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Abstract

Our plan is to try to understand Faltings’s proof of the Mordell conjecture. The focus will be on his
first proof, which is more algebraic in nature, proves the Shafarevich and Tate conjectures, and also gives
us a chance to learn about some nearby topics, such as the moduli space of abelian varieties or p-adic
Hodge theory. The seminar will meet 4:10–5:30 every Thursday in 1360. Some relevant references are
[CS86; Fal86; Tat66; Tat67], as well as notes from a seminar on this topic at Stanford recently:

http://math.stanford.edu/~akshay/ntslearn.html
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1 September 15: Overview (Andrew Snowden)

Today we will list the results of Faltings that lead to the proof of the Mordell conjecture, and then give an
overview of the proof. Afterward, we will distribute the talks that do not have speakers yet.

1.1 Statements of Faltings’s results

Let K be a number field, and let S be a finite set of places. Fix g ≥ 2. Faltings proved a number of statements,
which we will label A–G. The main goal of this seminar is the following:

A. The Mordell conjecture. If X is an algebraic curve over K of genus g ≥ 2, then there are only finitely
many rational points, i.e., the set X(K) of K-rational points is finite.

This was conjectured by Mordell around 1910, and was proved by Faltings around 1983.

Example 1.1. A implies that the curve xn + yn − 1 has finitely many K-points if n ≥ 4.

A is in fact the last statement we will prove; we will continue by listing results in reverse logical order.
The following statement is about objects, not points:

B. The Shafarevich conjecture (for curves). There exist only finitely many (smooth, projective) curves
(up to isomorphism) defined over K of genus g and with good reduction outside of S.

B sort of looks like A, but instead concerns the K-points in the moduli space of genus g curves. The
following statement is almost like B (if you replace a curve with its Jacobian), but has the added information
of a polarization:

C. The Shafarevich conjecture (for abelian varieties). Fix d ≥ 1. Then, there exist only finitely many
abelian varieties over K (up to isomorphism) of dimension g with good reduction outside S, and with a
polarization of degree d.

Here we recall that the degree of a polarization is the order of the kernel of the polarization, which we
recall is an isogeny. Also note that C probably holds with g = 1 as well.

To state the next results, we need to recall the notion of a Tate module.

Recall 1.2. If A is an abelian variety of dimension g, and ` is a prime, then the `-adic Tate module of A is
defined to be

T`(A) = lim←−
n

A[`n](K),

where the transition maps are multiplication by `. As long as ` is coprime to the characteristic, then
A[`n](K) ∼= (Z/`nZ)2g, and so T`(A) ∼= Z2g

` . The Tate module T`(A) has an action of GK = Gal(K/K). The
rational Tate module is

V`(A) = T`(A)
[

1
`

] ∼= Q2g
` .

The Tate module contains a whole ton of arithmetic information about the abelian variety it is constructed
from; in fact, it is almost a complete invariant. This is the content of E.

D. Semi-simplicity of the Tate module. If A is an abelian variety over the number field K, then V`(A)
is a semi-simple representation of GK .

D is true over a finite field as well.

E. Faltings’s isogeny theorem. If A and B are two abelian varieties, then the natural map

HomK(A,B)⊗Z Z` −→ HomGK (T`(A), T`(B))

is an isomorphism.

This is what we mean when we say that the Tate module is almost a complete invariant: if two Tate
modules are isomorphic, then there is an isogeny between the abelian varieties they are defined from. This
therefore reduces a geometric problem to a problem concerning Galois representations, which is almost linear
algebra.

We will start by proving D and E, and then work up. The first eight talks will focus on D and E, and
the last two talks will do A–C.
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1.2 Overview of the proof

Before Faltings proved his results, Tate in the 1960s showed the analogues of D and E in the case where the
number field K is replaced by a finite field. Tate’s proof is therefore the “model argument” for Faltings’s
proof, and so we start by reviewing Tate’s proof. While we won’t show Tate’s theorem in its entirety, we will
show one key piece of the argument: it shows how to get geometric information from representation-theoretic
information about Tate modules. This key piece is the following:

Key Result 1.3. If A is an abelian variety over a finite field K, and W ⊂ V`(A) is a subrepresentation of
the rational Tate module, then there exists u ∈ End(A)⊗Q` such that W = u(V`(A)).

You can reduce an analogue of E to this result by taking W to be the graph of the map on Tate modules.

Idea of Proof. Let Xn be the integral elements in the W -subspace, that is,

Xn = (T`(A) ∩W ) + `nT`(A).

Note that Xn is of full rank/has finite index in T`. A finite index subrepresentation in the Tate module
corresponds to an isogeny to another abelian variety, and so we can let fn : Bn → A be this isogeny
corresponding to Xn, so that fn(T`(Bn)) = Xn.

We then get an infinite sequence of isogenies, and we can use the following:

Fact (∗). Up to isomorphism, there are only finitely many abelian varieties of fixed dimension g over K (a
finite field).

The idea is to embed the moduli space of principally polarized abelian varieties into a projective space,
on which there are only finitely many points, and then use Zarhin’s trick (which says an eightfold product of
an abelian variety is principally polarized) to reduce to this case.

Now the Bn’s fall into finitely many isomorphism classes, and so you can assume infinitely many
are isomorphic; for simplicity, suppose that infinitely many Bn are isomorphic to A, and label them
Bn1

, Bn2
, Bn3

, . . .. Now pick an isomorphism gni : A→ Bni for all i, and consider the composition

hi : A
gni−→ Bni

fni−→ A ∈ End(A).

Now hi ∈ End(A)⊗Z`, and the hi accumulate in the space End(A)⊗Z` to give a map u ∈ End(A)⊗Z`.

So E reduces to Key Result 1.3.
To prove D and E for number fields, Fact (∗) is no longer true! But we are only using it in a very

restricted way: we only used that the Bn’s land in finitely many isomorphism classes. Since by construction,
they were all isogenous to A, the following analogue of (∗) would be enough to carry out this argument over
a number field K to get Key Result 1.3:

F. If A is an abelian variety, then there are only finitely many abelian varieties over K, up to isomorphism,
that are isogenous to A.

We will actually show a more restrictive version version of F, since in our particular setting all of the
Bn’s arise from the same construction using W .

It is not apparent how to prove F; we need some sort of finiteness to get this argument going. The idea
comes from elliptic curves, for example over Q. Recall that elliptic curves are (more or less) parametrized by
their j-invariant, and so over Q, elliptic curves correspond to rational numbers. The standard way to cut
Q into a finite set, at least in arithmetic, is to use heights. The basic idea is that height(ab ) = max(|a|, |b|).
You can define a similar function for Qn and projective spaces, and then projective varieties by looking at
Q-points when embedded in a projective space.

Now we want to apply a similar idea to the moduli space of abelian varieties. There exists a moduli
space Ag of abelian varieties of dimension g, which gives an embedding Ag → PN by using (a power of) the
Hodge bundle. Then, you can consider heights of points in Ag by using the height function on PN to get the
moduli-theoretic height

H : Ag(K) −→ R.
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So for elliptic curves, the map is a map to P1, and you take heights of points.
Now the issue is that while there are only finitely many points of bounded height, there is really no way

to be able to tell what the height of a given abelian variety is. Faltings got around this issue by defining
another height function intrinsically from the datum of an abelian variety, which we now call the Faltings
height, denoted h(A).

Example 1.4. Let E/Q be an elliptic curve. We can define the Faltings height h(E) of E as follows. Let
E /Z be the Néron model of E, and consider the embedding

Z ∼= H0(E ,Ω1) ∈ H0(E,Ω1) ∼= Q.

Choose a generator ω for Z ∼= H0(E ,Ω1). We then define

h(E) =

∫
E(C)

ω ∧ ω.

For higher dimensional abelian varieties, you basically do the same procedure, by taking more generators for
H0(A ,Ω1).

This is nice since you don’t need to know anything about the moduli space. The downside is that there
is no way to be able to tell there are only finitely many abelian varieties of bounded height. Faltings got
around this by showing

G. h and H are not very different.

The precise statement implies the following:

Corollary 1.5. Up to isomorphism, there are only finitely many abelian varieties over K with bounded
Faltings height h.

This is the last of the statements we wanted to state, and is the first one we will try to prove. We now
give some indication to how to prove each statement from the previous one.

G⇒ F. The key is to understand how Faltings height changes under isogenies that show up in our situation.
There is a simple formula that tells you exactly how it changes in terms of heights and arithmetic information
about the kernel. A long computation with group schemes and some p-adic Hodge theory (the Tate
decomposition) gives the conclusion F.

F⇒ D + E. This mirrors Tate’s original argument, as we have already said.

D + E⇒ C. This is done in two parts:
1. We first show finiteness up to isogeny. By D and E, it suffices to show that there are only finitely many

possibilities for the Tate module, as a Galois representation. This is reasonably straight-forward, by
using Chebotarev’s density theorem, and investigating Weil numbers.

2. We can then show finiteness up to isomorphism. To do this, we again need to study the behavior of
heights under isogenies. This is similar to the argument for G ⇒ F: you use group schemes and p-adic
Hodge theory, although the key input this time is Raynaud’s theorem about group schemes.

C⇒ B. Take Jacobians.

B⇒ A. This is an argument due to Paršin. Roughly, the idea is as follows: let X/K be a curve, and let P
be a rational point. Then, there is a geometric construction that produces a finite cover XP → X of X that
ramifies only at P , and given such a map you can recover P . The genus and field of definition of P increase,
but this increase is bounded independently of P , and you get a map

X(K) −→ {possible XP ’s}.

The latter set is finite by B, and this map is in fact finite-to-one, and so A follows.
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2 September 22: Endomorphisms of abelian varieties over finite
fields (following Tate) (Emanuel Reinecke)

The main reference for this lecture is [Lic10]. See also [Tat66; MilAV; Mum08, App. 1].
We first start by restating Tate’s theorem on abelian varieties over finite fields:

E. Tate’s isogeny theorem. Let A and B be two abelian varieties over k = Fq. Let ` be a prime that is
coprime to char k, and let G = Gk be the absolute Galois group. We have the following commutative diagram:

Homk(A,B)⊗ Z` HomZ`(T`(A), T`(B)) � G

HomG(T`(A), T`(B)) = HomZ`(T`(A), T`(B))G
(?)

⊂

where the G-action on HomZ`(T`(A), T`(B)) is given by (gf)(x) = gf(g−1(x)). Then, the morphism (?) is
an isomorphism.

The proof of the theorem will also give

D. Semisimplicity of Tate modules. Let A be an abelian variety over k = Fq. Then, the rational Tate
module V`(A) = T`(A)⊗Q` is a semisimple G-representation.

2.1 Motivation

We begin with some motivation. In this subsection we are working exclusively over a finite field k = Fq.
Then, the Frobenius endomorphisms πA and πB relative to k act on A and B, respectively. Tensoring the
map (?) up by Q`, we get a map

Homk(A,B)⊗Q` −→ HomG(V`(A), V`(B)) (??)

Via this map, πA and πB induce endomorphisms V`(πA) and V`(πB) on V`(A) and V`(B), respectively, and
we can consider the characteristic polynomials PA and PB for V`(πA) and V`(πB). We can then use

A toy case of the Weil conjectures 2.1. PA and PB have Z-coefficients, and they are independent of `.

Next, provided that the action of Frobenius on V`(πA) and V`(πB) is semisimple (we will talk about this
later), a bit of linear algebra shows that you can find r = r(PA, PB) ∈ Z such that

dimQ`
HomG(V`(A), V`(B)) = r(PA, PB).

In particular, since the right-hand side does not depend on `, neither does the left-hand side; this will be
used in the proof.

Now we combine this with what Tate’s theorem would tell us to obtain

rk Hom(A,B) = dimQ`
HomG(V`(A), V`(B)) = r(PA, PB).

We state a first corollary of Tate’s theorem.

Corollary 2.2. Let A and B be two abelian varieties over k = Fq. Let PA and PB be the characteristic
polynomials of the (relative) Frobenii πA and πB acting on V`(A) and V`(B), respectively. Then,

(a) rank Hom(A,B) = r(PA, PB);
(b) The following are equivalent:

(b1) B is k-isogeneous to an abelian subvariety of A;
(b2) V`(B)) is G-isomorphic to a G-subrepresentation of V`(A) for some ` 6= char k;
(b3) PB | PA in Q[t].

(c) The following are equivalent:
(c1) B is k-isogeneous to A;
(c2) PB = PA;
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(c3) ζB = ζA, that is, A and B have the same number of rational points over any finite extension of k.

This continues the theme of expressing the geometry of A solely through algebra. The last part (c) is
particularly interesting: it says that if two abelian varieties are such that their rational points over any field
extension are the same, then the abelian varieties are the same.

Let us see how Tate’s theorem implies the Corollary.

Proof. (b1)⇒ (b2). Let u : B → A be a k-homomorphism. Then,

2 dim(keru) = dim(V`(keru)) = dim(kerV`(u)). (†)

So u is an isogeny if and only if V`(u) is injective.
(b2) ⇒ (b1). Let α : V`(B) ↪→ V`(A). Then, we can find by Tate’s theorem some u ∈ Hom(B,A) ⊗Q`

such that V`(u) = α, and moreover we can choose u ∈ Hom(B,A)⊗Q such that V`(u) is arbitrarily close to
α. Since matrix rank is a lower semi-continuous function, if V`(u) is close enough to α, then we can ensure
V`(u) is injective. Now taking multiples, we can assume that u ∈ Hom(B,A). Using (†), you get that u is an
isogeny to an abelian subvariety of A.

The rest is left as an exercise: some are easy, some require knowing that πA and πB act semisimply on
V`(A) and V`(B), and some use the Weil conjectures.

The other big application of Tate’s theorem comes from understanding the endomorphism algebra of an
abelian variety.

Corollary 2.3. Let A be an abelian variety of dimension g over k = Fq. Let πA be the relative Frobenius
endomorphism of A, and PA its characteristic polynomial. Then,

(a) F := Q[πA] is the center of the endomorphism algebra E := Endk(A)⊗Q.
(b) 2g ≤ dimQE = r(PA, PA) ≤ (2g)2.

2.2 The isogeny category

In this subsection and the next, k can be any field.
We want to make the notion of considering abelian varieties “up to isogeny” precise.

Recall 2.4. If f : A→ B is an isogeny of degree n, then there exists a map g : B → A such that the diagram

A A

B

n

f g

commutes. We can then define the category AV◦k, which has abelian varieties over k as objects, and
morphisms are given by Hom◦(A,B) := Hom(A,B)⊗Q. In particular, if f ∈ Hom(A,B) is an isogeny, then
f−1 ∈ Hom◦(B,A).

This category satisfies some very nice properties:

Theorem 2.5 (Poincaré complete reducibility). If B ⊂ A is an abelian subvariety, then there exists another
abelian subvariety C ⊂ A such that the canonical map B × C → A is an isogeny.

The idea of the proof is very simple: if B ↪→ A, then you can look at the dual map A∨ � B∨. But the dual
of an abelian variety is isomorphic to the abelian variety itself in the isogeny category, and so you get a
splitting B → A of this surjection. See [MilAV, Ch. I, Prop. 10.1].

Corollary 2.6. AV◦k is semisimple.

Proof. If A1 splits off from A, then A1 ×A′ → A, and so you get an isogeny A1 ×A2 × · · · ×An → A where
Ai are simple by induction.

Remark 2.7. Normally being abelian is part of being a semisimple category, and in fact, AV◦k is abelian.
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Corollary 2.8. (?) is injective.

Proof. We in fact show that
Homk(A,B)→ HomZ`(T`(A), T`(B))

is injective; see [MilAV, Thm. 10.15] for the proof that tensoring up to Z` does not hurt injectivity.
Suppose u : A→ B is such that T`(u) = 0. Then, u(x) = 0 for all x ∈ A[`n](ks). This is bad: if A′ ⊂ A is

a simple abelian subvariety, then keru|A′ is either A′ or zero, but since it contains A′[`n](ks), we must have
keru|A′ = A′. By semisimplicity, this implies that u = 0.

2.3 Initial reductions

Our first reduction reduces studying the morphism (?) involving Z`-modules to studying the morphism (??),
which involves Q`-vector spaces, which are nicer to study.

