, $\lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}$; put $\wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi)$.
 $\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}})$ is the period map.

Theorem

Let $\Omega := \{ x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0 , q(x, \bar{x}) > 0 \}.$

- **1** (AB) \wp is a local isomorphism $\mathcal{M}_L \to \Omega$.
- **②** (Huybrechts) ℘ is surjective.

$$(X,\lambda) \in \mathcal{M}_L$$
, $\lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}$; put $\wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi)$.
 $\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}})$ is the period map.

Theorem

Let $\Omega := \{ x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0 , q(x, \bar{x}) > 0 \}.$

- **1** (AB) \wp is a local isomorphism $\mathcal{M}_L \to \Omega$.
- **②** (Huybrechts) ℘ is surjective.
- **(**Verbitsky) The restriction of \wp to any connected component of \mathcal{M}_L is generically injective.

$$(X,\lambda) \in \mathcal{M}_L, \ \lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}; \ \mathsf{put} \ \wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi).$$

$$\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}}) \ \mathsf{is the period map}.$$

Theorem

Let $\Omega := \{ x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0 , \ q(x, \bar{x}) > 0 \}.$

- **1** (AB) \wp is a local isomorphism $\mathcal{M}_L \to \Omega$.
- **②** (Huybrechts) ℘ is surjective.
- **(**Verbitsky) The restriction of \wp to any connected component of \mathcal{M}_L is generically injective.

Gives very precise information on the structure of \mathcal{M}_L and the geometry of X.

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^{\sharp}: T^*(M) \xrightarrow{\sim} T(M)$.

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^{\sharp}: T^*(M) \xrightarrow{\sim} T(M)$.

For h function on M, $X_h := \varphi^{\sharp}(dh)$: hamiltonian vector field of h.

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

```
M real symplectic manifold; \varphi defines \varphi^{\sharp}: T^*(M) \xrightarrow{\sim} T(M). For h function on M, X_h := \varphi^{\sharp}(dh): hamiltonian vector field of h. X_h \cdot h = 0, i.e. h constant along trajectories of X_h ("integral of motion")
```

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

```
M real symplectic manifold; \varphi defines \varphi^{\sharp}: T^*(M) \xrightarrow{\sim} T(M).
For h function on M, X_h := \varphi^{\sharp}(dh): hamiltonian vector field of h.
X_h \cdot h = 0, i.e. h constant along trajectories of X_h
        ("integral of motion")
\dim(M) = 2r. h: M \to \mathbb{R}^r, h = (h_1, \ldots, h_r). Suppose:
```

$$\dim(M) = 2r$$
. $n : M \to \mathbb{R}^r$, $n = (n_1, \dots, n_r)$. Suppose: $h^{-1}(s)$ connected, smooth, compact, Lagrangian $(\varphi_{|h^{-1}(s)} = 0)$.

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^{\sharp}: T^{*}(M) \xrightarrow{\sim} T(M)$.

For h function on M, $X_h := \varphi^{\sharp}(dh)$: hamiltonian vector field of h.

 $X_h \cdot h = 0$, i.e. h constant along trajectories of X_h ("integral of motion")

 $\dim(M) = 2r$. $h: M \to \mathbb{R}^r$, $h = (h_1, \dots, h_r)$. Suppose:

 $h^{-1}(s)$ connected, smooth, compact, Lagrangian $(\varphi_{|h^{-1}(s)} = 0)$.

Arnold-Liouville theorem

 $h^{-1}(s)\cong \mathbb{R}^r/{\mathsf{lattice}};\ X_{h_i}\ \mathsf{tangent}\ \mathsf{to}\ h^{-1}(s),\ \mathsf{constant}\ \mathsf{on}\ h^{-1}(s).$

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^{\sharp}: T^*(M) \xrightarrow{\sim} T(M)$.

For h function on M, $X_h := \varphi^{\sharp}(dh)$: hamiltonian vector field of h.

 $X_h \cdot h = 0$, i.e. h constant along trajectories of X_h ("integral of motion")

 $\dim(M) = 2r$. $h: M \to \mathbb{R}^r$, $h = (h_1, \dots, h_r)$. Suppose:

 $h^{-1}(s)$ connected, smooth, compact, Lagrangian $(\varphi_{|h^{-1}(s)} = 0)$.

