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p-Adic Analytic SpacesVladimir G. Berkovich1Abstract. This report is a review of results in p-adic analytic geometrybased on a new notion of analytic spaces. I'll explain the de�nition ofanalytic spaces, basic ideas of �etale cohomology for them, an applicationto a conjecture of Deligne on vanishing cycles, the homotopy descriptionof certain analytic spaces, and a relation between the �etale cohomologyof an algebraic variety and the topological cohomology of the associatedanalytic space.1991 Mathematics Subject Classi�cation: 14G20, 14F20, 11G25, 32P05,32C37Keywords and Phrases: p-adic analytic spaces, �etale cohomology, vanish-ing cyclesx1. Introduction. At the beginning of the 1960's, J. Tate discovered p-adicuniformization of elliptic curves with totally degenerate reduction. This led himto introduce rigid analytic spaces in the framework of which the above uniformiza-tion actually takes place. Basics of rigid analytic geometry were developed byhim in the paper [Ta] (released in 1961) and completed by R. Kiehl in [Ki1]-[Ki2]and L. Gerritzen and H. Grauert in [GG]. Rigid analytic spaces over a �eld k com-plete with respect to a non-trivial non-Archimedean valuation are glued from localobjects, a�noid spaces, which are the maximal spectra of a�noid algebras, thealgebras of topologically �nite type over k. The natural topology on these spacesis totally disconnected, and one has to work with a certain Grothendieck topologyinstead. The framework of rigid analytic geometry enables one to construct ananalog of the complex analytic theory of coherent sheaves and their cohomology,but does not allow a direct application of the intuitive idea of continuity and, inparticular, of the homotopy and singular homology notions.At the beginning of the 1970's, M. Raynaud introduced a new point of view torigid analytic spaces. Namely, they can be considered as the generic �bres of formalschemes locally �nitely presented over the ring of integers k� of k, and the categoryof quasi-compact quasi-separated rigid spaces is equivalent to the localization of thecategory of formal schemes �nitely presented over k� with respect to the family offormal blow-ups (see [Ra], [BL1]-[BL2]). This provided additional algebraic toolsto rigid analytic geometry, but did not make it more geometric.1 Supported by US-Israel Binational Science FoundationDocumenta Mathematica � Extra Volume ICM 1998 � II � 141{151



142 Vladimir G. BerkovichIn 1986, I found that p-adic analytic spaces, to which the homotopy andsingular homology notions can be directly applied, do exist. They are retrievedthrough spectra of a�noid algebras, where the spectrum is a generalization of theGelfand spectrum of a complex commutative Banach algebra and, in general, isdi�erent from the space of maximal ideals. The new de�nition is simpler than thatof rigid analytic spaces, does not require the use of Grothendieck topologies, worksover �elds with trivial valuation as well, and is in a sense a natural generalization ofthe de�nition of complex analytic spaces. The main advantage of the new analyticspaces is their nice topology which makes geometrical considerations relevant anduseful over p-adic �elds too.In [Hu1]-[Hu4], R. Huber develops another approach to rigid analytic (andmore general adic) spaces. It is based on a di�erent notion of the spectrum of ana�noid algebra which coincides, a posteriori, with the space of points of the toposgenerated by the corresponding rigid a�noid space, and whose maximal Hausdor�quotient is the spectrum we consider. The relation between various approaches top-adic analytic geometry is explained in simple terms at the end of x2.x2. Analytic spaces. First of all, let A be a commutative Banach ring withunity. (Besides a�noid algebras we are going to consider, a good example is thering of integers Z endowed with the