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ABSTRACT

Classical parallel transport of vectors is described in a manner imme-
diately generalizable to parallel transport of quantum states in parameter
space. The associated anholonomy is the geometric phase. One realization
of parallel transport is by adiabatic cycling of the parameters. The phase
is the flux of a 2-form. The 2-form is equivalent to the antisymmetric part
of a gauge-invariant quantum geometric tensor. The symmetric part of this
tensor gives a natural metric on parameter space. If the parameters are
themselves regarded as dynamical variables, their adiabatic dynamics are
influenced by a gauge field depending on both parts of the tensor. Correc-
tions to the geometric phase (of higher order in an adiabatic parameter)
can be obtained by successive transformations to moving frames, thereby
generating a renormalization map of circuits in the space of Hamiltonians;
the iterates diverge in a universal way. This quantum renormalization is
illustrated by classical Newtonian and Hamiltonian renormalizations for a
pendulum with changing frequency. To conclude, there are some historical
remarks about geometric phases.



1. Introduction

The kind invitation to write this survey article provides two welcome
opportunities. First, to present the fundamentals of the subject in a new
perspective, reflecting some of the many recent developments and including
some new material; and second, to make some historical remarks, drawing
attention to important early works and describing the genesis of my own
ideas in this field.

Two concepts are crucial to the understanding of this dusty corner of
quantum theory which the brooms of our understanding are beginning to
disturb. They are anholonomy and adiabaticity.

Anholonomy is a geometrical phenomenon in which nonintegrability
causes some variables to fail to return to their original values when oth-
ers, which drive them, are altered round a cycle. The simplest anholonomy
is in the parallel transport of vectors, two examples being the change in the
direction of swing of a Foucault pendulum after one rotation of the earth,
and the change in the direction of linear polarization of light along a twist-
ing ray [1]]2] or coiled optical fibre [3-6] whose direction is altered in a cycle.
The anholonomy to be described here is quantum-mechanical, and concerns
the phase of a state which is parallel-transported round a cycle 7). Parallel
transport of a quantum state will here be introduced as a simple generaliza-
tion of parallel transport of a vector.

Adiabaticity is slow change and therefore denotes phenomena at the bor-
der between dynamics and statics. Adiabatic change provides the simplest
(but not the only {8]) way to make quantum parallel transport happen. The
variables which are cycled are parameters in the Hamiltonian of a system.
If the cycling is slow, the adiabatic theorem [9] guarantees that the system
returns to its original state. But it usually acquires a nontrivial phase, a
manifestation of anholonomy, and this is the phenomenon of interest here.

2. Classical Parallel Transport

It is convenient to begin by obtaining the law for the ordinary parallel
transport of a vector over the surface of a sphere, expressing it in 2 form
enabling instantaneous generalization to quantum mechanics. Let the unit
vector e be transported by changing the unit radius vector r (Fig.1) and
making two demands: that e - r must remain zero and that the orthogonal
triad (frame) containing e and r must not twist about r, i.e., f1-r = 0
where {1 is the angular velocity of the triad. These conditions define parallel
transport of e and lead to the law

é=MNAe where fl=rAf (1)

This law is nonintegrable; when r returns to its original direction after
a circuit C on the sphere, e does not return (in spite of never having been



twisted) but has turned through an angle o(C) which is the anholonomy
now to be determined. Define e’ = rAe (so that r, e, & form an orthogonal
triad) and the complex unit vector

¥ = (e+1e')/V2 (2)

in the plane perpendicular to r. In terms of ¢, the parallel transport law
(1) (which holds for e' as well as e) takes the simple form

Im ¢ g =0 ie., Im ¢*dep =0 (3)

where d is the change in t resulting from a change dr.

Figure 1. Rotation by o(C) after parallel transport of vector e round
circuit C' on a sphere,

To find a(C) we chart the passage of e and e’ relative to a local basis
of unit vectors u(r),v{r) (Fig.1) defined at each point on the sphere: For
example, we could choose u and v to lie along the paralle] of latitude & and
meridian of longitude ¢ at r = (sinf cos¢, sinfising, cosh), i.e.,

u = (—sing, cosg, 0) , v = (—cosf cosg, —cost sing, sind). (4)
Specifying a local basis is equivalent to specifying the complex unit vector

n(r) = (u(r) +iv(r))/ V2 (5)
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If the angle between the transported e and the local u is «(t}, (2} and

(5} give
Y = nexp(—ia) (6)

whence (3) gives the anholonomy as

=1Im f/ dn- dn (7

where in the last equality Stokes’ theorem has been used and the integral is
over the area on the sphere bounded by C. It is an important result that the
integrand in (7) is independent of the choice of local basis u, v: a change in
this choice can be represented by a rotation p(r) which induces the gauge
transformation

n(r) — n'(r) exp {iu(r)} (8)

under which dn* A - dn is invariant.
In terms of arbitrary parameters X;, X, specifying r {:.e., position on
the sphere), Eq. (7) can be written explicitly as

QS(C) = Im f/ Xm d.Xz (6111‘- azn - 6211.' E)ln) (9)
as5=C ’

where 9; denotes 3/3dX;. The choice X; = 8, X2 = ¢, together with (4),
yields the integrand df d¢ sinf, which is simply the area element on the
sphere, leading to the old result that the anholonomy «(C) is the solid angle
subtended by C at the centre of the sphere.

