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Preface

This paper constitutes a second part to "Lokal prédsentierbare Katego-
rien" by P.Gabriel and the author (Lecture Notes vol. 221). The reader
need only be familiar with the basic facts about locally presentable

categories. The relevant material is collected in § 2.

The starting point was marked by unsolved problems in the first part.
They were successfully tackled step by step in [31], [32], [33] and
[34]. In the process the notion of a bialgebra - generalizing bialge-
bras over a commutative ring - emerged as a unifying concept. We give
here a systematic treatment of bialgebras in locally presentable ca-
tegories and then apply the results to the above mentioned problems
and to problems in other areas as well, in particular to Hopfalgebras,

bialgebras, coalgebras over a commutative ring and to descent data,etc.

This material was first presented in seminars of H.Schubert in the
summer semesters 1975 and 1976. I profited a great deal from the
lively discussions with the participants. I also would like to thank
A.Kock and W.Wischnewsky for discussions in Amiens about Hopfalgebras,
bialgebras, coalkebras, comodules etc. over a commutative ring. With-
out their disbelieve I would not have tried to prove that these cate-
gories are locally presentable. I am indebéed to M.Barr and T.Fox for
discussions later on in Zurich about problems associated with Props.
This put me on the track to look for something better (namely bialge-
bras). Finally M.Tierney raised at the AMS meeting in Toronto the
question of the relationship between bialgebras and sections (resp.
cartesian closed sections) of a fibration. This turned out to be very

fruitful.

I am particularly indebted to Christa Becker and Heidi Paulus for
typing a difficult manuscript and to Lothar Schumacher for proof read-

ing. I am grateful to the vice chancellor of the University of
/



Wuppertal Walter Liesenhoff for providing secretarial help and I am i
less grateful to the chancellor Klaus Peters for taking it away when
it was mot needed. In order to get the whole manuscript typed I had
to extend the sectretary's contract on my own. The chancellor prevented
the mathematics department from doing so with one of its vacant secre-

tarial positions. His ingenuity in making life difficult at a universi-

ty with plenty of jobs and funds is only exceeded by his endurance in

doing so.
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Introduction

The methods developped in "Lokal prdsentierbare Kategorien" (L.N. vol.
221) were not sufficient to decide whether any of the following cate-
gories were locally presentable: the category of functors on a small
category U with values in a locally presentable category which pre-
serve a given class of colimits in U , the category of cosheaves on

a site with values in a locally presentable category, the categories
of coalgebras, bialgebras, Hopfalgebras ... over a commutative ring A
and likewise the category of comodules (resp. bimodules) over a A=-co
algebra (resp. A-bialgebra), the category AG of G-coalgebras, where
€ 1is a cotriple with rank in a locally presentable category A , the
category Adj(A,B) of adjoint functors between two locally presentable
categories A and B , etc. These questions were solved affirmatively
in [31], [32], [33] and [3”] by new techniques. In the process the
notion of a bialgebra in a category - generalizing the notion of a bi-
algebra over a commutative ring = emerged as the unifying concept from
the point of view of the constructions on which the prodfs were based.
The basic problem in all cases involved the construction of generators
in the category under consideration which in turn lead to the follow-

'ing general question: Given an object A i& a category A equipped

with a structure }{ and given a subobject U of A in A . How

does one construct a subobject. U' with structure ' containing U

such that the inclusion U'Ss>A 1is compatible with the structures '
1is P

and and such that U' is not much bigger than U ? The complexity

of this problem is perhaps best illustrated by two seemingly unrelated
examples: Given a Hopfalgebra H over a commutative ring A and a
A-submodule U of H . Find a sub-Hopfalgebra U' of H containing
U such that the underlying A-module of U' is not much bigger than
U ; or more specifically, that the size of U' depends only on U

but not on H. Clearly U' 1is = if it exists = not unique because



there is no such thing as "the" sub-Hopfalgebra '"generated" by U.
(For coalgebras over a commutative ring the corresponding problem was
investigated by M.Barr [l ] using purity.) On the other hand consider
an object A equipped with a descent datum §, and a subobject U

of A . Find a subobject U' <containing U and a descent datum ?U'
on U' such that Py is compatible with ¢, and U' 1is not much
bigger than U . A construction of (U;?U.) was given by Grothendieck

and Verdier in SGA 4 (p. 138-179) in a more general context. But the

proof has a gap and their size estimate of U' is false.
OQur main results consist in 1) making precise what an object with
structure is - this is done by the notion of a bialgebra in a category

2) solving the above mentioned problem for bialgebras in locally pre-
sentable categories under appropriocte conditions and 3) establishing
size estimates for the constructed sub-bialgebras which in most cases
are the best possible (cf. 3.1, 3.8,3.22). With the exception of §5

all our results in §3 - §6 are applications of this.

Roughly speaking a bialgebra in a category A with respect to a
given set M of operations and a set R of relations consists of an
object A€ A together with a structure morphism (uA for every M€ M
and a functorial diagramm for every ré€ R which commutes. In the lit=
erature so far a structure morphism (MA on an object A 1is a morph-
ism like A x A —> A, A —> A || A, A®A — A, A -—A4,
A® A —> A @ A, etc. In contrast we allow it to be a morphism
FA — F'A, where F and F' 1is any pair of functors with domain A

and a common codomain (the latter can depend on /u). F is called the

domain of M and F' the codomain. Like_wise a relation is normally
given by diagrams such as Ax...x A :::::3 A, A ::::3 A Q) ... Q1A
A® ...0A 3 A, A T3 A0 ...8 A, AT3A,

AR ... 8 A ::::::; A® ... 8 A, etc. which are built up of struc-

ture morphisms /%fAAéM, and canonical morphisms (like twisting, etc.)
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The relevant aspect here is that diagrams are natural with respect to
those morphisms A — A' in A which are compatible with the given
operations. Therefore we define a relation r to be a map which
assigns to every object A equipped with structure morphisms /MA s
MEM , a diagram GA::j.G'A which is natural in the sense just ment-
ioned and where G and G' is any pair of functors with domain A
and common codomain (the latter can depend on r ). An object equipp-
ed with structure morphisms is said to satisfy the relation r if the
corresponding diagram commutes. In this way one obtains the category
Bialg(A) of bialgebras in A with respect to specified operations

M and relations R . The morphisms in Bialg(A) are those morphisms

in A which are compatible with the operations in M

The notion of a bialgebra covers a wide range of examples, e.g.
universal algebras resp. coalgebras in a category with finite products
resp. coproducts in the sense of Lawvere [21] or Birkhoff [2.], coal-
gebras over an arbitrary commutative ring A and likewise A-Hopfal-
gebras resp. A-bialgebras in the usual sense (more generally tensor
product preserving functors on a Prop in the sense of MacLane [Zq]),
comodules over a A-coalgebra, bimodules over a A-bialgebra, algebras
over a triple, coalgebras over a cotriple, données de recollements,
descent data and more generally sections (resp. cartesian closed
sections) with respect to a fibration, functors on a small category
which preserve a given class of limits resp. colimits, sheaves and co-
sheaves on a site, pairs of adjoint functors between locally present-
able categories and more generally ZI-continuous resp. ZI-cocontinu-
ous functors on a small category U with respect to an arbitrary
class I of morphisms in the set valued functor category [Egggﬁg],
and finally I-closed objects in a category A with respect to a bi-
functor T : B x A —> C and a class of morphisms in B

(Recall that A€ A 1is called I-closed with respect to T if



T(o,A) 1is an isomorphism for every o€ I).

A bialgebra in a category A 1is denoted with (A,M,R), where Ae A
is the underlying object and M and R refer to the specified opera-
tions and relations. Given a subobject U of the underlying object A
we are concerned with the construction of sub-bialgebras (U',M,R) of
(A,M,R) containing U such that U' is "as small as possible'", in
particular the construction should provide effective size estimates for
U' in terms of U , M and R (but not A ). More generally given a
bialgebra (A,M,R) and an object U we investigate factorizations of
a morphism f : U —>A into a morphism U —U' and a bialgebra mor-
phism (U',M,R) —> (A,M,R) such that U' 1is not much bigger than
U and its size can be estimated in terms of U , M and R . It is
obvious that without conditions on M , R and on the underlying cate-
gory A no reasonable answers can be expected. In order to elaborate
on these conditions we recall a few baSic facts about locally o-pre-

sentable categories.

Let o 2 ?Lo be a regular cardinal. A directed set is called oa-fil-
tered if every subset with less than o elements has an upper bound.
A functor F 1is said to preserve o-filtered colimits if the domain of
F  has colimits over a-directed sets and F preserves them. An object
A in a category A 1is called a-presentable (resp. a-generated) if the
hom functor [A,—]: A ————§ §g£§ preserves o-filtered colimits (resp.
preserves those a-filtered colimits whose transition morphisms are
monomorphic). For instance, if A 1is the category of groups, rings,
modules over a ring, etc., then A€ A 1is oa-presentable (resp. a-gen-
erated) iff A admits a presentation in the usual sense by less than
o generators and less than o relations (resp. less than o genera-
tors). In particular ‘Xo—presentable (resp. %o—generated) is equiva-
lent with finitely presentable (resp. finitely generated) and likewise

70l—presentable (resp. 'X]—generated) with countably presentable (resp.



countably generated). A category A is called locally a-presentable
if it has colimits (i.e. sums and cokernels) and a set M of oa-pre-
sentable generators. (It is called locally presentable if it is locally
a-presentable for some &.) In é locally o-presentable category A
every object is o'-presentable for some regular cardinal o' and,
roughly speaking, for B 2 a an object A€A is PB-presentable iff

it is the cokernel of two morphisms T%%Uj :::3 I%%Ui , where Ui,Uiji
and J and I have less than B8 eliments. Moreover A has limits

(= inverse limits), is cowellpowered and o-filtered direct limits cam -
mute with kernels and products with less than o factors. Also a functor
F between locally presentable categorigs preserves y-filtered co-
limits for some <y provided it has either a left or right adjoint. The
class of locally presentable categories is larger than one might expect
and includes the categories of sets, groups, rings, modules and more
generally universal algebras, the category of set (group, ring ...)
valued sheaves on a small category with respect to a Grothendieck topo-
logy, the category of set (group, ring ...) valued functors on a small
category U which preserve a given set of limits in U (e.g. the cate-
gory Cat of small categories and other "universal algebras'" with
partial operations), the dual category 92220 of compact spaces, etc.
In contrast the categories Comp and Top of (compact) topological

spaces and other related categories are not locally presentable.

For the above mentioned construction of sub-bialgebras of a bialgebra
containing a given subobject (resp. the decomposition of a morphism

into a morphism and a bialgebra morphism) we need the following.

1) the underlying category A and the categories occuring in the de-
finition of the operations and relations are locally presentable(O? more

generally "catégories localisables" in the sense of Y.Diers [5]).

2. the operations M and relations R form a set and the functors
Q
which are domain or codomain of either an operation or relation



preserve PB-filtered colimits for some cardinal B.~

Then there are cardimals <y such that a bialgebra (X,M,R) 1is <y-pre-
sentable in Bialg(A) iff its underlying object X 1is y-presentable
in A (cf. 3.8). Moreover for a bialgebra (A,M,R) and a <y-presenta-
ble object UEA every morphism f : U —> A admits a decomposition
into a morphism U—U' and a bialge“ra morphism (U',M,R) —> (A,M,R)
such that U' 1is again <y-presentable (cf. 3.8). The class of all such
vy's is cofinal in the class of all cardinals. Of speciul intérest is
the smallest possible <y . Estimates are gi;en in terms of A , M and
R . (The analogue assertiongconcerning the existence and size estimates

of sub-bialgebras containing a given subobject are discussed later on.)

We illustrate the above with some examples.

a) For Hopfalgebras over a commutative ring A one can choose fogT
v any cardinal 2 Zﬁ (cf. 4.4). In particular every A-homomorphism
U—+—>H from a countably presentable A-module U to an arbitrary
A-Hopfalgebra H admits a decomposition into a A=-homomorphism U—U'
and a Hopfalgebra morphism U'—>H such that the underlying A-module
of U' 1is again countably presentable (the corresponding assertion for
finitely presentable A-modules 1is obvioéay false). Moreover the A-Hopf-

.

algebras whose underlying A-module is countably presentable form a

set" of dense generators in the category of A-Hopfalgebras (i.e. the
equivalence classes of such Hopfalgebras form a set).

The same holds for A-bialgebras, A-coalgebras etc. (cf. 4.3-4.7). More
over the following categories are locally %l-presentable: commutative
A~Hopfalgebras, cocommutative A-Hopfalgebras, bicommutative A-Hopfal-
gebras, A-bialgebras, commutative A-bialgebras, cocommutative A-bi-
algebras, bicommutative A-bialgebras, A-coalgebras, cocommutative

A-coalgebras, comodules overa A-coalgebra, bimodules over a A-bialge-

bra, etc (cf. 4.3-4.9).



b) Let ?V be a fibration with base € and let & : So-——+ S be a

morphism in C such that 1) the fibres ?fs and %; over So and
0

S are locally countably presentable categories and 2) the inverse

. ¥ ¥ ¥ *
image functors o, P, » Py and Py

take countably presentable objects into countably presentable objects

preserve filtered colimits and

(cf. Grothendieck [16], also for the notation). Then for an object
Aé‘ggo with descent datum ?A and a countably presentable object

ue 3%0 every morphism f : U —>A a&mits a factorization into a mor-
phism U—>U' and a morphism (U',?U,) (A’qk) between descent
data such that U' 1is again countably éresentable (cf. 4.14, 4.15).As
a consequence the category Desc(@%o) of descent data is locally
'X]—presentable and the forgetful functor Desc(géo)———e»gg cotriple-

able provided the inverse image functors preserve colimits (ecf. 4.15).

Likewise Desc(&%o) is a Grothendieck category (resp. a topos) provid-
ed the fibres are’and the inverse image functors preserve colimits and
finite limits (4.16).

If a : So——é S 1§ of % -descent type (cf. Grothendieck [17] 1.7),
then the above implies that every descent datum on objects of @f%) is
effective providdd every descent datum on countably presentable objects
is effective (cf. 4.18).

L]
Similar assertions hold for sections and cartesian closed sections with

respect to a fibration (cf. 4.19-4.26).

¢c) Let 6 = (G,e,8) be a cotriple in a locally a-presentable ca-
tegory A and assume that G : A—>A preserves f-filtered colimits
for some B8 . Let ¥y 2 sup('xl,a,B). Then for a G-coalgebra (A,E)
and a y-presentable object U€ A every morphism £ : U — A admits
a factorization into a morphism U—>U' and a G6-coalgebra morphism

(U',£') —> (A,£) such that U'€ A is again y-presentable (cf.4.lo)

This implies that the category AG of @G-coalgebras is locally

sup. ( Xl,a,B)-ptesentable and that a €-coalgebra is <y-presentable iff

IJ €
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its underlying object is. Moreover A is a topos (resp. a Grothendiecé

G
category) provided A is and G : A—3 A preserves finite limits
(ef. 4.11),

Applications of this are given for comodules over a A-coalgebra

(cf. 4.8) and for bimodules over a A-bialgebra (cf. 4.9).

d) Let U be a small category and I a set of morphisms in
[HO’EEEEJ' Let X be a locally o-presentable category and let
CCZ[E,E] be the category of all ZI-cocontinuous functors. For instance
if % is given by a set K of colimits in " U (resp. by a Grothendieck
topologsethen the Z—coco%&nuous functors U-—3X are exactly the K-co-
limit preserving functors on U (resp. the. 7T -cosheaves on U ). Let
Y be any regular cardinal such that o ¢ y 2 Xll and Yy > card(l),

y > card(do(U)), vy > card(ro(u)) for every o€ % and Ueg U, where
do and ro denote the domain and codomain of o ._Then for a ZI-co-
continuous functor t : U—X and a Y-presentaBle functor SG[H)§J
every natural transformation s — t admits a decomposition

s —3>s'—> t such that s' : U—>X is ZI-cocontinuous and again
Y-presentable in [H,&]. This implies that the category Ccz[g,§] of
Z-cocontinuous functors is locally y-presentable and that the inclu-
sion CCZ[H’X] <5 [U,X] has a right adjoint. The latter has been

a long outstanding problem in category theofy.

The above can be generalized to a class I of morphiisms whose codo-
mains {r0|c€ I} form a set (modulo equivalence). Therefore we can
also consider functors, which preserve a given class of colimits in
u (in particular one can choose all existing colimits in U ). The
abov#size estimates for Yy however have to be replaced by more ela-’
borate ones. The apparatus needed for the generalization to a class &
is substantial (the entire chapter § 5. concerning purity and a good

deal of § 6 ). Further generalizations concern the replacemant of X

by a topological category over X (cf. 6.21).



{ e) The category Adj(A,B) of adjoint fuctors between locally pre- \
sentable categories A and B can be shown to be equivalent with the
category of I-cocontinuous functors U-—>3B for an appropriate small
category U and a set I of morphisms in [HO’EEEEJ (cf.6.19). Thus by
d) above Adj(A,B) 1is again locally presentable. In contrast if A and
B are Grothendieck categories (or topoi), then Adj(A,B) mneed not be
so. A surprising counter example is the following. Let A be the cate-
gory of abelian p-groups for some prime p and B = Ab.Gr. the catego-
ry of all abelian groups. Then Adj(A,B).can-be shown to be equivalent

with the category of p=-adic complete abelian groups (cf. 6.25 c)),

f) Let T : B x A —> C be a bi&ﬁunctor between locally presen-

table categories and let I be a set of morphisms in B . Let

A
_Z,T
be the full subcategory of A consisting of all X€A such that

T(o,X) 1is an isomorphism for every o € ¥ . For example T can be
Dy » Torg(—,-), [-,—], ExtK (-,-) etc. and I the inclusion of a set
% of right ideals an the ring A . Assume that for every B¢€ B there

is a cardinal B8 sych T(B,-) preserve %;filtered colimits (which

B

is obviously the case for the above examples). Then there are cardi-

nals y such that every morphism f : U —> A with AE€ éz T and U
. H

y-presentable in A admits a decomposition U— U'—>»A with

U'e AZ o and U' being again y-presentable in A (cf. 6.2). For
b

instance if T is as above, ¥ is countable and the ideals Ie(?
countably presentable, then one can choose for <y any cardinal > %l.

If T = B, » then AZ ® consists of modules which are uniquely
* YA

divisible by the ideals of ¥ . For instance,let A and B be Gro-

thendieck categories and U€ A a generator with endomorphism ring A.

Then the category Adj(A,B) of adjoint functors between A and B

is equivalent with the full subcategory of AE consisting of those

left A-objects which are uniquely divisibl. by the Gabriel filter

131in A associated with A (cf. 6.25 b)), ]
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We now return to the problem of constructing sub-bialgebras (U',M,R)
of a bialgebra (A,M,R) which contain a given subobject UCA such
that U' 1is not much bigger than U . This’can be done under the con-
ditions as above (c¢f. 1) and 2)) but the size e¢stimates for U' are
different, in general less effective. They are best stated in terms of
noetherian conditions. The details are too involved to be given here
(cf. 3.22, 3.23). and we illustrate them with an example. Let A be a

commutative noetherian ring (or more generally a %, 6 -noetherian ring

1
which means that every countably generated ideal 1is countably presen-
table). Then every countably generated A-submodules of a A-Hopfalgebra
is contained in a sub-Hopfalgebra whose underlying A-module is again
countably generated. The same holds for A-bialgebras, A-coalgebras
etc. If A 1is not ‘Zl-noetherian this need not be so. However there

is always a cardinal <y such that A is y-noetherian (i.e., every
y-generated ideal is <y-presentable). Then the above holds for y-gen-
erated A-submodules of A-Hopfalgebras, etc., The same phenomenmhappens
for locally presentable categories. By Gabriel-Ulmer [13], 13.3 a lo-
cally a-presentable category is locally <y-noetherian for some 7y > o

The increase of y over a accounts for the less effective size

estimates for the constructed sub-bialgebras.

.

The basic idea for the construction of sub-bialgebras I got in a
seminar of the University of Zurich 1974/75 in which Kaplansky's de-
composition of projective modules into a direct sum of countably gen-
erated projective modules was studied (among other things). The par-
allel may be still apparent in § 1 in which an "elementwise" expo-
sition of the basic techniques is given. The incentive to study sub-
bialgebras ''generated" by z subobject resulted from a problem which
was given to us (= a group of students) in Heidelbe}g in 1964 by
A.Dold. He suggestrd to investigate the category of cocontinuous

abelian group valued functors on a Grothendieck category A in terms

. - =l



I
Lf a generator U A and its endomorphism ring A . We didn't get « (
anywhere with it at the time but I kept it in the back of my =ind and
worked on it from time to time without much success. The turning point
was the discovery that in the special case A = abelian p-groups the
category of cocontinuous functor is equivalent with the category of

P-adic complete abelian groups.



2.1 PEEEEEE}OH ([(3] 5.1) Let o szé be a regular cardinal. A small

category D is called a-filtered if

a) for every family (Dl) of objects in D with card(I) < o

16T

there exists an object DE&D together with a morphism D{~—>D for

every 1€ 1 .

Y
b) for every family '(DJ_—J;§D

)

; of morphisms in D with

1€ 1
card(l}) < a there exists a morphism 7y : Dl---«--—)-D2 such that

Yoy, = Yoy, for every pair 1, =€l .

T £

-

For o =7CO this specializes to the usual definition of filtered co-
limits (resp. direct limits).

A functor TF : A-—5>B is said to preserve a-filtered colimits if
it preserves colimits over o-filtered categories. The least regular

cardinal o with this property is called the presentation rank of F

and denoted by w(F) . Examples are functors F : A-—>B which have
a right adjoint or =~ somewhat surprisingly - functors F : A—3B

between locally prescentable categories (2.3) which have a left adjoint,

in particular underlying or forgetful functors {(cf. 2.9, 3.4 ¢c) ).

o e e e T = e ———] -

Likewise a functor F : A—>B is said to preserve monomorphic a-fil-

tered colimits if it preserves colimits over a-filtered categories
» B,

vhose transition morphisms in A are monomorphic. (This does not mean

that F preserves monomorphisms.) The least regular carinal o with

this property is called the generation rank and denoted with e(F).

2.2 Definition (cf [{3] 6.1) Let o 2 yﬁo be a regular cardinal

and let A be a category with a-filtered colimits. An object A€A

is called a-presentable (resp. o-generated) if the hom-functor

[A,—] i A——>Sets preserves o-filtered colimits (resp. monomorphic

a-filtered tolimits). The least regular cardinal o 2 Xg with this



§ 2 -2-

property is called the presentation rank (resp. generation rank) and

-

denoted with = (A) (resp. €(A)) . Clearly w(A) > e(A)

It may appear that this definition is stronger than the one given 'in
the introduction. This is however not the case, at least iniprgctise.
First by Swan every)ﬂo—filtered category admits a cofinal{ditgqpég set.
Hence for « =)60 the two notions coincide. Second for o > )Lo

the two definitions are equivalent in a locally a-presentable category.
Moreover they lead to the same notioﬁ of a locally a-presentable cate-
gory in 2.3 below. This can be shown by .going over the proofs of § 7

in Gabriel-Ulmer [!3].

2.3 Definition (cf [iS] 7.1, 9.{) Let o 2760 be a regular cardinal.

A category A is called locally a-presentable if *A has colimits and

a set M of o-presentable generators ( M 1is a set of generators

means: A morphism £ : A—» A' is an isomorphism iff [U,f] is a bi-
jection for every UeM ).

Likewise a category A is called locally a~-generated if A has co-

limits and a set M of a-generated gemerators such that every copro-

duct II U1 with U1€ M and card(I) < a has only a set of proper
1€l
quotients. (Recall that an epimorphism p : X—>Y 1is called proper if

it does not factor through a proper subobject of Y .) The least regular

cardinal ga 2'X% with this property is called the presentation rank
I »,
of A (resp. the generation rank) and denoted with ﬂ(é) (resp. €(A))

’

2.4 A category is called locally presentable (resp. locally generated)

if it is locally o-presentable (resp. locally a-generated) for some a .

2.5 A locally o-presentable category is locally a-generated ([fE] 6.6C))

Surprisingly there is a converse: A locally a-generated ca-

tegory is locally B-presentable for some B 2 a (cf [13] 9.8, 9.10).

2.6 A locally a-presentable category has limits ([ig] 1.12) and 1is

cowellpowered ([l3] 70%; i.e. every object has only a set of quotients).



§ 2 -3-

Moreover o-filtered colimits commute with ag-limits (cf [L3] 7.123 re-

call that ;im (Bv—E«)é) is called an a-limit if D has less than

¢ morphisms, [13] § 0).

2.7 1In a locally presentable category A with a set M of a-presen-
table generators an object A€ A is B-generated for some B 2> o 1iff

there is a proper epimorphism l lU1-%A with UIE.M and

161
card(I) < B (cf [K}] 9.3). If moreover M 1is a set of regular gene-
rators, then A€A 1is B-presentable iff there is a cokermel diagram

‘ IU.:::::3 | IU.~———~9Y
1

jeg i€t

with Ui’ Uje M and card(J) <8 > card(I) such that A is a re=-
tract of Y (cf [13] 7.6).(Recall that M is called regular if for

every A€A there is a cokernel diagram K:‘.E‘U_U\)HA with UvE,M.)
Y

Moreover there is a regular cardinal &6 such that every §-generated
object in A 1is &-presentable and § <can be chosen so as to exceed

any given cardinal (cf [13] 13.3).

v

2.8 1In a locally o-presentable category A the full subcategory
A(a) of all a-presentable objects is small and closed in A under
a—colimitg. The szme holds for the full subcategory z(u) of all
a-generated ocbjects ([13] 6.2). In particular for every A€&€A the
category A(a)/A of a-presentable objects over™ A is small and
o-filtered, and the colimit of the forgetful functér
A(a)/A— 4 , (U—3A)~U , is A (cf [\3] 2.6, 7.4, 3.1). The same
holds for the category of a-generated subobjects of A (cf [l3] 9.5).
The functor o
A—[4(0)°, sets], A~ [-,4]
induces an equivalence between A and the full subcategory of
[A(a)o, Sets consisting of all functors éka)g—-)ggﬁé_ which take

a~colimits in a-limits ([|3] 7.9, for the corresponding assertion
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Moreover a-filtered colimits commute with o-limits (cf [13] 7.12; re-
call that ;im (2——E—>é) is called an a-limit if D has less than

¢ morphisms, [13] § 0).

2.7 1In a locally presentable category A .with a set M of a-presen-
table generators an object A€ A 1is B-generated for some B > o iff
there is a proper epimorphism 1_LU1——$A with U1€.M‘ and

card(I).< B (cf [K}] 9.3). If ;iieover M 1is a set of regular gene-
rators, then A€A 1is B;presentablé iff there is a cokernel diagram

_LLU : =3 l U, ——3Y
jeg ier *t

with Ui’ Uje M and card(J) <8 > card(I) such that A is a re-
tract of Y (cf [13] 7.6).(Recall that M is called regular if for

every A€A there is a cokernel diagram K::E_LLU\)-—)A with UvE_M.)
v

Moreover there is a regular cardinal 8 such that every S-generated
object in A is §-presentable and & can be chosen so as to exceed

any given cardinal (cf [\3] 13.3).

2.8 1In a locally a-presentable category A the full subcategory
A(a) of all o-presentable objects is small and closed in A under
o-colimits., The szme holds for the full subcategory z(a) of all
o-generated objects ([iS] 6.2). In particular for every A€A the
category A(a)/A of a-presentable objects over™ A is small and
a-filtered, and the colimit of the forgetful functér"

A(e)/A—A , (U—A)~U , is A (cf [V13] 2.6, 7.4, 3.1). The same
holds fof the category of a-generated subobjects of A (cf [13] 9.55.

The functor
A—>[a(0)%, sets], A~ [-,4]
induces an equivalence between A and the full subcategory of

[A(a)o, Setsl consisting of all functors é(a)g—_)Sets which take -

a-colimits in o-limits ([|3] 7.9, for the corresponding assertion



for K(a) see [(3] 9.10).

2,9 By the special adjoint functor theorem every colimit preserving
functor between locally presentable categories has a right adjoiné. By
[iﬁ] 14.6 a limit preserving functor § : A—>B between locally pre-
sentéble categoriesadmits a left adjoint iff § Thas rank (cf. 2.1),

i.e. iff S preserves a-filtered colimits for some cardinal o Z>Cb .

2.10 VLet U be a small ‘category and let % be a class of morphisms

in [gO,Sets] . Recall that a functor ¢t :~E;—+§ (resp. & : Ho

|

X)

m

is called I~cocontinuous (resp. Z-continuois) if for every X X
and every o€ I the map Br,[t-,X]] (resp. EJ,[X,s—]]) is bijec-

tive. If X 1is cocomplete (rasp. complete), then there is a tensor

product bifunctor (resp. symbolic hom)

[U°,sets] x [U,Xx]——3x

8

[-,-] :+ [u°,sets] x [U°,X]—>x

defined by

e

[&, [, x]]
&, [x, s-]]

[R Q@ t’X]

Ek,fk,s]]

e

for all X‘Ez s, Reg I:I_J_o,_f‘ﬂ] , te [-[_I_,§:I and s g [:go,z(_] , ¢cf Gabriel-
Ulmerx D3] 8.1 . Hence t : U—X (resp. s : Egﬁeg') is L-cocontinuous
(resp. Z-continuous) iff o ® ¢t (resp. [6,3]) is* an isomorphism

for every o€ . The full subcategory of [2’5] consisting of all
E—cocgntinuous functors is denoted with Ccz[g,gj . Likewise CZ[HO,ﬁ]
denotes the full subcategory of all I-continuous functors.