absolute value j j1.) The spectrumM(A) of Ais the set of all bounded multiplicative seminorms onA, i.e., functions j j : A ! R+with j1j = 1, jf+gj � jf j+ jgj, jfgj = jf j � jgj and jf j � jjf jj. Each point x 2M(A)gives rise to a bounded character �x : A ! H(x), where H(x) is the completionof the fraction �eld of the quotient ring of A by the kernel of the correspondingseminorm. The image of an element f 2 A under �x is denoted by f(x). Thespectrum M(A) is endowed with the weakest topology with respect to which allreal valued functions of the form x 7! jf(x)j are continuous. For example, ifthe algebra A contains the �eld of complex numbers C then, by Gelfand-Mazur'stheorem, all of the �elds H(x) coincide with C and, therefore, the spectrumM(A)is the Gelfand space of maximal ideals. A basic fact is thatM(A) is always a non-empty compact space.Let k be a non-Archimedean �eld, i.e., a �eld complete with respect to a non-Archimedean valuation which is not assumed to be non-trivial. Given positivenumbers r1; : : : ; rn, one sets kfr�11 T1; : : : ; r�1n Tng = ff =P� a�T ���ja� jr� ! 0 asj�j ! 1g. It is a commutative Banach k-algebra with the norm jjf jj = max ja� jr� .A k-a�noid algebra is a commutative Banach k-algebra A for which there existsan epimorphism kfr�11 T1; : : : ; r�1n Tng ! A which is admissible in the sense thatthe norm on A is equivalent to the quotient norm. The algebras which are a�noidin the usual sense, i.e., for which such an epimorphism can be found with ri = 1,1 � i � n, are said to be strictly k-a�noid. One shows that k-a�noid algebrasare Noetherian, and all their ideals are closed. The category of k-a�noid spacesis, by de�nition, the category anti-equivalent to that of k-a�noid algebras (withbounded homomorphisms between them). To de�ne global objects, k-analyticspaces, one uses the classical language of charts and atlases (which, by the way,can also be used to de�ne schemes and formal schemes).Given a k-a�noid space X = M(A), a closed subset V � X is an a�noidDocumenta Mathematica � Extra Volume ICM 1998 � II � 141{151



p-Adic Analytic Spaces 143domain if there exists a bounded homomorphism of k-a�noid algebras A ! AVsuch that the image ofM(AV ) in X is contained in V and any bounded homomor-phism A ! B with the same property, where B is a K-a�noid algebra for somebigger non-Archimedean �eld K, factors through a unique bounded homomor-phism AV ! B. One shows that AV is 
at over A, M(AV ) �! V , H(x) �! HV (x)for any a�noid domain V that contains a point x, and a�noid neighborhoodsof x form a fundamental system of its compact neighborhoods. A�noid domainspossess other nice properties (similar to those of open a�ne subschemes of a�neschemes) which justify the following de�nitions.A family � of subsets of a topological space X is said to be a quasi-net if, foreach point x 2 X , there exist V1; : : : ; Vn 2 � such that x 2 V1 \ : : : \ Vn and theset V1 [ : : : [ Vn is a neighborhood of x. A quasi-net � is said to be a net if, forany pair U; V 2 � , the family � ��U\V is a quasi-net on U \ V .Let X be a locally Hausdor� topological space, and let � be a net of compactsubsets on X . A k-a�noid atlas A on X with the net � is a map which assigns, toeach V 2 � , a k-a�noid algebra AV and a homeomorphism V �!M(AV ) and, toeach pair U; V 2 � with U � V , a bounded homomorphism of k-a�noid algebrasAV ! AU that identi�es (U;AU ) with an a�noid domain in (V;AU ). A k-analyticspace is a triple (X;A; �) of the above form. A strong morphism of k-analyticspaces ' : (X;A; �) ! (X 0;A0; � 0) is a pair which consists of a continuous map' : X ! X 0, such that for each V 2 � there exists V 0 2 � 0 with '(V ) � V 0, and of asystem of compatible morphisms of k-a�noid spaces 'V=V 0 : (V;AV )! (V 0;A0V 0)for all pairs V 2 � and V 0 2 � 0 with '(V ) � V 0. One gets a category k-fAn.Furthermore, a strong morphism ' : (X;A; �)! (X 