Lemma 2.9. (?) is an isomorphism if and only if (??) is an isomorphism.

Proof. First, since (??) is just (?) tensored up by Q`, and we already know that (?) is injective (Corollary
2.8), we know that (??) is injective. So it suffices to show that (?) is surjective if and only if (??) is surjective.
Moreover, the forward implication follows already from right-exactness of the tensor product, and to show
the converse implication, it suffices to show that

cok(?) = HomG(T`(A), T`(B))/ im(?)

is torsion-free, for if cok(?) 6= 0, then it must be torsion. In fact, Z`-modules can only have `n-torsion, so it is
enough to show that cok(?) does not have `-torsion.

So let α : T`(A) → T`(B) be `-torsion, that is, `α = T`(u) for some u ∈ Hom(A,B) ⊗ Z`. We want to
show that α = T`(v) for some v ∈ Hom(A,B)⊗ Z`. Assume for simplicity that u ∈ Hom(A,B) (if not, we
can approximate everything by morphisms that look like this). Then, we have the following commutative
diagram:

T`(A) T`(B)

A[`](ks) A[`](ks)

`α=T`(u)

u=0

where the vertical maps are the projection map from T`(A) = lim←−nA[`n](ks). This implies A[`](ks) ⊂ ker(u),
but then u factors as

A B

A

u

` v

so that T`(v) = α, that is, α ∈ im(?), and so α = 0 in cok(?).

Lemma 2.10. It suffices to show that (??) is an isomorphism for one `.

Proof. Since (??) is always injective, this follows by our remark about the Weil conjectures 2.1 that
dimQ`

HomG(V`(A), V`(B)) is independent of `.

The next reduction is trickier: we have already reduced the question to one of Q`-vector space maps, but
we want to further reduce to the case where everything is a Q`-algebra. We do this by showing it suffices to
consider (??) in the case where B = A, since the endomorphism ring of the abelian variety A has a natural
algebra structure.

Lemma 2.11. It suffices to show that

Endk(A)⊗Q` −→ EndG(V`(A)) (? ? ?)

is an isomorphism for all abelian varieties A over k.
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Proof. Consider the following diagram, which follows from functoriality:

Endk(A×B)⊗Q` Endk(A)⊗Q` Homk(A,B)⊗Q` Homk(B,A)⊗Q` Endk(B)⊗Q`

EndG(V`(A×B)) End(V`(A)) HomG(V`(A), V`(B)) HomG(V`(B), V`(A)) EndG(V`(B))

(? ? ?)

∼ ⊕

⊂

⊕

⊂

⊕

⊂ ⊂
∼ ⊕ ⊕ ⊕

We already know the vertical maps are inclusions by Corollary 2.8, and so equality on the very left implies all
the inclusions on the right are in fact equalities.

Note that in particular, even if you were only interested in showing Tate’s theorem for elliptic curves, this
method of proof requires proving statements about higher dimensional abelian varieties.

Now let

E` := Endk(A)⊗Q` ⊂ EndQ`
(V`(A))

F` := Q`[G] ⊂ EndQ`
(V`(A))

that is, F` is the Q`-subalgebra of EndQ`
(V`(A)) generated by automorphisms of V`(A) coming from G. Since

the endomorphisms E` of V` that come from k-rational endomorphisms of A commute with the Galois action,

F` ⊂ CEndQ`
(V`(A))(E`), (1)

where CEndQ`
(V`(A))(E`) denotes the centralizer of E` in EndQ`

(V`(A)).

Lemma 2.12. To show E, it is enough to show (1) is an equality. More precisely,
(a) (? ? ?) is an isomorphism if and only if C(C(E`)) = EndG(V`(A));
(b) If F` is semisimple, then (? ? ?) is an isomorphism if and only if C(E`) = F`.

Note that the assumption in (b) that F` be semisimple immediately shows D.

Proof. For (a), if we show that E` is semisimple, then by the double centralizer theorem, we have that
C(C(E`)) = E`. To show semisimplicity, we use Poincaré complete reducibility (Theorem 2.5), which implies
A is isogenous to

∏
Anii , where Ai, Aj are simple and not isogenous if i 6= j. Thus,

End◦(A) = End◦(
∏
Anii ) =

∏
End◦(Anii ) =

∏
Matni(End◦(Ai)).

But End◦(Ai) is a division algebra, and matrix algebras over finite-dimensional division algebras are semisimple.
In particular, E` = End◦(A)⊗Q` is semisimple.

For (b), if F` is semisimple, then C(E`) = F` if and only if E` = C(C(E`)) = C(F`) = EndG(V`(A)).

Remark 2.13. Using that Q[πA] is contained in the center of the semisimple algebra End◦(A), one can in fact
show that πA

�

A acts semisimply on V`(A) (Exercise).

2.4 Proof of Tate’s theorem

So far, we haven’t used anything about the field. We start with stating the hypothesis on our field:

Hyp(k,A, `) : there exist only finitely many (up to k-isomorphism) abelian varieties B

such that there is a k-isogeny B → A of `-power degree

To simplify notation, we set D := C(E`), the right-hand side of (1). Recall that by Lemma 2.12, we want to
show that C(D) = EndG(V`(A)).

We already know the inclusion ⊂ holds since E` ⊂ EndG(V`(A)). It remains to show C(D) ⊃ EndG(V`(A)).
So let α ∈ EndG(V`(A)). We want to show that α commutes with everything in D. We restate this in terms
of G-stable subspaces. Set W to be the graph of α:

W := Γα = {(x, αx) ∈ V`(A×A)} ⊂ V`(A×A) = V`(A)× V`(A).

Note it is G-stable. Then, α ∈ C(D) if and only if for all x ∈ V`(A) and d ∈ D, the equality αdx = dαx
holds. Applying d to the graph W above, we see that this is in turn equivalent to having (d⊕ d)W ⊂W for
all d ∈ D. We then use the key result which Andrew mentioned last time:
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Key Proposition 2.14. If W ⊂ V`(A) is a G-stable subspace, then there exists u ∈ E` such that uV`(A) = W .

Applying this to the abelian variety A×A and letting W = Γα as before, we would have

(d⊕ d)W = (d⊕ d)uV`(A×A) = u(d⊕ d)V`(A×A) ⊂ uV`(A×A) = W,

which as we remarked, suffices to show that C(D) ⊃ EndG(V`(A)).
Recall the proof that Andrew gave in the last talk:

Proof of Key Proposition. Let Xn = (T`(A) ∩W ) + `nT`(A). Then, this is G-stable and of finite index in
T`(A), so it corresponds to an isogeny fn : Bn → A such that fn(T`(Bn)) = Xn. Now we use Hyp(k,A, `):
there exists an increasing sequence 0 ≤ n1 < n2 < · · · such that the Bni ’s all fall into one k-isomorphism
class. Now pick isomorphisms gni : Bn1

→ Bni , and consider the diagram

Bn1
Bni

A A

fn1

gni

fni

ui

We can define ui ∈ End◦(A) as fni ◦ gni ◦ f−1
n1

. On Tate modules, this corresponds to a diagram

T`(Bn1
) T`(Bni)

Xn1 Xni
ui

where we also denote ui as the morphism induced by the morphism ui ∈ End◦(A) on the Tate module T`(A).
Since also Xni ⊂ Xn1

by definition of Xn, the morphism ui is an element of EndZ`(Xn1
) ∩ E`. This is a

compact space, and so the sequence ui has an accumulation point u ∈ EndZ`(Xn1) ∩ E`. You can check that
u satisfies the properties we wanted.

Remark 2.15. Using this proposition, Tate proved D.

We still have to check the hypothesis on the field.

2.5 Why does Hyp(k,A, `) hold if k = Fq?

Fact 2.16. There exists a moduli space of d-polarized dimension g abelian varieties Ag,d, which is a stack of
finite type over k. Its k-valued points can be described as follows:

Ag,d(k) =

{
(A, λ)

∣∣∣∣∣ A is an abelian variety over k

λ : A→ A∨ is a degree d polarization

}
Since this moduli space is of finite type, for any fixed g, d there are only finitely many abelian varieties of

that type. This is not strong enough for Hyp(k,A, `) to hold, however, since d can be an arbitrary natural
number.

To get around this, we need two statements about abelian varieties:
• Zarhin’s trick: for any abelian variety A, the abelian variety (A×A∨)4 is principally polarized;
• Finiteness of direct factors: up to isomorphism, an abelian variety has only finitely many direct factors.

Recall that a direct factor B ⊂ A of an abelian variety A is an abelian subvariety B such that there exists
another abelian subvariety C ⊂ A and an isomorphism A ' B × C. Note that an abelian variety can still
have infinitely many (isomorphic) direct factors.

Assuming these statements, we have the following:

Corollary 2.17. If k = Fq is a finite field, then there are only finitely many non-isomorphic abelian varieties
of dimension g.

Proof. A is a direct factor of (A×A∨)4 ∈ A8g,1.

This resembles the strategy used by Zarhin for k a function field of positive characteristic and by Faltings
for k a number field. Faltings still manages to bound the number of rational points in Ag,d(k) that belong to
the same isogeny class by using the Faltings height.
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2.6 The weaker finiteness statement Hyp(k,A, d, `)

Tate did not actually show Hyp(k,A, `); he instead used a weaker finiteness statement:

Hyp(k,A, d, `) : there exist only finitely many (up to k-isomorphism) abelian varieties B such that

(a) there exists a polarization λ : B → B∨ where deg λ = d; and

(b) there exists a k-isogeny B → A of `-power degree.

Assuming this, he proves the theorem for one ` for which F` '
∏

Q` (Exercise: Such an ` always exists if k
is finite) and concludes by Lemma 2.10.

We now want to explain how to adapt the proof assuming Hyp(k,A, `) to work with the weaker finiteness
statement Hyp(k,A, d, `). First, pick a polarization ϕL : A→ A∨. By assumption, F` is semisimple, so by
Lemma 2.12, it suffices to show F` = C(E`) =: D. One direction is clear: F` ⊂ D, since the endomorphisms
E` of V`(A) coming from (k-rational) isogenies of A commute with the Galois action.

So we want to show D ⊂ F`. If F` =
∏

Q`, then we have a decomposition

V`(A) =
⊕

Vi

of V`(A) into Vi, which correspond to simple factors of F`. But then, F` is precisely the subalgebra of
End(V`(A)) consisting of endomorphisms which act as scalars on the individual Vi. So it suffices to show that
D acts via scalars on all of the Vi. But there is a simple way to check this: it suffices to show that every
G-stable line L ⊂ Vi is D-stable.

Now, observe that a G-stable line L ⊂ Vi in fact has more structure: it is isotropic for the Weil pairing

eL = eL
` : V`(A)× V`(A) −→ Q`

(a, a′) 7−→ e`(a, ϕL (a′))

This is symplectic and thus alternating, so it must be zero on the line L. We will use this isotropicity in the
proof.

Proposition 2.18. Suppose F` =
∏

Q`, and W ⊂ V`(A) is a G-subrepresentation isotropic with respect to
the Weil pairing eL . Then, W is D-stable.

Proof Sketch. The proof is by descending induction on the dimension of W . We will only show the base case,
where dimW = g. We go through the same proof as before, just a bit more carefully.

Let Xn = (T`(A) ∩ W ) + `nT`(A). As before, it corresponds to an isogeny fn : Bn → A such that
fn(T`(Bn)) = Xn, and this isogeny has degree `ng. The induced polarization on Bn is given by

f∗nϕL = ϕf∗nL : Bn
fn−→ A

ϕL−→ A∨
f∨n−→ B∨

and degϕf∗nL = (`ng)2 · degϕL . But for all x, y ∈ T`(Bn), we have

e
f∗nL
Bn

(x, y) = eBn(x, f∨n ϕL fny) = eA(fnx, ϕL fny) = eL
A (fnx, fny) ∈ eL (Xn, Xn).

Now eL (Xn, Xn) = eL (`nT`(A), Xn) ⊂ `nZ`(1) since W is eL -isotropic, and so there exists a polarization
ϕM : Bn → B∨n such that ϕf∗nL = ϕM ◦ `n, and

degϕM =
degϕf∗nL

deg `n
= d.

Thus, each Bn is represented as a point in Ag,d, so the finiteness hypothesis Hyp(k,A, d, `) is enough to
guarantee that the Bn’s fall into finitely many k-isomorphism classes. The rest of the proof is identical to
what we had before.

3 September 29: Semiabelian varieties (Brandon Carter)

The references for this lecture are [Fal86] in [CS86], [FC90], and Conrad’s notes from the Stanford seminar
[Con11a; Con11b].
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3.1 Motivation

We start by recalling our long-term goal, which we will not be able to accomplish today:

F. Let A be an abelian variety over a number field K. Then, there are only finitely many abelian varieties
over K, up to isomorphism, that are isogenous to A.

The idea of the proof, as given by Andrew, is to define a suitable height function on the moduli space Ag.
One way to do so is to define the modular height H, which is induced from the height on PN for suitable N ,
into which Ag embeds. However, we run into a couple of issues when we try to use this function:

Problems 3.1.
• Given an abelian variety, how can we determine its modular height?
• How does the modular height change under isogeny?

We resolve this by doing the following:

Fix 3.2. Use another height function h, called the (stable) Faltings height, which changes according to a
nice formula under isogeny, and isn’t too different from H.

Now the hope is that there are only finitely many abelian varieties over K of fixed dimension and bounded
Faltings height h, since this will suffice to show F. However,

Problem 3.3. There can be infinitely many abelian varieties over K of fixed dimension and bounded Faltings
height h.

Example 3.4. Let E/Q be an elliptic curve. Then, all quadratic twists of E have the same Faltings height,
but are not isomorphic.

The solution will be to only consider semistable abelian varieties, which in this example corresponds to
throwing out all but finitely many of these quadratic twists.

3.2 Néron models

We need these to define semistable abelian varieties.
Let R be a Dedekind ring, and let K = Frac(R); for example, we could have R = Zp and K = Qp.

Definition 3.5. If X is a smooth, separated scheme of finite type over K, then the Néron model of X is a
scheme X over R, such that

(i) XK ∼= X; and
(ii) (Néron mapping property) For every smooth scheme Y over R, and for every map YK → XK , there is

a unique extension Y→ X, i.e., we can fill in the diagram below:

XK X

YK Y

Néron models do not exist in general, but they do for abelian varieties:

Fact 3.6. Néron models exist if X is an abelian variety, and are automatically unique by the Néron mapping
property (ii).

We fix some “non-standard” notation:

Notation 3.7. N(A) denotes the Néron model of A, and N(A)◦ denotes the open subscheme that restricts
to the connected component of the identity in each fiber.

If you’ve never seen Néron models before, you can look at Andrew’s notes [Sno13, Lec. 9], where he
computed explicit examples for some curves.

Note 3.8. N(A)◦ is a group scheme over R.
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3.3 Semiabelian varieties and semistable reduction

To define semiabelian varieties, we use the following old theorem of Chevalley, which says that any group
scheme over a perfect field can be “split apart” into a linear algebraic group and an abelian variety.

Theorem 3.9 (Chevalley). If G is a smooth, connected k-group scheme, and k is perfect, then there exists a
short exact sequence

1 −→ H −→ G −→ B −→ 1,

where H is a linear algebraic group, and B is an abelian variety.

With this, we can make the following definition:

Definition 3.10. Let S be any base scheme (or stack). Then, a semiabelian variety of relative dimension
g over S is a smooth group scheme A → S, whose (geometric) fibers are connected of dimension g, and
are extensions of abelian varieties by (possibly zero-dimensional) tori, that is, each fiber has no unipontent
components in the Chevalley decomposition from Theorem 3.9.

Remark 3.11. In Definition 3.10, A→ S is a scheme in the relative sense: the total space A may not actually
be a scheme.

Remark 3.12. Proper semiabelian varieties are abelian.

Recall that we are interested in abelian varieties over fraction fields K = Frac(R) of a Dedekind ring R.

Definition 3.13. Let A be an abelian variety over K. Then, we say A has semistable reduction if N(A)◦ is
a semiabelian variety.

We should think of semistable reduction as the analogue of non-additive reduction for elliptic curves.