Examples for X-continuous (resp. L-cocontinuous) functors are sheaves
(resp. cosheaves) with respect to a Grothendieck topology and functors
which take a given class of colimits into limits (resp. colimits) etc,
see § 6. .

A class I of morphisms in [EO,SEtS] is called closed if
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1) T contains all isomorphisms 2) I is closed unter colimits

3) if p = o1 anditwo of the morphisms p , o , = belong to % ,

then so does the third.
For instance, if T is a class of functors U—>X , then the class

2 of all morphisms ® such that w & t is an isomorphism for every
t€T 1is closed.

The closure T of a class I 1is the smallest closed class containing
Z . Hence a I-cocontinuous functor U-—>X 1is also I-cocontinuous.
Let X Dbe a class of morphisms in [Ho,ggéﬁj » where U is a small

category, such that the codomains ro , o0& , form a set (modulo

*)

equivalence). Then by [123] 8.11 the inclusion C Uo,Sets S(eE ‘Uo,Sets—i
N = oy — A

has a left adjoint and a morphism 1 in [HO,Sets] belongs to I

. . . . . o :
1ff [T,t] 1s a bijection for every tg CZ[E ,Sets] .

2.11 A category A 1is locally presentable iff there is a small

category U together with a set. & of morphisms in [HO,Sets]

-4

such that A = CZ[E?,§pts] , cf. [13] 8.5, 8.6 ¢). Moreover if B

1s any locally presentable category and U and % are as above, then

«

C.

L[HO,E] is again locally presentable and

(¢, [U°,E]) < sup® (n(B),n(do),m(re))
(o]~}
where do (resp. ro’) denotes the domain (resp. %odomain).of o€ and

sup*( ) denotes the least regular cardinal > sup (), cf. [rg] 8.7 .

2.12 Let M=(T,u,u) be a triple in a locally presentable category A .
Then by [}3] §1o the category of T-algebras A 1is locally presentable

iff T has rank (2.1). Moreover if T has rank  then

“(_A_T) < sup {ﬂ(é),w(T)}

')The proofs of [1318.10 and 8.11 have a gap: On p.99 it is used that

in AZZ every object has only a set of proper quotients. This may not

be the case unless A has additional properties. The easiest way out

is to assume that A is locally presentable ... .
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§ 3 Bialgebras in locally preseutable categories

In this chapter some guestions of "Universal bialgebra" in a local-
ly presentable category A are investigated. Qur definition of bialge-
bras in a category A is fairly broad and includes universal algebras
and coalgebras in the sense of Birkhoff [1] or Lawvere [ﬁf], I-conti-
nuous and I~cocontinuous functors in the sense of Gabriel-Ulmer [53]
€.1, algebras, coalgebras, Hopfalgebras and bialgebras in the usual
sense over a commutative ring A , Oor more generally bialgehras with

respect to some temnsor product and an arbitrary Prop [2%], coalpebras

over a cotriple with rank in

e

(e.g. comodules over a A-coalgebra),
algebras over a triple with rank in A , the category of descent data
with vrespect to fibrations and ;ore generally sections and cartesian
closed sections with respect to a fibration or cofibration, etc. Rough-
ly speaking a bialgebra (A,M,%) <consists of an object A 1in A to-
gether with a set M of cperations which satisfy certain relations R .
An operation 1s rePreéented by a morphism p(A) : FA-—-—3F'A for somne
pair of functors T,F' : Azz3X , dnd a relation by a morphism pair
r(A,M} : HA==3H'A for scme pair of functors H,H' A=Y (for de-

tails sce 3.1). Given a bialgebra (A,M,R) and a subobject U« A

in the underlying category 4 , which we assume to he locally noetherian

for the moment, we are concerned with sub;bialgebras (D',M,R)

of (A:M,R). éanﬁaining U such that U' 1is nqt much bigger than U .

We give in 3.22 a construction and sizg estimates for U' which in

many cases are the best possible. For instance, if A 1is a commutative
. ¢

noetherian ring, then it follows that any countably generated submodule

of a Hopfalpebra (resp. coalgebra, bialgebra, comodule over a fixed

A-coalgebra) is contained in a sub-Hopfalgebra (resp. sub-cozlgebra,...)

whose uvaderlying A-wedule is again countably generated regardless

of the size of A . If the category A is not locally noetherian,

the situation is different and the question should ke put instead

as follows: Given a bizlgebra (A,M,R) and a morphism



SN Ve
£ U;-%A in the underlying category A with U being a v - pre—
sentable object, does then f factor through a bialgebra morphism
(U",M,R) —> (A,M,R) such that U' is y' - precentable and ' is
not much bigger than vy ? In 3.8 we give a construction and size
estimates for U' similar to the noetherian case which in particular
implies the existence of dense'generators in the above mentioned
examples. If A 1is any commutative ring and (A,M,R) is a A-Hopf—
algebra (resp. coalgebra, bialgebra, comodule over a fixed A-coalge-
bra), then by 3.8 any homomorphism f : U—3A with [} being
countably presentable factors through a Hopfalgebra morphism
(U",M,R)—> (A,M,R) (resp. coalgebra morphism ...) such that TU'
is again countably presentable.‘Also 3.8 implies that every descent
data is effective provided every descent data on '"small" objects is
effective. For modules "small" means countably presentable. Mére
generally for a fibration with countably presentable fibres "small"
means countably presentable provided either the inverse image func=—
tors have right adjoints which preserve countably filtered direct
limite or the inverse image functors take countably presentable
objects into countably presentable objects and preserve filtered

direct limits. The main results of this chapter are 3.8, 3.9, 3.22,3.24

—
{

and 3.28. The last two comncern conditions which guarantee that!the

category Bialg(A) of bialgebras in a locally y-presentable.category. A
is locally y'-presentable and that +y' 1is not ahch bigger than Yy .
For instance, if A 1is any commutativ; ring, then they imply that the
categories of commutative A-Hopfalgebras, cocommutative A-Hopfalge-
bras, A-coalgebras, A-bialgebras, comodules over a fixed A-coalgebra
etc. are locally countably ﬁresentable, regardless of the size of A .
Also if & is‘a cotriple with rank a in a locally y-presentable
category A , then the category éG of &-coalgebras in A is locally
y'-presentable, where «y' = sup('Xﬁ,y,u)
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3.1 In this paragraph we give the basic definitions. Let A be a

category. Let M be a set (or class) and assume that with each

B E M there is associated an ordered pair of functors

T i A—X and F : A-—3X . Note that the domain is always
du = —u cu - = y

A and that each pair has the same codomain (which can vary from pair

to pair)

Also note that the assignment y e~y (qu’Fcu) need not be injective.

A pre—bialgebra (A,u(A))ue M in A with respect to M 1is an object

A €A together with -morphism r(A) : quA.m——%FCUA for every

neEM We say that an element u & M 1s an operation and u(A) is

(s

at

e
?i

[=H

he structure morphism on A assoc

!('D

d with 3 . A mOrp I il com

1 -t

(A,u(A)) (A", u(A")

»betw een ple blalgeblas is a morphlsm

ne M ve M

f : A—>A' in A whlch is compatlble w1th the structure morphisms,

i.e. for every ueM¥ the diagram

v (A)

d].l CH x
quf Fcuf’
FY AY —— 3 F A"

S u(a") o

commutes. The category of pre-bialgebras is denoted with P—BialgM(é)

Let V : P-BialgM(é)~«—->é denote the (faithful) forgetful functor

(A, u(A)) c MNﬂﬁ?A . If it is clear which M we ate referring to we
ué

write P-Bialg(A) instead of P—BialgM(é) . Further we abbreviate

(A,u(A)) (:ﬁ to (A,M) 1in order to avoid expressions of extreme com-
U &
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plexity in the following. This notation doecs no longer distinguish
between pre-bialgebras with the same underlying object. The reader
should keep this in mind.

Clearly in practice one is not interested in all pre-bialgebras but on-

ly inithose which satisfy certain given relations. The relations are nor-

‘mally expressed in terms of diagrams which have to commute, Thé diagrams

are constructed from the structure morphisms and other canonical wmor-—

phisms. However there is a. great deal of variety and a scheme of

sufficient generality to cover the above mentioned examples becomes

hopelessly involved. Supprisingly it turned out - after many

attempls — that the explicit description of the relations in terms

of structure and canonical morphisms is not necded to establish the
main Fesults of this chapter. Instead the following common features
suffice : 1) for every pre-bialgebra the diagrams expressing the
relations are given in some way 2) the diagraﬁs are natural with
reSpeét to pre-bialgebra morphisms.

More precisely by a relation r on P—BialgM(é) we mean ‘a pair of
Iuncto?s Fdr 1 A —> Kr and Fcr : é'—e- zr together with a pair

of matural transformations FdroV:::;.FcroV. Explicitely with every

pre-bialgebra (A,M) there is associated a pair of morphisms

“r(A,M) e Fq A 3 FcrA' in such a2 way that for every pre-bialgebra

morphism f: (A,M) —> (A',M) the diagram

r (A,M) :
| F dr A T F cr A
F dr £ F cr :
r(A',M)
N 1 T v 1
Fi A 3 FcrA

commutes in the obvious sense (ie. with respect to both components
of r ).
Let R be a set (or class) of relations on P—BialgM(é).

*

A bialgebra (A,M,R) in A with respect to M and R is a



pre-bialgebra (A,M) such that for every ré&R the morphisms

r(A,M) : FdrA pu— FcrA coincide. In other words a bialgebra is a

pre-bialgebra satisfying the relations of R. A morphism between

bialgebras is a morphism between the underlying pre-bialgebras. The

category of bi@l&é&ﬁii is denoted with BialgM R(A)
. . B

. If there is

no ambiguity we drop the indices M and R . Clearly Bialg(A)
is a full subcategory of P-Bialg(A). The forgetful functor
Bialg(A) — A , (A,M,R)~»~>A , is also denoted with Vv .

3y the support of the operations M and the reilations R we mean

the set (or class) I of all functors ¥ and FCr , wWhere

i ¥
du’ cp’tdr

v and r are running through M and R respectively. The subclass

of all functors of [F which are the domain of either an operation

or a relation is denoted with Td . Likewise WC “denotes the subclass

of all functors appearing as- the., codomain of either an operation or

a relation. In the following the hypothesis are o)

e
i

teun stated in

{A%]

—t— i ———— » ety NG S

terms of F, ® and. [ instead of M and R i It is therefore
e S d’? ———= " seEets s =t R el

cssential to keep their meanings in mind (d = domain , ¢ = codomain),
3.2 Rewmarks I) It is casy to express that for some specified
operation ugEM the structure morphism p{(A) FdUA»~$> FCUA

should be an isomorphism for every pre-bialgebre (A,¥M) ¢ One has

to add an operation y to M and two relations to R expressing

i) Y o= 4 ] i U = i o . I .
n(A) U (A) 1dquA anc u(A)Yp () lchuA (cfn 3.2 IT11I4)

II) One can call an operation il&géﬁéii (resp. coalgebraic)

if qu and Fcu are endofunctors of A  and FCU is the identity'

of é {(resp. qu = idé); and likewise for relations. Typical

examples are functors A——A which assign to an object A its

n-fold BEEQBEER coproduct or tensor product etc.

ITT) TFor examples of bialgebras see § 4 and § 6. It should however bhe
Same of
clear at this point how to express the examples given in the intro-
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duction to § 3 as bialgebras, i.e. how to choose the underlying category

(=]

A , the operations M aund the relations R such that Bialg(A) 1is

a) the category of groups, rings, ..., cogroups, ... in A .

b) the category of algebras, coalgebras, bialgebras, Hopfalge-

bras ... over a commutative ring A.

c) the category of ' -algebras (resp. G-coalgebras) for a

T

triple (resp. cotriple €) in A

d) the category of descent data (or données de recollement) in

the standard situation

2k
z T i
o 1 —~ mE 20
Tg —> g —F-»E Fg1xs! _”-"_l_,L’f“g*.xs'xs'
s S —7;'—"’ S s

given by o : S§' = S (cf. Grothendie-k Db] Def. 1.4 = Def 1.7).

The reader should be familiar with  -these examples, in particular

know what the functors F, , F F F"r and the natural trans-
A

du cu’ v’
formations Fdrov % FcraV look like for every cpervation pe& M
and relation réeR . If not, he is advised to first have a look at

§ 4 because Lhe following is often motivated by these

examples.,

3.3 We start with some elementary properties of the underlying

-,

functor V: Bialg(A) —> A concerniné the preservation of limits

and colimits.

Lemma Let H : D —> Bialg(A) be a functor such that the limit

(resp. colimit) of the composite V¢H : D —» A exists. Then the

following hold:

a) Lf every Fe FC preserves Li@ VeH , then }im H exists 1in

D

Bialg(¢A) and lim H = (lim VeH,M,R) .’
& e
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b) If every FG‘Fd preserves 1i3 VeH , then 1im H exists in

Bialg(A) and 1lim H = (lig VeH,M,R) .

Proof It suffices to consider a) because b) is dual.
By assumption for every operation u& M "there is an unique morphism
UQ&&P VeH) : Edu(iiﬁ Ve H) ——3 Fcugllm VeH) such that for every D€ D

the diagram

H(lim VeH) v
i i T VR : Flim ( g
qu(<L£?1 Vo H) . Fcu(llm Vo) —1im (FCu o Vol)
Fay (pp) Fo, (Pp)
w((VeH)D) i)
Fiy ((VOH)D) ey E., ((Vol)D)

commutes, where Pp ) 1imKVoH)~«+(VoH)D .denotes the canonical morphism.
Thus 1lim (Ve H) together with u(iig VeH) , y€M , is a pre-bialgebra
and Py is a pre-bialgebra morphism for every D¢ D . Hence for every

relation re¢ R and every D€D the morphism pair r &im VoeH,M)

gives rise to a commutative diagram (with respect to both components

L

of r )
r(lim Ve H,M) n
i e e i 7e —_— i1 o
Fdl‘ (Lllln Ve H) - — Fcr (Cllm V 'H) ""}(]._l:_n Fcr Vel
Fdr(PD) qu(pD)
v r (HD) ~ 2
Fdlg(VvH)D):__ R F . ((Vel)D)

This shows that r(éig VeH,M) 1is the inverse limit over all "pairs"
r(HD) , D& D . Since the two components of r(HD), DCD , coincide, the
same holds for r éiE.V°H’M) and thus 2&23 VeH,M) is a bialgebra. One
readily checks that the latter together with the bialgebra morphisms

Py ¢ (lim VeH,M,R)~——3 HD is the limit of H : D~——>Bialg(A)
e ‘ -~ =
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3.4 Corollary a) If A is complete and every PelF, preserves

limits, then Bialg(A) is complete and the forgetful functor

V : Bialg(A) —> A preserves {and creates) limits. Moreover

V is tripleable provided it has a left adjoint.

b) Likewise if A is cocomplete and every TFe Fd preserves

colimits, then Bialg(A) 1is cocomplete and the fo orgetful functor

V preserves (and creates) colimits. Moreover V 1is cotripleable

provided it has a right adjoint.

c) 1t

{e>

has oa-filtered colimits and every FeIFd preserves

them, then Bialg(A) has wou-filtered colimits and V preserves

(and creates) them.

As for the tripleability and cotripleability note that by 3.3 a), b)
the underlying V always preserves (and creates) both V=-con-
tractible kernels and cokernels. The condition e¢) holds in most
examples for an appropriate ¢ . This is not so for a) and b)
However a) holds when all coperaticns and relations are algebraic
(3 2 Tl), while condition L) holds whén all operations and |

relations are coalgebraic (3.2 1I1),

3.5 1In order to study the category Bialg(A) from the point of
view of locally presentable categories the first question to answer
is whether there exist o-presentable objects f&r suffic 1enL1y
large o and how they 1o$k like. The following and 3.6, 3.7 give

a partial answer.

Lemma TLet A be a category with a-filtercd colimits and let

M  and R be a data for blalgcbras (3.1). Assume that card(M) < o

and Lhat every Fe F preserves a- filtered collmlts Then a




bialgebra (U,M,R) is

o-precentable 1in
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Bialg (A)

3
and TFU are oa-presentable for every Fele.

Remark Tf the underlying functor V : Bialg(A)—>4A and the
ﬁ%iﬁc preserve monomorphisms - e.g. in the situation 3.4 a
there is an analoguous assertion for a-generated cbjects: A
(U,M,R) is o-generated provided 1) card(M) < a and cvery
serves o-filtered colimits 2) U and FU are a-generated
Fe Td . The proof is the same as for 3.5.

Proof First note that by'3.4 c) Bia]g(é) has o-filtered
and V : Bialg(é) —>» A preserves (and creates) them. Let

provide

d

Ue A

functors

)

then
bialgebra
Fe

pre-

for every

colimits

(X,M,R) = liQ (Xv,M,R) be an og-filtered colimit in Bialg(A) and
%I

let f

(U,M,R) —=>

A
m{(U) £ o and .w(FU) < a for every
'] I'e = L }( “\
ljm>\Xv,M,R) (1$%"v‘d’R) and
lying morphism U -— 1im X of
u .4
v , \ . ;¢
U —=——> X —— linm Rv for some

lying canonical morphism. In general

1im(Xv,M,R) be a bialgebra morphism with
v

FeF, . Since
d
U is o-presentable, the under-
f adwits a factorization
v , where u, denotes the undey-
.f  is aot & bilalgebra morphism
v

because for an operation p &M the merphisms FcuAv o ni{t) and
U(Xv) o qufv need not coincide. However they beceme equal when
composed with F u F { —»> F 1lim X because [ = u f is a

cu v cpv cu——> v vy
bialgebra morphism. Since quU is o-presentable and

5

T lip X ¥ 1im ¥ X is an oa-filtered colimit, this implies
c TV ";)‘7"' cu v :
that there is a transition morphism u : Xv-—a X\)I - depending
on w - such that the diagram
*) It is nmot assumed that the codomain of ¥, Fe Wafis locally
presentable, but merely that [FU,-} preserves all existing

c—~filtered colimits.
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I‘cu(u'}f\))
F U — =
cy
A
u(U)
Fa,U — >

Edu(uafv)

commutes. Since card(M) < o

X - Xv" which has this property for

\Y

that f (U,M,R) —> lim (X, ,M,R)

bialgebra morphisms (U,M,R) —

the canonical map

(XDH,M, R)—+

F X
cu v
I

u (Xy')

quxw

one can find a transition morphism

every yu € M. This shows

admits a factorization into

lim (X,,M,R), i.e.

v

o . -
lim [(UsMaR)’(X\)sM:R)] — [(UsM’R)a _]_1.111‘) (X\),I-,R)—!

v
is surjective.
Hence (U,M,R) is o-presentable in
also directly from the Ffact that V

ful and preserves

in A).

3.6 Remark One would like to conclude
(U,M,R) is o-presentable in Bialg(é)
object

provided o 1is sufficiently large and

If A is locally finitely presentable,

smallest o for which this is true. In

Bialg(A).
Bialg(A) —> A

o-filtered colimits and that

A 1is

V.

In the same way one can show it is also injective.

(The former follows
is faith-

U is o-presentable

from 3.5 that a bialgebra

provided its underlying

Ue A is. We will show below .in 3.7 that this is true

1Pcally presentable.
then 3.7 provides the

general this is not so and

resorting to 3.7 can give poor estimates. However in examples one

often knows enough about the functors

find out directly what the smallest «

impliecs T(FU) < o for every Feg F

a

following. Assume

sentable and that

every I has a right

Feg F

A particular situation 1is
that the codomain of every

adjoeint G

d (eg. in 3.2 III) to

is such that 7n(U) <aq

the

Fe ¥

g is

locally pre-

I e AT

GF pre-

there is a (smallest) regular cardinal B such that every




§3 ~-11-

serves f-filtered colimits. Hence a(U) < B implies @ (FU) < B for

every T, because [FU,-] = [0,6, -] . Likevise ¢(u) < g implies

e (FU)<B for every Fe[Fd and  Uc A

3.7 Lemma Let A be a 1oca1]y o~-pres entaklo category and let IF

el ry “4

bc a set of funcL015 w1th domaln A whlch preserve o- £11tered COllmltS

Let T o> oo be a repuldl ardlnal such that

1) if X€ A and w(X) 2 o , then w(FX) < a for every FEF,

2) if p < a and B < o 4 then Bp_< o

Then «(U) < o implies @ (FU) < q for every FGﬁFd and U& A .

Corollery Let A be a ]ocally o prosentable category with a data

M and R for bialgebras (3.1). Assume that card(M) < o and that

every TFe¢ [F preserves u—filtered colimits. Let @ > o be a cardinal

Er— Fr————— - ———

with the above ploportlos 1) and 2). Then a bialgebra (U,M,R) is

o plesentqb]e 1n Bialg (A) p10v1ded U 1s a- prebcntable in A .

Remarks a) Note that condition 2) 1s trivially satisfied if either

a==’Xb or o 1is of the form (ZY)+ for some y+ > q

b) Since the o-presentable objects in A form a small subcategory
there exists always a cardinel o with the properties 1) and 2),.

c) Using 5.1 one can prove an assertion analoguous to 3.7 fcr locally

ao-generated categories (cf. remark 3,5).

Proof of 3.7 The case o = o 1is trivial and we assume o > o . Given

o

UcA with n(U) < o« we are looking for an " a-filtered colimit

presentation U = lim X such that 7(X,) < a for every K and the
=5 K’ =
cardinality of the index system is strictly smaller than o . Since

F‘GFd preserves a-filtered colimits, it then follows easily that

T (FU) = w(lim FX ) < «
.._I_<._.., K =
We need some preparation. Let D be a partially ordered set which is

-filtered and let D' Dbe a subset of cardirality < o . Then D'

o
w

contained in an o-filtered subset D" whose cardinality is also < o
. ' « T 3 .
One constructs D" by transfinite induction as follows., Let D' = D!
o

1f X < a is a successor ordinal then let Di be the subset consisting
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of Di_] and an upper bound in D for every subset ICDA"_l with
card(I) < o . If A < a 1is a limit ordinal let Di = }?& Dp In
either case it follows from asé@%tion 2) that \ald(D ) < o . Clearly
D" = i Di is a-filtered and card(D") < a because o <

Let U< A be a-presentable. TIPD by 1.7 there is a cokernal diagram

| f

ey oS Ux,
1CI g J1€J

such that 1) card(l) < o > card (J) 2) Xi and X. are o-presen-

J
table for every 1i¢&I and j€J and 3) U 1is a retract of Y . Ve
will show that w(FY) < o for every Fe-Fd . Since this implies
T(FU) < a », We can assume without loss of generality that Y = U.

Let D be the partially ordered set consisting of quadrnpl

. ) ' ~—»~_‘; R
(IK,JK,fK,gK) s, where IKC I, JKCTJ and LK,gK ![ X. “__§~1L X .
=i jegy
are morphisms such that card(IK) < g > card(JK) and K
the canonical diagram
fK
| ]
! | X, & > l | x
ie1, g €J, !
K K J &k
l |
i\
1] 1
Ly, - —— X,
1€ 1 g ] €J
commutes. The ordering is given by inclusion, i.e. K < K' provided
IKc.Iw 9 JKC'Jw § and the induccd diagram
£ § |
J__L_Xi > ___l,XJ
1\[ IK By J]/JK
£, i
J_I X, T | X
1 € IK' éK' 1€ JK'
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commutes. Note that in both diagrams the vertical morphisms need not
be monomorphic! (This complicates the proof considerably). Using

that 'L“L‘Xi is w-presentabls and J_J.Y is the ag—-filtered co-
i GIK ‘ jeJ
limit of its subcoproducts with less than ¢ summands, it is routine

to verify that D 1is o~filtered. Let D' be the subset of D
obtained in the following way: For every pair I'c I and J'¢C J

with card(I') < o > card(J') pick one element (I £ ) of D

K"'TK’ K’gK

with the property 1I' = IK and J''= JK (provided there is such

an element, there wmay be many cr none with this properity). Clearly
condition 2) and card(l) < o > card(J) imply card(D') < a . Given
J_J#F. with card(1") = « thcr@ is an element (Ii,JK,fy,g )

&f&é Y o= 1 because l“i k is a-presentable and J_JﬁX is

e 1
ic _ jeJ
the a-filtered colimit of its subcoproducts with less than o sum-

mands. Likewise given J_J X. with card(J') < o one can find
je J!' ]

- . - A i - h - TV - . f g ; o ‘i N
an element (IK,IK,iK,gK) such that J L;JK From this 1t follows
that D' is not empty and that the colimits of D"-—sA, K-¢Jﬂlﬂ Xi

ier, -
and D”—u—éé , Ko~ L ‘ k , are J_ELXi and L_lh respec- i
jedJ 1€ 1 1€ J
tively (for D" sce abvve). Whence the colimit of D" ----- YA,

K romd XK . Coker(fy,gK) is U . Note that: D" 1is o-filtered and

card(D") < & . Since XK = coker(£<,gK) is a-presentable, by con-
dition 1)‘ FXK is G-presentable for every FE:Ed . Summarizing we ob-
tain ‘

T(FU) = n(¥ lin XK) = ﬂ(llm_F%K) ; &’

KeD" KeD"
because an t-colimit of o-presentable objects is again G-presentable.

This completes the proof.

3.8 Theorem Let A be a lo

i o

cally presen

be a 1o table catepory and let M , R

and F be a data for bialgebras (cf. 3.1). Assume there is a regular

cardinal R such that cvery Fe&l preserves Bf-filtered colimits.

L.et y > R be any repular c:

rdinal such that

a

a) cald(h) < vy > card(R) and A is locally y-presentable.
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b) if UE A is y-presentable, then FU is y-presentable for

every Fele (cf. 3.6, 3.7 for vy = Q).

Let (A,M,R) be a bialgebra and let Ue¢ A be a y-presentable object.

Then every morphism f : U—3A admits a factorization into a morphism

U—>U' and a bialgebra morphism (U',M,R) —— (A,M,R) such that

U'€ A 1is again y-presentable. Moreover a bialgebra (X,M,R) 1is y-pre-=

sentable in Bialg(A) iff X is y-presentable in A

Remark Note that <y has to be strictly bigger than g ; hence Y ?.Xl'

If the codomain of every FG?Ed is locally presentable, then by 3.7

there is always a cardinal y > B such that the above conditions

a) and b) hold. The point is of course to choose Y &as small as

possible. Thé moste useful situation seems vy =4K]‘ and B =4Zo g

This happens in any c¢f the following cases

1 card (M) < kfo 2 card(R) , w(A) = }fo , every F€/ preserves
filtered colimits, and every FCIFd takes finitely presentable

objects into coﬁntably presentable objects (ef. 3.7).

IT card(M) s 2:0 > card(R), n(é) < XTI,'every F&lF preserves
filtered colimits, and every F€de takes countably presentable

objects into countably presentable objects

TII card(M) < )fo > card(R), w(A) < X every F€lF preserves

1 3’

filtered colimits and every Fe:md has a right adjoint GF

which preserves countably filtered colimits (cf. 3.6).

sisting ©of all y-presentable objects. Then for every YEY the cate-

gory Y(y)/Y is y-filtered and the colimit of the forgetful functor

Y(y)/Y—>Y is Y ; i.e. the inclusion z(y)iiaz is dense (cf.D3]3.l).

Definition A set valued functor on a small category is called

3.1o0 Corollary Let FlatY[X(y)o,Sets] denote the full subcategory

3.9 Corollary Let Y(y} be the full subcategory of Y = Bialg(A) con-

B
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of [E(Y)O,Sets] consisting of all «y-flat functors. Then the functor

¥ —> Flor, [ 3% sets] , ¥ of,v]

is an equivalence.

T3.11 Remarks I One can view 3.lo as a "generalization" of [ki] 7.9
The latter asserts that a locally y-presentable category X is of the
form X s StYfg(y)o,Eg] . Thus, if Y(y).is y-cocomplete, then by

D3] 5.4 a functorx X(Y)O —> Sets is y-flat iff it is y-continuous,
i.e. FlatYfX(y)o,Sets] = Styfg(y)‘o,y@ (ef. [1317.9).

IT It will be apparent from the proofs of 3.8 - 3.10 that the hypo-

theses have not been fully used; in particular the existence of
arbitrary colimits in A . Besides b) and card(M) < y >.card{R) only
the following_properties are used

a) A has B—filtered colimits for some B < y and every FeF

preserves them,

b) for every A€A the category A(y)/A of y-presentable objects

over A 1s y-filtered and A is the colimit of A(y)/A—A.,

(U—A) ~~x U (cf. 2.8).

iy . s e - - vmame e me—

In general Bialg(A) 1is not locally presentable but iF has again

e - - . - I SR ——

p-filtered colimits and by 3.9 it inherits property b). For instance
the category of flat left A-modules over a ring A need not be
locally presentable,but has filtered colimits ;hd satisfies property b)
for every <y . An important class of éategories'wﬂiéh are not locally

presentable but for which 3.8 = 3,lo applies are the '"catégories lo-

calisables" recently introduced by Y. Diers [S].

Proof of 3.10o. By 3.4 Y bas y-filtered colimits. The functor

Y —> [Y(y)°%,sets] , ¥Yws[-,¥] is full and faithful because the

inclusion Y(v) L5 v

is dense, cf [ j3.4. Moreover it preserves
and reflects y-filtered colimits because the objects of Y(y) are

y-presentable in Y . Also its values are in Flat [z(y)o,SetST

—
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because by 3.9 Y(y)/Y is y-filtered for every Y€Y . Hence the

factorization Y-——~9Flat fY(Y) Sets] Y'Vq[}uY] is a full em-

beddlng Wthh preserves Y—flltered COllmltS. If F : Y(Y) ___9 Sets

is . y—flat let D be a y- letered category together with a functor

D—> Y, D v Y such that F = lim [—,YD] . By the above

D T

DeD
Lin [-,v,] = [~,Limg ;] , whence F = [-,v] for Y = lig -
DED DED DeD

This completes the proof. : ' ' -

Proof of 3.8 and 3.9 Since the proof is fairly involved and techni- -

cal we first give a sketch.