0;A0; � 0) is said to be a quasi-isomorphism if ' induces a homeomorphism between X and X 0 and, for any pairV 2 � and V 0 2 � 0 with '(V ) � V 0, 'V=V 0 identi�es V with an a�noid domainin V 0. One shows that the family of quasi-isomorphisms admits calculus of rightfractions. The category of k-analytic spaces k-An is the category of fractions ofk-fAn with respect to the system of quasi-isomorphisms. If one assumes that allof the k-a�noid spaces used in the de�nition of k-An are strictly k-a�noid, onegets the category of strictly k-analytic spaces. We mention several properties ofk-analytic spaces.(1) The functor X = M(A) 7! (X;A; fXg) from the category of k-a�noidspaces to k-An is fully faithful.(2) Each k-analytic space X has a maximal k-a�noid atlas whose elementsare called a�noid domains in X .(3) A subset Y of a k-analytic space X is said to be an analytic domain if,for any point y 2 Y , there exist a�noid domains V1; : : : ; Vn that are contained inY and such that y 2 V1 \ : : : \ Vn and the set V1 [ : : : [ Vn is a neighborhood ofy in Y . An analytic domain Y has a natural structure of a k-analytic space, andthe family of analytic domains gives rise to a Grothendieck topology on X , calledthe G-topology.(4) The category k-An admits �bre products and, for each non-Archimedean�eld K over k, there is the ground �eld extension functor X 7! X b
K.(5) Given a point x 2 X , there is an associated non-Archimedean �eld H(x)over k and, for for each morphism ' : Y ! X , there is a �bre Yx of ' at x whichDocumenta Mathematica � Extra Volume ICM 1998 � II � 141{151



144 Vladimir G. Berkovichis an H(x)-analytic space. The �eld H(x) is the completion (with respect to avaluation) of a �eld of transcendence degree at most dim(X) over k.(6) For each morphism ' : Y ! X , one can de�ne its interior Int(Y=X) andthe boundary @(Y=X) = Y nInt(Y=X) so that, if Y is an analytic domain in X ,then Int(Y=X) coincides with the topological interior of Y in X . ' is said to beclosed if @(Y=X) = ;. ' is said to be proper if it is proper in the topological senseand closed in the above sense.(7) Each point of a k-analytic space has a fundamental system of open neigh-borhoods which are locally compact, countable at in�nity and arc-wise connected.The topological dimension of a paracompact k-analytic space is at most its dimen-sion and, if the space is strictly k-analytic, both numbers are equal. The projectivespace and all its Zariski open subsets are contractible, and Tate's elliptic curve ishomotopy equivalent to a circle (see also x5).(8) One can associate with each scheme X of locally �nite type over k a closedk-analytic space X an. The scheme X is separated (resp. proper, resp. connected)if and only if the underlying topological space of X an is Hausdor� (resp. compact,resp. arc-wise connected) and, if X is separated, its dimension is equal to thetopological dimension of X an.(9) Given a formal scheme X locally �nitely presented over k�, i.e., X is alocally �nite union of formal schemes of the form Spf(k�fT1; : : : ; Tng=(f1; : : : ; fm)),one can associate with it the generic �bre X�, which is a paracompact strictly k-analytic space, and construct a reduction map � : X� ! Xs, where Xs is the closed�bre of X.(10) Assume that the valuation on k is non-trivial. For each Hausdor� strictlyk-analytic space X , one can provide the subset X0 = fx 2 X��[H(x) : k] < 1gwith the structure of a rigid analytic space, and one can construct a morphism oftopoi Xe0 ! Xe. The functor X 7! X0 is fully faithful and induces an equivalencebetween the category of paracompact strictly k-analytic spaces and that of quasi-separated rigid analytic spaces which have an admissible a�noid covering of �nitetype. (Both categories contain all the spaces needed in practice.)Remark. One can represent the relation between di�erent approaches to p-adicanalytic geometry in a metaphoric