Example 3.14. An elliptic curve E over Q or a number field has three types of reduction at each place:
• Good reduction, where the special fiber of N(E) is an elliptic curve;
• Multiplicative reduction, where the special fiber of N(E) is Gm; and
• Additive reduction, where the special fiber of N(E) is Ga.

In the first case, the special fiber is an abelian variety, and in the second, we have a torus. Thus, places of
additive reduction are where the elliptic curve does not have semistable reduction.

The way we get around this issue of non-semistable reduction is to use the following old theorem of
Grothendieck:

Theorem 3.15 (Semistable reduction). Every abelian variety has semistable reduction after finite base
change.

The point is that you have non-semistable reduction at only finitely many places, which is fixed by passing
to a finite base field extension.

The reason why taking more finite base changes does not cause any issues is the following:

Fact 3.16. Taking Néron models commutes with base change if A has semistable reduction.

We will use these facts with Jacobians of curves: Theorem 3.15 implies that they will have semistable
reduction after finite base change, and Fact 3.16 implies that the property of having semistable reduction
does not change when passing to futher base changes.

Example 3.17 (Deligne–Mumford). Let C → S be a stable curve of genus g, that is, a fibration of curves
such that for all s ∈ S, the fiber Cs satisfies the following properties:
• Cs is (geometrically) connected;
• Cs has (arithmetic) genus g ≥ 2;
• Cs has at worst ordinary double points (nodes); and
• each rational component of Cs contains at least three points which also lie in other components.

Then, Pic◦(C/S)→ S is semi-abelian of relative dimension g.

Note that the last defining property of a stable curve is equivalent to saying that the automorphism
groups of each fiber Cs are finite.
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3.4 The Hodge line bundle ωA/S

Definition 3.18. Let p : A→ S be semiabelian, and let s : S → A be the zero section. Then, we define a
sheaf ωA/S on S by

ωA/S := s∗
(∧g

Ω1
A/S

)
,

which is a line bundle. ωA/S is sometimes called the Hodge bundle.

The Faltings height will come from defining a metric on this line bundle ωA/S .

Remarks 3.19.
(a) If p is proper, then ωA/S = p∗(Ω

g
A/S).

(b) ωA/S commutes with base change.
(c) If A = Pic◦(C/S) where q : C → S is a stable curve, then ωA/S ∼=

∧g
q∗(ωC/S), where ωC/S is the

relative dualizing sheaf—this is just saying that one-forms on a curve are the same as one-forms on the
Jacobian.

(d) If S = Spec C and p is proper, i.e., A is an abelian variety over C, then ωA/C = Γ(A,ΩgA/C), and it has

a canonical Hermitian pairing, defined by

〈ω, ω′〉 =
1

2g

∫
A

|ω ∧ ω′| =
(
i

2

)g ∫
A

ω ∧ ω′

for ω, ω′ ∈ Γ(A,ΩgA/C).

3.5 A Néron mapping property for semiabelian varieties

The following is a very useful property of semiabelian varieties, which Bhargav will use next time. It is called
“Faltings’ lemma with proof in 1000 ways” in [Con11a].

Proposition 3.20 (Néron mapping property for semiabelian varieties). Let S be a noetherian, normal
scheme, and let U ⊂ S be some open dense subscheme. Then, the restriction functor A/S 7→ AU/U , which
sends a semiabelian variety A over S to its pullback over U , is fully faithful.

Note that in this Proposition, the morphisms in each category are morphisms of semiabelian varieties
over the base scheme; in particular, they are group homomorphisms. If S is a DVR, this statement is similar
to the Néron mapping property from before.

We give a sketch of a proof; see [FC90, Ch. I, Prop. 2.7] for details.

Proof Sketch. Let φ : (A1)U/U → (A2)U/U be a map defined on the pullback of A1 to the pullback of A2.

Let Γφ denote the graph of φ, and let Γ̃φ be its normalization:

Γ̃φ

Γφ A1 ×A2 A1

normalization

p1

Then, to show that φ extends to a map A1/S → A2/S, it suffices to show that the map p1 : Γ̃φ → A is proper
with one-point fibers, since then, the normality of S would imply that p1 is an isomorphism by Zariski’s Main
Theorem. (Note that we will use this “graph trick” often.)

By the valuative criterion (plus minor considerations, in particular that of fiber size), you can reduce to
the case where S = SpecR for a DVR R, and so the map φ is defined at the generic point η ∈ SpecR. There
are then three possibilities for what the generic fiber (A2)η looks like:

Case 1. (A2)η is an abelian variety.

In this case, A2 = N((A2)η)◦, and so the map extends by the usual Néron mapping property.

Case 2. (A2)η is a torus.
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After base change, you can assume that (A2)η = Gm by passing to a base extension until the torus splits,
and treating each factor separately; a descent argument shows you can descend from this base extension to
the original field of definition. Then, φη is defined by a regular function f on (A1)η, with div(f) supported
only on the special fiber. With a little bit of work (using that φη is a group homomorphism), this implies
that div(f) = 0.

Case 3. The general case.

(A2)η is an extension of some abelian variety Bη by a torus Tη. Let B = N((A2)η)◦, and so by Grothendieck’s
Theorem 3.15, we may assume B is semiabelian after a finite base change. Then, (A2)η → Bη extends to
A2 → B by the Néron mapping property, and you can also extend (A1)η → (A2)η → Bη, after a little bit of
work. Finally, you have to patch together the extensions on Tη and on Bη somehow.

Remark 3.21. Case 1 is the main case we will care about, and is possibly the only case we really need, since
we think we only need Proposition 3.20 when A2 is the universal family of abelian varieties.

3.6 Gabber’s Lemma

Let Mg be the moduli stack of stable curves of genus g, which we recall is proper over Z. Let Ag be the
moduli stack of principally polarized abelian varieties (PPAV’s) of dimension g, with Ag the corresponding
coarse moduli space. Recall that Ag is not proper, but some power of ωA/Ag gives a very ample line bundle
on Ag/Q, where

A

Ag

is the universal abelian variety, and ωA/Ag is the Hodge bundle that we defined in Definition 3.18. Note that

this implies Ag/Q is quasi-projective, with the embedding into PN
Q given by (ωA/Ag )⊗r.

Now let Ag/Q ⊂ PN
Q be the closure of Ag/Q in PN

Q, and let Ag/Z denote the closure of Ag/Q in PN
Z .

Then, letting M = O(1) on Ag/Z, we see that M extends (ωA/Ag )⊗r. The payoff of this eventually will be
that the modular height comes from a metric on O(1), which we can compare with the Faltings height.

The issue with this näıve compactification of Ag/Z is that the universal family of abelian varieties does
not necessary extend to a universal family of semiabelian varieties on the compactification, and in particular
the näıve compactification does not have a natural moduli-theoretic interpretation. The content of Gabber’s
Lemma below is that there does exist a compactification that satisfies this property. Note that [Fal86] instead
compactifies the stack Ag/Z.

Theorem 3.22 (Gabber’s Lemma). Let S be a noetherian scheme, and let f : X → S be a separated S-scheme
of finite type. Let u : A→ X be an abelian scheme, i.e., a proper semiabelian scheme. Then, there exists a
proper surjective map π : X ′ → X and an open immersion of X ′ into a proper S-scheme X ′, such that the
pullback uX′ : AX′ → X ′ of the family u extends to a semiabelian scheme u : A′ → X ′.

We can organize this data into the following commutative diagram:

A AX′ A′

X X ′ X ′

S

u uX′

x y
ū

f

π

where both squares are cartesian.
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Remarks 3.23. If S is a Dedekind scheme, then Gabber’s Lemma is basically the semistable reduction theorem
3.15, but in higher dimension. Also, we will mostly only be interested when S is of finite type over Z, e.g.,
when S = SpecR for a number ring R.

Since every abelian scheme is a quotient of a Picard scheme, with some work, you can reduce to the case
of curves (we will return to this step later):

Theorem 3.24 (Gabber’s Lemma for curves). Let S and X be as in the statement of Theorem 3.22. Let
u : C → X be a smooth, proper curve, whose geometric fibers are connected curves of genus g ≥ 2. Then,
there exist π : X ′ → X and X ′ as in Theorem 3.22, such that the pullback uX′ : CX′ → X ′ of the family u
extends to a family of semistable curves u : C ′ → X ′.

Since the family u will come from a pullback of the universal family on Mg, it will in fact be a family of
stable curves.

Proof. By Chow’s lemma, we can reduce to the case where X is quasi-projective, i.e., X is an open subset of
a projective scheme X. LetMS =Mg ×Z S. Then, by the universality of the universal family, the morphism
u : C → X corresponds to a morphism X →MS .

We now use the “graph trick” again. Let X ′ denote the closure of the graph of X →MS in X ×MS .
Then, the morphism X ′ →MS extends the morphism X →MS , and by pulling back the universal family
on MS , this extension gives a family C ′ → X ′ of stable curves that extends the family C → X.

There is one problem with this proof:

Problem 3.25. C ′ is a proper Deligne–Mumford stack, not a scheme.

To fix this problem, we use a version of Chow’s lemma for Deligne–Mumford stacks (this is true for Artin
stacks as well):

Chow’s Lemma for stacks 3.26. Let M→ S be a separated Deligne–Mumford stack of finite type over
a noetherian scheme S. Then, there exists a proper surjective map X →M, where X is a quasi-projective
S-scheme, such that X is projective if and only if M is proper.

So in the proof of Gabber’s Lemma for curves (Theorem 3.24), pulling back to the scheme X provided by
this version of Chow’s Lemma gives the family of curves that we want.

We now describe how to get the full version of Gabber’s Lemma (Theorem 3.22) from the version for
curves (Theorem 3.24).

Full proof. Let η denote the generic point of X, and let Aη be the abelian variety over η. Let Pic◦(Cη)→ Aη
be a realization of Aη as a quotient of a Picard scheme. Then, there exists another abelian variety Bη such
that Aη×Bη is isogenous to Pic◦(Cη), by looking at duals and using Poincaré complete reducibility (Theorem
2.5). Let Pic◦(Cη)→ Aη ×Bη be this isogeny; spreading out over U ⊂ X gives an isogeny

Pic◦CU/U −→ AU ×BU (2)

of abelian schemes.
Using Gabber’s lemma for curves (Theorem 3.24), Pic◦CU/U → U extends to a family C ′ → X ′, that is, we

have a commutative diagram

Pic◦CU/U (Pic◦CU/U )X′ Pic◦
C′/X′

U X ′ X ′

x y

The Néron mapping property for semiabelian varieties (Proposition 3.20) now implies that the pullback of
the isogeny (2) to X ′ extends to an isogeny

Pic◦
C′/X′

−→ AX′ ×BX′ ,

where you have to check that AU and BU extend to some abelian varieties AX′ and BX′ over X ′. This allows
you to treat the univeral family of abelian varieties as if it were the universal family of Jacobians of curves;
see [Con11a, §§3–5] for details.
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There is an interesting Corollary, which Bhargav will explain next week. The main idea is that we
have constructed two compactifications of Ag/Q, and you can in fact construct a map from the Gabber
compactification to Ag/Z. Then, the pullback of the line bundle M via this map will be close enough to the
power (ωA/Ag )⊗r of the Hodge bundle used to define Ag/Z, such that the modular height and the Faltings
height won’t be too different.

4 October 6: The Faltings height and basic finiteness theorems
(Bhargav Bhatt)

Today’s goal is to explain the basic finiteness theorem of Faltings [Fal86, Thm. 1]. References for this talk
are Deligne’s Seminaire Bourbaki article [Del85] and Silverman’s article [Sil86] in Cornell–Silverman [CS86]
for background material on heights.

We start by recalling what we did last time. Gabber’s Lemma 3.22 gives an analogue over Z of the
following picture which exists over the complex numbers. Let Ag denote the moduli space of g-dimensional
principally polarized abelian varieties over the complex numbers. Then, we have the following diagram:

Ag Ag

Ag A∗g

proper surjectiveπ

where
(1) Ag is the moduli space of g-dimensional principally polarized abelian varieties, which carries

• a universal abelian variety

Au Ag
e

where e is a (left) section, and
• a Hodge bundle ωAg := e∗(ΩgAu/Ag ).

(2) Ag is the toroidal compactification of Ag, which carries
• a universal semiabelian variety

Au Ag
e

where e is a (left) section, and
• a Hodge bundle ωAg := e∗(Ωg

Au/Ag
).

(3) A∗g is the minimal compactification of Ag, which carries an ample line bundle O(1), which extends ωAg .

The basic fact is that the two compactifications Ag and A∗g are compatible:

Fact 4.1. π∗O(1) ∼= ωAg .

We will show today that if K/Q is a finite extension, and if A/K is an abelian variety, then we can define
its Faltings height hF (A) ∈ R. We first give the idea for its construction:

Idea 4.2. For A a semistable principally polarized abelian variety, the Faltings height hF (A) is the “degree”
of the classifying map

Spec(OK) −→ Ag

for the Néron model Ner(A)/OK .

The issue is that Spec(OK) is not proper, and so the usual notion of degree doesn’t make sense.
The application of the Faltings height in the following:
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Theorem 4.3. Fix g ≥ 1, a composite number m ≥ 3, and a constant C > 0. Then, the set
Principally polarized abelian varieties

A/K of dimension g, with level structure

(Z/m)2g ∼→ A[m] and Faltings height hF (A) < C

 is finite.

Remark 4.4. Faltings actually showed a slightly different statement. Instead of assuming that the abelian
varieties have level structure, he assumes they have semistable models. Our version has the advantage that
the moduli spaces are actually schemes.

We also give a remark as to why you should expect the Faltings height to appear here. First, you have to
have some restrictions on the abelian varieties you are counting; see Example 3.4 from Brandon’s talk, where
he mentioned that all quadratic twists of an elliptic curve have the same Faltings height. To get rid of issues
like this, we need to bound the ramification somehow.

We can also think of this statement as the arithmetic analogue of a previous result of Faltings, where
SpecOK is replaced by a complex curve, the Faltings height is replaced by the degree of the map to Ag, and
the condition on the set of abelian varieties is some specification of where the semiabelian variety has good
reduction. You essentially need an analogue of the Tate conjecture in the complex setting to make this make
sense.

To show the finiteness statement, we could try to show things directly about the structure of Ag, but
this requires us to understand well the different compactifications of Ag. Instead, we will spend time talking
about heights and logarithmic heights, which will give us enough information to prove Faltings’s result.

There is a formalism of heights that exists very generally: any time you have a projective variety over a
number field, you have a näıve height. The idea is that we will make the Faltings height similar enough to
the näıve one to get the finiteness statements we need.

Let K/Q be a finite extension, and let MK be the set of all absolute values on K extending the standard

absolute values on Q (so |p|v = 1/p). Given v ∈MK , set ‖·‖v = |·|[Kv :Qv ]
v .

4.1 Heights on Pn

Definition 4.5. The height of a K-point in Pn is defined by the function

HK : Pn(K) −→ R

[xi] 7−→
∏

v∈MK

max{‖xi‖v}

Example 4.6. If K = Q, and P = [xi], xi ∈ Z, gcd(xi) = 1, then HK(P ) = max{|xi|}.

Remark 4.7.
(1) This is well-defined: it does not depend on the homogeneous coordinates, by the product formula.
(2) This works pretty well under field extension, except you have to keep track of the degree of the extension

since we are using ‖·‖ in the definition: if L/K is finite, then

HL|Pn(K) = H
[L:K]
K .

As a result of this, if you rescale everything, you can “make all of these compatible,” that is, you get a
well-defined function

H : Pn(Q) −→ R

such that H|Pn(K) = H
1/[K:Q]
K . You can also define the logarithmic height h = logH : Pn(Q)→ R.

Observation 4.8. If you fix C > 0, then the set

{P ∈ Pn(Q) | H(P ) < C} is finite.

You can bootstrap this result to get a similar result for other number fields:
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Theorem 4.9. Fix C > 0 and K/Q. Then, the set

{P ∈ Pn(K) | HK(P ) < C} is finite.

Essentially what you do is reduce to the case of P1: the coefficients of the minimal polynomial of a point
[1 : x] determine the absolute value of x, and then you use the previous result.

Using this height function on projective space, you can get one on arbitrary projective varieties. But we
can do something a bit better.

