
On Intuitionistic Linear Logic

G.M. Bierman

Wolfson College, Cambridge.

A dissertation submitted to the University of Cambridge

towards the degree of Doctor of Philosophy

December 1993

Revised for Publication: August 1994

c© G.M. Bierman, 1994.

Summary

In this thesis we carry out a detailed study of the (propositional) intuitionistic fragment of Girard’s
linear logic (ILL). Firstly we give sequent calculus, natural deduction and axiomatic formulations of
ILL. In particular our natural deduction is different from others and has important properties, such
as closure under substitution, which others lack. We also study the process of reduction in all three
logical formulations, including a detailed proof of cut elimination. Finally, we consider translations
between Intuitionistic Logic (IL) and ILL.

We then consider the linear term calculus, which arises from applying the Curry-Howard corre-
spondence to the natural deduction formulation. We show how the various proof theoretic formula-
tions suggest reductions at the level of terms. The properties of strong normalization and confluence
are proved for these reduction rules. We also consider mappings between the extended λ-calculus
and the linear term calculus.

Next we consider a categorical model for ILL. We show how by considering the linear term cal-
culus as an equational logic, we can derive a model: a Linear category. We consider two alternative
models: firstly, one due to Seely and then one due to Lafont. Surprisingly, we find that Seely’s
model is not sound, in that equal terms are not modelled with equal morphisms. We show how after
adapting Seely’s model (by viewing it in a more abstract setting) it becomes a particular instance
of a linear category. We show how Lafont’s model can also be seen as another particular instance
of a linear category. Finally we consider various categories of coalgebras, whose construction can be
seen as a categorical equivalent of the translation of IL into ILL.

i

ii

Declaration

This dissertation is the result of my own work and except where otherwise stated includes nothing
which is the outcome of work done in collaboration. This dissertation is not substantially the same as
any other that I have submitted for a degree, diploma or other qualification at any other university.

iii

iv

Acknowledgements

Firstly, and above all, I should like to thank Valeria de Paiva. Without her guidance and help this
thesis would never have been written. I cannot think of a time when she was not willing to discuss
my work. In particular, her mathematical expertise has been a source of inspiration. It has also
been my good fortune to work with Martin Hyland on some of the matters in this thesis and I have
benefited from his unique insight and generous assistance. I have discussed with Nick Benton many
matters of theoretical computer science and most of the contents of this thesis. I have learnt a great
deal from him. Alan Mycroft has offered much sound advice and encouragement.

I have also benefited from discussions with (amongst others) Torben Brauner, Paul Curzon,
Francis Davey, Barney Hilken, Ian Mackie, Luke Ong, Andy Pitts, Eike Ritter, Harold Schellinx,
Ian Stark, Anne Troelstra and Phil Wadler.

I should also like to thank Nick, Paul, Martin, Valeria and Eike for commenting on various
drafts of this work and making many helpful suggestions. In particular, Nick made some insightful
comments on some of the categorical work. I have used Paul Taylor’s TEX macros and Vaughan
Pratt’s ‘Par’ macro in preparing this thesis.

In November 1992 I was invited to spend a week at Århus University. I learnt a great deal from
this visit and it shaped this thesis. I should like to thank Glynn Winskel for inviting me and Torben
Brauner and Bettina Blaaberg for their hospitality.

I have received financial support from SERC, Wolfson College, the Computer Laboratory, the
Cambridge Philosophical Society and from the CLiCS BRA. I am grateful to these bodies for their
support.

Finally I should like to thank my parents and Cathy Head for their love and support.

Preface to Technical Report Version.
This technical report is a revised version of my thesis, submitted in December 1993 and examined

in April 1994. I am grateful to my examiners, Dr A.M. Pitts and Prof. G.D. Plotkin, for their helpful
comments and useful suggestions on this work. Any mistakes that remain are my sole responsibility.

v

vi

vii

This thesis is dedicated to the
memory of my father:

Ivor Bierman.

viii

Contents

1 Introduction 1
1 Background . 1
2 Overview of Logical Systems and The Curry-Howard Correspondence 2
3 Overview of Linear Logic . 4
4 Outline of Thesis . 4
5 Results . 5
6 Prerequisites and Notation . 6

2 Proof Theory 7
1 Sequent Calculus . 7

1.1 Cut Elimination . 10
1.2 Cut Elimination and The Additive Units . 22
1.3 Subformula Property . 23

2 Natural Deduction . 23
2.1 β-Reductions . 29
2.2 Subformula Property and Commuting Conversions 33

3 Axiomatic Formulation . 39
4 Comparisons . 42

4.1 From Sequent Calculus to Natural Deduction 42
4.2 From Natural Deduction to Sequent Calculus 46
4.3 From Natural Deduction to Axiomatic . 50
4.4 From Axiomatic to Natural Deduction . 55
4.5 Properties of the translations . 57

5 Translations . 58

3 Term Assignment 67
1 The Curry-Howard Correspondence . 67

1.1 Comparison with Existing Syntax . 71
1.2 An Additional Equality . 71

2 Term Assignment for Sequent Calculus . 71
3 Linear Combinatory Logic . 73
4 Reduction Rules . 76

4.1 Normalization . 76
4.2 Commuting Conversions . 77
4.3 Cut Elimination . 77

5 Properties of Reduction Rules . 88
5.1 Candidates for the Linear Term Calculus . 88
5.2 Strong Normalization and Confluence . 95

6 Compilation into Linear Combinators . 99
7 Translations . 102

4 Categorical Analysis 105
1 Linear Equational Logic . 105

1.1 Signatures, Theories and Judgements . 105
2 Categorical Semantics for Linear Equational Logic 106
3 Analysing the Linear Term Calculus . 108

3.1 Preliminaries . 109
3.2 Analysis . 111

ix

x Contents

4 The Model for Intuitionistic Linear Logic . 140
5 An Example Linear Category . 150

5.1 The Category Doms . 151
6 Comparison: Seely’s Model . 151
7 Comparison: Lafont’s Model . 162
8 Translations . 170

5 Conclusions and Further Work 179
1 Summary of Thesis . 179
2 An Alternative Natural Deduction Presentation . 179
3 Classical Linear Logic . 182
4 Further Work . 184

4.1 Further Categorical Analysis . 184
4.2 Applications to Functional Programming . 184
4.3 Quantifiers . 185
4.4 Intuitionistic Modal Logics . 185

Bibliography 187

List of Figures

2.1 Sequent Calculus Formulation of ILL . 9
2.2 Natural Deduction Formulation of ILL . 28
2.3 Natural Deduction Formulation of ILL in Sequent-Style 30
2.4 Axiomatic Formulation of ILL . 40
2.5 Natural Deduction Formulation of IL . 58
2.6 Axiomatic Formulation of IL . 65

3.1 Term Assignment for Natural Deduction Formulation of ILL. 68
3.2 Term Assignment for Sequent Calculus Formulation of ILL 72
3.3 Sequent Term Assignment for ILL . 74
3.4 Combinatory Formulation of ILL . 75
3.5 Variable Abstraction . 76
3.6 β-reduction rules . 77
3.7 Commuting Conversions I . 78
3.8 Commuting Conversions II . 79
3.9 Commuting Conversions III . 80
3.10 Commuting Conversions IV . 81
3.11 Unit Cut Reduction Rules . 88
3.12 Compiling Linear Terms into Linear Combinators . 99
3.13 Compiling Linear Combinators into Linear Terms . 100
3.14 Weak Reduction for Combinatory Terms . 101
3.15 The Extended λ-Calculus . 103
3.16 Translating λ-Terms into Linear Terms . 104
3.17 Translating Linear Terms into λ-Terms . 104

4.1 Term in Context Judgements for the Linear Term Calculus. 112
4.2 Equations in Context for linear term calculus . 113
4.3 ‘η’ Equations in Context . 140
4.4 ‘Naturality’ Equations in Context . 141
4.5 ‘Categorical’ Equations in Context . 142
4.6 Four Additional Conditions for a Seely Category. 155

5.1 Two-Sided Sequent Calculus Formulation of CLL . 183
5.2 One-Sided Sequent Calculus Formulation of CLL . 184

xi

xii List of Figures

Chapter 1

Introduction

1 Background

An important problem in theoretical computer science is discovering logical foundations of pro-
gramming languages. Such foundations provide programmers with techniques for reasoning logically
rather than informally about their programs and not only tells implementors precisely what they are
trying to implement but also enables them to reason formally about possible optimizations. One of
the most fruitful methods used to explore such logical foundations has been to utilize a fascinating
relationship between various typed λ-calculi, constructive logics and structures, or models, from
category theory. Despite their apparent independence, various work has shown how these areas are
related.

Logic with typed λ-calculi. Curry [23, Section 9E] and Howard [41] noticed that an axiomatic
formulation of Intuitionistic Logic (IL) corresponds to the type scheme for (S,K) combinatory
logic. It was also noted that the natural deduction formulation for the (⊃,∧)-fragment of
minimal logic corresponds to the typing rules for the simply typed λ-calculus with pairs.
More importantly, the notion of normalization for minimal logic corresponds to the notion of
reduction of the λ-terms. This relationship is known as the ‘propositions-as-types analogy’ or
the Curry-Howard correspondence.

Category theory with logic. Lambek [48, 49, 50] first showed how formal deductions for propo-
sitional logics could be given in a categorical framework. In particular he considered the
relationship between intuitionistic (propositional) logic and cartesian closed categories. Law-
vere [54] showed how these techniques could be extended to handle predicate logics by consid-
ering more powerful categorical structures.

Category theory with typed λ-calculi. Given the relationship between logic and typed λ-
calculi, Lambek was able to show how category theory could give a semantics for typed λ-
calculi; this is demonstrated for various calculi in his book with Scott [52]. Curien, along with
co-workers, has shown how this semantics can be seen to suggest an abstract machine: the
categorical abstract machine [21]. This idea has been used to provide a complete compiler for
a dialect of ML [72].

These relationships can be pictured as

Typed λ-calculus Constructive Logic

@
@

@
@

@ �
�

�
�

�

Categorical Model.

The exciting aspect of these relationships is not just that the three areas are related but that certain
concepts within them are related also, as shown below.

Logic Typed λ-calculus Categorical Model
Proposition Type Object

Proof Term Morphism
Normalization Reduction Equality of morphisms

1

2 Chapter 1. Introduction

These relationships have been used to study various systems. Some examples are listed below.

Logic Typed Calculus Categorical Model
Intuitionistic Logic Simply Typed Cartesian Closed

λ-calculus Categories

Second Order System F [32] Hyperdoctrines [68]
Intuitionistic Logic

Higher Order Higher Order Toposes [52]
Intuitionistic Logic Typed λ-calculus

This thesis explores these three relationships and related concepts with respect to Intuitionistic
Linear Logic (ILL) (in fact, just the propositional part). We take ILL as described by Girard and
after producing natural deduction, sequent calculus and axiomatic presentations we consider the
corresponding term calculus (the linear term calculus) and categorical model (a linear category).

2 Overview of Logical Systems and The Curry-Howard Correspondence

In this thesis we shall consider three logical systems in which to formulate ILL: natural deduction,
sequent calculus and axiomatic system. Let us briefly consider these systems in turn.

Natural deduction was originally proposed by Gentzen [73]. Deductions proceed in a tree-like
manner where a conclusion is derived from a finite number of assumption packets, using a predefined
set of inference rules. More specifically these packets contain a multiset of propositions and may be
empty. Within a deduction we may ‘discharge’ any number of assumption packets. This discharging
of packets can be recorded in one of two ways. Gentzen proposed annotating assumption packets
with labels (natural numbers). Occurrences of inference rules which discharge packets are then
annotated with the labels of the packets they discharge. For example the inference rule for the
introduction of an implication is as follows:

[Ax]
·
·
·

B
(⊃I)x

A ⊃ B

The square brackets identify that the packet (with label x) has been discharged. Typically we provide
rules for the introduction and elimination of the logical connectives. For example, we provide the
following elimination rule for the implication connective.

·
·
·

A ⊃ B

·
·
·

A
(⊃E)

B

The second alternative for annotations is to place at every stage of the deduction tree a complete list
of the undischarged assumption packets. This we shall refer to as natural deduction in a ‘sequent-
style’. Deductions are trees whose nodes are decorated with sequents of the form Γ − A, where
Γ represents the undischarged assumption packets and A the deduction so far. The first method
is probably the more intuitive whereas the second has a more mathematical feel. Of course, both
approaches are equivalent and we shall present both when considering natural deduction formulations
of ILL.

The Curry-Howard correspondence simply annotates the deduction with a ‘term’, which rep-
resents an encoding of the deduction so far. Thus for each inference rule, we introduce a unique
piece of syntax to represent an application of it. For example, the rule for implication introduction
becomes encoded as

§2. Overview of Logical Systems and The Curry-Howard Correspondence 3

[Ax]
·
·
·

M : B
(⊃I)x.

λx: A.M : A ⊃ B

It is common to annotate assumption packets with alphabetic identifiers rather than natural num-
bers. Thus we have a system for term formation, where the terms have the property that they
uniquely encode the deduction.

Although natural deduction has many compelling qualities, it has several disadvantages of which
we shall mention just two (Girard [34, Page 74] gives a fuller criticism). Firstly it is distinctly
asymmetric; there is always a single deduction from a number of assumptions.1 Secondly, some
connectives can only be formulated in an unsatisfactory way. Consider the rule for eliminating a
disjunction

·
·
·

A ∨ B

[Ax]
·
·
·

C

[By]
·
·
·

C
(∨E)x,y.

C

The deduction C really has nothing to do with the connective being eliminated at all: it is often
dubbed parasitic.

The second system we consider is the sequent calculus, again introduced by Gentzen [73]. De-
ductions consist of trees of sequents of the form Γ − ∆, where both Γ and ∆ represent collections
of propositions. Inference rules introduce connectives on the right and on the left of the ‘turnstile’
and rules have a more symmetric feel to them. For example the rules for introducing an implication
are

Γ − A, ∆ B, Γ′ − ∆′

(⊃L), and
Γ, A ⊃ B, Γ′ − ∆, ∆′

Γ, A − ∆, B
(⊃R).

Γ − A ⊃ B, ∆

In this thesis we will be concerned only with intuitionistic logics. These can be obtained by re-
stricting the sequents to at most a single proposition on the right of the turnstile, Γ − A. There
are other, less restrictive ways of formulating intuitionistic logics but we shall not consider them
here. (For example, Hyland and de Paiva [43] have proposed a less restrictive (but more powerful)
formulation of ILL.)

Let us consider the form of Γ in a sequent Γ − A. We have a choice as to whether it represents
a set, multiset or sequence of propositions. Recall that in the natural deduction system, we had
multisets of assumptions, which could be empty. As the sequent calculus is an equivalent logical
system it must offer similar manipulations of its assumptions. These manipulations are provided by
so-called structural rules.2 The structural rules needed depends on the chosen form of contexts and
on the way the inference rules are devised (as they can have the effect of structural rules ‘built-in’).
Generally we take the contexts to be multisets and then we have two structural rules3

Γ − B
Weakening, and

Γ, A − B

Γ, A, A − B
Contraction.

Γ, A − B

1A number of multiple conclusion formulations of natural deduction have been proposed, but they invariably
introduce more problems than they solve.

2These rules really exist in the natural deduction formulation as well but they are often either embedded in informal
conditions concerning the assumption packets or built into the inference rules.

3Were we interested in the order in which assumptions were used, then we would take contexts to be sequences of
assumptions and have an explicit Exchange rule:

Γ, A, B − C
Exchange

Γ, B, A − C

4 Chapter 1. Introduction

The Weakening rule allows for the fact that a multiset can be empty and the Contraction rule allows
for the fact that many packets can have the same label. We shall see later that these rules play a
crucial rôle in formulating linear logic.

The sequent calculus has one main defect which is that it distinguishes between many equivalent
proofs. For example consider the following two proofs which only differ in the order in which the
inference rules are applied.

A, C − D
(⊃R)

A − C ⊃ D
(∧L)

A ∧ B − C ⊃ D

A, C − D
(∧L)

A ∧ B, C − D
(⊃R)

A ∧ B − C ⊃ D

When we come to relate the sequent calculus and natural deduction formulations it is clear that
these two sequent derivations actually represent the same natural deduction derivation. Of course,
this means that a Curry-Howard correspondence is not as simple to devise for a sequent calculus
formulation. We shall return to this point in Chapter 2.

A third system is an axiomatic formulation (or Hilbert system). With this formulation there
are a collection of ‘axioms’ and rules for combining these axioms. Deductions proceed in a tree-
like fashion from a collection of assumptions or axioms to a conclusion. This style of formulation
was used to great effect by Russell and Whitehead in their Principia Mathematica [65]. The main
advantage of an axiomatic formulation is its simplicity. We shall discuss this sort of formulation in
more detail in Chapter 2.

3 Overview of Linear Logic

Linear Logic is often described as a ‘resource-conscious’ logic. In the context of mathematical logic,
we can consider a proposition to represent a resource of some kind. As we noted earlier, logical
formulations provide structural rules to manipulate assumptions: the Weakening and Contraction
rules. The Weakening rule says that if from a collection of assumptions Γ we can conclude B, then
certainly from the assumptions Γ and A we can conclude B. The Contraction rule says that if we
need an assumption A twice to conclude B, then we can simplify this to A, as A and A is morally
the same as A.

However, if we take a resource view of these rules they seem slightly strange. The Weakening rule
amounts to saying that we might not need a resource after all; and the Contraction rule tells us that
we might need a resource any number of times. Linear Logic is the logic obtained by removing these
two rules from the formulation of the logic. (There are both intuitionistic and classical formulations
of linear logic; this thesis is concerned with the intuitionistic fragment.) As we shall see later, an
immediate consequence is to divide the inference rules into two distinct kinds.

Of course, the logic which remains is terribly weak; Girard’s innovation was to reintroduce the
two rules in a controlled way by introducing a new unary connective (the so-called exponential ,
‘!’). Thus we can only weaken or contract a proposition, A, if it is of the form !A. It is this which
distinguishes linear logic from other ‘sub-structural’ logics. Although logicians had conceived many
years ago relevance logic (no Weakening) and affine logic (no Contraction), they appeared to have
little interest other than as weak forms of logic. The recapturing of logical power by use of the
exponential enables us to consider linear logic as a refinement of traditional logics.

4 Outline of Thesis

The structure of this thesis follows the triangle of relationships given in §1. Hence there are three
chapters corresponding to each vertex of the triangle.

• Chapter 2 considers the proof theory of ILL. After giving a sequent calculus formulation, a
proof of cut elimination is detailed. Then we show how a natural deduction formulation can
be derived and also how other proposals fail to have certain desirable properties. We consider
reduction in the natural deduction formulation, first by eliminating ‘detours’ in a proof and
then by consideration of the subformula property, from which we find the commuting conver-
sions necessary to ensure that this property holds. Next we consider an axiomatic formulation.

§5. Results 5

We show how all three formulations are equivalent by giving translation procedures between
them. Finally we consider how IL can be embedded into ILL via a translation due to Girard.

• Chapter 3 considers the theory of the linear term calculus. We give the term formation rules as
well as the reduction rules which are derived by applying the Curry-Howard correspondence
to the reduction rules from the proof theory. Having considered term assignment for the
sequent calculus formulation, we reconsider the cut elimination process in the light of the
reduction rules it generates on terms. By applying a Curry-Howard-like correspondence to
the axiomatic formulation we obtain a linear combinatory logic. We explore reduction within
this combinatory formulation. Proofs of strong normalization and confluence are given for a
fragment of the reduction rules (the β-reductions). We then consider how linear terms can be
translated into linear combinators, before considering and comparing their respective reduction
behaviour. Finally we show how terms from the extended λ-calculus can be translated into
linear terms and vice versa. We briefly mention some properties of this translation.

• Chapter 4 considers a categorical analysis of ILL. We start by viewing the linear term calculus
as a (linear) equational logic, which is then analysed to derive a categorical model. After
concluding with a notion of a linear category we study some of its properties. We then consider
two alternative models: firstly one due to Seely and then one due to Lafont. Surprisingly we
find that Seely’s model does not model all reductions with equal morphisms. In other words
it is not sound. We show how after adapting Seely’s model using a more abstract setting, it
becomes a particular instance of a linear category. We also show how a Lafont model is another
particular instance of a linear category. Finally we consider various categories of coalgebras,
including some proposed by Hyland. The construction of these categories can be seen as a
categorical equivalent to the embedding of IL into ILL.