way on the model of real numbers as follows.In rigid analytic geometry, one does not know about the existence of irrationalnumbers, but is given functions onQ which are restrictions of continuous functionsfrom R. To work in such a situation one is led to provide Q with a Grothendiecktopology (generated by the closed intervals with rational ends). In the approachof R. Huber (and essentially in that of M. Raynaud), one works with the space ofpoints of the topos of sheaves in the above Grothendieck topology. In the approachdescribed here, one works with the space of real numbers R itself.x3. �Etale cohomology for analytic spaces. The necessity of constructing�etale cohomology theory for p-adic analytic spaces arose in V. Drinfeld's work([Dr1], [Dr2]) for needs of problems related to the local Langlands conjecture (seethe end of x4), and one of the main requirements was to extend �etale cohomologytheory of schemes. Such a theory was developed in [Ber2]. In this section weDocumenta Mathematica � Extra Volume ICM 1998 � II � 141{151



p-Adic Analytic Spaces 145explain some basic ideas that use the nice topology of analytic spaces and makethe whole theory easier than that for schemes.Recall that the analog of �etale cohomology for complex analytic spaces isthe usual topological cohomology with coe�cients in sheaves, and the reason isthat an �etale morphism between complex analytic spaces is a local isomorphism.The topological cohomology of k-analytic spaces cannot be a good analog of �etalecohomology since, for example, the projective space is contractible, and so onemay try to work with a class of �etale morphisms which naturally generalizes thatfor complex analytic spaces and coincides with it over C. Having in mind the nicetopology of analytic spaces, one is easily led to the following de�nition.A morphism of k-analytic spaces ' : Y ! X is said to be �etale if for each pointy 2 Y there exist open neighborhoods V of y and U of '(y) such that ' inducesa �nite �etale morphism V ! U . (The latter means that, for each a�noid domainU = M(A) in U , the preimage '�1(U) = M(B) is an a�noid domain and B isa �nite �etale A-algebra.) An important fact is that a morphism Y ! X betweenschemes of locally �nite type over k is �etale if and only if the induced morphismYan ! X an is �etale. Another important fact is the following. For a k-analyticspace X and a point x 2 X , let F�et(X; x) be the category of germs of k-analyticspaces �nite �etale over the germ of X at x, and let F�et(H(x)) be the categoryof schemes �nite �etale over the spectrum of H(x) (the latter is anti-equivalent tothe category of �nite separable H(x)-algebras). The remarkable fact is that thereis an equivalence of categories F�et(X; x) �! F�et(H(x)). In other words, locallyover the point x �etale morphisms to X correspond to �nite separable extensionsof H(x). Notice that over C the latter means that an �etale morphism is a localisomorphism.The �etale topology X�et on a k-analytic space X is the Grothendieck topologyon the category of �etale morphisms U ! X generated by the pretopology forwhich the set of coverings of U ! X is formed by the families fUi fi! Ugi2I withU = [i2Ifi(Ui). This topology gives rise to the �etale cohomology groupsHq(X;F )with coe�cients in an abelian �etale sheaf F . A global section of F over X has thesupport which is a closed subset of X and, if X is Hausdor�, the �etale cohomologygroups with compact support Hqc (X;F ) are de�ned as the right derived functors ofthe functor of global sections with compact support. In the same way one de�nes,for a Hausdor� morphism ' : Y ! X , the functors F 7! Rq'!F .Consider the morphism of sites � : X�et ! jX j, where jX j is the underlyingtopological space of X . The equivalence of categories F�et(X; x) �! F�et(H(x))easily implies that, for any abelian �etale sheaf F , the stalk (Rq��F )x coincideswith the cohomology