In a first step (3.12 - 3.17) we construct factorizations of
f: U —> V(A,M,R)

U — Ul——> U2—7..... —> Ug —>

for every ordinal ¢< B such that w(Up) <) and for every operation
g) 54 y

e M there is a morphism p(2,5+1) quUf — ¥

0. 1T the
> Feoulsa making th

diagram

n(g, e+ 1)

quUS

commutative. Using that qu and F preserve RB-filtered colimits,

we obtain in the limit a morphism (;jm Ug) —> F (11“3U3+1) for

every ueM. The latter make }ing Ug into a pre—bialgebra and
. <R
U —> A into a pre-bialgebra morphism. Since By

lim fp : 1i

—_ ot

8<«B g«

the colimit U' = 1lim Ue is again f—presentable. In this way one
<R

cbtains a¢factorization of £ : U —> A 'into a morphism U — U

5

0,

and a pre—bialgeﬁfa mo£5ﬂiéﬁ fh-é-iim % : (Ui;M):;——9(A,M) with
——— $<fy

(U',M) being Yy -presentable in P~Bialg(A) (cf. 3.5).
J | A |
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In a second step (3.18—3.20) we construct factorizations

4

) %5 Wi 22— _—> Whmw— ...
(A,M,R)

in the category P-Bialg(A) for every ¢<B such that W(Us)SY
and for every relation reR the vertical morphism pairs

in the diagram

F, af F. ol
dr 1 dr 2
? ) L] 1
-—..-_..._.ﬁ D e 0 o« oaw 3
F, U Fyp U} — F, U} > Fo. A
i
r(U', M) r{(u!, M lr(Ué,Mj ~| r(A,M)
o] i 1
Fcrai v Vv 1cra2 v Vv
| 1] 1
-—._.-9 ___.,._.______;, .__#.......
FcrU Fcr v _ FcrU2 Fcr 5

"become equal when composed with the adJacent horlzontal morphism

(Note that the two components of r(A,M) coincide). Since relations on
P-Bialg(A) commute with B-filtered colimits pass sirg to the limit

yields a pre-bialgebra (U",M) = liQ (Ué ,M) which satisfies the
€<R

relations. Since B‘-X', one has also = (U") < )+ Thus the induced

factorization (u? M) ——> (U" M) —> (A M, R) of £': (U',M) —> (A,M,R)

together with the one from the first step yields the deSLred decompo_

. sition of f U———}V(A M, R)

P - — -
TR S < st

Finally to show that a Y presentable bialgebra (X,M;R? has.a
uyenresentable“nnéerlying object X ‘We atudy the category of.those
bialgebras (U,M,R) over (X,M,R) whose underlying object U 'is
X—presentable.'We show that (X,M,R) 1is the colimit in Bialg(A) of
these bialgebras and that this (comma) category 1is J*—filtered. Thus
the identity of (X,M,R) admits a factorization
(X,M,R) "—>_(U,M;R) —> (X,M,R) with n(U)Saﬂ . Hence X 1is a retract

of U and thus alqo Y- preseutable. Conversely,ﬁif X is Y—nresentable,
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then by 3.5 (X,M,R) 1is likewise in Bialg(A)

3.12 Let R =g and let (A,M) be a bialgebra and f : U — A

a morphism with «(U) < y. Let (Ut,M) be a family of bialgebras

teT

with card(T) < y and let (ht~: Ut — U)té'T be ~family of

morphisms such that Ut is y-presentable and fo ht : (Ut,M)-—+ (A M)

is a bialgebra morphism for every te T . We will show that f admits

a factorization into a morphism g' : U —> ‘U' and a bialgebra
morphism £': (U',M) — (A,M) such that U' is Y-presentable and

'o ht H (Ut,M)-—% (U',M) is a bialgebra morphism for every té T

g

3.13 Let BA £ be the category whose objects are factorizations
’
f

= (U - U, —% A) of f with “(Ui) < v and whose morphisms

i —> j are morphisms o : U, —> U, in A with a%g. = g, and
. 3 i = ic®i i
fjaE = fi . Since RA = A(y)/A is y-filtered (cf. 2.8), it easily
follows that the functor
g £y £
EA,f — _QA, (1 — Ui —> A)rvw(Ui —> A)

is cofinal and that D. £ is also y-filtered. Since 8 < y the
B = SR R L

category RA has B-~wellordered colimits which are computed point-—

wise. Hence the same holds for For an ordinal X < B8 let

l; (resp. ll) denote the wellordered set of - all ordinals p < )

(resp. p < X). By transfinite induction we will construct a functor

N S

. - , . .
¢ Ig™Dy g A~ (U= U, —24)
. id f
with $0) = (V25 U —254) such that
lig £
. =, T
Lin § = (U—lin U, ~=2—2y 4,
= A<65 A
is a factorization of f : U—7A with the properties stated in 3.12.

For p < 1 1in lé the transition morphism @(p)—%@(r) is denoted

with of
T

3.14 The induction hypothesis for an ordinal A is as follows.
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There 1s a functor

] gO fp
i N ~ y >
() 1,90, ¢ 0 (U v A)
whose value at 0 1is (U ld% U £ >A) together with a morphisml
*5) u(o,P+19“f_FunEf—??gqu+]

for every uw & M and every p such that p+l1 < A subject to the
following condition: For every te&T and for every pair p,T with

p+l < 1T+! < XA the diagrams

o N . p+l y
F_(h.) F (o) F. (a . .) Fo @) F_(f__.)
_Cu Tt CU 0L gy LSS PrL T T . B T < 2 S
F.Uy > PO, ? Foul, ? FUos FeuUrsi y A
(%%%) u(Ut) " u(A)
F. (h) F g ' F, (£)
duy -t du du ~ T dy T
e —C——— 4 it i —————— LY F
quut ’quUo 5 quUp > quU 5 duA

commute.

3.15 Tor A=1 we put ((0) = (id;,£) and (#) trivially bholds

whereas (#) and (®¥X%) are vacuous. If A is a limit ordinal < B ,

the functor § H l;——%QA £ given by induction hypothesis has to be
?

extended to LA . Since EA £ is y-filtered, the image of
H

».

Q : £Af—*)BA,f has an upper bound in EA,f 5> 1.e. there is an object

. . T o
(fA" gx,)e RA,f together with a morphism Aya 3 (fT,gT)———%(fA,,gA,)

for every T < A . Since RA £ is y-filtered, there is moreover an
: b

object (fk’gk)é EA together with a morphism

. £
' ) A

u; : (fA"gx')~_—9(fA’gA) such that for every pair p < T 1in LK

i P - To P To_ A, T b _ X, 0
the equation oy a, ® o holds, where oy aA° Oy e and ay axoax

. Y - p
Therefore we can define Q(X) = (fl’gk) and @(p<a) = o, and
obtain an extemnsion $ : I)\-———QDA £ Note that (%) and &x#%) hold
. - T,

trivially for every p with p+l £ A and every pair op,t with



p+1
if

(]

satisfying *%3k) for every
suffices to construct o

U(X‘],)\

and

1 =

and

) quUA—l-“PFcuUA such that the conditions (), (%) and
(¥X%) hold. For an operation pEM it follows from F A = lin F 1.
cH Temh o0 1
ﬂ(quUA_]) < v o> n(quUp) and. A < y that there is an object
. . i . i A=-1 .
i(py) in BA,f together with morphisms oy 3 (fl-l’gxmi) }(fi,
ulr=-1,1) : quUA—I—_}FcuUi such that for every € T  and every

A

I

S

§

< v+l 2 X 'because X isa

is not a limit ordinal,

—>DA ¢ together with

A=l
A

il =120
limit ordinal.
then by assumption there is a functor

a morphism p(p,p+1) duU5_>FCuUp+l

HEM and every p with p+1 < 1 . It

p < XA-1 the two squares on the right in the diagram

o p+l
F h F F : F f.
. cu( t) . cu(ap+l? | Cu(al ? . 'Cu( ;) _—
cu t cH o cu ptl cH 1 €$
w(U) u(p,p*-l)f u(x—l,')"/ n(A)
T, () e N ST / F (5o p)
? “*‘9 S S L a== F. A
Fd U FupUu ’ quUp ? auUA—l 2 du

commuterwhere o =

0+1 A=1 p+1
% %=

Note that for XA=1 > 0 the left side

of the diagram commutes by induction hypothesis whereas for A = I

this can be established using

way as for the middle square.

y-filtered, there is an object

. . 1 -
with a morphism ay F (fi’gi)

i

a, ¢ o

A

A
i

-1

Hence we can deflne Q(A)

u(k-

that

1

JA) = F <a>°u<x i)

ﬁ H IA—}RA £ 1s an exte

satisfies (¥x3k)

3.16

We now construct a facto

ﬂ(quUt) 2 vy > card(T) in the same
Since card(M).< y™ and D, . is
—A,f
8y £

(U > U A)A) in D . together
A —A, £

-9(fx,gx) for every uw &€ M such that

) is independant of i = 1i(p)
A
A=
l’gl é(l 1<A) .‘ai and

for uE'M . With this one easily sees

nsion onto LA and that u(A-1,2)

rization of f : U—=2A into a morphism

g;)
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g' + U=U' and a bialgebra morphism f' : U'->A such that the

4 |} ]
properties stated in 3.12 hold. Let (UiiéIIjLéA) be the colimit

of § : IB—->DA £ - Then, as mentioned in the.middle of 3.13, we have

| I : 1 - . i ] . T : .

U = lim UA and f' = 1im fA whereas g' : U-U' is the canonical

A<B A<B
morphism into the colimit.
For every u€ M the functors d and Fcu pPreserve B-filtered

a
colimits, in particular lim F, U, —5F ligm U and
e n<g dnA du g A

limg Fc U, —F lim U, - Passing to the colimit with 3., 14 (¥%) and

r<g  C¥ P NY: .
¢%*)yields an unique morphism u(U') : F U'—%»FCUU' such that the

du
diagram
t
= !iﬁ%__) S
/'/______.—' - 5 :
(h ) - ,_: \:\ . Fcu(f )
——————9 _— — F . U'! ——F A
cuUt F U0 itg-FCUUX+I 4 cuU 7 c)
/I\ e - I~ A,
|
u(u,) 11mM(A A+1) u(u") u(a)
t >\<B
Ay () » Fd/lﬂf’)
3T, U ~3F , A
qu .__9qu o 7 iig quUX ///Frdu du
) ]
Fau(s"
commutes. This shows that U' together with the morphisms
w(U'), n€M , is a bilagebra and that f' : U'->4 and g'ht : Ut—éU'
are bialgebra morphisms for every t€&€ T . This completes the proof of
the assertion in 3.12
3.17 For a bialgebra (A,M) 1let B(A M) be the category of-
,l

bialgebras over (A,M) whose underlying object in A 1is y-presentable.

Recall that for every AE A the category D, = A(y)/A of

Y-presentable objects over A is y-filtered (even Y—-cocomplete) and

that the colimit of BAméé,(U-E?A)AAzU , is A (cf. 2.8). From this

and 3.12 it }eadily follows for a bialgebra (A,M) that the forgetful



§ 3 -22-

functor

(*) R(A,M)——QPRA’ {(U,M)‘f—é'(A,M)}Aa»(U——;A)

is cofinal and that E(A M) ig y-filtered (but in general not
b

y-cocomplete). In particular (A,M) is the colimit of
G%) D,y —>Biate(a), { W, 0 v,
b

and B(A M) has B-wellordered colimits which are preserved by the

functors () and (%,

:3.18 We now return to the general case and drop the assumption R = &

which was made at the beginning -of the proof in 3.12. For a bialgebra

(A,M,R) 1let D be the category of bialgebras over (A,M,R)
'—(A,M,R) ‘

whose underlying object in A is y-presentable. Clearly the forget-

ful functor

S i — — - e I = e

(?'F?? 2(4,M,R) B(A M) ' {(U M R)“‘**(A M, R)}~*?{(U M) —Z3 (A, M) }

is a full embedding. We wiil show below in 3.%0 that it is cofinal.

From this and 3.17 it follows that D is also y-filtered and
: "'(A M9R)

that (A,M,R) is the colimit of

"—(A M,R) . Blalg(A)’ {(u,n, R) —E—(a, M, R)$~T(U, M, R)

If (X,M,R) 1is y-presentable in Bialg(A), then this implies that the
identity of (X,M,R) admits a factorization ’
(X,M,R)—é(U,M,R)—EP(X,M,R) with féfB(X M,R) Hence X 1is a retract
of U, in particular X 1is also y-presentable. Conversely, %f X

is y-presentable in A , then by 3.5 (X,M,R) is Y-presentable in
Bialg(A) . This proves the second assertion of 3.8. Moreover this
shows that the category R(A,M,R) is the category of Y-presentable
objects over (A,M,R) in Bialg(A) which completes the proof of 3.9,

3.20 For the cofinality of the functor 3.19 it suffices to show that
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a pre-bialgebra morphism £ : (U,M)A(A,M,R) with m(U) ¢ v factors
through a bialgebra morphism f' : (U',M,R) = (A,M,R) such that
m(U') < v . The construction of f' isg similar to 3.12 - 3.16. Let

D be the category whose objects are factorizations
—(A M), f £

&
{(U M)-————>(U M)-—“—% (A, M)} of £ w1th n(Uj) < v and whose
morphisms 1i—-3j are morphisms a; : (Ui,M)—>(Uj,M) in P~Bialg(A)

- . _ il _ i _, :
with the properties fi = fjaj and gj ajgi « Since E(A,M) is

y-filtered and has B-wellordered colimits, it easily follows that the

functor

Damy, e TR My legafibwlE s (v a,m)

is cofinal and that is also y-filtered and has B-~well="

Deamy, ¢

ordered colimits.

Recall that E; (resp. £X> denotes the wellordered set of all

ordinals p < o (resp. p < 1). By means of transfinite inductions

we construct a functor

“—>9<A,M),f

- T
8 ¢ I

8
with Q(0) = {(u u) = (U, M) -Af >(8,)}

. . ; ; ' . £! 1
such that the factorization lig Q = {(U,M)—&—é(U',m)-——>(A,M)y of

f has the required properties. We write

By

8 f .
Q{p) = {(U,M)~—B§(UO,M)——Q%(A,M)} for pé'lé and ,Q(p<T) = aﬁ for

< 1t in I-
P =g

We define Q(0) = {idU,f} . Assume Q has been constructed for all

< i.e. is i
p A, i.e. there is a funector 0 EA-QE(A M), £

2(0) = {idU,f} - If X is a limit ordinal we extend Q to

with @(0) = {id,,f}

L
by defining Q(A) as an appropriate upper bound of the image of

: = i ils i 3. .
2 lx >2(A,M),f (the details are as above in 15). Now let A be
& successor ordinal. For every relation r € R we have “(Fdar-l) <y

Since FcrA = llw FcrUi is a y-filtered colimit and the morphisms

1fDAWf
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r(A,M) : FdrAiztirA coincide, there is a factorization
f.

(U,M)-—ié(U.,M)-—i9(A,M) and a morphism
i
A=

o : (f

i A=1" g)\—l)-__)(fl‘ gl)

in B(A,M),f depending on r such that the morphisms

. -
T o) 2 Fy Uy (SSF U
become equal when composed with F d%“l : F U —F U, . Since
cY 1 cr A-1 cY 1

card(R) < vy and ] ; is y-filtered tﬁere is a factorization
—{(A M), f
2 L
{,m) —2> (U, ,M) === (4,M)}

together with morphisms oF (fi’gi)—_>(fk’gk) in

A Dia,uy,g such
A1 _ i, a-1 . e _
that ay = 06,° a; : (fk—l’gk—l)’—><fk’gk) 1s 1independant of 7 ,

i
. ' ) A—~1 . .
Thus we can define Q(iA) = (gx,fx) and Q(A—l < A) = o) and it isg

clear that @ is a functor. This shows that there 1is

—
L™ 2m,m, s

: -
a functor @ I E(A M), £

cofinality of the forgetful functor

with Q(0) = {idU,f} . By 3.17 and the

.

== . . 2 F .
E(A,M),f 2(A,M)’ (fl,gl)mayfl

the colimit of O exists and can be computed pointwise, i.e.

g lim fA
lim @ = {(u,M) —& (%_i_gé U, 5 2M) =>(A,M) }
»,
where g' denotes the canonical morphism intb the ¢olimit. From the
construcftion of a;+] : (f A’gk)__é(fk+l’gk+l> and the diagram
) . »
U _ﬁififvlcruﬁl = IBE, Uy T i]:g; U,
r (U ,M) ’ r(UA+]’M) ]1E$1(UA’M) lfli? UA,M)]
F. U ~-114£—@"’7A‘--+—1?F U 2 —lim F, U, —Z3 P, linU

dr ) dr )+1 dr == ")

A< B A<B
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it follows for every r€ R that the two components of the morphism

pair r(lim UA’M) coincide. Hence (Liﬂ UA’M) is a bialgebra.
A< : A<B

3.21 Definition A sub-bialgebra of a bialgebra (A,M,R) 1is a bialge-

bra (U,M,R) ‘together with a bialgebra morphism £ : (U,M,R)—>(A,M,R)
whose underlying morphism in A 1is a monomorphism.

Clecarly £ : (U,M,R)-—>(A,M,R) 1is then also a monomorphism in
Bialg(A). However the forgetful functor V : Bialg(A)—3 A does not
preserve monomorphisms in general (for an exception see 3.4 a)).

*;he question arises whether there is an assértion analogous to 3.8 for
c-generated objects. This is mnot so. The reason for this asymmetry
lies in the fact that the underlying‘functor V : Bialg(A)--3A and the
functors F¢ FC need not preserve monomorphisme. We give below in
3.22 a version of 3.8 for y-generated objects corfecting this
deficiency by additional assumptions. From the point of view of
applications 3.22 is useful in either of the following situations:

1) A 1is locally y-noetherian, i.e. every +y-generated object is

y-presentable, cf, ﬁﬂ] 9.19. or 2) every FEF_ preserves finite
: - o

limits, e.g. in the algebraic case 3.2" IT ).

3.22 Theorem Let A be a locally presentable category with a data

M , B and. F for bialgebras (3.1). Assume there is a regular

cardinal B such that

1) every Fg€F preserves. fB-filtered colimits

2) every pg-wellordered colimit of monomorphisms in

|
|

[ >
H
[45]
B
{3
[S)
H
3
[

monomorphism.

Let y > B Dbe any regular cardinal such that

3) card(M) < y and card(R) < ¥y

4) A is locally y-noetherian and if UE A is y-presentable, then

FU 1is <y-preseuntable for every F¢ Fd (cf. 3.6, 3.7 for y = a) .

[



Instead of 4) one can agsume

4)' A is

serves finite limits; moreover if

refw

is y-generated for every d

Card(R) < v iﬁ redundant).

locally vy-generated (cf. [13]

pre-

Fgmc

U€ A 1is y-generated, then FU

(in this case the assumption

Then the following hold.

a) If (A,M,R) is a bialgebra and UcC A is a y-generated subobject
of A, then there is a sub-bialgebra _(U',M,R)—E—a(A,M,R) such
that U' contains U and 0' is alsc y—-generated.

b) A bialgebra (X,M,R) is y-generated in Bialg(A) iff X. is
y-generated in A .

c) A bialgebra (A,M,R) is the y-filtered colimit in Bialg(A) of
its y-generated sub-bialgebras.

d) If A 1is locally y-noetherian, then every y—generated bialgebra
is y-presentable in Bialg(A); in particulax if Bialg(a) is co-
complete (cf. 3.24 a), b) and 3.27 below), then Bialg(A) dis lo-
cally y-nonetherian. ‘

3.23 Remarks

a) Note that Yy has to be strictly bigger than 8 , hence Y 2.)q

If the codomain of every FcCIF

resp. 5.1 there is always a cardinal

4 is locally presentable,

then by 3.7
.
Y > B "such that the above con-

ditions 3) and 4) hold (resp. the second half of 4)'). The point is of

course to choose Yy as small as possible.
seems y = )q and B8 = f%
preserves filtered colimits

I Every T e¢lF

generated), every FGIFC

A is locally finitely noetherian (resp. A

The most useful situation

. This happens in any of the following cases.

(=Y

card (M) < }2 > card(R) ,

is locally finitely

takes finitely generated objects into

countably presentable objects (resp. into countably generated ob-

jects and every FE?WC

preserves finite limits),

cf. Corollary
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to 3.7,

IT Every F€IF preserves filtered colimits and every countable co-
limit of monomorphisms in A 1is again a monomorphism,
card (M) < f% 2 card(R) , A is locally l@l—noetherian (resp. A
is locally )(l"generated), every FEle takes countably genera-
ted objects -into countably presentable 'objects (resp. into coun-
tably generated objects? and every Fé‘mc preserves finite 1li-
mits), cf. Corollary to 3.7.

ITI Every FegIF preserves filtered colimits and every countable co~
limit of monomorphisms in A is again a monomorphism,
card (M) < j% > card(R) , A is 1ocally.}q-noetherian (resp. A
is locally fq-generated).
Every Fe:Fd has a right adjoint which preserves countably fil-

tered colimits (resp. every FCIFd has a right adjoint which pre-

serves monomorphic countably filtered colimits, and every Fe:mc

preserves finite limits), cf. 3.6.

b) As before in 3.8 the existence of arbitrary colimits in A is not

needed for 3.22 (cf. 3.1! a), b)).

Proof of 3.22 The proof is the same as for 3.8 with the following

obvious modifications. First for 3.12 - 3.16:
In 3.12 the morphisms f : U—=>A and ht H Ut~—ﬁU s t&T , are mono-

morphisms and e(U) < ¥y E‘E(Ut) . In 3.13 the category RA consists of

all y-generated subobjects of A and likewise QA £ consists of all
b
y-generated subobjects of A containing £ : U—>A (clearly both

categories are y~filtered, [13] 9.1 - 9.,3),
the
With this proof (3.14 - 3.16) of 3.12 goes through without change be-

cause either by assumption:4) in 3.22) one has W(quU) < vy, for every

.

neM and every U€A with e(U) <y or by 4)' in 3.22 one has
e(quU) <y, for every U€A with e(U) < v and the transition mor-
phlsms in FcuA = 113 FcuUi are monomorphic for every uweMM . No.e

i
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that by assumption 2) in 3.22 the induced morphism lim fk P lim UX~—9A

: A<B A<B
is again a monomorphism.
Second for 3.17 - 3.20:
In 3.17 and 3.18 the categories B(A,M) and D(A,M,R) consist of all

sub-bialgebras of (A,M) (resp. sub-bialgebras of (A,M,R)) whose
underlying object in A is y~-generated. In 3.20 the underlying mor=
phism of f : (U,M)—> (A,M,R) in A is a monomorphism, and the cate=-
gory Q(A,M),f consists of all sub-prebialgebras of (A,M,R) which
contain £ : (U,M) -3 (A,M,R) and whose underlying object in A is
Y—-generated.

With this the arguments in 3.17 = 3.20 go through without change. Note
that as above by assumption 2) in 3.22 the induced morphism

lig fA : lig(UA,M)-——ﬂ(A,M) in 3.20 is again s monomorphism. Also note
A<B A<B

that in the presence of the assumption 1), 2), 3) and 4)' the cofinali-
ty argument in 3.20 is redundant because by 4)' a sub-prebialgebra of

a bilialgebra satisfies the relations automatically (whence the assump-
tioﬁ -card(R) < vy 1is not ﬁeéded). ﬁgréoger.inﬂs.l9 a bialgebr;

Ei;ﬁ;k)i ;; Y-ééﬁe?étéd beéausé of the remark following 3,5.--"

With these modificaticns it follows from 3.18 that the assertions a,
b) and c¢) in 3.22 hold. As for d) it suffices to show that a y-genera-
ted bialgebra (X,M,R) is y~presentable in Bialg(A) . By 3.22 b) X
is Y—geni‘ated in A and hence also Y—presentabfb because A is lo-

cally y-noetherian. By 3.5 and assumptibn 4) in 3.22 ’(X,M,R) is y-pre-

sentable in Bialg(A) .

We now investigate the completemness and cocompleteness of Bialg(A).
Basically this occurs when the given data M s R and IF for bialgebras
(3.1) has one of the following properties: 1) every FéWFC preserves

limits (algebraic case, cf. 3.2 II), 2) every FC[F Preserves coli-

d'
mits (coalgebraic case, cf. 3.2 II), and 3) the data M , R and |IF

can be decomposed into one of type !) and one of type 2).(rough1y
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speaking every operation is algebraic or coalgebraic and every rela~-
tion is algebraic or coalgebraic or a distributive law between an alge~-

braic and coalgebraic operatican).

3.24 Theorem Let A be a lcoccally presentable category with a data

M, R and [ for-bialgebrag‘(cf. 3.1). Assume there is a regular cax-

dinal B such thal every Fe ' preserves RB~filtered colimits.

Let vy > B be any regular cardinal such that

1) card(M)} < v > card(R) and A is locally y-presentable,

2) if U&€A is y-presentable, then TU is y-presentable for every

Fé:Fd (cf. 3.6, 3.7 for v = o ).

Then the following hold.

a) If every Féfﬁd preserves colimits, then Bialg(A) 1is lo-

cally y-presentable and the forgetful functor V : Bialg(A).—A

P

RSA

cotripleable, The right adjoint cF : A——Bialg(A) of V preserves

y-filtered colimits (c¢cF = cofree functor).

b) If every Fech preserves limits, then Bial

09
N
i
N’
[
o
)—.-
(o}
@]
W
H
—
A
4

sup(B,n(A))~presentable and the forgetrul functor V : Bialg(A) —5A

Y

is trip!

eable and preserves B-filtered colimits. (The left adjoint

=

: A——Bialg(A) of V is the free functor).
Remark Note the asymmetry between sup(B,n{A})) and vy 1in a) and

b). For the locally y-noetherian case see 3.22 d). FTor conditions

R « g A B s - ',~
guaranteeing B =33 and y =X see the remark” following 3.8.

o) 1

3.25 Corollary Let A be a Grothendieck category (resp. a topos)

with a data M , R and [ for bialgebras. If every FéiFd preserves

colimits and every F€IFC finite limits, then Bialg(é) is again

a Grothendieck category (resp. a topos). This follows from 3.24 a),

4,11 and 3.3.

Proof a) It follows from 3.8 and 3.4 b) that Bialg(A) 1is locally

Y-presentable., By the special adjoint functor theorem the forgetful
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‘functor V Bialg(A)—>A has a right adjoint cF :.é—;;eBialg(é),
whence by 3.4 b) V is cotripleable. For every y-presentable object
(U,M,R) € Bialg(A) the functors [(U,M,R),CF—] and [U,—] are equi-

valent by adjointness, and by 3.8 U 1is Y-presentable. For a y-fil-

d colimi ¢ = 1im X I rohi
tered colimit X 1$m Xv the canonical morphism
S }ig cFXv-+cF(£%3 Xv) gives rise to a commutative diagram
o
i , [U,M,R), ] o =
[(w,M,R), Lim CFX\)] o3 [(U,M,R), cF (_1_}12 X\))] —{U, lin xv]
v v v
:lJ 4’
. . . T
_1_\1;3 [(U,M,R), ch\)] . SRS, - 3 1tm LU,XV]

Hence [(U,M,R),‘f] is a bijection for every y-presentable object
(U,M,R) € Bialg(A) . Since these objects forma set of (dense) generators
in Bialg(A) (cf. 3.9), it follows that P is an isomorphism. Thus

cF ¢ A——Bialg(A) preserves y-filtered colimits.

by By 3.4 a), c¢) Bialg(é) has limits and p-filtered colimits and
A Bialg(é}__aﬁ preserves and reflects them. In order to show that

V. has a left adjoint, we verify the solution set condition. For every
object U€&€ A there is a regular cardinal & such that U 1is S-pre-
sentable. By 3.7 there is a regular cardinal v such that ¢ < Y > B
and the conditions a) and b) of 3.8 hold for <y . Since the category
A(y) of y-presentable objects in A is small, it follows from 3.8
and 3.1 that the same holds for Y{(y) (see 3.9),~wﬂere Y = Bialg(A) .
It then follows from 3.8 that a set of representatives of Y(y) - i.e.
a skeleton - is a solution set for U . Hence V : Bialg(A)——>A has a
left adjoint F and is tripleable by 3.4 a). The composite

Ve F : A—>A preserves B-filtered colimits and it therefore follows

from Gabriel-Ulmer [fﬂ] le.3 that Bialg(A) 1is locally sup (B, m(A))~

presentable.

3.26 It is well known that the category of commutative (resp. co-
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commutative) Hopfalgebras over a commutative ring A can be viewed

as the category of cogroup (resp. group) objects in the category of
commutative A-~algebras (resp. cocommutative A-coalgebras). Similarly
the category of commutative (resp. cocommutative) A-bialgebras can be
viewed as the category of comonoid (resp. monoid) objects in the cate~
gory of commutative A-algebras (resp. cocommutative A-coalgebras). In
beth cases this rests on the fact that in the category of commutative
A-algebras (resp. cocommutative A-coalgebras) tﬁé categorical copro-
duct (resp. product) is the tensor product iifted from MQQA . Thus
theorem 3.24 can be applied twice - first a) and then b) or vice versa-
and it follows that any of the above categories is locally )«I"presen-
table. However the category of arbitrary A-bialgebras (resp. A-Hopf-
algebras) cannot be expressed this way because the tensor product 1if-
ted to the category of A-algebras or A—-coalgebras is.not the categori-
cal coproduct or product. The following is motivated to rectify this,

at least in part.