• Chapter 5 completes the dissertation by drawing some conclusions and suggesting further
work. We consider an alternative natural deduction formulation proposed by Troelstra and in
particular some of its categorical consequences.

5 Results

The main contribution of this dissertation is to examine the known relationship between constructive
logic, typed λ-calculus and categorical models in the context of ILL. Here are some specific original
results:

• A proof of cut elimination is given for the sequent calculus formulation of ILL.4

• A natural deduction formulation is given which is shown to be closed under substitution.
Other formulations do not have this fundamental property.

• Reduction in all three systems are compared and contrasted.

• A detailed proof of the subformula property for the natural deduction formulation is given.

• The sequent calculus, natural deduction and axiomatic formulations are shown to be equivalent
by giving procedures for mapping proofs in one system to another.

• A proof of Girard’s translation function from IL to ILL is given for the natural deduction
formulation.

• A term assignment system is given for ILL. Proofs of strong normalization and confluence are
given.

• A procedure for ‘compiling’ linear terms into linear combinators is given. The question of
respective reduction behaviour is addressed.

4Girard gave a proof based on proof nets for classical linear logic (CLL).

6 Chapter 1. Introduction

• A method for considering the linear term calculus as an equational logic is developed. This
results in a general categorical model for ILL.

• Seely’s model is shown to be unsound. An alternative definition of a Seely-style model is
shown to be sound.

• Lafont’s model is proved to be sound.

• Proofs are given for Hyland’s constructions concerning the category of coalgebras of a linear
category.

• A proof is given that an alternative natural deduction formulation of Troelstra, analysed at a
categorical level, suggests a model with an idempotent comonad.

6 Prerequisites and Notation

This thesis is intended to be reasonably self-contained. However, the reader is assumed to be familiar
with notions of propositional logic and the λ-calculus to the level of a good undergraduate course.
Troelstra’s recent book on linear logic [75] covers both intuitionistic and classical fragments. The
approach to logic taken in this thesis is probably best covered by the book by Girard, Lafont and
Taylor [34]. Barendregt’s book [8] is essential reading for those interested in the λ-calculus; Hindley
and Seldin’s book [39] provides a useful alternative view.

The chapter on a categorical model for ILL assumes some knowledge of basic category theory.
However categorical notions which are particular to the linear set-up of this thesis are defined in the
chapter. In accordance with the fact that this is a computer science thesis, we shall write function
composition in a sequential, left-to-right manner, i.e. f ; g, rather than the mathematical tradition
of g ◦ f .

On the whole this thesis follows the notation originally used by Girard [31]. However, there are
some minor differences with the symbols for the units.

This thesis Girard
I 1
f 0
t >

We have followed Gallier [29] in a systematic use of various symbols to represent differing notions
of deduction, rather than a notational abuse of a single turnstile symbol. Thus we use the symbol
‘−’ for a turnstile in a logical deduction5 (i.e. the sequent calculus, natural deduction or axiomatic
formulations), ‘.’ for a turnstile in a term assignment system and ‘⇒’ for a turnstile in a combinatory
derivation. The ‘`’ symbol is used to denote provability (thus we shall write ` Γ − A rather than
the uninformative ` Γ ` A). We shall often annotate the ‘`’ to qualify the logical system in question
when it is not obvious by context.

5This symbol is often dubbed a Girardian turnstile.

Chapter 2

Proof Theory

1 Sequent Calculus

As explained in Chapter 1, ILL arises from removing the structural rules of Weakening and
Contraction. This has the effect of distinguishing between different formulations of the familiar
connectives of IL. For example, in IL, we might formulate the ∧R rule in one of two ways.

Γ − A Γ − B
∧′
R

Γ − A ∧ B

Γ − A ∆ − B
∧′′
R

Γ, ∆ − A ∧ B

However, we can see that with rules of Weakening and Contraction with can simulate one with the
other.

Γ − A Γ − B
∧′′
R

Γ, Γ − A ∧ B
Contraction∗

Γ − A ∧ B

Γ − A
Weakening∗

Γ, ∆ − A

∆ − B
Weakening∗

Γ, ∆ − B
∧′
R

Γ, ∆ − A ∧ B

In ILL since we do not have the structural rules these two possible formulations become distinct
connectives. We shall use the terminology of Girard to describe these connectives: those where the
upper sequent contexts are disjoint (as in (∧′′

R)) are known as the multiplicatives and those where
the upper sequent contexts must be the same (as in (∧′

R)) are known as the additives . Thus for
ILL we shall consider the following connectives:

Connective Symbol
Multiplicative Implication −◦ “Linear Implication”

Conjunction ⊗ “Tensor”

Additive Conjunction & “With”
Disjunction ⊕ “Sum”

It can be seen that there are some obvious omissions from this table, namely multiplicative disjunc-
tion and additive implication. Multiplicative disjunction (

..
............
..................................... or “Par”) requires multiple conclusions

which is beyond the scope of this thesis. (It was thought that it only made sense as a classical
connective, but recent work by Hyland and de Paiva [43] shows how it can be considered as a
intuitionistic connective.) The additive implication, �−, can be formulated as follows.

Γ − A B, Γ − C
(�−L)

Γ, A�−B − C

Γ, A − B
(�−R)

Γ − A�−B

However, this connective is generally ignored as its computational content seems minimal.1 We shall
do likewise and not consider this connective further.

We have units for the two conjunctions and the (additive) disjunction. I is the unit for the
tensor, t is the unit for the With, and f is the unit for the Sum.

Of course the logic so far is extremely weak. Girard’s innovation was to introduce a new unary
connective, !, (the so-called ‘exponential’) to regain the logical power. The exponential allows a

1Troelstra [75, Chapter 4] considers briefly additive implication in the context of a logic with just two implications.

7

8 Chapter 2. Proof Theory

formula to be weakened or multiple occurrences to be contracted. Thus we have the structural rules
reinstated, but in a controlled way.

Γ − B
Weakening

Γ, !A − B

Γ, !A, !A − B
Contraction

Γ, !A − B

However, we need to be able to introduce this new connective, and so we have a rule for introducing
it on the left (Dereliction) and on the right (Promotion).2 (These are reminiscent of those for the
2 connective for modal logics and so are sometimes called the ‘modality rules’.)

Γ, A − B
Dereliction

Γ, !A − B

!Γ − A
Promotion

!Γ − !A

In the Promotion rule, !Γ is taken to mean that every formula in the context is of the form !Ai.
We shall see later, in §5, how introducing this new connective regains the logical power of IL. We
assume a countably infinite set of propositional symbols (atomic formulae), elements of which we
denote with the letters a, b, A linear formula, A, is then given by the grammar

A ::= a | t | f | I |

A⊗A | A−◦A | A&B | A ⊕ A | !A.

We give the sequent calculus formulation in Figure 2.1, which is originally due to Girard [33].
Although we have given the Exchange rule explicitly, for the rest of this thesis we shall consider this
rule to be implicit, whence the convention that Γ, ∆, Θ denote multisets rather than sequences.

Let us state some provable sequents for ILL.

Proposition 1. The following are all provable in ILL.

1. A⊗B − B⊗A

2. A⊗I − A and A − A⊗I

3. A&B − B&A

4. A&t − A and A − A&t

5. A ⊕ B − B ⊕ A

6. A ⊕ f − A and A − A ⊕ f

7. A⊗(B&C) − (A⊗B)&(A⊗C)

8. A⊗(B ⊕ C) − (A⊗B) ⊕ (A⊗C)

9. (A⊗B) ⊕ (A⊗C) − A⊗(B ⊕ C)

10. !A⊗!B − !(A⊗B) and I − !I

11. !A − I&A&(!A⊗!A)

12. !A⊗!B − !(A&B) and !(A&B) − !A⊗!B

13. I − !t and !t − I

Before considering the sequent calculus formulation in more detail let us fix some standard termi-
nology.

Definition 1.

1. In an instance of a Cut rule
Γ − A A, ∆ − B

Cut
Γ, ∆ − B

the formula A is called the Cut Formula.

2Girard, Scedrov and Scott [35] call this rule Storage in their work on Bounded Linear Logic.

§1. Sequent Calculus 9

Identity
A − A

Γ, A, B, ∆ − C
Exchange

Γ, B, A, ∆ − C

Γ − B B, ∆ − C
Cut

Γ, ∆ − C

(tR)
Γ − t

(fL)
Γ, f − A

Γ − A
(IL)

Γ, I − A
(IR)

− I

Γ, A, B − C
(⊗L)

Γ, A⊗B − C

Γ − A ∆ − B
(⊗R)

Γ, ∆ − A⊗B

Γ − A ∆, B − C
(−◦L)

Γ, ∆, A−◦B − C

Γ, A − B
(−◦R)

Γ − A−◦B

Γ, A − C
(&L−1)

Γ, A&B − C

Γ, B − C
(&L−2)

Γ, A&B − C

Γ − A Γ − B
(&R)

Γ − A&B

Γ, A − C Γ, B − C
(⊕L)

Γ, A ⊕ B − C

Γ − A
(⊕R−1)

Γ − A ⊕ B

Γ − B
(⊕R−2)

Γ − A ⊕ B

Γ − B
Weakening

Γ, !A − B

Γ, !A, !A − B
Contraction

Γ, !A − B

Γ, A − B
Dereliction

Γ, !A − B

!Γ − A
Promotion

!Γ − !A

Figure 2.1: Sequent Calculus Formulation of ILL

10 Chapter 2. Proof Theory

2. In a rule the formula being formed is called the principal formula, for example in the rule

Γ − A B, ∆ − C
(−◦L),

Γ, A−◦B, ∆ − C

A−◦B is the principal formula, as is !A in the rule

!Γ − A
Promotion.

!Γ − !A

3. In a proof π of the form

...
R1

Γ − A

...
R2

A, ∆ − B
Cut,

Γ, ∆ − B

we shall refer to the application of the Cut rule as a (R1, R2)-cut.

4. In a proof π of the form

...
R1,

Γ − A

we shall write lst(π) to denote the last rule used in the proof (= R1).

5. If a proof π is of the form

π1 π2
R,

Γ − A

we shall say that the rule, R, is a binary rule. (We shall often refer to the upper proofs as π1

and π2.) If a proof π is the form

π1
R,

Γ − A

we shall say that R is a unary rule. (Again, we shall often refer to the upper proof as π1.)

1.1 Cut Elimination

The Cut rule enables us to join two proofs together. Gentzen discovered that applications of the Cut
rule could be eliminated from a proof. Thus given a proof containing applications of the Cut rule,
a cut-free version could be found, which can be thought of as its normal form. Gentzen’s analysis
not only showed that the occurrences of the Cut rule could be eliminated, but also gave a simple
procedure for doing so.

We shall carry out a similar programme for ILL. The proof given here is adapted from that for
IL given by Gallier [29]. First we shall define some measures which we shall use in the proof.

Definition 2.

1. The rank of a formula A, is defined as

|A|
def
= 0 A is an atomic formula

|I|, |t|, |f |
def
= 0

|A−◦B|
def
= |A| + |B| + 1

|A⊗B|
def
= |A| + |B| + 1

|A&B|
def
= |A| + |B| + 1

|A ⊕ B|
def
= |A| + |B| + 1

|!A|
def
= |A| + 1.

§1. Sequent Calculus 11

2. The cut rank of a proof π, is defined as

c(π)
def
=

0 If lst(π)=Identity
c(π1) If lst(π)=Unary rule
max{c(π1), c(π2)} If lst(π)=Binary rule
max{|A| + 1, c(π1), c(π2)} If lst(π)=Cut

with Cut formula A.

3. The depth of a proof π, is defined as

d(π)
def
=

0 If lst(π)=Identity
d(π1) + 1 If lst(π)=Unary rule
max{d(π1), d(π2)} + 1 If lst(π)=Binary rule.

To facilitate the proof of cut-elimination3 we find it convenient to replace the Cut rule with an
indexed cut rule

Γ − A

n︷ ︸︸ ︷
A, . . . , A, ∆ − B

Cutn.
Γ, . . . , Γ︸ ︷︷ ︸

n

, ∆ − B

It is clear that this is a derived rule4 as it represents the sequence of Cut rules

Γ − A

Γ − A

n︷ ︸︸ ︷
A, A, . . . , A,∆ − B

Cut
Γ, A, . . . , A,∆ − B

·
·
·

Γ, Γ, . . . , A, ∆ − B
Cut.

Γ, Γ, . . . , Γ︸ ︷︷ ︸
n

, ∆ − B

Of course when n = 1 this rule is just the familiar Cut rule as before. It is clear that if we can
prove a cut elimination theorem for this more powerful cut rule, then we have as a corollary the cut
elimination theorem for the standard unary rule. (In what follows we shall use the abbreviation An

to represent the sequence A, . . . , A︸ ︷︷ ︸
n

.)

Lemma 1. Let Π1 be a proof of Γ − A and Π2 be a proof of ∆, An − B and assume that
c(Π1), c(Π2) ≤ |A|. A proof, Π, of Γn, ∆ − B can be constructed such that c(Π) ≤ |A|.

Proof. We proceed by induction on the sum of the depths of the two proofs, i.e. on d(Π1) + d(Π2),
where Π1 and Π2 are the immediate subtrees of the proof

Π1

Γ − A

Π2

An, ∆ − B
Cutn.

Γn, ∆ − B

There are numerous cases depending on the structure of Π1 and Π2.

1. When the principal formula in the proofs Π1 and Π2 is the cut formula, A.

3In particular, without this trick of taking a multi-cut rule it seems difficult to find an inductive count that
decreases if we keep a ‘single’ cut rule. It should be possible but, as far as my research has found, it seems to have
eluded proof theorists so far.

4As it is a derived rule, it is simple to extend the notion of cut rank to handle an occurrence of the Cutn rule.

12 Chapter 2. Proof Theory

(a) (IR, IL)-cut.

(IR)
− I

π1

In, Γ − B
(IL)

In+1, Γ − B
Cutn+1

Γ − B

Let Π by the proof obtained by applying the induction hypothesis to the proof

(IR)
− I

π1

In, Γ − B
Cutn.

Γ − B

By assumption c(Π1), c(π1) ≤ |I|, then c(Π) ≤ |I| and we are done.

(b) (−◦R,−◦L)-cut.

π1

Γ, A − B
(−◦R)

Γ − A−◦B

π2

(A−◦B)n, ∆ − A

π3

B, (A−◦B)m, Θ − B
(−◦L)

(A−◦B)n+m+1, ∆, Θ − C
Cutn+m+1

Γn+m+1, ∆, Θ − C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

π1

Γ, A − B
(−◦R)

Γ − A−◦B

π2

(A−◦B)n, ∆ − A
Cutn.

Γn, ∆ − A

By assumption that c(Π1), c(π2) ≤ |A−◦B| and hence c(Π′) ≤ |A−◦B|. Let Π′′ be the
proof

Π′

Γn, ∆ − A

π1

Γ, A − B
Cut1.

Γn+1, ∆ − B

Since we have by assumption that c(π1) ≤ |A−◦B| then by definition c(Π′′) ≤ max{(|A|+
1), |A−◦B|, |A−◦B|}; hence c(Π′′) ≤ |A−◦B|.

Let Π′′′ be the proof obtained by applying the induction hypothesis to the proof

π1

Γ, A − B
(−◦R)

Γ − A−◦B

π3

B, (A−◦B)m, Θ − C
Cutm.

B, Γm, Θ − C

Since c(Π1), c(π3) ≤ |A−◦B| by assumption, we have that c(Π′′′) ≤ |A−◦B|. Finally, we
can form the proof, Π,

Π′′

Γn+1, ∆ − B

Π′′′

B, Γm, Θ − C
Cut1.

Γn+m+1, ∆, Θ − C

Thus by definition c(Π) ≤ max{(|B| + 1), |A−◦B|, |A−◦B|}; hence c(Π) ≤ |A−◦B| and
we are done.

§1. Sequent Calculus 13

(c) (⊗R,⊗L)-cut.

π1

Γ − A

π2

∆ − B
(⊗R)

Γ, ∆ − A⊗B

π3

A, B, (A⊗B)n, Θ − C
(⊗L)

(A⊗B)n+1, Θ − C
Cutn+1

Γn+1, ∆n+1, Θ − C

Let Π′ be the proof obtained by applying the inductive hypothesis to the proof

π1

Γ − A

π2

∆ − B
(⊗R)

Γ, ∆ − A⊗B

π3

A, B, (A⊗B)n, Θ − C
Cutn.

A, B, Γn, ∆n, Θ − C

We have by assumption c(Π1), c(π3) ≤ |A⊗B| and hence c(Π′) ≤ |A⊗B|. Now let Π′′ be
the proof

π1

Γ − A

Π′

A, B, Γn, ∆n, Θ − C
Cut1.

B, Γn+1, ∆n, Θ − C

Since we have by assumption that c(π1) ≤ |A⊗B|, then by definition c(Π′′) ≤ max{(|A|+
1), |A⊗B|, |A⊗B|}. Finally, we can form the following proof, Π,

π2

∆ − B

Π′′

B, Γn+1, ∆n, Θ − C
Cut1.

Γn+1, ∆n+1, Θ − C

Thus by definition c(Π) ≤ max{(|B| + 1), |A⊗B|, |A⊗B|}; hence c(Π) ≤ |A⊗B| and we
are done.

(d) (&R, &L−1)-cut.

π1

Γ − A

π2

Γ − B
(&R)

Γ − A&B

π3

∆, (A&B)n, A − C
&L−1

∆, (A&B)n+1 − C
Cutn+1

Γn+1, ∆ − C

Let Π′ be the proof obtained by applying the inductive hypothesis to the proof

π1

Γ − A

π2

Γ − B
(&R)

Γ − A&B

π3

∆, (A&B)n, A − C
Cutn.

Γn, ∆ − C

We have by assumption that c(Π1), c(π3) ≤ |A&B| and hence c(Π′|) ≤ |A&B|. We can
form the following proof, Π,

π1

Γ − A

Π′

Γn, ∆ − C
Cut1.

Γn+1, ∆ − C

Thus by definition c(Π′) ≤ max{|A| + 1, |A&B|, |A&B|}; hence c(Π) ≤ |A&B| and we
are done.

14 Chapter 2. Proof Theory

(e) (&R, &L−2)-cut. Similar to case above.

(f) (⊕R−1,⊕L)-cut.

π1

Γ − A
⊕R−1

Γ − A ⊕ B

π2

∆, (A ⊕ B)n, A − C

π3

∆, (A ⊕ B)n, B − C
(⊕L)

∆, (A ⊕ B)n+1 − C
Cutn+1

Γn+1, ∆ − C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

π1

Γ − A
⊕R−1

Γ − A ⊕ B

π2

∆, (A ⊕ B)n, A − C
Cutn.

Γn, ∆ − C

We have by assumption that c(Π1), c(π2) ≤ |A ⊕ B| and hence c(Π′) ≤ |A ⊕ B|. We can
form the following proof, Π,

π1

Γ − A

Π′

Γn, ∆, A − C
Cut1.

Γn+1, ∆ − C

Thus by definition c(Π) ≤ max{|A| + 1, |A ⊕ B|, |A ⊕ B|}; hence c(Π) ≤ |A ⊕ B| and we
are done.

(g) (⊕R−2,⊕L)-cut. Similar to case above.

(h) (Promotion,Dereliction)-cut.

π1

!Γ − A
Promotion

!Γ − !A

π2

A, !An, ∆ − B
Dereliction

!An+1, ∆ − B
Cutn+1

!Γn+1, ∆ − B

Let Π′ be the proof obtained by applying the inductive hypothesis to the proof

π1

!Γ − A
Promotion

!Γ − !A

π2

A, !An, ∆ − B
Cutn.

A, !Γn, ∆ − B

We have by assumption that c(Π1), c(π2) ≤ |!A| and hence c(Π′) ≤ |!A|. Now let Π be
the proof

π1

!Γ − A

Π′

A, !Γn, ∆ − B
Cut1.