group Hq(GH(x); Fx), where GH(x) is the Galois group ofH(x). Assume that F is torsion. By property (5) from x2, Hq(GH(x); Fx) = 0for q bigger than dim(X) plus the cohomological dimension of k. On the otherhand, if X is paracompact, the topological dimension of X is at most dim(X).Thus, the spectral sequence of the morphism � implies that Hq(X;F ) = 0 for qbigger than 2 � dim(X) plus the cohomological dimension of k. In a similar way,using properties of cohomology of topological spaces and of pro�nite groups onedescribes, for a Hausdor� morphism ' : Y ! X , the stalks of the sheaves Rq'!Fin terms of the cohomology groups with compact support of the �bres of '. TheDocumenta Mathematica � Extra Volume ICM 1998 � II � 141{151



146 Vladimir G. Berkovichproof of the corresponding fact for schemes is highly non-trivial.Among results of [Ber2] (and [Ber4]) are the invariance of cohomology un-der algebraically closed extensions of the ground �eld, a Poincar�e Duality the-orem, a cohomological purity theorem, a base change theorem for cohomologywith compact support, a smooth base change theorem, and comparison theorems.The latter state that, given a compacti�able morphism (resp. a morphism of�nite type) ' : Y ! X between schemes of locally �nite type over k and an�etale abelian sheaf F on Y which is torsion (resp. constructible with torsion or-ders prime to char(k)), there are canonical isomorphisms (Rq'!F)an �! Rq'an! Fan(resp. (Rq'�F)an �! Rq'an� Fan).By the way, the notion of a smooth morphism we work with is as follows. It isa morphism Y ! X which factors locally through an �etale morphism Y ! X�Ad.In [Ber3], we also proved that if k is algebraically closed and X is a compact quasi-algebraic k-analytic space, i.e., X is a �nite union of a�noid domains isomorphicto a�noid domains in the analyti�cation of a scheme, then for any integer n primeto char(ek), the characteristic of the residue �eld ek of k, the cohomology groupsHq(X;Z=nZ) are �nite.In [Hu2]-[Hu4], R. Huber develops �etale cohomology in the framework of hisadic spaces. Besides the results mentioned above, he got �niteness results whichimply, for example, that in the case, when k is of characteristic zero, the abovefact is true without the assumption that X is quasi-algebraic.x4. Vanishing cycles for formal schemes. In this section we describe anapplication of �etale cohomology of analytic spaces to a conjecture of Deligne from[Del]. Let X be a scheme of �nite type over a Henselian discrete valuation ring R, Ya subscheme of the closed �bre Xs of X , l a prime di�erent from the characteristicof the residue �eld of R. The conjecture states that (a) the restrictions of thevanishing cycles sheaves Rq	�(Ql) of X to the subscheme Y depends only on theformal completion bX=Y of X along Y and, in particular, the automorphism groupof bX=Y acts on them, and (b) there exists an ideal of de�nition of bX=Y such thatany automorphism of bX=Y trivial modulo this ideal acts trivially on the abovesheaves.Some partial results were obtained earlier by J.-L. Brylinski in [Bry] (the casewhen R is of mixed characteristic, X is of dimension one over R and Y is a closedpoint of Xs), G. Laumon in [La] and the author in [Ber6] (the case when R isequicharacteristic and Y is a closed point of Xs), and in [Ber3] (the case when Yis an open subscheme of Xs). We describe here the results from [Ber7] which givea positive answer in the general case.Let k be a �eld complete with respect to a discrete valuation (which is notassumed to be non-trivial). A formal scheme over k� is said to be special if it isa locally �nite union of a�ne formal schemes of the form Spf(A), where A is aquotient of the adic ring k�fT1; : : : ; Tng[[S1; : : : ; Sm]] by an ideal. (All ideals ofthat ring are closed in the adic topology.) Given a special formal scheme X, itsclosed �bre is the scheme of locally �nite type over ek, (X;OX=J ), where J is anideal of de�nition of X that contains the maximal ideal of k�. Due to P. Berthelot,Documenta Mathematica � Extra Volume ICM 1998 � II � 141{151