3. Quantum Paralle] Transport

To make the generalization to quantum mechanics, we replace the com-
plex unit vector ¢ by a normalized quantum state |¢), i.e., a unit vector
in a Hilbert space, and position r = {X;, X;) on the sphere by position
X = (X1, X2,...) in a space of parameters governing the physical system
represented by |¢). At each X, |¥) is defined up to a phase (just as e was
defined up to a rotation at each r). Then a natural transport law [10] gov-
erning the phase of |) as X varies is provided by reinterpreting (3) as the
connection

Im (ldy} = 0. (10)

Like (3), this law is nonintegrable: when X is taken round a circuit C, {2)
returns with a changed phase. This change is the quantum geometric phase
7{C); thus

{Yinitial| Ynal) = exp{iv(C)}. (11)
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To find 4 we again introduce a local basis by choosing at each X a definite
(and so of course single-valued) state [n(X)), relative to which [¢) is defined
by

[} = [n(X)) exp(:7) (12)

fd'y = -Imf(nidn)
= —-Im [/ {dn| Aldn) = - // V(X). (13)

a5=C a8=C

Then (10) gives

1(C)

The integrand V = Im (dn A dn) is the phese 2-form, whose flux through C
gives the geometric phase. V' is invariant under the gauge transformation

in(X)) — [n'(X)) = |n(X)) exp{in(X)} (14)

For this mathematics to represent physics, it must be possible to imple-
ment the connection (10} by the Schrodinger equation

iRl b) = H|W) (15)

governing the evolution of any state |¥). A simple way |7] is to incorporate
the parameters X into the Hamiltonian and change them slowly. Then
the adiabatic theorem guarantees that in the absence of degeneracies (a
restriction that can be removed [46]) |¥} will cling to one of the eigenstates
of H(X(t)), defined by

H(X)|%) = E.(X)|9) (16)

The adiabatic ansatz
. st
|¥) 2 |) exp {—%/ dt' En(X(t'))} (17)
0

then gives the connection (10} immediately upon projecting (15) onto |¢).
The state [n(X)) in the 2-form (13} is any solution of (16) with a definite
phase at each X.

Because of (17), the total phase change of | ¥} includes a dynamical part
as well as the v(C) being studied here. Thus

(Yanat| Pinitiar) = exp{i(vz + vC)} (18)
where, for a circuit that takes a time T,

T
N4 = —%f dt En{X (1)) (19)

0
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One might say that vz and v(C) give the system’s best answers to two
questions about its adiabatic circuit. For 4 the question is: how long did
your journey take? For v(C) it is: where did you go?

Aharanov and Anandan [8] give a different interpretation of parallel
transport. They regard the parameters X as labelling the state, rather
than H, so that Xy, Xa,... are coordinates in the projective Hilbert space
that includes all quantum states, but where states differing only in phase
(or normalization) are represented by the same point. Then a state |¥}
evolving under Eq. (15) (not necessarily adiabatically) so as to return in T
to the same X acquires a phase (18), with geometric part (13) (where the
phase of |n(X)) is an arbitrary function of X) and dynamical part given by

T
te=-3 [o dt (ViH1T) (20)

instead of Eq. (19). The relation between the two approaches is that in
the adiabatic case X parameterizes that part of the projective Hilbert space
corresponding to the nth eigenstate of the chosen family of Hamiltonians
H(X).

Several experiments have measured the geometric phase for particles,
with spin 1/2 (neutrons [11]), spin 1 {photons {3!} and spin 3/2 (chlorine
nuclei {12]). These depend on the result {7] that when H is a rotationally
symrmetric function of the spin, ‘.e.,

A =F(c-X) (21)

where X = (X, X3, X3) and ¢ = (01,09, 03) is the vector spin operator, the
geometric phase for the state with spin component n along X is

m(C} = -n0Q(C) (22)

where (2(C) is the solid angle subtended by C at X = 0.
These experiments all employ a superposition of eigenstates, rather than
a single one, so that

|‘pinitial) = Z anln)
n

[‘I’ﬁnal) = Z anl"-) exP{"('Tdn + ')‘n(c))} (23)

n

At the end, that is after X has been cycled, an observable A, which does

not commute with the final &, is measured (for example with a polarizer).
Thus

() = Y lan|*(n]Aln) + 2Re Y apam(m|Aln)

n mEn

x <08 { Ftan + 1n(C)] = btum + 1m(C)]}. (24)
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The oscillatory terms reveal v,(C). This scheme has proved more convenient
than the earlier suggestion [7] of splitting an ensemble of systems {e.g., a
beam of particles) into two subensembles, one being driven by an H which
is cycled and the other by an H which is not, and then recombining the
subensembles to detect 4(C) by interference. (That is, instead of using one
state and two Hamiltonians it is preferable to use two states — at least —
and one Hamiltonian.)