!Γn+1, ∆ − B

Thus by definition c(Π) ≤ max{|A| + 1, |!A|, |!A|}; hence c(Π) ≤ |!A| and we are done.

(i) (Promotion,Weakening)-cut.

π1

!Γ − A
Promotion

!Γ − !A

π2

!An, ∆ − B
Weakening

!An+1, ∆ − B
Cutn+1

!Γn+1, ∆ − B

§1. Sequent Calculus 15

Let Π′ be the proof obtained by applying the inductive hypothesis to the proof

π1

!Γ − A
Promotion

!Γ − !A

π2

!An, ∆ − B
Cutn.

!Γn, ∆ − B

We have by assumption that c(Π1), c(π2) ≤ |!A| and hence c(Π′) ≤ |!A|. Finally take the
proof, Π,

Π′

!Γn, ∆ − B
Weakening∗.

!Γn+1, ∆ − B

Hence by definition c(Π) ≤ |!A| and we are done.

(j) (Promotion,Contraction)-cut.

π1

!Γ − A
Promotion

!Γ − !A

π2

!A, !A, !An, ∆ − B
Contraction

!An+1, ∆ − B
Cutn+1

!Γn+1, ∆ − B

Let Π′ be the proof obtained by applying the inductive hypothesis to the proof

π1

!Γ − A
Promotion

!Γ − !A

π2

!An+2, ∆ − B
Cutn+2.

!Γn+2, ∆ − B

We have by assumption that c(Π1), c(π2) ≤ |!A| and hence c(Π′) ≤ |!A|. Finally, let Π
be the proof

Π′

!Γn+2, ∆ − B
Contraction∗.

!Γn+1, ∆ − B

Hence by definition c(Π) ≤ |!A| and we are done.

2. When in the proof Π2 the cut formula, A, is a minor formula. We shall consider each case of
the last rule applied in Π2. The case where the cut formula, A, is a minor formula in proof
Π1 is symmetric (and omitted).

(a) tR.
Π1

Γ − A
(tR)

An, ∆ − t
Cutn

Γn, ∆ − t

We can form the (cut-free) proof

(tR),
Γn, ∆ − t

which has a cut-rank of 0 and so we are done.

16 Chapter 2. Proof Theory

(b) fL.
Π1

Γ − A
(fL)

An, ∆, f − B
Cutn

Γn, ∆, f − B

We can form the (cut-free) proof

(fL),
Γn, ∆, f − B

which has a cut-rank of 0 and so we are done.

(c) IL.

Π1

Γ − A

π2

An, ∆ − B
(IL)

An, I, ∆ − B
Cutn

Γn, I, ∆ − B

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

An, ∆ − B
Cutn.

Γn, ∆ − B

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can then form
the proof, Π,

Π′

Γn, ∆ − B
(IL).

Γn, I, ∆ − B

Hence by definition c(Π) ≤ |A| and we are done.

(d) ⊗L.

Π1

Γ − A

π2

An, B, C,∆ − D
(⊗L)

An, B⊗C, ∆ − D
Cutn

Γn, B⊗C, ∆ − D

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

An, B, C,∆ − D
Cutn.

Γn, B, C,∆ − D

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can form the
proof, Π,

Π′

Γn, B, C,∆ − D
(⊗L).

Γn, B⊗C, ∆ − D

We have by definition that c(Π) ≤ |A| and we are done.

§1. Sequent Calculus 17

(e) ⊗R.

Π1

Γ − A

π2

∆, An − B

π3

Θ, Am − C
(⊗R)

∆, Θ, An+m − B⊗C
Cutn+m

Γn+m, ∆, Θ − B⊗C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

∆, An − B
Cutn.

Γn, ∆ − B

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. Let Π′′ be the
proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π3

Θ, Am − C
Cutm.

Γm, Θ − C

We have by assumption that c(Π1), c(π3) ≤ |A| and hence c(Π′′) ≤ |A|. We can form the
proof, Π,

Π′

Γn, ∆ − B

Π′′

Γm, Θ − C
(⊗R).

Γn+m, ∆, Θ − B⊗C

We have by definition c(Π) ≤ max{|A|, |A|}; thus c(Π) ≤ |A| and we are done.

(f) −◦L.

Π1

Γ − A

π2

∆, An − B

π3

C, Am, Θ − D
(−◦L)

An+m, B−◦C, ∆, Θ − D
Cutn+m

Γn+m, B−◦C, ∆, Θ − D

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

∆, An − B
Cutn.

Γn, ∆ − B

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. Let Π′′ be the
proof obtained by applying the inductive hypothesis to the proof

Π1

Γ − A

π3

C, Am, Θ − D
Cutm.

C, Γm, Θ − D

We have by assumption that c(Π1), c(π3) ≤ |A| and hence c(Π′′) ≤ |A|. We can form the
proof, Π,

Π′

Γn, ∆ − B

Π′′

C, Γm, Θ − D
(−◦L).

Γn+m, ∆, B−◦C, Θ − D

We have by definition c(Π) ≤ max{|A|, |A|}; thus c(Π) ≤ |A| and we are done.

18 Chapter 2. Proof Theory

(g) −◦R.

Π1

Γ − A

π2

An, ∆, B − C
(−◦R)

An, ∆ − B−◦C
Cutn

Γn, ∆ − B−◦C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

An, ∆, B − C
Cutn.

Γn, ∆, B − C

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can then form
the proof, Π,

Π′

Γn, ∆, B − C
(−◦L).

Γn, ∆ − B−◦C

Hence by definition c(Π) ≤ |A| and we are done.

(h) &L−1.

Π1

Γ − A

π2

∆, An, B − D

∆, An, B&C − D
Cutn

Γn, ∆, B&C − D

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

∆, An, B − D
Cutn.

Γn, ∆, B − D

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can form the
proof, Π,

Π′

Γn, ∆, B − D
&L−1.

Γn, ∆, B&C − D

Hence by definition c(Π) ≤ |A| and we are done.

(i) &L−2. Similar to case above.

(j) &R.

Π1

Γ − A

π2

∆, An − B

π3

∆, An − C
(&R)

∆, An − B&C
Cutn

Γn, ∆ − B&C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

∆, An − B
Cutn.

Γn, ∆ − B

§1. Sequent Calculus 19

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. Let Π′′ be the
proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π3

∆, An − C
Cutn.

Γn, ∆ − C

We have by assumption that c(Π1), c(π3) ≤ |A| and hence c(Π′) ≤ |A|. We can form the
proof, Π,

Π′

Γn, ∆ − B

Π′′

Γn, ∆ − C
(&R).

Γn, ∆ − B&C

Hence by definition c(Π) ≤ |A| and we are done.

(k) ⊕L.

Π1

Γ − A

π2

∆, An, B − D

π3

∆, An, C − D
(⊕L)

∆, An, B ⊕ C − D
Cutn

Γn, ∆, B ⊕ C − D

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

∆, An, B − D
Cutn.

Γn, ∆, B − D

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. Let Π′′ be the
proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π3

∆, An, C − D
Cutn.

Γn, ∆, C − D

We have by assumption that c(Π1), c(π3) ≤ |A| and hence c(Π′′) ≤ |A|. We can form the
proof, Π,

Π′

Γn, ∆, B − D

Π′′

Γn, ∆, C − D
(⊕L).

Γn, ∆, B ⊕ C − D

Hence by definition c(Π) ≤ |A| and we are done.

(l) ⊕R−1.

Π1

Γ − A

π2

∆, An − B

∆, An − B ⊕ C
Cutn

Γn, ∆ − B ⊕ C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

20 Chapter 2. Proof Theory

Π1

Γ − A

π2

∆, An − B
Cutn.

Γn, ∆ − B

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can then form
the proof, Π,

Π′

Γn, ∆ − B
⊕R−1.

Γn, ∆ − B ⊕ C

Hence by definition c(Π) ≤ |A| and we are done.

(m) ⊕R−2. Similar to case above.

(n) Dereliction.

Π1

Γ − A

π2

An, B, ∆ − C
Dereliction

An, !B, ∆ − C
Cutn

Γn, !B, ∆ − C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

An, B, ∆ − C
Cutn.

Γn, B, ∆ − C

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can form the
proof

Π′

Γn, B, ∆ − C
Dereliction.

Γn, !B, ∆ − C

We have by definition that c(Π) ≤ |A| and we are done.

(o) Weakening.

Π1

Γ − A

π2

An, ∆ − C
Weakening

An, !B, ∆ − C
Cutn

Γn, !B, ∆ − C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

An, ∆ − C
Cutn.

Γn, ∆ − C

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can then form
the proof, Π,

Π′

Γn, ∆ − C
Weakening.

Γn, !B, ∆ − C

By definition c(Π) ≤ |A| and we are done.

§1. Sequent Calculus 21

(p) Contraction.

Π1

Γ − A

π2

An, !B, !B, ∆ − C
Contraction

An, !B, ∆ − C
Cutn

Γn, !B, ∆ − C

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

Γ − A

π2

An, !B, !B, ∆ − C
Cutn.

Γn, !B, !B, ∆ − C

We have by assumption that c(Π1), c(π2) ≤ |A| and hence c(Π′) ≤ |A|. We can form the
proof, Π,

Π′

Γn, !B, !B, ∆ − C
Contraction.

Γn, !B, ∆ − C

By definition c(Π) ≤ |A| and we are done.

(q) Promotion.

Π1

!Γ − !A

π2

!An, !∆ − B
Promotion

!An, !∆ − !B
Cutn

!Γn, !∆ − !B

Let Π′ be the proof obtained by applying the induction hypothesis to the proof

Π1

!Γ − !A

π2

!An, !∆ − B
Cutn.

!Γn, !∆ − B

We have by assumption that c(Π1), c(π2) ≤ |!A| and hence c(Π′) ≤ |!A|. We can form
the proof, Π,

Π′

!Γn, !∆ − B
Promotion.

!Γn, !∆ − !B

By definition c(Π) ≤ |!A| and we are done.

3. When either Π1 or Π2 is an instance of the Identity rule. Firstly

Π1

Γ − A
Identity

A − A
Cut,

Γ − A

which is replaced by

Π1

Γ − A.

And similarly the proof

22 Chapter 2. Proof Theory

Identity
A − A

Π2

Γ, A − B
Cut1,

Γ, A − B

is replaced by

Π2

Γ, A − B.

In both cases the assumption that c(Π1), c(Π2) ≤ |A| ensures that c(Π) ≤ |A|.

Lemma 2. Let π be a proof, Γ − A, with cut rank c(π). If c(π) > 0 then we can construct a proof
π′ of Γ − A such that c(π′) < c(π).

Proof. By inspection of the last rule of proof π. If it is not an instance of the Cut rule then we
simply apply induction on the subproofs of π. If the last rule in π is a Cut then π is of the form

π1

Γ − A

π2

∆, An − B
Cutn.

Γn, ∆ − B

If c(π) > |A|+1 then we can apply induction on the subproofs π1, π2 and we are done. If c(π) = |A|+1
then we can apply Lemma 1 to get a proof π′ where c(π′) ≤ |A|; hence c(π′) < |A| + 1 = c(π) and
we are done.

Theorem 1. Let π be a proof of Γ − A with cut rank c(π). A cut free proof π′ of Γ − A can be
constructed.

Proof. By induction on c(π) and Lemma 2.

1.2 Cut Elimination and The Additive Units

It seems appropriate to mention here a small problem with the process of cut elimination and the
additive units. Consider the following proof which contains one instance of the Cut rule.

(fL)
Γ, f − A

(tR)
A, ∆ − t

Cut
Γ, ∆, f − t

The problem is to decide which axiom it is replaced by: is it fL or tR? Of course, as far as proving the
cut elimination theorem it does not matter which is chosen, but there is little to guide us either way
(even the model theoretic viewpoint of the Chapter 4 says little). In the original treatise [31, Page
67], Girard rewrites the above to an instance of the fL rule. However, in personal communication,
Girard admits to this being a choice made for “. . . aesthetic reasons”. A more convincing explanation
of the proof theoretic rôle of the additive units remains an open problem.

§2. Natural Deduction 23

1.3 Subformula Property

An immediate consequence of the cut elimination theorem is the subformula property, which follows
from the simple observation that every rule except the Cut rule has the property that the premises
are made up of subformulae of the conclusion.5

Definition 3. The subformulae of a formula A are defined by the following clauses.

• If A is atomic then its subformula is A.

• The subformulae of A⊗B are the subformulae of A and the subformulae of B and A⊗B itself.

• The subformulae of A−◦B are the subformulae of A and the subformulae of B and A−◦B itself.

• The subformulae of A&B are the subformulae of A and the subformulae of B and A&B itself.

• The subformulae of A⊕B are the subformulae of A and the subformulae of B and A⊕B itself.

• The subformulae of !A are the subformulae of A and !A itself.

Theorem 2. In a cut-free proof of Γ − A all the formulae which occur within it are contained in
the set of subformulae of Γ and A.

Proof. By a simple induction on the structure of the proof Γ − A.

There are many other consequences to having a cut elimination theorem for a given logic and
these have been studied by Schwichtenberg [67]. An example is Craig’s Interpolation Lemma which
has been studied for some fragments of (classical) linear logic by Roorda [64]. We leave further
investigation of this and other properties for future work.

2 Natural Deduction

As explained in Chapter 1, in a natural deduction formulation a deduction is a derivation of a
proposition from a finite set of assumption packets using some predefined set of inference rules.
More specifically, these packets consist of a multiset of propositions, which may be empty. This
flexibility is the equivalent of the Weakening and Contraction rules in the sequent calculus. Within
a deduction, we may ‘discharge’ any number of assumption packets. Assumption packets can be
given natural number labels and applications of inference rules can be annotated with the labels of
those packets which it discharges.

We might then ask what restrictions need we make to natural deduction to make it linear?
Clearly, we need to withdraw the concept of packets of assumptions. A packet must contain exactly
one proposition, i.e. a packet is now equivalent to a proposition. A rule which previously discharged
many packets of the same proposition, can now only discharge the one. Thus we can label every
proposition with a unique label.

Before considering the rules, we shall fix some (standard) notation.

Definition 4.

1. In a rule of the form

·
·
·

A1 . . .

·
·
·

An
,

B

the Ai are known as premises and B as the conclusion.

2. In an elimination rule, the premise being eliminated is known as the major premise. Any other
premises are known as minor premises.

3. An assumption which has not been discharged will often be referred to as an open assumption.

5We shall prove a similar theorem for the natural deduction formulation in the next section.

24 Chapter 2. Proof Theory

The Multiplicatives

The introduction rule for linear implication, −◦, is as usual for IL; the restriction on packets means
that we can only discharge a single assumption. The elimination rule for −◦ is also as for IL. The
rules are

[Ax]
·
·
·

B
(−◦I)x, and

A−◦B

·
·
·

A−◦B

·
·
·

A
(−◦E).

B

We should note that in the elimination rule for −◦ the multiplicative nature is implicit in our
restriction that all assumptions have unique labels. Hence to bring two derivations together implies
that their contexts are disjoint.

The introduction rule for tensor, ⊗, is as usual for IL; with again the implicit multiplicative
nature. The elimination rule is slightly more surprising. In IL we are used to having two elimination
rules for the conjunction which enable one of the conjuncts to be ‘projected’ out of a conjunction,
viz.

A ∧ B
(∧E−1),

A
and

A ∧ B
(∧E−2).

B

However ILL does not permit projection over multiplicative conjunction (as it would provide un-
restricted Weakening), but rather both components of the tensor should be used in the deduction.
Thus the elimination rule is of the form6

·
·
·

A⊗B

[Ax] [By]
·
·
·

C
(⊗E)x,y.

C

The Exponential

The elimination rule, Dereliction, is easy to formulate, viz.

·
·
·

!B
Dereliction.

B

However it is surprising to note that other presentations [57, 55, 79] have adopted the following
slightly more verbose formulation

·
·
·

!B

[Bx]
·
·
·

C
Dereliction′

x.
C

The Weakening rule allows a deduction whose conclusion is of the form !B to play no part in
another deduction, or in other words, it allows us to build dummy deductions. Again, the intuitive
formulation is

·
·
·

!B

·
·
·

C
Weakening.

C

6Schroeder-Heister [66] has considered natural deduction formulations of connectives of this form (although for
IL).

§2. Natural Deduction 25

The Contraction rule allows the result of a deduction to be used twice as an assumption. This rule is
realized in IL by the implicit ability to give two assumptions the same label. We can then substitute
a deduction for this duplicated assumption by duplicating the deduction. Duplicating a deduction
is illegal in our linear system because we cannot have duplicated labels. We must formulate the rule
so that the deduction appears once and its conclusion appears twice with different labels, viz.

·
·
·

!B

[!Bx] [!By]
·
·
·

C
Contractionx,y.

C

Now we come to the problematic rule of Promotion. This rule insists that all the assumptions at
the time of application are of the form !Ai. Thus as a first attempt at a formulation we shall take
the following (as have all other proposals [7, 57, 55, 79, 75])

!A1 · · · !An
·
·
·

B
Promotion.

!B

(2.1)

Let us consider a fundamental feature of any natural deduction formulation.

Definition 5. A natural deduction formulation is said to be closed under substitution if the following
is satisfied: if for any two valid deductions

Γ
·
·
·

A,
and

A ∆
·
·
·

B,

the following is a valid deduction

Γ
...
A ∆

...
B.

It is quite clear that the formulation for the Promotion rule given above is not closed under substi-
tution. For example consider substituting the deduction

C−◦!A1 C
(−◦E),

!A1

for the assumption !A1 in 2.1. We would arrive at the deduction

C−◦!A1 C
(−◦E)

!A1 · · · !An
·
·
·

B
Promotion.

!B

This deduction is not valid , as the assumptions are not all of the form !Ai. To gain a correct
formulation we need to make the substitutions explicit. In this thesis we shall use the following
formulation.

26 Chapter 2. Proof Theory

·
·
·

!A1 . . .

·
·
·

!An

[[!Ax1
1 · · · !Axn

n]]
·
·
·

B
Promotionx1,...,xn

!B

Some care needs to be taken with this rule. The semantic brackets [[. . .]] signify that to apply this
rule correctly, not only must all the assumptions be of the form !Ai, but that they are all discharged
and re-introduced. It is obvious that this formulation will be closed under substitution. We shall
use the terminology that the !Ai are called the minor premises of this rule.

The Additives

The additives seem to conflict with the notion of linearity which we have described so far. We have
seen that in the sequent calculus formulation they require the upper sequent contexts to be equal,
for example in the (&R) rule

Γ − A Γ − B
(&R).

Γ − A&B

In what we have done so far, contexts are implicitly disjoint, so it is clear that we have to get round
this restriction. Taking as an example the introduction rule for the With connective we can isolate
two distinct proposals.

1. Keep the implicit disjointness of contexts. Thus when the additive contexts are brought
together, we have to immediately discharge them both and reintroduce them once. Thus the
rule would be

·
·
·

A1 . . .

·
·
·

An

[[Ax1
1 · · · Axn

n]]
·
·
·

B

[[Ay1

1 · · · Ayn
n]]

·
·
·

C
(&I)x1,...,xn,y1,...,yn.

B&C

This rule has the restriction that the two (discharged) contexts are equal. It should be noted
that this equality of the contexts only applies to the assumptions, not their labels.7

2. Extend the proof theory, so as to introduce seriously the notion of an additive context . This
extension allows us to bring together equal contexts and treat them as a single context. Thus
the (&I) rule would be

Γ

�� @@
Γ Γ
...

...
A B

(&I).
A&B

It should be noted that the labels in the contexts are required to be the same.

In some senses the second proposal can be seen as an implementation method for the first. Certainly
there does not appear to be any fundamental problem with either proposal (unlike the situation
with the Promotion rule). We then have a choice, and for this thesis we shall take the second

7It should also be noted that this formulation corresponds to the additive boxes used by Girard [31] for the proof
net formulation of Classical Linear Logic.

§2. Natural Deduction 27

proposal. This proposal has the advantage of better proof-theoretic properties as well as a more
succinct syntax.

The elimination rules for With are simply the familiar projection rules from IL,

·
·
·

A&B
&E−1, and

A

·
·
·

A&B
&E−2.