Arnold-Liouville theorem

$$h^{-1}(s)\cong \mathbb{R}^r/{\mathsf{lattice}};\ X_{h_i}\ \mathsf{tangent}\ \mathsf{to}\ h^{-1}(s),\ \mathsf{constant}\ \mathsf{on}\ h^{-1}(s).$$

 \leadsto explicit solutions of the ODE X_{h_i} (e.g. in terms of θ functions):

[&]quot;algebraically completely integrable system".

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^{\sharp}: T^*(M) \xrightarrow{\sim} T(M)$.

For h function on M, $X_h := \varphi^{\sharp}(dh)$: hamiltonian vector field of h.

 $X_h \cdot h = 0$, i.e. h constant along trajectories of X_h ("integral of motion")

 $\dim(M) = 2r$. $h: M \to \mathbb{R}^r$, $h = (h_1, \dots, h_r)$. Suppose:

 $h^{-1}(s)$ connected, smooth, compact, Lagrangian $(\varphi_{|h^{-1}(s)} = 0)$.

Arnold-Liouville theorem

$$h^{-1}(s)\cong \mathbb{R}^r/{\mathsf{lattice}};\ X_{h_i}\ \mathsf{tangent}\ \mathsf{to}\ h^{-1}(s),\ \mathsf{constant}\ \mathsf{on}\ h^{-1}(s).$$

 \leadsto explicit solutions of the ODE X_{h_i} (e.g. in terms of θ functions):

"algebraically completely integrable system". Classical examples:

geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.

No global functions \leadsto replace \mathbb{R}^r by \mathbb{P}^r .

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r .

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

 $h: X \to \mathbb{P}^r$, general fiber connected Lagrangian.

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r .

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

 $h: X \to \mathbb{P}^r$, general fiber connected Lagrangian.

 \Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r .

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

 $h:X \to \mathbb{P}^r$, general fiber connected Lagrangian.

 \Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

$\mathsf{Theorem}$

 $f: X \to B$ surjective with connected fibers \Rightarrow

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r .

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

 $h: X \to \mathbb{P}^r$, general fiber connected Lagrangian.

 \Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

$\mathsf{Theorem}$

 $f: X \to B$ surjective with connected fibers \Rightarrow

h is a Lagrangian fibration (Matsushita);

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r .

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

 $h:X \to \mathbb{P}^r$, general fiber connected Lagrangian.

 \Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

$\mathsf{Theorem}$

 $f: X \to B$ surjective with connected fibers \Rightarrow

- h is a Lagrangian fibration (Matsushita);
- ② If X projective, $B \cong \mathbb{P}^r$ (Hwang).

Holomorphic set-up

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r .

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

 $h:X \to \mathbb{P}^r$, general fiber connected Lagrangian.

 \Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

Theorem

 $f: X \to B$ surjective with connected fibers \Rightarrow

- h is a Lagrangian fibration (Matsushita);
- ② If X projective, $B \cong \mathbb{P}^r$ (Hwang).

Is there a simple characterization of Lagrangian fibration?

Conjecture

 $\exists X \dashrightarrow \mathbb{P}^r \text{ Lagrangian } \iff \exists L \text{ on } X, \ q(c_1(L)) = 0.$

$$S \subset \mathbb{P}^5$$
 given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$S\subset \mathbb{P}^5$$
 given by $P=Q=R=$ 0, P,Q,R quadratic \Rightarrow S K3.

$$\Pi = \{ \mathsf{quadrics} \ \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2$$

Many examples of such systems. Here is one:

$$S \subset \mathbb{P}^5$$
 given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$\Pi = \{ \text{quadrics } \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2$$

 $\Pi^* = \text{dual projective plane } = \{ \text{pencils of quadrics } \supset S \}.$

$$S \subset \mathbb{P}^5$$
 given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$\Pi = \{ \text{quadrics } \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2$$

$$\Pi^* = \text{ dual projective plane } = \{ \text{pencils of quadrics } \supset S \} \,.$$

$$h: S^{[2]} \to \Pi^*: h(x,y) = \{\text{quadrics of } \Pi \supset \langle x,y \rangle\}.$$

