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Abstra
t
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 regains the expressive power of intuitionisti
 logi
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the ! (`of 
ourse') modality. Benton, Bierman, Hyland and de Paiva have given a term

assignment system for ILL and an asso
iated notion of 
ategori
al model in whi
h the

! modality is modelled by a 
omonad satisfying 
ertain extra 
onditions. Ordinary

intuitionisti
 logi
 is then modelled in a 
artesian 
losed 
ategory whi
h arises as a

full sub
ategory of the 
ategory of 
oalgebras for the 
omonad.

This paper attempts to explain the 
onne
tion between ILL and IL more dire
tly

and symmetri
ally by giving a logi
, term 
al
ulus and 
ategori
al model for a system

in whi
h the linear and non-linear worlds exist on an equal footing, with operations

allowing one to pass in both dire
tions. We start from the 
ategori
al model of ILL

given by Benton, Bierman, Hyland and de Paiva and show that this is equivalent

to having a symmetri
 monoidal adjun
tion between a symmetri
 monoidal 
losed


ategory and a 
artesian 
losed 
ategory. We then derive both a sequent 
al
ulus

and a natural dedu
tion presentation of the logi
 
orresponding to the new notion of

model.
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1 Introdu
tion

1.1 Ba
kground

This paper 
on
erns a variant of the intuitionisti
 fragment of Girard's linear logi
 [Gir87℄.

As is well-known, linear logi
 does not 
ontain the stru
tural rules of weakening and


ontra
tion, but these are reintrodu
ed in a 
ontrolled way via a unary operator, written

! and pronoun
ed `of 
ourse', `bang' or `shriek'. The sequent 
al
ulus rules for ! are the

following:

!� ` A

Promotion

!� `!A

�; A ` B

Dereli
tion

�; !A ` B

�; !A; !A ` B

Contra
tion

�; !A ` B

� ` B

Weakening

�; !A ` B

The rules above allow ordinary intuitionisti
 logi
 to be interpreted within intuition-

isiti
 linear logi
 via (for example) the so-
alled `Girard translation'. In [BBHdP92,

BBHdP93b, BBHdP93a℄, Benton, Bierman, Hyland and de Paiva formulated a natural

dedu
tion presentation of the multipli
ative/exponential fragment of ILL, together with

a term 
al
ulus (extending the propositions as types analogy to linear logi
) and a 
at-

egori
al model (a linear 
ategory). In that work, the multipli
ative (i.e. 
,�Æ) part of

the logi
 is modelled in a symmetri
 monoidal 
losed 
ategory (SMCC). That mu
h is

standard and well-understood. The ! modality is then modelled by a monoidal 
omonad

on the SMCC whi
h is required to satisfy 
ertain extra (and non-trivial) 
onditions. These

extra 
onditions are suÆ
ient to ensure that the 
ategory of 
oalgebras for the 
omonad


ontains a full sub
ategory whi
h is 
artesian 
losed and thus models the interpretation

of IL in ILL.

Whilst the view that linear logi
 is primary and that ordinary logi
 is merely a part of

linear logi
 is appealing (parti
ularly if one takes seriously the 
laims of linear logi
 to be

\the logi
 behind logi
"), it is not ne
essarily always the best way of seeing the situation.

This paper tries to present a more symmetri
 view of the relationship between IL and

ILL, starting from a model-theoreti
 perspe
tive, and it seems worth trying to give some

motivation for why this might be worth doing.

1.2 Motivation

1.2.1 Fun
tional Programming

From a pra
ti
al point of view, there are a number of reasons why the standard linear

term 
al
ulus (LTC) of [BBHdP92℄ might be 
onsidered unsuitable as the basis of a linear

fun
tional programming language. Firstly, linear fun
tional programming is verbose and

unnatural { whilst the linear term 
al
ulus might well be a useful intermediate language

for a 
ompiler, it is not very appropriate as a language for everyday programming. If

linearity is to be made visible to the programmer at all, it appears preferable to have some

extension of a traditional non-linear language in whi
h one 
ould write the o

asional

linear fun
tion in order to deal with input/output, in-pla
e update or whatever.

A se
ond, more fundamental, problem is that, despite 
onsiderable resear
h e�ort, the

pre
ise way in whi
h a linear language 
an help with what we have deliberately referred

to rather vaguely as `input/output, in-pla
e update or whatever' is still not 
lear. Most

published proposals for using linear types to 
ontrol or des
ribe intensional features of
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fun
tional programs are either un
onvin
ing or use type systems whi
h are only loosely

inspired by linear logi
. Systems in the last 
ategory 
an, pragmati
ally, be extremely

su

essful; the most obvious example being the language CLEAN. The type system of

CLEAN [BS93℄ in
orporates a `uniqueness' operator for (roughly) making non-linear types

linear. This is in some sense dual to the ! of linear logi
, whi
h allows linear types to be

treated non-linearly. Unique types in CLEAN are used to add destru
tive updates and

I/O to the language in a 
lean (referentially transparent) way.

One (
urrently somewhat spe
ulative) aim of the work des
ribed here is to provide

a sound mathemati
al and logi
al basis for a type system like that of CLEAN. We are

motivated and en
ouraged not only by the similarities between CLEAN and the 
al
ulus

to be presented here (the LNL term 
al
ulus), but also by the fa
t that other resear
hers

looking at pra
ti
al implementations of linear languages have 
ome up with systems whi
h

in
lude aspe
ts of the LNL term 
al
ulus. For example, Lin
oln and Mit
hell's linear

variant [LM92℄ of Fairbairn andWray's `three instru
tionma
hine' [FW87℄ divides memory

into two spa
es 
orresponding to linear and non-linear obje
ts. Similarly, Wadler's `a
tive

and passive' type system [Wad92℄ separates linear from non-linear types in an interesting

way. It should also be mentioned that some of Wadler's earliest attempts to de�ne a linear

type system for a fun
tional language 
agged linear types as the ex
eption, rather than

the rule [Wad90℄, although he later reverted to `belling the 
at' by annotating non-linear

types.

Ja
obs [Ja
93℄ has independently des
ribed how a sequent 
al
ulus inspired by CLEAN's

uniqueness types may be interpreted using the linear 
ategories of [BBHdP92℄ under some

extra simplifying assumptions whi
h are suÆ
ient to make the whole Eilenberg-Moore


ategory of 
oalgebras be 
artesian 
losed. Ja
obs's logi
 turns out to be essentially the

same as LNL logi
, and we will dis
uss his work further in Se
tion 3.1.7.

The logi
 des
ribed here is, in a fairly strong sense, equivalent to ordinary ILL. How

then 
ould su
h a system possibly lead to a better linear programming language? The

�rst answer is that we re�ne ILL: there are distin
t LNL terms whi
h 
orrespond to the

same LTC term. The se
ond answer is that logi
al systems whi
h are denotationally

equivalent may still have very di�erent dynami
 (proof-theoreti
) behaviours. However,

su
h spe
ulations should only be viewed as motivation for studying the logi
. We do

not yet have any formal results 
on
erning, for example, the memory graphs of programs

written in a language based on the LNL term 
al
ulus.

1.2.2 Logi


From a more logi
al point of view, there has re
ently been mu
h interest in Girard's system

LU [Gir93℄ and related systems in whi
h the (multi)sets of formulae o

uring in sequents

are split into di�erent zones. Formulae in some zones are treated 
lassi
ally, whilst those

in other zones are treated linearly.

Intuitionisti
 logi
s inspired by LU have been proposed by Plotkin [Plo93℄ and Wadler

[Wad93℄. It is desirable to study the proof and model theory of su
h systems dire
tly,

rather than treating them as synta
ti
 sugar for, for example, ordinary linear logi
 (if only

to verify that it is possible to treat them as su
h synta
ti
 sugar). The logi
 of this paper

should turn out to be equivalent to a subsystem of LU, though there are some super�
ial

di�eren
es of presentation su
h as the fa
t that LNL logi
 has no zones { the formulae

themselves are either linear or 
onventional.

1

1

Though we, perhaps unwisely, abuse notation by writing a semi
olon between formulae of di�erent
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1.2.3 Semanti
s

From the 
ategori
al perspe
tive, it seems natural to explore the more symmetri
 situation

where one starts from an SMCC and a CCC with (adjoint) fun
tors between them, rather

than an SMCC with suÆ
ient extra stru
ture to ensure the existen
e of su
h a CCC.

This is parti
ularly true in the light of the fa
t that the de�nition of a linear 
ategory in

[BBHdP92℄ was arrived at mostly from the proof theory of linear logi
, but also (and this

was something of a `hidden agenda') from a desire to have enough stru
ture to be able

to derive an appropriate CCC from the model.

2

It is also fair to say that the de�nition

of a linear 
ategory is surprisingly 
ompli
ated, so looking for simpler models, or simpler

presentations of the same models, is a good idea. Pratt has also suggested that the


omonad modelling ! might be less fundamental than the adjun
tions from whi
h it arises

[Pra92℄.

1.3 Overview

The initial motivation for the present work 
omes from the 
ategori
al pi
ture sket
hed

in the previous se
tion, and it is this whi
h is explored �rst in Se
tion 2. On
e the

de�nition has been made a little more pre
ise, we shall show that su
h a situation leads

to a 
omonad on the linear part of the model whi
h automati
ally satis�es all the extra


onditions required of a linear 
ategory, and thus gives a sound model of ILL in
luding

the ! operator. Furthermore, the 
onverse holds { every linear 
ategory gives rise to su
h

a pair of 
ategories. Thus we have an alternative, simpler, de�nition of what 
onstitutes

a model for ILL. This 
an be seen as giving a purely 
ategory-theoreti
 re
onstru
tion of

!, in that a linear 
ategory (a model for ILL with !) is exa
tly what one obtains if one

attempts dire
tly to model an interpretation of IL in ILL without the !.

Another interesting feature of the model is that it gives rise to a strong monad on the

CCC part. Thus one obtains a model not just of the lambda 
al
ulus, but of Moggi's


omputational lambda 
al
ulus [Mog89, Mog91℄. This may shed further light on the

`monads versus 
omonads' debate whi
h has o

asionally arisen in programming language

theory. As we shall see, however, not all strong monads arise in this way, so the 
onne
tion

is not quite as neat as one might hope.

Se
tion 3 then looks at the logi
 and term 
al
ulus whi
h are asso
iated with our new

notion of model. After a brief des
ription of two unsatisfa
tory versions of the logi
, we

formulate a sequent 
al
ulus presentation whi
h satis�es 
ut-elimination and then give

an equivalent natural dedu
tion system. This then gives, by the Curry-Howard 
orre-

sponden
e, an interesting term 
al
ulus whi
h 
ombines the usual simply-typed lambda


al
ulus with a linear lambda 
al
ulus. We also 
onsider translations in both dire
tions

between this new term 
al
ulus and the linear 
al
ulus introdu
ed in [BBHdP92℄.

This paper is fairly self-
ontained and assumes only a basi
 knowledge of 
ategory

theory (up to, say, adjun
tions), some familiarity with linear logi
 and an understanding

of typed lambda 
al
ulus and the Curry-Howard 
orresponden
e. A nodding a
quaintan
e

with previous work on the linear term 
al
ulus and 
ategori
al models of ILL is also

desirable.

kinds.

2

This is not to say that there is anything in the model whi
h is not justi�able in terms of the proof

theory (given a proper proof-theoreti
 a

ount of �-rules), but merely that, given that a translation of IL

proofs into ILL proofs exists, any 
orre
t model for ILL must be able to re
e
t the translation semanti
ally.
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This is a preliminary report, and doubtless 
ontains errors and omissions. It 
ertainly

leaves plenty of obvious questions unanswered. Comments, questions and suggestions for

improvement are wel
ome.
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2 The Categori
al Pi
ture

Our aim is to present a logi
/terms/
ategories 
orresponden
e, similar to that between

intuitionisti
 logi
, simply-typed lambda 
al
ulus and 
artesian 
losed 
ategories, in whi
h

the 
ategori
al vertex of the triangle 
onsists of (essentially) the following:

1. a 
artesian 
losed 
ategory (C; 1;�;!);

2. a symmetri
 monoidal 
losed 
ategory (L; I;
;�Æ) and

3. a pair of fun
tors G : L ! C and F : C ! L between them with F a G (i.e. F is the

left adjoint to G).

Intuitively, the requirement that the two fun
tors be adjoint should be understood as

saying that there is an interpretation of IL (the CCC) into ILL (the SMCC).

We will, however, need our 
ategori
al model to satisfy some extra 
onditions before

we 
an have any hope of it modelling a logi
 or term 
al
ulus. It is ne
essary for the

two fun
tors and the unit and 
ounit of the adjun
tion to behave well with respe
t to

the monoidal stru
tures of the two 
ategories. The reason for this is that we have to

handle 
ontexts 
orre
tly, and the multi
ategori
al stru
ture implied by the 
omma in a


ontext will be represented by the appropriate tensor produ
t. The need for su
h extra

stru
ture also arises in, for example, models of the 
omputational lambda 
al
ulus (the

monad must be strong) and linear 
ategories (the 
omonad must be symmetri
 monoidal).

The extra 
onditions whi
h we shall impose are not ad ho
, but are just what is required

to ensure 
oheren
e.

3

Although the present paper gives all the de�nitions and proofs in an

elementary form, it should be noted that morally we should regard everything as taking

pla
e in the 2-
ategory of symmetri
 monoidal 
ategories, in whi
h 
ontext the extra

monoidal 
onditions arise more naturally. Indeed, this view is an instan
e of a general

prin
iple 
on
erning the 
ategori
al modelling of programming languages expressed by

Moggi in [Mog91℄

4

when studying a 
omplex language the 2-
ategory Cat of small 
ategories,

fun
tors and natural transformations may not be adequate; however, one may

repla
e Cat with a di�erent 2-
ategory, whose obje
ts 
apture better some

fundamental stru
ture of the language, while less fundamental stru
ture 
an

be modelled by 2-
ategori
al 
on
epts.

De�nition 1 A monoidal 
ategory is a 
ategory M equipped with a bifun
tor 
 : M�

M!M, and obje
t I of M, and natural isomorphisms

�

X;Y;Z

: (X 
 Y )
 Z ! X 
 (Y 
 Z)

l

X

: I 
X ! X

r

X

: X 
 I ! X

3

As has be
ome traditional, however, we shall say very little about this important issue...

4

Thanks to Ian Stark for bringing this quote to my attention.
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whi
h satisfy the following pair of 
oheren
e diagrams:

W 
 (X 
 (Y 
 Z))

(W 
X)
 (Y 
 Z)

((W 
X)
 Y )
 Z

W 
 ((X 
 Y )
 Z)

(W 
 (X 
 Y ))
 Z

?

�

?

�

?

�

-

�
 1

�

1
 �

(X 
 I)
 Y

X 
 Y

X 
 (I 
 Y )

-

�

�

�

�

�

�

�R

r 
 1

�

�

�

�

�

�	

1
 l

and for whi
h l

I

= r

I

.

De�nition 2 A symmetri
 monoidal 
ategory (SMC) is a monoidal 
ategory (M;
; I; �; l; r)

together with a natural transformation �

X;Y

: X 
 Y ! Y 
 X satisfying the following

three 
oheren
e 
onditions:

(Y 
X)
 Z Y 
 (X 
 Z) Y 
 (Z 
X)

(X 
 Y )
 Z X 
 (Y 
 Z) (Y 
 Z)
X

-

�

-

�

?

� 
 1

?

�

-

�

-

1
 �

Y 
X

X 
 Y

X 
 Y

?

�

-

�

Z

Z

Z

Z

Z

Z

Z

Z~

1

I 
X X 
 I

X

-

�

J

J

J

J

J

Ĵ

l

















�

r

Note that every 
artesian 
ategory (i.e. with �nite produ
ts) is an SMC.