p-Adic Analytic Spaces 147one can associate with X its generic �bre X�, which is a paracompact strictlyk-analytic space, and a reduction map � : X� ! Xs so that, for any subschemeY � Xs, there is a canonical isomorphism (X=Y)� �! ��1(Y), where X=Y is theformal completion of X along Y (it is also a special formal scheme). In [Ber7] weconstructed a vanishing cycles functor 	� from the category of �etale sheaves on X�to the category of �etale sheaves on Xs, where Xs is the lift of Xs to the algebraicclosure of ek, and proved the following results.Theorem 1. Given a scheme X of �nite type over a local Henselian ring withthe completion k�, a subscheme Y � Xs and an �etale abelian constructible sheafF on X� with torsion orders prime to char(ek), there are canonical isomorphisms(Rq	�F)��Y �! Rq	�( bF=Y), where bF=Y is the pullback of F on ( bX=Y )� .In [Hu4], a similar result is proven for any special formal scheme (instead ofX ) under the assumption that the characteristic of k is zero.Theorem 1 gives a precise meaning to the part (a) of Deligne's conjecture andimplies that, given a second scheme X 0 of �nite type over k�, a subscheme Y 0 � X 0sand an integer n prime char(ek), any morphism of formal schemes ' : bX 0=Y0 !bX=Y induces a homomorphism �qn(') from the pullback of (Rq	�(Z=nZ)X� )��Y to(Rq	�(Z=nZ)X 0� )��Y0 . In particular, given a prime l di�erent from char(ek), theautomorphism group of bX=Y acts on (Rq	�(Ql)X�)��Y .Theorem 2. (i) Given bX=Y , bX 0=Y0 and n as above, there exists an ideal ofde�nition J 0 of bX 0=Y0 such that for any pair of morphisms ';  : bX 0=Y0 ! bX=Y ,which coincide modulo J 0, one has �qn(') = �qn( ).(ii) Given bX=Y and l as above, there exists an ideal of de�nition J ofbX=Y such that any automorphism of bX=Y , trivial modulo J , acts trivially on(Rq	�(Ql)X� )��Y .The proof of Theorem 2 uses a result from [Ber3] on the continuity of theaction of a topological group on the �etale cohomology groups of a k-analytic spaceif the original action of the group on the space is continuous.The results from [Ber3] and [Ber7], described above, have been used by G.Faltings ([Fa]) and M. Harris ([Ha]) in their work on a conjecture of V. Drinfeld,and by M. Harris and R. Taylor ([HT]) in their work on the local Langlandsconjecture over a p-adic �eld.x5. The homotopy structure of analytic spaces. In this section we de-scribe algebraic and homotopy topology results from [Ber8] obtained in an attemptto prove local contractibility of analytic spaces. To simplify the exposition, we donot formulate the results in the strongest possible form.A morphism ' : Y ! X between formal schemes locally �nitely presentedover k� is said to be poly-stable if locally in the �etale topology it is of the formSpf(B0 b
A : : : b
ABp)! Spf(A), where each Bi is of the form AfT0; : : : ; Tng=(T0 �: : : � Tn � a) with a 2 A. A poly-stable �bration of length l over k� is a sequenceof poly-stable morphisms X = (Xl ! Xl�1 ! : : : ! X1 ! X0 = Spf(k�)). SuchDocumenta Mathematica � Extra Volume ICM 1998 � II � 141{151



148 Vladimir G. Berkovichobjects form a category in the evident way. To take into account morphismswhich are non-trivial on the ground �eld, we introduce a category Pstf�etl whoseobjects are pairs (k;X), where k is a non-Archimedean �eld and X is a poly-stable�bration of length l over k�, and morphisms (K;Y) ! (k;X) are pairs consistingof an isometric embedding of �elds k ,! K and an �etale morphism of poly-stable�brations over K�, Y! Xb