Hannay [13! found an analogue of the geometric phase for classicel sys-
tems. This was based on the simple observation that a quantum system in
an eigenstate is an oscillator {(because of the time factor exp(—1E,t/h), so
that classical osclllators should exhibit similar anholonomy when parameters
that govern them are cycled. The phase is now an angle, which may be an
angle in space, like that of a wheel, or — more commonly -~ an abstract
angle variable in phase space as with a harmonic oscillator. If the classical
system is multiply periodic (integrable) for all X, with N freedoms (that is,
coordinates q = (¢ --+gn) and momenta p = (p;--- py) and Hamiltonian
H(q,p; X), its orbit for fixed X winds round an N-torus |14 in phase space,
with N angle variables # = {8, - --8y) increasing uniformly. Conjugate to #
are N adiabatically conserved actions I = (I;---In) which label the torus.
After a slow cycle of X the angles have acquired shifts which contain a ge-
ometric as well as a dynamical part. For a spinning particle {15-17] this
classical anholonomy is the angle shift given by ordinary parallel transport
of a vector.

Underlying Hannay’s angles is a classical 2-form. This is the classical
limit of the phase 2-form in Eq. (13), and semiclassical asymptotics [18]
provides the expression

VX) = - (dpA-da)/h (29)

whose symbols should be interpreted as follows. The wedge product A links
the d’s in parameter space. The scalar product - links p and q. { ) denotes
an average over the angles on the torus labelled I which at X corresponds
[19] to the quantum state |n), i.e., { ) = 02” déy---diy [(27)N. dq is the
coordinate displacement linking corresponding points (labelled by the safne
#) on the tori I at X and X + dX, and similarly for dp.

It is amusing to note that if the 2/N variables q and p are replaced by
the N complex variables

0= (ny---ny) = (q+9p)/V2h (26)
then (25) takes the form

V(X) — Im(dn* A-dn) (27)

E—0

which bears a close formal resemblance both to the quantum expression (13)
and the geometrical formula (7).
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If the classical motion is not multiply periodic, that is if it is wholly or
partly chaotic, the question of the classical limit of V' is more delicate. It is
tempting to claim that the limit is (25) for nonintegrable as well as integrable
motion, but it is difficult to interpret the average { ) and the displacements
dg and dp. In one of several interpretations, obtained by a semiclassical
argument (not yet published) in collaboration with M. Wilkinson, { ) de-
notes a time average over all points on an infinite orbit, and dq and dp link
simultaneous points on the orbits for X and X + dX. For nonintegrable
systems, however, it is not easy to express this result by replacing { ) by a
phase-space integral over the manifold explored by the orbit, because it is
not clear what are then the ‘corresponding points’, linked by dq and dp, on
the manifolds for X and X + dX (for an ergodic system these are the two
constant-energy surfaces).

4. The Quantum Geometric Tensor

The central mathematical object underlying the quantum phase is the
2-form V = Im{dn A dn). This is equivalent to an antisymmetric second-
rank tensor field V;;(X) on the parameter space (or projective Hilbert space)
with a quantum state {n{X)) defined at each point, namely

Vis(X) = Im{{8:nldjn) = (9jn|din)} (28)

This tensor is invariant under the gauge transformation {14), but it is
not the only such invariant tensor. More general is the guantum geometric
tensor

Ti(X) = (8in| (1 — |n}{(n[} |8;m) (29)

which is Hermitian, .e., T;; = T;;. The projector |} {n| is essential to the
gauge invariance. The imaginary part of T}, is simply V;;/2, so we can write

Ty = gi; +1V3;/2 | {30)

where g;; is the real symmetric tensor field Re Tj;.

We know the quantum meaning of V};: its flux gives the phase v(C).
Therefore, it is natural to ask whether g;; has significance. The answer
is that g;; provides a natural means of measuring distances along paths
in parameter space; it is the quanium metric tensor. To understand why,
observe that a natural measure of the squared distance between two nearby
quantum states is the deviation from unity of their scalar product. If the
states are |1) and |2) this gives, for the distance between the corresponding
points X; and X3 in parameter space,

Ast, =1~ (1] (31)



15

Taking the limit 1 — 2, and using the fact that all states are normalized, we
obtain (using the summation convention for repeated indices i and j)

ds* = (dn| (1 - [n)n]) [dn} = (Bin] (1 - |n) (n])|9;m) dX:dX,
= Ti_-,' dX,'dXJ‘ = gij dX,'de (32)

as claimed. The quantum tensor was introduced in an interesting paper by
Provost and Vallee {501

From its structure, g;; can never give a negative ds?: in fact it is a
positive semidefinite metric. Along a finite path (not necessarily closed)
between |1} and |2), the quantum distance is

2
s12(C) = [1 (g:; dX,dX;)/2, (33)

Page [33] and Bouchiat and Gibbons [41] give explicit forms for some metrics
on the full Hilbert and projective Hilbert spaces.