De�nition 3 A symmetri
 monoidal 
losed 
ategory (SMCC) is a symmetri
 monoidal


ategory (M;
; I; �; l; r; �) su
h for ea
h B 2 M

0

the fun
tor � 
 B : M ! M has a

(spe
i�ed) right adjoint. Thus there is for every A;C 2 M

0

an obje
t (B �ÆC) and a

natural bije
tion

M(A
B;C)

�

=

M(A;B �ÆC)
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Symmetri
 monoidal 
losed 
ategories are also sometimes 
alled autonomous 
ategories.

De�nition 4 A 
artesian 
losed 
ategory (CCC) is an SMCC for whi
h the tensor produ
t

is 
artesian.

Whilst one might wish to 
onsider fun
tors between SMCs whi
h preserve the stru
ture

on the nose or up to natural isomorphism, we shall take the 
lass of fun
tors between SMCs

to be those preserving the stru
ture up to a 
omparsion. We thus make the following

de�nitions.

De�nition 5 Given monoidal 
ategories (M;
; I; �; l; r) and (M

0

;


0

; I

0

; �

0

; l

0

; r

0

), a monoidal

fun
tor F : M ! M

0

is a fun
tor from M to M

0

equipped with a map m

I

: I

0

! F (I)

in M

0

and a natural transformation m

X;Y

: F (X)


0

F (Y )! F (X 
 Y ) whi
h satisfy the

following 
oheren
e 
onditions:

F ((X 
 Y )
 Z)

F (X 
 Y )


0

F (Z)

(F (X)


0

F (Y ))


0

F (Z)

F (X 
 (Y 
 Z))

F (X)


0

F (Y 
 Z)

F (X)


0

(F (Y )


0

F (Z))

-

�

0

?

m


0

1

?

m

-

F (�)

?

1


0

m

?

m

F (I)


0

F (X)

I

0




0

F (X)

F (I 
X)

F (X)

-

l

0

?

m


0

1

-

m

6

F (l)

F (X)


0

F (I)

F (X)


0

I

0

F (X 
 I)

F (X)

-

r

0

?

1


0

m

-

m

6

F (r)

De�nition 6 If M and M

0

above are symmetri
 monoidal, then F is a symmetri


monoidal fun
tor if it is monoidal and in addition satis�es the following 
oheren
e 
ondi-

tion:

F (X 
 Y )

F (X)


0

F (Y )

F (Y 
X)

F (Y )


0

F (X)

?

m

-

�

0

?

m

-

F (�)

In the de�nition of a symmetri
 monoidal fun
tor, one of the 
oheren
e diagrams for

l and r is redundant, as it follows from the other and the diagram for �. Note also that
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the identity fun
tor is (symmetri
) monoidal and that (symmetri
) monoidal fun
tors


an be 
omposed in an obvious way { if (F;m) : M ! M

0

and (G;n) : M

0

! M

00

then their 
omposite is given by the usual 
omposition of fun
tors together with the


omparison natural transformation p

X;Y

: GFX 


00

GFY ! GF (X 
 Y ) where p

X;Y

=

G(m

X;Y

) Æ n

FX;FY

(and similarly for the nullary version). It is then routine to 
he
k

that (GF; p) is indeed a (symmetri
) monoidal fun
tor, and that (symmetri
) monoidal


ategories and (symmetri
) monoidal fun
tors form a 
ategory.

De�nition 7 If (F;m) and (G;n) are monoidal fun
tors from an MC M to an MC M

0

,

then a monoidal natural transformation from (F;m) to (G;n) is a natural transformation

f

X

from F to G whi
h is 
ompatible with the 
omparison maps in the sense that the

following two diagrams 
ommute:

G(X)


0

G(Y )

F (X) 


0

F (Y )

G(X 
 Y )

F (X 
 Y )

-

m

?

f

X




0

f

Y

?

f

X
Y

-

n

I

0

F (I) G(I)

-

f

I

J

J

J

J

J

J℄

m

















�

n

De�nition 8 If M and M

0

are (symmetri
) monoidal 
ategories then a (symmetri
)

monoidal adjun
tion between them is an ordinary adjun
tion in whi
h both of the fun
tors

are (symmetri
) monoidal fun
tors and both the unit and the 
ounit of the adjun
tion are

monoidal natural transformations (with respe
t to the natural monoidal stru
ture on the

two 
omposite fun
tors, as de�ned above).

Having made the basi
 de�nitions, we are now in a position to de�ne more pre
isely

the 
ategori
al model sket
hed earlier.

De�nition 9 A linear/non-linear model (LNL model) 
onsists of

1. a 
artesian 
losed 
ategory (C; 1;�;!);

2. a symmetri
 monoidal 
losed 
ategory (L; I;
;�Æ) and

3. a pair of symmetri
 monoidal fun
tors (G;n) : L ! C and (F;m) : C ! L between

them whi
h form a symmetri
 monoidal adjun
tion with F a G.

We shall usually use A;B;C to range over obje
ts of L and X;Y;Z for obje
ts of

C. Spelling the de�nition out in a bit more detail, this means that we have a pair of
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natural transformations � : 1

C

�

!GF and " : FG

�

!1

L

whi
h satisfy the triangle laws for an

adjun
tion:

GA GFGA

GA

-

�

GA

Z

Z

Z

Z

Z

Z

Z

Z~

1

GA

?

G"

A

FX FGFX

FX

-

F�

X

Z

Z

Z

Z

Z

Z

Z

Z~

1

FX

?

"

FX

That � and " are monoidal natural transformations means that the following four

diagrams 
ommute:

GF (X � Y )

X � Y

G(FX 
 FY )

GFX �GFY

-

�

X

� �

Y

?

�

X�Y

?

n

FX;FY

�

G(m

X;Y

)

A
B

FGA
 FGB F (GA�GB)

FG(A
B)

?

"

A


 "

B

-

m

GA;GB

?

F (n

A;B

)

�

"

A
B

1

1

GF (1)

-

�

1

J

J

J

J

J

J
℄

1

















�

G(m) Æ n

FG(I)

I

I

-

"

I

J

J

J

J

J

J℄

F (n) Æm


















�

1

2.1 An Isomorphism

An important 
onsequen
e of the de�nition of an LNL model is that as well as the natural

transformations

m

X;Y

: FX 
 FY ! F (X � Y )

n

A;B

: GA�GB ! G(A
B)

and their nullary versions, the maps

m : I ! F1

n : 1! GI

we have a family of maps

p

X;Y

: F (X � Y )! FX 
 FY

given by the transpose of n

FX;FY

Æ �

X

� �

Y

:

F (X � Y ) F (GFX �GFY ) FG(FX 
 FY )

FX 
 FY

-

F (�

X

� �

Y

)

-

F (n

FX;FY

)

?

"

FX
FY
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and a map p : F1! I given by

F1 FGI I

-

Fn

-

"

I

It is straightforward to 
he
k that the p

X;Y

are the 
omponents of a natural transformation.

We do not, however, get a 
olle
tion of maps in the other possible dire
tion, viz. from

G(A
B) to GA�GB.

Proposition 1 In an LNL model (in fa
t for any monoidal adjun
tion), the maps m

X;Y

are the 
omponents of a natural isomorphism with inverses p

X;Y

and, furthermore, the

map m is an isomorphism with inverse p:

F (X)
 F (Y )

�

=

F (X � Y )

I

�

=

F (1)

Proof. We shall just prove the �rst of the isomorphisms above as the se
ond is very

similar. Firstly, we need to show that m

X;Y

Æ p

X;Y

= 1

F (X�Y )

:

F (X � Y )

F (GFX �GFY )

FGF (X � Y )

FG(FX 
 FY )

F (X � Y )

FX 
 FY

6

F (�

X

� �

Y

)

-

1

�

�

�

�

�

�

�

�

�

�

�

�

�*

F (�

X�Y

)

-

F (n

FX;FY

)

?

FG(m

X;Y

)

-

"

FX
FY

H

H

H

H

H

H

H

H

H

H

H

H

Hj

"

F (X�Y )

?

m

X;Y

The square on the right 
ommutes by naturality of ", whilst that on the left 
ommutes as

it is F applied to the earlier square whi
h says that � is monoidal. The triangle on the

bottom is one of the triangles for an adjun
tion and so the path up the left hand side,

along the top and down the right hand side is equal to that along the bottom, as required.

Se
ondly, we 
laim that p

X;Y

Æm

X;Y

= 1

FX
FY

, whi
h follows from a similar diagram:

FX 
 FY

F (X � Y )

FGFX 
 FGFY

F (GFX �GFY )

FX 
 FY

FG(FX 
 FY )

6

m

X;Y

-

1
 1

�

�

�

�

�

�

�

�

�

�

�

�

�*

F (�

X

)
 F (�

Y

)

-

F (�

X

� �

Y

)

6

m

GFX;GFY

-

F (n

FX;FY

)

H

H

H

H

H

H

H

H

H

H

H

H

Hj

"

FX


 "

FY

?

"

FX
FY
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The square on the left 
ommutes by naturality of m and that on the right be
ause " is

monoidal. The triangle on the bottom 
ommutes by two appli
ations of one of the triangle

laws for an adjun
tion and so the outer path is equal to that along the bottom, whi
h is

trivially equal to the identity. 2

So F preserves the monoidal stru
ture up to an isomorphism rather than merely up to

a 
omparison. That is to say, F is a strong fun
tor. This has a 
onverse { given a strong

fun
tor with an adjoint, the adjoint (in fa
t the whole adjun
tion) has a unique monoidal

stru
ture. In our 
ase, this means that instead of taking n as part of the de�nition of an

LNL model and deriving p, we 
ould equally well have started with p and de�ned n

A;B

to

be the 
omposite

G("

A


 "

B

) ÆG(p

GA;GB

) Æ �

GA�GB

This fa
t will 
rop up again in Se
tion 3.1.2.

There is, of 
ourse, a lot more interesting stru
ture in an LNL model. To begin with,

the adjun
tion indu
es a 
omonad on L and a monad on C. We dis
uss ea
h of these below.

Given one of the 
ategories and the appropriate monad (triple) or 
omonad (
otriple), the

other 
ategory and the adjun
tion arise as a resolution of the triple (
otriple). In 
ontrast

with some other proposed models of intuitionisti
 linear logi
, we do not assume that this

is initial or terminal in the 
ategory of all resolutions.

2.2 The Comonad and Comparison with Linear Categories

The 
omonad on L is (FG; " : FG ! 1; Æ : FG ! FGFG) where " is the 
ounit of the

adjun
tion and Æ is the natural transformation with 
omponents Æ

A

: FG(A)! FGFG(A)

given by Æ

A

= F (�

G(A)

). Writing ! for FG, we obtain the usual 
omonad diagrams:

!A

!A !!A !A

Z

Z

Z

Z

Z

Z

Z

Z

Z}

1

6

Æ

A

�

"

!A

�

�

�

�

�

�

�

�

�>

1

-

!("

A

)

!!A !A

!!!A !!A

�

Æ

A

6

Æ

A

�

!(Æ

A

)

6

Æ

!A

Lemma 2 The 
omonad (!; "; Æ) is symmetri
 monoidal, i.e. ! is a symmetri
 monoidal

fun
tor and " and Æ are monoidal natural transformations.

Proof. Clearly ! is a symmetri
 monoidal fun
tor. The monoidal stru
ture is given by a

natural transformation q with 
omponents q

A;B

:!A
!B !!(A 
 B) and a map q : I !!I

whose de�nitions are

q

A;B

= F (n

A;B

) Æm

GA;GB

q = F (n) Æm

That " is monoidal is part of the de�nition of an LNL model. The 
ase of Æ requires some

easy 
he
king. 2

In [BBHdP92℄, we de�ned a model of the multipli
ative/exponential fragment of intu-

itionisti
 linear logi
 as follows:
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De�nition 10 A linear 
ategory is spe
i�ed by the following data:

1. A symmetri
 monoidal 
losed 
ategory (L;
; I;�Æ).

2. A symmetri
 monoidal 
omonad (!; "; Æ; q) on L.

3. Monoidal natural transformations

5

with 
omponents

e

A

:!A! I

d

A

:!A!!A
!A

su
h that

(a) ea
h (!A; e

A

; d

A

) is a 
ommutative 
omonoid,

(b) e

A

and d

A

are 
oalgebra maps

6

, and

(
) all 
oalgebra maps between free 
oalgebras preserve the 
omonoid stru
ture.

2.2.1 LNL model Implies Linear Category

Now, any LNL model in
ludes, by de�nition, part 1 of De�nition 10, and we have just

seen (Lemma 2) that it also satis�es part 2. Furthermore, there are plausible 
andidates

for e

A

and d

A

:

e

A

def

=p Æ F (�

GA

)

where �

GA

is the unique map from GA to the terminal obje
t 1 of C, and

d

A

def

=p

GA;GA

Æ F (�

GA

)

where �

GA

is the diagonal map from GA to GA�GA in C. We now embark on showing

that these satisfy all the 
onditions whi
h ensure that we have a linear 
ategory. The

reader who is prepared to take this on trust may prefer to skip straight to Corollary 8.

Lemma 3 e

A

and d

A

as de�ned above are the 
omponents of natural transformations.

Proof. This is obvious as a result of general fa
ts about 
omposition of, and appli
ation

of fun
tors to, natural transformations. For example, we have to 
he
k that for any

f : A! B,

!B

!A

!B
!B

!A
!A

?

!f

?

!f
!f

-

d

A

-

d

B

5

Note that this only makes sense be
ause the fun
torsA 7! I andA 7!!A
!A are themselves (symmetri
)

monoidal, but this is easily seen to be true. See the proof of Lemma 4 below for the details.

6

Exa
tly what this means is spelled out in the proof of Lemma 6.
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whi
h expands to give

FGB

FGA

F (GB �GB) FGB 
 FGB

F (GA�GA) FGA
 FGA

-

F (�

GB

)

-

p

GB;GB

-

F (�

GA

)

-

p

GA;GA

?

FGf

?

F (Gf �Gf)

?

FGf 
 FGf

The left-hand square 
ommutes by F applied to naturality of � and the other by naturality

of p. Naturality of e is similar. 2

Lemma 4 e and d are monoidal natural transformations.

Proof. We �rst have to make expli
it the symmetri
 monoidal stru
ture on the fun
tors

K : A 7! I and D : A 7!!A
!A. For K we require a natural transformation s

A;B

:

K(A)
K(B)! K(A
 B) and a map s : I ! K(I). Clearly we 
an take s

A;B

= l

I

and

s = 1

I

and then veri�
ation of the 
oheren
e 
onditions showing that (K; s) is symmetri


monoidal is trivial.

For D we need a natural transformation with 
omponents

t

A;B

: (!A
!A) 
 (!B
!B)!!(A
B)
!(A
B)

together with a map t : I !!I
!I. We take t

A;B

to be the 
omposite

(!A
!A)
 (!B
!B) (!A
!B)
 (!A
!B) !(A
B)
!(A
B)

-

iso

-

q

A;B


 q

A;B

where iso represents a 
ombination of natural isomorphisms

7

and t to be (q 
 q) Æ l

�1

.

That t

A;B

is natural and that the 
oheren
e 
onditions making D a symmetri
 monoidal

fun
tor are satis�ed is trivial.

The lemma is thus the statement that the following four diagrams 
ommute:

I 
 I

!A
!B !(A
B)

I

-

l

I

-

q

A;B

?

e

A


 e

B

?

e

A
B

!I

I

I

J

J

J

J

J

J℄

q

-

e

I

















�

1

(!A
!A) 
 (!B
!B) !(A
B)
!(A
B)

!A
!B !(A
B)

-

t

A;B

-

q

A;B

?

d

A


 d

B

?

d

A
B

7

There is a
tually a 
hoi
e here, but it doesn't matter whi
h iso we pi
k.
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!I

I

!I
!I

J

J

J

J

J

J℄

q

-

d

I

















�

t

We will verify a 
ouple of these. Firstly, the triangle for e expands and �lls in as follows:

FGI

F1

I

F1 I

?

m

?