Many examples of such systems. Here is one:

$$S\subset \mathbb{P}^5$$
 given by $P=Q=R=0,\ P,Q,R$ quadratic \Rightarrow S K3.

$$\Pi = \{ \text{quadrics } \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2$$

 $\Pi^* = \text{ dual projective plane } = \{ \text{pencils of quadrics } \supset S \} .$

$$h: S^{[2]} \to \Pi^*: h(x,y) = \{\text{quadrics of } \Pi \supset \langle x,y \rangle \}.$$

By the theorem, h Lagrangian fibration \Rightarrow

Many examples of such systems. Here is one:

$$S\subset \mathbb{P}^5$$
 given by $P=Q=R=0,\ P,Q,R$ quadratic \Rightarrow S K3.

$$\Pi = \{ \text{quadrics } \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2$$

 $\Pi^* = \text{ dual projective plane } = \{ \text{pencils of quadrics } \supset S \} .$

$$h: S^{[2]} \to \Pi^*: h(x,y) = \{\text{quadrics of } \Pi \supset \langle x,y \rangle \}.$$

By the theorem, h Lagrangian fibration \Rightarrow

$$h^{-1}(\langle P,Q\rangle)=\{\mathsf{lines}\subset \{P=Q=0\}\subset \mathbb{P}^5\}\cong \mathsf{2\text{-}dim'l\ complex\ torus}\,,$$

Many examples of such systems. Here is one:

$$S \subset \mathbb{P}^5$$
 given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$\Pi = \{ \text{quadrics } \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2$$

 $\Pi^* = \text{dual projective plane } = \{ \text{pencils of quadrics } \supset S \}.$

$$h: S^{[2]} \to \Pi^*: h(x,y) = \{\text{quadrics of } \Pi \supset \langle x,y \rangle \}.$$

By the theorem, h Lagrangian fibration \Rightarrow

$$h^{-1}(\langle P,Q\rangle)=\{\mathsf{lines}\subset \{P=Q=0\}\subset \mathbb{P}^5\}\cong \mathsf{2\text{-}dim'l\ complex\ torus}\,,$$

a classical result of Kummer.

What about odd dimensions?

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

• $\operatorname{Ker} \eta(x) = H_x \subsetneq T_x(X)$ and $d\eta_{|H_x}$ non-degenerate $\forall x \in X$;

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

- $\operatorname{Ker} \eta(x) = H_x \subsetneq T_x(X)$ and $d\eta_{|H_x}$ non-degenerate $\forall x \in X$;
- \iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

- $\operatorname{Ker} \eta(x) = H_x \subsetneq T_x(X)$ and $d\eta_{|H_x}$ non-degenerate $\forall x \in X$;
- \iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.
- A contact structure on X is a family $H_x \subsetneq T_x(X) \quad \forall x \in X$, defined locally by a contact form.

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

- $\operatorname{Ker} \eta(x) = H_x \subsetneq T_x(X)$ and $d\eta_{|H_x}$ non-degenerate $\forall x \in X$;
- \iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.
- A contact structure on X is a family $H_x \subsetneq T_x(X) \quad \forall x \in X$, defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up \leadsto holomorphic contact manifold. We will be looking for *projective* contact manifolds.

Examples of contact projective manifolds

Examples of contact projective manifolds

 $lackbox{1}{\ }\mathbb{P}T^*(M)$ for every projective manifold M

Examples of contact projective manifolds

• $\mathbb{P}T^*(M)$ for every projective manifold M $(=\{(m,H)\mid H\subset T_m(M)\}:$ "contact elements");

Examples of contact projective manifolds

- $\mathbb{P}T^*(M)$ for every projective manifold M $(=\{(m,H)\mid H\subset T_m(M)\}:$ "contact elements");
- ${\mathfrak Q}$ ${\mathfrak g}$ simple Lie algebra; ${\mathcal O}_{min}\subset {\mathbb P}({\mathfrak g})$ unique closed adjoint orbit.