The simplest example is a 2-state system, for which H has the form
(21), with & the 3 Pauli matrices. If we take X as a unit vector, specified
by parameters @, ¢ (polar angles), the eigenstates are

cos(f/2) e®/? sin{6/2) e'#/?
[+) = e =) ‘ (34)
sin(0/2) e7¢/2 ~cos{f/2) e~*4/2

For both of these, (32) gives ds® = df® + sinf d¢?, and this is the natural
metric on the sphere of parameters (which in this case is also the projective
Hilbert space).

Some interesting questions are suggested by this identification of g;; as
a metric on parameter space:

(i) Do the geodesics, and in particular the shortest paths, connecting non-
neighbouring states |1} and |2) have physical significance? One pos-
sibility, suggested by the work of Pancharatnam [20][21], is that the
geodesics are the special paths along which the state preserves its phase
in the sense that {1|2) is real. This is true for the 2-state system just
discussed, but seems to fail otherwise {probably for reasons of codimen-
sion). It is worth remarking that as 2 — 1 the overlap (1|2} is real to
second as well as first order in dX, for any path whatever.

(i) Can the geodesics be chaotic? This would require parameters X and
states |n{X)) for which the Riemann curvature defined in terms of g;;
is negative (at least in some places) and the space is compact.

(iii) Do femalies of geodesics (for example those issuing in different directions
from the same point) exhibit the generic caustic singularities classified by
catastrophe theory [22][23|? Do any such caustics have physical mean-
ing? In 2-state systems the geodesics from X focus nongenerically at the
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antipodal point on the sphere, where the state is orthogonal to n(X)},
but again this appears to be a special situation.

{iv) Is there any meaning or interest in gquantizing the geodesic motion in
parameter space, for example by taking as Hamiltonian the Laplace-
Beltrami operator g~/29,g71/%g,,0, (where g = det g;;)? Such quanti-
zations are different from that described in the next section.

5. Dynamics of the Parameters

Until now we have regarded X as classical parameters which can be
altered arbitrarily and which are unaffected by the quantum system they
drive. But no physical action is unilateral and in reality X are themselves
dynamical variables of a ‘heavy’ system coupled to the ‘light’ system (what
we have so far called ‘the’ system) and therefore subject to reaction from
it. Indeed the earliest application of the adiabatic theorem was the Born-
Oppenheimer theory of molecules, in which X are coordinates describing
the positions of the (heavy) nuclei and the light system is the electrons.
Recently it has been pointed out [24-27] that in lowest order the reaction of
the light system on the heavy dynamics is through a gauge field consisting of
a vector potential whose curl is the phase 2-form V, and a scalar potential.
Here I will show that what the gauge field really depends on is the quantum
geometric tensor T}, of section 3.

Let the heavy momenta, conjugate to X;, be P;. Then a fairly general
nonrelativistic quantum Hamiltonian for the coupled system is

ﬁtot = %ZQ!JEE + H(é; X)a (35)

2

in which @;; is an inverse mass tensor, £ are the dynamical variables of
the light system (coordinates, momenta, spins, . . . ) and H our previous
Hamiltonian in which the X were regarded as parameters and which has
eigenstates {n(X)) and energies E.(X). In the position representation for

the heavy system, that is P, = —ihd;, the adiabatic ansatz is to write the
full quantum state in the separated form

(X1¥) = Upeavy(X)|n(X)) (36)
and to consider the effective Hamiltonian governing ¥peavy to be

Hg= (n(X)II;[t.ot.ln(X»' (37)

In H.g the reaction of the light on the heavy system comes from the
action of the gradient operators P; on the X-dependence of |n}. A straight-
forward calculation gives

Heg = %ZQ,-,- {ﬁ,- - A,-(;‘c)} {13,- - Aj(fr)} +®(R) + Ea(X)  (38)
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where
Ai(X) = ih (n|din} (39)
and 52
P(X) = 7 ZQ{:‘ g:;(X) (40)

Here the emphasis is on the gauge potentials ® and A4; — the scalar E, (X)
is the ‘potential surface’ studied in conventional Born-Oppenheimer theory.
Although (38) is a quantum Hamiltonian it can be used in suitable circum-
stances to calculate the classical motion of the heavy system, which will be
affected by the fields A; and &.
The physical effects of the vector potential A; depend only on the ‘mag-
netic’ field
F,'J' = 6,-A,~ - ain = —hV,‘J‘ (41)