F (n)

-

F (�

GI

)

-

p

Z

Z

Z

Z

Z

Z

Z

Z

Z~

F (1)

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z~

1

The triangle 
ommutes be
ause it is F applied to a triangle whi
h 
ommutes by the

uniqueness of maps into 1. The square 
ommutes be
ause F is a fun
tor and m = p

�1

(Proposition 1).

The square for e expands and �lls in like this (omitting subs
ripts on natural transfor-

mations):

FG(A
B)

F (GA�GB)

FGA
 FGB

F1

F (1� 1)

F1
 F1

F1
 F1

I 
 F1

I

I

I 
 I

?

m

?

F (n)

-

F (�)
 F (�)

-

F (� � �)

-

F (�)

-

p
 p

?

1

?

m

?

F (l)

�

�

�

�

�

�

��

1
m

�

m
 1









































�

l

?

l

?

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

m

-

p

The top left square 
ommutes by naturality of m, and the bottom left one by the fa
t

that 1 is terminal. The triangle at the bottom of the right hand side and the quadrilateral

at the top of the right hand side both 
ommute be
ause p = m

�1

. The triangle in the
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middle at the left of the right hand side of the diagram 
ommutes be
ause F is a monoidal

fun
tor, and the remaining quadrilateral by naturality of l.

Filling in the two diagrams for d is left as an exer
ise in diagram 
hasing for the reader.

They are rather larger, but fundamentally similar to those for e. 2

Lemma 5 For any A, (!A; e

A

; d

A

) is a 
ommutative 
omonoid.

Proof. This requires the following three diagrams to 
ommute:

!A
 I !A
!A

!A

�

�

�

�

�

�

�

�=

r

�1

?

d

A

�

1

!A


 e

A

!A

!A
!A !A
!A

-

�

J

J

J

J

J

J℄

d

A

















�

d

A

!A
!A (!A
!A)
!A !A
 (!A
!A)

!A !A
!A

-

d

A


 1

-

�

-

d

A

?

d

A

?

1
 d

A

These are all fairly straightforward. For example, the �rst diagram 
an be expanded and

�lled in as follows:

FGA
 FGA

F (GA�GA)

FGA

F (GA�GA)

FGA
 F1

FGA
 F1

F (GA� 1)

FGA
 I

FGA

-

1

?

F (�)

?

p

-

1
 F (�)

-

1
 p

6

r

-

1

-

F (1� �)

�

�

�

�

�

�

�

�

��

m

6

1

6

m

�

�

�

�

�

�

�*

F (�

1

)

H

H

H

H

H

H

HY

1
m

Taking the regions 
lo
kwise from the top, the �rst is a 
onsequen
e of obvious fa
ts about


artesian produ
ts (in fa
t, that they give a 
ommutative 
omonoid stru
ture in C). The

se
ond 
ommutes be
ause F is a monoidal fun
tor. The third and �fth be
ause p = m

�1

,

and the fourth be
ause m is a natural transformation.

The other two diagrams 
ommute by similar reasoning. 2

Lemma 6 e

A

and d

A

are 
oalgebra morphisms (with respe
t to the 
anoni
al 
oalgebra

stru
tures on I,!A and !A
!A, see Se
tion 2.2.2).
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Proof. We need the following pair of diagrams:

!!A

!A

!I

I

-

e

A

?

Æ

A

-

!e

A

?

q

!A
!A

!A

!!A
!!A !(!A
!A)

!!A

-

Æ

A

?

d

A

-

Æ

A


 Æ

A

-

q

!A;!A

?

!d

A

The se
ond of these 
an be dealt with like this:

FGA
 FGAF (GA �GA)FGA

FGFGA 
 FGFGAF (GA�GA)

F (GFGA�GFGA)

FGF (GA �GA)

FG(FGA 
 FGA)

FG(FGA 
 FGA)FGFGA

?

F (�)

-

F (�)

-

p

?

F (�) 
 F (�)

?

m

?

F (n)

?

1

-

FGF (�)

-

FG(p)

�

�

�

�

�

�

�

�

�

�)

FG(m)

?

F (�)

A

A

A

A

A

A

A

A

AU

1

�

�

�

�

�

�

�

�

�R

F (� � �)

�

�

�

�

�

�

�

�

�	

m

The large square on the left 
ommutes by naturality of �. The two triangles both 
ommute

be
ause p = m

�1

. The region on the far right 
ommutes by naturality of m, and that in

the middle be
ause � is monoidal.

The other diagram is similar. 2

Lemma 7 Any 
oalgebra map f : (!A; Æ

A

) ! (!B; Æ

B

) between free 
oalgebras preserves

the 
omonoid stru
ture given by e and d.
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Proof. This means that for any su
h f , the following pair of diagrams 
ommute:

I

!A !B

J

J

J

J

J

Ĵ

e

A

















�

e

B

-

f

!B

!A

!B
!B

!A
!B

-

d

B

-

d

A

?

f

?

f 
 f

The se
ond of these 
an be expanded out like this:

!B
!B

!(!B
!B)

!!B
!!B

!!B

!B

!A
!A

!(!A
!A)

!!A
!!A

!!A

!A

�

�

�

�

�

�

�

�

��

Æ

?

d

?

q

H

H

H

H

H

H

Hj

"

?

d

H

H

H

H

H

H

H

H

Hj

Æ

?

d

?

q

�

�

�

�

�

�

��

"

?

d

�

f

�

!f

�

!f
!f

�

!(f 
 f)

�

f 
 f

Taking the regions in the middle from the top, the �rst 
ommutes by assumption (that

f is a 
oalgebra morphism) and the se
ond, third and fourth by naturality of d,q and

" respe
tively. The remaining two regions are both easily seen to 
ommute, sin
e they

expand as follows:

FGA
 FGA

F (GA�GA)

FGA

FGFGA

FG(FGA
 FGA)

F (GFGA�GFGA)

FGFGA
 FGFGA

F (GFGA�GFGA)

6

F (�)

?

F (�)

?

p

-

F (�)

�

"

H

H

H

H

H

H

Hj

p

�

�

�

�

�

�

��

m

?

F (n)

?

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

F (� � �)

The triangle on the right 
ommutes be
ause p = m

�1

and that on the top left by naturality

of �. The middle region 
ommutes simply be
ause it is the de�nition of p. 2
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Taking the previous lemmas together, we have shown

Corollary 8 Any LNL model is a linear 
ategory. 2

2.2.2 Linear Category Implies LNL model

In this se
tion we sket
h the proof of the 
onverse to Corollary 8. Whilst this is largely

a matter of re
alling results whi
h were proved in [BBHdP92℄ and [Bie94a℄, by doing this


arefully we obtain a slightly better understanding of the situation.

Assume that L is a linear 
ategory as in De�nition 10. We need to show that this gives

rise to a CCC C and a symmetri
 monoidal adjun
tion between L and C as in De�nition 9.

Re
all that the 
omonad on L gives rise to two 
ategories of algebras:

� The Eilenberg-Moore 
ategory L

!

. This has as obje
ts all the !-
oalgebras (A; h

A

:

A!!A) and as morphisms all the 
oalgebra morphisms.

� The (
o-)Kleisli 
ategory L

!

. This is the full sub
ategory of L

!

whi
h has as obje
ts

all the free !-
oalgebras (!A; Æ

A

:!A !!!A). (This is not quite the most 
ommon

de�nition of L

!

, but the two de�nitions are equivalent.)

Ea
h of these 
ategories 
omes with a pair of adjoint fun
tors F a G where G : A 7!

(!A; Æ

A

) and F : (A; h

A

) 7! A, thus (note that we are overloading F and G):

L

L

!

L

!

�

�

�

�

�

�

�

�

�

=

F

�

�

�

�

�

�

�

�

�>

G

Z

Z

Z

Z

Z

Z

Z

Z

Z~

G

Z

Z

Z

Z

Z

Z

Z

Z

Z

}

F

6

i

where i : L

!

,! L

!

is the in
lusion fun
tor.

Lemma 9 If L is a linear 
ategory then L

!

has �nite produ
ts.

Proof. The terminal obje
t is (I; q : I !!I). The unique map from (A; h

A

) to the

terminal obje
t is e

A

Æh

A

. The produ
t of (A; h

A

) and (B; h

B

) is (A
B; q

A;B

Æ(h

A


h

B

)).

Proje
tions and diagonals are given by the following 
omposites

�

1

=

A
B A
 !B A
 I A

-

1
 h

B

-

1
 e

B

-

r

�

A

=

A !A !A
!A A
A

-

h

A

-

d

A

-

"

A


 "

A

These are easily 
he
ked to satisfy the relevant 
onditions. 2

In general, there is no reason why the Eilenberg-Moore 
ategory should be 
artesian


losed, sin
e there is no reason why it should have an internal hom for arbitrary pairs
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of 
oalgebras. There are extra 
onditions whi
h are suÆ
ient to ensure that this does

happen, su
h as requiring that L

!

have equalisers of 
ore
exive pairs [Bie94a℄ or simply all

equalisers [Ja
93℄. Although there are non-trivial examples in whi
h su
h 
onditions hold,

we shall not 
onsider them further sin
e we 
an �nd an appropriate CCC without them.

Lemma 10 In L

!

, all the free 
oalgebras are exponentiable. That is, there is an inter-

nal hom into any free 
oalgebra (!B; Æ

B

). Furthermore, the internal hom is itself a free


oalgebra.

Proof. We 
laim that

[(A; h

A

); (!B; Æ

B

)℄

def

= (!(A�ÆB); Æ

A�ÆB

)

is an internal hom. This follows from the adjun
tion between F and G and from the 
losed

stru
ture on L, sin
e for any 
oalgebra (C; h

C

) there are bije
tions:

L

!

((C; h

C

); (!(A �ÆB); Æ

A�ÆB

))

=========================

L(C; A�ÆB)

========================

L(C 
A; B)

======================

L

!

((C 
A; h

C
A

); (!B; Æ

B

))

for any h

C
A

giving C 
 A a 
oalgebra stru
ture, in parti
ular that arising from the

produ
t on L

!

. So an instan
e of the last line is

L

!

((C; h

C

)� (A; h

A

); (!B; Æ

B

))

as required. 2

Now, noti
e that in any 
artesian 
ategory, if an obje
t X is exponentiable then so is

[Y;X℄ for any Y , sin
e we 
an take [Z; [Y;X℄℄ to be [Z � Y;X℄. Furthermore, the produ
t

of two exponentiable obje
ts X and Y is exponentiable sin
e we 
an take [Z;X � Y ℄ to

be [Z;X℄ � [Z; Y ℄. Taking this together with the previous lemma, we have:

Lemma 11 The full sub
ategory Exp(L

!

) of the Eilenberg-Moore 
ategory having as ob-

je
ts the exponentiable 
oalgebras is 
artesian 
losed and 
ontains the Kleisli 
ategory L

!

.

2

Note that the Kleisli 
ategory is not, in general, 
artesian 
losed, sin
e the produ
t of two

free 
oalgebras is not ne
essarily free. We shall 
onsider a 
ase in whi
h this does happen

in Se
tion 2.2.3. In the general 
ase, we do have the following, however:

Lemma 12 The full sub
ategory L

�

!

of Exp(L

!

) 
onsisting of �nite produ
ts of free 
oal-

gebras is 
artesian 
losed. 2
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The situation 
an be pi
tured thus:

L

Exp(L

!

)

L

!

L

�

!

L

!

�

�

�

�

�

�

�

�

�

	

F

�

�

�

�

�

�

�

�

��

G

�

�

�

�

�

�

�

�

�R

G

�

�

�

�

�

�

�

�

�

I

F

6

i

6

i

6

i

We 
laim that either of these two CCCs will give rise to an LNL model.

8

In what follows

we let C stand for either Exp(L

!

) or L

�

!

.

It is easy to see that F and G are still adjoint fun
tors when regarded as going between

C and L, so it merely remains to show that this is a symmetri
 monoidal adjun
tion.

Lemma 13 The forgetful fun
tor F : C ! L is symmetri
 monoidal.

Proof. We need a natural transformation with 
omponents m

X;Y

: F (X) 
 F (Y ) !

F (X � Y ) and a map m : I ! F (1) satisfying 
ertain 
onditions. But if X and Y are

(A; h

A

) and (B; h

B

) respe
tively, this amounts to m

X;Y

: A
B ! A
B and m : I ! I.

Taking m

X;Y

= 1

A
B

and m = 1

I

is then easily seen to work. 2

Lemma 14 The free fun
tor G : L ! C is symmetri
 monoidal.

Proof. We need a natural transformation with 
omponents n

A;B

: GA�GB ! G(A
B)

and a map n : 1 ! GI satisfying some 
onditions. Spelling this out a bit, n

A;B

is a


oalgebra map:

n

A;B

: (!A
!B; q

A;B

Æ (Æ

A


 Æ

B

))! (!(A
B); Æ

A
B

)

Now the symmetri
 monoidal stru
ture on ! gives a map between the underlying obje
ts

of these two 
oalgebras q

A;B

:!A
!B !!(A
B), and that this is a 
oalgebra map follows

immediately from the fa
t that Æ is a monoidal natural transformation. The nullary 
ase

is similar. That this de�nition of n satis�es the 
onditions making (G;n) symmetri


monoidal is then immediate from the fa
t that (!; q) is symmetri
 monoidal. 2

Lemma 15 The unit of the adjun
tion � : 1

C

�

!GF is a monoidal natural transformation.

8

It may well be that there is a sensible de�nition of a 
ategory of `linear resolutions' in whi
h L

�

!

is

initial and Exp(L

!

) is terminal, but this idea has not yet been followed up.
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Proof. This is also straighforward, though we have not so far made expli
it what the

de�nition of �

(A;h

A

)

: (A; h

A

) ! (!A; Æ

A

) is. The answer is that it is just h

A

, whi
h is

readily seen to be a 
oalgebra morphism by the de�nition of 
oalgebra and to be natural

by the de�nition of 
oalgebra map. That h

A

is monoidal is then 
ompletely trivial from

the de�nition of the produ
t of 
oalgebras. 2

Lemma 16 The 
ounit " : FG

�

!1

L

of the adjun
tion is a monoidal natural transforma-

tion.

Proof. By assumption. 2

Taking the pre
eding results together, we have:

Corollary 17 Any linear 
ategory gives rise to an LNL model, though it is not in general

unique. 2

Of 
ourse, given a linear 
ategory L, there may be many 
hoi
es of C whi
h lead to an

LNL model other than the two given above. One 
ould start with an arbitrary LNL model


omprising some L and C together with the asso
iated data, and then 
onstru
t the linear


ategory (L; !). In general, there is then no reason why C should be equivalent to either

of L

�

!

or Exp(L

!

), although in parti
ular 
ases the distin
tion between some or all of these

CCCs 
an 
ollapse.

2.2.3 Additives and the Seely Isomorphisms

So far, we have 
on
entrated on the relationship between the multipli
ative
;�Æ fragment

of ILL and the �;! fragment of IL. We now 
onsider brie
y what happens when an LNL

model (or, equivalently, a linear 
ategory) also has the extra stru
ture required to model

the additive linear 
onne
tives &;� and the non-linear sum +.

The simplest 
ase is when the SMCC part L of an LNL model also has �nite produ
ts,

modelling the additive 
onne
tive `with' (&). The fun
tor G preserves limits be
ause it is

a right adjoint, and in parti
ular

G(A&B)

�

=

GA�GB

G1

�

=

1

(note that we use 1 for the terminal obje
t in both L and C). Taking this together with

Proposition 1, we obtain the following natural isomorphisms:

!A
!B

�

=

!(A&B)

I

�

=

!1

These isomorphisms were 
entral to Seely's proposed model of ILL [See80℄, whi
h also

proposed interpreting IL in the Kleisli 
ategory. See [Bie94a℄ or [Bie94b℄ for a 
ritique of

Seely's semanti
s; here we shall merely show that a linear 
ategory with produ
ts does

indeed have a Kleisli 
ategory whi
h is 
artesian 
losed.