Examples of contact projective manifolds

- **③** $\mathbb{P}T^*(M)$ for every projective manifold M (= {(m, H) | $H \subset T_m(M)$ }: "contact elements");
- ② \mathfrak{g} simple Lie algebra; $\mathcal{O}_{min} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit. (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Examples of contact projective manifolds

- $\mathbb{P}T^*(M)$ for every projective manifold M $(=\{(m,H)\mid H\subset T_m(M)\}:$ "contact elements");
- ② \mathfrak{g} simple Lie algebra; $\mathcal{O}_{min} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit. (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

Examples of contact projective manifolds

- **●** $\mathbb{P}T^*(M)$ for every projective manifold M $(=\{(m,H)\mid H\subset T_m(M)\}:$ "contact elements");
- ${\mathfrak g}$ simple Lie algebra; ${\mathcal O}_{min} \subset {\mathbb P}({\mathfrak g})$ unique closed adjoint orbit. (example: rank 1 matrices in ${\mathbb P}({\mathfrak s}{\mathfrak l}_r)$.)

Conjecture

These are the only contact projective manifolds.

Examples of contact projective manifolds

- $\mathbb{P}T^*(M)$ for every projective manifold M $(=\{(m,H)\mid H\subset T_m(M)\}:$ "contact elements");
- ${\mathfrak g}$ simple Lie algebra; ${\mathcal O}_{min} \subset {\mathbb P}({\mathfrak g})$ unique closed adjoint orbit. (example: rank 1 matrices in ${\mathbb P}({\mathfrak s}{\mathfrak l}_r)$.)

Conjecture

These are the only contact projective manifolds.

(⇒ classical conjecture in Riemannian geometry:

Examples of contact projective manifolds

- $\mathbb{P}T^*(M)$ for every projective manifold M $(=\{(m,H)\mid H\subset T_m(M)\}:$ "contact elements");
- ② \mathfrak{g} simple Lie algebra; $\mathcal{O}_{min} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit. (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

These are the only contact projective manifolds.

(⇒ classical conjecture in Riemannian geometry: classification of compact quaternion-Kähler manifolds (LeBrun, Salamon).)

Definition : A projective manifold X is Fano if K_X negative, i.e.

Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has "enough sections" for $N \gg 0$.

Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has "enough sections" for $N\gg 0$.

X contact manifold; L := T(X)/H line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$.

Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has "enough sections" for $N \gg 0$.

X contact manifold; L:=T(X)/H line bundle; then $K_X\cong L^{-k}$ with $k=\frac{1}{2}(\dim(X)+1)$. Thus X Fano $\iff L^N$ has enough sections for $N\gg 0$.

Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has "enough sections" for $N \gg 0$.

X contact manifold; L := T(X)/H line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has "enough sections" for $N \gg 0$.

X contact manifold; L := T(X)/H line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

• If X is not Fano, $X \cong \mathbb{P}T^*(M)$ (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)

Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has "enough sections" for $N \gg 0$.

X contact manifold; L := T(X)/H line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

- If X is not Fano, $X \cong \mathbb{P}T^*(M)$ (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)
- ② X Fano and L has "enough sections" $\Rightarrow Z \cong \mathcal{O}_{min} \subset \mathbb{P}(\mathfrak{g})$ (AB)

III. Poisson manifolds

Few symplectic or contact manifolds \limits look for weaker structure.

Few symplectic or contact manifolds \rightsquigarrow look for weaker structure.

$$\varphi \ \ \mathsf{symplectic} \ \rightsquigarrow \ \varphi^{\sharp}: T(X) \stackrel{\sim}{\longrightarrow} T^{*}(X) \ \rightsquigarrow \ \tau \in \wedge^{2}T(X) \ \rightsquigarrow$$

Few symplectic or contact manifolds \rightsquigarrow look for weaker structure.