(including its singularities and values in inaccessible regions — I am not
denying the Aharonov-Bohm effect for heavy systems!). Thus the ‘magnetic’
field seen by the heavy system is the antisymmetric part of the quantum ge-
ometric tensor. The symmetric part of T;; determines the ‘electric’ potential
via Eq. (40). For an isotropic mass tensor, i.e., Qi; = 6;;/M, ® depends on
Tr gi;. It is a curious asymmetry that the ‘electric’ field depends on the
gradients of g;, whereas the ‘magnetic’ field depends on V}; itself.

The singularities of the gauge field are the degeneracies X* of the spec-
trum, where E,(X*) = En41(X*). It is already known (7] that the ‘magnetic’
field V;; (2-form) has monopole singularities. From the definition (29) of T;
it is clear that g;; has similar singularities, so that the ‘electric’ field near
X* is an inverse-cube force.

The situation near a degeneracy can be described by a special case of a
simple model, which is of independent interest (and which has been studied
from a different viewpoint by Anandan and Aharonov [28]), where the spin
s of one (light) particle is coupled to the spatial coordinates of a second
otherwise free (heavy) particle. Thus

B = 5P + F(X-6) (42)

Near a degeneracy the appropriate model is a 2-state light system, so that
we should take s = %, with linear coupling F « X.g.

The eigenvalues of X-¢ are nX, where X = [X| and —s < n < 5. The
quantum tensor for the state |n) can be shown to be

TH(X) = é% {(s(s+ 1) - nz) (ei &5 — (e x)(ej x)) T infe; A e;) -x}

(43)
where x = X/|X| and e; is the unit vector along the ¢ direction. The
metric tensor g;; has a zero eigenvalue, corresponding to radial parameter



18

displacements, which simply scale H leaving the states |n) unaffected: radial
motions cover zero distance.

From Egs. {38)-(40), the classical Newtonian equation for the heavy
parti cle involves the Lorentz force from the magnetic monopole and the
‘electric’ force

h? R (s(s + 1) — n?
-qu’(X) = —mVx Trg,-j = ( (MX?” )

(44)

This is of centrifugal type, and repels the parameters from a degeneracy
(becoming significant at a distance of order M~1/3), thereby tending to
preserve the validity of the adiabatic approximation. We obtain, when the
light particle is in the nth spin state,

= S (5% - 83 nF'(nX)
MX—2X3X/\X+WX"—X—X (45)

where S, = nh and S? = R%s{s + 1). This describes integrable motion, with
conserved energy and modified angular momentum MX A X - 5, X/ X,

6. Adiabatic Renormalization

Now we return to the adiabatic scenario of section 3 and realize that v4
and v{C') in Eq. (18) are but the first two terms in an infinite series involv-
ing powers of an adiabatic slowness parameter ¢, influencing the dynamics
through H whose time-dependence enters in the combination ¢t. The domi-
nant term is 74 (Eq. 19) and is of order €™!. The next term is 7(C), whose
unique feature — and the reason for its being called geometric — is that it
is independent of ¢, and so depends only on the sequence of Hamiitonians
along the circuit and not on its time history.

This uniqueness is not threatened by the observation that transforma-
tion to a moving frame (a common practice in problems involving spin [11])
can make ¥(C) appear ‘dynamical’ by making it emerge from a correction
to the energy rather than as anholonomy: the geometric structure of +(C)
is independent of how it is derived.

Transformations to moving frames have however another interest, in that
they form the basis of a renormalization (iteration) technique for generating
higher-order corrections to the phase. Details of the techrique have been
published elsewhere [29]; here I will outline the central idea, and give an
example.

Let the Hamiltonian Hy (t) generating the quantum motion be cyclic, in
the sense that Hy(+o0) = Hp(—00), and let it have instantaneous eigenstates
|ng(t)) and energies Eg(n,t). The evolving state |¥p(t)) is determined by

i[¥o(t)) = Ho(t)|Wo(t)) (46)
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with the initial condition
|¥o(—0c)} = [no(~o00)) = |N) (47)

After the cycle, t.e., at t = +c0, W) will have returned only approximately
to [N}, so a phase can be defined precisely by

~v = Im log (N|¥g(+00)) ~ 74 (48)

The geometric phase ¥(C) (Eq. 13) is lim_¢v. The aim is to obtain in-
creasingly accurate approximations to v — ¥(C). It is worth emphasizing
that the non-aim is the determination of the nonadiabatic transition prob-
ability 1 — |{N|¥g(+00)}[2, because this is the usual objective of adiabatic
theory, and that the non-method is perturbation theory, because this is the
usual technique 130][49].

Figure 2. Renormalization in Hilbert space.