The isomorphisms �

A;B

:!(A&B) !!A
!B and � :!1 ! I 
an be given expli
it de�ni-

tions in terms of the data determining a linear 
ategory thus:

�

A;B

def

=

!(A&B) !(A&B)
!(A&B) !A
!B

-

d

A&B

-

!�

1


!�

2

�

def

=

!1 I

-

e

1
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(Expli
it de�nitions of the inverses are left as an exer
ise for the reader.)

Lemma 18 If a linear 
ategory has produ
ts then the produ
t of two free !-
oalgebras is

a free 
oalgebra.

Proof. This amounts to 
he
king the following diagram:

!!(A&B)

!(A&B)

!(!A
!B)

!!A
!!B

!A
!B

?

Æ

A&B

-

�

A;B

-

!(�

A;B

)

?

Æ

A


 Æ

B

?

q

!A;!B

whi
h is an easy 
onsequen
e of naturality and the fa
t that d is a 
oalgebra morphism.

2

Corollary 19 If a linear 
ategory has produ
ts then the Kleisli 
ategory L

!

is 
artesian


losed.

Proof. Lemma 18 says that L

!


oin
ides with L

�

!

, whi
h is 
artesian 
losed by Lemma 12.

2

Produ
ts were relatively easy to deal with { the 
orresponden
e between linear 
at-

egories and LNL models extends trivially to one between linear 
ategories with �nite

produ
ts and LNL models with produ
ts on the SMCC part. Coprodu
ts are slightly

more problemati
. Whilst the appropriate extension of an LNL model seems obvious (just

require both L and C to have �nite 
oprodu
ts), this does not 
orrespond quite as simply

as one might hope to linear 
ategories with 
oprodu
ts.

The diÆ
ulty is that, whilst an LNL model with 
oprodu
ts 
ertainly gives rise to

a linear 
ategory with 
oprodu
ts, the 
onverse does not appear ne
essarily to be true.

Assume L is a linear 
ategory with �nite 
oprodu
ts, then L

!

also has �nite 
oprodu
ts as

we 
an de�ne the 
oprodu
t of (A; h

A

) and (B; h

B

) to be

(A+B; [!inl Æ h

A

; !inr Æ h

B

℄)

and this is easily 
he
ked to satisfy the appropriate 
onditions. There seems no general

reason, however, why either of the two CCCs whi
h we have already identi�ed as arising

from L should be 
losed under this 
oprodu
t.

Fortunately, something 
an be salvaged. There are weak �nite 
oprodu
ts � in the

Kleisli 
ategory, obtained by de�ning

(!A; Æ

A

)� (!B; Æ

B

)

def

=(!(!A+!B); Æ

!A+!B

)

with, for example, the left inje
tion given by !inl Æ Æ

A

. That this is a weak 
oprodu
t is

easy to 
he
k.
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2.3 The Monad and Comparison with Let-CCCs

The monad on C is (GF; � : 1 ! GF;� : GFGF ! GF ) where � is the unit of the

adjun
tion and � is the natural transformation with 
omponents �

X

: GFGF (X) !

GF (X) given by �

X

= G("

FX

). Writing T for GF , we obtain the usual monad diagrams:

TX

TX T

2

X TX

Z

Z

Z

Z

Z

Z

Z

Z~

1

?

�

X

-

�

TX

�

�

�

�

�

�

�

�=

1

�

T (�

X

)

T

2

X TX

T

3

X T

2

X

-

�

X

?

�

X

-

T (�

X

)

?

�

TX

It is then easy to see that (T; �; �) is a symmetri
 monoidal monad, in that T is a symmetri


monoidal fun
tor and both � and � are monoidal natural transformations (this is simply

a monad in the 2-
ategory of SMCs, SM fun
tors and monoidal natural transformations

[Str72℄). Cartesian 
losed 
ategories with (not ne
essarily symmetri
) monoidal monads

have re
ently been the fo
us of some interest, as they are the models for Moggi's 
om-

putational lambda 
al
ulus [Mog89, Mog91, BBdP93℄. The de�nition is, however, more


ommonly given in terms of strong monads, for whi
h we now make a brief digression.

Most of the de�nitions and results about the various kinds of monads on various kinds of

monoidal 
ategories are due to Anders Ko
k; the interested reader should see [Ko
71℄ and

the further referen
es 
ited there.

2.3.1 Strong Monads

De�nition 11 If (M;
; I; �; l; r) is a monoidal 
ategory, and (T; �; �) is a monad on

M, then T is a strong monad if there is a natural transformation � (
alled the tensorial

strength) with 
omponents

�

A;B

: A
 TB ! T (A
B)

su
h that the following four diagrams 
ommute:

I 
 TA

TA

T (I 
A)

-

�

Z

Z

Z

Z

Z

Z

Z

Z~

l

?

T (l)

A
B

T (A
B)

A
 TB

-

1
 �

Z

Z

Z

Z

Z

Z

Z

Z~

�

?

�

A
 (B 
 TC) A
 T (B 
 C) T (A
 (B 
 C))

(A
B)
 TC T ((A
B)
 C)

-

�

?

�

-

1
 �

-

�

?

T (�)



28 2 THE CATEGORICAL PICTURE

A
 TB

A
 T

2

B T (A
 TB) T

2

(A
B)

T (A
B)

?

1
 �

-

�

-

T (�)

?

�

-

�

If M above is symmetri
 monoidal (with symmetry �), then there is a `twisted' ten-

sorial strength

�

0

A;B

: TA
B ! T (A
B)

given by

�

0

A;B

= T (�) Æ �

B;A

Æ �

In this 
ase we 
an also 
onstru
t a pair of natural transformations �;�

0

whi
h have


omponents

�

A;B

;�

0

A;B

: TA
 TB ! T (A
B)

given by

�

A;B

= �

A
B

Æ T (�

0

A;B

) Æ �

TA;B

�

0

A;B

= �

A
B

Æ T (�

A;B

) Æ �

0

A;TB

The monad is said to be 
ommutative if � = �

0

.

Proposition 20 If M is a symmetri
 monoidal 
ategory and T is a strong monad on M,

then

1. either of � or �

0

, together with the map �

I

: I ! TI, makes T into a monoidal

fun
tor;

2. both � and � are monoidal natural transformations with respe
t to either of these

monoidal stru
tures on T ;

3. T is a symmetri
 monoidal fun
tor i� it is 
ommutative.

2

Now, a model of the 
omputational lambda 
al
ulus (what Crole and Pitts 
all a let-




[Cro92, CP90℄) is a 
artesian 
losed 
ategory with a strong monad. The above implies

that an LNL model always has a strong monad on the CCC part of the model and thus

in
ludes a let-


. The monad is, however, always 
ommutative (be
ause T is a symmetri


monoidal fun
tor). It is not the 
ase that all strong monads on CCCs are 
ommutative;

indeed, some very important monads arising in 
omputer s
ien
e are non-
ommutative,

for example the free monoid monad (list; [�℄; f latten) on the 
ategory of sets. Thus it

is 
ertainly the 
ase that not all, or even all interesting, let-


's will arise from LNL

models. Having said that, many of the most important monads arising in semanti
s, su
h

as lifting and various 
avours of powerset/powerdomain, are 
ommutative, so the theory

of 
ommutative strong monads on CCCs is not without independent interest.
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2.4 Examples

The pre
eding material is all rather abstra
t, so we now give a 
ouple of 
on
rete examples

of LNL models. The �rst example is important from a 
omputer s
ien
e perspe
tive and

was a major motivation for the present work. The se
ond arises from one of the most


ommon (or at least, most 
ommonly 
ited) `mathemati
al' examples of a symmetri


monoidal 
losed 
ategory.

2.4.1 !-
omplete Partial Orders

Let L be the 
ategory of pointed !
pos (!-
o
omplete partial orders with a least element)

and stri
t (bottom preserving) 
ontinuous maps. This is a symmetri
 monoidal 
losed


ategory with tensor produ
t given by the so-
alled smash produ
t, the identity for the

tensor by the one-point spa
e (whi
h is also a biterminator) and internal hom by the stri
t


ontinuous fun
tion spa
e. In fa
t, L also has binary produ
ts and 
oprodu
ts, given by


artesian produ
t and 
oales
ed sum respe
tively.

Given this 
hoi
e of L, there are a 
ouple of obvious 
hoi
es for the CCC C whi
h give

an LNL model. One is to take C to be the 
ategory of pointed !-
pos and 
ontinuous

(not ne
essarily stri
t) maps, G to be the in
lusion fun
tor and F to be the lifting fun
tor

F : X ! X

?

. The monoidal stru
ture m on F is given by the evident isomorphism

X

?


 Y

?

�

=

(X � Y )

?

. In this 
ase, C is (equivalent to) the Kleisli 
ategory of the lifting


omonad on L. Note that the 
artesian 
losure of the Kleisli 
ategory follows from the

fa
t that L has produ
ts. There are strong 
oprodu
ts in L but only weak ones in C.

An alternative 
hoi
e of C is the 
ategory of (not ne
essarily pointed) !-
pos (these

are sometimes 
alled predomains) and 
ontinuous maps, again with in
lusion and lifting

fun
tors. This is equivalent to the Eilenberg-Moore 
ategory of the lift 
omonad on L, so

it has produ
ts and 
oprodu
ts by our previous general arguments, but it also turns out

to be 
artesian 
losed.

2.4.2 Abelian Groups

Let L be the 
ategory of Abelian groups and group homomorphisms. This is symmetri


monoidal 
losed with A
B the Abelian group generated by the set of tokens fa
 b j a 2

A; b 2 Bg subje
t to the relations

(a

1

+ a

2

)
 b = a

1


 b+ a

2


 b

a
 (b

1

+ b

2

) = a
 b

1

+ a
 b

2

(More 
ategori
ally, A 
 B 
an be de�ned by a homomorphism A � B ! A 
 B whi
h

is universal amongst bilinear maps into Abelian groups.) The unit for 
 is the group of

integers under addition, Z, and the internal hom A�ÆB is the group of homomorphisms

from A to B with the multipli
ation inherited from B. In fa
t L also has biprodu
ts { the

dire
t sum A�B is both a produ
t and a 
oprodu
t and the trivial group is a biterminator.

Now let C be the 
ategory of sets, whi
h is the prototypi
al example of a 
artesian


losed 
ategory, and F and G be the free and forgetful fun
tors respe
tively. This gives

an LNL model with the monoidal stru
tures on the fun
tors given (in what should be


omprehensible notation) by

n

A;B

: GA�GB ! G(A
B)

: (a; b) 7! [a
 b℄
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n : 1! GZ

: � 7! 1

m

X;Y

: FX 
 FY ! F (X � Y )

: [�

i

n

i

x

i


 �

j

m

j

y

j

℄ 7! �

i;j

n

i

:m

j

(x

i

; y

j

)

m : I ! F1

: n 7! n:�

It is fairly straightforward to 
he
k that this does indeed give an LNL model. The 
omonad

on L takes an Abelian group to the free group on its underlying set. " is `evaluation' and

� is the insertion of generators. This is another example of the situation des
ribed in

Se
tion 2.2.3, sin
e C is equivalent to the Kleisli 
ategory of the 
omonad on L.
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3 LNL Logi


LNL-models are, of 
ourse, supposed to be models of a logi
al system. Corollary 8 says

that they are models for intuitionisti
 linear logi
 as de�ned by Girard, but the form of the

de�nition of LNL-model suggests an interesting alternative presentation of the logi
. The

basi
 idea is that one starts with two independent logi
s, 
orresponding to the 
ategories

L and C and then adds operators whi
h 
orrespond in some way to the adjun
tion between

the two 
ategories. To do this and obtain a logi
 with a good proof theory is, however,

not entirely straightforward.

Before attempting to be more pre
ise about the rules of LNL-logi
, we should perhaps

say a little about what we are aiming for. Di�erent resear
hers approa
h logi
 from many

di�erent ba
kgrounds and with many di�erent motivations, as is at least partly re
e
ted

by the question of whether one des
ribes one's work as logi
, type theory or proof theory

(or even 
ategori
al logi
, or 
ategori
al proof theory). Of 
ourse, the very fa
t that su
h

a 
onfusion is possible is at the heart of what makes 
onstru
tive logi
s ex
iting obje
ts

of study, but it does seem to lead to a 
ertain la
k of 
onsensus about what 
onstitutes a

`good' or `well-behaved' system, and about whi
h results are important.

We take propositional intuitionisti
 logi
 as our tou
hstone and the following properties

of that system as our goals: Gentzen-style sequent 
al
ulus presentation with (preferably

lo
al) 
ut-elimination and subformula property; equivalent natural dedu
tion system and

term 
al
ulus with strong normalisation; natural 
lass of 
ategori
al models whi
h re
e
ts

a

urately not just provability, but the equalities on proofs given by 
ut-elimination and

proof normalisation. On the minus side, we are prepared to a

ept 
ertain infeli
ities of

syntax, su
h as 
ommuting 
onversions in natural dedu
tion, and we shall, at least in this

paper, ignore Hilbert-style axiomati
 presentations entirely. Furthermore we want a logi


whi
h 
ontains both linear and non-linear propositions, treated in a way whi
h re
e
ts the

symmetri
 presentation of the intended 
ategori
al models.

In keeping with our earlier 
onventions for naming obje
ts of L and C, we will use

A;B;C to range over linear propositions and X;Y;Z for 
onventional ones. We shall use

� and � to range over linear 
ontexts (�nite multisets of linear propositions) and � and �

for non-linear ones. We also de
orate turnstiles with L or C to indi
ate whi
h subsystem

they belong to. Finally, if � is X

1

; : : : ;X

n

then F� means FX

1

; : : : ; FX

n

, and similarly

for G�. The two 
lasses of propositions with whi
h we shall be dealing are de�ned by the

following grammar:

A;B := A

0

j I j A
B j A�ÆB j FX

X;Y := X

0

j 1 j X � Y j X ! Y j GA

where A

0

(resp. X

0

) ranges over some unspe
i�ed set of atomi
 linear (resp. non-linear)

propositions.

3.1 Sequent Cal
ulus

Sequent 
al
ulus rules may be divided into three main 
lasses: stru
tural rules, su
h as

weakening or ex
hange; the 
ut rule, whi
h allows proofs to be 
omposed, and logi
al

rules. The logi
al rules are further divided into left and right rules for ea
h 
onne
tive. In

a well-behaved sequent system there should be a 
ertain symmetry between the left and

right rules whi
h leads to a 
ut elimination theorem. Furthermore, in many logi
s the 
ut

rule is the only rule whi
h 
an have a formula in the premises whi
h is not a subformula of
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a formula in the 
on
lusion. For su
h systems, a 
ut elimination theorem means that any

provable sequent has a proof whi
h only mentions subformulae of the 
on
lusion, whi
h

has important impli
ations for, for example, proof sear
h.

The two logi
s with whi
h we start are very familiar viz. the exponential-free, mul-

tipli
ative fragment of propositional intuitionisti
 linear logi
 and the �;! fragment of

ordinary intuitionisti
 logi
. These both have sequent presentations with all the properties

we desire. How should the systems be enri
hed and 
ombined to give LNL-logi
? We shall

approa
h this question by �rst outlining two unsatisfa
tory answers.