 $(f,g)\mapsto \{f,g\}:=\langle \tau,df\wedge dg\rangle$ for f,g functions on $U\subset X$.

$$\varphi$$
 symplectic $\leadsto \varphi^{\sharp}: T(X) \xrightarrow{\sim} T^{*}(X) \leadsto \tau \in \wedge^{2}T(X) \leadsto$

Few symplectic or contact manifolds \rightsquigarrow look for weaker structure.

$$\varphi$$
 symplectic $\leadsto \varphi^{\sharp}: T(X) \xrightarrow{\sim} T^{*}(X) \leadsto \tau \in \wedge^{2}T(X) \leadsto$
 $(f,g) \mapsto \{f,g\} := \langle \tau, df \wedge dg \rangle \text{ for } f,g \text{ functions on } U \subset X \text{ .}$

Fact: $d\varphi = 0 \iff$ Lie algebra structure (Jacobi identity).

Few symplectic or contact manifolds \rightsquigarrow look for weaker structure.

$$\varphi$$
 symplectic $\leadsto \varphi^{\sharp}: T(X) \xrightarrow{\sim} T^{*}(X) \leadsto \tau \in \wedge^{2}T(X) \leadsto$

$$(f,g)\mapsto \{f,g\}:=\langle au, df\wedge dg
angle \ \ ext{for}\ f,g\ ext{functions on}\ U\subset X\ .$$

Fact: $d\varphi = 0 \iff$ Lie algebra structure (Jacobi identity).

Definition

Poisson structure on X: bivector field $\tau: x \mapsto \tau(x) \in \wedge^2 T_x(X)$, such that $(f,g) \mapsto \{f,g\}$ Lie algebra structure.

Few symplectic or contact manifolds \rightsquigarrow look for weaker structure.

$$\varphi$$
 symplectic $\leadsto \varphi^{\sharp}: T(X) \xrightarrow{\sim} T^{*}(X) \leadsto \tau \in \wedge^{2}T(X) \leadsto$

$$(f,g)\mapsto \{f,g\}:=\langle au, df\wedge dg
angle \ \ ext{for}\ f,g\ ext{functions on}\ U\subset X\ .$$

Fact: $d\varphi = 0 \iff$ Lie algebra structure (Jacobi identity).

Definition

Poisson structure on X: bivector field $\tau: x \mapsto \tau(x) \in \wedge^2 T_x(X)$, such that $(f,g) \mapsto \{f,g\}$ Lie algebra structure.

Again this makes sense for X complex manifold, au holomorphic.

• dim(X) = 2: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.

- **1** dim(X) = 2: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.
- ② $\dim(X) = 3$; wedge product $\wedge^2 T(X) \otimes T(X) \to K_X^{-1}$ gives $\wedge^2 T(X) \xrightarrow{\sim} \Omega_X^1 \otimes K_X^{-1}$. Then $\alpha \in H^0(\Omega_X^1 \otimes K_X^{-1})$ is Poisson $\iff \alpha \wedge d\alpha = 0 \iff \text{locally } \alpha = fdg$.

- dim(X) = 2: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.
- ② $\dim(X)=3$; wedge product $\wedge^2 T(X)\otimes T(X)\to K_X^{-1}$ gives $\wedge^2 T(X)\stackrel{\sim}{\longrightarrow} \Omega_X^1\otimes K_X^{-1}$. Then $\alpha\in H^0(\Omega_X^1\otimes K_X^{-1})$ is Poisson $\iff \alpha\wedge d\alpha=0 \iff \operatorname{locally} \alpha=\operatorname{\it fdg}.$

- dim(X) = 2: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.
- ② $\dim(X)=3$; wedge product $\wedge^2 T(X)\otimes T(X)\to K_X^{-1}$ gives $\wedge^2 T(X)\overset{\sim}{\longrightarrow} \Omega_X^1\otimes K_X^{-1}$. Then $\alpha\in H^0(\Omega_X^1\otimes K_X^{-1})$ is Poisson $\iff \alpha\wedge d\alpha=0 \iff \operatorname{locally} \alpha=\operatorname{\it fdg}.$
- 4 A holomorphic symplectic manifold is Poisson.