To explain the method used instead, we refer to Fig. 2. When ¢ is small
we expect |¥g(t)) to be close to |ng(t)). This suggests that defining a unitary

-

transformation Ug(t) by
Ino(t)) = Uo(t}NV) (49)
will be useful. The inverse operator U] sends |ng(t)} back to |N), that

is, it freezes the moving eigenstate. Therefore I:’J should almost freeze the
evolving state [¥(t)), and so we define

[91(2)) = U5 %o(t)).- (50)
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We are attempting to follow |{¥p(t)} by transforming to a moving frame. The
Hamiltonian governing |¥,} is

ﬁl - Ugggﬁg - I-I}JUQ, (51)

in which the second term is the quantum analogue of the inertial forces
generated classically by transforming to a moving frame.

Now that the original problem has been reduced to one of the same form
but involving {¥;) and H; instead of {¥p) and Hy, it is natural to iterate
the process by defining [¥,) = [}Ii\]}'l), where U] freezes the eigenstates
iny) of H,. This defines a renormalization map Hy — Hp.q in Hamiltonian
space. The form of the map is simple when when written in a basis of initial
states (which are unaffected by renormalization) and with the phases of the
eigenstates chosen so that they are parallel-transported, i.e., (ng|ng) = 0:

_; () He()ine(2))
Ek(n’E, f) - Ek(n, t)

(M{H. N} = Ex(n,t)ém (1-émn}  (52)

The &th a.pproxnnant +(¥) to the phase is obtained by neglecting the
off-diagonal terms in Hk_, . 4%} is the sum of the phase anholonomies of
the Hamiltonians Hp ... Hy (arising from the continuation of :ng(t)) from
t = —ootot = 4o and reflected as phase factors (NiUi(-oc) V), to-
gether with an additional term involving Ej {29]. (A contrary choice of
phases, i.e., ing(+o0)) = [nx( o0)), gives {N|Ux(+oo}!N; =1, but now the
diagonal terms in Eq. (52) contain extra terms —i{ny|n;) and all corrections
— including 7{® = 4(C) as mentioned previously — appear dynamical.)

Each renormalization produces a new Hamiltonian which over —oo0 <
t < +oo traverses a loop in Hamiltonlan space. If the renormalizations
converged, successive loops would get smaller {by a factor ¢ each time). But
this does not, and indeed cannot, happen. If it did, (¥(—oc){¥(+oc)) would
have modulus unity, contradicting the existence of transitions to other states.
The accumulation of inertial forces in successive renormalizations defeats our
attempts to follow the motion, which slips cut of control, causing the scheme
to diverge.

Nevertheless, the corrections generated by renormalization do get smailer
at first, and enable v to be determined with an error of order exp(—1/¢),
which occurs after £ ~ 1/e renormalizations. A detailed exploration [29] of
2-state systems (the simplest nontrivial case, for which the geometry of the
loop map can be made explicit) reveals that the Hamiltonian loops (which
lie on a 2-sphere) get smaller and then larger in a universal way (that is,
almost always independent of the form of the initial loop)}.

This procedure is typical of asymptotic procedures and occurs also in the
more usual adiabatic perturbation theory. It prompts interesting questions.
What is the dynamical significance of the moving frame that produces the
best approximant to v, generated by [}k~1 /el:fk_l .- {y? Can the exponential
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residue v — 7(") be more closely approximated by generalizing the Borel (or
some other) resummation method [47]?

It is instructive to illustrate adiabatic renormalization with the classi-
cal problem which gave birth to the entire subject, namely the Ehrenfest-
Einstein pendulum [31] whose frequency is slowly changed. Newton’s equa-
tion is

Alz(t) +wi{t)z(t) = 0 (53)
in which the frequency w(t) is a smooth nonzero function with w(+o0) =
w(—00) = we. The same equation describ es the {time-independent) quan-
tum mechanics of a beam of particles with energy E encountering a potential
well or hill V' (z) such that 'E > V(z) for all z.

3 D

exponenfially small
action range

phase
point 1!===!!!!..-!====ii-‘
. (=)
original phase \_/

curve phase final
paint phase
curve
1' — _C0O 1" —e= 1. O

Figure 3. (a) Initial and (b} final phase portraits for slowly-altered pen-
dulum.

Consider motion in the phase plane with variables z and p = z. Initially,
i.e., as 1 — —oo0, each phase point moves round an ellipse with frequency
weo (Fig. 32). The subsequent motion lies on a curve that at each instant
approximates one of the elliptical contours of the Hamiltonian

H(z,p,t) = -:1; [p2 + wz(t):cz] (54)

at that time. These subsequent ellipses have approximately the same area
as the original one, because the adiabatically-conserved action is area/2r.
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As t = -++00, then, the phase point is close to its original ellipse and we can
ask: where is it on the ellipse, 7.e., what is its phase?