3.1.1 The First Wrong Way

The most obvious answer is to take the two familiar sequent 
al
uli and add rules for the

two fun
tors and the unit and 
ounit of the adjun
tion. Thus we have all the usual linear

rules (in
luding 
ut) for dedu
ing sequents of the form � `

L

A and all the usual non-linear

rules (in
luding 
ontra
tion, weakening and another 
ut rule) for dedu
ing things of the

form � `

C

X, together with the following four new rules:

�; A `

L

B

FG-left

�; FGA `

L

B

� `

C

X

F

F� `

L

FX

� `

C

X

GF -right

� `

C

GFX

� `

L

A

G

G� `

C

GA

Categori
ally we interpret proofs of 
onventional sequents

�

X

1

; : : : ;X

n

`

C

Y

as maps

[[�℄℄ : [[X

1

℄℄� � � � � [[X

n

℄℄! [[Y ℄℄

in C, and proofs of linear sequents

�

A

1

; : : : ; A

m

`

L

B

as maps

[[�℄℄ : [[A

1

℄℄
 � � � 
 [[A

m

℄℄! [[B℄℄

in L, where ea
h of the logi
al 
onne
tives is interpreted as the obviously 
orresponding

pie
e of 
ategori
al stru
ture. (Thus [[A
B℄℄ is [[A℄℄
 [[B℄℄ and so on. Hen
eforth we will

omit semanti
 bra
kets whenever we think we 
an get away with it.)

The interpretations of the four new rules are as follows:

�
A

e

�!B

FG-left

�
 FGA

1
"

A

���!�
A

e

�!B

X

1

� � � � �X

n

e

�!Y

F

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FY

�

e

�!X

GF -right

�

e

�!X

�

X

�!GFX
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A

1


 � � � 
A

n

e

�!B

G

GA

1

� � � �GA

n

n

�!G(A

1


 � � � 
A

n

)

Ge

�!GB

Noti
e how the monoidal stru
ture of the model is used to interpret the two fun
tor rules.

The 
oheren
e 
onditions on the model are suÆ
ient to ensure that what we have rather

glibly written as m and n above are in fa
t determined up to isomorphism, and we will

in general be rather sloppy about in
luding all the natural isomorphisms whi
h should

stri
tly be in
luded in the 
ategori
al interpretations of logi
al rules. The interpretations

of the remaining rules are 
ompletely standard, so we omit them for the moment, but note

that the two 
ut rules are interpreted by 
omposition in the two 
ategories.

From the point of view of provability, this 
olle
tion of rules is �ne { it proves exa
tly

the sequents we intend. From the point of view of proofs, however, things are not so

good. Whilst the logi
 allows us to express ea
h of the di�erent intended proofs of a given

sequent (i.e. morphisms in the free LNL-model), the equality of morphisms is not re
e
ted

by a good proof theory. This shows up most obviously in the fa
t that 
ut elimination

fails for this formulation of the logi
. We should not be too surprised that these rules are

unsatisfa
tory, as their form is rather strange { the fun
tor rules introdu
e a 
onne
tive

on both sides of the turnstile whilst the two other rules introdu
e two 
onne
tives at on
e.

The failure of 
ut elimination 
an be seen by 
onsidering the sequent FX `

L

FX 
 FX.

This sequent is 
ertainly provable, but there is no rule whi
h 
ould be the last rule of a


ut-free proof. This parti
ular problem 
ould be �xed in a slightly ad ho
 way by adding


ontra
tion for linear assumptions of the form FX, but there are other problems, su
h as

the following 
ut:

� `

C

X

GF -right

� `

C

GFX

�; FX `

L

A

G

G�; GFX `

C

GA

C-
ut

�; G� `

C

GA

This 
ut 
annot, in general, be removed. (There is a rewrite whi
h repla
es the 
ut with

a simpler L-
ut, but it also introdu
es a new 
ut of the original form for ea
h formula in

�.)

3.1.2 The Se
ond Wrong Way

The se
ond set of rules whi
h we shall 
onsider looks even odder than the �rst, so the fa
t

that it too fails to have a good proof theory is no surprise at all. The system is worth

mentioning, however, be
ause it is very simple and has a 
ertain appeal from a 
ategori
al

point of view. Like the �rst system, we start with the two separate logi
s but now we add

just two rules, ea
h of whi
h is the inverse of the other:

F� `

L

A

G-right

� `

C

GA

� `

C

GA

F -left

F� `

L

A

These rules are, of 
ourse, syntax for the alternative presentation of the adjun
tion in the

model in terms of a natural bije
tion between hom sets

L(FX;A)

========

C(X;GA)



34 3 LNL LOGIC

and indeed it turns out that this system proves exa
tly the same sequents as the previous

one. This is be
ause ea
h rule of one system is derivable (or admissible) in the other. For

example, the G rule of the �rst system is admissible in the se
ond system:

GA

n

`

C

GA

n

F -left

FGA

n

`

L

A

n

GA

1

`

C

GA

1

F -left

FGA

1

`

L

A

1

A

1

; : : : ; A

n

`

L

B

L-
ut

FGA

1

; A

2

; : : : ; A

n

`

L

B

�

�

�

�

FGA

1

; : : : ; FGA

n�1

; A

n

`

L

B

L-
ut

FGA

1

; : : : ; FGA

n

`

L

B

G-right

GA

1

; : : : ; GA

n

`

C

GB

The reader may be surprised by the equivalen
e of these two systems. In parti
ular,

the way in whi
h the monoidal stru
tures on the two fun
tors arise in the �rst presentation

is 
lear, but the se
ond system does not mention G on the left at all. Where, then, does

the monoidal stru
ture on G 
ome from? The answer is in the remark made at the end

of Se
tion 2.1 { the 
ategori
al interpretation of the se
ond system uses both m and m

�1

(whi
h we 
alled p earlier), and this, together with the adjun
tion, is suÆ
ient to ensure

that G is monoidal too.

FX

1


 � � � 
 FX

n

e

�!A

G-right

X

1

� � � � �X

n

�

�!GF (X

1

� � � � �X

n

)

Gm

�1

���!G(FX

1


 � � � 
 FX

n

)

Ge

�!GA

X

1

� � � � �X

n

e

�!GA

F -left

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FGA

"

�!A

That the se
ond systems fails to have 
ut-elimination may be seen by 
onsidering the

following situation:

F� `

L

A

G-right

� `

C

GA

F�

0

; FGA `

L

B

G-right

�

0

; GA `

C

GB

C-
ut

�;�

0

`

C

GB

or by trying to �nd a 
ut-free proof of FX `

L

F (X � X). Another reason for reje
ting

this se
ond system is that even 
ut-free proofs do not have the subformula property.

3.1.3 A Well-Behaved Sequent Cal
ulus

Fortunately, there is a way to present the logi
 whi
h has a good proof theory. The tri
k is

to allow 
onventional non-linear formulae to appear in the assumptions of a linear sequent.

A typi
al linear sequent looks, therefore, like this:

X

1

; : : : ;X

m

; A

1

; : : : ; A

n

`

L

B

whi
h is interpreted as a morphism in L of the form

FX

1


 � � � 
 FX

m


A

1


 � � � 
A

n

�! B
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Non-linear sequents are still 
onstrained to have purely non-linear ante
edents and are

interpreted as morphisms in C as before.

9

We will usually abuse notation by writing linear sequents in the form �;� `

L

A, even

though there is no need at all for the `;' sin
e linear and non-linear formulae 
an never

be 
onfused. It is important to understand that there is really just one kind of 
omma

in the ante
edent, and that the ex
hange rule (whi
h we will supress) really allows linear

and non-linear formulae to be mingled. On
e this is understood, however, our potentially

misleading notation seems rather less 
onfusing than the alternative (to whi
h we shall

return) of introdu
ing new metavariables ranging over arbitrary propositions and 
ontexts.

The sequent rules for LNL logi
 are shown in Figures 1 and 2.

There are several points to be noted about the rules. There are three 
ut rules a

ording

to the type of the 
ut formula and of the ultimate 
on
lusion (there is no LC-
ut rule

be
ause a linear formula 
annot be 
ut into a non-linear sequent). Ea
h of the non-linear

left rules (in
luding 
ontra
tion and weakening) splits into two versions a

ording to the

type of the overall sequent. The rules for F and G look mu
h pleasant than in the two

unsatisfa
tory systems { ea
h has one left and one right rule, neither of whi
h a�e
t the

rest of the sequent. The annotations on the turnstiles are, stri
tly speaking, redundant as

they are impli
it in the 
onsequent. The following is easy to verify:

Proposition 21 The sequent rules of LNL logi
 are equivalent in terms of provability to

the two systems presented earlier. To be pre
ise:

� � `

C

X in LNL logi
 i� � `

C

X in either of the earlier systems.

� �;� `

L

A in LNL logi
 i� F�;� `

L

A in either of the earlier systems.

2

The interpretation of LNL logi
 in an LNL-model is fairly straightforward, given what

has gone before. We assume that the reader is familiar with the interpretation of the

standard logi
al 
onne
tives and just give details of the interpretation of one of the 
ut

rules and the four rules for F and G in Figure 3.

3.1.4 Cut Elimination

We now turn to the question of 
ut elimination in LNL logi
. As usual, the proof des
ribes

a pro
edure in whi
h the 
uts in a proof are lo
ally rewritten (making the proof, in general,

mu
h larger) so that they per
olate up towards the leaves, where they eventually disappear.

As is also usual, the �ne details of making the indu
tion go through are slightly deli
ate.

In parti
ular, we start by repla
ing the CL-
ut and CC-
ut rules with the following n-ary

(n � 0) variants, yielding an equivalent system whi
h we 
all LNL

+

:

� `

C

X X

n

;�;� `

L

A

CL-
ut

n

�;�;� `

L

A

� `

C

X X

n

;� `

C

Y

CC-
ut

n

�;� `

C

Y

where

X

n

def

=

n

z }| {

X; : : : ;X

9

The attempt to make a more symmetri
 system by allowing linear assumptions in 
onventional sequents

gives yet another system without 
ut-elimination.
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Axioms

A `

L

A L-axiom X `

C

X C-axiom

Stru
tural Rules

�;X;X; � `

L

A

L-
ontra
tion

�;X; � `

L

A

�;X;X `

C

Y

C-
ontra
tion

�;X `

C

Y

�;� `

L

A

L-weakening

�;X; � `

L

A

� `

C

Y

C-weakening

�;X `

C

Y

Cut Rules

� `

C

X X;�;� `

L

A

CL-
ut

�;�;� `

L

A

� `

C

X X;� `

C

Y

CC-
ut

�;� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-
ut

�;�;�;� `

L

B

�=1 Rules

�;X `

C

Z

C-�-left1

�;X � Y `

C

Z

�; Y `

C

Z

C-�-left2

�;X � Y `

C

Z

�;X; � `

L

A

L-�-left1

�;X � Y ; � `

L

A

�; Y ; � `

L

A

L-�-left2

�;X � Y ; � `

L

A

� `

C

X � `

C

Y

�-right

�;� `

C

X � Y

1-right

`

C

1


=I Rules

�;�; A;B `

L

C


-left

�;�; A
B `

L

C

�;� `

L

A �;� `

L

B


-right

�;�;�;� `

L

A
B

�;� `

L

A

I-left

�;�; I `

L

A

I-right

`

L

I

Figure 1: Sequent 
al
ulus presentation of LNL logi
 (I)
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! Rules

� `

C

X Y;� `

C

Z

C-!-left

�;X ! Y;� `

C

Z

� `

C

X Y;�;� `

L

A

L-!-left

�;X ! Y;�;� `

L

A

�;X `

C

Y

!-right

� `

C

X ! Y

�Æ Rules

�;�; A `

L

B

�Æ-right

�;� `

L

A�ÆB

�;� `

L

A �;�; B `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

F Rules

� `

C

X

F -right

� `

L

FX

�;X; � `

L

A

F -left

�;FX;� `

L

A

G Rules

�;B;� `

L

A

G-left

�; GB; � `

L

A

� `

L

A

G-right

� `

C

GA

Figure 2: Sequent 
al
ulus presentation of LNL logi
 (II)

Y

1

� � � � � Y

n

e

�!X FX 
 F�
 �

f

�!A

CL-
ut

 

O

i

FY

i

!


 F�
 �

m
1
1

����!F

 

Y

i

Y

i

!


 F�
 �

Fe
1
1

����!FX 
 F�
 �

f

�!A

X

1

� � � � �X

n

e

�!X

F -right

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

Fe

�!FX

(F�
 FX)
 �

e

�!A

F -left

F�
 (FX 
 �)

e

�!A

F�
B 
 �

e

�!A

G-left

F�
 FGB 
 �

1
"
1

���!F�
B 
 �

e

�!A

FX

1


 � � � 
 FX

n

e

�!A

G-right

Y

i

X

i

�

�!GF

 

Y

i

X

i

!

Gm

�1

���!G

 

O

i

FX

i

!

Ge

�!GA

Figure 3: Categori
al interpretation of LNL logi
 (sket
h)
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These rules are easily seen to be admissible in LNL, and it is also 
lear that 
ut-elimination

for LNL

+

implies 
ut-elimination for LNL.

De�ne the rank jAj (resp. jXj) of a linear (resp. non-linear) proposition to be the

number of logi
al 
onne
tives in the proposition (so in parti
ular, the rank of atomi


propositions is 0). The 
ut rank 
(�) of a proof � is one more than the maximum of the

ranks of all the 
ut formulae in �, and 0 if � is 
ut-free. The depth d(�) of a proof � is

the length of the longest path in the proof tree (so the depth of an axiom is 0). The key

to the proof is the following lemma, whi
h shows how to transform a single 
ut, either by

removing it or by repla
ing it with one or more simpler 
uts:

Lemma 22 (Cut Redu
tion)

1. If �

1

is an LNL

+

proof of � `

C

X and �

2

is an LNL

+

proof of X

n

;� `

C

Y with


(�

1

); 
(�

2

) � jXj then there exists a proof � of �;� `

C

Y with 
(�) � jXj;

2. If �

1

is an LNL

+

proof of � `

C

X and �

2

is an LNL

+

proof of X

n

;�;� `

L

A with


(�

1

); 
(�

2

) � jXj then there exists a proof � of �;�;� `

L

A with 
(�) � jXj;

3. If �

1

is an LNL

+

proof of �;� `

L

A and �

2

is an LNL

+

proof �;A;� `

L

B with


(�

1

); 
(�

2

) � jAj then there exists a proof � of �;�;�;� `

L

B with 
(�) � jAj.

Proof. The three parts are proved simultaneously by indu
tion on d(�

1

) + d(�

2

). We


onsider 
ases a

ording to the 
lasses of the last rules used in ea
h of the two proofs:

1. Both proofs end in logi
al rules whi
h introdu
e the 
ut formula (so �

1

ends in a

right rule and �

2

in a 
orresponding left rule). This is the most interesting 
ase,

and we 
onsider ea
h sub
ase in turn:

F -right/ F -left In this 
ase we have

�

1

=

�

1

� `

C

X

F -right

� `

L

FX

�

2

=

�

2

�;X;FX

n

;� `

L

A

F -left

�;FX

n+1

;� `

L

A

By the indu
tion hypothesis applied to the proofs �

1

and �

2

there exists a

proof �

0

of �;�;X; � `

L

A with 
(�

0

) � jFXj = jXj + 1. Then let � be the

following proof:

�

1

� `

C

X

�

0

�;�;X; � `

L

A

CL-
ut

1

�;�;�;� `

L

A

============

�;�;� `

L

A

where the double line stands for a number of 
ontra
tions. � has 
ut rank

max(jXj+ 1; 
(�

1

); 
(�

0

)) whi
h is equal to jXj + 1 = jFXj as required.