3.27 Definition Let M , R and |F be a data for bialgebras in

.

A (3.1). A decomposition of M , R and F into an algebraic and coal-

gebraic part consists of a data M , R and F in A and a data

M,

=0l

and. F in Bialgq ?(A) with the following properties:
Ll AN -

1) BlalgM,R(é) = Blalgﬁ,§<3131gﬁ,§(é)) .

|

2) every éf@c preserves limits,

IS

3) every € g Preserves colimits,

=i

Likewise a decomposition of ¥ , R and [F into a coalgebraic and al-

gebraic part consists of a data M , R and F in A and a data

S\

Wi y R and

.in Bialgﬁ f(A) with the properties
3 A

1 ’; 1 s il = + —— —_— \
1) BlalgM,R(é) BldlgM,R(BlalgM,R(é’)
2) every ?c‘@d preserves colimits,

3) every 'F@ Gc preserves limits.
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For example to express the category A-Bialg of arbitrary A-bialge=-

bras in this way let A = ModA and chocse M to comsist of a multi-

plication u : ldé ® 1dé————>1dé and a un1F no constA--»-m-éldé and

R of the associative and unitary laws. Then B = Bialgﬁ f(A) 1s ob-
k= B =2

viously the category of A-algebras and the tensor product lifts from

oty _y s
gﬂﬂﬂ to B . Let M in B consist of a comultiplication

A s idB -;—-.*.idB ®A id and a counit g : idB-nmﬁconst and let R -

B A

consist likewise of the coassociative and counitary laws. With this

one readily checks that Bialgq'ﬁ()) is canonically isomorphic with
M,R 2

A-Bialg(A) , cf. 4.4 for details. Unfortunately it doesn't seem possible

to express the category of arbitrary A-Hopfalgebras in a similar way.

While the antipode can be viewed as a morphism s : idB—~“m§idBopp I

don't know how to express the relations involving s in B . One

would have to show that for a A-bialgebra (M,u,u,A,e) the composites

M_M£~>M @, M E_"@v_iﬁ M ®, M -2 M  and
A id ® g u L. . . ;
M——— M D, M -3 M @, M-——-3M which are defined in ModA are

multiplicative or antimultiplicative whithout using that they coincide

vith M-—Zy A %oy

«

3.28 Theorem Let A be a locally preseutable category. Let M , R
and [ be-a data for bialgebras in A which admits a decomposition
into an algebraic part M , R , I and a coalgebraijc part M , R , F

A
(c£. 3.27). Assume there is a regular cardinal g such that every

Feff and every Fe [ preserve B-filtered colimits. Let vy > B be

any regular cardinal such that

1) card(M) < Y o, card(ﬁ) < vy , card(R) < vy , card(i) < y and A

is locally y-presentable,

2) if UEA and (X,ﬂ,§)€iBialgq ﬁ(é) are y-presentable, then TU
A,

«
'

and F(X,M,R) are y-presentable for every Fef,; and Feff,
(cf. 3.6, 3.7 for vy = %).
' v

Then BialgM’R(é) Bialgﬁ’i(Bialgﬁ,ﬁ(é))
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and the underlying functors

Bialg% 1{(é_)~——-—~---—) Bialgq~5(A) and Bialgq E(A)-———9 A
L g & S XS LL ¢ it - g

are cotripleable and tripleable respectively.

Proof By.3.24 b). the underlying functor Bialgﬁ-i(é)————>é> is triple-
able and Bialgﬁ ﬁ(é) is locally y-presentable., Likewise by 3.24 a)
.
the underlying functor BialgTv1 R(A)—f—_—éBialgﬁ ﬁ(A) is cotripleable
<Ly s ’ - '

and Bialg_bI R(é) is locally y-presentable:

‘i3.29 Remark 1In the same way one considers morphism between algebraic
theories and the corresponding algebraic functors (cf. Lawvere [21]),
one can study morphisms between data for bialgebras. For a given data
M, R in A and a subset M'C M there is an obvgous relative forget-

ful functor

Viep ¢ PoBialsy (A—P-Bialg,, (&) , (A,u(A)), o\ =Au) .\ .
Let R' be a set of relations on P—BialgM.(é) which hold in
. . L] - F .
BlalgM,R(é) , 1.e. Vrel(A,M,R)éfBlalgM,’R,(é) for every
(A,M,R) € Bialg,, P(é) . Then there is also an induced forgetful functor
L-L, A9
Vrel : BlalgM’R(é)-~—-9 BlalgM,,R,(é)

One can easily generalize the results of this chgpter - in particular
3.8, 3.22, 3.24, 3.28 - to this situation. But in. general it is dif-
ficult to find a data M" , R" in BialgM,R,(é) - hopefully simpler

than M , R ~ such that BialgM R(é) = BialgM" R"(Bialgw, R'(é)) :
’ H & H

(see 3.26, 3.27 for cases like Bialg(A) z Coalg(Alg(A))



§ 4 Examples of bialgebras in locally presentable categories

In this section we give a first series of examples of bialgebras and
apply the main results of § 3. A second series can be found in § 6.
In the following we discuss universal algebras (4.1), universal co-

algebras (4.2), cealgebras over a commutative vring A (4.3), A-bial-~

gebiras and A-Hopfalgebras and generalizations (4.4 -~ 4.7), comodules

= g — s S =

over a A-coalgebra (4.8), bimodules over a A-bialgebra (4.92), ccalgebras
over a cotriple (4.10 ~ 4.12), algebras over a triple (4.i3), données

de recollement and descent data (4.14 - 4.16) and more gerrally

.

sections and cartesian closed sections with respect to a fibragion
or cofibration (4.19 -~ 4.26). Although some of these cases are dual
to each other as far as the data for bialgebras is concerned, the

assertions resulting from 3.7, 3.8, 2.9, 3.22, 3.24 and 3.29 are not

and can be quite different. We always assume the base category A to

be locall resentable although, as for 3.8, 3.9 and 2.22 the existence
y P g

mostly i }
ol arbltrary colimics 1n A 1s not needed. Weiieave the generallzairon
.- 2y

by means of 3.11 toc the reader.

N

We use the following notation for a data (3.1) of bialgebras M, R, [F :

For an cperation peM and a relatien r&£ R we write ¢ ng'“?Fcp

and r ; T "‘”9FC respectively. A data will often be given by first

drT 2 Yer

specifying the set F of support functors and then indicating the

operations and relations in this form.

4.1 universal algebra.

Lett A be a category with finite products, Let O be a finitary

algebraic theory in the sense of Lawvere Llf (or Birkhoff), eg. groups,

-
A
rings, algebras... . Let M be a set of defining operations and R
o set of defining relations for € in the usual sense. For peM

le

e

F = id and let F : A-—3A Dbe the funcitor A~¥TTA which
cy o A du — — N

assigns to an object its n rfold produvct, where nUl is the arity
|5



§ 4 -2~
of w . A pre-bialgebra (A,M) 1is an object A € A together with a

morphism | IA——)A for every u&e M . For a relation r € R let
n .

Fcr = ldé and let Fdr : A—> A be the functor A“‘?Ll A , where
n_ denotes the arity of r . The functor Fdr is also denoted with
idAnr . Since relations are built up of operations and projections,

for every pre-bialgebra (A,M) and every relation reR there is a

morphism pair r(A M) : I !A.::$A which is naturul in (A,M) - i.e.

Wlth respect to pre—blalgebra morphlsms. Note that Ec = {1d } and

Fd {1d ; idA ) idAz...} . It is stralghL forward that Blalg(é)

is isomorphie with the category ©-Alg(A) of ©-algebras in A

(i.e. the category of product preserving functors 84)

Assume that A 1is locally a-presentable. Let B be the least

regular cardinal such that B-filtered colimits commute with finite

products, whence B8 < a by [|3] 7.12. By an obvious cofinality argu-

ment for every n > O the functor A—A , A«élnlA preserves pf-fil-

tered colimits, moreover it is right adjoint to A—4 , A”ﬁJﬁLA 5

Thus by 3.24 b) and 3.7 (remark) 6-Alg(A) 1is locally a-presentahle

and the forgetful functor V : G—Alg(g)——éé is tripleable and pre-

serves B-filtered colimits (cf. also [13] 11.4).

Let y be a regular cardinal such that

1Y) B <y 20, 2) card(M) < v > card(R) and 3) if A€A is

—_—

y-presentable, then so is ]n!A for every finitg n > 0 (cf. 3.7

remarks). Then by 3.8 a @-algebra (X,M,R) is y-presentable in

[N

ff X 1is y-presentable in A .

6-Alg (4)

H

Likewise, Yy 1is a regular cardinal such that

1) B <y2a, 2) card(M) <y and 3) if A€ A 1is y-generated, then

so is [TA for every finite n 2 0 , then a 6-algebra (A,M,R) 1is

e

y-generated in ©-Alg(A) iff A is y-generated in A (cf. 3.22).

If in addition A is locally y-noetherian, then so ii 6-Alg(A) .

The generalizationSto non-finitary theories in the sense of Linton [23]

with rank or to partial operations are obvious generalizations and
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left to the reader (see also 6.14). The above can be gemralized to

categories A which are dual to a locally presentable category. By

114

means of 4.2 below and 6-Alg(A) (G—Coalg(éo))0 it follows that

the category of ©-algebras in the dual of ailocally presentable cate=.
gory is itself the dual of a locally presentable category. In particu-
lar if "A = Comp- (compact spaces) or A 1is any Grothendieck AB 5 ca-=

tegory with cogenerators, then ©-Alg(A) is the dual of a.locally

presentable category.

4.2 universal coalgebra

Let A be a category with finite coproducts. Let © be a finitary
algebraic theory and let M and‘ R be sets of defining operations

and relations as above. For upeg M let ,qu = idé and let Fcu : A—A
be the functor A~AL%LA . A pre-bialgebra (A,M) 1is an object AC€A
together with a morphism A__;éﬁ'A for every ute¢M . Likewise for a

relation Tr€ R let = id and let Fcr : A—3 A, A“i%i,A . As
. r

Fdr A

above there is for every pre-bialgebra (A,M) a morphism pair

r(A,M) : Aizééé. A and the category Bialg(A) is isomorphic with the .
T

category ©-Coalg(A) of O6-coalgebras in A . Note that _wd = {idA}

(2)

_ = (0) . (1) . i (n) .
and FC = {ldé ", J.dA R 1dA ,} s Where ldA denotes the

functor A“ﬁl%_A . If A has finite products, then A-3A , A~QJHLA

is left adjoint to A~y [TA .
n
w,
Assume that A 1is locally presentable and let

P

<
\%

sup I)fl, T(A), card(M)+, card(R)+} .

(Recall that 6+ denotes the least regular cardinal > & .) Since

A(y) 1is closed in A wunder finite coproducts (cf. 2.8), it follows

from 3.24 a) that the category ©-Coalg(A) iﬁ locally y-presentable

and the underlying functor V : G—Coalg(ﬁ)Qe%é. is cotripleable and

its right adjoint «<F : A-—236-Coalg(A) preserves y-filtered colimits. .

Moreover by 3.8 a 8-coalgebra (X,M,R) 1is y-presentable in ©6-Coalg(A)
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iff X 1is y-presentable in A , in particular a morphism U-—(A,M,R)

with 7(U) < vy admits & decomposition into a morphism U—2U' and

a 6-coalgebra morphism (U',M,R)-—3(A,M,R) such that «(U') < y .

Likewise if A is locally y-noetherian and if in A B-filtered co -

limits of monomorphisms are monomorphic for some B < y , then by

3.22 d) S—Coalg(é) iﬁ locally y-noetherian, In addition every y-ge-

nerated subobject of a @-coalgebra is contained in a 6-subcoalgebra -

whose underlying object is also y-generated. (Note if A 1is not lo-

cally y-noetherian, then the latter need not hold, in particular a
6-coalgebra (X,M,R) .need not be y-generated in ©-Coalg(A) if X

is y-generated in A , and conversely.)

The generalization$ to non“finit;ry theories in the sense of Linton [23]
with rank or to partial co-operations are obvious and left to the
reader (see also 6.14 - 6.16). The above can be generalized to catego-

ries A which are dual to a lccally presentablie category. This is done

m

(6-Alg (A°0°,

in some way as in 4.1 by means of 8-Coalg(A)

4.3 Coalgebras over a commutative ring.

Let A

Mod be the category of A-modules over a commutative ring A .

A

Let [F = {constA , 1d , id @ id , id & id @ id} » Where id is the identi-

ty functor of ModA and const, ModA

A~>A ., The tensor product is taken over A . Let M = {A,e} 5

-—éModA is the constant functor

where A ¢ id---»id ® id and ¢ : id—-econstﬁ are operations called

comultiplication and counit. A pre-bialgebra is a A-module A :to- .

gether with homomorphisms AA : A—3 A @ A and €y ¢ A— A . Let

f i
R = {rl > Ty s r3} , where ry ¢ id=z:=3id ® id @ id and ‘
r, id===3 id, ry : id===3'id are relations, called coassociative

and counitary laws, which for a pre-bialgebra (A, AA, sA) are given

by the diagrams
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It is straight ferward that ry, T and r are relations and that

N

3
Bialg(Modﬁ) "is the category A-Coalg of A-coalgebras. Note that

Ey = {id} . Recall that gggA is&locally Y—noethefian (i.e. every
Y-generated quule is y-presentable) for some Yy > Xfo iff every ideal
IcA is y-generated. If A has this property, it is called y-noe-
therian; in particular for y = )vo the notion Kz-noetherian coin-
cides with noetherian in the-usual sense. Clearly if A is noetherian,
then it is y-noetherian for any ¥ 2 2% .

By 3.2% a) the category A-Coalg is locally .xl—presentable and

Eg 3.8 for vy : ‘XH a coalgebra fX,AX,eX) is yY-presentable in

A-Coalg iff its undexrlying module X is y-presentable in ModA « In

particular a A-homomorphism U—na(A,‘AA,eA) zwith T(U) < v admits a

&
decompositioq into a A-homomorphism U-—U' andAcoalgebra morphism
(v', AU,,qu)-——é(A, AA,SA) such that #(U") < vy

Likewise, if A is y-noetherian for some Y 3~X3, then by 3.22

A-Coalg is locally y-noetherian and a y-generated A-submodule of a

coalgebra is contained in a subcoalgebra whose underlying A-module i

Y—=generated. Moreover a coalgebra ii Y-generated in A-Coalg iff its

underlying module is y-gemrated in Mod, . (Note that these assertions

— —=A

need not hold if A 1is not y-noetherian.)

The same results hold for the category of cocommutative A-coalgebras.
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For by adding to the above data of bialgebras a relation expressing

tﬁe cocommutativity of A:id--3 id ® id one obtains instead the cate-
gory of cocommutative A-coalgebras.

The above improves the results of M. Barr [1 ] considerably. He showed
that for § > sup(@ard(A)+,)¢l) every d-generated submodule of a A-co-
algebra is contained in a subcoalgebra whose underlying module is also
6-generated; in particular the coalgebras whose underlying module is
sup(card(A)+),.XH)-generated, form a set of gemrators in A-Coalg . As
shown above these probleﬁs have something tB do with the (minimal) num-
ber of generators for-ideais I>cA and not with tﬁe cardinaliﬁy ofriA
The latter enters his argument for a different reason. A submodule of

a coalgebra which is closed under the comultiplication need not be a
subcoalgebra because it need not be coassociative. If however the sub-
module is pure, then the coassociativity carries over. Therefore he
considered only pure submodules and embedded the given submodule of

the coalgebra into a pure submodule. In this way the cardinality of A

comes in and the "generated" subcoalgebra can become much bigger

than necessary. ‘

As for Fox's [8 ] generalization of Barr's results see 4.7 below.

4.4 Bialgebras, Hopfalgebras over a commutative ring, generalizations

to Props and locally presentable categories.

Let A = ModA be the category of modules over a commutative ring A -

The data M, . R, f for A-bialgebras is as follows. ief ]

F = {.constA , id , ide id , id.aixi@id} be as above for coalgebras (4.3),
~Let M = {A s € s U ,u} be operations, where A : id— —> id® id
e : id—-—> const, , u i id ® id——> id and u : const,— —> id are

operations called comultiplication, counit, multiplication and unit
respectively. Thus a pre-bialgebra is a A-module A together with

homomorphisms AA t A—> A ® A, €y ¢ A-— A, My A® A—A

and u, A~—3A . Let R = {rl, r2""rlo} , Wwhere
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r, : id=-3id @ id @ id , r, : id>Z3id , ry + idZ2Z3id are as
above in 4.3 and the relations L idgidgid Z 23 i4d , rg idZZ3id
N o=t — ] p N . - >
re ¢ 1d-..31d » Ty id @ idZ”-3id @ id , rg constA-_.>constA s
) — = . . . ] - . L
r9 : constA__.g,ld@ld : rlo 1d @ 1d_.__.>c,on~stA are given for a pre-
bialgebra (A’AA’eA’“A’uA) by Fhe diagrams
"
A Ao A | A \'_" / A
id & u,®id ~ ke
A /‘\/ A9ty / &0 A &
AgA A® 4 1.dA 1dA®uAl luASIdA 1dA
#\ Ae A Aea
1
A fa T S
A X A
Ta
A®Ao A A —2> A A Aa@A A
\
A® A Ae A id, T A
= _ ‘ :
£
A
\ / N,
™
A AwA
A
A - Aw® A A

>
7
X
"8
c
o
te
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where fA : A® A A@ A—3> A ® A® A® A is the homomorphism

interchanging the two inner factors. It is straight forward that

r r

gty T are relations on P-Bialg(yggﬂ) and that Bialg(ModA)

1° lo

is the category A-Bialg of A-bialgebras. In order to express the ca-

tegory A-Hopf of A~Hopfalgebras as bialgebras in Mod one adds to

A

M an operation § : id-~-3id (= the antipode) and to R two rela-

tions «r H idi::iid s Lo 3 id7-3id which for a pre-bialgebra

11

(A,AA,EA,UA,UA,SA) are given by the diagrams

idAQ’} SA SAaidA
A@ d——m3 A @ A A A ——————>3A@ A

=3
b3
/
o
>

h

V Hy
A A A ) A
€ ' €
. A : A
uA MM\HNN\\\HMQ ////%EZ/H
A A

~Likewise by adding relations expressing the comuwutativity of u or

the cocommutativity of A or both one can obtain the categories o

th

commutative A-bialgebras énd A;Hopfaléebrasy cocommutative A-~bialw

gebrag and A—Hopfélgébras and bicommutative A-bialgebras and A-Hopf-
algebras. Note that le =1{F and that x(A @& A) ¢ n(A) and likewise
HEEA 2 A) g e(A) for eve;y AGZQQQA i

4.5 Thus for vy z:xl it follows from 3.8 that E_A—bialgebra (X,M,R)

is y-presentable in A-Bialg iff its ﬁnderlying module X is y-pre-
sentable in ModA . Moreover a A-homomorphism U— (A,M,R) with
T(U) < v admits a decomposition into a A-homomorphism U——U' and a

A-bialgebra morphism (U',M,R) — (A,M,R) such that w(U') 5 v ; in

particular the A-bialgebras whose underlying module is Xl—presentable

form a set of dense generators in A-Bialg (cf. 3.8 and [L3] 3,11

If in addition A is y-noetherian for some Yy 2 :xl (cf. 4.3),

then by 3.22 a y-generated submodule gf_i_bialgebra iﬁ contained in a
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subbialgebra whose underlying module is also y-generated. Moreover a

A-bialgebra is y-generated in A-Bialg iff its underlying module is

y-generated in ModA .

The same assertionshold for the categories of commutative A-bialgebras
and A-Hopfalgebras, cocommutative A-bialgebras and A-Hopfalgebras

and bicommutative A-~bialgebras and A-Hopfalgebras.

4.6 With the exception of arbitrary A-Hopfalgebras all of the above

categories are locally Xl—presentable. In addition the various rela-

tive forgetful functors have left adjoints resp. right adjoints. If A

is y-noetherian for some vy > %l s then the above categories are also

loqallz X]-noetherian.

The data of bialgebras for these categories admit a decomposition into
Ialgebraic and coalgebraic parts, c¢f. 3.27. Thus the first assertion
follows from 3.28 and the last from 3.22 d) while the one concerning

adjoints is a consequence of either 2.9 or the special adjoint functor

theorem. For more details see 3.26 and the discussions following 3.27.

4.7 Generalizations Let P be a prop in the sense of Mac Lane Eﬂﬂ

Section 24, and assume that it can be defined by a countable number of
operationsland reiations (see M. Barr [ ] p. 605/606 for a discussion).
It is clear that %the tensor product preservipg functors g—f>M2iA
can be expressed as bialgebras and therefore the assertions in 4.5
carry over to this situation. Likewise if the prop P is algebraic or
coalgebraic ([1 ] 6.1) or admits a decomposition as in 3.2 , then the
category of tensor product preserving functors 2-—>MQQA is locally
7x]-presentablg,and if A is y-noetherian for vy 2_X1 , it is locally
Y-noetherian, etc.

More generally let A be a category equipped with a bifunctor

® : Ax A-—A which is coherently associative, symmetric and unitary.

Then for an arbitrary prop P one can express tensor product preser-
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Ving functors”as bialgebras as above. If A 1is lccally presentable

aﬁd ® preserves o-filtered colimits in both variables for .some k

o > )oo » then 3.8 (resp. 3.7).and 3.22 (resp. 5.1) apply.

Moreover if the prop P is of algebraic or coalgebraic type (cf. [L]f
6.1) or admits a decomposition like in 3.27, then the category of ten-

sor product preserving functors P-—- A is again locally presentable:

etc. (see 3.28 and 3.22 d)). In particular this applies to the coalge~
the

braic situation considered by Fox LS ]. We leave it toAreader to spe -
cify the minimal cardinais in 3.7 - 3.28 for tensor product preserviug
functors P-—>A (note that the case q = X‘o is particularly simple

and useful).

While props give rise to data of bialgebras, the converse is not

true, not even for A = ModA and

F = {constA y id , id @ id.,id & id & id} . For instance, as M. Barr

pointed out to me, Lie algebras over A cannot be expressed as tensor
product preserving functgrs B;€>EEQA for some prop P because the
Jacoby identity involves addition of structure morphisms, However they
can easily be described as bialgebras, the Jacoby identity is given by
the relation A ® A & AJ:g%iiA., where f(x,v,2) = 0 and

g(x,yv,z) = [[x,y],z] + [[y,z],x] + [[z,x],y] .(Note that fA and By
are obviougly natural with respect to A-homomorphismspreserving the
bracket). The notion of bialgebras allows more flexibility as far as
relations are concerned , It ié also more natural and its simplicity
should be compared with the technical problems involved with a prop P
and the coherence aparatus for & and P .

I should add that these prop problems prompted me to look for'some—
thing simpler. When I met M.Barr and T. Fox in the fall of 1975 I had
ten "different" proofs for the same theorem (namely 3.8); one for I-co-
continuous functors, one for coalgebras over a cotriple, one for des-

cent data ,, one for A-coalgebras, one for comodules over a coalgebra,
1]

one for A-bialgebras,... . On the other hand Fox [Sj] had a proof for
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a tensored locally presentable category and a coalgebraic prop, but no
réasonable ;ize estimates for the generators he constructed. In order
to obtain that and also to cover the case of non-coalgebraic props I
had to look for an "eleventh proof" of 3.8 considering interlocking
operations and relations which turned to be very technical and ex-
tremely laborious. Fox [g ] had got i around this problem in the same
way as Barr [1 ] by using purity (see 4.3 above). The use of purity
however makes good size estimates impossible and thus something else
had to be found. In this way I was led to the notion of pre-~bialgebras
and bialgebras as defined in 3.1, the above mentioned example of Lie-
algebras served as a guide. The unification of the eleven proofs of

3.8 was a somewhat "unexpected fringe benefit",

4.8 Comodules over a A-coalgebra,

Let A = ModA be the category of modules over a commutative ring A
and let C be a A-coalgebra with comultipiication A : C—>C®C
and couunit € : C-—>A (cf. 4.3). Recall that a right C-comodule is a

A-module A together with a A-homomorphism § A—3AgC such that

A

the diagrams

A e C Ag C

] / ,_\_‘
A\ A® Cea C vEn 4s & A
5 ,/io‘llm ; .
A AeC A

commute. The tensor product is over A . A right C-comodule morphism

(A,SA).——>(A‘,6A,) is a A-homomorphism f : A——A' with the property

§,,0 f =(f ®,id8° GA - The category of right C-comodules is denoted

A!
with ComodC (cf. Demazure—-Gabriel [#] p. 174, Sweedler ES] 30/31).

To express ComodC as bialgebras in ModA let F = {id, ¢ C,®¢C ® c}

and M = {GY , where 1d 1is the identity of ﬂgiA and & an
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OPeration id--3>@ C . Let R = {r],rz} » where r idzzz3e@ C @ C

and r, idzz33id are given by the above diagrams. Clearly r, and

r, are relations on P—Bialg(ModA) and ComodC = Bialg(ModA) holds.

Note that Fy = {id} ;

Thus by 3.22 and 3.8 the category Comod, is locallyixl-ggesen—

) ;E‘YmpreSentgble in Comod

X

table and for vy a'ya a comodule (X,§ c

if X 4is y-presentable in ModA » in particular a A-homomorphism

Fa— —_—

U —— (A,GA) with @(U) < vy £actofs into a A-homomorphism U-—>TU"

and a comodule morphism (U',SU,)-—~——9(A,6A) such that «(U') < vy

Likewise if A 1is y-noetherian for some ¥ 3>¢1 (cf. 4.3), then by

3.22 {Comod, 1is locally y-noetherian and a comodule is vy-generated in
Lomod, . ng] d e SIENUCYNEIEES 01l

Comod, iff its underlying module is y-generated in Mod, . In additio

“—A et il

a y-generated A-submodule of a comodule is contained in a subcomodule

whose underlying module is y-generated. The last assertion was first

proved by Wischnewsky [3&] under the additional assumption that

Y > card(A) . Following Barr 1] he used purity arguments which in
d

(1] 1 0
general make the “generatsd” subcomodule bigger than neccssary.

If C is A-flat one can easily show that ComodC is a locally

361—presentab1e Grothendieck category and that for o z.%a a comodule

R ’ Talso. T
is a-generated iff its underlying module is, etc. (cf. 3.25,3.22/see[ﬁ59

4.9 Bimodules over a A-bialgebra

LN
Let ModA be as above and let H be a A-bialgebra with multiplication

put H® H—>H , unit u : A——>H , comultiplication A : H—H ® H

and counit € ! H—-A (cf. 4.4). Recall that a bimodule over H 1is

a A-module A together with A-homomorphisms My f A ® H——3%A and
6A t: A—>A @ H such that 1) Hy defines a right H-module structure
on A with H being viewed as a A-algebra 2) GA defines a right

a
H--comodule structure on A with H being viewed asAA—coalgebra

3) 6A is H-linear, where the right H-structure on A @ H 1is given

11

by A : H——3H @ H, i.e. if A(g) = I gi'® g;" , then
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" (m @ h)g =IZ mgg ® hgi" (cf. Sweedler [28] 4.1)., For instance, if
XE:ﬂQQA then X ®H, idep, id® A) is a H-bimodule. A morphism
between H~bimodules is a A-homomorphism which is compatible with both
Structures. Let Eiﬂﬁiﬂ denote the category of bimodules over H
To express BimodH as bialgebras in Mod let

A
F = {id, @ H, @ § ® H} and let M = {s,u} consist of operations

¢ ¢ id~-> @ H and p : @ H--9 id » where id is the identity

functor of ModA . Let R = {r] s Ty's Tg o T, s r5} consist of re-
lations L idz== = @ H e H , r, ¢ ido=z3'id , ry ¢ @ He®@ Hz=3 id
r, * idz== 3 1id , rg ! @ Hz= 3@ H , where r; and r, are as above

. A . . T
in 4.3 and g L r5 are given for a pre-bialgebra (A,SA,uA)

by the diagrams

. A ® H
ey b /\
1 & u H 1 ;
A A ldA/i;& uA
A@ H&® H A v
'\\ _ A® A > A
uA@ldN. A' .
] -
A® 1 '
idAé_“gT@idH
A® H® B @ H >A Q@ H® HQH
0A®A/ \UA®U
~L
A® H A® H

with T : H @ H-——H @ H being the twist homomorphism h ® h'~>»h' @ h

One easily checks that T ..,r5 are relations on P—Bialg(ModA) and

that Bialg(ModA) = BimodH . Note that Fqy = F and that every functor
in Fd is colimit preserving. Moreover for every AeiModA it follows

from [A & H ., - ] i [A,[:H;—]] and [A @ He H , - ] = [A @_ H,[H,‘]]

that (A ® H) < sup<ﬂ(A) , ﬂ(H)) > m(A ® H® H) and likewise
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e(A @ H) < sup(e(A) , e(H)) 2 e(A @ H e H) .
Thus by 3.24 a) Bimod, is locally sup(% ,,v(R))-presentable

and for vy 2 sup()fl,n(H)) it fellows from 3.8 that a bimodu ule

(X,8y,uy) is v-presentable in Bimod, iff X is y-presentable

Mod, 3 inm particular a A-homomorphism U——>(A,8,,u,) with =(U) < y

factors into a A-homomorphism U-—2U' and a bimodule morphism

(U',GU‘,UU,)———~">(A,dA,uA) such that w(U") < v .

Likewise if A is y-noetherian (cf.. 4.3) for some vy

2 sup (X ,m(H)) ,

then BimodH is locally v -noetherian and a bimodule is y~generated in

ﬁimodH iff its underlying module is Y—g&gg&ated in MoqA . In addition

a2 y-generated A-submodule of a bimodule is contained in a sub-bimodule

whose underlying A-module is Y—generated.