B

Thus the additive conjunction is like an external choice (as either conjunct can be extracted). The
introduction rules for additive disjunction are as for IL,

·
·
·

A
⊕I−1, and

A ⊕ B

·
·
·

B
⊕I−2.

A ⊕ B

The elimination rule for the additive disjunction is also as for IL,

∆

�� @@
Γ [Ax] ∆ ∆ [By]
...

...
...

A ⊕ B C C
(⊕E)x,y.

C

Thus the additive disjunction is like an internal choice (as the disjunct itself determines whether it
is an A or a B and to deal with it we need to provide a case for both possibilities).

The Additive Units

The additive units are simply the nullary formulations of the additive rules. Thus from the formu-
lation of the additives we can derive the formulation of the units. Firstly, the tI rule which is the
nullary version of the &I rule,

·
·
·

A1 · · ·

·
·
·

An
(tI).

t

Next the fE rule, which is the nullary version of the ⊕E rule

·
·
·

A1 · · ·

·
·
·

An

·
·
·
f

(fE).
B

It should be noted that another formulation of the (fE) rule, namely

·
·
·
f

(fE)′,
A

would be an acceptable alternative (in that it is of equal expressive power).
For completeness we shall repeat the entire natural deduction formulation in Figure 2.2. The

advantage of this formulation over others is that it has the following property.

Theorem 3. The natural deduction formulation is closed under substitution.

28 Chapter 2. Proof Theory

[Ax]
·
·
·

B
(−◦I)x

A−◦B

·
·
·

A−◦B

·
·
·

A
(−◦E)

B

·
·
·

A1 · · ·

·
·
·

An
(tI)

t

·
·
·

A1 · · ·

·
·
·

An

·
·
·
f

(fE)
B

(II)
I

·
·
·

A

·
·
·
I

(IE)
A

·
·
·

A

·
·
·

B
(⊗I)

A⊗B

·
·
·

A⊗B

[Ax] [By]
·
·
·

C
(⊗E)x,y

C
Γ

�� @@
Γ Γ
...

...
A B

(&I)
A&B

∆

�� @@
Γ [Ax] ∆ ∆ [By]
...

...
...

A ⊕ B C C
(⊕E)x,y

C

·
·
·

A&B
&E−1

A

·
·
·

A&B
&E−2

B

·
·
·

A
⊕I−1

A ⊕ B

·
·
·

B
⊕I−2

A ⊕ B

·
·
·

!B

·
·
·

C
Weakening

C

·
·
·

!B

[!Bx] [!By]
·
·
·

C
Contractionx,y

C

·
·
·

!B
Dereliction

B

·
·
·

!A1 . . .

·
·
·

!An

[[!Ax1
1 · · · !Axn

n]]
·
·
·

B
Promotionx1,...,xn

!B

Figure 2.2: Natural Deduction Formulation of ILL

§2. Natural Deduction 29

It is possible to present natural deduction rules in a ‘sequent-style’, where given a sequent
Γ − A, Γ represents all the undischarged assumptions so far in the deduction, and A represents
conclusion of the deduction. We can still label the undischarged assumptions with a unique natural
number, but we refrain from doing so. This formulation should not be confused with the sequent
calculus formulation given in §1, which differs by having operations which act on the left and right
of the turnstile, rather than rules for the introduction and elimination of logical connectives. The
‘sequent-style’ formulation of natural deduction is given in Figure 2.3.

2.1 β-Reductions

With a natural deduction formulation we can produce so-called ‘detours’ in a deduction, which arise
where we introduce a logical connective and then eliminate it immediately afterwards. We can define
the normalization procedure by considering each case of an introduction rule followed immediately
by a corresponding elimination rule in turn.

• (−◦I) followed by (−◦E)

[A]
·
·
·

B
(−◦I)

A−◦B

·
·
·

A
(−◦E)

B

normalizes to

·
·
·

[A]
·
·
·

B.

• (II) followed by (IE)

·
·
·

A
(II)

I
(IE)

A

normalizes to

·
·
·

A.

• (⊗I) followed by (⊗E)
·
·
·

A

·
·
·

B
(⊗I)

A⊗B

[A] [B]
·
·
·

C
(⊗E)

C

normalizes to

·
·
·

[A]

·
·
·

[B]
·
·
·

C.

30 Chapter 2. Proof Theory

Identity
A − A

Γ1 − A1 · · · Γn − An
(tI)

Γ1, . . . , Γn − t

Γ1 − A1 · · · Γn − An ∆ − f
(fE)

Γ1, . . . , Γn, ∆ − A

Γ, A − B
(−◦I)

Γ − A−◦B

Γ − A−◦B ∆ − A
(−◦E)

Γ, ∆ − B

(II)
− I

∆ − I Γ − A
(IE)

Γ, ∆ − A

Γ − A ∆ − B
(⊗I)

Γ, ∆ − A⊗B

Γ − A⊗B ∆, A, B − C
(⊗E)

Γ, ∆ − C

Γ − A Γ − B
(&I)

Γ − A&B

Γ − A&B
&E−1

Γ − A

Γ − A&B
(&E−2)

Γ − B

Γ − A
(⊕I−1)

Γ − A ⊕ B

Γ − B
(⊕I−2)

Γ − A ⊕ B

Γ − A ⊕ B ∆, A − C ∆, B − C
(⊕E)

Γ, ∆ − C

∆1 − !A1 · · · ∆n − !An !A1, . . . , !An − B
Promotion

∆1, . . . , ∆n − !B

Γ − !A ∆ − B
Weakening

Γ, ∆ − B

Γ − !A ∆, !A, !A − B
Contraction

Γ, ∆ − B

Γ − !A
Dereliction

Γ − A

Figure 2.3: Natural Deduction Formulation of ILL in Sequent-Style

§2. Natural Deduction 31

• (&I) followed by (&E−1).
Γ

�� @@
Γ Γ
...

...
A B

(&I)
A&B

(&E−1)
A

normalizes to
Γ
·
·
·

A.

• (&I) followed by (&E−2).
Γ

�� @@
Γ Γ
...

...
A B

(&I)
A&B

(&E−2)
B

normalizes to

Γ
·
·
·

B.

• (⊕I−1) followed by (⊕E).

Γ
·
·
·

A
(⊕I−1)

A ⊕ B

∆

�� @@
[Ax] ∆ ∆ [By]

...
...

C C

C
(⊕E)x,y

normalizes to

Γ
...
A ∆

...
C.

• (⊕I−2) followed by (⊕E).

Γ
·
·
·

B
(⊕I−2)

A ⊕ B

∆

�� @@
[Ax] ∆ ∆ [By]

...
...

C C

C
(⊕E)x,y

32 Chapter 2. Proof Theory

normalizes to

Γ
...
B ∆

...
C.

• Promotion followed by Dereliction

·
·
·

!A1 . . .

·
·
·

!An

[[!A1 . . .!An]]
·
·
·

B
Promotion

!B
Dereliction

B

normalizes to

·
·
·

[[!A1 . . .

·
·
·

!An]]
·
·
·

B.

• Promotion with Weakening

·
·
·

!A1 . . .

·
·
·

!An

[[!A1 . . .!An]]
·
·
·

B
Promotion

!B

·
·
·

C
Weakening

C

normalizes to

·
·
·

!A1 . . .

·
·
·

!An

·
·
·

C
Weakening∗.

C

• Promotion with Contraction

·
·
·

!A1 . . .

·
·
·

!An

[[!A1 . . .!An]]
·
·
·

B
Prom

!B

[!B] [!B]
·
·
·

C
Cont

C

normalizes to

[!A1] . . . [!An]

[[!A1 . . .!An]]
·
·
·

B
Prom

!B

[!A1] . . . [!An]

[[!A1 . . .!An]]
·
·
·

B
Prom

!B
·
·
·

C

·
·
·

!A1 . . .

·
·
·

!An
Cont*.

C

§2. Natural Deduction 33

(We have introduced a shorthand notation in the last two cases, where Weakening∗ and Contraction∗

represent multiple applications of the Weakening and Contraction rule respectively.) The process
above gives rise to a relation which we shall denote by ;β. We shall describe one of the steps as
a β-reduction rule and say that a deduction is β-reducible if we can apply one of the β-reduction
rules.

Definition 6. A deduction D is said to be in β-normal form if it is not β-reducible.

2.2 Subformula Property and Commuting Conversions

We have already considered the subformula property in §1.3, in the context of the sequent calculus
formulation. Whereas in that case the property held simply by inspection of the derivation rules,
things are more delicate in the natural deduction formulation. For example, consider a deduction
which ends with an application of the −◦E rule

·
·
· D1

A−◦B

·
·
· D2

A
(−◦E).

B

Even if the deduction is in β-normal form, it is not simply the case by inspection that the subformula
property holds, i.e. that A−◦B is a subformula of Γ or ∆ (it is certainly not a subformula of B!).
We also note that for most of the elimination rules the conclusion is not a subformula of its major
premise.8 These rules are (⊗E), (IE), (⊕E), (fE), Weakening and Contraction; which we shall refer
to collectively as bad eliminations, with those remaining being known as good eliminations.

We shall introduce the notion of a path through a deduction. The idea is that we trace downwards
through a deduction from an assumption, with the hope that each trace yields a path with the
property that the every formula is a subformula of either an open assumption or of the final formula
in the path. Our notion of a path is based on Prawitz’s treatment of IL [62], although he attributes
the idea to Martin-Löf.

Definition 7. A path in a β-normal deduction, D, is a sequence of formulae, A0, . . . , An, such that

1. A0 is an open assumption or axiom; and

2. Ai+1 follows Ai if

(a) Ai+1 is the conclusion of an introduction rule (excluding (tI)) and Ai is a premise of the
rule (if the rule is Promotion, then Ai must not be a minor premise); or

(b) Ai+1 is the conclusion of an elimination rule and Ai is either the major premise of a good
elimination rule, or the minor premise of a bad elimination rule (excluding (fE)); or

(c) Ai is the major premise of a bad elimination rule (excluding (fE)) and Ai+1 is an assumption
discharged by that application; or

(d) Ai is the minor premise of an application of the Promotion rule and Ai+1 is the corre-
sponding assumption discharged by that assumption; and

3. An is either the conclusion of D, or the major premise of (IE) or Weakening, or a premise of
(fE).

We shall identify a particular path as mentioned earlier.

Definition 8. A subformula path is a path in a deduction, D, such that every formula in it is either
a subformula of an assumption or of the final formula in the path.

Consider a β-normal deduction, D, of the form

8Girard [34] calls such conclusions parasitic formulae.

34 Chapter 2. Proof Theory

·
·
·

A⊗B

[A] [B]
·
·
·

C
(⊗E).

C

A path through D is of the form . . . , A⊗B, A, . . . C, C (recall that as D is in β-normal form then
A⊗B cannot be the result of an introduction rule). As we have mentioned before, the problematic
feature of this deduction is the appearance of C in the path. This formula need not have any relation
to the formula being eliminated (A⊗B). Importantly it may be that some of the formulae in the path
are subformulae of C rather than of any open assumption. If the conclusion of D is subsequently
used as the major premise of another elimination rule, it is easy to see that the resulting path may
not be a subformula path. Consider the deduction

·
·
·

A⊗B

[A] [B]
·
·
·

C−◦D
(⊗E)

C−◦D

·
·
·

C
(−◦E),

D

then a path through this deduction is . . . , A⊗B, A, . . . , C−◦D, D. Clearly the formula C−◦D need
not be a subformula of an open assumption (as it could be the conclusion of an introduction rule)
and so the path would not be a subformula path.

We shall follow the standard solution and introduce additional reductions to remove these prob-
lematic occurrences. These occurrences are when the conclusion of a bad elimination rule is the
major premise of another elimination rule. We shall use the shorthand notation of Girard [34,
Chapter 10] and write

C
...
(rE),

D

to denote an elimination rule (r) with the major premise C and conclusion D, where the ellipses
represent possible other formulae. This notation covers the ten elimination rules: (−◦E), (IE), (⊗E),
(&E−1), (&E−2), (⊕E), (fE), Dereliction, Contraction, and Weakening. We shall follow Girard and
commute the r rule upwards, although it should be noted that it would be perfectly admissible
(where applicable) to direct these commutations in the other direction.

• Commutation of (⊗E).

·
·
·

A⊗B

[A] [B]
·
·
·

C
(⊗E)

C
...
(rE)

D

which commutes to

·
·
·

A⊗B

[A] [B]
·
·
·

C
...
(rE)

D
(⊗E).

D

§2. Natural Deduction 35

• Commutation of (IE).

·
·
·

A

·
·
·
I

(IE)
A

...
(rE)

D

which commutes to

·
·
·

A
...
(rE)

D

·
·
·
I

(IE).
D

• Commutation of (⊕E).

∆

�� @@
Γ [Ax] ∆ ∆ [By]
...

...
...

A ⊕ B C C
(⊕E)x,y

C
...
(rE)

D

which commutes to

Γ
·
·
·

A ⊕ B

∆

�� @@

...

[Ax] ∆
·
·
·

C
(rE)

D

∆ [By]
·
·
·

C
...
(rE)

D
(⊕E)x,y.

D

• Commutation of (fE).

...

·
·
·
f

(fE)
B

∆
·
·
·
(rE)

C
which commutes to

... ∆

·
·
·
f

(fE).
C

• Commutation of Weakening.

·
·
·

!B

·
·
·

C
Weakening

C
...
(rE)

D

36 Chapter 2. Proof Theory

which commutes to

·
·
·

!B

·
·
·

C
...
(rE)

D
Weakening.

D

• Commutation of Contraction.

·
·
·

!B

[!B] [!B]
·
·
·

C
Contraction

C
...
(rE)

D

which commutes to

·
·
·

!B

[!B] [!B]
·
·
·

C
...
(rE)

D
Contraction.

D

However there are still a number of cases to consider before being able to deduce the subformula
property. Consider the (fE) rule

·
·
·
f

·
·
·

A1 . . .

·
·
·

An
(fE).

B

The problem is with the minor premises, A1, . . . , An. We do not necessarily have that these are
subformulae of an open assumption. For example, consider the simple (β-normal) deduction

C−◦f C
(−◦E)

f

A B
(⊗I)

A⊗B
(fE),

C

where clearly A⊗B is not a subformula of an open assumption nor of C. Thus we impose the (rather
strong) reduction, that a deduction of the form

·
·
·
f

Γ1
·
·
·

A1 . . .

Γn
·
·
·

An
(fE)

B

commutes to

·
·
·
f Γ1 . . . Γn

(fE).
B

Similar reasoning for the (tI) yields the rule that a deduction of the form

§2. Natural Deduction 37

Γ1
·
·
·

A1 . . .

Γn
·
·
·

An
(tI)

t

commutes to

Γ1 . . . Γn
(tI).

t

In fact, we could have been more refined for these two cases. If the minor premises were the
conclusion of an elimination rule, then it would be the case that it was a subformula of an open
assumption. We shall keep these more global rules as we shall see later that they correspond more
closely with the steps in the cut elimination process.

Now consider the Promotion rule (the introduction rule for the exponential)

·
·
·

!A1 . . .

·
·
·

!An

[[!A1 · · · !An]]
·
·
·

B
Promotion.

!B

We have a problem here as we do not know immediately that the !Ai are subformulae of an assump-
tion or of !B. Consider a deduction in β-normal form ending with an application of the Promotion
rule. If !Ai is the conclusion of a bad elimination then a similar argument to that used earlier gives
that the path need not be a subformula path.9 For example, consider the β-normal deduction

!C⊗!(C−◦A−◦B)

[!C] [!(C−◦A−◦B)]

[!C]
Der

C

[!(C−◦A−◦B)]
Der

C−◦A−◦B
(−◦E)

A−◦B
Prom

!(A−◦B)
(⊗E)

!(A−◦B) !A

[!(A−◦B)]
Der

A−◦B

[!A]
Der

A
(−◦E)

B
Prom.

!B

Clearly the formula !(A−◦B) is not a subformula of either an open assumption nor of of the con-
clusion. As before we shall introduce further commuting conversions to eliminate the problematic
occurrence when the conclusion of a bad elimination rule is a minor premise of an application of the
Promotion rule. Thus a deduction of the form

·
·
·

!A1 . . .

·
·
·

C

·
·
·

!Ai
(badE)

!Ai . . .

·
·
·

!An

[[!A1 · · ·!An]]
·
·
·

B
Promotion

!B

commutes to

·
·
·

C

·
·
·

!A1 . . .

·
·
·

!Ai . . .

·
·
·

!An

[[!A1 · · ·!An]]
·
·
·

B
Promotion

!B
(badE).

!B

9The behaviour of the Promotion rule with respect to the subformula property was omitted from an earlier
paper [16].

38 Chapter 2. Proof Theory

We have yet one further possibility; that a minor premise !Ai is the conclusion of another application
of the Promotion rule (obviously it can’t be the result of any other introduction rule). Thus we have
another commutation rule, where

·
·
·

!A1 . . .

·
·
·

!C1 . . .

·
·
·

!Cm

[[!C1 · · · !Cm]]
·
·
·

Ai
Prom

!Ai . . .

·
·
·

!An

[[!A1 · · · !An]]
·
·
·

B
Prom

!B

commutes to

·
·
·

!A1 . . .

·
·
·

!C1 . . .

·
·
·

!Cm . . .

·
·
·

!An

[[!A1 · · ·!Ai−1]]

[[!C1 · · ·!Cm]]

[[!C1 · · ·!Cm]]
·
·
·

Ai

Prom

!Ai [[!Ai+1 · · ·!An]]
·
·
·

B
Prom.

!B

The commutation process described in this section gives rise to a relation which we denote by ;c.
We describe a step as a commuting conversion.10

Definition 9. A deduction D is said to be c-normal form if no commuting conversions apply.

We can then combine our two notions of a normal form to define a third.

Definition 10. A deduction D is said to be in (β, c)-normal form if it is in both β-normal form
and in c-normal form.

Before proving the subformula property, we shall consider the form of a path. It is easy to see
that given Definition 7, the bad elimination rules give repeated formula occurrences in a path. A
sequence of repeated occurrences of a formula in this way, we shall call a segment . Clearly every
path can then be uniquely divided into consecutive segments (normally consisting of a single formula
occurrence). In other words a path, π, can be expressed as a sequence of segments σ0, . . . , σn. As
a segment represents a sequence of the same formula occurrence, we shall often speak of a segment
being a premise or a subformula of another without confusion. We can now show an important
property of a path in a (β, c)-normal deduction.

Theorem 4. Let D be a (β, c)-normal deduction and π be a path in D and let σ0, . . . , σn be a
sequence of segments of π. Then there is a segment, σi, which separates the path into two (possibly
empty) parts, I and E, such that

1. each σj in the E part (i.e. j < i) is a major premise of an elimination rule and σj+1 is a
subformula of σj ; and

2. σi is a premise of an introduction rule or the major premise of Weakening or (IE) or a premise
of (fE); and

3. each σj in the I part, except the last one, (i.e. i < j < n) is a premise of an introduction rule
and is a subformula of σj+1.

Proof. By inspection of the deduction D.

Now, essentially as a corollary, we can show that every path is a subformula path, i.e. the subformula
property holds.

10They are called permutative conversions by Prawitz [61].

§3. Axiomatic Formulation 39

Theorem 5. Let D be a deduction in (β, c)-normal form, then every formula in D is a subformula
of the conclusion or an assumption.

Proof. We shall define an order on a path in a deduction. A path which ends with the conclusion
of the deduction has the order 1. A path which ends as the major premise of (IE), Weakening or
(fE), or the minor premise of (−◦E) has the order n + 1 if the minor, or major premise, have the
order n, respectively.

We can then show that every path is a subformula path by complete induction on the order of
the path, and by use of Theorem 4.

3 Axiomatic Formulation

As we have mentioned before an axiomatic formulation of a logic consists of a set of formulae which
are known as axioms and a number of derivation rules. Although constructing derivations in such
a formulation is somewhat tortuous and unnatural, we can give three important reasons for their
study (the first two are used by Hodges [40]).

1. They are very simple to describe. For example, the formulation of IL (given in §5) can be
described using just one derivation rule (Modus Ponens).