Note that there is an obvious simpli�
ation in the 
ase that n = 0 as we 
an

then avoid an appeal to the indu
tion hypothesis altogether by letting � be

simply

�

1

� `

C

X

�

2

�;X; � `

L

A

CL-
ut

1

�;�;� `

L

A
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G-right/ G-left We have

�

1

=

�

1

� `

L

A

G-right

� `

C

GA

�

2

=

�

2

�; GA

n

;A;� `

L

B

G-left

�; GA

n+1

; � `

L

B

By applying the indu
tion hypothesis to �

1

and �

2

we obtain a proof �

0

of

�;�;A;� `

L

B with 
(�

0

) � jGAj = jAj+ 1. Now let � be

�

1

� `

L

A

�

0

�;�;A;� `

L

B

LL-
ut

�;�;�;� `

L

B

============

�;�;� `

L

B

The 
ut rank of � is max(jAj+1; 
(�

1

); 
(�

0

)) = jAj+1 so we are done. Again,

there is an obvious simpli�
ation when n = 0.

�-right/ C-�-left1 We have

�

1

=

�

1

�

1

`

C

X

�

2

�

2

`

C

Y

�-right

�

1

;�

2

`

C

X � Y

and

�

2

=

�

3

�;X; (X � Y )

n

`

C

Z

C-�-left1

�; (X � Y )

n+1

`

C

Z

Let �

0

be the result of applying the indu
tion hypothesis to �

1

and �

3

, so �

0

is a proof of �

1

;�

2

;�;X `

C

Z with 
(�

0

) � jX � Y j = jXj+ jY j+ 1. Now let

� be

�

1

�

1

`

C

X

�

0

�

1

;�

2

;�;X `

C

Z

CC-
ut

1

�

1

;�

1

;�

2

;� `

C

Z

==============

�

1

;�

2

;� `

C

Z

whi
h has a 
ut rank of max(jXj + 1; 
(�

1

); 
(�

0

)) � jX � Y j.

� The remaining sub
ases are similar and left to the reader.

2. The last rule used in �

1

is not a right logi
al rule. These are dealt with by simple

permutations of the rules. We 
onsider ea
h remaining possibility for the last rule

in �

1

and form of 
on
lusion of �

2

in turn. A few representative 
ases:

C-
ontra
tion/ C sequent The situation is

�

1

=

�

1

�;X;X `

C

Y

C-
ontra
tion

�;X `

C

Y

�

2

Y

n

;� `

C

Z
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and by indu
tion applied to �

1

and �

2

there is a proof �

0

of �;X;X;� `

C

Z

with 
(�

0

) � jY j. Let � be

�

0

�;X;X;� `

C

Z

C-
ontra
tion

�;X;� `

C

Z

Clearly, 
(�) � jY j so we are done.

CC-
ut

n

/ L sequent

�

1

=

�

1

� `

C

X

�

2

X

n

;� `

C

Y

CC-
ut

n

�;� `

C

Y

�

2

Y

m

;�

0

; � `

L

A

By indu
tion applied to �

2

and �

2

we 
an form �

0

proving X

n

;�;�

0

; � `

L

A

with 
(�

0

) � jY j. Now let � be

�

1

� `

C

X

�

0

X

n

;�;�

0

; � `

L

A

CL-
ut

n

�;�;�

0

; � `

L

A

By assumption, 
(�

1

) � jY j, so in parti
ular jXj + 1 � jY j. This means


(�) = max(jXj + 1; 
(�

1

); 
(�

0

)) � jY j as required.

�Æ-left/ L sequent

�

1

=

�

1

�;� `

L

A

�

2

�;B;� `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

�

2

�

0

;C;�

0

`

L

D

By indu
tion applied to �

2

and �

2

there's a proof �

0

of �;�

0

;B;�;�

0

`

L

D

with 
(�

0

) � jCj. Let � be

�

1

�;� `

L

A

�

0

�;�

0

;B;�;�

0

`

L

D

�Æ-left

�;�;�

0

; �; A�ÆB;�;�

0

`

L

D

and 
(�) = max(
(�

1

); 
(�

0

)) � jCj as required.

L-axiom/ L sequent This is one of the base 
ases for the indu
tion. We have

�

1

= A `

L

A

�

2

�;A;� `

L

B

and we simply let � be �

2

(re
all that 
(�

2

) � jAj by assumption).

3. The 
ut formula is a minor formula of the last rule in �

2

. These 
ases are also dealt

with by fairly straightforward permutations and we omit them.

4. The last rule in �

2

is 
ontra
tion on the 
ut formula. This is why we have the n-ary


ut rules.
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C-
ontra
tion

�

1

� `

C

X

�

2

=

�

1

X

n+2

;� `

C

Y

C-
ontra
tion

X

n+1

;� `

C

Y

By indu
tion on �

1

and �

1

there is a � proving �;� `

C

Y with 
(�) � jXj as

required.

L-
ontra
tion Similar.

5. The last rule in �

2

is weakening introdu
ing the 
ut formula.

L-weakening

�

1

� `

C

X

�

1

X

n

;�;� `

L

A

L-weakening

X

n+1

;�;� `

L

A

By indu
tion on �

1

and �

1

there is a � proving �;�;� `

L

A with 
(�) � jXj

as required. There is a simpli�
ation if n = 0, in whi
h 
ase � is just

�

1

�;� `

L

A

==========

�;�;� `

L

A

where 
(�) = 
(�

1

) � jXj by assumption.

C-weakening Similar.

6. �

2

is an axiom on the 
ut formula. Trivial.

2

Lemma 23 Let � be an LNL

+

proof of a sequent � `

C

X or �;� `

L

A su
h that


(�) > 0. Then there is a proof �

0

of the same sequent with 
(�

0

) < 
(�).

Proof. Indu
tion on d(�). If the last inferen
e of � is not a 
ut then we simply apply the

indu
tion hypothesis. Assume then that the last inferen
e is a 
ut on a formula A (the two


ases of 
uts on non-linear formulae are treated in just the same way). If 
(�) > jAj + 1

then we 
an apply the indu
tion hypothesis. This leaves the 
ase where the last rule is a


ut on A and 
(�) = jAj+ 1 so that

� =

�

1

�;� `

L

A

�

2

�;A;� `

L

B

LL-
ut

�;�;�;� `

L

B

Clearly 
(�

1

); 
(�

2

) � jAj+1, so by indu
tion we 
an 
onstru
t �

0

1

proving �; � `

L

A and

�

0

2

proving �;A;� `

L

B with 
(�

0

1

); 
(�

0

2

) � jAj. Then by Lemma 22, we 
an 
onstru
t

a �

0

proving �;�;�;� `

L

B with 
(�

0

) � jAj as required. 2
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Theorem 24 (Cut Elimination) Let � be a proof of a sequent � `

C

X or �;� `

L

A

su
h that 
(�) > 0. Then there is an algorithm whi
h yields a 
ut-free proof �

0

of the

same sequent.

Proof. This follows immediately by indu
tion on 
(�) and Lemma 23. 2

It is very important to note that the proof of the 
ut elimination theorem says a lot

more than that the theorem is true as stated. The proof gives a pro
edure for simplifying

proofs by applying su

essive rewrites until a 
ut-free proof is rea
hed. These rewrit-

ing steps are purely lo
al and 
ut-free proofs also have the subformula property. Note

that the algorithm des
ribed by the 
ut-elimination proof is non-deterministi
 { there is

some freedom in 
hoosing the order in whi
h rewrites should be applied. On the other

hand, the order in whi
h transformations are applied is 
onstrained rather more than is

stri
tly ne
essary in order to make the indu
tion work. In the present work we shall not,

however, 
onsider further the question of the extent to whi
h 
ut elimination is strongly

normalising.

10

3.1.5 Cut Elimination and Semanti
 Equality

The 
ut elimination pro
ess gives a notion of equality on sequent proofs, obtained by ex-

tending the one-step proof rewriting relation of the algorithm to a 
ongruen
e (an equiv-

alen
e relation whi
h is 
ompositional on proof trees). We intend this synta
ti
 equality

to be modelled soundly by equality in LNL models, and this is indeed the 
ase:

Theorem 25 The 
ut-elimination pro
edure des
ribed in Se
tion 3.1.4 is modelled soundly

in any LNL model.

Proof. The basi
 idea is to show that whenever one proof is simpli�ed to another then

the interpretations of those two proofs are equal morphisms in the model. This is done by

modifying the statement and proof of the 
ut redu
tion lemma (Lemma 22) to show that

semanti
 equality is preserved. Rather than go into the tedious details, we just sket
h one

of the 
ases:

G-right/ G-left The 
ut redu
tion is

�

1

� `

L

A

G-right

� `

C

GA

�

2

�;A;� `

L

B

G-left

�; GA; � `

L

B

CL-
ut

�;�;� `

L

B

redu
es to

� `

L

A �;A;� `

L

B

LL-
ut

�;�;� `

L

B

10

One of the CSL referees asserted that 
ut elimination is strongly normalising, but I don't see how to

justify that without a lot more work.
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Now, if � = X

1

; : : : ;X

n

, [[�

1

℄℄ = f and [[�

2

℄℄ = g, then this 
orresponds 
ategori
ally

to the 
ommutation of

(FX

1


 � � � 
 FX

n

)
 F�
 �

F (X

1

� � � � �X

n

)
 F�
 �

FGF (X

1

� � � � �X

n

)
 F�
 �

FG(FX

1


 � � � 
 FX

n

)
 F�
 �

FGA
 F�
 �

A
 F�
 �

B

A
 F�
 �

�

�

�

�

�

�

�

�

�

�)

m
 1
 1

?

F (�) 
 1
 1

?

FG(m

�1

)
 1
 1

?

FG(f)
 1
 1

?

"
 1
 1

P

P

P

P

P

P

P

P

P

P

P

Pq

g

�

�

�

�

�

�

�

�

�

�

�

�

�

�R

f 
 1
 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

g

whi
h is easily seen to follow using one of the triangle laws for the adjun
tion and

naturality of ".

2

3.1.6 Variations: Introdu
ing Additive Non-Linear Contexts

There are a large number of possible variations on the sequent rules for LNL logi
. One

of the most natural is to treat the non-linear ante
edents as additive rather than mul-

tipli
ative (though linear ante
edents are still multipli
ative, of 
ourse). This also has

the advantage of a 
loser 
orresponden
e to the natural dedu
tion system whi
h we shall

introdu
e in Se
tion 3.2 and is one of the reasons for our notational devi
e of separating

the linear and non-linear parts of the ante
edents of linear sequents.

The additive variants of those rules whi
h 
hange are shown in Figure 4. The remaining

rules remain un
hanged. When we wish to distinguish the additively formulated sequent

system from the multipli
iative, we shall refer to LNL

a

or to LNL

m

.
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Axioms

�;A `

L

A L-axiom �;X `

C

X C-axiom

Cut Rules

� `

C

X X;�;� `

L

A

CL-
ut

�;� `

L

A

� `

C

X X;� `

C

Y

CC-
ut

� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-
ut

�;�;� `

L

B

�=1 Rules

� `

C

X � `

C

Y

�-right

� `

C

X � Y

1-right

� `

C

1


=I Rules

�;� `

L

A �;� `

L

B


-right

�;�;� `

L

A
B

I-right

�; `

L

I

! Rules

� `

C

X Y;� `

C

Z

C-!-left

�;X ! Y `

C

Z

� `

C

X Y;�;� `

L

A

L-!-left

�;X ! Y ; � `

L

A

�Æ Rules

�;� `

L

A �;�; B `

L

C

�Æ-left

�;�;�; A�ÆB;� `

L

C

Figure 4: Additive variations on LNL logi
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The following fa
ts 
on
erning LNL

a

are easily veri�ed:

Proposition 26

1. The systems LNL

a

and LNL

m

are equivalent: ea
h rule in one system is admissible

in the other;

2. The weakening and 
ontra
tion rules of LNL

m

are admissible in LNL

a

without weak-

ening and 
ontra
tion.

3. Cut elimination holds for LNL

a

.

2

3.1.7 Variations: A Parsimonious Presentation

As we have already mentioned, there is another way of presenting the logi
 by using some

new metavariables: let P;Q range over either linear or non-linear propositions and � over

mixed 
ontexts. We 
an then present LNL

m

in a 
on
ise way as shown in Figure 5.

This presentation is equivalent to that shown in Figures 1 and 2. It has the disadvan-

tage of obs
uring the fa
t that there are really two distin
t kinds of sequent. These rules

are essentially the same as those given by Ja
obs in [Ja
93℄, whi
h also 
ontains good a
-


ounts of some examples of 
on
rete 
ategori
al models. The des
ription of the semanti
s

in that paper is somewhat di�erent from that given here, however. Ja
obs starts with a

linear 
ategory L satisfying extra 
onditions whi
h make the 
ategory of !-
oalgebras be


artesian 
losed. He then interprets all sequents as morphisms in L by applying F to

the interpretation of non-linear formulae (in mu
h the same way that we have interpreted

linear sequents). This 
auses problems as it is not 
lear how to interpret !-right, for ex-

ample. The solution is a mixture of syntax and semanti
s { one 
an verify that all provable

sequents whi
h only mention non-linear formulae satisfy what is 
alled the 
onventional

witness property. This means that they are interpreted by morphisms in L whi
h are (up

to m) the image under F of 
oalgebra morphisms. This property, whi
h is ne
essary to


omplete the interpretation, is shown by indu
tion on derivations. Interestingly, the proof

given is in
omplete unless one uses the following 
ru
ial (and easily veri�ed) fa
t, whi
h

is never a
tually mentioned:

Lemma 27 Any provable parsimonious sequent with a non-linear 
onsequent has only

non-linear formulae in the anete
edent.

In fa
t, for the presentation of the logi
 given by Ja
obs, the lemma above is only true

be
ause I is treated as a derived formula (it is de�ned to be F (1), 
f. our Proposition 1).

The left rule for 
 is given as

�; A;B ` P

�; A
B ` P

but it just so happens that the 
on
lusion P will always be a linear formula C. This would


ease to be true if the left rule for I were given expli
itly as the nullary version of that for


:

� ` P

�; I ` P

for then one 
ould introdu
e linear ante
edents to non-linear formulae and the proof theory

would break down. A slightly subtle point is that the above rule for I appears at �rst
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Axiom

P ` P

Stru
tural Rules

�;X;X ` P

Contra
tion

�;X ` P

� ` P

Weakening

�;X ` P

Cut Rule

� ` P P;�

0

` Q

Cut

�;�

0

` Q

�=1 Rules

�;X ` P

�-left1

�;X � Y ` P

�; Y ` P

�-left2

�;X � Y ` P

� ` X � ` Y

�-right

�;� ` X � Y

1-right

` 1


=I Rules

�; A;B ` C


-left

�; A
B ` C

� ` A �

0

` B


-right

�;�

0

` A
B

� ` A

I-left

�; I ` A

I-right

` I

! Rules

� ` X Y;� ` P

!-left

�;X ! Y;� ` P

�;X ` Y

!-right

� ` X ! Y

�Æ Rules

� ` A B;�

0

` C

�Æ-left

�; A�ÆB;�

0

` C

�; A ` B

�Æ-right

� ` A�ÆB

F Rules

�;X ` A

F -left

�; FX ` A

� ` X

F -right

� ` FX

G Rules

�; B ` A

G-left

�; GB ` A

� ` A

G-right

� ` GA

Figure 5: Parsimonious presentation of LNL logi
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sight to be valid in the semanti
s given by Ja
obs, though it would a
tually 
ause the


onventional witness property to fail and thus prevent the interpretation of !.

In any 
ase, on
e one has observed the importan
e of the previous lemma, it seems

rather more natural to interpret sequents with non-linear 
onsequents as morphisms in

the 
artesian 
losed 
ategory in the �rst pla
e, as we have done here.

3.2 Natural Dedu
tion and LNL Terms

In this se
tion we will present a natural dedu
tion formulation of LNL logi
 and a pro
edure

for normalising dedu
tions. By applying the Curry-Howard 
orresponden
e, we then derive

a term assignment system and a set of redu
tion rules, i.e. a mixed linear/non-linear

lambda 
al
ulus.