Lctually E}modH is locaily CK]—presentable and locally S8-noetheriagn

where § is the least regular cardinal > ﬁﬁl such that every right
ideal of H is &-generated (in the category of right H-modules).

THis follows from 3.28 resp. 3.28 and 3.24 a) because there is a deccm-

position PBimod Comod (Mod ) in the sensc of 3.27. In more detail

H H *H
the algebraic part of M = {6,u} and ,R = {r L5ty 4,r5} is
- - - 1 1 . 'he 2
M' = {uy} and R' = {r35f4j whence BlalgM, o (Mod, ) .MQQH . There
is a functor & H : ModH--———>ModH s, A A A 8, H (see 3) above) to-
gether with natural transformations @ ¢ : & H—-—-m-%idMOd and
——h

& At @ H—>® H @ H , where € 1is the counit of H and A the co-
RS
multiplication. (The verification that & A 1is well defined is some ~

-

what laborious but straight forward.) With this onhe can define the co-

algebraic part of M and R as M" = {6 t id-~-9 @ H} and

ety

R" = {r, ¢ id=z3 o Hege B , r., : id::ﬂﬁ id s where 1d 1is the iden~
1

tity of ModH and r and r, are defined exactly as in 4.8. It 1is

now routine to show that BialgM” R"(MOdH) = BimgQH . Note that if H
>

is flat over A , then ﬁiﬂOdH is a locally 9f]—presentab1e Grothen~

dieck category and for o > sup(Qfl,e(H)) a bimodule is a~generated

iff its underlying module is, etc. (cf. 3.25, 3.22).
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4.10 Coalgebras over a cotriple.

Recall that a cotriple 6 = (G,8,e) 1in a category A consists of a
functor G : A-—>A and natural transformations & : G——-—-;VG2 (= comul-
tiplication), € : G —n—éidA (=counit) satisfying G& « & = 8G = GI (co-
associative law) and Ge « 8§ = id_ = G + § (counitary law). A G-coal-

G

gebra in A is a pair (A,&) , where £ : A-—>GA 1is a morphism satis=~

fying e(A)oc £ = idA and GE e E = §(A)o E -, A morphlsm (A, g)———+(A',g )

of G-coalgebras is a morphism £ : A—> A" satlsfylng £'°£ = Gfog

The category of all G-coalgebras is denoted with é@ . The underlying

functor éG—_—a A, (A,g) ~9> A 1is left adjoint to the cofree functor
&n——ééG sy A~ (GA,8(A)) . Given a cotriple & = (G,8,e) in A it is

easy to describe A in terms Jf bialgebras. Let I = {id G, Gz}

—G A’

aund let. M = {6} be an operation § : idA——-9 G . Thus a pre-bialgebra

is an object A€ A together with a morphism GA : A——>GA . Let
I 1 P . g - — 2 i
{rl,r2j be the relations r, : K"3(; and r, ldA‘“‘* 1dA

which for a pre-bialgebra (A,GA) are given by the diagrams

GA GA
] i
6, / Y §(A)
s \ ) Sy N\le (A)
A”D G A
\\\x 24
~ & /( A- - »Y A
A \3 - A 1d
GA A
Clearly r, and r, are relations on P—BialgCA) and AG 2 Bialg (A)
holds. Note that F, = {idé}

Assume A is locally presentable and that G as rank (ecf. 2.1)

and let vy > Sup(}ii,ﬂ(é),ﬁ(Gj) . Then by 3.24 a) é@ is locally

sup(?fl,w(é),ﬂ(G))wpresentable and by 3.8 a coalgebra (X,&X) is y-pre-

sentable in éé iff X 1is y-presentable in é 3 in particular a mor-

phism U-——Q(A,GA) with n(U) s vy admits a decompoeltlon into a mor-

phism U—>U' and a coalgebra morphism (U' U,)————;(A s ) such

e e e e - S e emam s e e Rt =

R T

that W(U'j‘s Y . L1kew1be 1f ,éz is locally Y~ noetherlan for _some
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Yy > sup()@l,w(é),ﬂ(G)) and if in A B-filtered colimits of monomox-
phismg are monomorphic for some B8 < y , then é@ is locally y-noe-
therian and a poalgebra (X’6X) @E Y—%EEEEEE§E iﬂ é@ _££ X i_ Y-ge=
nerated in A . Also a y-generated subobjecy U of a coalgebra (s,6,)
if MEEEEiESQ 1n a subcoalgebra (o 6U,) such that U' 1is y-generated.
4.11 Corollary Let €& = (G,8,e) be a cotriple in a topos A (resp.
Grothendieck category). Equivalent are

(1) A

finite limits because

é@

S

is a Grothendieck ¢

topos, one readily chec
13] 12.13 a) - 4) (=6Gi

The Tast assertion foll

4,12 Remarks @If G do

not be a Grothendieck ¢
let U-S3AD.Gr. be the

;ii finite p-groups for
tego}y of additive funé

all cocontinuous functo

Ag is a topos (resp. Grqfhenaieck category) and the lgft
3§igigﬁ écm——%é_, (A,GA)fWﬂ A , preserves finite limits.

(i1) 6+ A—>A preserves finite limits and has rank.

Moreover iff i) holds, then éG is a locally sup(?Cl,ﬂ(é),ﬂ(G))~E£g~

sentable topos (resp. Grsothendieck category) and for

vy > sup(?C],ﬂ(é),w(G)) a poalgqhgg (X,8. ) is Y—generated in é@

iﬁf X is y- EEEEE?EEE in A, etc.-ksee S 95 and 3. 22 f01 ='%O).

- Proof-- gy (i1) - e first assertion is trivial and the second

follows from 2.9.

(ii)==(i) By 4.lo é@ ig locally présentable. The undetlying functor

é@ —>A preserves and creates colimits. The same holds with respect

to

G 1is finite liwit preserving. This implies that
ategory provided A is. Likewise if A 1is a
ks with this that A satisfies the conditiocns

—&

raud's axioms) and hence is -a topos.

B =X

(o}

ows from 3.25 and 3.22 for

then A need

es not preserve finite limits, G

ategory (resp. topos), if A 1is. For imstance,

inclusion of the full subcategory consisting of

some prime p Let A = [E,QB-E£~]+ be the ca-

tors and lett XCA be the full subcategory of

T
rs. 16 below the i1nclusion

By 6. XCA has a
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right adjoint and the resulting cotriple on A  has obviously the pro-
perty é@ £ X 4 By 6.25 ¢) below AG is isomorphic with the category
of p-adic complete abelian grouwps which is not a Grothendieck category
(e.g. the colimit of the system Z@Z-MBLyw/p29~—2; .. 18 zero because

in the category of all abelian groups it is the Prifer group Z(pw)

whose completion is zero.)

b) Corollary 4.11 may sound like the well knowu theorem "If € is a
left exact cotriple in an elementary‘topos E,, then E’G is again an
elementary topos" but in fact in has little to do with it. The main
ingredient in 4.11 is the existence of generators in é@ which is not
contained in the assertion concerning elementary topoi. Also in the

latter there is no rank assumption on the cotriple which is necessary

for the existence of generatcrs.

4,13 Algebras over a triple. Let T = (T,u,u) be a triple in a cate-

gory A and let é? denote the category of M-algebras in A, cf.DS]

Ui

§ To. The description of A as bialgebras in A is dual to 4.10, i.e.
if F o= {ia,,T,T%} , M = {v : T--3id -
- - é: 5 I s . _é{
2 ) . ) L ] . . R
{r} t Tz 34 dA" r, ot 31d&} are dual to the data for bial

gebras in 4.lo, then AE = Blalg(A) . Note that EC = {idA} and

W {ldA"’TZ} - Assume A is locally presentable and T has rank

(2.1). Then by [ ] § lo AE is locally sup(m(A),n(T))-presentable.

LS

Let v > X e a8 regular cardinal such that vy > w(A)
I —= = = : .

s v > 7(T) and

that @w(U) < v implies w(TU) < vy for Ue A .(Note that by 3.7 such

cardinals exist.) Thus by 3.8 a TM-algebra (X,uX) is y-presentable

in é# iff X 1is y-presentable in A , Likewise if vy >'X1 is a regu-

lar cardinal such that vy 2 e(A) , v > e(T) and that e(U) < vy im-

plies €e(TU) < & for U&€A (cf. 5.1), then by 3.22 a M-algebra

(X,UX) is Y-generated in AE iff X is y-gemerated in A . If i

AT pi —_— —

addition A is locally y-noetherian, then 80 is ém . (Note that for

B 2 sup(w(A),n(T)) a morphism U——9(A,UA) with w(U) < B obviously
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factors into a morphism U—V and a T-algebra morphism

(V,uv)———a(A,uA) such that (V,uv) is B-presentable in AF s namely
the one given by the free T-algebra on U , but V need not be B-pre-

sentable in A ) .

4,14 Descent data and données de recollements.

We follow Grothendieck [\L] but limit ourselve to descent data. . The

case of donnees de recollement is almost identical (but simpler) and

the obvious modifications are left to the reader. It should be noted

that the following is a special case of cartesian closed sections be=

low in 4.19. Let & be a fibration with base C , i.e. for each

XeC there is a category éfx (= the fibre over X) and for each mor=

phism f : X—Y a functor f*:EFY">EfX (= the inverse image of f)

and for each composite X—£>Y-§$C a natural equivalence

*
Cog . : (gf)-—>£%g* subject to the usual compatibility conditions
b

(see [lb] Def. 1.1 or [UF]). Let o

So-~>S be a morphism in C

and assume that the fibre products S S and S x S x So exist.

X
o3¢ "o 05 0o g

Let S5, = 8§ x § and let p. ¢ S.— S denote the projection
1 0 ¢ © 1 1 ., ©

on the i-th factor, i = 1,2. Likewise let 82 =8 xS xS and
og "og "o

let pij H Sz—é S] denote the partial projection on the i~th and

j-th factor, where (i,3j) = (3,1), (3,2), (2,1) . Clearly

PiP3; = PPyys PPy = PyP3y and PyPyy = PyP3, hold and these mor=
phisms together with the diagonal A : so——asl mgive rise to a dia=
gram ’
x & P£3q"™
) 2—— —=ti
PaL™ ]
_?_/S — ¥ 3 s — iz/s
O f?‘,,* 1 P&Q“ 2
’ T Yo% %
and natural equivalences c, . t id—>A Py s €, . : id—A P, >
. v 2 =1 L]
AT ; EooR %
“Pyyr P, (PP3)—p3P) EITIE I (Plple:79P21p1 ’
=% % : ¥ =% %
¢ : (p,p ﬁ;:ép * p* and ¢ $ 56 fég % ¥
PypsPy 02721 21 72 Py 0, P1P31/ TPy Py

Recall that a descent datum on an object Ae:is is an isomorphism
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=¥ g i . ¥ .
?A P A-f>p2 A with the properties A ($k) s 1dA and

¥ = X0 Ve, ¥ ; -
B (@A) = Py, (?A) Py (%k) modulo equivalence, i.e, the

diagrams

1Py
il X
A Aep, )
. A
V\\ Nz
BpfY S % ()
b3
% . B
¥y p;f (A) — Pgp Py(4)
. A
~ -1
= e A)
P3P
N
¥ L 23
v
! o
* * ¥ %
P,,P, (A) - > p,, P, (A) (PyPo,) (A)
21P Py () 21 P2 2 32;
[~
~ _1
=lc (a)
P21,p2 _ By

(32550 (A = (p,p,, 3¢ (&) 7

_00
)
-
N
~
)
S
iR

e
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commute., In the following we mean by a descent datumalso a pair

(A,qk) satisfying the above conditions. A morphism (A,@A)-—é(A', @A,)

between descent data is a morphism §

-
A—>A' in é; with the
o

- i
property p, (&)° qk = (PA.°p{*(£) . The resulting category of descent

data 1is denoted with Desc(ﬁé) . To express descent data as bialge-
- _ k¥ L x ¥ ¥ W ¥
bras in g; let {pl s Poy s 1dg, s A Py s Pgy Py » Pgy Py }

o} . —So * *
and let M = {?,@} consist of operations : P] -2 Py and

P 3 P2__>p1 ., Likewise let R = {rlf‘rZ ,r3 ’rA} consist of relations

R S L ¥y ¥ . o= e 3 s
r, pl--$p1 » Ty ! PyTIFP, 5 Tg o 1d§%-m-§ld§¥ and
r, : p N p¥-iip *13* which for a pre—%ial ebrzp (A, ¢ ? ) are
4 31 P1-73P31 P g » A TA7F
given by
id id .
. pIA « PiA
I S —— PR p, A SeSSmEmsad p g
Pa °Pa Pa® Pa

and the two diagrams above. With this it is immediate that

il

X \ . o L1 - * ¥ . _ * ¥
Desc(ééo; BLalg(gso) . Note that Fd {p] s Py s ldig. > P3y Py }
: 2 = s R ¥ ¥y oL g ce (73 has co-
and EC 1Py 5 Py gy 1d§§ s Pgy pz} . Thus by 3.3 Deacgzso) has cu

(%
limits (resp. limits) and the forgetful functor Desc(gé )-—)5?8 >
; ‘ o
(A,<?A)“f#A preserves them provided EES has colimits (resp. limits)

[

and the inverse image functors p1¥, pzw and p3j{ preserve
them. Likewise 1if EES has y-filtered colimits for some vy 2 Xoand
o ;

the above functors preserve them, then Desp(giﬂ) has y-filtered co~-
" |
o

limits and the forgetful functor preserves them.

4,15 Assume that 87 87 and 97 are locally presentable and

s g 23
o} 1 2 ¥
that the inverse image functors p]¥, p2¥ and Pqyg have
rank (2.1). Let y > B Eg_cérdinals such that
1) gé is locally y-presentable and
) :
2) the functors pfk, pi* and p3f< preserve B-filtered

colimits and take y-presentable objects intoc y-presentable ocbjects

(the existence of such y's follows from 3.7, see also 3.6).
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Then by 3.8 for every descent datuw\(A,%h) and every morphism

£ 1 UA in 32 with w(U) < v there is a decomposition of f
“o

into a morphism U-->U' and & morphism (U',(PU,)—e(A, @A) of des-

cent data such that «w(U') < vy . Moreover a descent datum (X,(px) is

Y-presentable in Desc(gé ) iff X is y-presentable in T « If in

© * o .-
addition the inverse image functors Py > pzw and Py
. . i g . iy
preserve colimits (resp. limits), them by 3.24 Desc(d, ) is localiy

o
Y-presentable (resp. B-presentable) and the forgetful functor

Desc(g; )y — @é , (A ,@A)AAJA is cotripleable (resp. tripleable). In

=g kS = D il
o o ~

particular the canonical functor (cf. Llé] 1.4)

) - e g !‘\/ o % . 7 Vg =1
é : 3% > Deuc(j;o), Y (a (Y),cpzi«(l) cplaa(Y) )

7 . . S g 3 . .
1s an equivalence iff o : ¢S°%>§% 18 cotripleable (resp. triple—
“o

able). The relationship between descent and tripleability (resp. cotri-

pleability) was first noticed by J. Beck and J. Benabou.

I . ,
.16 If 5; , 32' and 3; are Grothendieck categories (resp. to-
© R 2 % = %
poi) and the Inverse image functors Py s by and Py; preserve

- ¢ o ]
colimits and finite limits, then Desc(fg ) is again a Grothendieck
Er =S4 ==L SHE S &

category (resp. topos). This follows from 3.25.

4.17 The version of 4.15 for generated objects is as follows. Assume

3

3
2

= —S — sl

0 ] 2 a
and p3;% have rank (2.1). Let vy > B ©bhe cardinals such

that gg . gj and @; are locally presentable and that pi*, P

that

——

.

o

f . i : .
1) gg‘ 1s locally y-noetherian (resp. &z 1s locally y-generated)
0 =

. : . L . .
2) every B-well ordered colimit of monomorphisms in Q% 1s agailn
¢}

>
3) the functors P, , P and Py preserve fB-filtered colimits

1 2

and take <y-presentable objects into y-presentable objects

(resp. they preserve PB-filtered golimigi and finigg limits and

take y-generated objects into <y-generated objects, cf. 5.1)




Lhon by 3.22 for every deoceut datum (A,%DA) and every y-generated

subobject U of A there is a Y~generated subobject U'c A contain-

ing U and a descent datuy (U, qu') such that the 1nc1uolon

U'Ss A is a morphism of descent data . Moreover a descent datuwm

(S
&’(PX) 1s y-generated in Des(és ) iff X Iéf Y*ggpeteEgﬁ EE E;
0] 0

etc.

4.18 A possible application of the above is the following. If des-

cent data are effective on small objects in g; » then they are
’ 0

effective on all objects. In more detail let L q = Desc(g

) -
5/ be

the canonical functor defined in 4. . Recall that o : SO -> 85 is

called of F-descent type (resp. of strict F-descent type).if ﬁ is
full and faithful (resp. an equivalence), cf. [ib] Def. 1.7. In

addition to the assumptions made for the first half of 4.15 we assume

] . * o ol
that E: has y-filtered colimits and that g« : és_?'ﬁé

5 0

preserves y-filtered colimits. Then o : SOvM}S is of strict T-descent

type provided it igxgifymgescent type and every descent data (U,@U)

)]

with U y-presentable in &% is effective (i.e. in the image ol

O <
9). This follows from 4.15 and 3.9 which imply that every descent

datum (A,¢A) in Desc(%% ) is the y-filtered colimit of descent da-
0
ta (Ui,¢Ui) with ﬂ(Ui) < v 3 whence if @(Yi) rU ?U ; then

ﬂ):(lim Yi) ¥ Lig vy = Ling,9y ) = (A5,

3
The smallest cardiunals v and B8 which are possgible for this (and 4.15)
are Xl and /Xb . Thus, ii. 3; is locally countably presentable (ox
0
finitely presentable) and %; has countably filtered colimits and the
: . : ¥ ¥ * * 1=
lnverse 1image functors al, Py 5 Py and Py, DPreserve fil=

tered colimits and take countably presentable objects into countably

presentable objects, then every descent datum is effective provided

descent data are effective on countably presentable objects and

X- 35‘—‘—:53: is of y--desceﬂg tfpg.

4.19 Sections and cartesian closed sectlons with respect to a fibration,

The following is based on, or rather prompted by exposé I in SCA 4 by

b
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A. Grothendieck and J.L. Verdier [IF] (mainly p. 138-179). At my talk
E3H] M. Tiérney suggested to compare the notion of a bialgebra (3.1)
with the notion of a section {tésp. cartesian closed section) for a
fibration, and theorem 3.8 with theorem I 9.25 in [l?l. (Both apply

to descent data and récollements in the context of Grothendieck cate-
gories or topoi and yield the éxistence of generators.) In order to
facilitate the comparison we essentially use the notion and notation
for a fibration p : E——)E ags defined in I}?] p. I6o, although it
differs from the one used in 4.1% above (for an exposé on the different
ways to look at fibratiomns see Giraud [i%l or SGA 1 exposée VI). Let

p : E-»B be a fibration with small base B . For an object B¢ B

the fibre p_](B) is denoted with EB and the inverse image functor
for a merphism f : A-B in B with f*’: EB—?EA .Let HomB(g,E)

denote the category of sections with respect to p : E—>B-, i.e. the

full subcategory of TE,E] consisting of all functors s : B—E with

the property ps = idB , ¢cf. [i}] p. 161, Likewise let HomcartB(E,E)

be the full subcategoryofHomB(E,E) of all cartesian closed sections,

i.e. all sections s : B—2E such that: for every morphism f : B-3A
the canonical morphism -s(B)—%f*(A) is an isomorphism. The main theo-

rems' of section I.9 in [i}] concern the existence of generators in
and

HomB(E,E)HSp\ HomcartB(B,E)\implicite size estimates in terms of
s —_ .

"filtrations cardinales". Without loss of generality one can assume
»*
that the objects of B form a set whose cardinality is the same as

that of a skeleton of B ; this can always be achieved by pulling back
the fibration p : E—B along a full inclusion E—i~9§ (for skeleon

o o ; s N . . .
B of B see [ze]...). In order to express sections and cartesian c¢losed

. , . N -y g . *
sections as bialgebras let A= I l EB and let [F = {fopY!(XJ;Y)iMor]ﬁ

. BeB £
consist of all composites Il Eps »Eg ?Ey
Ben = f¥

all morphisms of B and 2, denotes the canonical projection onto Eg,.
."

where £ runs through

Let M = {uf|f€.Mor E} » where f : X—Y runs through all morphisms

of B and Mg is an cperation pX--af*p . Thus a pre-bialgebra consists o

Y
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a family (s._) of objects in E  together with a family

°B’B¢ B

. _wg‘* : -j $ g e
{uf.sx > £ Sy }(X er)C Mor B of morphisms. Let

R={r., |Be€Bl v {r, |f,gc Mor B and gof defined}
1dB — f.g —

* - . - . — ’9 - -

consist of relations ridB P PyIIipg for every B¢ B and

T, P, 2e” £%p for every composite - X_EAY—gaz in B , which for
f,g X 7 Z

a pre-bilalgebra (SB’pf)BE;E,fQZMor p 2are given by the diagrams

id . fl&s\,

S - I~ ;f-_';: A
B CE e
/-/— "‘“‘“--.-__:\h ) // \\‘} .
SB‘ ;aSB = 1dB (SB) Sy 5 g (Sz)
. /‘"%& , ~id
Hig - 4 >
b (gef) (s A )

With this it is straight forward that Bialg(A) = HomB(E,E) . Clearly

FC = F , Wd = {PB|B6:E} and every projection Py Preserves all

(existing) colimits and limits. In order to obtain cartesian closed

sections one adds to M for every morphism £ : X—>Y an operation

ﬁf : fﬁpy-f>px and to R two relations which for a pre-bialgebra

st,pf,ﬁf)B ¢ are given by the diagrams

3 ‘_ =
Hg AL sy pr g o1 BX e
= 3 _— \“\3}.

I3 ) 1 f*S N _

X | %Y

With this Bialg(A) = HomcartB(E,E) . Note however that inthis case

F = Wc = md . Thus the functors in IFd preserve only those colimits

(resp. limits) which are preserved by all inverse image functors £
f€Mor B . The above shows that sections and cartesian closed sec-
tions are specia] cases of bialgebras. The converse, i.e. that for

a given data M , R and |IF of bialgebras in a category X there
is a fibra;ion E-—B such that either HomB(E,E) = Bialg(X)

or HomcartB(g,E) = Bialg(X) , is very unlikely.
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Such a hypothetiga} fibration would have to have weird properties
(cf, discussion below in ...)
4.20 Assume that the fibre ﬁg is locally presentable for every
B&B and that the inverse image functor £r . EY~~>EX has rank (2.1)
for every morphism f X->Y 1in B Let vy 2 %ﬁ be any regular car-
dinal such that 1) vy > H(EP) for every Be B 2) vy > W(f%) for every
23 2

£ X—=>Y and 3) vy > Mow B Lett § be the least regular cardinal

> X, satisfyi ~ 3). Then i = b ||  obje $o) L
&5 > ‘] satisfying 1) ) Then in A £CEEB an object (aB)BG_E is
Y~presentable iff /&B is y-prescutable in _EB for every BEB , in
particular A is locally S-presentable and the projections Pg take
Y-presentable cobjects into y-presentable objects and likewise for Y-ge—
nerated objecits. Moreover for every f : X-»Y the functor
- _k_T .
£ p. E .~} E preserves §~filtered colimits.

Y - —B —X

BeB

4.21 Assume 4.20. Then by 3.8 for every section s€'HomB(§,;) s for
cami ' iect Family -
every family (tB)BQE of objects and every family (fB tB ~>SB)Bt R
of morpbisms such that w(tB) <y in E, for every B¢ B there is

a section t'g HomB(E,E) topether with a natural transformation

¢ t'-»e such that £'B is y-presentable in E, and £, : t - sB
: s - v P8 } -

admits a decomposition LB—ét B —>»sB for every B¢ B . Moreover a

section s B-»E is y-presentab in HomB(E,E) iff sB is y-pre--

sentable in E, for every B¢ B .

Assume in addition to 4.20: that there is a regular cardinal B < ¥y

such that for every Be€B pB-well ord

ered colimits of monomorphisms

in are monomorphic and that eith

By

er E is locally y-noetherian

—B
or all inverse image functors f*, where fc Mor B , preserve finite
limits. Then for every section s B-+E and every family
(fp & ty = SB>B. p ©f v-generated subobjects there is a subsection
@ t'Ss s  such :hgg t'B contains tp, and t'BE 1is y-generated
in EB for ?vegy BE€ B Moreover a section s B->E 1is y-generated
in Homp(B,E) iff sB is y-gemerated in E; for every Be3B .
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4.22 Assume 4.20. Then by 3.24 a) HomB(g,E) is locally 6-presen-

table and the functor

Hom, (B E)- ]—r s ~I(SBY g
BLB 2

is cotrlpleable Its right adjoint prese crves §~-filtered colimits.

Assume in addition to 4.20 that every inverse image functor £%,

where f¢ Mor B , prescrves finite limits and that every fibre EB 5

where Be€ B, is a Grothendieck category (resp. a topos). Then by *

3 28 Hom (B,E) 1is also a Grothendieck category (resp. a topos).

4.23 Assume 4.20 and that for every f¢ Mor B the inverse image

Rl . s .
functor " preserves limits. Let &' be the least regular cardinal

such that every £ preserves 6'-filtered colimits. Then by 3.24 b)

HomB(E,E) ii locally §'-presentable and the functor

Hom, (B E)—> | I_E e ~a(sB)y o
B& B -2

is trlp eable and preserves §'=filtered cclimits. (Note that in con-

trast fto 4.22 the case §' =’XO is possible, eg. if Mor B is finite,

every fibre EB », BE€B, is locally finitely presentable and £* pre~

\

serves filtered colimits for every f € Mor B o.)

4,24 The situation ifior Homcart (B E) is different because |F

d -

consists of all composites l rf —JSE —}E . In general these func-
BeB
tors mneither take y-presentable objects into y-presentable objects

nor do they preserve colimits. Therefore additional conditions are

needed to guarantee the validity of 4.21 - 4.23 for HomcartB(E,E)

They are as follows.

For the first half of 4.21 one has to assume 1n addition to 4.20 that

for every f£ £ Mor B the inverse image functor £¥  takes Yy-present-

able objects into y-presentable objects, and for the secound half of

4.21 that every f*  takes y—-generated objects into y-generated

obiects.,
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For 4.22 (both the first and second half) one has to assume in addition

to 4.20 that for every f¢ Mor B the inverse image functor f7 pre-

serves colimits and takes Y-preseintable objects into y-presentable ob~

*

jects. (Note that by the special adjoint functor theorem every f has

B 0 0 : N n, - x
right .adjoint fx . Thus it follows from LX,fkmj = Lt X,—] that the
2 :

functor £ takes y-presentable objects into y-presentable objects 1iff

fxo preserves y-filtered colimits for every f & Mor B <)

. . X
For 4.23 no additional assumptions to 4,20 are needed. The functor f

may not take §'-presentable objects into §'~presentable objects with §
as in 4.23, but by 2.7 there is a regular cardinal 6 > &' such that

every fﬂ takes S—presentable objects into S—presentable objects. Thus

by 3.24 b) Homcarty(B,E) 1s locally é'-presentable with &' as in

4,23 and HomcartB(E,E)~«é | IE s SNvQ(sB)BG:B is tripleable and

B& B =

4.25 Remark TFor the first half of 4.21 (in particular the existence

of y-presentable gernerators in HomB(E,E)) the assumptions 4.2c are

not fully used, in particular the existence of arbitrary colimits 1in

<

the fibres EB » BEB , is not needed. Instead of 4.20 it suffices to

assume that there ave regular cardinals vy > B > )fo such that the
following conditions hold
1) card(Mor B) < ¥y

ES

2) for every B&E B the fibre EB has B-filtered colimits and for

every f£€ Mor B the inverse image functor £ preserves RB-fil-:

tered colimits

3) for every B€E€ B and every AETEB the category EB(Y)/A of

Y-pPresentable objects over A 1is y-filtered and A 1is the co-

limit of EB(Y)/A- A, (U—2A)~> U .

This follows from 3.11 a), b) and 4.19.

Likewise the first half of 4.21 holds also for HomcartB(E,E) provided

£
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in addition to the above conditions 1) - 3) the following is satisfied.

' ~ . . P
4) for every f¢€ Mor B the inverse lmage functor ff  takes Y-present

able objects into y-presentable objects.

4,26 Comparison wighﬂ§§éﬁ__l;2; The main theorem I. 9.25 asserts the
following. Let p : E-——>B be a fibration with a small base B and

assume that for every morphism £ in B the inverse image functor £

has rank (2.1). Then hoth HomB(E,E), and HomcartB(E,E) admit .a

set of strict generators provided the following four conditions are

satisfied a) every fibre EB » B2 B , has a set of strict ) generatorvs

b) every fibre EB s b€ B , has colimits and pullbacks c¢) for every
B< B the kernel functor MorZEB—;*EB s (u,v)~7ker(u,v) , has rank (2.1),
whore MorzgB denotes the category of morphism pairs in EB with com-
mon domain and codomain d) in every fibre EB » BE€ B , the pullback of

%
a strict epimorphism ) 1s agaln a strict epimorphism.