k�K�. (For brevity the pair (k;X) is denoted by X.)Consider �rst the case when the valuation on k is trivial, i.e., all the formalschemes considered are in fact schemes of locally �nite type over k. For sucha (reduced) scheme X , we set X (0) = X and, for i � 0, denote by X (i+1) thenon-normality locus of X (i). The irreducible components of the locally closedsubsets X (i)nX (i+1) are called strata of X . One shows that, given a poly-stable�bration X = (Xl ! : : : ! X1 ! X0 = Spec(k)), the closure of any stratumof the scheme Xl is a union of strata, and one associates with X a simplicial setC(X ) which encodes combinatorics of mutual inclusions between strata. (Theconstruction of the latter is too involved to be given here, but in the case, when Xlis smooth and connected, C(X ) is a point.) In this way one gets a functor C fromPstf�etl to the category of simplicial sets that takes a poly-stable �bration X to thesimplicial set C(Xs) associated with the closed �bre of X. Its composition withthe geometric realization functor gives a functor jCj from Pstf�etl to the categoryof locally compact spaces.Theorem 1. For every poly-stable �bration X = (Xl fl�1! : : : f1! X1) of lengthl, one can construct a proper strong deformation retraction � : Xl;�� [0; l]! Xl;� :(x; t) 7! xt of Xl;� to a closed subset S(X), the skeleton of X, so that the followingholds:(i) (xt)t0 = xmax(t;t0) for all 0 � t; t0 � l;(ii) fl�1;�(xt) = fl�1;�(x)t�1 for all 1 � t � l;(iii) the homotopy � induces a strong deformation retraction of each Zariskiopen subset U of Xl;� to S(X)\U ; if Xl;� is normal and U is dense, the intersectioncoincides with S(X);(iv) given a morphism ' : Y! X in Pstf�etl , one has 'l;�(yt) = 'l;�(y)t.The latter property implies that the correspondence X 7! S(X) is a functorfrom Pstf�etl to the category of locally compact spaces.Theorem 2. There is a canonical isomorphism of functors jCj �! S.The simplest consequence of Theorems 1 and 2 tells that the analyti�cationof any Zariski open subset of a proper scheme with good reduction is contractible.In the case of the Drinfeld upper half-plane 
d over a local non-Archimedean�eld K, which is the generic �bre of a formal scheme b
d (see [Dr2]), the spacejC(b
d)j is the Bruhat-Tits building of the group SLd(K). The embedding of thelatter in 
d was used in [Ber5] in the proof of the fact that the group of analyticautomorphisms of 
d coincides with PGLd(K).Theorems 1 and 2 and results of J. de Jong on alterations from [deJ2]-[deJ3]are used to prove the following results.Theorem 3. Assume that the valuation on k is non-trivial. Let X be ak-analytic space locally embeddable in a smooth space, i.e., each point of X hasDocumenta Mathematica � Extra Volume ICM 1998 � II � 141{151



p-Adic Analytic Spaces 149an open neighborhood isomorphic to a strictly k-analytic domain in a smooth k-analytic space (for example, it is true if X is a smooth k-analytic space.) Then Xis locally contractible.Let X be a separated connected k-analytic space locally embeddable in asmooth space. Theorem 3 implies that X has a universal covering, which is astrictly k-analytic space and is a Galois covering of X with the Galois groupisomorphic to the fundamental group of the underlying topological space jX j.Furthermore, if X is paracompact, the cohomology groups Hq(jX j;Z) (which arethe same as those of the associated rigid analytic space) coincide with the singularcohomology groups.Theorem 4. Let X be a separated scheme of �nite type over a non-Archimedean �eld k. Then(i) the groups H i(jX anj;Z) are �nitely generated;(ii) there exists a �nite separable extension k0 of k such that for any non-Archimedean �eld K over k one has H i(j(X 
 k0)anj;Z) �! H i(j(X 
K)anj;Z).x6. An analytic analog of Tate's conjecture over finite and localfields. This section is a report on the work in progress [Ber9]. Assume that kis a �nite or a local non-Archimedean �eld. (Finite �elds are considered as non-Archimedean ones endowed with the trivial valuation.) For a separated schemeX of �nite type over k, we set X = X 
 ka, where ka is an algebraic closure ofk, and denote by X an the cka-analytic space (X b