3.2.1 The Natural Dedu
tion Rules

The usual way to present natural dedu
tions is as trees, ea
h of whi
h has assumptions

at the leaves and a 
on
lusion at the root. Whilst su
h a presentation of LNL logi
 is

possible, we shall just give a `sequent style' natural dedu
tion system. The reason for

this is that, mainly for reasons to do with term assignment, we wish to give the natural

dedu
tion analogue of LNL

a

(rather than LNL

m

), and the mixture of shared and distin
t

assumption sets whi
h this involves is more 
learly shown in the sequent style presentation.

The natural dedu
tion system is 
hara
terised by having introdu
tion and elimination rules

for ea
h logi
al 
onne
tive, rather than the left and right rules of the sequent 
al
ulus.

The natural dedu
tion rules are shown in Figure 6. We will 
all this inferen
e system

ND.

Note that

� The elimination rule for F , like that for 
, builds in some substitution.

� The introdu
tion and elimination rules for G are exa
t inverses.

� The G-introdu
tion rule 
orresponds to promotion in ordinary linear logi
. The

restri
tion that the assumptions in the premiss be all non-linear 
orresponds to the

restri
tion on the promotion rule. We do not, however, need to build any substitution

into the G-introdu
tion rule.

� None of the natural dedu
tion rules split into L and C versions, so the natural

dedu
tion formulation is automati
ally `parsimonious'.

An important fa
t about the natural dedu
tion system is that it satis�es the sub-

stitution property. This essentially means that the 
ut rules from the sequent 
al
ulus

presentation are admissible in natural dedu
tion:

Lemma 28 The following three rules are admissible in the natural dedu
tion formulation

of LNL logi
:

� `

C

X X;�;� `

L

A

CL-subs

�;� `

L

A

� `

C

X X;� `

C

Y

CC-subs

� `

C

Y

�;� `

L

A �;A;� `

L

B

LL-subs

�;�;� `

L

B
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�;A `

L

A �;X `

C

X

� `

C

X � `

C

Y

�-intro

� `

C

X � Y

1-intro

� `

C

1

� `

C

X � Y

�-elim1

� `

C

X

� `

C

X � Y

�-elim2

� `

C

Y

�;� `

L

A �;� `

L

B


-intro

�;�;� `

L

A
B

�;� `

L

A
B �;�; A;B `

L

C


-elim

�;�;� `

L

C

I-intro

� `

L

I

�;� `

L

I �;� `

L

A

I-elim

�;�;� `

L

A

�;X `

C

Y

!-intro

� `

C

X ! Y

� `

C

X ! Y � `

C

X

!-elim

� `

C

Y

�;�; A `

L

B

�Æ-intro

�;� `

L

A�ÆB

�;� `

L

A�ÆB �;� `

L

A

�Æ-elim

�;�;� `

L

B

� `

C

X

F -intro

� `

L

FX

�;� `

L

FX �;X;� `

L

A

F -elim

�;�;� `

L

A

� `

L

A

G-intro

� `

C

GA

� `

C

GA

G-elim

� `

L

A

Figure 6: Natural dedu
tion presentation of LNL logi
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Proof. Indu
tion on the derivation of the right-hand premiss. 2

We will also need:

Lemma 29 The weakening rules of the sequent 
al
ulus are admissible in the natural

dedu
tion system. 2

Using the previous lemmas, we 
an establish a 
onne
tion between the sequent 
al
ulus

and natural dedu
tion formulations of the logi
:

Proposition 30 There are fun
tions S : ND ! LNL

a

and N : LNL

a

! ND whi
h map

a proof in one system to a proof of the same sequent in the other system. Furthermore,

for any natural dedu
tion �, NS(�) is equal to �.

Proof. This is all fairly obvious indu
tion. We start by looking at the de�nition of S:

� The axioms map to axioms.

� Introdu
tion rules be
ome right rules. For example,

�

1

� `

C

X

�

2

� `

C

Y

�-intro

� `

C

X � Y

maps to

S(�

1

)

� `

C

X

S(�

2

)

� `

C

Y

�-right

� `

C

X � Y

� Elimination rules be
ome 
ombinations of left rules with 
uts. For example

�

1

�;� `

L

A
B

�

2

�;�; A;B `

L

C


-elim

�;�;� `

L

C

maps to

S(�

1

)

�; � `

L

A
B

S(�

2

)

�;�; A;B `

L

C


-left

�;�; A
B `

L

C

LL-
ut

�;�;� `

L

C

The fun
tion N mapping sequent proofs to natural dedu
tions is also fairly straight-

forward:

� Axioms are translated by axioms.

� Instan
es of 
ut rules are translated by the appropriate admissible substitution rules

(Lemma 28).

� Right rules be
ome introdu
tions.
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� Left rules be
ome eliminations modulo some stru
tural �ddling. For example:

�

�;X `

C

Z

C-�-left1

�;X � Y `

C

Z

maps to

�;X � Y `

C

X � Y

�-elim1

�;X � Y `

C

X

N (�)

�;X `

C

Z

C-weakening

�;X � Y;X `

C

Z

CC-subs

�;X � Y `

C

Z

Similarly, the proof

�

�;X; � `

L

A

F -left

�;FX;� `

L

A

maps to

�;FX `

L

FX

N (�)

�;X; � `

L

A

F -elim

�;FX;� `

L

A

That N Æ S is the identity 
an then be veri�ed by indu
tion. The proof is most easily

obtained with the assistan
e of the term 
al
ulus whi
h we are about to introdu
e. 2

Clearly, there is an 
ategori
al interpretation of natural dedu
tion proofs in any LNL

model. One way to obtain the interpretation is to apply the S translation and then the

interpretation of sequent proofs whi
h we gave earlier, but it is fairly easy to write down

dire
tly (and one does indeed get the same answer!). Some of the 
lauses of this dire
t

interpretation are shown in Figure 7.

3.2.2 Term Assignment

Just as the simply typed lambda 
al
ulus arises as a notation for proofs in a natural

dedu
tion system for ordinary intuitionisti
 propositional logi
, we 
an annotate proofs in

our system ND to derive a mixed linear and non-linear term 
al
ulus. The term assignment

system is shown in Figure 8. We use a; b; 
 for linear variables, e; f; g; h for linear terms,

w; x; y; z for non-linear variables and s; t; u; v for non-linear terms. Distin
t linear 
ontexts

are assumed to mention disjoint sets of linear variable names.

As should be obvious, the two of the forms of let and the two kinds of � are variable-

binding 
onstru
ts. We refrain from giving a detailed de�nition of free and bound variables

and 
apture-avoiding substitution as the reader should be able to work them out without

diÆ
ulty.

Lemma 31 Terms en
ode dedu
tions uniquely { if � `

C

s:X or �;� `

L

e:A is derivable

then the derivation is uniquely determined by the term. 2

Lemma 32 If �;� `

L

e:A is derivable then ea
h linear variable in the 
ontext (i.e. ea
h

variable in �) has exa
tly one free o

uren
e in the term e.

Non-linear variables in the 
ontext may appear any number of times (in
luding zero)

in a well-typed term. 2
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X

1

� � � � �X

n

s

�!Y

F -intro

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

F (s)

��!FY

F�
 �

e

�!FX F�
 FX 
�

f

�!A

F -elim

F�
 �
�

dup
1
1

�����!F�
 F�
 �
�

1
e
1

���!F�
 FX 
�

f

�!A

where if � = X

1

; : : : ;X

n

, dup : F�! F�
 F� is

N

i

FX

i

m

�!F (

Q

i

X

i

)

F (�)

��!F ((

Q

i

X

i

)� (

Q

i

X

i

))

m

�1

��! (

N

i

FX

i

)
 (

N

i

FX

i

)

FX

1


 � � � 
 FX

n

e

�!A

G-intro

X

1

� � � � �X

n

�

�!GF (X

1

� � � � �X

n

)

G(m

�1

)

����!G(FX

1


 � � � 
 FX

n

)

G(e)

��!GA

X

1

� � � � �X

n

s

�!GB

G-elim

FX

1


 � � � 
 FX

n

m

�!F (X

1

� � � � �X

n

)

F (s)

��!FGB

"

�!B

Figure 7: Categori
al interpretation of natural dedu
tions (sket
h)

Lemma 28 
an now be restated to in
lude the terms:

Lemma 33 (Substitution) The following three rules are admissible in the LNL term


al
ulus:

� `

C

s:X x:X;�;� `

L

e:A

CL-subs

�;� `

L

e[s=x℄:A

� `

C

s ::X x:X;� `

C

t:Y

CC-subs

� `

C

t[s=x℄:Y

�;� `

L

e:A �; a:A;� `

L

f :B

LL-subs

�;�;� `

L

f [e=a℄:B

2

It should be noted that the term 
al
ulus 
ontains the usual simply typed lambda


al
ulus as a subsystem. Note also that, in 
ontrast to the term assignment system for

intuitionisti
 linear logi
, there is no expli
it syntax for weakening or 
ontra
tion in the


al
ulus.

3.2.3 Normalisation and Redu
tion

We now look at the pro
ess of normalisation on natural dedu
tion proofs in our logi
, and

at the asso
iated redu
tions on terms. The fundamental kind of normalisation step is the

removal of a `detour' in the dedu
tion, whi
h 
onsists of an introdu
tion rule immediately

followed by the 
orresponding elimination. There is thus a normalisation step for ea
h

intro/elim pair, and we 
onsider ea
h of these in turn:
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�; a:A `

L

a:A �; x:X `

C

x:X

� `

C

s:X � `

C

t:Y

� `

C

(s; t):X � Y

� `

C

(): 1

� `

C

s:X � Y

� `

C

fst(s):X

� `

C

s:X � Y

� `

C

snd(s):Y

�;� `

L

e:A �;� `

L

f :B

�;�;� `

L

e
 f :A
B

�;� `

L

e:A
B �;�; a:A; b:B `

L

f :C

�;�;� `

L

let a
 b = e in f :C

� `

L

�: I

�;� `

L

e: I �;� `

L

f :A

�;�;� `

L

let � = e in f :A

�; x:X `

C

s:Y

� `

C

(�x:X:s):X ! Y

� `

C

s:X ! Y � `

C

t:X

� `

C

s t:Y

�;�; a:A `

L

e:B

�;� `

L

(�a:A:e):A �ÆB

�;� `

L

e:A�ÆB �;� `

L

f :A

�;�;� `

L

e f :B

� `

C

s:X

� `

L

F(s):FX

�;� `

L

e:FX �; x:X;� `

L

f :A

�;�;� `

L

let F(x) = e in f :A

� `

L

e:A

� `

C

G(e):GA

� `

C

s:GA

� `

L

dereli
t(s):A

Figure 8: LNL term assignment system
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� The dedu
tion

�

1

� `

C

X

�

2

� `

C

Y

�-intro

� `

C

X � Y

�-elim1

� `

C

X

normalises to

�

1

� `

C

X

� The 
ase of �-intro followed by �-elim2 is similar.

� The dedu
tion

�

1

�;�

1

`

L

A

�

2

�;�

2

`

L

B


-intro

�;�

1

;�

2

`

L

A
B

�

3

�;�

3

; A;B `

L

C


-elim

�;�

1

;�

2

;�

3

`

L

C

normalises to the dedu
tion denoted by

�

1

�;�

1

`

L

A

�

2

�;�

2

`

L

B

�

3

�;�

3

; A;B `

L

C

LL-subs

�;�

2

;�

3

; A `

L

C

LL-subs

�;�

1

;�

2

;�

3

`

L

C

Note that this is not as asymmetri
 as it appears { the subs rule is only an admissible

rule, and the a
tual dedu
tion intended by the above shorthand is exa
tly the same

as the one obtained by substituting the derivation of A �rst.

�

I-intro

� `

L

I

�

�;� `

L

A

I-elim

�;� `

L

A

normalises to

�

�;� `

L

A

�

�

1

�;X `

C

Y

!-intro

� `

C

X ! Y

�

2

� `

C

X

!-elim

� `

C

Y

normalises to

�

2

� `

C

X

�

1

�;X `

C

Y

CC-subs

� `

C

Y
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�

�

1

�;�

1

; A `

L

B

�Æ-intro

�;�

1

`

L

A�ÆB

�

2

�;�

2

`

L

A

�Æ-elim

�;�

1

;�

2

`

L

B

normalises to

�

2

�;�

2

`

L

A

�

2

�;�

1

; A `

L

B

LL-subs

�;�

1

;�

2

`

L

B

�

�

1

� `

C

X

F -intro

� `

L

FX

�

2

�;X; � `

L

A

F -elim

�;� `

L

A

normalises to

�

1

� `

C

X

�

2

�;X; � `

L

A

CL-subs

�;� `

L

A

�

�

� `

L

A

G-intro

� `

C

GA

G-elim

� `

L

A

normalises to

�

� `

L

A

The normalisation steps on natural dedu
tions indu
e �-redu
tions on the asso
iated

terms. These are shown in Figure 9.

As often happpens with natural dedu
tion systems, there is also a se
ondary 
lass of

redu
tions { the 
ommuting 
onversions, whi
h are 
aused by rules whi
h have a `parasiti


formula'. In LNL logi
 there are three su
h rules, the elimination rules for 
, I and F .

Su
h a rule 
an arti�
ially prevent an introdu
tion/elimination pair from rea
ting unless

we expli
itly add 
ertain 
ommutations. The basi
 pattern is that a natural dedu
tion

looking like

.

.

.

.

.

.

C

r

C

any-elim

D
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fst(s; t) !

�

s

snd(s; t) !

�

t

let a
 b = e
 f in g !

�

g[e=a; f=b℄

let � = � in e !

�

e

(�x:X:s) t !

�

s[t=x℄

(�a:A:e) f !

�

e[f=a℄

let F(x) = F(s) in e !

�

e[s=x℄

dereli
t(G(e)) !

�

e

Figure 9: Term 
al
ulus �-redu
tions

where r is a rule with parasiti
 formula C and any-elim is any elimination rule, 
ommutes

to

.

.

.

.

.

.

C

any-elim

D

r

D

In the 
ase of LNL logi
, the parasiti
 formula C is always linear, so any-elim 
an only

be the elimination of one of the four linear 
onne
tives 
, I, �Æ and F . This means that

we have 3 � 4 = 12 
ommuting 
onversions. Rather than give the 
onversions expli
itly

on proofs, we merely list the indu
ed 
ommutations on terms in Figure 10. The proofs

are easily re
onstru
ted by Lemma 31.

11

The redu
tion relations !

�

and !




are de�ned as the pre
ongruen
e 
losures of the


lauses given in Figures 9 and 10 respe
tively. We write !

�;


for !

�

[ !




. As we have

avoided all mention of raw terms (sometimes also known as preterms), the following is

almost a 
omplete triviality:

Proposition 34 (Subje
t Redu
tion) Redu
tion is well-typed:

� If �;� `

L

e:A and e!

�;


e

0

then �;� `

L

e

0

:A.

� If � `

C

s:X and s!

�;


s

0

then � `

C

s

0

:X.

2

Somewhat more interesting is the fa
t that when a term is redu
ed its 
ategori
al

interpretation remains un
hanged (
f. Theorem 25).

Theorem 35 Both the �-redu
tions and the 
ommuting 
onversions are soundly modelled

by the interpretation of the natural dedu
tion system in any LNL model.