The conditions a) - Q) imply that fo; every R&DB the fibre EB is
locally presentable; (This is because by [t?] I. 9.11 every object 1in
EB is prescentable.) The conwverse is not true. A locally presentable
category satisfies a), b) and c) but not d) in general; e.g. the ca-

tegory Cat of small categories does not satisfy d). Grothendieck and

Verdier do not give explicite size estimates for the generators and the

ones which result from their proof are not very effective. For instance
o,

if the fibres are locally finitely or 1oca11y)xl—presentab1e and the in-

! /
verse image functors preserve filtered colimits and if the set of mor-

phisms of B is countable, then their proof yields that all sections

+
s€ HomB(g,E) with 1w (sB) < (ZlCO) for every Be B form a small ge-
- +
nerating (even dense) subcategory. (Recall that (2 Xb) denotes the
. X o .
least regular cardinal > 2 ) . In contrast it follows from 4.21 above
¥) o
An epimorphism f : A---B jie called strict if it is the cokernel of
its kernel pair A x A==Zx A . In Gabriel-Ulmer [IBj § 1 strict epimor-

phisms are called regular.
L3
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that already all sections se HomB(E,E) such that sB 1is countably
presentable for every BeB form—a small generating (even dense) sub-
category.

The proof of Grothendieck and Verdier (cf. I. 9.22 - 1. 9.26) for the
existence of generators in HomcartB(E,E) is not correct. The error

is on p. 173 in [1?], where they claim that the indicated composed
morphism f*KX(B)i)~~)f*(X(B))-X(f)j; X(a) factors through a canoni-
cal morphism X(a)j-—>¥%y(xj)= ﬁ(a)' for some j , assuming_?hé? .I
is cv-filtered <; T Zzt gfand dévant c )énd X(B)i is c+—preseﬁtab1e
<; c—accessible). This need not be so because in general f£%* does
not take c+—presentable objects into c+—presentab1e objects! As a mat-"
ter of fact with ¢ as in [Ivj'p. 173 the cardinal ﬂ(f%(B)i) can

be arbitrary large although £* has rank. (As a guidance for this
phenomenon we mention the filtered colimit preservinglforgetful functor
MQQA—igggi for some ring A , which takes finitely presentable ob-
jects into card(A)+—presentable objects, c¢f. also 3.5 -~ 3.7) As a
consequence of this error the lemmata 9.21.16 (i) and 9.21.19 are
incorrect and the "filtrations" of HomcartB(E,E) given in I.9.22-

N (X
I. 9.26 are not "filtrations cardinales as claimed.

LS
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In this section we geperalize scme aspecis of purity to locally
presentable categories. This will be crucial fer the next section but

seems of independant intercst and we therefore state 1t =&

. . <
Recall that over a ving A a subwmodule 1 : U-—<=3A of a
A< Mod 1is called pure iff for every right A-module JC.ModA the
VT D

induced wap BwAi ; X@AUH~$X®AA is a monowmorphism. Cléarly i : U—-24

ig already pure if Bmﬁi is a monomorphism for cvery finitely
presentable module B because every module is a filtered colimit c¢f
finitely presentable ones. (Actually one can test purity with finitely

presentable cyclic modules, bul -this 1s not relevant in the foliowing.

The important thing is that purity can be tested with a set of medules.)

e
O]

Among the various characterizations of purity the following
instructive for ouy purposes. A monomorphism i : U-—»A is pure 1{f

it 1g¢ a filtered ceolimit of splitting monomorphisms. Therefore any

functov T :  Mod - 32X which preserves fiitered colimits takes pure

movomorphisms into monomorphisms. The provise is that in ¥ a filtered

a

colimit of splitting monomorphisms is again a monowornhism. Wote that

the clese of all filtered colimit preserviung T (X variable) contains

a subset with which purity can be tested. Fakiv [ 7] used the above

characterization to define purity im locally presentable catezories
b p B, P &

Qe

We ivtroduce here a weaker nction of purity. "
Now let A be an arbitrary category and let (TV :'A»~~->XV)V,_T_,l be a
o] = 2yl yen

family of functors. A momnomorphism 1 : U-—2A in A 1s called pure

s

with respect to (T if T i ¢ T U~-—3T A is & monomerphism for

VoVaM \Y v \

-

every Vg M . Given a subobject Y of A< A we are concerned with the
problem of censtructing a pure subobject Y' of A which contains Y
and is not much bigger than Y . For locally prescntable categories and
a set M we give a-constructicon and size estimates which are ithe best

possible in the cases envisaged here. It shonld be noted that the
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existence of arbitrary colimits in A and ZV is not needed, the
"minimal" conditions on A, KV and TV can be found in 5.3c¢) and
5.6 b).

We begin with some preparation., Recall that e(A) denotes the least
regular cardinal <y such that A is y-generated, i.e. the functor

[A,—] : A—Sets ©preserves monomorphic y-filtered colimits (cf. 2.2).

5.1 Lemma  Let A be a locally a-generated category (ef. 2,.3) and

T : A-=2X a functor which preserves monomorphic o-filtered colimits.

Let a 2 a be any regular cardinal such that

1) if We A and e(w) £ a , then e(IW) < a

2) if p <o and 8 < T , then g? < @

Then if UgA 1is o-generated, so is TU.

. - + +
Remark WNote that 1if o = ﬁ; or o = (2Y) for some >

Y o6 , then

A, . . . . . +
the "akward" condition 2) is automatically satisfied.(Recall that vy

denotes the least regular cardinal > Y.

Proof The case o = & is trivial and we assume o > a . Let UWe€A
be an a-generated object. By 2.7 there is a family (w1)1€I of

A~generated objects W1€‘A and a proper epimorphism *f: 11 W{-ﬁ!i
~ el
such that card(I) < & . Let R be the set of all subsets J of I

”,

with card(J) < o ardered by inclusion. Clearly R ig a-filtered and

”»

it follows from condition 2) that card(R) < a . Let U denote the

J
~f . _
image of the composite | | W1—~% J_i_w{——»u , where the first mors=
1€J 1el . '
phism is given by the inclusion Jc I . Then by [ 1 6.7 d) U, 1is
again a-generated. Hence by condition 1) TUJ is d~generated. By [LEJ
6.7 a) the canonical morphism ¢: lim U0 is monomorphic. Since
JeR ;
Y Il W-—U factors through ¢ : lim U —U and “f is a proper
el JER

epimorphism, it follows that ¢ 1is an isomorphism. Summarizing we



obtain

e(TU) = e (T

because by L 762 an Ga~colimit of G-generated objects is again o-generatéd,

This completes the proof. (We note the similarity with the proof of
3.7)). Concluding we remark that the existence of colimits in A 1is
not needed for the above argument. We have only used that an &—genew

rated object U is an a~filtered &-colimit of a-generated subobjects.

Recall that a locally é-presentable category is called locally
6-noetherian if every S-generated object is &- presentable. By [ii] 13.3

every locally presentable category is locally S-noetnerian for suffi-

ciently large 6 .

5.2 Theorem Let (TV 3 vaagv)v - be a family of fung&gr where

M ii E.EEE ?EE. A iEg EV » VEM are 1oca11y prese ntable Eiiiggz}if.

agsume there 1o 2 regular cardinal o such that every Ty preserves

monomorphic o- flLtLLed coliﬁfts and that in A and D a-filtered

“collm_i of monomoyziiﬁﬂf are monomorphic for every VE M . Let 8 be

én& regular Eardin%} iﬂﬁk that

1) card(M) < 8§ > q

2) A éf lg;ally G—geneﬁiFEE EEE EV ii locally d8-noetherian for
every VEM _ -

— e .

3 if UeA and e¢(U) < 8 , then e(TQU) < & for every V&M

(cf. 5.1)

Then every ¢- generﬂted subobject Y of A€ A 1is contained in a pure

subobject Y' of A which is als so S-generated.

.5.3 Remarks

a) Note that by 5.1 and [13] 13.3 there is always a regular cardinal &
satisfying 1) - 3) and it can be choosen sc as to exceed any given

cardinal. The point is of course to choose &8 as small as possible.
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b) Note that y Thas to be strictly bigger than o , whence vy > f

For inst@nce for left modules over a ring A - 1i.e. A = AMod .
EV = Ab.Gr., TV = XV®A for a finitely presentable right

A-module XV and M = set of equivalence classes of finitely pre-
sentable right A-modules - one has « =‘X; and card(M) = card(A)

if A is infinite and card(M) = K; if A 1is finite. Clearly

for § > card(A) every d-generated mocdule U is 8-presentable
and card(U) < & , whence card(X@AU) < § for every finitely pre-
sentable X . Thus for & > (card(A),.Ké) every 6-generated sub-

module Y of A is contained in a S-generated pure submodule Y

of A (cf. Barr [1]).

c) From the proof of 5.2 below it will be obvious that not all
assumptions on A and E‘, are needed, in particular the existence
of arbitrary colimits in A and

§V is redundant. DBesides condi-

tions 1) and 3) only the following properties of é’§V and TV
are used : A has o~filtered colimits and every TV : é—"9gv s VEM

preserves them. In A and in every -X.  , VC M

Xy s an o—-filtered co-

a

limit of monomorphisms is again: a monomorphism. Every object AC A

is a 6-filtered colimit of S-generated subobjects. In X

Xy » Ve M,

every Od+~generated object is S-presentable and every morphism ad- '

mits a factorization into a proper epimorphism and a monomorphism.
LN

Proof of 5.2 Let 1 : Y—>A be a monomorphism in A, where (YY) 3 6.

Then TV(Y) is d-generated and hence S-presentable for every Ve M . Let

A = 11% YU be the colimit presentation of A as the §-filtered co-
) H ' \
limit of its 8-generated subobjects YU and let iu R Yﬁ~—9A denote

the inclusion (cf. 2.8). Clearly i : Y——3A belongs to this system and

‘we write Y = YO and 1 = io . Since TV(YO) is S~-generated, so is

%m(TV(iO) for every Ve M , cf. [ } 6.7 d). Thus im(Tv(io)) is
ny ~

6-presentable and from 1i

) U

a 6-generated subobject Yu together with 4

TV(YU)—MT_%TV(A} it follows that there is

morphism

=
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g€ ¢ im(T (i )) =3 T (Y ) - depending on T, and we thereforewrite
H V' o V' u J
i 1 —_— [ inste - 81 -x g i ¢
EV 1m(TV(1O)) > TV(HV) instead such that the diagram
.0
im(T_ (i )) = T_(A)
TV (o] TV
&V id
b T, (i) R
(Y A A
Ty iy 2Ty ()
commutes, where j; and iV 3 YV—~¢A denote the canonical inclusions.:
(Note that Tv(iv) need not be a monomorphism). Let ié : Y%mnaA be
a S-generzted subobject containing io i YO-9A and iv i YV—”ﬁA

The ineclusions u YOMH%YG and v 3 Yv-$Y6 give rise to a pair of

morphisms

€
; : v
50 .ﬁﬁm(TV(lo” —— TV(YV)HMI Cw)
v A -V
/_.f ‘\‘\“} ,
i Y * m
Iy (Y Ly (Xy)
~ =
e ——— e R R e »-—-'-'"“—'—'__"--F——F
Ty (v)
~where ps denotes the canonical projection - which become equal when

) ., ' «y R IR, o E L _ —
composed with Iv(lv) 3 TV(YV) }IV(A) . Since TV(YO) ig d-presen

. = T2 v - 4 - 3 0
table and TV(A) tim 1V(Yu) , there 1s a &-generated subobqect
s 1 b tha’t') iy

iy ¢ Y"-— A containing i& i YJ——?A suchYthe above pair becomes

y = N - LR r I - ] —‘_r/ " .
already equal when composed with Fv(z) : TV(YV) ;EV(YV), where

z YewwaYs denotes the inclusion. Since card(M) < § , there 1is a

S~generated subobject i1 : Y]~“+A , containing Y; for every VEM ,

together with a morphism 53 : im(TV(iO))-—»TV(YI) for every V& M -

T, (¢)
namely the obvious composite im(T(iO))muya TV(YV)quTV(Y]) - such

that the diagram



: 0

T (Y ) IV imr (s v T
y'iol TR im( V(lo)) m‘“m}f_mué V(A) ;
EO ///; l
T, (u ) \' l .
V' o //// N id
L
/ 1 . 1
LAY Py L v
T (Y)) ey (T () =iy 7 (a)
commutes, where u ot Yd*—aYl denotes the inclusion. We now procecd
by transfinite induction. If X 1is a successor ordinal, then YA is -
constructed from YA—] as above and so are the morphisms
=1 . 5 . .
3 : T s - M. 5 it
&y im( V(lk—l)) >TV(YA) for every V&M If X < o is a limit
ordinal, ithen let YA be any S8-generated subobject of A containing
- . ) - : : —oo ‘ate
every Yp for p<a . We claim that Y iiz YA is ? S g%?etated
pure subobject of A <containing YO = Y , The latter is obvious
because 1lin ik : lim Y—A 1is a monomorphism. Since 0<§ the
A<d A<l
object Y' 1is 6~generated by 2.8 . The purity of the inclusion
i' ¢ Y'——A tresults from the induced diagram
. A : p\
lim p - lim j
. =3 Py . : =% Jy
lim T —_— Y —_—
lim V(YA) .liﬂ‘lm (Tv(lx) e TU(A)
A<a A<o l
lim T, (i,) | & | { .
= = q i
>\<2¢S W
by iy
TV(Yf) = e im (Tv(i'))‘"**jf—*“T>TV(A)
N _ ) =
Ty(ih)
in which }iﬂ;jé is a monomorphism for every V&M . Hence q 1is
monomorphic., Since p& is a proper epimorphism, so 1s q and thus

q 1s an isomorphism. Moreover 1i% p& is an isomorphism, it's

A<d
inverse is 1lim £A . Hence T_(i') 1s a monomorphism for every Ve M ,
n<d v
i.e. 1i' : Y'—A is pure which completes the proof.

5.4 Definition Let T : B x A—C be a bifunctor. A monomorphism
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it Y--9A 1is called T-pure if 7T(B,i) : T(B,Y)——— T(B,A) is a
monomorphism for every Ba& k
Clearly T-purity is equivalent with purity as defined above for

{r(B,-) : A=l y oy

5.5 Corollary Let T : B x A-—C be a bltunnLor, where A, B

and € are locally presentable categories, Assume there

cardinal o such *hat T{(~,~) preserves a- filfcred COllmlto in both

variables and such that 1n hothh A and C a~filtered COllle° of

monomorphigsms are again monomo*phlkms Let ¢ be any legular CarnlvaT

such that

1} 6>a and the set M of equivalence classes of oa-~prasentable

objects in B has cardinality <8

2) B is locally a-presentable, € is locally §-noetherian and

=

is locally &-generated

3) if Ve B 1is o-presentable and Je A d-generated, then T(V,U)

is &- generated.

Then every o-generated subobject Y ofi AeAa 1is contained in a

A

S-generated T-pure subobject Y' of A .

Proof Since T(-,-) preserves o-filtered colimits in the first

variable and every B B is an o-filtered colimit of oa-presentable

objects, a monomorphism i : Y—3A is T-pure iff T(V,i) 1is a

i

monomorphism for every a-presentable object V& B . The assertion now

follows from 5.2,

5.6 Remar&i

a) Note that by 5.1 and D%] 13.3 there are always cardinals o and

¢ svch that A , B , C and T satisfy the conditions in 5.5

(The only exception is that (-,=-) preserves o-filtered co-

limits in both variables which has to be required separately).

The point is of course to chwoze & as small as possible,

b) As in 5.2 (cf. 5.3 c)) the asaunptions on T : B x A—— are not

1o

"



c)

SN

fully used and 5.5 can be generalized considerably, in particular
the existence of arbitrary colimits in A , B and C is not

neceded. The following conditions suffice to establish 5.5. There

is a set M of objecis in B such that T-purity can be tested

with the functors T(V,-) : A—+C with V running through M .

Putting T, = T(V,-) and X = C for Ve¢M

v Xy , then all the

conditions listed in 5.3 c¢) hold, i.e. A has o-~filtered colimits

and ... .

The notion of T-purity wae independantly introduced by T. Fox [ :.
For a locally presentable category X and a coherently symﬁetric,
associative and unitary tensor product @® : X x X+ X with rank

he proved that every y-generated subobject in X is contained in

1

a vy —generated pure subobject for some «y' . He gives no size

estimate for y' and the case of purity over non-commutative
rings is excluded. The present versions of 5.2 and 5.5 represent a
slight (but useful) improvement over the original svatement in [?1]q
The proofs of Fox [% ] and the one given here have little in
common. While our proof often gives the hest possible upper bound
for v', the one resulting from his proof is much too lavrge to be
useful in practice. Following Barr [i ], Fox [8 ] used 5.5 to prove

that the category of coalgebras in a locally presentablie category

A with respect to some teusor product @ : A x A—~%>§ and & co-

N

algebraic Prop has generators (cf. 4.7).IWE use,5,5 in the next
section to prove that the category of Z-cocontinuous functors
U—3>A has generators when I 1s a proper clasén

Fakir E??] defined the notiow of an a-algebraically closed monoc-
morphism in locally u—p%esentable categories. He showed that a
monomorphigm is o-algebraically closed iff it is an o-~filtered
colimit of splitting wonomorphisms. From this the relationship
with purity becomes evident and it is clear that the test functors

TV in 5.2 (resp. T(V,-) in 5.5) preserve a~-algebraically closecd
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monomorphisms, in particular the latter are pure. The converse

need not hold and obviously depends eon the family (T of

dye u

test-functors. It might be interesting to investigate (and characterize)

v

pure monomorphismswith respect to functors different from temnsor pro~ '

duct type functors, eg. (co)homology functors

(H_)

n n . _ ,
0 ne:m’(H )ﬁéiN’(Torn)nE N,(Ext ) etec. (i.e. functors which -

nc N
preserve o-filtered colimits for some o). Note that for any of theseé

sets of test functors theorem 5.2 applies and the size estimates for

§ can be effectively handled.



§ 6 Local presentability of é? .
'y

and Adj(A,B); examples

This section 1s a coptinuation of § 4. We give furiher examples of bi-

algebras =~ 1in particular Y-cocontinuous and Z-cecuntinuous functors

S,
pairs of adjoint functors ete. - and apply the resulis of § 3 and § 5.
Let T ¢ B x A—-C bc a bifunctor aud let (o : daw-+r0)oez be a
class of morphisms in B . Let éZ,T be the full subcategory of A

consisting of all objects X€ A such that T(o,X) 1is an isomorphism
for every o€ 3% . The bifunctor T(-,-) and the class £ give rise

to a data for bialgebras in A such that Bialg(A) = éZ T and fthe
-

.ﬁL&é (c¥. 6.1).

forgetful functor Bialg(A)- >§' is the inclusion éf T
9

The main resuit 6.12 (resp. 6.15) concerns conditions on T ¢ B x A-—2C

and on a class I which guarantee that éy T is locally S-presentable
~ 3

(resp. locally 8-noetherian) for some specified cardinal § depending
on T and £ . If T 1is the bifunctor = : [Eo,gggij X [g}§}~_%§

(resp. 1T = [“,w]) as defined in 2.lo, then A = [g,ﬁ] and A, .
. b

consiste ewactly of all I-cocontinuous (resp. IL-continucus) functors

on U with values in X (cf. 6.14, 6.15). By choosing I according-

\

ly one can obtain colimit (resp. limit) preserving functors U-—X or
cosheaves (resp. sheaves) with respect to a Grothendieck topology on U
and values in X (cf. 6.10 ~‘6.17)- Moreover the category of pairs of
adjoint functors between locally presentable ca?egories is equivalent
with a category of I-cccontinuous funétors (cf. 6.i8'— 6.20) .

Another example for T is the tensor product $[
L

£ ¥ = {Ic—%A}Iéaf is the set of all inclusions for a family\E’of right

over some ring LA .

ideals in A , then AMEQE = consists exactly of all left A-modules
A

: o . . g . i
X which are uniquely divisible by VW ., i.e. for which multiplication
ImAmeﬁX is an iscmorphism for every I&% . For inmstance, 1f A 1s

a Grothendieck categery aud A = [U,U] the endomorphism ring of a

t

generatoy U« A, then the functor Cocont[é,éﬁ,ﬁg.]u—éAMod_s te—tl



induces an equivalence between cocontinuous functors t : A-—JAb.Gr.

~

] g . A, . ol . .
and uniquely J’-divisible left A-modules, where J9 is the Gabriel filter

cn A associated with A (cf. 6,25b)), Cocontinuous functors can have
unexpected features, eg. the category of cocontinuous functors from

abelian p-groups to abelian groups is equivalent with the category of
p~adic complete abelian groups. Similar assertions hold in more gensral
situations (ef. 6.25¢)).

6.1 Lenma Let T : B x A—3C bLe a bifunctor and (o :-Ado~—-->r0)oe, 5

a class of morphisms in B . Then there is a data M,R,F for bial-

gebras in A (cf. 3.1) such that Bialg(a) = Ay, r -2nd the forgetful
fungtor V i Bialg(A)— A is the inclusion A, ,C A . The class F
consists of all functors T(do,~) : A—>C and T(ro,-) 1 A—C ,
where o runs through I and F = md = mc holds. Moreover if I

is a set, them so are M,R and F

Proof Let IF be as above. For M and R we limit ourselves to an

intuitive description. A pre-bialgebra is an ohject X¢E A together
with a2 morphism o (X) : T(ro,X) —»T(do,X) for every o¢ % . MNote that
the forgetful functor P-Bialg(A)-— A need neither be an embedding
nor full. The relations on a pre-~bialgebra (X’O(X))oejz express

that the composites

T@do,0) 9% rre, 1) X, Tdo,x) amd T(ro,x) 2F), T(do,X)

:r_(&).(._)}, T (rO',X)

are the ident;t#es of T(do,X) and T&rG,X) respectively for every
o€ X . In other words T(o,X) 1is an isomorphism and o(X) 1ts in-
verse. Hence a bialgebra is an object X<<A together with an isomor-
phism o (X) : T(ro,X)»%aT(do,X) whose inverse is T(o,X) . Therefore

the map Bialg(é)mﬁé R (X’G(X))O( Z'“’X is bijective on objects

$,T
and it can be made into a functor é by mapping a bia/gebra mor-

phism £ : (X,0(X)) =3 (X' ,0 (X)) onto f :+ X—X' . Then

oG % )

is obviously‘an isomorphism. So we can identify AZ T with Bialg(4)
N
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and the forgetful functor Bialg(A)»--»«;‘)A,(X,o(X))c ,Z~wﬂX becomes the
= — <

inclusion AZ T(;é « The other assertions in 6.1 are obvious.

6.2 Theorem Let T : B x A—-C be a bifunctog, where A is a lo-

Ll

[

18

y presentable catepgory. Let I be a s

e

t of morphisms in B

Assume there is a repgular carolnal o

1JJ
r("

ich that T(do,~-) : A—3C

and T(ro,-) preserve a—filtgged colimiEﬁ for every o< i . Let

Y > a be any regular cardinal such that

a) card(x) < vy and &4 is locally y- presentable

b) if U€ A is y-presentable, then 8o are T(do,U) and P®(ro,U)

for every ove (cf. 3.7 for vy = a).

Then every morphism £ : U—>A with the properties Ac¢ éz T and
m(U) = v admits a factorization U--»U'-—A such that =(U') s y
and U'g éZ,T . Moreover an object XC?éZ T is y-presentable in
Ay p Lff it is y-presentable in A .

Proof The ass ertlons follow directly from 6.1 and 3.8. It should be
noted however that 2 direct proof can pe given following the patteru

in l... . This proof is simpler because it involves only a one-step

construction in contrast to the two-step construction in 3.8.

6.3 Remarks

a) Note that <y has to be strictly bigger than™ o . Moreover if
every object in C is presentable, then by 3.7 there is always
a cardinal vy satisfying the conditions a) and b). The point 1is .
of course to choose <y as small as possible (cf. remark following

3.8).

b) The theorem also holds when A 1is not locally presentable, but

merely satisfies conditions a) and b) in 3.11. In either case

AZ - need not be locally presentable, however it is equivalent
Ty

with the‘category of y-flat functors on the category AZ T(Y)
3
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consisting of all y-presecntable objects in A (ef. 3.11 and 3.9).

5.7

6.4 Rgfinitioq Let T : B x A——3C be a piflﬂﬁffy.iﬂi Y a set of

morphisms in B . Assume A and C are 1 cally presentable. Then

rankZ(T) denotes the least cardinal & > = (A) such that for every

P

o< I and every N(A)mpresentablq object UcC A the objects T(do,U)

and T(ro,U) are 6-prescntable. For a set M of objects in A

rank, (T) is defined likewise,

If the functors T(do,-) and T(ro,~) preserve colimits for every
o &2 , then by the special adjoint functor theorem they have right ad-

joints 5(do,-) and S(ro,-) and the latter have rank (=85 A.1)=

e

Since by adjointness [T(dc,U),—j [U,S(do,—)} and
LT(rc,U),—] = |U.8(xo,~-)] , it is not difficult to see, that rankZ(T)
is the least regular cardinal & such that & > ﬂ(é) and

WS (do, =) < & > nS(ro,-) for every o¢ I . With this it is not hard

to check the following.

1) Let A be a commutative ring and A a Grathendieck category. Let

’

. p e T s . Y '
T be the bifuncior &A p ModA X Aé Aé y Where Aé is .the

category of A-objects in A . Then

rankz(®A) < sup*(ﬂ(é),w(do),ﬂ(ra)) , where supﬁ( ) denotes the
. oe Xl
least regular cardinal > sup ( ). Likewise 1if A is not commu -

tative and T 1is the bifunctor @ XapA——->A , then

A A A~

rankz(ﬁA) < sup%(w(é),ﬂ(dc),ﬂ(ro),card(A)+) , Where card(A)+
¢ t
denotes the least regular cardinal > card (A)

Mod

2) Let T be the bifunctor & : [Eo,Seté] X [9,§j~—m~%§ as

defined in 2.lo, where X 1is a locally presentable category.
Then rankz(®) is the least regular & > w(X) such that

card(do(U)) < 8§ > card(ro(U)) for every o0cCZIL and every object
Jhat i
U&€ U . To see that noteYihe right adjoint S(do,=-) : z———m+[g,§]

assigns to an object X the functor Uv#rjk (= do(U)~fold pro-
! &sly)

duct of X); and likcwise for S(ro,=)



§ 6 -5-

6.5 Corollary Let T : B x A—3C be a bifunctor, where A and C

oty -

are locally presentable categories. Let I be a s of morphisms in

fe)
=

B . Assume that T(do,-) and T(ro,-) preserve colimits for every-

CC€ L (resp. limits and o-filtered colimits for some o) . Then AZ i
H

locally presentable and the inclusion A Tuﬁﬁé has a right ad-
¥

S

joint (resp. left adjoint). Moreover i

y = sup(n(ﬁ),)¢l, card(2)+, rankZ(T)> (IEEBA y' = sup(n(é),a)))'

then Ay ¢ is locally y-presentable (resp. y'~presentable) and the
]

right adjoint A—3A_

T (resp. the inclusion A ~—3>A) preserves
Ly —_— e — e

—-z,T

1@

y-filtered colimits (resp. y'-filtered colimits). In the first cas

(i.e. T(do,-) and T(ro,-) cocontinuous), the assertions in 6.2

hold for vy as defined here.

Proof The corollary is a consequence of 3.24, 6.1, 6.2 and 6.4,
6.6 Remark The second case (T(do,~) and T(ro,-) continuous) can al-
so be obtained fron [IS] 8.6 b)., The proofs for 6.5 and [iSJ 8.6 b)

are entirely different.

6.7 The analoguous assertion to 4.8 and 6.2 for y-generated objects

requires stronger hypotheses. They are listed in the following

Theorem Let T : B ¥ A—-C be a bifunctor, whre A and C are lo-

set OfF

v

cally presentable categories. Let %X be a morphisms in B and

assume there is a regular cardinal o ' such that every a-filtered co-

limit of monomorphisms in A is a monomorphism and such that T(do,=-)

and T(ro,-) preserve o-filtered colimits for every o€ I . Let

Y > a be any regular cardinal such that

a) card(Il) <y and A is locally y-generated

b} if U€ A 1is y-generated, then so are T(do,U) and T(ro,U) for

every O¢C L

cl) T(do,-) and T(ro,-) preserve finite limits for every o0& %
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an ssume

Instead of ¢ 1) one

62) in A and € every y-generated object 1is y-presentable.

Then the following assertions hold.

I If Aéféz T and U& A 1is a y-generatéd subobject of A, then:
2
there is a subobject U’ of A containing U such that
U'e AE r and U' 1is y-generated in A
b

" . . _ N . . S . _ ) _
IT An object Xe‘éZ,T 1s y-generated 1in éE,T iff it 1ls y—generated

in A
III An object Xeg ﬁE T is 'the y~filtered colimit of its Y-generated

s — ——

subob]ecti_ig AE,T

IV In the presence of c¢2) ever§ y-genarated object in Ai T is
. 2L il == Z3, R

YoRLesgnLable An A, .

Proof The theorem is an immediate consequence of 3.22 and 6.1 .

6.8 Remarks

a) Assume that the conditions in 6.7 are satisfied except for cl)

and ¢2) and that instead the following hoids.

¢3) In A every object is the y-filtered colimit of its T-pure"

y-generated subobjects (cf. 5.4, 5.5, 5.6 b)).

Then assertion I) can be strengthened as follows.

I' If A€ A and U& A is a y-generated. subobject of A ,

——— Z’T = et

H

then there is a T-pure <y-generated subobject ' U' A

containing U such that U'Eﬁéz T
2

This follows from 6.1 and the proof of 3.22. Instead of using in
3.22 the presentation of an object as the y—-filtered colimit of
its y-generated subobjects one considers the cofinal subsystem of
all T-pure y-generated subobjects; for pre-bialgebras and sub-pre-
bialgebras whose underlying objects in A are y-generated one

: L)
proceeds likewise.
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Note however that a), b) ¢3) do not imply II, III, IV because

the inclusion éZ T_—éé need not preserve monomorphisms.
H]

b) As above in 6.2 not all assumptions on A and C are needed for
I = IV and one can get by as in 6.3 h), Note that there is al-
ways. a cardinal y > a such that 6.7 a), b), ¢ 2) hold. The point

is of course to choose Y as small as possible, cf. also 3.23.

v e s

In order to deal with the situation when X 1s not a set -
which is necessary in order tc consider functors on a small category

U which preserve all existing colimits in U - we have to use purity

with respect to a bifunctor T : B x A-—C . We assume in the follow-

ing that A, B and C are locally presentable, although the existence

of arbitrary colimits is not needed for 6.12 (cf. 6.3b), 6.8b)).