2. The logics can be weakened or strengthened by simply removing or adding to the set of axioms.
This is certainly the case in the study of Modal Logics (see, for example, Goré’s thesis [36])
where it is common to define a logic by first giving its axiomatic formulation.

3. They can be considered as an effective implementation technique for functional programming
languages. This technique is due to Turner [77]; Stoye [71] demonstrated how a purpose built
machine could be based upon this idea.

The derivation of an axiomatic formulation is reasonably straightforward; a simple guide is given
by Hodges [40]. The axioms can often be read off from the natural deduction formulation. For
example, consider the introduction and elimination rules for the Tensor, viz.

Γ − A ∆ − B
(⊗I),

Γ, ∆ − A⊗B
and

Γ − A⊗B ∆, A, B − C
(⊗E).

Γ, ∆ − C

The introduction rule suggests an axiom of the form A−◦(B−◦A⊗B), and the elimination rule
suggests an axiom A⊗B−◦((A−◦(B−◦C))−◦C). However it should be noted that this technique
only works for so-called pure logical rules; namely those which contain no side-conditions. Thus for
the additives and the exponential this simple technique does not apply, and we have to call upon
experience with other logics and consider certain properties which enable us to derive an appropriate
set of axioms.

It should be noted that both Avron [7] and Troelstra [75, Chapter 7] have considered an axiomatic
formulation of ILL. The axiomatic formulation is given in Figure 2.4.11 In what follows we shall
sometimes write an instance of an axiom as − c.

The Promotion rule has the side condition that the context must be empty when it is applied.
This is tradition for modal logics and for ILL it seems to be unavoidable. It is worth noting the
difficulty with representing the additive disjunction, ⊕. There seems to be no way of defining the
connective other than with reference to the With connective (in the axiom sdist). This seems to
be a weakness with this particular system rather than the logic itself. It is not clear if this problem
is eliminated when considering Hilbert-style presentations of Classical Linear Logic (such as that of
Hesselink [38]).

11As mentioned in §1 some of the exponential rules are similar to those from Modal Logic. In the axiomatic
formulation we see the similarities as well. The axiom eps is similar to the modal axiom T:2A ⊃ A, delta is
similar to 4:2A ⊃ 22A and edist is similar to K:2(A ⊃ B) ⊃ (2A ⊃ 2B).

40 Chapter 2. Proof Theory

I : A−◦A
B : (B−◦C)−◦((A−◦B)−◦(A−◦C))
C : (A−◦(B−◦C))−◦(B−◦(A−◦C))

tensor : A−◦(B−◦A⊗B)
split : A⊗B−◦((A−◦(B−◦C))−◦C)

unit : I
let : A−◦(I−◦A)

fst : A&B−◦A
snd : A&B−◦B

wdist : (A−◦B)&(A−◦C)−◦(A−◦B&C)

inl : A−◦A ⊕ B
inr : B−◦A ⊕ B

sdist : (A−◦C)&(B−◦C)−◦(A ⊕ B−◦C)

init : f−◦A
term : A−◦t

dupl : (!A−◦(!A−◦B))−◦(!A−◦B)
disc : B−◦(!A−◦B)
eps : !A−◦A

delta : !A−◦!!A
edist : !(A−◦B)−◦(!A−◦!B)

Identity
A − A

Axiom (where c : A is taken from above)
− A

Γ − A−◦B ∆ − A
Modus Ponens

Γ, ∆ − B

Γ − A Γ − B
With

Γ − A&B

− A
Promotion

− !A

Figure 2.4: Axiomatic Formulation of ILL

§3. Axiomatic Formulation 41

An important theorem is the so-called Deduction Theorem, which in essence allows us to ‘remove’
an assumption from a derivation. In other words, given any derivation, we can remove its dependence
upon any assumptions. We find that such a theorem holds for our formulation.

Theorem 6. If Γ, A − B then Γ − A−◦B.

Proof. By induction on the structure of the derivation Γ, A − B.

• A derivation of the form
Identity

A − A

is transformed to
Axiom.

− A−◦A

• A derivation of the form

Γ, A − B−◦C ∆ − B
Modus Ponens

Γ, ∆, A − C

is transformed to

− (A−◦(B−◦C))−◦(B−◦(A−◦C)) Γ − A−◦(B−◦C)
M.P.

Γ − B−◦(A−◦C) ∆ − B
M.P.

Γ, ∆ − A−◦C

• A derivation of the form

Γ − B−◦C ∆, A − B
Modus Ponens

Γ, ∆, A − C

is transformed to

− (B−◦C)−◦((A−◦B)−◦(A−◦C)) Γ − B−◦C
M.P.

Γ − (A−◦B)−◦(A−◦C) ∆ − A−◦B
M.P.

Γ, ∆ − A−◦B

• A derivation of the form
Γ, A − B Γ, A − C

With
Γ, A − B&C

is transformed to

− (A−◦B)&(A−◦C)−◦(A−◦B&C)

Γ − A−◦B Γ − A−◦C
With

Γ − (A−◦B)&(A−◦C)
M.P.

Γ − A−◦B&C

In §4.3 we shall make use of the deduction theorem. For conciseness we shall often write it as if
it were a proof rule, viz.

Γ, A − B
D.T.

Γ − A−◦B

42 Chapter 2. Proof Theory

4 Comparisons

We would expect there to be a close relationship between the three formulations of ILL which we
have presented. Indeed we can define procedures to map proofs from one formulation to another. We
shall consider each procedure in turn. (For conciseness we shall use the sequent-style presentation
of the natural deduction formulation.)

4.1 From Sequent Calculus to Natural Deduction

We shall define a procedure N by induction on the sequent proof tree, which we shall denote by π.

• The proof

Identity
A − A

is mapped to the deduction

Identity.
A − A

• A proof π of the form

π1

Γ − A

π2

∆, A − B
Cut

Γ, ∆ − B

is mapped to the deduction

N (π1)

Γ − A

N (π2)

∆, A − B
Subs.

Γ, ∆ − B

• A proof π of the form

π1

Γ − A

π2

∆, B − C
(−◦L)

Γ, A−◦B, ∆ − C

is mapped to the deduction

A−◦B − A−◦B

N (π1)

Γ − A
(−◦E)

A−◦B, Γ − B

N (π2)

∆, B − C
Subs.

Γ, A−◦B, ∆ − C

• A proof π of the form

π1

Γ, A − B
(−◦R)

Γ − A−◦B

is mapped to the deduction

N (π1)

Γ, A − B
(−◦I).

Γ − A−◦B

§4. Comparisons 43

• A proof π of the form

π1

Γ − A
(IL)

Γ, I − A

is mapped to the deduction

N (π1)

Γ − A I − I
(IE).

Γ, I − A

• A proof of the form

(IR)
− I

is mapped to the deduction

(II).
− I

• A proof π of the form

π1

∆, A, B − C
(⊗L)

∆, A⊗B − C

is mapped to the deduction

A⊗B − A⊗B

N (π1)

∆, A, B − C
(⊗E).

A⊗B, ∆ − C

• A proof π of the form

π1

Γ − A

π2

∆ − B
(⊗R)

Γ, ∆ − A⊗B

is mapped to the deduction

N (π1)

Γ − A

N (π2)

∆ − B
(⊗I).

Γ, ∆ − A⊗B

• A proof π of the form

π1

Γ, A − C
(&L−1)

Γ, A&B − C

is mapped to the deduction

Identity
A&B − A&B

(&E−1)
A&B − A

N (π1)

Γ, A − C
Subs.

Γ, A&B − C

44 Chapter 2. Proof Theory

• A proof π of the form

π1

Γ, B − C
(&L−2)

Γ, A&B − C

is mapped to the deduction

Identity
A&B − A&B

(&E−2)
A&B − B

N (π1)

Γ, B − C
Subs.

Γ, A&B − C

• A proof π of the form

π1

Γ − A

π2

Γ − B
(&R)

Γ − A&B

is mapped to the deduction

N (π1)

Γ − A

N (π2)

Γ − B
(&R).

Γ − A&B

• A proof π of the form

π1

Γ, A − C

π2

Γ, B − C
(⊕L)

Γ, A ⊕ B − C

is mapped to the deduction

Identity
A ⊕ B − A ⊕ B

N (π1)

Γ, A − C

N (π2)

Γ, B − C
(⊕E).

Γ, A ⊕ B − C

• A proof π of the form

π1

Γ − A
(⊕R−1)

Γ − A ⊕ B

is mapped to the deduction

N (π1)

Γ − A
(⊕I−1).

Γ − A ⊕ B

§4. Comparisons 45

• A proof π of the form

π1

Γ − B
(⊕R−2)

Γ − A ⊕ B

is mapped to the deduction

N (π1)

Γ − B
(⊕I−2).

Γ − A ⊕ B

• A proof π of the form
(tR)

Γ − t

is mapped to the deduction

Id
Γ − Γ

(tI).
Γ − t

• A proof π of the form
(fL)

Γ, f − A

is mapped to the deduction

Id
Γ − Γ

Id
f − f

(fE).
Γ, f − A

• A proof π of the form

π1

Γ − B
Weakening

Γ, !A − B

is mapped to the deduction

!A − !A

N (π1)

Γ − B
Weakening.

Γ, !A − B

• A proof π of the form

π1

Γ, !A, !A − B
Contraction

Γ, !A − B

is mapped to the deduction

!A − !A

N (π1)

Γ, !A, !A − B
Contraction.

Γ, !A − B

46 Chapter 2. Proof Theory

• A proof π of the form

π1

Γ, A − B
Dereliction

Γ, !A − B

is mapped to the deduction

!A − !A
Dereliction

!A − A

N (π1)

Γ, A − B
Subs.

Γ, !A − B

• Finally, a proof π of the form

π1

!A1, . . . , !An − B
Promotion

!A1, . . . , !An − !B

is mapped to the deduction

!A1 − !A1 · · · !An − !An

N (π1)

!A1, . . . , !An − B
Promotion.

!A1, . . . , !An − !B

4.2 From Natural Deduction to Sequent Calculus

We shall define a procedure S by induction on the deduction tree, which we shall denote by D.

• The deduction
Identity

A − A

is mapped to the proof

Identity.
A − A

• The deduction D of the form

D1

Γ, A − B
(−◦I)

Γ − A−◦B

is mapped to the proof

S(D1)

Γ, A − B
(−◦R).

Γ − A−◦B

• A deduction D of the form

D1

Γ − A−◦B

D2

∆ − A
(−◦E)

Γ, ∆ − B

§4. Comparisons 47

is mapped to the proof

S(D1)

Γ − A−◦B

S(D2)

∆ − A B − B
(−◦L)

A−◦B, ∆ − B
Cut.

Γ, ∆ − B

• A deduction D of the form

(II)
− I

is mapped to the sequent

(IR).
− I

• A deduction D of the form

D1

Γ − A

D2

∆ − I
(IE)

Γ, ∆ − A

is mapped to the proof

S(D2)

∆ − I

S(D1)

Γ − A
(IL)

Γ, I − A
Cut.

Γ, ∆ − A

• A deduction D of the form

D1

Γ − A

D2

∆ − B
(⊗I)

Γ, ∆ − A⊗B

is mapped to the proof

S(D1)

Γ − A

S(D2)

∆ − B
(⊗R).

Γ, ∆ − A⊗B

• A deduction D of the form

D1

Γ − A⊗B

D2

∆, A, B − C
(⊗E)

Γ, ∆ − C

is mapped to the proof

S(D1)

Γ − A⊗B

S(D2)

∆, A, B − C
(⊗L)

∆, A⊗B − C
Cut.

Γ, ∆ − C

48 Chapter 2. Proof Theory

• A deduction D of the form

D1

Γ − A

D2

Γ − B
(&I)

Γ − A&B

is mapped to the proof
S(D1)

Γ − A

S(D2)

Γ − B
(&R).

Γ − A&B

• A deduction D of the form

D1

Γ − A&B
(&E−1)

Γ − A

is mapped to the proof

S(D1)

Γ − A&B

Identity
A − A

(&L−1)
A&B − A

Cut.
Γ − A

• A deduction D of the form

D1

Γ − A&B
(&E−2)

Γ − B

is mapped to the proof

S(D1)

Γ − A&B

Identity
B − B

(&L−2)
A&B − B

Cut.
Γ − B

• A deduction D of the form

D1

Γ − A
(⊕I−1)

Γ − A ⊕ B

is mapped to the proof
S(D1)

Γ − A
(⊕R−1).

Γ − A ⊕ B

• A deduction D of the form

D1

Γ − B
(⊕I−2)

Γ − A ⊕ B

is mapped to the proof
S(D1)

Γ − B
(⊕R−2).

Γ − A ⊕ B

§4. Comparisons 49

• A deduction D of the form

D1

Γ − A ⊕ B

D2

∆, A − C

D3

∆, B − C
(⊕E)

Γ, ∆ − C

is mapped to the proof

S(D1)

Γ − A ⊕ B

S(D2)

∆, A − C

S(D3)

∆, B − C
(⊕L)

∆, A ⊕ B − C
Cut.

Γ, ∆ − C

• A deduction D of the form

D1

Γ1 − A1 · · ·

Dn

Γn − An
(tI)

Γ1, . . . , Γn − t

is mapped to the proof

S(D1)

Γ1 − A1 · · ·

S(Dn)

Γn − An

(tR).
A1, . . . , An − t

Cutn
Γ1, . . . , Γn − t

• A deduction D of the form

D1

Γ1 − A1 · · ·

Dn

Γn − An

Dn+1

∆ − f
(fE)

Γ1, . . . , Γn, ∆ − A

is mapped to the proof

S(D1)

Γ1 − A1 · · ·

S(Dn)

Γn − An

S(Dn+1)

∆ − f
(fL)

A1, . . . , An, f − A
Cutn+2.

Γ, ∆ − A

• A deduction D of the form

D1

Γ − !A

D2

∆ − B
Weakening

Γ, ∆ − B

is mapped to the proof

S(D1)

Γ − !A

S(D2)

∆ − B
Weakening

∆, !A − B
Cut.

Γ, ∆ − B

50 Chapter 2. Proof Theory

• A deduction D of the form

D1

Γ − !A

D2

∆, !A, !A − B
Contraction

Γ, ∆ − B

is mapped to the proof

S(D1)

Γ − !A

S(D2)

∆, !A, !A − B
Contraction

∆, !A − B
Cut.

Γ, ∆ − B

• A deduction D of the form

D1

Γ − !A
Dereliction

Γ − A

is mapped to the proof

S(D1)

Γ − !A

A − A
Dereliction

!A − A
Cut.

Γ − A

• A deduction D of the form

D1

∆1 − !A1 · · ·

Dn

∆n − !An

Dn+1

!A1, . . . , !An − B
Promotion

∆1, . . . , ∆n − !B

is mapped to the proof

S(D1)

∆1 − !A1 · · ·

S(Dn)

∆n − !An

S(Dn+1)

!A1, . . . , !An − B
Promotion

!A1, . . . , !An − !B
Cutn.

∆1, . . . , ∆n − !B

4.3 From Natural Deduction to Axiomatic

We shall define a procedure H by induction on the deduction tree, which we shall denote by D.

• The deduction
Identity

A − A

is mapped to the derivation
Identity

A − A

§4. Comparisons 51

• A deduction D of the form
D1

Γ, A − B
(−◦I)

Γ − A−◦B

is mapped to the derivation

H(D1)

Γ, A − B
D.T.

Γ − A−◦B

• A deduction D of the form

D1

Γ − A−◦B

D2

∆ − A
(−◦E)

Γ, ∆ − B

is mapped to the derivation

H(D1)

Γ − A−◦B

H(D2)

∆ − A
Modus Ponens.

Γ, ∆ − B

• The deduction
(II)

− I

is mapped to the derivation
Axiom.

− I

• A deduction of the form
D1

Γ − A

D2

∆ − I
(IE)

Γ, ∆ − A

is mapped to the derivation

− A−◦(I−◦A)

H(D1)

Γ − A
M.P.

Γ − I−◦A

H(D2)

∆ − I
M.P.

Γ, ∆ − A

• A deduction of the form

D1

Γ − A

D2

∆ − B
(⊗I)

Γ, ∆ − A⊗B

is mapped to the derivation

52 Chapter 2. Proof Theory

− A−◦(B−◦A⊗B)

H(D1)

Γ − A
M.P.

Γ − B−◦A⊗B

H(D2)

∆ − B
M.P.

Γ, ∆ − A⊗B

• A deduction of the form

D1

Γ − A⊗B

D2

∆, A, B − C
(⊗E)

Γ, ∆ − C

is mapped to the derivation

− A⊗B−◦((A−◦B−◦C)−◦C)

H(D1)

Γ − A⊗B

Γ − (A−◦(B−◦C))−◦C

H(D2)

∆, A, B − C
D.T.2

∆ − A−◦(B−◦C)
M.P.

Γ, ∆ − C

• A deduction of the form
D1

Γ − A

D2

Γ − B
(&I)

Γ − A&B

is mapped to the derivation

H(D1)

Γ − A

H(D2)

Γ − B
With.

Γ − A&B

• A deduction of the form
D1

Γ − A&B
(&E−1)

Γ − A
is mapped to the derivation

Axiom
− A&B−◦A

H(D1)

Γ − A&B
M.P.

Γ − A

• A deduction of the form
D1

Γ − A&B
(&E−2)

Γ − B

is mapped to the derivation

Axiom
− A&B−◦B

H(D1)

Γ − A&B
M.P.

Γ − B

§4. Comparisons 53

• A deduction of the form
D1

Γ − A
(⊕I−1)

Γ − A ⊕ B

is mapped to the derivation

− A−◦A ⊕ B

H(D1)

Γ − A
M.P.

Γ − A ⊕ B

• A deduction of the form
D1

Γ − B
(⊕I−2)

Γ − A ⊕ B

is mapped to the derivation

− B−◦A ⊕ B

H(D1)

Γ − B
M.P.

Γ − A ⊕ B

• A deduction of the form

D1

Γ − A ⊕ B

D2

∆, A − C

D3

∆, B − C
(⊕E)

Γ, ∆ − C

is mapped to the deduction

− (A−◦C)&(B−◦C)−◦(A ⊕ B−◦C)

H(D2)

∆, A − C
D.T.

∆ − A−◦C

H(D3)

∆, B − C
D.T.

∆ − B−◦C
With

∆ − (A−◦C)&(B−◦C)

∆ − A ⊕ B−◦C

H(D1)

Γ − A ⊕ B
M.P.

Γ, ∆ − C

• A deduction of the form
D1

Γ1 − A1 · · ·

Dn

Γn − An
(tI)

Γ1, . . . , Γn − t

is mapped to the derivation

− A1⊗ . . .⊗An−◦t

− A−◦B−◦A⊗B

H(D1)

Γ1 − A1
M.P.

Γ1 − A2−◦A1⊗A2

H(D2)

Γ2 − A2
M.P.

...
M.P.

~Γ − A1⊗ . . .⊗An
M.P.

~Γ − t

54 Chapter 2. Proof Theory

• A deduction of the form

D1

Γ1 − A1 · · ·

Dn

Γn − An

Dn+1

∆ − f
(fE)

Γ1, . . . , Γn, ∆ − B

is mapped to the derivation

− f−◦(A1−◦(. . . (An−◦B) . . .))

H(Dn+1)

∆ − f

M.P.

∆ − A1−◦(. . . (An−◦B) . . .)

H(D1)

Γ1 − A1

M.P.
...

H(Dn)

Γn − An

~Γ, ∆ − B

• A deduction of the form
D1

Γ − !A

D2

∆ − B
Weakening

Γ, ∆ − B

is mapped to the derivation

− B−◦(!A−◦B)

H(D2)

∆ − B

∆ − !A−◦B

H(D1)

Γ − !A
M.P.

Γ, ∆ − B

• A deduction of the form

D1

Γ − !A

D2

∆, !A, !A − B
Contraction

Γ, ∆ − B

is mapped to the derivation

− (!A−◦!A−◦B)−◦(!A−◦B)

H(D2)

∆, !A, !A − B
D.T.2

∆ − !A−◦!A−◦B
M.P.