11

A small te
hni
ality is that the 
onversion for F -elim against itself is not an entirely lo
al rewrite, but

uses the admissible weakening rule. This would not be the 
ase for an entirely multipli
ative formulation

of the natural dedu
tion system, however.
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let a
 b = (let � = e in f) in g !




let � = e in (let a
 b = f in g)

let � = (let � = e in f) in g !




let � = e in (let � = f in g)

(let � = e in f) g !




let � = e in (f g)

let F (x) = (let � = e in f) in g !




let � = e in (let F (x) = f in g)

let a
 b = (let 

 d = e in f) in g !




let 

 d = e in (let a
 b = f in g)

let � = (let a
 b = e in f) in g !




let a
 b = e in (let � = f in g)

(let a
 b = e in f) g !




let a
 b = e in (f g)

let F (x) = (let a
 b = e in f) in g !




let a
 b = e in (let F (x) = f in g)

let a
 b = (let F (x) = e in f) in g !




let F (x) = e in (let a
 b = f in g)

let � = (let F (x) = e in f) in g !




let F (x) = e in (let � = f in g)

(let F (x) = e in f) g !




let F (x) = e in (f g)

let F (y) = (let F (x) = e in f) in g !




let F (x) = e in (let F (y) = f in g)

Figure 10: Term 
al
ulus 
ommuting 
onversions

� If �;� `

L

e:A and e!

�;


e

0

then

[[�; � `

L

e:A℄℄ = [[�; � `

L

e

0

:A℄℄

� If � `

C

s:X and s!

�;


s

0

then

[[� `

C

s:X℄℄ = [[� `

C

s

0

:X℄℄

2

3.3 Translations

We already know from Se
tion 2 that LNL models and linear 
ategories are equivalent.

What we have not yet done is show any dire
t relationship between provability (or proofs)

in LNL logi
 and in ordinary ILL. Su
h questions 
ould be approa
hed from the semanti


point of view if we had a 
ompleteness result for LNL models, but for the moment we shall

just argue proof-theoreti
ally.

12

In this se
tion we will relate LNL logi
 to ILL, restri
ting

attention to the natural dedu
tion formulations (equivalently, the term assignment sys-

tems). Comparable translations for the sequent 
al
ulus are straightforward to obtain,

but omitted.

We begin by re
alling in Figure 11 the linear term 
al
ulus (LTC) whi
h 
orresponds

to the natural dedu
tion presentation of ILL [BBHdP92℄.

12

I 
onje
ture that the natural 
ompleteness theorem is true, and see no parti
ular reason why the proof

should not be by a standard term-model 
onstru
tion { I just haven't done it yet. The �rst step is to

list all the term equalites given by the 
ategory theory. These 
omprise the �; 
 equalities from the proof

theory together with a number of naturality and � (uniqueness) equalities.
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a : A ` a : A (Ax)

�; a : A ` e : B

(�Æ

I

)

� ` (�a:A:e) : A�ÆB

� ` e : A�ÆB � ` f : A

(�Æ

E

)

�;� ` ef : B

` � : I (I

I

)

� ` e : A � ` f : I

(I

E

)

�;� ` let f = � in e : A

� ` e : A � ` f : B

(


I

)

�;� ` e
 f : A
B

� ` e : A
B �; a : A; b : B ` f : C

(


E

)

�;� ` let e = a
 b in f : C

�

1

` e

1

:!A

1

� � � �

n

` e

n

:!A

n

a

1

:!A

1

; : : : ; a

n

:!A

n

` f : B

Promotion

�

1

; : : : ;�

n

` promote e

1

; : : : ; e

n

for a

1

; : : : ; a

n

in f :!B

� ` e :!A �; a :!A; b :!A ` f : B

Contra
tion

�;� ` 
opy e as a; b in f : B

� ` e :!A � ` f : B

Weakening

�;� ` dis
ard e in f : B

� ` e :!A

Dereli
tion

� ` dereli
t(e) : A

Figure 11: The linear term 
al
ulus (LTC)

3.3.1 ILL to LNL Logi


The translation of ILL into LNL logi
 is not parti
ularly diÆ
ult. If A is an ILL proposi-

tion, de�ne the linear LNL proposition A

Æ

indu
tively as follows:

A

Æ

0

= A

0

(A

0

atomi
)

(A
B)

Æ

= A

Æ


B

Æ

(A�ÆB)

Æ

= A

Æ

�ÆB

Æ

I

Æ

= I

(!A)

Æ

= FG(A

Æ

)

Theorem 36 If � ` e:A in ILL, then there is an e

Æ

su
h that �

Æ

`

L

e

Æ

:A

Æ

.

Proof. This is done by indu
tion on the derivation in ILL (that is, on the stru
ture of

the linear term e). The exponential-free rules are 
ompletely straightforward, so we just

detail the translations of the one introdu
tion and three elimination rules for !. The easiest

way to present the translations is just to give the translation from terms to terms, as that

determines the translation of proofs.

Promotion The (�)

Æ

translation of

promote e

1

; : : : ; e

n

for a

1

; : : : ; a

n

in f

is

let F (y

1

) = e

Æ

1

in let F (y

2

) = e

Æ

2

in : : : FG(f

Æ

[F (y

i

)=a

i

℄)
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where the y

i

are fresh. One might be tempted to simplify the translation to

FG(f

Æ

[e

i

=a

i

℄)

but a moment's 
onsideration reveals that this latter expression is not well-typed.

It is interesting to note how the `boxing' behaviour of the promotion rule is thus

maintained by its translation into LNL logi
, even though neither of the introdu
tion

rules for F and G themselves involve a 
hange of variable names. Note also that the

translation makes use of an admissible substitution rule.

Dereli
tion

(dereli
t(e))

Æ

= let F (x) = e

Æ

in dereli
t(x)

where x is fresh. (Whi
h version of dereli
t() is meant should usually be 
lear from


ontext.)

Weakening

(dis
ard e in f)

Æ

= let F (x) = e

Æ

in f

Æ

where x is fresh.

Contra
tion

(
opy e as a; b in f)

Æ

= let F (x) = e

Æ

in f

Æ

[F (x)=a; F (x)=b℄

where x is fresh. Again, note that this is not just f

Æ

[e

Æ

=a; e

Æ

=b℄.

2

So we 
an translate ILL into the linear-only part of LNL logi
 in su
h a way that

provability is preserved. That it is also re
e
ted will follow from the translation from LNL

logi
 to ILL whi
h we are about to give.

3.3.2 LNL Logi
 to ILL

This dire
tion is more interesting. The basi
 idea is to translate the linear part of LNL

logi
 essentially un
hanged and to translate the non-linear part by using a variant of the

Girard translation. There is a small te
hni
ality 
on
erning atomi
 propositions, in that

LNL logi
 has both linear and non-linear atoms. We will thus translate into an ILL theory

whi
h has an extra atomi
 proposition A

X

0

for ea
h non-linear atomi
 proposition X

0

in

the LNL theory. Given this, we 
an de�ne the ILL proposition A

�

or X

�

for ea
h LNL

proposition A or X indu
tively as follows

A

�

0

= A

0

(A

0

atomi
)

(A
B)

�

= A

�


B

�

I

�

= I

(A�ÆB)

�

= A

�

�ÆB

�

(FX)

�

= !(X

�

)

X

�

0

= A

X

0

(X

0

atomi
)

(X � Y )

�

= !(X

�

)
!(Y

�

)

1

�

= I

(X ! Y )

�

= !(X

�

)�ÆY

�

(GA)

�

= A

�
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Note that what is usually 
alled `the Girard translation' of IL to ILL uses the &


onne
tive (`with') to translate 
onjun
tion in IL, but we have not done this as we are

dealing only with the multipli
ative fragment of ILL at the moment. Were we to in
lude

additives, then obviously an alternative translation would be possible.

Theorem 37

1. If � `

C

s:X in LNL logi
, then there is an LTC term s

�

su
h that

!�

�

` s

�

:X

�

2. If �;� `

L

e:A in LNL logi
, then there is an LTC term e

�

su
h that

!�

�

;�

�

` e

�

:A

�

Proof. This is proved by indu
tion on the LNL derivation. The translation is slightly more


ompli
ated than it might be be
ause of the fa
t that we have treated the 
onventional

parts of LNL 
ontexts in an additive way, and this does not easily mat
h the purely

multipli
ative 
ontexts used in ILL. For this reason, as well as the way in whi
h the

translation depends upon 
ontext, we will present this translation on derivations in the

logi
 rather than on terms. The reader should be able easily to supply the missing term

annotations so as to prove the theorem as stated.

� The translation of an axiom

�;X `

C

X

is

!X

�

`!X

�

Dereli
tion

!X

�

` X

�

=========== Weakening*

!�

�

; !X

�

` X

�

� The translation of an axiom

�;A `

L

A

is

A

�

` A

�

========== Weakening*

!�

�

; A

�

` A

�

� If the LNL derivation ends in

� `

C

X � `

C

Y

�-intro

� `

C

X � Y

where � = Y

1

; : : : ; Y

n

, then by indu
tion we have ILL derivations of !�

�

` X

�

and

!�

�

` Y

�

so that we 
an form the following (omitting rule names for reasons of

spa
e):

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` X

�

!Y

�

1

; : : : ; !Y

�

n

`!X

�

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` Y

�

!Y

�

1

; : : : ; !Y

�

n

`!Y

�

!�

�

; !�

�

`!X

�


!Y

�

=============== Contra
tion*

!�

�

`!X

�


!Y

�
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� If the LNL derivation ends in

� `

C

X ! Y � `

C

X

!-elim

� `

C

Y

where � = Y

1

; : : : ; Y

n

,then by indu
tion we have ILL derivations of !�

�

`!X

�

�ÆY

�

and !�

�

` X

�

so we 
an form

!�

�

`!X

�

�ÆY

�

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` X

�

Promotion

!Y

�

1

; : : : ; !Y

�

n

`!X

�

�Æ-elim

!�

�

; !�

�

` Y

�

========== Contra
tion*

!�

�

` Y

�

� If the LNL derivation ends with

� `

C

X

F -intro

� `

L

FX

where � = Y

1

; : : : ; Y

n

, then by indu
tion there is a derivation of !�

�

` X

�

so we 
an

form

!Y

�

1

`!Y

�

1

� � � !Y

�

n

`!Y

�

n

!�

�

` X

�

Promotion

!Y

�

1

; : : : ; !Y

�

n

`!X

�

as required.

� Be
ause of the fa
t that the G operator of LNL logi
 translates to nothing in ILL,

the translation of both the G-introdu
tion and G-elimination rules is the identity.

� The remaining rules are similar.

2

3.3.3 Further Results on the Translations

We now have translations both ways between LNL logi
 and ILL whi
h preserve provability.

There are probably other translations one 
ould use, but these two seem to be the most

natural.

Clearly, if one starts with a judgement of LNL logi
 and translates it to ILL and then

ba
k to LNL logi
, one will not, in general, get ba
k to the original judgement. This

is be
ause the �nal judgment will be in the purely linear fragment of LNL logi
. Going

around the 
y
le the other way, however, is the identity:

Theorem 38 For any ILL judgement � ` A, the result of translating it into LNL logi


and then ba
k to ILL, viz.

�

Æ

�

` A

Æ

�

is equal to the original judgement. As a 
orollary, the (�)

Æ

translation of ILL into LNL

logi
 re
e
ts, as well as preserves, provability in that

� ` A

is provable in ILL i�

�

Æ

`

L

A

Æ

is provable in LNL logi
.
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Proof. A trivial indu
tion shows that for all ILL formulae A, A = A

Æ

�

, from whi
h the

�rst part of the theorem is immediate. The se
ond part then follows by Theorems 36 and

37. 2

A natural question is whether the previous result extends to proofs (rather than just to

provability). It is 
ertainly not the 
ase that the result of mapping an ILL proof into LNL

logi
 and ba
k again is synta
ti
ally identi
al to the original proof, but it turns out that it

is equal to the original proof under the equality on ILL proofs given by linear 
ategories.

The easiest way to state and prove this result is by using the linear term 
al
ulus:

Theorem 39 If � ` e:A in LTC, then not only is � ` e

Æ

�

:A provable, but e � e

Æ

�

where

� is the 
ategori
al equality relation on LTC terms given in [BBHdP92, Figure 11, page

40℄.

Proof. This is an indu
tion on the stru
ture of e, but we omit the rather hairy details

(whi
h in any 
ase would require the repetition of too mu
h material from the earlier

work). One �rst has to �ll in the missing terms in the proof of Theorem 37 and then

prove a number of lemmas 
on
erning the way in whi
h the (�)

�

translation behaves with

respe
t to the admissible rules of weakening, 
ontra
tion and substitution in the LNL

term 
al
ulus (be
ause these rules are used in de�ning the (�)

Æ

translation). The terms

arising dire
tly from the 
omposite translation (�)

Æ

�

are in general very large, but, given

a 
ertain amount of 
are over variable names, they simplify fairly easily. 2
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4 Con
lusions and Further Work

We have given a new and intuitively appealing 
hara
terisation of 
ategori
al models of

intuitionisti
 linear logi
. We then used this presentation of the models as the basis

for de�ning a new logi
 whi
h uni�es ordinary intuitionisti
 logi
 with intuitionisti
 linear

logi
. The natural dedu
tion presentation of the new logi
 then gave, by the Curry-Howard


orresponden
e, a mixed linear and non-linear lambda 
al
ulus.

At �rst sight, one might be tempted to regard LNL logi
 as \a logi
al atro
ity without

interest" [GLT89℄. I hope, however, that I have shown that this is not the 
ase. LNL logi


has a very natural 
lass of 
ategori
al models and a well-behaved proof theory in both its

sequent 
al
ulus and natural dedu
tion formulations. Given this, and the links with other

resear
h whi
h were mentioned in the introdu
tion, LNL logi
 
ertainly seems to merit

further study.

On the theoreti
al side, mu
h remains to be done. We have not proved a 
ompleteness

theorem, nor have we proved that the LNL term 
al
ulus is strong normalising. The strong

normalisation proof should be relatively easy to do via a translation argument like that

whi
h we have previously used for the linear term 
al
ulus [Ben95℄ and the 
omputational

lambda 
al
ulus [BBdP93℄. It would be ni
e to have better (that is, less degenerate)

examples of 
on
rete models and one might well �nd su
h examples by looking at some of

the 
ategories arising in game semanti
s.

The 
onne
tions between LNL logi
 and other work on LU and related systems should

be looked at more 
losely. As well as the referen
es 
ited in the introdu
tion, S
hellinx's

work [S
h94℄ on de
orating 
onventional proofs to give linear ones seems parti
ularly

interesting in this respe
t.

It should be noted that although the translations between ILL and LNL logi
 behave

well with respe
t to equality, we have not 
laimed anything 
on
erning the translations

and redu
tion. I do not yet have any de�nitive results on whether, for example, redu
tion

is preserved under either of the translations, but it 
ertainly seems that any positive results

will involve 
ommuting 
onversions as well as the more 
onventional � rules.

There are also many obvious extensions to the system dis
ussed here. The �rst of these

is to 
onsider the additive 
onne
tives on the linear side, and disjun
tion (
oprodu
ts) on

the 
onventional side. We tou
hed brie
y on this in Se
tion 2.2.3, but more remains to be

done; this should be relatively straightforward, although, as we have already seen, there

is some 
ompli
ation regarding 
oprodu
ts in LNL models 
ompared with 
oprodu
ts

in linear 
ategories. Beyond that, one 
ould 
onsider adding indu
tive or 
oindu
tive

datatypes or se
ond-order quanti�
ation to the logi
. This seems parti
ularly worthwhile

in the light of Plotkin's work on parametri
ity and re
ursion in a logi
 rather like ours

[Plo93℄.

On the pra
ti
al side, we should investigate whether or not the LNL term 
al
ulus lends

itself more readily to eÆ
ient implementation than does the linear term 
al
ulus. The hope

is that one 
an arrange an implementation with two memory spa
es, 
orresponding to the

two subsystems of LNL logi
. The non-linear spa
e would be garbage 
olle
ted in the

usual way, whereas the linear spa
e would 
ontain obje
ts satisfying some useful memory

invariant (su
h as having only one pointer to them at all times) whi
h 
ould be exploited

to redu
e the spa
e usage of programs. Previous experien
e, however, shows that turning

su
h intuitively plausible hopes into provably 
orre
t implementations is a non-trivial task.
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