4.2 Heights on projective varieties

We can make a definition that does not depend on the embedding.
Let V/Q be a projective variety, and consider a map f : V → Pn. We can pullback the height function on

Pn to get a map on V (Q): hf : V (Q)→ R, x 7→ h(f(x)). This is obviously well-defined, but it only depends
on the pullback of O(1) as a line bundle, not on the specific linear system you are using. More precisely,

Proposition 4.10. Say f : V → Pn and g : V → Pm are such that f∗O(1) ∼= g∗O(1). Then hf = hg +O(1),
that is, |hf − hg| is bounded.

This means that while hf and hg don’t literally define the same function, they are bounded by each other
by a constant amount.

This Proposition implies that if we start with a globally generated line bundle, then you get a well-defined
height function out of it, up to some constant term. We want to say that this operation gives a group
homomorphism from line bundles to functions. To do that, we need to ignore bounded functions somehow.

Definition 4.11. H(V ) = {all function h : V (Q)→ R/bounded functions}.

The Proposition then says that there is a well defined map

{globally generated line bundles on V } −→ H(V )

L 7−→ hL

which Silverman calls the “Height Machine” [Sil86, Thm. 3.3].
This construction has some nice properties:

Properties 4.12.
1. L 7→ hL sends tensor products to addition: the image of X under the map defined by a tensor product of

two globally generated line bundles has coordinates which are products of the coordinates in the image
of X under each line bundle individually, since taking a tensor product of line bundles corresponds to a
Segre embedding. Multiplying coordinates corresponds to adding log heights. Thus, you get a group
homomorphism

Pic(V ) −→ H(V )

L 7−→ hL = hA − hB

by writing a line bundle as a difference of very ample line bundles, i.e., L = A ⊗ B−1 for A,B very
ample.

2. This function L 7→ hL is compatible with pullback (look at ample line bundles again).
3. If L is ample, and C > 0, and K/Q finite, V defined over K, then

{x ∈ V (K) | hL(x) < C} is finite.

Proof. If L is very ample, reduce to Pn. In general, use linearity (up to O(1)): hL⊗n = n · hL.

To connect the Height Machine with the Faltings height, we need to reinterpret everything in terms of
metrics on line bundles, as Arakelov did.
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4.3 Metrized line bundles on OK

Arakelov’s insight was that if you keep track of the places at infinity, then you can define the degree of a line
bundle. This corresponds to a metric on the bundle. The upshot is that you don’t need properness to get
degrees.

Let K/Q be a finite extension, where OK is the ring of integers.

Definition 4.13. A metrized line bundle on Spec(OK) is an invertible OK-module M , plus the data of a
norm |·|v on M ⊗Kv for each v ∈M∞K , the set of infinite places.

If you have a metrized line bundle, you can get a degree out of it, called the Arakelov degree.

Definition 4.14. If (M, |·|v) is a metrized line bundle, we define the Arakelov degree as follows:

deg(M, |·|v) = deg(M) := log(#M/(OK ·m))−
∑

v∈M∞K

log‖m‖v,

where 0 6= m ∈M is any nonzero element in M .

Idea 4.15. We have the following chart of analogies:

Spec(OK) ∪M∞K a complete curve C/K
a metrized line bundle M a line bundle L

deg(M, |·|v)
deg(L) = dimk(L/OC · f)

for 0 6= f ∈ H0(C,L)

Remark 4.16. For v a finite place, M ⊗ OKv ⊂ M ⊗Kv provides a norm ‖·‖v on M ⊗Kv, with unit ball
M ⊗OKv . Because of this, you can rewrite the Arakelov degree as follows:

deg(M) =
∑
v∈MK

− log‖m‖v

which measures how far m is from generating the lattice. Scaling m by a global function gives the same
degree by the product formula.

The most important example of a metrized bundle for us is the Hodge bundle.

Example 4.17. Let A/K be an abelian variety, and let Ner(A)/OK be the Néron model. This is a proper
smooth group scheme of dimension g, and the Néron model is still smooth, but not proper. Then, you get
the Hodge bundle ωA = e∗(ΩgNer(A)/OK ) ∈ Pic(OK). The claim is that this lifts to a metrized line bundle.

We just have to figure out what you do at the infinite places, which correspond to A/K. But in this
case, all you have to do is look at the hermitian metric on ωA ⊗K C for all K ↪→ C, which gives a norm via
integration:

|α| = 1

2g

∫
A(C)

|α ∧ α|. (3)

This structure is what we use to define the Faltings height.
Now if Ner(A) is semiabelian, we set the Faltings height to be hF (A) = deg(ωA), where ωA has the

structure of a metrized line bundle by using this metric (3) at the infinite places.

The relationship between the näıve height and the Faltings height is actually quite easy.

4.4 Heights via metrized line bundles

We now generalize the notion of a metrized line bundle on a number field to a variety over that number field.
Let K/Q be a number field, V/K a projective variety, and L a line bundle on V , which we will often

assume is ample but not for now.
Then, if x ∈ V , the fiber Lx of L over x is a vector space, which is an element of Pic(κ(x)). What we

need to do is to figure out what a metrized line bundle on V is.
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Definition 4.18. Fix a place v ∈MK (in practice, it will be an infinite place). A v-adic metric on L is a
norm |·|v on Lx for all x ∈ V (Kv) which varies continuously in x in the v-adic topology, where we recall that
the v-adic topology is the weakest topology such that for all local sections f ∈ H0(U,L|U ) on an open set
U ⊂ V , the function U(KV )→ R sending x 7→ |fx|v is continuous.

If we have such data at every place v, we say that L is a metrized line bundle.

You are supposed to think of this number |fx|v as the v-adic distance from the zero locus of f .

Example 4.19. If V = Ag, L = ωAg is the Hodge bundle, and v ∈M∞K , you get a canonical |·|v on Lx for
all x ∈ Ag(Kv) (as before).

Now there are two things going on: given a point in Pn, we have a height. Given a point in a variety
with a metrized line bundle, we have another notion. The point is that the two are actually the same! This is
where the connection starts.

The following Lemma is very crucial but very fun. There are not many choices of metrics on a line bundle.

Lemma 4.20 (Comparison). Fix v ∈M∞K , L ∈ Pic(V ), V projective. Suppose |·|v, |·|′v are two v-adic metrics
on L. Then, they are the same up to constants: there exist C1, C2 > 0 such that

C1|·|v ≤ |·|′v ≤ C2|·|v,

and so the asymptotic behavior is the same.

Proof. For each x ∈ V (Kv), choose a nonzero vector fx ∈ Lx non-zero. Then, the ratio |fx|v/|fx|′v is actually
well-defined (independent of fx), since the norms have to work well with multiplication by scalars in κ(x).
Then, you get a continuous map F : V (KV )→ R given by the formula x 7→ |fx|v/|fx|′v, since you can pick f
that works on an open subset just by trivializing the line bundle. Now you are more or less done: V (KV ) is
compact since its points are the KV -points of a projective variety, so this map has bounded image. You then
get the assertion of the Lemma.

Corollary 4.21. Fix v-adic metrics on OPn(1) for all v ∈M∞K . Let x ∈ Pn(K) be given, with näıve height
h(x). The point x gives a map x : Spec(OK)→ Pn obtained by the valuative criterion, which turns x∗OPn(1)
into a metrized line bundle on OK . Then, the näıve height and the Arakelov degree of x∗OPn(1) satisfy

deg(x∗OPn(1)) = h(x) +O(1).

We apply this in the case where Pn is replaced by Ag, and the left-hand side is replaced by the Faltings
height.

Proof. Use the Lemma, and calculate both sides.

If Ag were compact, then the same arguments would work. Since it isn’t, we have to generalize the theory
so far to include open varieties.

4.5 Heights on open varieties

Let V/K be a projective variety, Z ⊂ V a closed subvariety, and U = C \ Z the open dense complement. Let
v ∈M∞K .

So far, we don’t have a good notion of heights for non-compact semiabelian varieties. What we will say is
that basic finiteness results are still okay if heights don’t increase too quickly as you go toward the boundary.

We first need some sort of distance function that tells you how far you are from a point in Z.

Definition 4.22. A logarithmic distance function is a map dZ : U(KV )→ R≥0 that locally looks like the
log of a distance, i.e., if f1, . . . , fr are the local defining equations of Z on some open W ⊂ V , then

|dZ(x)− log+ min
j
|fj(x)|−1

v |

extends to a bounded function on W .
Everyone uses a different normalization; we follow [Sil86]. log+ is zero when it otherwise would not be

defined.
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Remark 4.23. dZ always exists, and any choices are O(1) apart from each other.

The goal now is to figure out what it means to grow logarithmically as we go toward the boundary.

Definition 4.24. Fix V,Z, U as before, and pick L ∈ Pic(V ). Fix a metric |·|′v on L|U . This metric has
logarithmic singularities if for any other metric |·|v that exists on the entirety of L, the difference of the two
metrics grows logarithmically, that is, there exist constants C1, C2 > 0 such that

max{|·|v/|·|′v, |·|′/|·|v} ≤ C1 · (dZ + 1)C2

as functions on U(Kv).

With this definition, the key result is the following finiteness result for the open case (see [Sil86]; the proof
is easy once you know the definition):

Theorem 4.25 (Faltings). Fix V,Z, U, L as above. Assume L is very ample, and fix a v-adic metric |·|′v on
L|U with log singularities along the boundary V \ U (for all v ∈M∞K ). Then,

{x ∈ U(K) | hL,|·|′v < C} is finite.

In the case the boundary is empty, this is the same theorem as before. The point is that you can still get
boundedness in our open situation, when the metric grows logarithmically as you go toward the boundary.

We do want to connect this back to Ag.

Proof of basic finiteness theorem for abelian varieties. We have the diagram

Ag Ag

Ag A∗g

π

We need two facts from [Del85]:

Facts 4.26.
a) (O(1)|Ag , |·|can

Ag
) has log singularities along A∗g\Ag. This you prove by looking at the explicit construction

using the Siegel upper half plane, when doing the toroidal compactification.
b) π∗O(1) = ωAg .

(a) plus the formalism of heights implies

{x ∈ Ag(K) | hO(1)|Ag ,|·|′v < C} is finite.

We are not done, since we need to know that the pullback of the line bundle in the h above actually pulls
back to the Hodge bundle.

(b) implies that given x : Spec(K)→ Ag, with extension x : Spec(OK)→ A∗g obtained via the valuative
criterion, we have that x∗O(1) = ωA using Gabber’s Lemma 3.22.

5 October 13: The Tate–Raynaud theorem (Kannappan Sampath)

References for this talk are [Tat67; Fon82; Bin12].

5.1 The Hodge–Tate decomposition

We first state the following theorem of Faltings, which gives a Hodge-like decomposition in the p-adic setting,
called the Hodge–Tate decomposition:
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Theorem 5.1 (Faltings). If K is a p-adic field, and X is a non-singular projective variety over K, then

letting Cp = K̂, we have the following GK-invariant isomorphisms:

(Cp(j)⊗Hi
ét(XK ,Qp))

GK ∼−→

{
Hi−j(X,ΩjX) if 0 ≤ j ≤ i
0 otherwise

(4)

When X is an abelian variety over K with good reduction, this is a theorem due to Tate in [Tat67];
Raynaud then used the theory of semistable reduction to extend Tate’s result to all abelian varieties. Fontaine
in [Fon82] found an easier proof of Raynaud’s result, which is what we will present today.

Let X be an abelian variety over K. In this special case, to show the isomorphism (4), it suffices to show
the i = 1 case since ⊕

i≥0

(
i⊕

j=0

Hi−j(X,ΩjX)

)
'
∧∗ (

H1(X,OX)⊕H0(X,ΩX)
)
.

Since étale cohomology can be described in terms of Tate modules, the Tate–Raynaud theorem takes the
following form:

Theorem 5.2 (Tate–Raynaud). Let K be a p-adic field, and let X be an abelian variety over K. Then,

letting Cp = K̂, we have the following two GK-equivariant isomorphisms:

(Cp ⊗ Tp(X)∗)GK
∼−→ H1(X,OX) (5)

(Cp(1)⊗ Tp(X)∗)GK
∼−→ H0(X,Ω1

X) (6)

We will first show that in fact, it suffices to show (6):

Theorem 5.3. Let X be an abelian variety over K. If (6) holds, then so does (5).

The reason why we would expect such a result to hold is because for abelian varieties, we have a nice
duality theory: if X ′ denotes the dual abelian variety, then we have an isomorphism

H1(X,OX)
∼−→ H0(X ′,Ω1

X′)
∗ (7)

and an isomorphism

Tp(X)
∼−→ Tp(X

′)∗(1) (8)

induced by the Weil pairing. Thus, (5) for X ′ implies

(Cp(−1)⊗ Tp(X))GK
∼−→ H0(X,Ω1

X)∗,

which is very close to (6), except that we have an extra dual on the right-hand side, and a missing dual on
the left-hand side.

5.2 Proof of Theorem 5.3

To prove that (6) does indeed imply (5), we start with some computations of certain Galois cohomology
groups, due to Tate.

Theorem 5.4 (Tate). We have the following descriptions of continuous Galois groups:

H0(GK ,Cp(i)) =

{
K i = 0

0 i 6= 0
H1(GK ,Cp(i)) =

{
K i = 0

0 i 6= 0

This implies an orthogonality result for different Tate twists of Cp:

Corollary 5.5. If i 6= j, then ExtkCp[GK ](Cp(i),Cp(j)) = 0. In particular, there are no GK-equivariant
homomorphisms Cp(i)→ Cp(j) if i 6= j.
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We also need the following:

Fact 5.6. If V is an F -representation, and F/K is a field extension, then we have an injection

V GK ⊗ F ↪→ V.

Using the orthogonality result in Corollary 5.5, and Fact 5.6, we can now show Theorem 5.3.

Proof of Theorem 5.3. Set VCp(X) = Cp ⊗Zp Tp(X); this is a Cp-representation. Then, by applying Fact 5.6
to VCp(X)∗(1), we have an injection

(Cp(1)⊗ Tp(X)∗)GK ⊗Cp VCp(X)∗(1)

H0(X,Ω1
X)⊗Cp VCp(X)∗(1)

∼(6)⊗Cp (9)

where as written, the second row is obtained by using the isomorphism (6). Now by applying Hom(−,Cp(1)),
we get a surjection

Hom(VCp(X)∗(1),Cp(1))� H0(X,Ω1
X)∗ ⊗K Cp(1)

We have isomorphisms
Hom(VCp(X)∗(1),Cp(1)) ∼= VCp(X) ∼= VCp(X ′)∗(1),

where the second is by (8). The injection (9) for X ′ instead of X gives an injection

H0(X ′,Ω1
X′)⊗Cp VCp(X ′)∗(1)

H1(X,OX)∗ ⊗Cp VCp(X ′)∗(1)

∼(7)⊗Cp

by applying (7). Now combining this injection with the surjection above, we have a sequence

0 −→ H1(X,OX)∗ ⊗K Cp −→ VCp(X) −→ H0(X,Ω1
X)∗ ⊗K Cp(1) −→ 0,

which is short exact: you can check that these maps form a complex, and exactness follows by a dimension
count. This sequence must split by the statement about Ext’s in Corollary 5.5, and so we have an isomorphism

VCp(X) ' H0(X,Ω1
X)∗ ⊗K Cp(1)⊕H1(X,OX)∗ ⊗K Cp.

Taking duals, we get the Hodge–Tate decomposition for H1
ét(XK ,Qp):

VCp(X)∗ ' H0(X,Ω1
X)⊗K Cp(−1)⊕H1(X,OX)⊗K Cp

This implies (Cp ⊗ Tp(X)∗)GK = (VCp(X)∗)GK ' H1(X,OX), which is exactly the isomorphism (5).

5.3 Proof of the Tate–Raynaud Theorem 5.2

The main goal of this subsection is to prove the following:

Theorem 5.7. Let X be an abelian variety over K of dimension g. Then, there exists a K-linear injection

ρX : H0(X,Ω1
X) ↪→ HomZp[GK ](Tp(X),Cp(1))

which is functorial in X and is canonical.