∆ − !A−◦B

H(D1)

Γ − !A
M.P.

Γ, ∆ − B

• A deduction of the form
D1

Γ − !A
Dereliction

Γ − A
is mapped to the derivation

− !A−◦A

H(D1)

Γ − !A
M.P.

Γ − A

§4. Comparisons 55

• A deduction of the form

D1

Γ1 − !A1 · · ·

Dn

Γn − !An

Dn+1

!A1, . . . , !An − B
Promotion

Γ1, . . . , Γn − !B

is mapped first to the derivation

H(D)n+1

!A1, . . . , !An − B
D.T.n

− !A1−◦(!A2−◦ . . .−◦B)
Prom.

− !(!A1−◦(!A2−◦ . . .−◦B))

Writing D for this derivation we can form the derivation

− B

− edist

D

− !(!A1−◦(!A2−◦ . . .−◦B))

− !!A1−◦!(!A2−◦ . . .−◦B)
M.P.

− (!A1−◦!!A1)−◦(!A1−◦!(!A2−◦ . . .−◦B)) − !A−◦!!A
M.P.

− !A1−◦!(!A2−◦ . . .−◦B)

H(D1)

Γ1 − !A1

M.P.

Γ1 − !(!A2−◦ . . .−◦B)

...
M.P.

Γ1, . . . , Γn − !B

4.4 From Axiomatic to Natural Deduction

We shall define a procedure J by induction on the derivation which we shall denote as D. (We shall
not consider all the axioms, but as examples, consider those which model the exponential.)

• A derivation of the form

Identity
A − A

is mapped to the deduction

Identity
A − A

• A derivation of the form

Axiom
− ((!A−◦!A−◦B)−◦(!A−◦B))

is mapped to the following deduction

!A − !A

!A−◦!A−◦B − !A−◦!A−◦B !A − !A
(−◦E)

!A−◦!A−◦B, !A − !A−◦B !A − !A
(−◦E)

!A−◦!A−◦B, !A, !A − B
Contraction

!A−◦!A−◦B, !A − B
(−◦I)

!A−◦!A−◦B − !A−◦B
(−◦I).

− ((!A−◦!A−◦B)−◦(!A−◦B))

56 Chapter 2. Proof Theory

• A derivation of the form

Axiom
− B−◦!A−◦B

is mapped to the deduction

!A − !A B − B
Weakening

B, !A − B
(−◦I)

B − !A−◦B
(−◦I).

− B−◦!A−◦B

• A derivation of the form

Axiom
− !A−◦A

is mapped to the deduction

!A − !A
Dereliction.

!A − A

• A derivation of the form

Axiom
− !A−◦!!A

is mapped to the following deduction

!A − !A !A − !A
Promotion

!A − !!A
(−◦I).

− !A−◦!!A

• A derivation of the form

Axiom
− !(A−◦B)−◦(!A−◦!B)

is mapped to the deduction

!A − !A !(A−◦B) − !(A−◦B)

!(A−◦B) − !(A−◦B)
Der.

!(A−◦B) − A−◦B

!A − !A
Der.

!A − A
(−◦E)

!(A−◦B), !A − B
Promotion

!(A−◦B), !A − !B
(−◦I)

!(A−◦B) − !A−◦!B
(−◦I).

− !(A−◦B)−◦(!A−◦!B)

§4. Comparisons 57

• A derivation of the form

D1

Γ − A−◦B

D2

∆ − A
Modus Ponens

Γ, ∆ − B

is mapped to the deduction

J (D1)

Γ − A−◦B

J (D2)

∆ − A
(−◦E).

Γ, ∆ − B

• A derivation of the form
D1

Γ − A

D2

Γ − B
With

Γ − A&B
is mapped to the deduction

J (D1)

Γ − A

J (D2)

Γ − B
(&I).

Γ − A&B

• A derivation of the form

D1

− A
Promotion

− !A

is mapped to the deduction

J (D1)

− A
Promotion.

− !A

4.5 Properties of the translations

As we would expect, we find that the three formulations are actually equivalent. We shall write

`N
D

Γ − A to represent a deduction, D, in the natural deduction formulation, `S
π

Γ − A to represent

a proof, π, in the sequent calculus formulation and `A
D

Γ − A to represent a derivation, D, in the
axiomatic formulation.

Theorem 7.

• If `S
π

Γ − A then `N
N (π)

Γ − A.

• If `N
D

Γ − A then `S
S(D)

Γ − A.

• If `N
D

Γ − A then `A
H(D)

Γ − A.

• If `A
D

Γ − A then `N
J (D)

Γ − A.

Proof. By straightforward structural induction.

Corollary 1. The natural deduction (Figure 2.3), sequent calculus (Figure 2.1) and axiomatic
(Figure 2.4) formulations are equivalent formulations of ILL.

58 Chapter 2. Proof Theory

5 Translations

As mentioned earlier, the exponential regains the full power of IL but in a controlled way. Propo-
sitions can be weakened or contracted provided they are of the form !A. Girard [31, Pages 78–82]
showed how ILL could be translated to and from IL. Here we shall consider the translations in
detail but using the natural deduction formulation from §2.12 First we repeat the natural deduction
formulation of IL in Figure 2.5.

Id
Γ, A − A

Γ − ⊥
(⊥E)

Γ − A

Γ − A Γ − B
(∧I)

Γ − A ∧ B

Γ − A ∧ B
(∧E−1)

Γ − A

Γ − A ∧ B
(∧E−2)

Γ − B

Γ, A − B
(⊃I)

Γ − A ⊃ B

Γ − A ⊃ B Γ − A
(⊃E)

Γ − B

Γ − A
(∨I−1)

Γ − A ∨ B

Γ − B
(∨I−2)

Γ − A ∨ B

Γ − A ∨ B Γ, A − C Γ, B − C
(∨E)

Γ − C

Figure 2.5: Natural Deduction Formulation of IL

We shall make a quick observation concerning the formulation of IL given in Figure 2.5. We
have chosen not to make the structural rules explicit but they are admissible rules, as is the rule of
substitution.

Proposition 2. In the formulation of IL given in Figure 2.5, the rules

Γ − B
Weakening,

Γ, A − B

Γ, A, A − B
Contraction

Γ, A − B

and
Γ − A Γ, A − B

Substitution
Γ − B

are admissible.

Now let us repeat Girard’s translation, which is given at the level of propositions.

Definition 11. (Girard)

⊥◦ def
= f

A◦ def
= A If A is an atomic formula

(A ∧ B)◦
def
= A◦&B◦

(A ∨ B)◦
def
= !(A◦)⊕ !(B◦)

(A ⊃ B)◦
def
= !(A◦)−◦B◦

12Girard’s original presentation used the sequent calculus formulation.

§5. Translations 59

If Γ = A1, . . . , Γn then by Γ◦ we mean A◦
1, . . . , A

◦
n.

Theorem 8. (Girard) If `IL Γ − A then `ILL !(Γ◦) − A◦.

Proof. By induction on the structure of `IL Γ − A. We consider the last rule used in the deduction.

• A deduction of the form

Id
Γ, A − A

is translated to

!Γ◦ − !Γ◦

Identity
!A◦ − !A◦

Dereliction
!A◦ − A◦

Weakening∗.
!Γ◦, !A◦ − A◦

• A deduction of the form

D1

Γ − ⊥
(⊥E)

Γ − A

is translated to
D◦

1

!Γ◦ − f
(fE).

!Γ◦ − A◦

• A deduction of the form
D1

Γ − A

D2

Γ − B
(∧I)

Γ − A ∧ B

is translated to

D◦
1

!Γ◦ − A◦

D◦
2

!Γ◦ − B◦

(&I).
!Γ◦ − A◦&B◦

• A deduction of the form
D1

Γ − A ∧ B
(∧E−1)

Γ − A

is translated to

D◦
1

!Γ◦ − A◦&B◦

(&E−1).
!Γ◦ − A◦

60 Chapter 2. Proof Theory

• A deduction of the form
D1

Γ − A ∧ B
(∧E−2)

Γ − B

is translated to

D◦
1

!Γ◦ − A◦&B◦

(&E−2).
!Γ◦ − B◦

• A deduction of the form
D1

Γ, A − B
(⊃I)

Γ − A ⊃ B

is translated to

D◦
1

!Γ◦, !A◦ − B◦

(−◦I).
!Γ◦ − !A◦−◦B◦

• A deduction of the form

D1

Γ − A ⊃ B

D2

Γ − A
(⊃E)

Γ − B

is translated to

!Γ◦ − !Γ◦

D◦
1

!Γ◦ − !A◦−◦B◦

!Γ◦ − !Γ◦

D◦
2

!Γ◦ − A◦

Promotion
!Γ◦ − !A◦

(−◦E)
!Γ◦, !Γ◦ − B◦

Contraction∗.
!Γ◦ − B◦

• A deduction of the form
D1

Γ − A
(∨I−1)

Γ − A ∨ B

is translated to

!Γ◦ − !Γ◦

D◦
1

!Γ◦ − A◦

Promotion
!Γ◦ − !A◦

(⊕I−1).
!Γ◦ − !A◦⊕!B◦

§5. Translations 61

• A deduction of the form
D1

Γ − B
(∨I−2)

Γ − A ∨ B

is translated to

!Γ◦ − !Γ◦

D◦
1

!Γ◦ − B◦

Promotion
!Γ◦ − !B◦

(⊕I−2).
!Γ◦ − !A◦⊕!B◦

• A deduction of the form

D1

Γ − A ∨ B

D2

Γ, A − C

D3

Γ, B − C
(∨E)

Γ − C

is translated to

!Γ◦ − !Γ◦

D◦
1

!Γ◦ − !A◦⊕!B◦

D◦
2

!Γ◦, !A◦ − C◦

D◦
3

!Γ◦, !B◦ − C◦

(⊕E)
!Γ◦, !Γ◦ − C◦

Contraction∗.
!Γ◦ − C◦

We can also define the translation of the admissible rules given in Proposition 2.

• A deduction of the form

D1

Γ − B
Weakening

Γ, A − B

is translated to

Identity
!A◦ − !A◦

D◦
1

!(Γ◦) − B◦

Weakening.
!(Γ◦), !A◦ − B◦

• A deduction of the form

Γ, A, A − B
Contraction

Γ, A − B

is translated to

Identity
!A◦ − !A◦

D1

!(Γ◦), !A◦, !A◦ − B◦

Contraction.
!(Γ◦), !A◦ − B◦

62 Chapter 2. Proof Theory

• A deduction of the form

D1

Γ − A

D2

Γ, A − B
Substitution

Γ − B

is translated to

Id.
!(Γ◦) − !(Γ◦)

Id.
!(Γ◦) − !(Γ◦)

D◦
1

!(Γ◦) − A◦

Prom.
!(Γ◦) − !A◦

D◦
2

!(Γ◦), !A◦ − B◦

Subs
!(Γ◦), !(Γ◦) − B◦

Cont∗.
!(Γ◦) − B◦

We find that Girard’s translation is well behaved with respect to reduction.

Theorem 9. If `IL

D1

Γ − A ;β

D′
1

Γ − A then `ILL

D◦
1

!(Γ◦) − A◦
;

+
β

D′◦
1

!(Γ◦) − A◦.

Proof. By induction on the structure of
D1

Γ − A. We shall just give three cases.

• The deduction

D1

Γ − A

D2

Γ − B
(∧I)

Γ − A ∧ B
(∧E−1)

Γ − A

which reduces to the following deduction, D

D1

Γ − A

is translated to the following deduction

D◦
1

!(Γ◦) − A◦

D◦
2

!(Γ◦) − B◦

(&I)
!(Γ◦) − A◦&B◦

(&E−1)
!(Γ◦) − A◦

which reduces to
D◦

1

!(Γ◦) − A◦

which is equal to D◦.

• The deduction

D1

Γ − A
(∨I−1)

Γ − A ∨ B

D2

Γ, A − C

D3

Γ, B − C
(∨E)

Γ − C

§5. Translations 63

which reduces to the following deduction, D

D1

Γ − A

D2

Γ, A − C
Substitution

Γ − C

is translated to the following deduction

Id
!(Γ◦) − !(Γ◦)

Id.
!(Γ◦) − !(Γ◦)

D◦
1

!(Γ◦) − A◦

Prom
!(Γ◦) − !A◦

(⊕I−1)
!(Γ◦) − !A◦⊕!B◦

D◦
2

!(Γ◦), !A◦ − C◦

D◦
3

!(Γ◦), !B◦ − C◦

(⊕E)
!(Γ◦), !(Γ◦) − C◦

Contr.∗

!(Γ◦) − C◦

which reduces to

Id.
!(Γ◦) − !(Γ◦)

Id.
!(Γ◦) − !(Γ◦)

D◦
1

!(Γ◦) − A◦

Prom.
!(Γ◦) − !A◦

D◦
2

!(Γ◦), !A◦ − C◦

Subs.
!(Γ◦), !(Γ◦) − C◦

Cont.∗

!(Γ◦) − C◦

which is equal to D◦.

• The deduction

D1

Γ, A − B
(⊃I)

Γ − A ⊃ B

D2

Γ − A
(⊃E)

Γ − B

which reduces to the following deduction, D

D2

Γ − A

D1

Γ, A − B
Substitution

Γ − B

is translated to the following deduction

Id.
!(Γ◦) − !(Γ◦)

D◦
1

!(Γ◦), !A◦ − B◦

(−◦I)
!(Γ◦) − !A◦−◦B◦

Id.
!(Γ◦) − !(Γ◦)

D◦
2

!(Γ◦) − A◦

Prom.
!(Γ◦) − !A◦

(−◦E)
!(Γ◦), !(Γ◦) − B◦

Contr.∗

!(Γ◦) − B◦

which reduces to

Id.
!(Γ◦) − !(Γ◦)

Id.
!(Γ◦) − !(Γ◦)

D◦
2

!(Γ◦) − A◦

Prom.
!(Γ◦) − !A◦

D◦
1

!(Γ◦), !A◦ − B◦

Subs.
!(Γ◦), !(Γ◦) − B◦

Contr.∗

!(Γ◦) − B◦

which is equal to D◦.

64 Chapter 2. Proof Theory

Theorem 10. If `IL Γ − A is in β-normal form, then so is `ILL !(Γ◦) − A◦.

The above theorem is not true if we consider (β, c)-normal form and we shall consider this point
further in the next chapter. There are many alternatives to the classic Girard translation. For
example that given below, in Definition 12, avoids the use of the With connective in the translation
of the conjunction. Thus for the (⊃,∧)-fragment of IL, it is a purely multiplicative translation.

Definition 12.

⊥? def
= f

A? def
= A If A is an atomic formula

(A ∧ B)? def
= !(A?)⊗ !(B?)

(A ∨ B)? def
= !(A?)⊕ !(B?)

(A ⊃ B)? def
= !(A?)−◦B?

Theorem 11. If `IL Γ − A then `ILL !Γ? − A?.

It is trivial to see that there is a translation in the opposite direction, from ILL to IL.

Definition 13.

ts
def
= >

fs
def
= ⊥

As def
= A If A is an atomic formula

(A⊗B)s
def
= As ∧ Bs

(A&B)s
def
= As ∧ Bs

(A ⊕ B)s
def
= As ∨ Bs

(A−◦B)s
def
= As ⊃ Bs

(!A)s
def
= As

Theorem 12. If `ILL Γ − A then `IL Γs − As.

Proof. By induction on the structure of the deduction, Γ − A. The Promotion rule becomes a
series of Substitution rules and the Dereliction rule becomes a dummy rule.

We can also present Girard’s translation at the level of an axiomatic formulation. First let us recall
an axiomatic formulation of IL in Figure 2.6.

Theorem 13. If `IL Γ − A then `ILL !(Γ◦) − A◦.

Proof. By induction on the structure of `IL Γ − A. (Omitted).

§5. Translations 65

S : (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
K : A ⊃ (B ⊃ A)

and : A ⊃ (B ⊃ (A ∧ B))
proj1 : A ∧ B ⊃ A
proj2 : A ∧ B ⊃ B

inleft : A ⊃ A ∨ B
inright : B ⊃ A ∨ B

or : (A ⊃ B) ⊃ ((C ⊃ B) ⊃ (A ∨ B ⊃ C))

false : ⊥ ⊃ A

Identity
A − A

Axiom
− A

Γ − A ⊃ B ∆ − A
Modus Ponens

Γ, ∆ − B

Figure 2.6: Axiomatic Formulation of IL

66 Chapter 2. Proof Theory

Chapter 3

Term Assignment

1 The Curry-Howard Correspondence

As explained in Chapter 1 we can use the so-called Curry-Howard correspondence [41] to derive
a term assignment system for ILL given a natural deduction formulation. The correspondence
essentially annotates a derivation with a term which can be viewed as an encoding of the derivation.
In particular, given the term and context one should be able to reconstruct the derivation. An
alternative view is that the correspondence provides a type system for a term calculus. In addition,
the correspondence also links term reduction to proof normalization. We shall utilize this in §4.
First let us use the correspondence to derive a term assignment system, which is given in Figure 3.1.

Thus a type, A, is given by the same grammar as for a formula in Chapter 2 and a linear term,
M , is given by the grammar

M ::= x | true(~M) | falseA(~M ; M) |

λx: A.M | MM | ∗ | let M be ∗ in M |

M⊗M | let M be x⊗y in M | 〈M, M〉 | fst(M) | snd(M) |

inl(M) | inr(M) | case M of inl(x) → M ‖ inr(y) → M |

promote ~M for ~x in M | derelict(M) |

discard M in M | copy M as x, y in M.

Henceforth, however, we shall only be interested in well-typed terms, i.e. those for which there exists
a context, Γ, and type A, such that Γ . M : A holds given the rules in Figure 3.1.

Often we shall use some shorthand notation for the terms. We shall often use a vec-
tor notation ~M to denote a sequence of terms, for example, promote ~M for ~x in N in place of
promote M1, . . . , Mn for x1, . . . , . . . , xn in N , where it is not necessary to identify the subterms. We
shall also write compound terms for brevity; for example, we shall write discard M1, . . . , Mn in N to
denote the (larger) term discard M1 in . . . discard Mn in N . Now let us consider a few properties of
the term assignment system. Firstly, we notice that for the multiplicative, exponential fragment,
we have the required linearity property that a free variable occurs exactly once within a term. First
let us fix the definition of a free variable.

Definition 14. The set FV (M) of free variables of a linear term M is defined inductively as
follows.

FV (x)
def
= {x}

FV (λx: A.M)
def
= FV (M) − {x}

FV (MN)
def
= FV (M) ∪ FV (N)

FV (∗)
def
= ∅

FV (let M be ∗ in N)
def
= FV (M) ∪ FV (N)

FV (M⊗N)
def
= FV (M) ∪ FV (N)

FV (let M be x⊗y in N)
def
= FV (M) ∪ (FV (N) − {x, y})

FV (〈M, N〉)
def
= FV (M) (= FV (N))

FV (fst(M))
def
= FV (M)

FV (snd(M))
def
= FV (M)

67

68 Chapter 3. Term Assignment

Identity
x: A . x: A

Γ1 . M1: A1 · · · Γn . Mn: An
(tI)

Γ1, . . . , Γn . true(~M): t

Γ1 . M1: A1 · · · Γn . Mn: An ∆ . N : f
(fE)

Γ1, . . . , Γn, ∆ . falseB(~M ; N): B

Γ, x: A . M : B
(−◦I)

Γ . λx: A.M : A−◦B

Γ . M : A−◦B ∆ . N : A
(−◦E)

Γ, ∆ . MN : B

(II)
.∗: I

∆ . N : I Γ . M : A
(IE)

Γ, ∆ . let N be ∗ in N : A

Γ . M : A ∆ . N : B
(⊗I)

Γ, ∆ . M⊗N : A⊗B

∆ . M : A⊗B Γ, x: A, y: B . N : C
(⊗E)

Γ, ∆ . let M be x⊗y in N : C

Γ . M : A Γ . N : B
(&I)

Γ . 〈M, N〉: A&B

Γ . M : A&B
(&E−1)

Γ . fst(M): A

Γ . M : A&B
(&E−2)

Γ . snd(M): B

Γ . M : A
(⊕I−1)

Γ . inl(M): A ⊕ B

Γ . M : B
(⊕I−2)

Γ . inr(M): A ⊕ B

∆ . M : A ⊕ B Γ, x: A . N : C Γ, y: B . P : C
(⊕E)

Γ, ∆ . case M of inl(x) → N ‖ inr(y) → P : C

Γ1 . M1: !A1 · · · Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B
Promotion

Γ1, . . . , Γn . promote M1, . . . , Mn for x1, . . . , xn in N : !B

Γ . M : !A ∆ . N : B
Weakening

Γ, ∆ . discard M in N : B

∆ . M : !A Γ, x: !A, y: !A . N : B
Contraction

Γ, ∆ . copy M as x, y in N : B

Γ . M : !A
Dereliction

Γ . derelict(M): A

Figure 3.1: Term Assignment for Natural Deduction Formulation of ILL.