- dim(X) = 2: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.
- ② $\dim(X)=3$; wedge product $\wedge^2 T(X)\otimes T(X)\to K_X^{-1}$ gives $\wedge^2 T(X)\overset{\sim}{\longrightarrow} \Omega_X^1\otimes K_X^{-1}$. Then $\alpha\in H^0(\Omega_X^1\otimes K_X^{-1})$ is Poisson $\iff \alpha\wedge d\alpha=0 \iff \operatorname{locally} \alpha=\operatorname{\it fdg}.$
- **③** On \mathbb{P}^3 , P, Q quadratic $\sim \alpha = PdQ - QdP$ ∈ $\Omega^1_{\mathbb{P}^3}(4) = \Omega^1_{\mathbb{P}^3} \otimes \mathcal{K}^{-1}_{\mathbb{P}^3}$ Poisson.
- 4 A holomorphic symplectic manifold is Poisson.
- **5** If X is Poisson, any $X \times Y$ is Poisson.

 τ Poisson, $x \in X$. $\tau_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\} \quad (r \text{ even}) \qquad X = \prod X_r$$

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\} \quad (r \text{ even}) \qquad X = \prod X_r$$

Proposition

If $X_r \neq \emptyset$, dim $X_r \geq r$.

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\} \quad (r \text{ even}) \qquad X = \coprod X_r$$

Proposition

If $X_r \neq \emptyset$, dim $X_r \geq r$.

Proof: X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$ $\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X)$

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\} \quad (r \text{ even}) \qquad X = \prod X_r$$

Proposition

If $X_r \neq \emptyset$, dim $X_r \geq r$.

Proof: X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$ $\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \operatorname{rk}(\tau_x) \leq \dim X_r$.

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\} \quad (r \text{ even}) \qquad X = \prod X_r$$

Proposition

If $X_r \neq \emptyset$, dim $X_r \geq r$.

Proof: X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$ $\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \operatorname{rk}(\tau_x) \leq \dim X_r$.

Conjecture (Bondal)

X compact Poisson manifold, $X_r \neq \varnothing \Rightarrow \dim X_r > r$.

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\} \quad (r \text{ even}) \qquad X = \prod X_r$$

Proposition

If $X_r \neq \emptyset$, dim $X_r \geq r$.

Proof: X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$ $\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \operatorname{rk}(\tau_x) \leq \dim X_r$.

Conjecture (Bondal)

X compact Poisson manifold, $X_r \neq \emptyset \Rightarrow \dim X_r > r$.

Example: $X_0 = \{x \in X \mid \tau_x = 0\}$ contains a curve.

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\} \quad (r \text{ even}) \qquad X = \prod X_r$$

Proposition

If $X_r \neq \emptyset$, dim $X_r \geq r$.

Proof: X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$ $\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \operatorname{rk}(\tau_x) \leq \dim X_r$.

Conjecture (Bondal)

X compact Poisson manifold, $X_r \neq \emptyset \Rightarrow \dim X_r > r$.

Example: $X_0 = \{x \in X \mid \tau_x = 0\}$ contains a curve.

(e.g.: on \mathbb{P}^3 , PdQ - QdP vanishes on the curve P = Q = 0.)

Some evidence

Some evidence

1 True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).

Some evidence

- **1** True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).
- ② $\operatorname{rk}(\tau_X) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X r + 1$.

Some evidence

- True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).
- ② $\operatorname{rk}(\tau_X) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X r + 1$.

Proposition (Polishchuk)

au Poisson on \mathbb{P}^3 , vanishes along smooth curve C. Then C elliptic, $\deg(C)=3$ or 4;

Some evidence

- True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).
- ② $\operatorname{rk}(\tau_X) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X r + 1$.

Proposition (Polishchuk)

au Poisson on \mathbb{P}^3 , vanishes along smooth curve C. Then C elliptic, $\deg(C)=3$ or 4; if =4, $\tau=PdQ-QdP$ and C:P=Q=0.

Some evidence

- **1** True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).
- ② $\operatorname{rk}(\tau_X) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X r + 1$.

Proposition (Polishchuk)

au Poisson on \mathbb{P}^3 , vanishes along smooth curve C. Then C elliptic, $\deg(C)=3$ or 4; if =4, $\tau=PdQ-QdP$ and C:P=Q=0.

THE END