This will suffice to show the Tate–Raynaud Theorem 5.2:

Corollary 5.8. Theorem 5.7 implies the Tate–Raynaud Theorem 5.2.
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Proof of Corollary. By Theorem 5.3, it suffices to show (6) is an isomorphism. The Weil pairing gives a
pairing

Vp(X)∗(1)× Vp(X ′)∗(1) −→ Cp(1),

By using the injections (9) for X and X ′, this gives a pairing

(Vp(X)∗(1)Gk ⊗Cp)× (Vp(X
′)∗(1)Gk ⊗Cp) −→ Cp(1),

under which the two spaces on the left are orthogonal, since H0(GK ,Cp(1))⊗Cp = 0 by Theorem 5.4. The
direct sum of the spaces on the left has dimension ≤ 2g, but each have dimension ≥ g, and so they must
both be of dimension g.

Now to show Theorem 5.7, we want to construct a GK-equivariant pairing

H0(X,Ω1
X)× Tp(X) −→ Cp(1), (10)

which will induce the morphism ρX . The way we will do so is to define a pairing on an integral model X
of X involving the module Ω := ΩOK/K (which satisfies HomZ(Qp,Ω) ' Vp(Ω) ' Cp(1) by a calculation of

Fontaine [Fon82, §2]), and then show that this construction does not depend on the choice of integral model.
Note that Beilinson has a two-page proof the isomorphism HomZ(Qp,Ω) ' Vp(Ω) ' Cp(1) in [Bei12, pp.
718–719].

Since abelian varieties are projective, we can find an integral model X ⊆ Pn
OK , which is a proper flat

scheme over OK , such that the generic fiber Xη is isomorphic to X; denote i : X ↪→ X to be the inclusion of
the generic fiber.

Now given u : Spec(OK)→ X and ω ∈ H0(X,Ω1
X/OK ), let u∗(ω) ∈ Ω1

OK/OK
be the pullback. This gives a

pairing
〈−,−〉 : X(OK)×H0(X,Ω1

X/OK ) −→ Ω

which is OK-linear in the second variable, and is GK-equivariant in the first variable: 〈g · u,w〉 = g〈u, ω〉.
We want to say that it is additive under the left-hand side, where the additivity is with respect to the abelian
variety structure on the generic fiber Xη(K) ' X(OK), but this doesn’t quite work: you need to pass to a
submodule.

Theorem 5.9. There exists r ≥ 0 such that

X(OK)× prH0(X,Ω1
X/OK ) −→ Ω

is additive in the first variable.

Remark 5.10. Let ψ : X ×K X → Pn
K be a projective embedding. Let Y denote the schematic closure of

X ×K X under the map

X ×K X Pn
K Pn

OK
(id,m)

This Y has the property that the projection maps pr1,pr2 : X ×K X → X and the multiplication map
m : X ×K X → X all extend to maps pr1,X,pr2,X,mX : Y → X, by taking suitable projections out of
X× X× X in the diagram below:

X ×X X ×X ×X Pn
K K

Y X× X× X Pn
OK OK

(id,m)

σ i×i×i

Remark 5.11. The phenomenon observed in the previous remark is in fact more general. If fi : S → T is a
finite family of morphisms between OK-schemes, such that both S and T are both proper and flat over OK ,
then their schematic closures S and T are such that these maps fi extend to maps f̃i : S→ T.
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Proof of Theorem 5.9. Consider the map

H0(X,Ω1
X/OK ) −→ H0(Y,Ω1

Y/OK )

ω 7−→ ω′ = m∗Xω − pr∗1,X ω − pr∗2,X ω

We have that

H0(X,Ω1
X/OK ) H0(Y,Ω1

Y/OK ) H0(X ×X,Ω1
X⊗X/OK ) K ⊗OK H0(Y,ΩY/OK )

ω̃ 1⊗ ω̃

σ∗ ∼

Under this composition, H0(X,Ω1
X/OK ) maps to 0, hence the image of H0(X,Ω1

X/OK ) in H0(Y,ΩY) is torsion.
By coherence, this torsion is bounded, and we can kill it using pr.

We can now show additivity in the first variable. Let u1, u2 ∈ X(OK), and v1, v2 their corresponding
points in X(K). Let vX = (v1, v2). Let v be the corresponding point in Y. This means u1 = pr1,X ◦v, and
u2 = pr2,X ◦v, and u1 + u2 = mX ◦ v. If ω ∈ prH0(X,Ω1

X/OK ), then

(u1 + u2)∗(ω) = v∗ ◦m∗X(ω) = v∗(pr∗1,X ω + pr∗2,X ω) = u∗1ω + u∗2ω.

The upshot of Theorem 5.9 is that we now have an OK-linear map

prH0(X,Ω1
X/OK )→ HomZ[GK ](X(K),Ω)

which we will use to define ρX .

Sketch of Theorem 5.7. Now recall that Vp(X) = HomZp(Qp, X(K)[p∞]). Using the map

HomZ[GK ](X(K),Ω) −→ Hom(Vp(X), Vp(Ω)),

we have a map
prH0(X,Ω1

X) −→ Hom(Vp(X), Vp(Ω)).

Extending scalars, we get a K-linear map

ρX,X : H0(X,Ω1
X) −→ Hom(Vp(X),Cp(1)).

To finish the proof, you check that ρX,X is independent of X, and that ρX,X is injective.

6 October 20: Background on p-divisible groups (Valia Gazaki)

We mostly follow [Tat67]. A good reference for the one-dimensional theory (especially for formal groups) is
[Sil09], and we refer to [Ser79] for some properties of the discriminant.

The main goal of today is to prove Proposition 6.10, which gives a description of discriminant ideals
associated to p-divisible groups. Before this, we have to do some background on finite group schemes and
p-divisble groups.

6.1 Finite group schemes

Let R be a commutative ring. We do not put any hypotheses on R for now; later, we will assume R is
complete and noetherian.

Definition 6.1. A finite (flat) group scheme over R is a scheme Γ = SpecA, where A is a locally free
R-module of finite rank, and Γ has the structure of a group scheme (i.e., there exists a comultiplication map
µ : A→ A⊗R A, etc.). If A has rank m over R, we say Γ is of order m, and denote ord Γ = m.

We will always assume them to be commutative.

Examples 6.2.
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(1) If Γ is a usual finite abelian group of order n, we can construct a finite flat group scheme Γ = SpecA
of order n, by setting A to be the ring of R-valued functions on Γ. Then, the comultiplication is
given by identifying A⊗R A with R-valued functions on Γ× Γ, so µ : A→ A⊗R A can be defined by
µ(f)(s, t) = f(st). A key example is Γ = Z/n.

(2) We can also define the finite flat group scheme

µm = Spec

(
R[x]

(xm − 1)

)
where the comultiplication is given by x 7→ x⊗ x. This finite flat group scheme has order ordµm = m.

6.1.1 Duality

Definition 6.3. Let G = SpecA be a finite flat group scheme over R. We can then define the dual group
scheme G′ = SpecA′, where A′ = HomR-Mod(A,R).

Example 6.4. (µm)′ ∼= Z/mZ, and vice versa.

6.1.2 Short exact sequences

A sequence

0 −→ G′
i−→ G

j−→ G′′ −→ 0

of finite flat group schemes over R is a short exact sequence if i is an exact closed immersion (here,
exactness means that i identifies G′ with the categorical kernel of j), and j is faithfully flat. In this case,
ord(G) = ord(G′) · ord(G′′).

Remark 6.5. Given G
j→ G′′ → 0, we can define G′ = j−1(neutralizer of G′), which has the required property

for kernels. Constructing G′′ from an exact sequence 0→ G′
i→ G is more subtle.

6.1.3 Connected and étale groups

Now let R be a local, complete, Noetherian ring with residue field k. Then, given G = SpecA, we define
Gét = SpecAét, where Aét ↪→ A is the maximal étale subalgebra of A. Then, there is a faithfully flat
surjection SpecA→ SpecAét → 0, and letting G0 = ker(SpecA→ SpecAét) = SpecA0 where A0 is the local
quotient of A such that the coidentity A→ R factors through A0, we see that G0 is connected, and we have
a short exact sequence

0 −→ G0 i−→ G
j−→ Gét −→ 0

Facts 6.6.
(1) G is connected if and only if G = G0. In this case, ordG is a power of the residue field characteristic.

Thus, if k is of characteristic 0, then every finite flat group scheme is étale.
(2) The functors G 7→ G0 and G 7→ Gét are both exact.

6.2 p-divisible groups

From now, R is a complete Noetherian local ring with residue field k of chracteristic p > 0.

Definition 6.7. A p-divisible group over R of height h ≥ 0 is an inductive system (Gν , iν) of (commutative)
finite flat group schemes over R, such that

(i) Each Gν is a finite group of order pνh;
(ii) For every ν ≥ 0, there exists an exact sequence

0 −→ Gν
iν−→ Gν+1

pν−→ Gν+1

This is the scheme-theoretic analogue of the fact that in the world of abelian groups, letting Gν = Z/pv,
we have lim←−Gν = Qp.
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Remark 6.8. By iteration, there exists a closed immersion iν,µ : Gν → Gν+µ, which fits into the commutative
diagram

0 Gν Gν+µ Gν+µ

Gµ

iν,µ pν

jν,µ
iµ,ν

for all v, µ ≥ 0, and so there is a short exact sequence

0 Gν Gν+µ Gµ 0.
iν,µ jν,µ

Examples 6.9.

(1) If A is an abelian scheme over R, then A
pν→ A and A[pν ] = ker(pν), then we have a p-divisible group

A(p) := (A[pν ], iν).

(2) If Gm/R, then we have Gm
pν→ Gm, and so Gm(p) := (µpν , iν) is a p-divisible group.

We can now state the main result we want to prove:

Proposition 6.10. If G = (Gν , iν) is a p-divisible group of height h over R, and Gν = SpecAν where Aν
is a R-module via a finite map R ↪→ Aν , the discriminant ideal disc(Aν/R) is generated by pνnp

hν

, where
n = dimG.

We will later reduce to the case where Gν are all connected, in which case they are related to formal Lie
groups, for which we can compute things using differential forms. We therefore begin with some preliminaries
on formal Lie groups.

6.3 Relations with formal Lie groups

Definition 6.11. An n-dimensional formal Lie group over R is a family F = (Fi( ~X, ~Y )) of n power series in

2n variables (so Fi( ~X, ~Y ) ∈ RJX1, . . . , Xn, Y1, . . . , YnK) that satisfies the axioms:
(i) X = F (X, 0) = F (0, X);

(ii) F (X,Y ) = F (Y,X);
(iii) F (X,F (Y, Z)) = F (F (X,Y ), Z).
Even though X and Y are strictly speaking vectors, we will usually suppress the vector notation.

Note 6.12. By (i) and (ii), we get that F (X,Y ) = X + Y + higher order terms. In particular, Fi( ~X, ~Y ) =
Xi + Yi + higher order terms.

Definition 6.13. We define X ∗ Y = F (X,Y ), and

X ∗X ∗ · · · ∗X︸ ︷︷ ︸
m times

= [m]X.

Using this definition, [m] defines a homomorphism F → F , that is, we have the equality

[m](F (X,Y )) = F ([m]X, [m]Y ),

and [m] corresponds to a ring homomorphism

RJX1, . . . , XnK
ψ−→ RJX1, . . . , XnK

where ψ(Xi) is the ith coordinate of [m]X.

Remark 6.14. Suppose (m, p) = 1, then [m] is invertible (see [Sil09, Prop. 2.3] for the one-dimensional case).
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6.3.1 Case m = pv

Definition 6.15. If Γ is a formal Lie group with F (X,Y ) a formal group law, we say Γ is divisible if [p] is
an isogeny, that is,

RJX1, . . . , XnK
ψ−→ RJX1, . . . , XnK

makes RJX1, . . . , XnK into a free module of finite rank over itself.

The following is very important, and we will use it.

Remark 6.16. If Γ is divisible, then Γp := SpecA where A := RJX1,...,XnK
(ψ(Xi))

is a connected finite flat group

scheme over R.

Proof of Remark. First, the formal group law induces a comultiplication and group scheme structure on Γp,

since the formal group law can be thought of as a map RJ ~XK→ RJ~Y , ~ZK, and modding out by ψ(Xi) induces
a comultiplication.

Next, RJX1, . . . , XnK
ψ→ RJX1, . . . , XnK gives the target a finite free module structure over itself, hence

R ↪→ A is a finite extension.
Finally, we claim A is local (and hence Γp is connected). Denote m to be the maximal ideal of R. Since

R
φ
↪→ A is finite, it is integral, and so it satisfies Going-Up. This implies φ−1(max) = m, and so every maximal

ideal of A contains pA. Now [p]X = pX+ higher order terms (e.g., if dim Γ = 1, then [p]X = pf(X) + g(X)
where g(X) = aXn + · · · with a a unit). This implies that X is in every maximal ideal of A. Thus, A has a
unique maximal ideal.

Finally, setting Γν = SpecAν where Aν = RJX1, . . . , XnK/(ψν(Xi)) form an inductive system, so these
Γν form a p-divisible group Γ(p), where each Γν is connected.

Proposition 6.17. The functor Γ → Γ(p) which sends divisible formal Lie groups over R to connected
p-divisible groups over R is an equivalence of categories.

We won’t have time to go through this proof carefully. Full-faithfulness follows by the fact that R is
p-adically complete. Essential surjectivity is the harder part: the idea is to create a projective system of rings
that end up being a power series ring. We may describe some steps at the end.

Definition 6.18. If G is any p-divisible group over R, G = (Gν , iν), we can define

0 −→ G0
ν

i−→ Gν
j−→ Gét

ν −→ 0

and we can define a new p-divisible group (G0
ν , iν) =: G0, a connected p-divisible group. Similarly, we can

define Gét = (Gét
ν , ·). We define the dimension of (G0

ν , iν) to be the dimension of its associated formal Lie
group, and define dimG = dimG0.

6.4 Proof of Proposition 6.10

Before we prove Proposition 6.10, we remind ourselves of the definition of the discriminant.

Definition 6.19. Let R ↪→ A be a R-algebra homomorphism which realizes A as a finite R-module. Then,
disc(A/R) is the ideal of R generated by det(Tr(αiαj)ij) for any basis α1, . . . , αn ∈ A, where n is the rank of
A over R.

Proof of Proposition 6.10. Let G be a p-divisible group, and consider the short exact sequence

0 −→ G0 −→ G −→ Gét −→ 0

where G = (Gν , iν), Gν = SpecAν , and for all ν, we have

0 −→ G0
ν −→ Gν −→ Gét

ν −→ 0.

Since the discriminant behaves well with short exact sequences (i.e., if 0→ H ′ → H → H ′′ → 0 is a short
exact sequence of finite flat group schemes over R, we have disc(H) = disc(H ′)ord(H′′) · disc(H ′′)ord(H′)),
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we may assume Gν is connected. This is because the discriminant of Gét is 1 (the discriminant measures
ramification).

Now let Gν = SpecAν be connected, so that there exists a corresponding divisible formal Lie group Γ such
that Aν ' RJX1, . . . , XnK/(ψν(Xi)), where n is the dimension of G. From now on, denote A = RJX1, . . . , XnK,

and denote A′ to be the copy of A such that there is a finite injection A′
φ
↪→ A, where φ = ψν . It therefore

suffices to show that disc(A/A′) = pnνp
hν

.

For A′
φ
↪→ A, take Ω to be the formal module of differential forms on A, and Ω′ that on A′. Ω is a free

A-module generated by dXi, and dX ′i generate Ω′. Then,
∧n

Ω is free of rank 1 over A, with generator θ,
and

∧n
Ω′ is free of rank 1 over A′, with generator θ′. We then have dψν :

∧n
Ω′ →

∧n
Ω defined by θ′ 7→ aθ

for some a. We claim that a = pnν . This follows since Ω has a basis of invariant differential forms ωi, and

similarly Ω′ has one with ω′i, where invariance means that if A
ε
↪→ A⊗̂A defines a group law ε∗(ωi) = ωi ⊗ ωi.

Claim. dψν(ω′i) = pνωi.