6.9 Definition Let I be a class of morphisms in a category B

Assume that in B every morphism R:B-—B' admits a factorization
into a proper epimorphism 8" : B—yim B and a monomorphism

' : im B——B'. Then 3 denotes the class of those subobjects of

z

ro which are of the form o' : im 06 —= ro .for some oc€3 .

Conditions on B which guarantee the existence of such factorizations
can be found in [\31 1.5, 1.6. Clearly they hold in every locally pre-
sentable category. Note that Ntz is a set provided the codomains

{ro|oe Z} form a set and B is well powered. =

6.lo Let T : B x A——C be a bifunct;r and: ¥ a cléss of morphisms
in B . If T(-,-) preserves proper epimorphisms in the first variable
(resp. takes proper epimorphisms intoc proper monomorphisms in case T
is contravariant in the first variable), then it follows easily from

implies i.e. A . Th
the above that A € AE,T implie Ae'ﬁmz’T , l.e —Z,TC éansT e

converse is Munfortunately'" not true, but the following shows that

A is closed in under T-pure subobjects.

=5, T é-mv,T
4y

*

6.11 Lemma Assuwme that 4 , B and C are locally presentable and that
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T(-,~-) preserves regular epimorphisms and well ordered colimits in

the first variable (resp. takes them into regular monomorphisms and

well ordered limits in case T is contravariant in the first variable).

Let A€ AZ and let 1 : X~-3A be a T-pure monomorphism in A

, T b el

Theq X< AZ,T 1ff X« éIﬂZ,T

Proof We limit ourselves to the first case¢ because the second one is

dual. By [\3}.6;6 b), 1.5 2 morphism in a locally presentable category
is a proper epimorphism iff it is a well ordered colimit of regular
epimorphisms. Hence T(-,-) preserves proper epimorphisms in the first

variable. The assertion now results from the commutative diagram

T(ro,i)

T(ro,¥)

C
A
T(o",X)
T(imo,1)
T(imoyX)
(o, X%) oA ©
T(o',X)
! T(do, i)
T(do,X) =

observing that T(v',X) and T(o',A) are proper epimorphisms, that

T(o,A) is an isomorphism and that T(do,i) is a monomorphism.
.

6.12 Theorem Let A , B and C be locally presentable categories.

Let T : B x A—3C (resp. T : on A ———C) be a bifunctor which
preserves colimits in both variables (resp. limits and for every B&£B
the functors T(B,-) : A—C preserves f-filtered colimits for some 8
depending on B). Let I Dbe a class of morpbisms in B such that
the codomains [ro|oc r} form a set. Then the inclusion AZ,TG—*A

has a right adjoint (resp. left adjoint). In first case (but not in

the second). A, . is locally presentable. Tn more detail let § gffl

ESSS=—— Z y -~ e

be any regular cardinal such that
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') A and C are locally d-noetherian

2) there is a regular Eﬁﬁéiﬂﬂl o < & such that iﬂ A and C

a-filtered colimits of monomorphisms are again monomorphic

3) 8§ > sup {card(M)+, ranky(T), rankM(T), card Guy)+}

where M is a set of objects in B with which T-purity can be tested

(ege w(B)~-presentable objects in . B, cf. 5.6 b) and 5.5; for Iﬂz
and rankﬁ7 (1), rankM(T) see 6.9 and 6.4 respectively). Then A
U4 ‘X - . T

is locally 6-noetherian and the right adjoint A A preserves

e

§-filtered colimits. Moreover an object X(:éZ,T is 8-generated in

éy T iff it is in A , and every morphism f : U—>4A with Ach, T
s, w2, AM A LN sm with 2y,

and U d-generated in A factors through a monomorphism U'SsA in A

such that U'e éE T and U' is S-generated.
b
6.13 Remark The existence of a left adjoint éz T—~+é in the second
5
case (1.e. T : EO)<A\W¢—_>Q) can also be obtained from the main result

of Freyd-Kelly [\Q], One shows that there is & class 0 of morphisms

in A such that A = A 1 and the codomains of Q form a set.
= =5,T =0, (-, -] :

Also the proof given below can easily be extended to locally bounded -
categories in the sense of Freyd-Kelly [iC]. An example for A and I

such that A

AT 1 is not locally presentable can be found in [l?]
2%, [~, - .

8.15.

LN

Proof of 6.12 We first settle the case. T EO XA —C which is

much sippler because the results of § 5 about purity are not needed.
Since T(do,-) and T(ro,-) are continuous for every og¢ 2 , the
category éZ,T is complege and the inclusion AZ’T——>A preserves
limits. In addition every monomorphism in A is trivially T-pure. For
the existence of a left adjoint é—?éz,T it suffices to verify the
solution set condition (cf. Freyd [5]). This means that for every
object X¢€ A there is a small subcategory EX of éZ,T such that

every morphism f : X -—-3A with Aéféx T admits a factorization
, T
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X

X is ay~generated. Since WZZ is. a set, there is a regular car-

X—3X"'"—A with X'E‘EX . By 2.8 there is a cardinal « such that

dinal B such that w(A) < p > @y and T{ro,-) and T(im o,=-)

preserve RB-filtered colimits for every o€ . By 5.1 there is a car-
dinal y > B such that e(T(ro,U)) < v > €(T(im o,U)) for every

o€ and every y-generated object U& A . Then MX = A(y)n A_ T is.
i - b - —b’ .

a "solution set", where z(y) denotes the full small subcategory of
all y-generated objects in A (cf. 2.8). To see that let f : X-—A

be a morphism with A€A as above. Then by EKSI 6.7 a) the image

5,T

of £ 1is also y-generated and by 6.11 A 1is also in . So

A
/ ?KE N T‘
6.7 a), b), cl) can be applied to nzz and the inclusion im f—A.

Therefore the latter admits a factorization im f£a>X'_£—A such that

X'e éjﬂz’T and X' is y-generated in A . By 6.1l X‘é‘éz,T which
shows that MX is a 'solution set" for X

As for the first case (i.e. T : B x A——C) the inclusion AZDT—fyé
preservas colimits -and éZ,T is cocomplete. Thus by the special ad-
joint functor theorew there is a right adjoint A~ 5éZ,T provided
A has generators. To establish thaL let § be any regular cardinal

z,T

with the propexties 1), 2) and 3) stated in 6.12. We show that

~
A_X_(G)f\ éZ,T =%, T

ted objects in A obviously form a small generating subcategory.

Therefore it suffices to show that every morphism f : X—3A with

Aé‘éE T and €(X) £ 8§ admits a factorization X-—X'-—A such that

?

X'¢ éZ i and X' 1is &-generated in A . This is done in the same
H

p2ttern as above. First by 6.11 AcC A implies A€ A , and

by [i3J 6.7 & im f is 6-generated. In order to apply 6.8 a) to the

inclusion im £52A with respect to vy = & and {ﬁz (not z), it

is a small genevating subcategory of A . The §-genera-~

suffices to verify 6.7 b) and ¢3); the other assumptions in 6.8 follow

trivially from those in 6.12. As for c3) we use 5.2 and the fact
that in A’ .every object is the §-filtered colimit of its S§-generated

subobjects. In 5.2 let éV = C and TV = T(V,-) for every VEM
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Then the hypothesis in 5.2 follow trivially from those in 6.12 ex-
cépt for condition 3) in 5.2. The latter and condition 6.7 b) express
the following. For every Ve&M s every o0& % ° and every S-generated. ob-

ject UEU the inequalities
e(T(V,U)) < &8 and e(T(ro,U)) < § > e(T(im o,U)

hold. To verify them first recall that in A and C the notions
§-generated and S-presentable coincide by assumptiony i.e. E(G) = A(8)
and '§(6) = C(8), cf. 2.8. By the special adjoint functor theorem the
funetors T(V,-), T{ro,-) and T(im o0,-) have right adjoints for
every Vg M and el which we denote with §$(V,-), S(ro,=-) and
.$(im 0.~) respectively. By 2.9 the latter have rank (2.1) and as wen-
tioned in 6.4 the jnequalities rankM(T) < 8§ and . rankhYZ(T) < 8§ im-
ply that the functors $(V,-), S(ro,-) and S$(im o,-) preserve

§-filtered colimits for every V& M and o6¢ f . Hence for every §-gene-

rated object UE A the adjunction isomorphisms

P, n . " A - . ) g v .

I_T(VsU),—} = I:U,S(V,_):’, ]_T(]’.‘U,U),"] = I:U,S(IO,")], [T(lm OsU),"J = I_U’S(lm G,'_)]
yield the desired inequalities e(T(V,U)) < & and i
e(T(ro,U)) < & > e(T(im o0,U)) . With this the assumptions in 6.8 are
verified for vy = § and %ZZ . Thus the inclusicn 1im f— A admits

a factorization im f-—-—X'—3A such that X' 1is a T-pure subobject
of A which belongs to Ap; ¢ end is d-generatéd in A . Then 6.11
Z’

~
implies X'€ A which shows that A(8)n A

L 'is a small generating
H

z,T

subcategory of AZ T Since the inclusion AZ T-9é pPreserves colimits
b 3

and the objects of A(S)n AZ T are d-presentable in A , they are a
, .

fortiori S-presentable in éZ oo whence éz i is locally 68-presentable,
s H B

The last assertion in 6.12 is obviously part of the above construction

~
of generators 1in éz T Since A(8) = A(8) an object Xé?éz T which
3 - b
is S-generated in A is likewise a fortiori 6-gefrated in AZ T For
= Ty
the converse let A< A be any object. Then it follows from the above

23,7
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that A 1is the §~filtered colimit in A of subobjects XiC A

which are §-presentable in A and belong to éZ oo Thus the Xj’s are
%, ]
a fortior! §-presentable ixn éZ,T and A = }%E;Xi holds 1imn éZ,T
If AETAZ T is é-generated in A , then the identity of A admits
s
A

. . c #s .
a factorization A—wéxi~m9A » Whence Xi'--+A for some 1 . Thus A

is 8-presentable in éy T ° Summarizing we cbtain that an object
43

&
A éz,’r By ol = S

locally §-noetherian. With this one c¢an show as in 3.24 a) that the
right adjoint éfnﬁﬁz,T
the prcof of 6.12.

6.14 We now apply 6.2 -~ 6.12 to- the bifunctor

o B [g »5ets) x LH&X] ----- 2X as defined in 2.l¢, where U is a small

category and X is cocomplete. We do not apply them to the bifunctor

is 8-generated in A iff it is <in A and that A is

preserves §-filtered colimits which completes

symbolic hom L—,~] {(cf. 2.10) because the resulting statementsfor
L-continuous functors are, except for size estimatesy; contained in

[331 § 8. Also it is straight forward to deduce the corresponding

size estimates for X-continuous functors from 6.2 and 6.7 a), b), cl1).

functor t t U-—X is k-cocontinuvous iff o & t 1is an isomorphism

for every o€ , in other words [R’KJZ & coincides with the full
b

subcategory CCZ[H,§] cf [l,z] consisting of all I-cocontinuous

functors U-3X . With card(0b U) and card(Mormg) we denote the

cardinality of the set of objects and the set of morphisms of a skele~

ton of U respectively (cf. Schubert [2&] p. 170). Recall that if

is a set and X locally presentable, then rankz(®) exists and is the

least regular cardinal & 2 W(g) such that

card(do(U)) < & » card(ro(U)) for every U€U and every o&€Zi ,

cf. 6.4 and 6.4 2). It might be instructive to show directly how this

condition on & implies n(do @ t) 5 & 2 n(vo & t) for every o€ I -

and every finitely presentable functor tg [g,&] . Since do @& and

Y¢ @ are cocontinuous, it suffices to verify this when t belongs

b}



to a set of regular S-presentable generators. By [i3] 7.2 h) the ge-

neralized representable functers X & [U,~] ! U——X [le form a
- (u,u]
A

set of regular (even dense) generators, where U 1is running through

Ob U and X through O0b(X(§)) (note & 2 (X)) . Since

X @ do(U) = _L_L X

do (U)

]

do @ (x & [U,-])

and likewise ro & (X [U,—]) = i"l X , the conditions
ro(U)
card(do (D)) < 8§ > card(ro(U)) obviously imply

ﬂ(:ld @ (X ®- |:U,~'])>' < .8 };I.w.(ro & (X « [U,—]))

for every oeg I .

6.15 Coroliary Let U be a small category and let % be a class

. A -0 . . .
of morphisms in [Q ,S5ets]] such that the codomains Jrol L}

a set. Let X be a locally presentable category. Then Ccy[g,gj ls

locally prescntable. In more detail, let

> ot +
§ = %up‘{( 1* (X)), s up(card(do(U)) card(ro{U0)) ), card(r) }
SEL
UeU .
if » is a set, resp. let
o , x + B +
' = sup{[ T m(X), sup e(ro), card(ﬁzf) . card(Mor U) }
CET '
if I is a class. (In the latter case it 1, assumed in addition that
X 1is 1oca11y &' ~n09Lher1dn and that there i1s a cardinal o < §' such

that 1in X oa=filtered colimits of monomorphisms are monomorphic.)

Then Ccz[g,§] is locally S-presentable (resp"locallx 6’—noetheri;i).

Moreover a I-cocontinuous functor t : U—>X is S-presentable (resp.

§'—-generated) in Cczfg,g} iff it is S§-presentable (resp. 6'—genera:

ted) in [U,X] . In particular every morphism (resp. monomorphism)

t—>s with se‘CcZ[g,él and t d-presentable (resp. §'-generated)

in [E,é] factors through a morphism (resp. monomorphlbm) t'-——ss such
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that t'c CCZ[E’E] and t' is S-presentable (resp. §'~generated).

Proof If % 1is a set the assertion follows from 6.14, 6.5 and 6.4 (y=8).
lIf I is a class we apply 6.11, 6.12 and 6.4 and revert &' to 6

For this we have to verify the conditions 1)-3) in 6.12. The first two
conditions are obvious. As for 3) note that purity with respect to @
can be tested in“[go,§g£ﬁj with finitely presentable functors; hence

we choose M- = Ob([Hosiets]( K;)) . By [53]37.6 a functor r : U mudoetb

is finitely presentable iff rthere is a cokernel diagram

Loy ==3 Iﬂ [0, )—s

in other words, a finitely presentable functor can be described by a

finite set of morpbisms in U . Since the sef of finite subsets of

Mor (U) has the same cardinality as Mor(U) , this shows that

+ .
card (M) < card Mor(g) 3 whence canrd(M) < & . Since e(ro) < 6

for every o€z , Lh01c is an epimorphism J_] [ ) 1'——9 ro in
1€l
4 ¢ .
[HO,Sets] such that card(IO) < 8§ ., From cald(MorE) < § 1t there-

fore follows that -
§ > card( l [U U. ]) > card(ro(U)) > card(iﬁ o (U))
1(I
for every U¢ U and every o¢ I . Hence rauklﬁ ®) < 8§ by 6.14

: x
(resp. 6.4), In the same way one shows rankM(®) < 8§ . With this con-

ditions 1) = 3) in 6.12 are verified which cémpletes the proof of

6.14 when ¥ 1is a class.

6.16 Colimit preserving functors. Let U Dbe a small category and

let (Uk = lig Uv ) be a class of small colimits in U . Every -
vy k ke K

k€K gives rise to a canornical morphism 9y 11m [— U ] —> [-, U

in [Ho,ﬁets] . Let EK = {ok]kE K} and let X Ee a cocomplete cate-
gory. Then for every functor t and every k€ K there is a canonical

morphism u, .: lim th —_—3 tUk . By adjoininess ¢ and u give

k k k
) k

rise to a commutative diagram

PRI



|_ok ® t, X] [,M\,_,X]
I
\J 1} V
[lim[-—,U‘ 1] « ¢, X] ) ]llm £t X]
_.;__9 \,‘/ ‘“{;) \)k
] ¢
for every X&€ZX . Thus o, @t is anlsomorphism iff u is and the’
category Cc, [ga§] coincides with the category CCK[ﬁ,éj of all
JK f

functors U-—>¥ which preserve the colimits in K . In order to apply
6.15 the codomains of I have to form a set. In order to obtain this

[+ g o
let U be a skeleton of U and é t U—+U an inverse to the in-

clusion I : E—#H {cf. Schubert [?b] 16. 3.4). The resulting class
[+

K of celimits (I°§)Uk = li2(10§)UU in U has the property
"k

- V. cim [
CcKLH,§] = Ccﬁ[ﬂ,zj and the éodomains of I = {oklké.K} form a set
(two colimits in K are considered equal if their index cate egories,

their diagrams and their canonical morphisme coincide). Therefore we

o
can assume without loss of &EEEE?EEEX that K = K .
If K is a set of colimits in U and X locally presentable, then

by 6.15 Cc fg,&] is locally S§-presentable for

§ = sup*{QCI, m(X), sgp(card liﬂrU,UV ], cardlﬁsUk}), card(K)+}
. Ke K s .

e ObiL iy
and a K-cocontinuous functor t : U-—X is d-presentable in
CCK[H,§] iff it is S-presentable in [H’§] , etc., (see 6.15).

Likewise if K is a class of colimits in U and X is a locall

§~neetherian category for some regular cardinal
N N
§ > sup*{zcl, m(X), card(}ﬂfzZ ), card(Mor U) }

K

and 1f 1n addition o—f;ltered Lollm]CG of monom011h13mq are monomor-

— e s gt o ——— e

phic 1n X for some o < 6 , then Cc

U,&} is lovally §-noetherian

2 or sou then Cey] i BPepienid
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etec. (see 6.15). In particular ﬂ(CCK[H,ij) is bounded by
: M +
sup{)cl, m(X), card(2 . U) }

&
The passage from K to K is essential for the above size estji=

mates of ﬂ(CCK[H,&]) . Also given U and K one may find H' and
v v .
K such that CCK[H~§~ = K'[ X] and the latter gives a better

size estimate for §&§ . For instance, let U = p~Ab.Cr. and X = Ab.Gr,

be the category of abelian p-groups and abelian groups respectively and

let K be the class of all colimits in U . Let U'¢cU be the full

subcategory of all finite p-groups and let K' ©be the class of finite
"
colimitsin U' . Then CCKLQ,§]w—:ﬁ CcK|[H‘,§1 , L[ ~%t |U' is an
&
equivalence and card(K') = card (312 5 a ) = Xb = card(Mor U') holds.
g o

Thus by the above the category of cocontinuous functors

P-Ab.Gr. —»Ab.Gr. is locally Au—noetherian. This cannot be improved.
If this category were locally finitely generated, then by [Vﬁ] 7.12
a counteble colimit ¢f monomorphisms would be again a monomorphism.
But this need be so. To show that we use the equivalence

A

p~Ab.Gr. —aCcF[p~Ab.Gr, Ab.Grf] ) X-v9@2X of 6.25 ¢) below, where
o =5

P Ab Gr. denotes the category of p-adic complete abelian groups. Then
.. m P . 2_ p 3 . .. ; .

the colimit of 2/p?2 >%Z/p "2 7Z/p Z-— ... in Ab.Gr. is the Priifer

group Z(pm) whose completion is zero, whence the colimit in

p-Ab.Gr. is zero. This shows in particular that the colimit of the

vertical non-zero monomorphlsms

id d d
®(z/p2) =y @ (2/p2) s w(z/pzy 9.,
. 2
lld P ®p -
v AV
&p 2 @ p- 3. Rp-
oz/pzy -2P) w(z/p 2) 22, e (z/p 1) -2E) ..

in CcK[p~éR.9£., éE'QE'J is zero. (Note that 6.25 c¢) was used to
show that @p- 1is a monomorphism in CcK[p~éR.§£., Ab.Gr.] although

@pp is obviously not pointwise a monomorphism, eg. (Z’/anf);x)p-n = 0.)

Remarks a) The probiem of whether the inclusion.CCK[Q,gjfiﬁg,gl has
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a right adjoint has been arcund for quite a while. Partial results
were stated without proof in Freyd Eﬁ] p. 118/119 and Freyd-
Kelly [!C];R. 170. Recently G.M. Kelly has communicated to me a
simple proof for X = Sets which makes use of the explicit descrip-
tion of colimits in Sets in an elegant way.

b) By [l3] 7.9-a category -é is locally a-presentable iff it is
equivalent with the category of & -continous functors é(af———?§££i.
The question may arise whether locally presentable categories can
also be characterized as categories of set-valued K—éocontinuous
functors (or more generally as Z-cocontinuous functors for some
class % as in 6.15). The answer is negative. Any category of the
form ch[g’ﬁfffj has a smail cogenerating subcétegory (even co-
dense [ ] 3.1) because the category Sets has one ([L3] 4.15)

and the inclusion Ccztg,ﬁgii}iib[g,ﬁgfﬁj has a right adjoint.This
shows that categories of the form' CCZ[E ’§E£EJ constitute only a

very small subclass of the class of locally presentable categories,

6.17 Cosheaves. Lei U be a small category with a pretopology =t ,

-

i.e. with each Us¢ U there is associated a set J(U) of subfunctors
of [—,U] : H?““*EEEE - called covering cribles = such ﬁhat

id[—,U]€ J(U) and for every natural transformation e [—,U']—&[—,U]
and every R&J(U) the inverse image %7—1(R) belougs to J@') .
Recall that a functor t v U—>X 1is called a t-*osheaf on U  with
values in X if for every.triple U€U , R€EJIJ(U) and X€ X the in-

clusion o : R—-%[-,U] induces a bijection

[os [e=ux1] = [-,0], [e=,x)] — [R, [e=, 5]}, ~po

or, what is equivalent by 2.lo = assuming X has colimits - the mor-
phism o ® t : R @ t*-»[—,U] @ t 1is an isomorphism for every o ,
cf. Borel-Moore [3 j, Gray [LE], Kultze [?O]n The full subcategory of

[2,&] consisting of all t-cosheaves is denoted with CshT[g,§] . Let



ZT be the set of all inclusgicns RS —,U] » Wwhere R&€ J(U) and U

runs through a skeleton of U . Then Cc 0,X] = csh_[u,x] . 1f

j b

T
is locally presentable, then CshT[H,§] is

locally S6-presentable

for § = sﬁﬁt{)c . m(X), card(:z )+, sup(card{U,U']} » ete. (see 6.15).
] T U,,U'QQ 4

Likewise if X is locally 6-noetherian and

§ > sup{j@l, m(X), card(ZT)+, card (Mor g)+} and if in addition

a-filtered colimits of monomorphisms are monomorphic in X for some

@ < 6, then Csh [U,X] is locally é-noetherian, etc. (see 6.15).

Remark Let t be a Grothendieck topology on U . Let 14 be a

pre-subtopclogy of v =~ 1i.e. JO(U)C J(U) for Ue U - which gene-

rates T . (ck. [?h] 20. 1.6). Then one can show that

Csh [U,X] = CshT [U,X] aud thus in the above estimate for ﬂ(CshTEE,§j)
T bt == = :

n.

one can therefore replace card(ZT) by card(ET ) which can be
o

much smaller. To see that the cosheaves on U with respect to T,

and <t coincide first note that every t—cosheaf is a Tscosheaf.

For the converse let ET be the closure of L. (cf. 2.10). Then by
< (4]
2,10 every 1, —cosheaf 1is ET ~cocontinuous. Moreover by [13] 2.5
0 p :

Z[ is contained in I . Hence every ZT -cocontinuous functor
[ Tf‘ O

U-—X ig a t-cosheaf,

6.18 Adjoint functors, Let A and B be categories and let

Adj(A,B) be the full subcategory of [é,g] consisting of all

L2
functors A——B admitting a right adjoint. Then Adj(é,é) is equi--
S

valent with the category whose objects are pairs A-E>§——>é of ad- -
joint functors (T = left adjoint) and whose morphisms are pairs

& E LEpTr ux S'—ﬁSd of natural transformationssubject to the usual
compatibility condition. The equivalence is given by the forgetful
functor (T,S)?f9T . Our aim is to show that Adj(A,B) 1is locally

presentable if A and B are, and to give an estimate of
T(Adj(A,B)) in terms of A and B . This is done by identifying

+

Adj(A,B) with a category of T-cocontinuous functors U—> B, where
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U is a small generating subcategory of A

We start out somewhat more generally. Let U be a small category

I be a class of morphisms in fUO3 ets) such that the codo-

e Cpeeeaaia O = ————d i ey —

and 1et

mains {ro|o€ Z} form a set. Recall that Cr[yé,gggfj denotes the

\ ) o : o
category of all ZI-continuous functors U ~—?»Sets and that C [UO,Setsi

2E B

is locally presentable if § 1is a set (ecf. 2.10, 2.11). 1In eiﬁher

case the inclusion I : CZ( Setg]——meU ,bets| has a left adjoint

L : [HO,Sets]-d CE[HO,§§££] by 2.1o0. Let A= CZ[HO,Sets] and let

X be a category with colimits. Then by 2.lo every functor t : U—X

gives rise to an adjoint pair

® c : [U°,sets]-—Xx and X -—[U°,Sets], X~ [t-,x] .

Clearly t 1is f-cocontinuvous iff Lt-,XJ o CZ[EO,Sets] for every

X&X .. Hence £~y t) « 1 induces a functor @ : Ccy[g,g]—~4Adj(é,§)

On the other hand the Yoneda embedding ¥ : HM"Q[QO,Sets] and the

left adjoint L : on,ﬁgEs]-¢C .Sets| give rise to a functor

p [o°
Y1 AdJ(A,X)—3[U,X], T~~TLY .

6.19 Lemma The functor

/

0 : ce [U,X]~Adj(8,X), t~r@ t) - T

is an equivalence and its inverse is ‘. If the representable functors

EqmaSets are X-continuous, then '»(T) = TLY is
ts]— X  for every Te Adj(4,X)

composite u -5 e [E s Set

6.20 Corollary Let A = C [U°

,Sets] with U and I as above and

let X be a locally presentable category. Then Adj(é,&) is locally

W
]

presentable. In p

ticular the category of adjoint pairs between two

locally presentable categories is itself locally presentable.

In more dctall if ) iﬁ a set, then Adj(4,X) i3 locally 6-presen-—

N

+ + 41
table for ¢ = ;gé%{jcl, m(X), sup(card do(U) , card ro(U) Lcard(E) } 5
<5

and a left adjoint T : A-—=X 1is §- presentable in Adj(A,X) %££

TLY @ U—X . fs §-presentable in [U,X] . In addition every natural

————

transformation H-—T with Te Adj(A,B) and HLY 6-presentable in




i
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U, X admits a factorization H—H'—3T such that H' has a right
2 25 o = a g

adjoint and H'LY is 6-presentable in [u,x] , cf. 6.15.

Likewise if I is a class and X is locally 6~noetheriapwfor

§ > SUP{j:I’ T(X), card(ﬂﬁz)+,vcard(Mor g)+} and if in additiqg_

a-filtered colimits of monomorphisms are again monomorphic in X “for

some o < & , then. Adj(A,X) is locally 6—noetheriah, etc. (see 6.15).

Remark If A is a locally presentable category, then the above esti-
mate for 6 vresp. m(Adj(A,X)) depends on. the presentation

Y el . . : ‘ B
A = CZ[E ,Setg] » ¢f. 2.11. The point is of course to choose a presen— -

) . + . + ) +
tation in such a way that sup(card(z) , sup{card do(U) , card ro (U) )}
e YEL

is as small as possible. If the representable functors Eqm+8ets
are I-continuous - which is often the case - then a left adjoint
T A—X is §-presentable in_Adj (P_;,X_) iff its "restriction" on I_]_ is

§-presentable in [E,&] .