This would be a question about Hannay’s angle were it not for the fact
that this is a classical problem without anholonomy, so ‘that the angle we
seek consists entirely of nonadiabatic corrections. By identifying the solution
of (53) with quantum transmitted and reflected waves, it can be shown that
the oscillation which begins as

T +1p/we = A exp {—i(/ﬁtdt’w(t') + a)} (t— —c0) (55)

ends as

T + ip/we = A exp {—i(/ﬂt dt'w(t') + a)} [T-1 + RT exp(2i0)]
(t = +oc)  {56)

where A is a real constant and R and T are the complex gquantal reflection
and transmission coefficients.

Therefore the phase shift depends on the initial phase ¢, but this depen-
dence is slight because R is exponentially small in the slowness parameter ¢
(if w depends on €t). In any case, we can define a phase by averaging over
o, with the exact result

D U LA . PN B
7:—z—ﬂ/;#datl_l'rglo[lmlog(:c+zp/ww)+/0 dt w(t)]—lmlogT. (57)

Thus ‘Hannay’s angle’ is here the phase of the transmission coefficient. The
final action I also depends on o, but the range is (Inax — Jmin)/ Tinitiad =
4|R|/|T|* which again is of order exp(—1/¢); the whole initial ellipse of phase
points evolves ultimately into one exponentially close to it and deforming
periodically with frequency we, (Fig. 3b). Newtonian renormalization of
{53) is based on the transformation

z(t) = 5;};;3) ; t = /0 t dt' w(t) (58)
whose new coordinate satisfies
8} z1(t1) + wi(ta)a1(ts) = 0 (59)
where
wf(t1(8)) = 1+ w3 9w, (60)

Clearly w; =~ 1 if w varies slowly,
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Renormalization consists of iterating this transformation, the aim being
to freeze the frequency. The kth approximant for -+ is obtained by approxi-
mating wg+1 = 1, so

7 = f " (dther — wlt) dt) = /

—& -

oo k
dt w Hf.dj -1 (61)
o0 i=1

Thus

MU (no anholonomy in this problem)

A0 = [” () () -1) (62)

etc. 711 is of order «.
An equivalent Hamiltonian renormalization is produced by iteration of
the canonical transformation generated by

S(z,p1,t) = xplwl"z - zzatw/m. (63)

This gives

z; = zwl/?; p = pw M2+ 20w /2 (64)

and hence the transformed Hamiltonian
H(zy,p1,t) = H + 845 = Yo(t) (p} + wizi) (65)
where w; is given by {60). Rescaling time to ¢; as defined in (58} now gives

Hi(z1,p1,ta) = § (p} + wi(ta) 23 (t1)) (68)

which is the first renormalization of the original Hamiltonian (54). The aim
of subsequent renormalizations is to freeze the Hamiltonian into one whose
contours are circles.

I have expressed these classical iteration schemes in terms of the renor-
melization of Newton’s or Hamilton’s equations in order to illustrate the
idea behind the quantum renormalization described earlier. But they can
be shown to be equivalent to the following fairly conventional WKB-like
[32] procedure {to be contrasted with an unconventional WKB analysis by
Wilkinson {45] which, unlike this one, does involve anholonomy). Write the
exact solution of Eq. {53) as

t
z(t) = Q-12(¢) - exp {z[ at Q(t’)} . (67)
0
Then the ‘frequency’ Q(t} satisfies

0(t) = wi(t) + Q) 322 (2). (68)
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In terms of 2, the phase shift is, exactly,
oo
¥ :/ d [0(t) - w()]. (69)
— o0
Successive approximants are obtained by the iteration
Qo) =, qlk-1) = [wz + (N2 g2 (qk)y 172 1/2' (70)

The inevitability and universality of the divergence of these schemes can
be demonstrated by considering high-order iterations of Eq. (60), for which

wplt) =1 + 6 (1) (71)

and & <« 1. Then t;:1 & t; {cf.Eq. (58}), and Eq. (60} can be written

approximately as

6k+1(t) =] -%afdk(t) (72)
The asymptotics of this recursion as k — oo can be estimated by Fourier
analysis, on the assumption that 6o(t) is a real function of 7 = ¢t, analytic in

a strip about the real r axis with its nearest singularities at r; & i75. Then
with & = (et — n)/m2 it is possible to show that

op(t) —

k—oo

(73)

Ak (2k)! | | cos {(2k + 1) cos™1(1 + €2)-1/2}
4krZk+1 (1 + c2)k=1/2

where A is a constant.

The first factor in (73) shows the divergence: €**(2k)! decreases until
k ~ 13 /¢, when & ~ exp(—2ry/¢), and then increases until &, ~ 1, when the
scheme breaks down. The second factor is the universal function describing
the asymptotic ‘frequency.’