The idea is that dψν(ω′i) = ωi ◦ [p]ν , and so taking a derivative gives the correct number of powers of p.
The final step uses the trace map Tr:

∧n
Ω→

∧n
Ω′, which satisfies the following properties:

1. Tr is A′-linear;
2. α 7→ [ω 7→ Tr(αω)] gives an A′-module isomorphism A

∼→ HomA(
∧n

Ω,
∧n

Ω′);
3. for all α ∈ A, and all ω′ ∈

∧n
Ω′, the equation

Tr(αdψν(ω′)) = TrA/A′(α) · ω′

holds.
Finally, Tr(αpnνθ′) = TrA/A′(α)θ′ so pnν Tr(αθ′) = TrA/A′(α)θ′ by A′-linearity, which implies TrA/A′(α) ∈
(pnν). We conclude that disc(Aν/R) ⊆ pnνphν .

For the reverse inclusion, we use that disc(Aν/R) = NAν/R(DAν/R), where D is the different ideal. We
would then need to show pnν ∈ D∗Aν/R.

7 November 3: The behavior of the Faltings height under isogeny
(Andrew Snowden)

A good reference for this material is [Lev11] from the Stanford seminar.
Let K be a number field, and let A/K be an abelian variety. We fix G ⊂ A[`∞] an `-divisible group,

where we denote Gn = G[`n], and An = A/Gn.
The main goal for today is to show the following:

Theorem 7.1. If A is everywhere semistable, then h(An) is eventually constant as a function of n.

We only really care that it is bounded.

Remark 7.2. Faltings [Fal86, Thm. 2] states that h(An) is constant, but this is not quite true. See [Fal86,
Erratum].

We briefly recall why we are interested in this statement. Fixing an `-divisible group G in A[`∞] gives a
Galois subrepresentation W of the rational Tate module. Theorem 7.1 combined with the finiteness statement
in Theorem 4.3 will imply there exists a sequence n1 < n2 < · · · such that Ani

∼= Anj . We can use these
isomorphisms to build interesting isogenies of A:

ui : A −→ An1

∼−→ Ani −→ A

and the sequence {ui} ∈ End(A) ⊗ Q` will have a convergent subsequence accumulating to some u ∈
End(A)⊗Q`, which will satisfy the property that W = u(V`(A)). This is the necessary ingredient in showing
Faltings’s isogeny theorem E; see §1.2.
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7.1 Outline of proof of Theorem 7.1

We now give an overview of the proof of Theorem 7.1. We will mainly concentrate on the case where K = Q,
and A where has good reduction at `. In this case, the sequence h(An) is actually constant. The field doesn’t
matter too much, but the good reduction hypothesis is actually pretty strong: we will talk about this later.

Step I. There is the following easy formula relating the heights of A and An:

h(An)− h(A) = log
(
|0∗Ω1

Gn/Z`
| `− 1

2nh
)
, (11)

where h = ht(G), 0: Spec(Z`) → Gn is the zero section of Gn → Spec(Z`), and Ω1
Gn/Z`

is the module of
relative Kähler differentials.

There isn’t much input in this step; it is very easy. This is the main reason to use Faltings height, since
the näıve height doesn’t have such a nice formula.

Step II. The cardinality appearing in the height formula (11) in Step I is given by

|0∗Ω1
Gn/Z`

| = `dn,

where d is the dimension of (the formal group associated to) GZ` .

The input to this step is Tate’s theorem (Proposition 6.10) on disc(Gn) from Valia’s talk.
To show the difference (11) is actually zero, we then need to show that h = 2d; the general statement

over an arbitrary field is that

[K : Q]h = 2
∑
v|`

[K : Q`]dv,

where dv = dimGOKv . This is the key formula we need to prove Theorem 7.1.

Remark 7.3. We pause and talk about why this is so cool. The equality h = 2d in particular shows that
heights of sub-`-divisible groups in A[`∞] must be even. This is very particular to the situation we are in,
where we have a global model for our abelian variety over Z:
• There exist odd height `-divisible groups over Z: e.g., Q`/Z`, µ`∞ .
• There exist odd height `-divisible groups in B[`∞] if B/Q` is an abelian variety. One way is to take an

ordinary elliptic curve, in which case

T`(B) =

(
∗ ∗
0 ∗

)
So we get a one-dimensional subgroup of T`(B), and thus, a height 1 `-divisible subgroup of B[`∞].

This means that it will be important in our proof that the `-divisible group lives in the `-torsion of an abelian
variety, and that the abelian variety has a globally defined model over Z.

We return to the outline of the proof of Theorem 7.1. The next step is to introduce a third invariant k,
which we will show in later steps is equal to 1

2h and d.

Step III. Recall V`(G) is the rational Tate module, whose dimension is the height of G. Then,

det(V`(G)) = ψ · χk` , (12)

where ψ is a finite order character of GQ, χ` is the `-adic cyclotomic character, and k ∈ Z.

The input in proving this is some simple p-adic Hodge theory and class field theory for Q.
We now focus on k, and try to relate it to h and d.

Step IV. k = d.

The input is Tate’s theorem/the Hodge–Tate decomposition (Theorem 5.2) for V`(G) from Kannappan’s
talk. Note this step only really uses local information of A.

Step V. k = 1
2h.

This where we use global information, namely, the Weil conjectures for the abelian variety AFp , for p 6= `.
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7.2 Step I: Formula for change of height under isogeny

We first want to prove the easy formula (11) relating heights. Tildes will always denote Néron models.

Proposition 7.4. Let φ : A → B be an isogeny of degree n, where A and B are abelian varieties over a
number field K, with semistable reduction at places over n. Then,

h(B)− h(A) =
1

[K : Q]
log|0∗Ω1

G/OK | −
1

2
log(n),

where G = ker(φ : Ã→ B̃).

Before we get into the proof, there are quite a few things here that must be true for the statement to even
make sense. For example, 0∗Ω1

G/OK must be finite: this is true since it is finitely generated over OK , and the
map is étale at almost all points. This also means that the only places we care about are those divisible by n.
That means we can enlarge our ground field K, since the Faltings height doesn’t change, and the right-hand
side is easily seen to not, either. This implies the following:

Remark 7.5. To show Proposition 7.4, we may enlarge K. We can therefore assume that A and B have
semistable reduction everywhere.

Recall 7.6. We recall the definition of h(A): pick ω ∈ Γ(A,ΩgA/K), where g = dim(A). Then, if i : K → C

is an embedding of our field, we can set

|ω|i =

∫
A(C)

ω ∧ ω,

which is a real number, and has the property that for a ∈ K, |aω|i = i(a)i(a)|ω|i. Our definition for Faltings

height uses this. Denote M = Γ(Ã,Ωg
Ã/OK

), which is a rank one projective OK-module. Then,

h(A) =
1

[K : Q]

( ∑
i : K→C

1

2
log|ω|i − log|M/OK · ω|

)

for any non-zero ω ∈M .

Proof of Proposition 7.4. Let M = Γ(Ã,Ωg), and let N = Γ(B̃,Ωg), which are both rank one projective
modules. We will assume without loss of generality that they are free, by possibly enlarging K. Now let ω be
a generator of M , and ω′ a generator of N . We then have that φ∗ω′ = aω, where a ∈ OK is nonzero. Note

|ω|i =
1

n
|φ∗ω|i =

i(a)i(a)

n
|ωi|,

by looking at how A(C) is Cg mod a lattice, and seeing that A is defined by an index n sublattice of that
defining B. We therefore have

h(B) =
1

2[K : Q]

∑
i : K→C

log|ω′|i

=
1

2[K : Q]

∑
i : K→C

(− log(n) + log(i(a)i(a)) + log|ω|i)

= −1

2
log(n) +

1

[K : Q]
log|NK/Q(a)|+ h(A)

Thus,

h(B)− h(A) = −1

2
log(n) +

1

[K : Q]
log|NK/Q(a)|.

It then remains to show that |NK/Q(a)| = |0∗ΩG/OK |. We have the following exact sequence for Arakelov
forms:

φ∗(Ω1
B̃/OK

) −→ Ω1
Ã/OK

−→ Ω1
Ã/B̃
−→ 0
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Pulling back via the 0-section, we obtain a short exact sequence

0 −→ 0∗Ω1
B̃/OK

φ∗−→ 0∗Ω1
Ã/OK

−→ 0∗Ω1
Ã/B̃
−→ 0,

where you need to check exactness on the left. Since φ∗ω′ = aω, we have detφ∗ = a. Thus, by taking top
wedge powers of this short exact sequence, |0∗Ω1

Ã/B̃
| = |NK/Qa|

Finally, we claim 0∗Ω1
Ã/B̃
∼= 0∗Ω1

G/OK . Conisder the diagram

G Ã

Spec(OK) B̃

φ

0

which is a fibre square. The claim then follows from the behavior of Ω1 under base change.

Proposition 7.4 is now proved. Step I is an immediate consequence:

Proof of Step I. To get (11), take B = An and let K = Q. Since deg φ = |Gn| = `n, we get

h(An)− h(A) = log
(
|0∗Ω1

G/Z`
| `− 1

2nh
)
.

7.3 Step II: Computation of cardinality of 0∗Ω1
Gn/Z`

Now we want to compute |0∗Ω1
Gn/Z`

|. We will use the following general result about connected finite flat
group schemes:

Lemma 7.7. Suppose H/Z` is a connected finite flat group scheme. Then,

|0∗Ω1
H/Z`

|#H = |Z`/disc(H)|.

Proof. Let H = SpecR, where R is a finite local Z`-algebra; note it is local since H is connected. Then, we
have a homomorphism R→ Z` corresponding to 0 ∈ H(Z`). Let I ⊂ R be its kernel. Then,

I/I2 = 0∗(Ω1
H/Z`

)

We have an isomorphism Ω1
H/Z`

∼= R ⊗Z` I/I
2, since Ω1

H/Z`
has a basis of translation-invariant one-forms,

which we can think of as coming from I/I2 (since H is connected). As a Z`-module, R ∼= Z#H
` , and so as a

group, |Ω1
H/Z`

| = |I/I2|#H = |0∗Ω1
H/Z`

|#H . We then have that

|Ω1
H/Z`

| = |Z`/disc(H)|

We can now use the Lemma to prove Step II.

Proof of Step II. Let G0
n be the connected part of Gn. Then,

0∗Ω1
Gn/Z`

= 0∗Ω1
G0
n/Z`

,

which implies

|0∗Ω1
Gn/Z`

| = |0∗Ω1
G0
n/Z`
| = |Z`/disc(G0

n)|1/#G
0
n = (`dn#G0

n)1/#G0
n = `dn,

where the second equality is by Lemma 7.7, and the third is by Tate’s theorem (Proposition 6.10), which says

that disc(G0
n) = `dn#G0

n , where d is the dimension of the formal group of G0.
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7.4 Step III: Background on Hodge–Tate representations and formula (12)

Before we talk start the proof of that h = 2d, we give some preliminaries on p-adic Hodge theory, which
might overlap with what Kannappan said (§5).

Let K/Q` be a finite extension, and denote

C` = K̂.

Then, we make the following definition:

Definition 7.8. Let V be a continuous representation of GK , where V is a finite dimensional Q`-vector
space. Then, we say V is Hodge–Tate if

V ⊗Q`
C`
∼=
⊕
n∈Z

C`(n)⊕h(n)

for some h(n) ∈ Z, where GK acts on each factor on the left, and (n) denotes Tate twist. The n such that
h(n) 6= 0 are called Hodge–Tate weights, which we say occur with multiplicity h(n).

Facts 7.9.
• If X/K is a smooth projective variety, then Hi

ét(XK ,Q`) is a Hodge–Tate representation.
• The category of Hodge–Tate representations is abelian, and closed under tensor products.
• Any subrepresentation or quotient representation of a Hodge–Tate representation is again Hodge–Tate.
• If GK acts on V through a finite quotient, then V is Hodge–Tate of weight 0.
• A one-dimensional representation α of GK is Hodge–Tate if and only if it is of the form α = ψχk` for

some k, where ψ is of finite order on IK .

Proposition 7.10. Let α : GQ → Q∗` be a continuous character which ramifies at only finitely many places,
such that α|GQ`

is Hodge–Tate of weight k. Then, α = ψχk` , where ψ : GQ → Q∗` has finite order.

Proof. First, we may replace α with α
χk`

, so now α|GQ`
has weight zero. Thus, α|IQ` is of finite order. Then,

since Q∗` is abelian, α factors to give a character α : Gab
Q → Q∗` , where by class field theory,

Gab
Q = Ẑ× =

∏
p

Z×p ,

where each factor at p is the inertial group at p. By assumption, since α ramifies at only finitely many places,
α factors through some quotient of the form

∏
p|N Z×p for some N . So we know that α|Z×` is of finite order by

the Hodge–Tate condition. It is also true that α|Z×` is of finite order for p 6= `, since any homomorphism

Z×p → Q×` is of finite order. Finally, this implies that α is of finite order.

The takeaway from this concerns the Tate module of the p-divisible group we care about:

Proof of Step III. Let G ⊂ A[`n], where A/Q is an abelian variety. We know that V`(G), a subquotient of
the Tate module of A, is a Hodge–Tate representation of GQ. Then, the determinant α = det(V`(G)) of this
representation is also Hodge–Tate of GQ. Proposition 7.10 implies that α = ψχk` , where k is the weight of
α|GQ`

, and ψ is of finite order.

7.5 Step IV: k = d

We basically just have to quote Tate’s theorem.

Proof of Step IV. By Tate’s theorem 5.2, the representation V`(G)|GQ`
is Hodge–Tate with weights 0, 1. The

multiplicity of the weight 1 is d, the dimension of G. Writing this out, we have

V`(G)⊗C` = C`(0)⊕h(0) ⊕C`(1)⊕d,

and so the determinant det(V`(G)) has Hodge–Tate weight d. By Step III, we conclude that k = d.
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7.6 Step V: k = h/2

So far we haven’t used the global information; this is where it is used, in the form of the Riemann hypothesis
part of the Weil conjectures for abelian varieties.

Proof of Step V. Recall that V`(G) ⊂ V`(A) is a h-dimensional GQ-subrepresentation, where h = ht(G).
Now let p 6= ` be a prime of good reduction for A. Then, V`(A) is unramified at p, and so V`(AFp) is a
representation of GFp = 〈Frobp〉. This representation is semisimple, and the eigenvalues of Frobenius are

Weil numbers of weight 1 (that is, |·| = p1/2 under any complex embedding). The same statement is true for
V`(G), which is a subrepresentation. Thus, det(V`(G)) Frobenius acts by a weight h Weil number, and so

|α(Frobp)| = ph/2.

On the other hand, we know from Step III that

|α(Frobp)| = |ψ(Frobp)| · |χ`(Frobp)|k = pk,

and so k = 1
2h.

7.7 Comments about general case

We assumed that A had good reduction at `, so we first explain what happens when that is not the case. We
used this when we assume that G and A[`∞] are `-divisible groups over Z`.

If A does not have good reduction, Ã[`n] is a quasi-finite flat group scheme over Z`, which is not necessarily
finite in general (look at the `-torsion group scheme of an elliptic curve that has toric reduction). What you
can do instead is to use the following structure theorem:

Fact 7.11. If H/Z` is a quasi-finite flat group scheme, there is a canonical open and closed subgroup Hf ⊂ H,
which is finite over Z`. This is functorial in H, and is the maximal thing with this property.

What we would like to do is to reduce to studying Hf instead of H. Note that the zero section is always
contained in Hf , and so everything factors through. There is a slight problem: you need to show that given
the system Ã[`n] of quasi-finite flat group schemes over `, taking {Ã[`n]f} gives an `-divisible group. Brian
Conrad proves this statement in one of this seminar talks [Con11b, Lem. 5.4]. However, this does not give a
proof for G: {Gfn}n≥1 may not form an `-divisible group. Faltings assumed this would, which is an error in
his original argument; see [Fal86, Erratum]. But this is true if we replace A by A/Gn for sufficiently large
n� 0.

8 November 10: Faltings’s isogeny theorem (Takumi Murayama)

References for this talk are [Fal+92, Ch. IV; Lev11]. We also recommend looking back to §2 and [Lic10] for
the analogous proof over finite fields.

Today, we will continue using the machinery we have built up so far to prove Faltings’s isogeny theorem.
As always, let K be a number field, and let GK be the absolute Galois group of K.