Proof of the lemma If the representable functors [—,U] » Lel ,

are I-continuous, then the assertion follows from 6.!8 and the well
known fact (due to Kan[l47]) that the Kan extension
[H,&]“—ﬁAdj([go,EEEEJ, X), t~>t ® 1is’ an equivalence (cf. [i?] § 2).
So we basically have to deal with the. (techmical) complication that
the representable functors need not be L-continuous, Let T : A-—X
be a functor with a right adjoint. The I=-cocontinuity of the functor

t = TLY results from the diagram

it
n

[ro, [v-,15x]] ¥ [ro, 18x]

[rc,[t—,X]]

[ro, [TLY-,X]]

[0, [e-,%]] | [0,15%]

ne

[do, [t-,x]] = [do, [TLY-,X]] [do, [v-,15x]] % [do,15%]

~

where oe¢I , X€X , in which [o,ISX] is & bijection because §X

is I-continuous. We show that there are natural isomorphisms
! v o v . =
(q—@)(t) = t and (@4f)(T) = T . Recall that the closure 3% of ¥

Ll

] . - . o Mo .
-consists of all morphisms & in [g s Sets such that Lp,F] 1s a
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bijection for every Féng[HO,Setsj and that a functor ¢t : U—X is
S~cocontinuous i1ff it is E—cocontinuous (cf. 2.10)., Then for every

U&€ U the canonical morphism Tyt [—,U]-—%&L[“,U] belongs to % - bhe-

cause for every V¥e¢ szgo,Séts] the map
[tg:F] : [[-,v] , ¥] — [1L[-,0] , ¥]

is bijeqtive. (Notg [IL[‘,U], F] = [L[—,U], F] - [E—,U], F].) Hence

for every Ue€ U and every I-cocontinuous functor t ¢ U-—X the
morphism Ty ® t [—,U] & t~_ﬁIL[~,U] D t is an-isomorphism. Since
IL[-,U] ® t = ((@t)'I-L-Y>(U) and the composite
o~ T, @ t
tv = [-,u] gt _Jl—m—‘) L[-,u] ® t
is natural in U , we obtain ¢t = ()« I.L+Y = (H*@)(t) . Second if

T : A—X has a right adjoint S , then so does TL : [Ho,Sets}——9§ "

namely IS . If t = TLY , then by 2.1o0 the right adjoint of & t 1is

the functor X——a[go,ﬁg£i],X‘~“%[TLY—,X] R B§ adjointness the latter
r

is isomorphic with IS . Hence TL & ® t which implies

(@) Ty = BCLY) = §¢e) = @ e)» 1 ¥ TLT ¥ 7

6.21 Generalizations to topological and additive categories. In view

of the work of Wischnewsky E?S], Ertel-Schubetrt [L]J

Wyler [37] and others, the assertions in 6.15%, 6.16, 6.17 and 6.20 can
be gemwralized to the situation, where X is.replaced by a topological
category over a locally presentable category. Note fhat in 6.14, 6.18

and 6.19 it was only assumed that X has colimits. In more detail let
U. be a small category and I . a class of morphisms in [20,53521

such that the codomains {rc]ag‘z} form a set, Moreover let F : g—9§
be an initial structure functor, where X is locally presentable, cf.
Hoffmann [18], Wyler [%9], Wischnewsky [35]. Then by Wischnewsky [35]

2.13, 2.22, 2.23

, ce, [u,¥] — e, [U,X], t~o%-¢
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is again an initial structure functor and by 6.15 CCZ[H’KJ is lo-~
cally presentable. Hence all of Wischnewsky's assertions in [3@] 2.13-
2.24 and elsewhere apply, in particular Cczfi,g] has limits, dense
generators and the jnclusion Ccz[g,gj‘gi[g,g] has a right adjoint, etc.

In particular the functor Adj(CZ[HO,Sets]{ g)-"ﬁfg,gj, T~»TLY , is

full and faithful and has a right adjoint.

-.The assertions in 2.1o0, 2.11, 6.14 -~ 6.2c can also be formulated
in the additive case. For this assume that the categories A,B.. .,
U,X,... are additive (or preadditive) and that all functors are addi-
tive. If the category Sets of sets is replacded by the category Ab.Gr,
of abelian groups and if [E,é], [QSAE'EE'] etc., denote the categories
of additive functors, then there is an additive bifunctor
;I [EO’§£'9£°] X ig,§]f9 X with the same properties as in 2.lo, 2.11
and 6.]4..(Note that in 6.14 the additive gereralized representable
functors are composites of the form X [U,“] H H“—>éh'§£'”“>§ s Where
X@ 1is the left adjoint of [X,-] ¢ X-—Ab.Gr.) . With these modifica-
tions all assertions in 6.14 - 6.20 hold also in the additive case.
If there is danger of confusion we dénote ‘the category of additive
functors U-—X with [g,§]+ in order to distinguish it from the cate-

gOry [U,E] of all functors U-—X .

6.22 Closure properties of Adj (A,B), Whereas- Adj(A,B) is locally pre-

5, s
sentable provided A and B are (6.20), there is no corresponding

assertion for topoi or Grothendieck categories. Likewise if X 1is a

topos or a Grothendieck category, then Ccz[g,zj need not be so, not

~

even when I is given by aGrothendieck topolcgy on U (cf 6.25 ¢)).

-

The following definition is "designed to rectify" this, at least in the
additive case. Tt is motivated by Lazard's [22] characterization of

flat modules as filtered colimits of finitely generated free modules.

6.23 Definition A class ' & of morphisms igii[go

,§ptsl s U ﬁmal},

is called flat if the dodomains {ro|o€ 2} form 2 set and do and
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ro are filtered colimits of representable functors for every oez .

A category A is called flat if there ig a small category U and a

flat class I "of morgbisqé in

i

[U°,sets] such that A ¥ Cy [U°, sets]
In the additive case (6.21) flat classes and flat additive categories

are defined likewise.

.This is obviously somewhat an ad hoc definition and it raises

many questions. We limit ourselves to the following.

6.24 Corollary Let A be a flat category and let ¥ be a flat class

e — — mr——— e —e — — —— —

of morphisns in [U°,Sets] , whre U is a small category. If X is a

topos (resp. a Grothendieck category), then so are Ccz[g,§] and

Adj (A,X)

Likgﬂiﬁg, if A and I are flat additive, then Adj(A,X) and

CCEEE,§J+ are Grothendieck categories, provided X 1is.

Proof We limit ourselves to the non-additive case, the proof for the
additive case is similar. Let X be a topos (resp. a Grothendieck cate-
gory) and let I be a flat class in LHO=§EEEJ . Glearly CCZEE,KJ

is closed in [H’KJ- under colimits. Since do and ro are filtered
colimits of representable functors for every’ o€ and X 1is a topos
(resp. a Grothendieck category), one readily sees that the functors

do & : [H)ﬁj——)ﬁ and ro & : [y)ﬁj———~)§_ preserve finite limits.
Hence CCZ[E’E] is closed in Eg,&] under finite limits and by

6.15 it is locally presentable. If X is a Grothendieck category,
then so6 1is [g,g] and therefore, by the above, tﬁe same holds for
QCZ[E,§] . On Fhe other Pand, if X islg topos, theg gb #sﬁ [E,ﬁ} >

and ‘it follows from the above and Giraud's characterization of topoi

(cf [13] 12.13 a) - d)) that Ccz[g,g] is again a topos.

6.25 Examples df categories Adj(A,X).

6.25 a) Let U be a small category with a pretopology t (resp’. with

. A ) o
a class K Jf colimits). Then by 6.19 the category AdJ(ShT[HO,SetSJ,é)
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of adjoint functors between the category of set valued sheaves on the
site (U,1) and a cocomplete category X is equivalent with the
category CshT[g,§] of T—coshéaves on U with values in X . Likewise
the category Adj(CK[HO,ggﬁgjtﬁ) of adjoint functors between the cate-=
gory of K~limits preserving functors gg—+§g£§ and a cocomplete cate-
gory X is equivalent with the category of K-cocontinuous functors

U-—X .

6.25 b) Grothendieck categories, We give a.description of Adj(A,X)

for Grothendieck categories A and X 1in terms of those objects in
X which are uniquely divisible by all covering right ideals of the

endomorphism ring of a generater‘'in A . We start out somewhat more

!

generally.

Ui . ) 5 i
Let A be a ring and * a set of right ideals in 4L . Let X be a

Grothendieck category and AE the category of left A-objects in X .
~7
An object X{AX is called uniquely divisible by < if for every I€&X

Voo d
the evaluation Ixhxw—ix is an isomorphism . Let dk& denote the

.X consisting of all uniquely k?tdivisible ob--

il

full subcategory of

jects. Dually a module Y& ModA is caliled }?iclosed’(cf. Gabriel [I;l,

- = . (ol - . . o - h . .
Stenstron [ifJ p. 37) if for every I¢¢ the restriction [A,YJ—&LI,YJ

v

is an isomorphism. Let (Mod,)rp’ denote the. . full subcategory of
mEl 2S00 %

- . N’ . .
ModA consisting of all ¢“-closed modules. By 6.2 the inclusion
C a‘ . . N
(Mod Qf——éMod hasAleft adjoint *-loc : Mod

—_— a ‘ ; .
'A)u A .=_ ,(Mod‘A)@; called 1o

A

calization at ér . In particular (ModA)&j is locally &-presentable
o~

for & = suﬁfﬂ(l) . In general V¥ ~loc is not exact unless & is a

1Ed
pretopology, cf. 6.17 and |[30] 22. Let I be the set of all inclu-

sions I CA for IéWﬁﬂ If- {A} denotes the full subcategory of Mod,

2oLy

whose only object is A , then theré are canonical isomorphisms

[{#}°PP,ab.cr.] = Moa, , ¢ [{a}°PP,ab.0x.] = (Mod )y, [{a},x] % X

and Ccz[{A},§J

it

\ﬁhi . Together with the functor % from 6.18 they

give rise to a diagram



§ 6 =-25-

B r opp G4 . G &
4aj(c; [1a}°PP, ab.cx.],%) - > cey [{n},x]
e 4
!
. et e e i e s el i
adj ((tod, )z, x ) 5 > Fx
“and one readily checks by means of 6.19 that the composite ' is the

funetor T'VQ(ngtloc)(A) and that its inverse assigns to an object

A
that Adj{ (Mod,K v, X} is locally S-presentable for
il SN NS D —_= = s —

b4 EAE the restriction of @,X onto (ModAJ%‘ . From 6.20 it follows

1A + Y+
6 = sup{lﬂl,n(g),card(A) ,card (§) } , and a functor T : (MOdA%V““_)E
admitting a right adjoint is S-presentable in Adj((Modeg X> i
= ol by —r
(T~§110c)(A) is 6~presentable in A§ , etc. see 6.15,

Now let A be a Grothendieck category. Let U&e A Dbe a generator and
A = [U,U] its endomerphism ring. Let (£ be the filter of all right
ideals IC A which cover U 1in the sense that U = gzéim Y , where
im vy denotes the image of vy : U--—»U . Then it foilows from -Gabriel-

Popecscu [11] (see also EEG] (6)) that the functor é——»(gggf%g, Aﬁé[",A}
) L

is an equivalence. This together with the above yields that the functhI

Adj (A, X)— @“\x, T ~~>TU
osta PR

N
is an equivalence for every g;othegdieck category X . In addition

Adj(A,X) is locally S8-presentable for

§ = sup{)f], (XD, card(?ﬁ+, card(Af}, etc (see 6.15).

6.25 ¢) 1In the above case Adj(A,X) was described in terms of divi-—

sible objects in X . In the following we give a rather special example

of a Grothendieck category A such that Adj(A,X) can be described
in terms of complete objects in X . The details are somewhat involved

and have nothing to do with what has been done above. Instead they

center around the conditon of Mittag-Leffler.
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Fet R be a commutative ring and KECR an ideal. Let L%-ggiR be the
full subcategory of EBER consisting of all modules A such that every
cyclic submodule (a) is a quotient of R/9:" for some n > I depeﬁ—
ding on a € A . In analogy to the category of abelian p-groups we call
ﬁl—gggR the category of Z.-modules. Clearly,ﬁrggiR is a Grothendieck ca-
tegory with {R,ﬂ;,;RL%,Z,...} as a set of generators, and thus by the
special adjcint functor theorem every cocontintous functor,oa-yggkw——ﬁé

has a right adjoint. In particular the right adjoint of the inclusion

i 0L-ModR——a MEEP assigns to an R-module the largest ,Z%~submodule.
Let X bea Grothendieck cafregory and KR the category of R-objects:
in X . Ap object X# §R is called /»-adic complete if the canonical
. " LV . ' . . Y . .
morphism X~ )éigrx/;@ X 1s an isomorphism, where X 1is the image
\
. ] . v . y

of the evaluation morphism ¢ ERX ————— 2 X and the trausition morphisms

v+l oV . ; : v+l Y i
X/ X——-=>X/J. "X are given by the inclusions & TN S Let,Oa—&R
denote the full subcategory of ER of all /% -adic complete objects.

. . ' ,-/\

Note that even in general the inclusion LE‘&R‘*_ﬁ ER need not have a

left adjoint.

Then the fuwnctors

P

9 ¢ AdJ(2-Modp, X)——3 =X, T---> lim T(R/0Y)
i et — — 4{—.-—._

v
and

e

W L -Xg ——> AdS(L2-Mody,X), X

7 (@pX) - I

are well defined and -inverse equivalences provided either <% is finitely

v . e . ¥ C
generated and R/.z 1s artinian for v > | or , % 1s & principal

ideal generated by a non zero divisor. Moreover the inclusion
. , . ' . 5V
'Oz—éRﬂhj’ﬁR has a left adjoint, namely X~21lim X/4-.° , and
v
Adj(f&—@ggR, &f is 1 cally sup(l?l,ﬂ(é))—presentable (EEERJ locally

— i

. . . v
Sup(}fl,e(g))—generated). Note that if R 1is noetherian, then R/{L
is artinian for vy > 1 iff the associated prime ideals of .0u are

maximal.
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Proof We limit ourselveSto the case X = Ab.Gr. and give an outline

for the modifications in the general case at the end. Note that

A A

ER = ModR and ’ﬁL—ﬁR = éE—Mch

We first show that ¢ and Q are well defined. For % this is obvious

because the inclusion I : AﬁhModR ~—9ModR preserves colimits. As for

 let T : LQ—ESQR‘-aéE'EE' be a functor with a right adjoint. Since
T is additive, for every . -module A the map R——%[TA,TAJ,r~9TrI,
makes TA into a R-mecdule. This gives rise to a factorization of T
through the forgetful functor V : ggﬂ “«9éﬁ.§£. , and thus

QIT) = %ig T(Rﬂaf) is a R-module which is obviously functorial in T
It will §e shown below that %EE'TR/ay is 4p-adic complete.

v
A~ . . )
If XelarModR , then there are canonical 1somorphisms

N : - Ve N . v ~ .
X »xalim X/ X —==3 l}m (R/Qi ®y X) , whence Q¥WX) = X 1is a natural
equivalence in X . The converse - 1i.e. YQ(T) = T for every T
admitting a right adjoint ~ is more involved.
Since every rmmodule is in a canonical way a colimit of copies of

R & R (cf rA“] .5 b)), it follows that every X exl-ModR is a co-

limit of copies of RL@ ® Rﬁ@ for n, m = 1, 2... Hence two colimit

preserving functors F and F' on AB—MQQR are isomorphic iff for

2

every mn > 1 there is an isomorphism F(haq) F'(RA%?) which 1is

natural in R/ﬂ? . We will show that for every cocontinuous functor

T :[Q—ModR—~§AE=§£, and every n > 1 there 1is an isomorphism

gn : T(Rﬁzn) ;;_QRAQH @R 1im TR/af which is natural in RLmP and
v

T and such that the canonical projection gim T(R/@?)-9T(Rhgp)

is the eompoqlte of the canonlcal morphlsm
11m T(R/ﬂ )«-ﬁRL@, % 11m (RL@,) with E_] . The latter implies that
(—v—- h
-éig T(RIEY is” - ad1c ‘complete. Assume £F iéhfiﬁiteiy.generEEed and
5 .
)

let (a
ke In

K bec a set of generators of & . Let f : IR —R  be

. . . . n . .
the homomorphism whose restriction onkthe k-th summand 1s multipli- .

cation with a - For every v > n £ induces a morphism
! L]
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The exact sequence l.l_R -f——} R —)R/ULn—-)O
I

0 0 + . ) .
and the filtration c .1‘3\) lc: ,{,"7:) Covv o nC R fgllve rise to commutative
a,
diagrams
0 0 0
!
| \, |
v == ker fn+i 3 o 3 ker o] TR V] ker fn = %R/&
c dlp, IU P
S O +1 -t n n
(*) oo -.—) JTL- R[672n+1' _;Eﬂ.._".__l._.-) . .__._9 -:I[J.R /Oz',n bl ey _:!:_L R/U?,
n n n
0
Vn+i Y oa+l nv n
n
vy e BT 3 y £ ln — ale = 0
V \)
0 0
0 0 Q
A\ 4 \\'g 4/ qn
M N o 4
Ji.n /0’/7“ . Qrw_f.-'i ,C?.n /L.L’“-t-q .. -,6:}1 Jifbtt ey 07‘“/&"
Wit ‘
) / . . / .. , = 0
A | dne fiet A oA | da g dn
! | J
. L n+1i . \ *
(**) "“_nf\]l /71 3 ._._Pm-p 4. - R/C_Lﬁ:rt-4 N 311, - s T R/m,”“ . . R/G’]_,"‘
Sn+d Srnes-4 $iirg S
: ! J
n n n n
R/:(JZ R/&? (Ex) R/,&& R/OL
L v A\
0 0



where p s & . 5, B .. 4 3 .. , and op . denote the

> 4 n+i n+i

n+i~-1I n+i-|

.)) denote the image

obvious canonical morphisms. Let im(T(ker £

of T(ker-fn+i)f—9T(LL RA%n+l) . It suffices to show that the induced
: I

. ., n .
Ssequences 1n the i1nverse limit

@x#)  0—>lim im(T(ker fn+i))*--—-)<_1_%_tg T(_ll_,lR/&n+l)

slim T /e 0
1 P

L
n

.

n+i . +1
n 1) “-—%%im_T(Rﬁ%n 1

) — R/ — 530
) )

. n
D) ;1m T /o
i
are exact. For then the composite of (x) and (&x»x)

. lim T(f
CJim TRy I n
: "1_"1 T

. ) :
+ .
s lim T(R/MTH

n ;
(_1_ ) /‘R/Db /‘O

is also exact and from the commutative diagram with exact rows

. = i +1 = . ; +1
dlrye, 1inm T(R/G") ——— Lllin T(R/e"Y) === 1in TULRAE"T)
n v n i i~ "D
fo id RS ~im TE .
R N ( k)K(:Ih ! ‘ &l/.-/ 5 n+1
. L. - V. = ez N 1 £ B
R&R Ltm T(R/p ) «— é;m T (R /o )
n + o, v b n
R/ ®, }lE.T(RA% ) T(R/g )
. v
N2 X2
O 0 L
e e
it follows that there is an isomorphism
.En s T(Rﬂ?n);—:;;R/&F.wﬁ }im T(R/a>) ' which is natural in T

v B

“One 'réadily checks that. gﬁ has "the two-properties medHtioned d@bove', ™

. . . n .
as for the naturality in R/~2 note that a homomorphism

g Rﬁnn——%Rkhp can be decomposed into Rﬁnn__ig R /o —5329 R&%m

. . n Tre n .
for some rgR if n > m resp. into Rhmm —5339 R/oz ———> R/ if

m > n , where can denotes the canonical projection. This completes
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the proof modulo the exactness of @#*#) and (3 #a¢)

As for the exactness of (#*¥%) note that by the first assumption on ¢z

. .. . n+i
ker fn+i 18 a submodule of the artinian module &L Ripm . Hence.
i n

the system (ker fﬁ+i) satisfies the condition of Mittag-Leffler.

i1éN

Since T ©preserves epimorphisms the system (T(ker f also

n+i»i€lN
satisfies Mittag~Leffier and thus the same holds for its image -
(im T(ker fn+i))i€WN - Therefore applying the vight exact functor T

to the diagram (%) and passing to the limit vields the exactness of

(#%x%). On the other hand, if 4 = (a) and aecR 1is not a zero divi-

sor, one can chose In = {a“} . Then

ker fn+i = ker ((R/an lR)~———-—)R/ i R) ¥ R/z™ and the morphism
ker fn+i —3ker foai-1 induced by

P_,. (R/an+lR)~—¢(R/an+l_lR) can be identified with

n+i
\Y

R/anR-—E;)R/anR . Since R/a"R _E;L9R/anR is zero for v > n ,
the system (ker fn+i)i€IN satisfies the condition of Mittag-Leffler
trivially and one proceeds as in the first case.

For the exactness of (¥*¥ it suffices to show that the transition

morphisms of the systems

tee > der (i ) -—>ker (T] )= —ker (i) = 0

n+i—~i

b ——-9ker(Tpn+i)-~—+ker(Tp )———9w-~——$ker(Tpn) = T(R/mp)

n+i-1

induced by diagram (##) are epimorphisms., For thé latter this is

obvious because by (»*) it is an epimorphic image of the system

n+i Qn+i-1 n+i-1

T
— T Ty —PRITL Ry )—— o T (™ ™)

whose transition morphism are epimorphic. (Note tnat_ T 1is rlght
exact ) For the. former thlS requires some diagram cha31ng on the

diagram (cf. (ex))
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Mom—— ker T L Y e e = ker (Tj .. ;) ———3-c.
0 N
ey Tz;nﬂln+i) . nqn+i—1) ; T(@n/;%+i-l) N
1€&QLJ? 3
T&kn+i“V€;Hi) Ti i TGpei-1)
%iz:f\ﬂ T;%ﬂhnil) _A_“an*l 1\ , T(RA4P+1 1)_______9 D

For x¢€ ker T(jn+i—l) there is an element Ve T A@n-l) which is

mapped onto x by the epimorphism T(q ). The aim is to find oun

n+i-4

). Since

veE ker T(Jn+i) théh 1s also mapped onté x under T(qn+i4

-T(Jn+1_l)x = 0 , the image ¥ = T(Jn+i)y IlS in the kernel of
vio ‘ .
Tk . ) ¢ TR — 1@ Y L sinee
n+i-—1
n+i+1, n+i Ba+i n+i Ph+i-1 n+i-1
2 I ey Rfn ——  Rin —0

. n+i-=1 n+i
1s exact and T is right exact, there is an element =z e T (% (o7 )

which is mapped by T(Bn+i) onto y . On the other hand the composite

n+i-1 n+1 T(un+i) n, n+i T(qn+i_1) n, n+i-}
T@M TRty B, g R Rt ——ntis 5@t et
is zero, whence the image of y = T(an+])(z) under
T (q S I T(az,n/a;m'l)——w—} T (& /pn i- 1) is also®™ x . But
n+1-=1 . ' .
T(J n+l)(y = T(o n+1)(£) =y = T(Bn+i)(z) =y -y =0 which shows

that y =y - T(an+i)(z) is in ker T(Jn4i) . Hence

‘ker.$(jh+i)-ﬁf%ker.T(j-s ) +is surjective which completes the proof:

n+i-=1

_of the exactness of @***) Note that for the exaaness of @*ﬁﬂ none

““ . L) Fi 2 ‘e EREERET

of the condltlonson A was used.
The generalization to Grothendieck categories is straight forward
and requires only the exactiness of (¥x*#*) and (+%%). The diagram

g
=]

chasing for «(¥%t» can be done in any abelian category and by Roos [2¢1“
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the functor 1lim preserves the exactness of sequences

O——é(A Tk —>(A.). ——3(A."), —>0 in Grothendieck categories

1C N i‘ie N 1 1€ N

provided the transition morphismsof (Ai');f

iemnw @are epimorphic. Thus

the sequence (#*»¥%) is exact without any coadition on 2 . The above
result of Roos also implies that Mittag-Leffler holds in Grothendieck
categories so that the proof for the exactness of (##x) goes thruugh "
without change.

P

It remains to show that the inclusion ZY-ER-—%ﬁR

and that Adj (- Mod. r* X) is locally sup(}a],W(z})—presentable.

has a left adjoint

. N /.\
For § = sup(jfl,w(ﬁ)) the inclusion I :AE5§R——}§R Preserves

§~filtered colimits and in ER §~filtered colimite commute with

6-limits. To see the former let X = lig Xu be a 6-filtered colimit
U
in ER of 4i~adic ccmplete objects XU . Then the composite

lim X <= ]1m(llm }\ /w X ) lim(lin} X /az,lX ) = llm(llm X /,01. lim X )
? u —11—‘) _i_ —u"i M H l U U M

is the canonical ma P from 1lim XU to its 4z-adic completion, whence

u N\
¢ . N . Sy s ’, 4 o 2 - — -
11% Xu 1s £ -adic complete and i?étlnclu51on I : & gR >§R Pre
ho
serves §-filtered colimits. (Notethis holds for 'any ideal <z€R .)
. i . . =
The functor X —~>§P R er?éig X/t3"X has its value in ZQ_§R be -
i
cause
. ; El
Q(XRX) dim X/o0X
i

K - .
is, as shown above, A7-adic complete. Thus by.the universal property
A ; '

of L%E X&» the functor L :/?R—Q%Q—KR s Xfmwl%gknix is left
adjoint to the inclusion T : £2-§R ——%§R . Since T(X) = W(XR) it
- follows from LLU —] [U I- ] s Where U(‘XR rand - w(U) < & , that
0fAXR is locally §- presentable ?hus ?hg ggme-bo}ds“fo;"'
Adj(ﬁl—MOd -;)‘-becausel it is equivalent with égth . In the same
way one can show that Adj(&L—gggR,ﬁ) is lecally sup()fl,ﬂ(z))—

U
generated.
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List of Symbols

a) non alphabetical

[%,Y]
[, B]

A(a)

X()

el

b) alphabetical

Adj(A,B)

ﬂL—ModR

BialgM R(é)
H

A-Bialg

BlmodH

set of movphisms X —3Y
category of functors A —3B

full subcategory of a category A consisting

of all a-presentable objects

full subcategory of a category A consisting

of all oa-generated objects.

closure of a class I of morphisms

full subcategory of a category A consisting
of all objects X€A such that T(o,X) is an
isomorphism for every oE¢€ L , where

T :Bx A —>C 1is a given bifunctor and I

a class of morphisms in B

category of all G-coalgebras in A for some

cotriple @G

category of all T -algebras in A for some

triple T

category of left A-objects in A

category of all functors A — B admitting a
right adjoint

full subcategory of ModR consisting of all

R-modules A such that every cyclic submodule

(a) 1s a quotient of R/O(n for some n > 1

depending on a

category of bialgebras in A with respect to

operations M and relations R

category of bialgebras over a commutative

ring A

category of bimodules over a bialgebra H



Cz [H’.&]

Ccz [g’ij

Cocont[é,g]

ComodC

Comp

Csh  [U,X]

Da,m,R)

Desc(§ )

e (A)
e (A)

e(F)

category of small categories
cardinality of a set S

category of A-coalgebras over a commutative

ring A

full subcategory of [g,&] consisting of all

I=-continuous functors

full subcategory of [E,&] consisting of all

I-cocontinuous functors

category of all cocontinuous functors A — B’
category of right comodules ‘'over a coalgebra C
category of compact spaces

category of all X-valued Tt-cosheaves on a

site (U,T1)

category of factorizations U i, U, 15 A

of a morphism U—f—)A

category of bialgebras over a pre-bialgebra
(A,M) whose underlying object in A is

Y-presentable

category of bialgebras over a bialgebra (A,M,R)

whose underlying object in A is y-presentable

category of descent data with respect to a

fibration ¥ and a morphism o S,—> S in

the base

generation rank of an object A
generation rank of a category A
generation rank of a functor F

class of all functors which are domain or co-
domain of a given class of operations and

relations

subclass of all functors of F which are the

codomain of either an operation or a relation

subclass of all functors of F which are the

domain of either an operation or a relation

4.26

3.18



Hom, (B, E)

HomcartB(E,E)

m(A)
T (A)
1 (F)

P—BialgM(A)

rankz(T)

rankM(T)

fibre over an object with respect to a

fibration GF

full subcategory of A£ consisting of all
uniquely % -divisible objects for a filter ¥

of right ideals an.. A

category of sections with respect to a

fibration p : E—B

full subcategory of HomB(E,E) consisting of all
cartesian closed sections with respect to a

fibration

full subcategory of Mod

S
@'-clged modules

A donsisting of all

presentation rank of an object A
presentation rank of a category A
presentation rank of a functor F

category of pre-—bialgebras in A with respect

to M

least cardinal & 2 w(A) such that for every
ocel and every  m(A)-presentable object
Ue A the objects T(do,U) and T(ro,U) are

§ presentable

likewise

6.4



algebras over a triple

bialgebra

- , pre~bialgebra

- , sub-bialgebra

bialgebra over a

commutative ring

bimodules over a

A-bialgebra

category

- of adjoint functors

- of bialgebras

- of pre-bialgebras
- flat

- a-filtered

~ Grothendieck

- locally generated

-~ locally oa-generated
- locally +y-noetherian
= locally presentable

- locally o-presentable
closed class of morphisms

coalgebra
- over a commutative ring
- over a cotriple

- universal
coalgebraic operation

L-cocontinuous

comodule over a A-coalgebra
L-continuous

cosheaves

Index

4.13, 3.24 b)

3.1, 3.2, 3.3, 3.4, 3.5,3.6, 3.7, 3.8,

3.9, 3.11, 3.22, 3.23,

3.28

3.1, 3.2 1)

3.21, 3.22, 3.23

3.26, 4.4, 4.5, 4.6

4.9

6.18, 6.19, 6.20, 6.21,
6.25 a), b), c)

3.1

3.1

6.23, 6.24

2.1

3.25, 4.11, 4.12, 4.16,
2.4

2.3

3.21, 3.22, 3.23

2.4

2.3

2.10

4.3

4b.lo, 4,11, 4.12, 3.24

4,2

3.2 1II)

2,l0, 6.14, 6,15, 6.16,
6.21, 6.22, 6.24

4.8

2.lo0, 6.14

6.17, 6.25 a)

3.24,

4,22,

3.25,3.27,

6.24, 6.25 b)



decomposition of a data for

bialgebras

descent datum

- effective

donnees de recollement

a-filtered
Yy—-flat set valued functor

flat class of morphisms

generation rank
- of a functor

- of an object
a~generated

generator

Hopfalgebra over a

commutative ring

morphism
- pre—-bialgebra

- bialgebra

operation
- algebraic

- coalgebraic

pre-bialgebra
o-presentable

presentation rank
- 6f a functor

- of an object
pProp
pure

T-pure

relation

3.27, 3.28, 3.29, 4.6, 4.9

3.2 II1I d4), 4.
.18

14, 4. 17,

o~

3.2 III d), 4.14

3.26, 4.4, 4.5, 4.6

11),
11),

3.27,
3.27,

3.28, 4.7
3.28, 4.7

3.2 I)

§ 5 Introd., 5.2, 5.3, 5.6 d)

5.4, 5.5, 5.6 ¢), 6.8 a), 6.11,

.18



sections with respect to a
fibration

- cartesian closed
sub-bialgebra

support of operations

and relations

topos