§1. The Curry-Howard Correspondence 69

FV (inl(M))
def
= FV (M)

FV (inr(M))
def
= FV (M)

FV (true(~M))
def
=

⋃n
i=1 FV (Mi)

FV (falseA(~M ; N))
def
= (

⋃n
i=1 FV (Mi)) ∪ FV (N)

FV (case M of inl(x) → N ‖ inr(y) → P)
def
= FV (M) ∪ (FV (N) − {x})

FV (promote M1, . . . Mn for x1, . . . , xn in N)
def
=

⋃n
i=1 FV (Mi) where x ∈ FV (Mi) say

FV (discard M in N)
def
= FV (M) ∪ FV (N)

FV (copy M as x, y in N)
def
= FV (M) ∪ (FV (N) − {x, y})

FV (derelict(M))
def
= FV (M)

We say that a term M is closed if FV (M) = ∅. We can define the following property of the linear
term calculus.

Proposition 3. If M is a valid term from the multiplicative, exponential fragment, then ∀x ∈
FV (M), x occurs exactly once in M .

This means that for the multiplicative, exponential fragment we have completely linear substitution.
We can define substitution as follows.

Definition 15. Given two terms M and N (where ~w: Γ . M : A and ∆, x: A . N : B), we can define
N [x := M], the substitution of M for x in N , by induction on the structure of N .1

x[x := M]
def
= M

(λy: A.N)[x := M]
def
= λy: A.(N [x := M])

(NP)[x := M]
def
=

{
(N [x := M])P If x ∈ FV (N)
N(P [x := M]) Otherwise

(let N be ∗ in P)[x := M]
def
=

{
let (N [x := M]) be ∗ in P If x ∈ FV (N)
let N be ∗ in P [x := M] Otherwise

(N⊗P)[x := M]
def
=

{
(N [x := M])⊗P If x ∈ FV (N)
N⊗(P [x := M]) Otherwise

(let N be y⊗z in P)[x := M]
def
=

{
let (N [x := M]) be y⊗z in P If x ∈ FV (N)
let N be y⊗z in (P [x := M]) Otherwise

(〈N, P 〉)[x := M]
def
= 〈(N [x := M]), (P [x := M])〉

(fst(N))[x := M]
def
= fst(N [x := M])

(snd(N))[x := M]
def
= snd(N [x := M])

(inl(N))[x := M]
def
= inl(N [x := M])

(inr(N))[x := M]
def
= inr(N [x := M])

1We shall assume that the terms have been suitably α-converted so that variable capture will not occur.

70 Chapter 3. Term Assignment

(falseA(~N ; P))[x := M]
def
=

{
falseA(~N ; P [x := M]) If x ∈ FV (P)
falseA(N1, . . . , Ni[x := M], . . . , Nn ; P) Otherwise

(true(~N))[x := M]
def
= true(N1, . . . , Ni[x := M], . . . , Nn)

(case N of

inl(y) → P
inr(z) → Q)[x := M]

def
=

case (N [x := M]) of

inl(y) → P
inr(z) → Q If x ∈ FV (N)

case N of

inl(x) → (P [x := M])
inr(z) → (Q[x := M]) Otherwise

(promote ~N for ~y in P)[x := M]
def
= promote N1, . . . , (Ni[x := M]), . . . , Nn for ~y in P

(discard N in P)[x := M]
def
=

{
discard (N [x := M]) in P If x ∈ FV (N)
discard N in (P [x := M]) Otherwise

(copy N as y, z in P)[x := M]
def
=

{
copy (N [x := M]) as x, y in P If x ∈ FV (N)
copy N as y, z in (P [x := M]) Otherwise

Using this definition we can see that substitution is well-defined in terms of the syntax. This
property is known as closure under substitution and its importance is obvious. Wadler [79] first
showed that previous proposals for the linear term calculus [1, 57, 55, 75] did not have this property.
As explained in Chapter 2, the formulation here has been chosen with this important property in
mind.

Lemma 3. If ∆ . N : A and Γ, x: A . M : B then Γ, ∆ . M [x := N]: B.

Proof. By induction on Γ, x: A . M : B.

Finally let us return to the considerations of Chapter 2 where we suggested an alternative formulation
for the additive connectives. For example, we proposed the following alternative formulation for the
With introduction rule

·
·
·

A1 . . .

·
·
·

An

[[Ax1
1 · · · Axn

n]]
·
·
·

B

[[Ay1

1 · · · Ayn
n]]

·
·
·

C
(&I)x1,...,xn,y1,...,yn.

B&C

This would mean a rule at the level of terms of the following form (where we revert to the presentation
in sequent form)

x1: A1, . . . , xn: An . N : B
Γ1 . M1: A1 · · · Γn . Mn: An y1: A1, . . . , yn: An . P : C

(WithI).
Γ1, . . . , Γn . 〈N, P 〉 with ~M for 〈~x, ~y〉: B&C

(As mentioned earlier, this formulation is similar to that proposed by Girard [31] for the proof net
formulation of classical linear logic. Indeed it should be compared to the term syntax for proof nets
proposed by Abramsky [1].) As we can see, our chosen formulation is less verbose at the cost of
ensuring that the variables used in both terms are exactly the same.

In fact, we could propose yet another formulation which is a combination of that given above
and that which we use in Figure 3.1

x1: A1, . . . , xn: An . N : B
Γ1 . M1: A1 · · · Γn . Mn: An y1: A1, . . . , yn: An . P : C

(With′I).
Γ1, . . . , Γn . 〈N [~x := ~z], P [~y := ~z]〉 with ~M for ~z: B&C

This version allows for multiplicative contexts which are then α-converted so as to be equal.

§2. Term Assignment for Sequent Calculus 71

1.1 Comparison with Existing Syntax

We should point out that the syntax chosen for the linear term calculus is slightly different to that
of existing functional programming languages such as Haskell [42]. There the syntax for pattern
matching is of the form

let patt = exp in exp,

rather than that of the linear term calculus

let exp be patt in exp.

The syntax here was chosen to be similar to those already existing for linear logic [1, 57]. Also
the let construct in Haskell introduces polymorphic definitions, and given that this thesis does not
address type quantification, we keep our syntax to avoid any confusion.

1.2 An Additional Equality

We have pointed out already that we do not introduce syntax for applications of the Exchange rule.
However, the syntax for the Promotion rule as it stands can distinguish between proofs which differ
just by applications of the Exchange rule. This is essentially due to inherently linear nature of
syntax. For example, consider the terms

promote M1, M2 for x1, x2 in N, and promote M2, M1 for x2, x1 in N.

Clearly we should want these two terms to be considered equal. Thus we shall implicitly assume
the following equality for the rest of the thesis

promote ~M, M1, M2, ~M ′ for ~x, y1, y2, ~z in N =ex promote ~M, M2, M1, ~M ′ for ~x, y2, y1, ~z in N.

2 Term Assignment for Sequent Calculus

Unfortunately, as discussed in Chapter 1 there is no real equivalent to the Curry-Howard corre-
spondence for the sequent calculus formulation. This is because many different sequent derivations
denote the same logical deduction (i.e. the N mapping from Chapter 2 is a many-to-one mapping).
To derive a term assignment system for the sequent calculus formulation, we have two options.

1. To use categorical considerations to suggest a syntax. This technique is used by Benton et
al. [14] for the multiplicative, exponential fragment of ILL.

2. To use the procedures for mapping proofs between the sequent calculus and natural deduction
formulations.

Of course, both these techniques should converge to the same answer! For conciseness we shall not
detail the second option, but simply consider an example. Consider the (sequent calculus formulation
of the) Promotion rule

!Γ − A
Promotion.

!Γ − !A

Let us assume that the upper sequent is represented by the term M , thus ~x: !Γ . M : A. Using the
N procedure to map this proof into a deduction in the natural deduction formulation we get

~y: !Γ . ~y: !Γ ~x: !Γ . N (M): A
Promotion.

~y . promote ~y for ~x in N (M): !A

Thus we can conclude that the term assignment for the Promotion rule in the sequent calculus
formulation is of the form

72 Chapter 3. Term Assignment

Identity
x: A . x: A

Γ . M : B x: B, ∆ . N : C
Cut

Γ, ∆ . N [x := M]: C

(fL)
~x: Γ, y: f . falseA(~x ; y): A

(tR)
~x: Γ . true(~x): t

Γ . M : A
(IL)

Γ, x: I . let x be ∗ in M : A
(IR)

.∗: I

Γ, x: A, y: B . M : C
(⊗L)

Γ, z: A⊗B . let z be x⊗y in M : C

Γ . M : A ∆ . N : B
(⊗R)

Γ, ∆ . M⊗N : A⊗B

Γ . M : A ∆, x: B . N : C
(−◦L)

Γ, ∆, y: A−◦B . N [x := (yM)]: C

Γ, x: A . M : B
(−◦R)

Γ . λx: A.M : A−◦B

Γ, x: A . M : C
(&L−1)

Γ, y: A&B . M [x := fst(y)]: C

Γ, x: B . M : C
(&L−2)

Γ, y: A&B . M [x := snd(y)]: C

~x: Γ . M : A ~x: Γ . N : B
(&R)

~x: Γ . 〈M, N〉: A&B

~x: Γ, y: A . M : C ~x: Γ, z: B . N : C
(⊕L)

~x: Γ, w: A ⊕ B . case w of inl(y) → M ‖ inr(z) → N : C

Γ . M : A
(⊕R−1)

Γ . inl(M): A ⊕ B

Γ . M : B
(⊕R−2)

Γ . inr(M): A ⊕ B

Γ . M : B
Weakening

Γ, x: !A . discard x in M : B

Γ, y: !A, z: !A . M : B
Contr.

Γ, x: !A . copy x as y, z in M : B

Γ, x: A . M : B
Dereliction

Γ, y: !A . M [x := derelict(y)]: B

~x: !Γ . M : A
Promotion

~y: !Γ . promote ~y for ~x in M : !A

Figure 3.2: Term Assignment for Sequent Calculus Formulation of ILL

§3. Linear Combinatory Logic 73

~x: !Γ . M : A
Promotion.

~y: !Γ . promote ~y for ~x in M : !A

We give the term assignment for the entire sequent calculus formulation in Figure 3.2
As we might expect the translation procedures, N and S, relating the natural deduction and

sequent calculus formulations of ILL extend to the term assignment systems.

Theorem 14.

• If `S
π

Γ . M : A then `N
N (π)

Γ . M : A.

• If `N
D

Γ . M : A then `S
S(D)

Γ . M : A.

Proof. By straightforward structural induction

Thus we have that the term assignment systems are equivalent.

Corollary 2. `N Γ . M : A iff `S Γ . M : A.

Although as we stated above there is no real Curry-Howard correspondence for the sequent calculus,
we can actually define a syntax, which we shall call a Sequent Term Assignment , which identifies
every different sequent proof. Essentially this means that every proof rule introduces a new piece
of syntax, including the Cut rule.2 Although probably not directly useful as a term calculus for
programming, a sequent term assignment is of use to those interested in automated deduction,
where the actual sequent calculus derivation is of primary importance and thus the term encodes
precisely this derivation. We give the sequent term assignment system in Figure 3.3.

Terms from a sequent term assignment system have the following useful property.

Proposition 4. If a term M from the sequent term assignment contains no occurrence of the cut

term constructor then it denotes a cut-free proof.

Hence we can see whether a proof is cut-free by simply examining the term. It also means that
all possible (primary) redexes are explicit within the term. The main problem with such a sequent
term assignment system is the number of reduction rules. Every step in the cut-elimination process
entails a reduction at the term level: in the case of ILL this would mean 361 reduction rules!

3 Linear Combinatory Logic

We can apply a Curry-Howard correspondence to the axiomatic formulation given in Section 3 of
Chapter 2 to obtain a combinatory logic. Thus derivations are of the form ~x: Γ ⇒ e: A, where
variables and axioms are named and the derivation has an associated combinatory term, e. We give
the combinatory formulation of ILL in Figure 3.4.

As noted in §3 of Chapter 2, the Promotion rule has the side condition that the context must
be empty when it is applied. Given that in combinatory logic we have variable names explicit we
might have imagined a rule such as that from the natural deduction formulation, for example,

~x1 ⇒ e1: !A1 . . . ~xn ⇒ en: !An y1: !A1, . . . , yn: !An ⇒ f : B
Promotion′.

~x1: Γ1, . . . , ~xn: Γn ⇒ prom ~e for ~y in f : !B

However, the practical concerns alluded to earlier stem from the fact that reduction in a combinatory
formulation involves no substitution of terms for variables. Clearly the formulation given above
would not have that property and for that reason we shall not consider it further.

2Again we shall not introduce explicit syntax for the Exchange rule in favour of adopting the convention that the
contexts are multisets.

74 Chapter 3. Term Assignment

Identity
x: A . x: A

Γ . M : B x: B, ∆ . N : C
Cut

Γ, ∆ . cut M for x in N : C

(fL)
~x: Γ, y: f . falseA(~x ; y): A

(tR)
~x: Γ . true(~x): t

Γ . M : A
(IL)

Γ, x: I . let x be ∗ in M : A
(IR)

.∗: I

Γ, x: A, y: B . M : C
(⊗L)

Γ, z: A⊗B . let z be x⊗y in M : C

Γ . M : A ∆ . N : B
(⊗R)

Γ, ∆ . M⊗N : A⊗B

Γ . M : A ∆, x: B . N : C
(−◦L)

Γ, ∆, y: A−◦B . let y be M−◦x in N : C

Γ, x: A . M : B
(−◦R)

Γ . λx: A.M : A−◦B

Γ, x: A . M : C
(&L−1)

Γ, y: A&B . let y be x& in M : C

Γ, x: B . M : C
(&L−2)

Γ, y: A&B . let y be &x in M : C

~x: Γ . M : A ~x: Γ . N : B
(&R)

~x: Γ . 〈M, N〉: A&B

~x: Γ, y: A . M : C ~x: Γ, z: B . N : C
(⊕L)

~x: Γ, w: A ⊕ B . case w of inl(y) → M ‖ inr(z) → N : C

Γ . M : A
(⊕R−1)

Γ . inl(M): A ⊕ B

Γ . M : B
(⊕R−2)

Γ . inr(M): A ⊕ B

Γ . M : B
Weakening

Γ, x: !A . discard x in M : B

Γ, y: !A, z: !A . M : B
Contr.

Γ, x: !A . copy x as y, z in M : B

Γ, x: A . M : B
Dereliction

Γ, y: !A . derelict y for x in M : B

!Γ . M : A
Promotion

!Γ . promote(M): !A

Figure 3.3: Sequent Term Assignment for ILL

§3. Linear Combinatory Logic 75

IA : A−◦A
BA,B,C : (B−◦C)−◦((A−◦B)−◦(A−◦C))
CA,B,C : (A−◦(B−◦C))−◦(B−◦(A−◦C))

tensorA,B : A−◦(B−◦A⊗B)
splitA,B,C : A⊗B−◦((A−◦(B−◦C))−◦C)

unit : I
letA : A−◦(I−◦A)

fstA,B : A&B−◦A
sndA,B : A&B−◦B

wdistA,B,C : (A−◦B)&(A−◦C)−◦(A−◦B&C)

inlA,B : A−◦A ⊕ B
inrA,B : B−◦A ⊕ B

sdistA,B,C : (A−◦C)&(B−◦C)−◦(A ⊕ B−◦C)

initA : f−◦A
termA : A−◦t

duplA,B : (!A−◦(!A−◦B))−◦(!A−◦B)
discA,B : B−◦(!A−◦B)

epsA : !A−◦A
deltaA : !A−◦!!A

edistA,B : !(A−◦B)−◦(!A−◦!B)

Identity
x: A ⇒ x: A

Axiom (where c is taken from above)
⇒ c: A

Γ ⇒ e: A−◦B ∆ ⇒ f : A
Modus Ponens

Γ, ∆ ⇒ ef : B

~x: Γ ⇒ e: A ~x: Γ ⇒ f : B
With

~x: Γ ⇒ with(e,f): A&B

⇒ e: A
Promotion

⇒ promote(e): !A

Figure 3.4: Combinatory Formulation of ILL

76 Chapter 3. Term Assignment

(It should also be noted that in the context of this thesis we are considering a typed combinatory
logic. Thus the axioms are explicitly typed, although in places we shall omit the type informa-
tion in favour of brevity. For example, where we should write deltaA: !A−◦!!A we have written
delta: !A−◦!!A.)
The proof of Theorem 6 in Chapter 2, when viewed at the level of combinatory logic actually gives
a process of ‘abstracting’ a variable from a combinatory term. Let us repeat the theorem at the
level of terms.

Theorem 15. If Γ, x: A ⇒ e: B then there exists a combinatory term, [x]e,3 such that Γ ⇒
[x]e: A−◦B.

The proof of this theorem yields the process given in Figure 3.5

[x]x
def
= I

[x]ef
def
= C ([x]e) f If x ∈ FV (e)

[x]ef
def
= B e ([x]f) Otherwise

[x](with(e,f))
def
= wdist(with([x]e,[x]f))

where FV is defined:

FV (x)
def
= {x}

FV (ef)
def
= FV (e) ∪ FV (f)

FV (with(e,f))
def
= FV (e) (= FV (f))

FV (promote(e))
def
= ∅

Figure 3.5: Variable Abstraction

4 Reduction Rules

In Chapter 2 we presented two processes for normalizing proofs: β-reduction for natural deduction
and cut elimination for sequent calculus. In addition we found a need for some extra reduction
steps, the commuting conversions, for the natural deduction formulation. In this section we shall
review each of these processes in turn and present them at the level of terms.

4.1 Normalization

As discussed in §2.1 in Chapter 2, the β-reduction rules arise when a connective is introduced only
to be immediately eliminated. We can apply the Curry-Howard correspondence to these reduction
rules to produce term reduction rules, which are given in Figure 3.6.4

An immediate property of this relation is known as subject reduction, which basically states that
well-typed terms reduce to well-typed terms. Both O’Hearn [59] and Lincoln and Mitchell [55] have
shown that this property does not hold for previous proposals for the linear term calculus.

Theorem 16. If Γ . M : A and M ;β N then Γ . N : A.

Proof. By induction on Γ . M : A and use of Lemma 3.

3[x]e is written as λ∗x.e by Barendregt [8].

4We shall use the standard notation of ;
+
β

to represent the transitive closure of ;β , and ;
∗

β
to represent the

reflexive, transitive closure of ;β .

§4. Reduction Rules 77

(λx: A.M) N ;β M [x := N]
let ∗ be ∗ in M ;β M

let M⊗N be x⊗y in P ;β P [x := M, y := N]
fst(〈M, N〉) ;β M

snd(〈M, N〉) ;β N
case (inl(M)) of

inl(x) → N ‖ inr(y) → P ;β N [x := M]
case (inr(M)) of

inl(x) → N ‖ inr(y) → P ;β P [y := M]

derelict(promote ~M for ~x in N) ;β N [~x := ~M]

discard (promote ~M for ~x in N) in P ;β discard ~M in P

copy (promote ~M for ~x in N) as y, z in P ;β copy ~M as ~u,~v in

P [y := promote ~u for ~x in N,
z := promote ~v for ~x in N]

Figure 3.6: β-reduction rules

4.2 Commuting Conversions

In §2.2 of Chapter 2 we showed how a consideration of the subformula property induces a further
set of reductions which we term commuting conversions. Again we can apply the Curry-Howard
correspondence to these conversions to produce a set of reduction rules at the level of terms, which
we give in Figures 3.7, 3.8, 3.9 and 3.10.