Recall our main goal is to prove statements E and D from §1.1:

E. Faltings’s isogeny theorem. If A and B are two abelian varieties over K, then the natural map

HomK(A,B)⊗Z Z` −→ HomGK (T`(A), T`(B)) (?)

is an isomorphism for all primes `.

D. Semisimplicity of the Tate module. If A is an abelian variety over K, then V`(A) is a semisimple
GK-representation.

The proof will be fairly similar to the proof of Tate’s isogeny theorem [Tat66] for abelian varieties over a
finite field in §2, but there are a couple of differences. The major one is that we need to find a way to use the
following weaker finiteness results from the talks by Andrew (§7) and Bhargav (§4):
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Theorem α (Theorem 7.1). Let A be an abelian variety over a number field K. Fix an `-divisible group
G ⊂ A[`∞], and denote Gn = G[`n] and An = A/Gn. If A has semistable reduction, then h(An) is eventually
constant as a function of n.

Theorem β (Theorem 4.3). Fix g ≥ 1, a composite number m ≥ 3, and a constant C > 0. Then, there exist
only finitely many (up to K-isomorphism) principally polarized abelian varieties B of dimension g with

(a) level structure (Z/m)2g ∼→ B[m], and
(b) Faltings height hF (B) < C.

As Andrew pointed out in §1.2, and just as in §§2.3–2.4, it suffices to show the following:

Key Result 8.1 (cf. Key Result 1.3). If A is an abelian variety over a number field K, and W ⊂ V`(A) is a
subrepresentation of the rational Tate module, then there exists u ∈ EndK(A)⊗Q` such that u(V`(A)) = W .

The plan for today is to first discuss how to deduce statements D and E from Key Result 8.1. After a
short discussion about finiteness statements and how to move to a setting where the finiteness results above
apply, we will prove Key Result 8.1.

8.1 Reduction to Key Result 8.1

We first show Key Result implies D, following [Lic10, p. 9], since we did not show it when we proved Tate’s
isogeny theorem over finite fields in §2. Denote

E` := EndK(A)⊗Z Q` ⊂ EndQ`
(V`(A)).

Key Result 8.1 ⇒ D. Let W ⊂ V`(A) be GK-semistable; it suffices to show that there exists a GK-stable
complement W ′. The right ideal

a := {u ∈ E` | u(V`(A)) ⊂W} ⊂ E`,

is principally generated by some element u0 such that u2
0 = u0, as are all right ideals in semi-simple algebras

[Lev11, Prop. 4.4]. Now since there exists u ∈ E` such that u(V`(A)) = W , we have that

u0(V`(A)) = u0E`(V`(A)) = a(V`(A)) = W,

so u0 is a projection operator on V`(A) with image W . Thus, 1− u0 is a projection operator onto a direct
complement W ′ of W , and V`(A) is therefore semisimple.

Remark 8.2. The proof of the fact that all right ideals in a semi-simple algebra over a field k are principal is
[Lev11, Prop. 4.4], and goes as follows. By decomposing the semi-simple algebra, you reduce to the case of
central simple algebras over k. This is isomorphic to a matrix algebra Matn(D) for some central division
algebras D over k. In this case, you can do an explicit matrix analysis.

We next remind everyone how to deduce E from Key Result 8.1. The first reduction is the same as in §2.3:

Lemma 8.3 (Lemmas 2.9 and 2.11). To show E, it suffices to show that the natural map

EndK(A)⊗Z Q` −→ EndGK (V`(A)) (? ? ?)

is a surjection.

Idea. Injectivity in (?) holds in general, so it suffices to show it is surjective. The morphism (?) is surjective
if and only if (?) ⊗Q` is surjective since cok(?) is torsion-free. To replace Hom with End, you apply the
endomorphism statement with A×B replacing A.

We can now deduce E. Since this is basically the same argument as in §§2.4–2.3, we simply give a sketch:
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Key Result 8.1 ⇒ E (Sketch). Let C be the centralizer of E` in EndQ`
(V`(A)). The centralizer C◦ of C

equals E` by the double centralizer theorem [Jac89, Thm. 4.10], since E` is a semisimple algebra.
Now let α ∈ EndGK (V`(A)); we want to show that α ∈ C◦. Consider any d ∈ C. Then, d⊕ d commutes

with everything in EndK(A×A)⊗ZQ`. In particular, by Key Result 8.1, there exists u ∈ EndK(A×A)⊗ZQ`

such that
u(V`(A×A)) = {(x, αx) ∈ V`(A×A)} =: W,

and (d⊕ d) commutes with u. By applying (d⊕ d) to both sides of this equation, we have (d⊕ d)W ⊂W ,
which implies dα = αd, i.e., α ∈ C◦. Thus, (? ? ?) is surjective.

So we see that it suffices to show Key Result 8.1.

8.2 Some comments on finiteness theorems

Before we get into the details of the proof of Key Result 8.1, we want to point out the major difference
between Faltings’s proof for number fields and Tate’s proof for finite fields. The setup is basically the same:

Setup 8.4. Let W ⊂ V`(A) be a GK-invariant subspace. Then, letting U := W ∩ T`(A), for n ≥ 1 we can
define an `-divisible subgroup G ⊂ A[`∞] with levels

U/`nU ↪→ T`(A)/`nT`(A) = A[`n](K)

which is actually defined over K since W is GK-invariant. We can then consider the subgroups Gn = G[`n]
and the quotients An = A/Gn appearing in Theorem α.

In Tate’s proof, the steps thereafter are as follows:

Step 1. Use either the “strong” finiteness hypothesis

Hyp(K,A, `) : There exist only finitely many (up to K-isomorphism) abelian varieties B such that

there is a K-isogeny B → A of `-power degree.

or the “weak” finiteness hypothesis

Hyp(K,A, d, `) : There exist only finitely many (up to K-isomorphism) abelian varieties B such that

(a) there exists a K-isogeny B → A of `-power degree;

(b) there exists a polarization λ : B → B∨ where deg λ = d.

to construct a sequence n1 < n2 < · · · such that Ani
∼= Anj .

Step 2. Define isogenies
ui : A −→ An1

∼−→ Ani −→ A,

and then extract u ∈ E` as the limit of a convergent subsequence of these ui that satisfies the conclusion of
Key Result 8.1.

Step 2 looks like it will still work. However, for Step 1, Faltings proves neither of these hypotheses until
after establishing the isogeny theorem (this is a consequence of the Shafarevich conjecture for abelian varieties,
which is statement C). We want to instead use Theorems α and β.

Problems 8.5. The finiteness statements in Theorems α and β don’t seem to apply, since
(1) A does not have semistable reduction;
(2) An don’t come with level structure; and
(3) A,An aren’t principally polarized.

To solve these problems, we notice that there is a bit more flexibility in our setup: we can fix (1) and (2)
by taking field extensions, and fix (3) by using Zarhin’s trick appropriately, and replacing Theorem α with a
stronger statement. We will have to go in order.
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8.2.1 Ensuring A has semistable reduction

We fix Problem 8.5(1).

Proposition 8.6. Let A be an abelian variety over K. If Key Result 8.1 holds for AL = A×K L, where L
is a finite extension of K, then it holds for A.

Proof. Let W ⊂ V`(A) be a GK -invariant subspace, so there exists u ∈ EndL(A)⊗Z Q` such that u(V`(A)) =
W . Choose representatives {σi} = GK/GL, and let

u′ =
1

[L : K]

∑
i

σi(u).

Since W is GK -invariant, each σi(u) satisfies the same property as u, and thus, so does u′. Galois descent of
morphisms then implies u′ ∈ EndK(A)⊗Q`.

By applying Grothendieck’s semistable reduction theorem 3.15, we obtain

Corollary 8.7. It suffices to show Key Result 8.1 for abelian varieties with semistable reduction.

Note, however, in the rest of the proof we will use very often that we can pass freely to finite extensions.

8.2.2 Ensuring An have level structure

To fix Problem 8.5(2), the point is the following:

Proposition 8.8. For m coprime to `, there exists a finite field extension L of K such that every An has
level m-structure.

It suffices to produce level m-structure on A, since the m-torsion parts of An are isomorphic to those of
A. But this happens we know after base extension to K, so base changing to the fixed field L of the kernel of
the representation

GK −→ GL2g(Z/mZ)

defined by acting on AK [m] suffices, since the degree of the field extension L/K is bounded above by
|GL2g(Z/mZ)|.

8.2.3 Ensuring A,An don’t have to be principally polarized

Now we fix Problem 8.5(3). This is a bit more involved. We want to show the following strengthening of
Theorem β:

Theorem β∗. Theorem β holds without assuming principal polarization.

We claim it suffices to note the following:

Proposition 8.9 [Fal+92, Ch. IV, Prop. 3.7]. If B is an abelian variety over K with semistable reduction,
then h(B∨) = h(B), where B∨ denotes the dual abelian variety to B.

We basically use the tricks from §2.5.

Proposition 8.9 ⇒ Theorem β∗. Using Proposition 8.9, we have

h((B ×B∨)4) = 8 · h(B).

Since (B×B∨)4 is principally polarized by Zarhin’s trick, the number of K-isomorphism classes of (B×B∨)4

is finite by Theorem β. But each abelian variety (B × B∨)4 has only finitely many direct factors (up to
K-isomorphism), so there are only finitely many isomorphism classes for B.

We now give the idea for Proposition 8.9. Note that Deligne just states this fact without proof [Del85,
Rem. 1.22].
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Idea of Proposition 8.9. Since A has semistable reduction, the Faltings height is invariant under taking finite
field extensions [MilAV, p. 153], and so after possibly passing to a larger finite extension, it suffices to
consider the case when B is isogenous to a principally polarized abelian variety. If B is actually isomorphic
to a principally polarized abelian variety, then we are done, since B ∼= B∨. Thus, it suffices to show that
h(B∨)− h(B) is an isogeny invariant. Since any isogeny can be factored (over another finite field extension)
into ones of prime degree, we are reduced to showing that

h(B∨)− h(C∨) + h(C)− h(B) = 0,

when there is an isogeny ϕ : B → C of prime degree p. By using the formula for change of height under
isogeny (Proposition 7.4), it suffices to show

[K : Q] · log(p) = log(|0∗Ω1
G/OK | · |0

∗Ω1
G∨/OK |),

where G = ker(ϕ : B → C) and G∨ = ker(ϕ∨ : C∨ → B∨). After this, by completing at each place dividing p,
it suffices to show

|0∗Ω1
Gv/OK,v | · |0

∗Ω1
G∨v /OK,v | = |OK,v/pOK,v|.

The rest of the argument uses the decomposition of Tate modules T` into torsion and free parts (hinted at in
§7.7), after which you do some diagram chasing involving formal schemes; see [Fal+92, Ch. IV, Prop. 3.7].

8.3 Proof of Key Result 8.1

We are now ready to prove Key Result 8.1. By Proposition 8.6, Corollary 8.7, and Proposition 8.8, we may
assume that A has semistable reduction and has level m-structure for some composite m ≥ 3 coprime to `.
Note that most of the argument is due to Tate, and could have been presented in §2.4.

Proof of Key Result 8.1. Let An as in the Setup 8.4. Since A has semistable reduction, by Theorem α, the
Faltings height h(An) of the An are bounded uniformly by some constant C. By Theorem β∗, this implies
there is a sequence n1 < n2 < · · · such that Ani

∼= Anj . We then define isogenies

ui : A An1
Ani A,

f−1
n1 vi

∼
fni

where we note fni is of order `ni dimX , and satisfies

fni(T`(An)) = W ∩ T`(A) + `nT`(A) =: Xn.

Viewed in EndQ`
(V`(A)), each ui maps Xn1 onto Xni ⊂ Xn1 , since

ui(Xn1
) = uifn1

(T`(An1
)) = fniviT`(An1

) = fniT`(Ani) = Xni .

Since by definition Xni ⊂ Xn1
, this says the ui all preserve the lattice Xn1

in T`(A). Thus, the ui all lie in a
compact subspace EndZ`(Xn1

) ∩ E` ⊂ E` := EndK(A)⊗Z Q`. By compactness, passing to a subsequence of
the ni, the sequence ui converge to a limit u ∈ EndZ`(Xn1

) ∩ E`. Now consider

U := W ∩ T`(A) =
⋂
i∈I

Xni .

Since ui(Tn1
) = Tni as in (8.3), every x ∈ U is a limit limi∈I ui(xi) of xi ∈ Tn1

. Passing to a convergent
subsequence xj of these xi gives that x is the limit of u(limj∈J xj), and so u(T`(A)) = W ∩ T`(A), and so
u(V`(A)) = W .

Remark 8.10. In [Fal86, §5; Lev11, §4], because of the choice of moduli space, a variant of Theorem β is used,
where there is no level structure involved. In [Fal+92, p. IV], Schappacher decides to use a similar variant
of Theorem β∗, where again no level structure is involved. If we wanted to assume abelian varieties were
principally polarized in our finiteness theorem, then we would have to deal with another reduction step in the
proof of Key Result 8.1, which involves considering maximally isotropic subspaces W , first, similarly to how
the proof of Tate’s isogeny theorem went for the weak finiteness hypothesis in §2.6. The disadvantage to this
approach is that you have to reprove a portion of Zarhin’s trick at the end to reduce the case of a general
subspace to the case of a maximally isotropic one; see [Fal+92, IV, no 4.5]. On the other hand, this method
would avoid Proposition 8.9, which we had to sketch.

39



8.4 Consequences

We list some consequences of Faltings’s isogeny theorem D and E. Recall that we have nice descriptions of
when two abelian varieties are isomorphic in the finite field case (Corollary 2.2); there, we used zeta functions,
and so you would want some statement involving (Hasse–Weil) L-functions. The L-function for A is defined
to be

L(A, s) =
∏
v

1

det(1− (Nv)−s · Fv | T`(A)Iv )
=
∏
v

Lv(A, s),

where ` can be any prime not dividing v, Nv is the cardinality of the residue field at v, Fv is the Frobenius
element at v, and Iv ⊂ GK is the inertia subgroup at v. Then, we have the following:

Corollary 8.11. Let A1, A2 be abelian varieties over K. Then, the following are equivalent:
(i) A1 and A2 are isogenous;

(ii) For all `, V`(A1) ∼= V`(A2) as GK-modules;
(iii) For some `, V`(A1) ∼= V`(A2) as GK-modules;
(iv) Lv(s,A1) = Lv(s,A2) for almost all places v of K;
(v) Lv(s,A1) = Lv(s,A2) for all places v of K.

We already did (i)⇔ (ii) in the proof of Corollary 2.2.

Proof. (i)⇐ (ii). Note that f : A1 → A2 is an isogeny if and only if T`(f) has full rank, i.e., detT`(f) 6= 0.
(ii)⇒ (iii) is clear.
(iii) ⇒ (i). Suppose ϕ : V`(A1) → V`(A2) is an isomorphism of GK-modules. Choose n such that

`nϕ ∈ Hom(T`(A1), T`(A2)). By the isogeny theorem, this comes from HomK(A1, A2) ⊗Z Z`, and can be
approximated by elements of HomK(A1, A2). Since det(`nϕ) 6= 0, these approximations will also have
nonvanishing determinant, and this way you can get an isogeny.

(iii)⇒ (v). L-factors can be read off of the Tate module for ` not dividing v, and so isomorphisms for all
` mean that we have the same L-factors.

(v)⇒ (iv) is clear.
(iv)⇒ (iii). By Čebotarev density, the set of all Fv for all but finitely many v is dense in GK , and so

we know the characteristic polynomial of g ∈ GK . It is a general fact that a semisimple representation is
determined by the characteristic polynomial, and the V`(A1), V`(A2) are semisimple by statement D.

Corollary 8.12. Let A be an abelian variety over K. Then, there are only finitely many isomorphism classes
of abelian varieties B over K such that for all `, T`(A) ∼= T`(B).

Sketch. By assumption and the isogeny theorem E, there exists an isogeny A→ B with degree prime to ` for
all `. As before, we can freely extend the ground field, and therefore assume A and all B’s have semistable
reduction and have level structure. By choosing the isogenies above correctly, there exists an N such that for
every prime number ` and all B, there exist isogenies φ : A→ B for which the greatest power of ` in deg φ
divides N (see [Fal+92, V, Lem. 3.2]). Finally, [Fal86, Rem.] says that

exp(2[K : Q] · (h(B)− h(A))) ∈ Q,

whose numerator and denominator divide a certain power of N . Applying Theorem β∗, we are done.