7. Historical Remarks

First I consider the important special case where the transported states
|#) can be represented by wavefunctions that are real. Then the only possible
phase factors associated with a circuit C are 1. It follows [7] from the result
(22) for spins that the factor is -1 when C encloses a degeneracy X* of the
spectrum to which |t) belongs; otherwise, it is +1. The peculiarity of this
case is that parallel transport (10) is the only possible smooth continuation
law, rather than a mathematically natural choice, concordant with quantum
dynamics, from 2 infinity of possibilities.

Eigenfunctions can always be made real if their Hamiltonian matrix
is real symmetric rather than complex Hermitian (this is the case when
there is (bosonic) time-reversal symmetry [34]). Thus the phase law states
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that an eigenfunction of a real symmetric matrix depending on parameters
changes sign under smooth continuation round a degeneracy. This result
is so simple - it holds even for 2 x 2 matrices ~ as to deserve mention in
elementary expositions of matrix theory, but 1 have not found it in any such
text. Arnold [14] is aware of the sign change, and attributes it to Uhlenbeck
135] in 1976. It was already known to theoretical chemists: Herzberg and
Longuet-Higgins [36] gave an explicit statement in 1963. But the sign change
(for 2 x 2 matrices) was implicit in work of Darboux {37] as long ago as 1896.
This concerns the differential geometry of surfaces, and is worth describing.

Darboux considered a curved surface described locally by its deviation
z(Xi, X3) from the plane X = (Xi,X2). Then the 2 x 2 real symmetric
curvature matrix at X is

H,‘_f(X) = Biajz(X). (74)

The two eigenvalues are the principal curvatures at X, and the corresponding
eigenvectors give the (orthogonal) directions of the lines of curvature at X.
Degeneracies are umbilic potnts, where the surface is locally spherical (two
curvatures equal). Umbilics are singularities of the net of curvature lines.
The sign-change rule states that a line of curvature turns by « in a circuit
of an umbilic: the Poincaré index of the tensor field (74) is i%. Fig. 4
shows how this happens for the three generic patterns [38){39] of curvature
lines near an umbilic; the star has index -—%, and the lemon and monstar
have index —i—%. Star and lemon singularities occur as disclinations in liquid
crystals [48].

The full phase — rather than the impoverished special case of the sign
change for real matrices — was anticipated at least twice. First, in the
mid-1950’s, Pancharatnam |20}[21](40] studied the 2-state Hermitian case in
the context of the polarization states of light travelling in a fixed direction.
The parameter space is the surface of the Poincaré sphere. Pancharatnam
introduced the useful idea of defining two different states |1) and {2) as
‘in phase’ if the intensity of their superposition is maximal, a condition
equivalent to their overlap (1i12) being real and positive. This defines a
connection between the corresponding parameters X; and X, as the state |2)
obtained from |1) by phase-preserving transport along the shorter geodesic
arc between X; and X;. He discovered that the connection is nontransitive:
a circuit X;X;X3X; produces a state differing from [1) by precisely the
same phase anholonomy [21] {minus half the solid angle of the circuit) as
that given by parallel transport.

Second Mead [24] and Mead and Truhlar [42], studying adiabatic the-
ory for molecules, made two important advances. They showed how the
sign-change rule for degeneracies would induce modifications in the nuclear
dynamics and hence change the vibration-rotation spectrum. And they re-
alized that in the absence of time-reversal symmetry the nuclear dynamics
would be influenced by the vector potential (39) and the corresponding ‘mag-
netic’ field (41}, for which they gave a general formula.
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monstar

star

i o PR T

-1/2

Figure 4. The generic patterns of lines of curvature near an umbilic point
on a surface, illustrating the reversal (+1/2 index) round the singularity.

My involvement with this subject began in 1979 with the appreciation
[43] that degeneracies play a part in determining the fine-scale statistics of
energy levels of quantum systems whose classical counterparts are noninte-
grable. The systems under study possessed time-reversal symmetry and so
their states should change sign round degeneracies. Seeking to display some
degeneracies and their sign changes, M. Wilkinson and I [44] made a detailed
investigation of the spectra of vibrating triangles as a function of angles (two
parameters). ‘

After a seminar reporting this work in the spring of 1983 at the Geor-
gia Institute of Technology, R. Fox asked me, “what happens to the sign
change if a magnetic field is switched on?”, and this question led directly
to the discovery of the phase and its 2-form several weeks later. Only when
the work was written in first draft was I made aware (by E.Heller) of the
papers by Mead and Truhlar. In August 1983, after my paper 7] had been
submitted for publication, I described the phase to B.Simon, who instantly
saw its relationship to Hermitian line bundles and Chern classes, His pa-
per {10] directed many people towards this subject, thereby provoking the
considerable activity of which this book is a partial record. But thanks to
a referee’s delay and an accident of astronomy, his paper appeared in 1983,
mine in 1984,
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