cka)an. Let l be a prime di�erentfrom char(k). The representation of the Galois group G of ka on the l-adic �etalecohomology groups H i(X ;Ql) is continuous and, by Theorem 4 from x5, on thegroups H i(jX anj;Z) is smooth in the sense that the stabilizer of any element isopen in G.The homomorphisms H i(jX anj;Z) ! H i(jX anj;Z=lnZ) ! H i(X an;Z=lnZ)and the isomorphism of the comparison theoremH i(X ;Z=lnZ) �! H i(X an;Z=lnZ)give rise to a homomorphism H i(jX anj;Z)! H i(X ;Ql). Since it is Galois equiv-ariant, its image is contained in H i(X ;Ql)sm, where for an l-adic representa-tion V of G we denote by V sm the subspace consisting of the elements withopen stabilizer in G. The above homomorphism gives rise to a homomorphismH i(jX anj;Z)! H i(X ;Ql) whose image is contained in H i(X ;Ql)G.If k is a �nite �eld, let F be the Frobenius automorphism of ka. Otherwise,let F be a �xed element of G that lifts the Frobenius of the residue �eld of k. Foran l-adic representation V of G, let V� denote the maximal F -invariant subspaceof V , where all eigenvalues of F are roots of unity. One evidently has V sm � V�.Theorem. H i(jX anj;Z)
Ql �! H i(X ;Ql)� .The �rst corollary justi�es the title of this section.Corollary 1. H i(jX anj;Z)
Ql �! H i(X ;Ql)G .Corollary 2. H ic(jX anj;Z) 
Ql �! H ic(X ;Ql)� and H ic(jX anj;Z) 
Ql �!H ic(X ;Ql)G .Documenta Mathematica � Extra Volume ICM 1998 � II � 141{151



150 Vladimir G. BerkovichNotice that the above results imply that V� = V sm for V = H i(X ;Ql) andH ic(X ;Ql). Recall also that in the case of positive characteristic of k it is not yetknown that the dimensions of the groups H i(X ;Ql) and H ic(X ;Ql) do not dependon l. References[Ber1] Berkovich, V. G.: Spectral theory and analytic geometry over non-Archimedean �elds, Mathematical Surveys and Monographs, vol. 33,American Mathematical Society, Providence, R.I., 1990.[Ber2] Berkovich, V. G.: �Etale cohomology for non-Archimedean analytic spaces,Publ. Math. IHES 78 (1993), 5-161.[Ber3] Berkovich, V. G.: Vanishing cycles for formal schemes, Invent. Math. 115(1994), 539-571.[Ber4] Berkovich, V. G.: On the comparison theorem for �etale cohomology ofnon-Archimedean analytic spaces, Israel J. Math. 92 (1995), 45-60.[Ber5] Berkovich, V. G.: The automorphism group of the Drinfeld half-plane, C.R. Acad. Sci. Paris S�er. I Math. 321 (1995), 1127-1132.[Ber6] Berkovich, V. G.: Vanishing cycles for non-Archimedean analytic spaces,J. Amer. Math. Soc. 9 (1996), 1187-1209.[Ber7] Berkovich, V. G.: Vanishing cycles for formal schemes. II, Invent. Math.125 (1996), 367-390.[Ber8] Berkovich, V. G.: Smooth p-adic analytic spaces are locally contractible,Preprint, March 1998.[Ber9] Berkovich, V. G.: An analytic analog of Tate's conjecture over �nite andlocal �elds, (in preparation).[BGR] Bosch, S; G�untzer, U.; Remmert, R.: Non-Archimedean analysis. A sys-tematic approach to rigid analytic geometry, Grundlehren der Mathema-tischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York,1984.[BL1] Bosch, S; L�utkebohmert, W.: Formal and rigid geometry. I. Rigid spaces,Math.Ann. 295 (1993), 291-317.[BL2] Bosch, S; L�utkebohmert, W.: Formal and rigid geometry. II. Flatteningtechniques, Math.Ann. 296 (1993), 403-429.[Bry] Brylinski, J.-L.: Un lemme sur les cycles �evanescents en dimension relative1, Ann. Scient. �Ec. Norm. Sup. 19 (1986), 460-467.[Del] Deligne, P.: Sur les repr�esentations l-adiques li�ees aux formes modulaires,Letter to Piatetski-Shapiro, 1973.[Dr1] Drinfeld, V.G.: Elliptic modules, Math. USSR Sbornik, 23 (1974), 561-592.[Dr2] Drinfeld, V.G.: Coverings of p-adic symmetric domains, Funct. Anal.Appl. 10 (1976), 107-115.[Fa] Faltings, G.: The trace formula and Drinfeld's upper half-plane, DukeMath. J. 76 (1994), 467-481.Documenta Mathematica � Extra Volume ICM 1998 � II � 141{151
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