9 November 17: Raynaud’s theorem on finite flat group schemes
(Valia Gazaki)

References for this talk are [Tat97; Sno13, Lec. 7].
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9.1 Statement of Raynaud’s Theorem and initial reductions

The goal for today is the following:

Theorem 9.1 (Raynaud). Suppose e < p− 1, and let G0 be a finite group scheme over K. Then, unique
prolongation holds for G0.

We first need to explain everything in the statement.

Setup 9.2. K/Qp is a finite field extension, R is a ring of integers, k is the residue field of R, and e is the
ramification index of K.

Reminders 9.3.
(1) By a finite flat group scheme G = SpecA over R, we mean that A is a free R-mod which is also a finite

flat K-algebra, together with a comultiplication morphism, etc.. We denote ord(A) = rkRA.
(2) There exist kernels and cokernels for morphisms between finite flat group schemes: a sequence

0 −→ G′ −→ G −→ G′′ −→ 0

is exact if G′ ↪→ G is closed and exact, and G→ G′′ is finite and flat.
(3) Given G, there exists a Cartier dual G∨ = SpecA∨, where A∨ = HomR-Mod(A,R).
(4) If Γ is a finite abelian group (e.g., a continuous Gal(K/K)-mod), then Γ = SpecA, where A =
{functions Γ→ K}, is a constant group over K.

Definition 9.4. If G0/K is a finite group scheme, a prolongation of G0 is a finite flat group scheme G/R
such that G⊗R K

∼→ G0. We say that G0/K satisfies UP or unique prolongation if any two prolongations
are isomorphic.

Remark 9.5. The bound on e is strict: µp ⊂ K, e ≥ p− 1, then

(µp)K
∼→ (Z/p)K ,

but there does not exist a nontrivial morphism (µp)R → (Z/p)R, since the former is connected and the latter
is étale.

We start with an outline of the proof of Theorem 9.1:

Step 1. Some reductions. The main reduction is to the case of simple groups.

Step 2 (Heart of proof). The structure theorem for Raynaud F -module schemes.

Step 3. Prove the theorem by hand for the objects that show up in the structure theorem.

Properties 9.6 (of prolongations).
(1) Let G0 = SpecA0, where A0 is a finite Hopf algebra over K. If G = SpecA is a prolongation, then A is

a finite R-subalgebra of A0, closed under comultiplication, and spans all of A0 (this implies A is an
order of A0; the two properties together imply closure under the antipode).

(2) If f : A1 → A2 is a map of prolongations (in particular, it is compatible with reduction to K), then
f : A1 ↪→ A2.

(3) Prolongations of A0 are partially ordered by inclusion. Any two prolongations have a supremum and
an infimum.

Definition 9.7. G1 ≥ G2 ⇐⇒ A2 ↪→ A1 ⇐⇒ ∃G1 → G2.

Then, A1 ·A2 = sup(A1, A2), and the infimum is given by Cartier duality.
(4) We have the following:

Proposition 9.8. If G0 has a prolongation, then there exists G+ maximal and G− minimal, which
are unique
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Proof. It suffices to show the ascending chain condition: if there is a sequence A1 ⊂ A2 ⊂ · · · of
prolongations, then it stabilizes. You can think of this sequence as an ascending chain of orders of A0.
This stabilizes because A0 has a maximal order. Thus, the chain above stabilizes, and there exists a
maximal A+. By Cartier duality, you get a minimal A−. They are unique by taking products, as in
(3).

There is a map A− ↪→ A+, and so you get a map G+ → G−.

We start with some preliminary reductions, corresponding to Step 1 above.

Reduction 0. It suffices to show f : G+ ∼→ G−.

Reduction 1. It suffices to show f is an isomorphism after base change.

Reduction 2. It suffices to show unique prolongation for simple groups.

Proof of Reduction 2. It suffices to show that UP behaves well under short exact sequences:

0 −→ G′0 −→ G0 −→ G′′0 −→ 0

We want to show that if UP holds for G′0, G
′′
0 , then it holds for G0.

Suppose G0 has a prolongation G. Then, consider the scheme-theoretic closure G′ of G′0 in G. This is a
prolongation of G′0. Take G/G′ = G′′. This will be a prolongation of G′′0 . Moreover, we have a commutative
diagram

0 G′ G G′′ 0

0 H ′ H H ′′ 0

' '

and the middle morphism is an isomorphism by the five lemma.

9.2 Raynaud F -module schemes

We start with a preliminary discussion. Let G0/K be a simple group of p-power order. Let V = G0(K).
Then, V is an irreducible Fp-representation of Gal(K/K) = GK (here you need the fact that G0 is simple).
Since V is irreducible, by Schur’s theorem, EndGK (V ) is a division algebra over Fp. Then, EndGK (V ) is
central over some finite extension F of Fp. Thus, EndGK (V ) ∈ Br(F ) = 0, and so EndGK (V ) = F . Thus, V
can be thought of as an absolutely irreducible F -linear representation of G0.

Now suppose k = k by passing to Kur. Then, GK is equal to the inertia group IK , and we have a short
exact sequence

1 −→ Iw −→ IK −→ It −→ 0,

where Iw is the wild subgroup (which is a pro-p group), and It is the tame quotient. Then, V Iw 6= 0 (by using
the orbit-stabilizer theorem), and so V Iw = V (since the fact that Iw is a normal subgroup of IK implies the
invariants form a subrepresentation), i.e., there is no wild action.

Now consider V as an F -vector space. Then, we must have dimF V = 1, since if it were larger, we would
get nontrivial subrepresentations, contradicting its irreducibility.

This suggests the following definition:

Definition 9.9.
(1) An F -module scheme over K or R, for a finite field F of p-power order, is a finite group scheme G,

equipped with a ring homomorphism F → End(G) (so it is an F -vector space object). The image of t
will be denoted by [t].

(2) A Raynaud F -module scheme also satisfies that dimF G(K) = 1. We will frequently refer to them as
Raynauds for short.

Proposition 9.10. Suppose k = k, and G0/K is a finite simple group scheme of p-power order. Then, G0

is canonically a Raynaud F -module scheme for some F .
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Reduction 3 (no hypothesis on k). Suppose UP holds for every Raynaud over Kur. Then, UP holds for
any finite group over K.

Proof of Reduction 3. Suppose there exists a prolongation G of G0. From one of the previous reductions, it
suffices to show G+ → G− is an isomorphism, and moreover to show that G+ ⊗OKur → G− ⊗OKur is an
isomorphism. Thus, we may assume k = k; moreover, it suffices to show this for simple groups.

Case 1. If G0 has p-order, then G0/K
ur is Raynaud, so ' holds by assumption.

Case 2. If G0 has order coprime to p, then it is étale, and so UP holds automatically.

Remark 9.11. If G0 is Raynaud over K, and there exists a prolongation G, it is not necessarily true that G is
Raynaud over R. However, G+, G− will be, since F acts by automorphisms, so will preserve maximal objects.

9.3 The structure theorem for Raynaud F -module schemes

Let F be a finite field of order q = pr. Assume k contains the q − 1 roots of unity.

Definition 9.12. A character χ : F× → R× is fundamental if the composite map F× → R× → k× extends
to an embedding F ↪→ k. So χ will just be a power of the Frobenius k/F . If χ′ is another fundamental
character, then χ′ = χp

m

for some m ∈ Z. Now order fundamental characters in some index set I, such that
χpi = χi+1, so that I becomes a torsor of Z/rZ. If µ : F× → R× is any character, then µ =

∏
i∈I χ

ai
i . This is

a unique expression if 0 ≤ ai < p, and not all ai = 0. We will write

µ =
∏
i

χ
µ(i)
i .

Example 9.13. If µ = 1, then µ(1) = p− 1.

We start with an initial analysis of the structure of an arbitrary Raynaud F -module scheme. Let
G = SpecA be a scheme, which is a Raynaud F -module over R. Then, GK is a constant group scheme for
some F , and G(K) = F by the Raynaud assumption. Note GK = SpecAK , where AK = {functions F → K}.
Let µ : F× → k× be a character. This extends to a character εµ : F → K, where εµ(0) = 0. This character

lives in AK . We denote εi = εχi , and let I be the augmentation ideal of A (I
ker→ A

0→ R).

Remark 9.14. Let t ∈ F . Then [t] : A→ A descends to a map [t] : I → I, all of whose eigenvalues are defined
over R, since we assumed the q − 1 roots of unity are in R. The characters µ are then defined over R as well.

Now for any t1, t2 ∈ F , the induced morphisms [t1], [t2] commute, and so there exists a basis of common
eigenvectors:

I =
⊕
µ char

Iµ

where Iµ = {x ∈ I | [t] · x = µ(t) · x ∀t ∈ F×}.

Claim 9.15. rkR(Iµ) = 1.

It suffices to show dimK(Iµ ⊗K) = 1. This is easy, since you can show εµ spans Iµ ⊗K: if f is in this
space, then [t]f(s) = µ(t)f(x), and then by looking at the equation f(ts) = µ(t)f(s) for s = 0 and s = 1.

So now choose a generator Xµ of Iµ over R. By the relation on the fundamental characters Xi = Xχi , its
p-power lies in IXi+1 , so that there exists δi ∈ R such that Xp

i = δiXi+1. We want to show that these are the
only relations that we get, so that we have a nice structure theorem for Raynaud F -module schemes.

Theorem 9.16 (Structure theorem). Let G = SpecA be a Raynaud F -module. Then,

A ' R[Xi]i∈I
(Xp

i − δiXi+1)

where v(δi) ≤ e.
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Our initial analysis shows there is a morphism from the right-hand side to A, but there are three more
things to show: first, that the Xi generate everything; second, there are no more relations; and third, the
valuation statement.

For a fundamental expansion µ =
∏
χ
µ(i)
i , define

Xµ =
∏
i∈I

X
µ(i)
i ∈ Iµ.

Take also εµ =
∏
ε
µ(i)
i = εµ.

Let SpecB = G∨ (Cartier dual, not vector space dual). Then, B = HomAMod(A,R), and base changing
to K gives BK = HomK(AK ,K) ' K[F ].

Notation 9.17.
(1) If t ∈ F , then denote {t} to be the corresponding generator of K[F ]. Then, {t} · {s} = {t+ s}.
(2) Also we have an F -vector space structure [t] : K[F ]→ K[F ], where [t]{s} = {ts}.

Remark 9.18. G∨ is an F -module scheme (by reversing the arrows). BK is one-dimensional over F , and so it
is also Raynaud. Now if J is the augmentation ideal of B, then J =

⊕
µ Jµ.

Claim 9.19. rkµ Jµ = 1, and Fµ ⊗K is spanned by the following elements:
• If µ 6= 1,

eµ =
1

q − 1

∑
t∈F×

µ−1(t){t}.

• If µ = 1,

e1 = −1 +
1

q − 1

∑
t∈F×

{t}.

(This is not hard.)

Now the Xi generate Ii, where Xi = ci · εi in K. Then, we choose Yi = c−1
i · ei. These Xi, Yi give a basis

of Jχi .

Remark 9.20. There is a pairing A×HomR(A,R)→ R by evaluation. Base changing to K gives a pairing
AK ×BK → K, where the former is functions and the latter is K[F ], given by 〈f, {t}〉 = f(t).

Claim 9.21. 〈εi, ej〉K = δij.

Set Y µ =
∏
i∈I Y

µ(i)
i ∈ Jµ. A key step is then to compute Wµ = 〈Xµ, Y µ〉 and Wi = 〈Xp

i , Y
p
i 〉.

If you write these expressions down, you obtain

Wµ = 〈εµ, eµ〉 Wi = εµ(eµ).

These descriptions do not depend on G, and so to understand them, it suffices to consider the case when G is
the constant group scheme F over R. In this case, you can show the following:

Key Proposition 9.22.
(1) Wµ ≡

∏
µ(i)! mod p.

(2) Wi ≡ −p mod p2.

We can now prove the Structure Theorem 9.16.

Proof of the Structure Theorem 9.16. We proceed in steps.

Step 1. Show that Xi generate A as an R-algebra.

〈Xµ, Y µ〉 is a unit, and Xµ ∈ Iµ implies it is a generator of Iµ.
Now 〈Xµ, Y ν〉 = 0 for µ 6= ν, and so by combining this with the fact shown above, we have that if f(Xi)

is any other relation in A with degree < p, then we can take any monomial to give a character µ, and
〈f(Xi), Y

µ〉 = α〈Xµ, Y µ〉 must be both zero and nonzero, a contradiction. Thus,

A =
R[Xi]

Xp
i − δiXi+1

.
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Step 2. Show v(δi) ≤ e.

Choose Yi = c−1
i ei, and so Y pi = γi · Yi+1. Using that Wi = 〈Xp

i , Y
p
i 〉 = δiγi ≡ −p mod p2, and the fact

that δi, γi ∈ R, we obtain that v(δi) ≤ e.

There is also a converse for this: the ring above can define a Raynaud group scheme. The idea is to base
change to K, and write δi = cpi /ci+1, in which case you get an isomorphism AK the function algebra. You
then need to show things are closed under (co)multiplication.

Conclusion 9.23. A Raynaud F -module is always of the form Gδ, where δ = (δi)i∈I and v(δi) ≤ e.

We can then describe maps between Raynauds:

Easy Property 9.24. A morphism Gδ → Gδ′ of Raynauds corresponds to (αi)i∈I such that αi+1δi = αpi δ
′
i.

Finally, we can prove Raynaud’s theorem 9.1 by hand for Raynaud F -module schemes, which by our
previous reductions give the general theorem for all finite group schemes.

Proof of Raynaud’s theorem 9.1. First, show that if e < p− 1, then a map Gδ → Gδ′ of Raynauds must be a
isomorphism. Then, apply this to G+ → G−. Now choose αi such that v(αi) is maximal in the situation of
the Easy Property above for this morphism. Then,

v(lhs) ≤ v(αi) + v(δi) ≤ v(αi) + e.

Also,
v(lhs) ≥ v(αpi ) = pv(αi).

These two imply v(αi) = 0, and so f is an isomorphism.
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Aspects of Mathematics E6. Braunschweig: Friedr. Vieweg & Sohn, 1992. isbn: 3-528-28593-1.
doi: 10.1007/978-3-322-80340-5. mr: 1175627.

[Fal86] G. Faltings. “Finiteness theorems for abelian varieties over number fields.” Translated from the
German original [Invent. Math. 73.3 (1983), 349–366; ibid. 75.2 (1984), 381; mr: 85g:11026ab] by
E. Shipz. In: [CS86], pp. 9–27. doi: 10.1007/978-1-4613-8655-1_2. mr: 861971.

45

http://dx.doi.org/10.1090/S0894-0347-2012-00729-2
http://www.ams.org/mathscinet-getitem?mr=2904571
http://algant.eu/documents/theses/binda.pdf
http://algant.eu/documents/theses/binda.pdf
http://math.stanford.edu/~akshay/ntslearn.html
http://math.stanford.edu/~akshay/ntslearn.html
http://math.stanford.edu/~akshay/ntslearn.html
http://math.stanford.edu/~akshay/ntslearn.html
http://dx.doi.org/10.1007/978-1-4613-8655-1
http://www.ams.org/mathscinet-getitem?mr=861969
http://www.numdam.org/item?id=SB_1983-1984__26__25_0
http://www.ams.org/mathscinet-getitem?mr=768952
http://dx.doi.org/10.1007/978-3-322-80340-5
http://www.ams.org/mathscinet-getitem?mr=1175627
http://www.ams.org/mathscinet-getitem?mr=85g:11026a
http://dx.doi.org/10.1007/978-1-4613-8655-1_2
http://www.ams.org/mathscinet-getitem?mr=861971


[FC90] G. Faltings and C.-L. Chai. Degeneration of abelian varieties. With an appendix by David Mumford.
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)] 22. Berlin: Springer-Verlag, 1990. isbn: 3-540-52015-5. doi: 10.1007/978-3-662-02632-8.
mr: 1083353.
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