4.3 Cut Elimination

In Chapter 2 we gave a detailed proof of cut elimination for the sequent calculus formulation. This
essentially consisted of considering every possibility of a (R1, R2)-cut and showing how it could be
replaced by ‘simpler’ cut(s). At a term level, we have a (R1, R2)-cut of the form

R1
∆ . M : A

R2
Γ, x: A . N : B

Cut
Γ, ∆ . N [x := M]: B

which we replace with a proof ending with

Γ, ∆ . P : B

We shall write N [x := M] ;cut P to represent this term reduction. For ILL there are 19 rules
besides Cut (and Exchange) and hence 361 possibilities for (R1, R2)-cuts. Fortunately most of these
possibilities are not computationally significant in the sense that they have no effect on the terms.
We shall use the following definition.

Definition 16. A cut-reduction N [x := M] ;cut P is insignificant if N [x := M] =α P .

Thus we shall classify cut-reductions by whether they are significant or not. We shall consider each
sort of Cut in turn, identifying at first those which they are significant or not.

• Any cut involving the Identity rule is insignificant. There are 37 of these.

• A (XL, YL)-cut. There are 100 of these. The insignificant cuts are of the form (−◦L, YL),
(&L−1, YL), (&L−2, YL), (Dereliction, YL), where Y 6= f , which amounts to 36 cut reductions.
Thus there are 64 significant remaining cut-reductions.

78 Chapter 3. Term Assignment

(let M be x⊗y in N)P ;c let M be x⊗y in (NP)
let (let M be x⊗y in N) be ∗ in P ;c let M be x⊗y in (let N be ∗ in P)

let (let M be x⊗y in N) be w⊗z in P ;c let M be x⊗y in (let N be w⊗z in P)
fst(let M be x⊗y in N) ;c let M be x⊗y in fst(N)

snd(let M be x⊗y in N) ;c let M be x⊗y in snd(N)

falseD(~P ; let M be x⊗y in N) ;c let M be x⊗y in (falseD(~P ; N))
case (let M be x⊗y in N) of

inl(w) → P ‖ inr(z) → Q
;c

let M be x⊗y in

(case N of inl(w) → P ‖ inr(z) → Q)
discard (let M be x⊗y in N) in P ;c let M be x⊗y in (discard N in P)

copy (let M be x⊗y in N) as w, z in P ;c let M be x⊗y in (copy N as w, z in P)
derelict(let M be x⊗y in N) ;c let M be x⊗y in (derelict(N))

(let M be ∗ in N)P ;c let M be ∗ in (NP)
let (let M be ∗ in N) be ∗ in P ;c let M be ∗ in (let N be ∗ in P)

let (let M be ∗ in N) be x⊗y in P ;c let M be ∗ in (let N be x⊗y in P)
fst(let M be ∗ in N) ;c let M be ∗ in fst(N)

snd(let M be ∗ in N) ;c let M be ∗ in snd(N)

falseD(~P ; let M be ∗ in N) ;c let M be ∗ in (falseD(~P ; N))
case (let M be ∗ in N) of

inl(w) → P ‖ inr(z) → Q
;c

let M be ∗ in

(case N of inl(w) → P ‖ inr(z) → Q)
discard (let M be ∗ in N) in P ;c let M be ∗ in (discard N in P)

copy (let M be ∗ in N) as x, y in P ;c let M be ∗ in (copy N as x, y in P)
derelict(let M be ∗ in N) ;c let M be ∗ in (derelict(N))

(discard M in N)P ;c discard M in (NP)
let (discard M in N) be ∗ in P ;c discard M in (let N be ∗ in P)

let (discard M in N) be x⊗y in P ;c discard M in (let N be x⊗y in P)
fst(discard M in N) ;c discard M in fst(N)

snd(discard M in N) ;c discard M in snd(N)

falseC(~P ; discard M in N) ;c discard M in (falseC(~P ; N))
case (discard M in N) of

inl(w) → P ‖ inr(z) → Q
;c

discard M in

(case N of inl(w) → P ‖ inr(z) → Q)
discard (discard M in N) in P ;c discard M in (discard N in P)

copy (discard M in N) as x, y in P ;c discard M in (copy N as x, y in P)
derelict(discard M in N) ;c discard M in (derelict(N))

Figure 3.7: Commuting Conversions I

§4. Reduction Rules 79

(copy M as x, y in N)P ;c copy M as x, y in (NP)
let (copy M as x, y in N) be ∗ in P ;c copy M as x, y in (let N be ∗ in P)

let (copy M as x, y in N) be x⊗y in P ;c copy M as x, y in (let N be x⊗y in P)
fst(copy M as x, y in N) ;c copy M as x, y in fst(N)

snd(copy M as x, y in N) ;c copy M as x, y in snd(N)

falseC(~P ; copy M as x, y in N) ;c copy M as x, y in (falseC(~P ; N))
case (copy M as x, y in N) of

inl(w) → P ‖ inr(z) → Q
;c

copy M as x, y in

(case N of inl(w) → P ‖ inr(z) → Q)
discard (copy M as x, y in N) in P ;c copy M as x, y in (discard N in P)

copy (copy M as x, y in N) as x, y in P ;c copy M as x, y in (copy N as x, y in P)
derelict(copy M as x, y in N) ;c copy M as x, y in (derelict(N))

let (falseI(~P ; N)) be ∗ in P ;c falseA(~P , ~x ; N) (~x = FV (P))

(falseA−◦B(~P ; N))P ;c falseB(~P , ~x ; N) (~x = FV (P))

let (falseA⊗B(~P ; N)) be y⊗z in P ;c falseC(~P , ~x ; N) (~x = FV (P) − {y, z})

fst(false
A&B

(~P ; N)) ;c falseA(~P ; N)

snd(false
A&B

(~P ; N)) ;c falseB(~P ; N)

falseA(~P ; falsef (
~Q ; N)) ;c falseA(~P , ~y ; N)

case (falseA⊕B(~P ; N)) of

inl(x) → P ‖ inr(y) → Q
;c falseC(~P , ~w ; N) (~w = FV (P) − {x})

discard (false!A(~P ; N)) in P ;c falseB(~P , ~x ; N) (~x = FV (P))

copy (false!A(~P ; N)) as y, z in P ;c falseB(~P , ~x ; N) (~x = FV (P) − {y, z})

derelict(false!A(~P ; N)) ;c falseA(~P ; N)

Figure 3.8: Commuting Conversions II

80 Chapter 3. Term Assignment

(case M of

inl(x) → N ‖ inr(y) → P)Q
;c

case M of

inl(x) → (NQ) ‖ inl(y) → (PQ)

let

(case M of inl(x) → N ‖ inr(y) → P)
be ∗ in Q

;c

case M of

inl(x) → (let N be ∗ in Q)
inr(y) → (let P be ∗ in Q)

let

(case M of inl(x) → N ‖ inr(y) → P)
be w⊗z in Q

;c

case M of

inl(x) → (let N be w⊗z in Q)
inr(y) → (let P be w⊗z in Q)

fst(case M of inl(x) → N ‖ inr(y) → P) ;c

case M of

inl(x) → fst(N)
inr(y) → fst(P)

snd(case M of inl(x) → N ‖ inr(y) → P) ;c

case M of

inl(x) → snd(N)
inr(y) → snd(P)

falseC(~P ;
(case N of inl(x) → P ‖ inr(y) → Q))

;c

case N of

inl(x) → (falseC(~P ; P))

inr(y) → (falseC(~P ; Q))

case

(case M of inl(x) → N ‖ inr(y) → P)
as inl(w) → Q ‖ inr(z) → R

;c

case M as

inl(x) → (case N of

inl(w) → Q
inr(z) → R)

inr(y) → (case P of

inl(w) → Q
inr(z) → R)

discard

(case M of inl(x) → N ‖ inr(y) → P)
in Q

;c

case M of

inl(x) → (discard N in Q)
inr(y) → (discard P in Q)

copy

(case M of inl(x) → N ‖ inr(y) → P)
as w, z in Q

;c

case M of

inl(x) → (copy N as w, z in Q)
inr(y) → (copy P as w, z in Q)

derelict(case M of

inl(x) → N‖
inr(y) → P)

;c

case M of

inl(x) → (derelict(N))
inr(y) → (derelict(P))

Figure 3.9: Commuting Conversions III

§4. Reduction Rules 81

promote (promote ~x′ for ~x in M), y′
2, . . . , y

′
n for y1, . . . , yn in N

;c promote ~x′, y′
2, . . . , y

′
n for ~x′′, y2, . . . , yn in N [y1 := promote ~x′′ for ~x in M]

promote ~w, (let z be x⊗y in M) for ~v, s in N
;c let z be x⊗y in (promote ~w, M for ~v, s in N)

promote ~z, (let x be ∗ in M) for ~y, u in N
;c let x be ∗ in (promote ~z, M for ~y, u in N)

promote ~w, (case z of inl(x) → M ‖ inr(y) → N) for ~v, s in P
;c case z of

inl(x) → promote ~w, M for ~v, s in P
inr(y) → promote ~w, N for ~v, s in P

promote ~z, (discard x in M) for ~y, u in N
;c discard x in (promote ~z, M for ~y, u in N)

promote ~w, (copy z as x, y in M) for ~v, s in N
;c copy z as x, y in (promote ~w, M for ~v, s in N)

true(M,~x)
;c true(~y, ~x)

falseA(M ; x)
;c falseA(~y ; x)

where FV (M) = ~y.

Figure 3.10: Commuting Conversions IV

82 Chapter 3. Term Assignment

• A (XR, YR)-cut. There are 64 of these. They are all insignificant except for the case of
(Promotion,Promotion) and (XR, tR).

• A (XL, YR)-cut. There are 80 of these. There are 15 significant cut reductions which those
of the form (⊗L,Promotion), (IL,Promotion), (⊕L,Promotion), (Weakening,Promotion),
(Contraction,Promotion) and (XL, tR). The remaining 65 cut-reductions are insignificant.

• A (XR, YL)-cut. There are 80 of these. Cuts of the form (XR, XL) and (XR, fL), of which
there are 18, are significant. The remaining 62 cut-reductions are insignificant.

We shall classify these significant cut-reductions and then consider them in turn.

Principal Cuts. These are cut-reductions of the form (XR, XL).

Secondary Cuts.
These are cut-reductions of the following form: (Promotion,Promotion), (⊗L,Promotion),
(IL,Promotion), (⊕L,Promotion), (Weakening,Promotion) and (Contraction,Promotion).

Commuting Cuts. These are cuts of the form (XL, YL), except where X is either −◦, &, f or
Dereliction or where Y is f .

Unit Cuts. These are cuts of the form (X, fL) and (X, tR).

Principal Cuts

There are 10 of these and we shall consider them in turn.

• (⊗R,⊗L)-cut.

∆ − A Θ − B
(⊗R)

∆, Θ − A⊗B

Γ, A, B − C
(⊗L)

Γ, A⊗B − C
Cut

Γ, ∆, Θ − C

This reduces to

Θ − B

∆ − A Γ, A, B − C
Cut

Γ, ∆, B − C
Cut.

Γ, ∆, Θ − C

At the level of terms this gives the cut-reduction

let M⊗N be x⊗y in P ;cut P [x := M, y := N].

• (IR, IL)-cut.

(IR)
− I

Γ − A
(IL)

Γ, I − A
Cut

Γ − A

This reduces to

Γ − A.

At the level of terms this gives the cut-reduction

let ∗ be ∗ in M ;cut M.

§4. Reduction Rules 83

• (−◦R,−◦L)-cut.

∆, A − B
(−◦R)

∆ − A−◦B

Γ − A B, Θ − C
(−◦L)

Γ, A−◦B, Θ − C
Cut

Γ, ∆, Θ − C

This reduces to

Γ − A

∆, A − B B, Θ − C
Cut

∆, A, Θ − C
Cut.

Γ, ∆, Θ − C

At the level of terms this gives the cut-reduction

P [y := ((λx: A.M)N)] ;cut P [y := (M [x := N])].

• (⊕R−1,⊕L)-cut.

∆ − A
(⊕R−1)

∆ − A ⊕ B

Γ, A − C Γ, B − C
(⊕R)

Γ, A ⊕ B − C
Cut

Γ, ∆ − C

This reduces to

∆ − A Γ, A − C
Cut.

Γ, ∆ − C

At the level of terms this gives the cut-reduction

case inl(M) of inl(x) → N ‖ inr(y) → P
;cut N [x := M].

• (⊕R−2,⊕L)-cut.

∆ − B
(⊕R−2)

∆ − A ⊕ B

Γ, A − C Γ, B − C
(⊕R)

Γ, A ⊕ B − C
Cut

Γ, ∆ − C

This reduces to

∆ − B Γ, B − C
Cut.

Γ, ∆ − C

At the level of terms this gives the cut-reduction

case inr(M) of inl(x) → N ‖ inr(y) → P
;cut P [y := M].

84 Chapter 3. Term Assignment

• (&R, &L−1)-cut.

∆ − A ∆ − B
(&R)

∆ − A&B

Γ, A − C
(&L−1)

Γ, A&B − C
Cut

Γ, ∆ − C

This reduces to

∆ − A Γ, A − C
Cut.

Γ, ∆ − C

At the level of terms this amounts to the cut-reduction

P [x := fst(〈M, N〉)] ;cut P [x := M].

• (&R, &L−2)-cut.

∆ − A ∆ − B
(&R)

∆ − A&B

Γ, B − C
(&L−2)

Γ, A&B − C
Cut.

Γ, ∆ − C

This reduces to

∆ − B Γ, B − C
Cut.

Γ, ∆ − C

At the level of terms this amounts to the cut-reduction

P [x := snd(〈M, N〉)] ;cut P [x := N].

• (Promotion,Dereliction)-cut.

!∆ − A
Promotion

!∆ − !A

Γ, A − B
Dereliction

Γ, !A − B
Cut

Γ, !∆ − B

This reduces to

!∆ − A Γ, A − B
Cut.

Γ, !∆ − B

At the level of terms this gives the cut-reduction

N [z := derelict(promote ~y for ~x in M)] ;cut N [z := M [~x := ~y]].

§4. Reduction Rules 85

• (Promotion,Weakening)-cut.

!∆ − A
Promotion

!∆ − !A

Γ − B
Weakening

Γ, A − B
Cut

Γ, !∆ − B

This reduces to

Γ − B
Weakening∗.

Γ, !∆ − B

At the level of terms this gives the following cut-reduction

discard (promote ~y for ~x in M) in N ;cut discard ~y in N.

• (Promotion,Contraction)-cut.

!∆ − A
Promotion

!∆ − !A

Γ, !A, !A − B

Γ, !A − B
Cut

Γ, !∆ − B

This reduces to

!∆ − A
Prom.

!∆ − !A

!∆ − A
Prom.

!∆ − !A Γ, !A, !A − B
Cut

Γ, !∆, !A − B
Cut

Γ, !∆, !∆ − B
Contraction∗.

Γ, !∆ − B

At the level of terms this gives the following cut-reduction

copy (promote ~y for ~x in N) as w, z in P ;cut copy ~y as ~u,~v in

P [w := promote ~u for ~x in N,
z := promote ~v for ~x in N].

Thus the principal cuts correspond to the β-reduction rules from the natural deduction formulation.
The only difference is where the left rule is either −◦, & or Dereliction. In these cases we derive
slightly more general reduction rules.

Secondary Cuts

There are 6 of these cuts and we shall consider them in turn.

• (Promotion,Promotion)-cut.

!∆ − A
Promotion

!∆ − !A

!Γ, !A − B
Promotion

!Γ, !A − !B
Cut

!Γ, !∆ − !B

This reduces to

86 Chapter 3. Term Assignment

!∆ − A
Promotion

!∆ − !A !Γ, !A − B
Cut

!Γ, !∆ − B
Promotion

!Γ, !∆ − !B

At the level of terms this gives the cut-reduction

promote ~w, (promote ~y for ~x in M) for ~z, u in N

;cut promote ~w, ~y for ~z,~t in N [u := promote~t for ~x in M].

• (⊗L,Promotion)-cut.

Γ, A, B − !C
(⊗L)

Γ, A⊗B − !C

!∆, !C − D
Promotion

!∆, !C − !D
Promotion.

Γ, !∆, A⊗B − !D

This reduces to

Γ, A, B − !C

!∆, !C − D
Promotion

!∆, !C − !D
Cut

Γ, !∆, A, B − !D
(⊗L).

Γ, !∆, A⊗B − !D

At the level of terms this gives the cut-reduction

promote ~w, (let z be x⊗y in M) for ~v, s in N
;cut let z be x⊗y in (promote ~w, M for ~v, s in N).

• (IL,Promotion)-cut.

Γ − !A
(IL)

Γ, I − !A

!∆, !A − B
Promotion

!∆, !A − !B
Cut

Γ, I, !∆ − !B

This reduces to

Γ − !A

!∆, !A − B
Promotion

!∆, !A − !B
Cut

Γ, !∆ − !B
(IL).

Γ, I, !∆ − !B

At the level of terms this gives the cut-reduction

promote ~z, (let x be ∗ in M) for ~y, u in N
;cut let x be ∗ in (promote ~z, M for ~y, u in N).

§4. Reduction Rules 87

• (⊕L,Promotion)-cut.

Γ, A − !C Γ, B − !C
(⊕L)

Γ, A ⊕ B − !C

!∆, !C − D
Promotion

!∆, !C − !D
Cut

Γ, A ⊕ B, !∆ − !D

This reduces to

Γ, A − !C

!∆, !C − D
Prom.

!∆, !C − !D
Cut

Γ, A, !∆ − !D

Γ, B − !C

!∆, !C − D
Prom.

!∆, !C − !D
Cut

Γ, B, !∆ − !D
(⊕L).

Γ, A ⊕ B, !∆ − !D

At the level of terms this gives the cut-reduction

promote ~w, (case z of inl(x) → M ‖ inr(y) → N)
for ~v, s in P
;cut case z of

inl(x) → promote ~w, M for ~v, s in P
inr(y) → promote ~w, N for ~v, s in P.

• (Weakening,Promotion)-cut.

Γ − !B
Weakening

Γ, !A − !B

!∆, !B − C
Promotion

!∆, !B − !C
Cut

Γ, !A, !∆ − !C

This reduces to

Γ − !B

!∆, !B − C
Promotion

!∆, !B − !C
Cut

Γ, !∆ − !C
Weakening.

Γ, !A, !∆ − !C

At the level of terms this gives the cut-reduction

promote ~z, (discard x in M) for ~y, u in N
;cut discard x in (promote ~z, M for ~y, u in N).

• (Contraction,Promotion)-cut.

Γ, !A, !A − !B
Contraction

Γ, !A − !B

!∆, !B − C
Promotion

!∆, !B − !C
Cut

Γ, !A, !∆ − !C

This reduces to

Γ, !A, !A − !B

!∆, !B − C
Promotion

!∆, !B − !C
Cut

Γ, !A, !A, !∆ − !C
Contraction.

Γ, !A, !∆ − C

At the level of terms this gives the cut-reduction

promote ~w, (copy z as x, y in M) for ~v, s in N
;cut copy z as x, y in (promote ~w, M for ~v, s in N).

88 Chapter 3. Term Assignment

These cuts we have seen before in the analysis of the subformula property of the natural deduction
formulation. Seen from a natural deduction perspective they arise due to the fact that the Promotion
rule introduces parasitic formulae and from a sequent calculus perspective that it not only introduces
a connective on the right but imposes a strict condition on the left.

Commuting Cuts

There are 54 of these. It turns out that these are equivalent to the commuting conversions which
arise from the natural deduction formulation (excluding those considered as secondary cuts and
those classified as Unit Cuts). The term reductions are then as in Figures 3.7, 3.8 and 3.9 and
we shall not repeat them here. As for the principal cut reductions, we find that some of the term
reductions suggested by the cut-elimination process are actually more general than that considered
as a commuting conversion. These more general rules are when the second left rule is either −◦L,
&L−1, &L−2 or Dereliction.

Unit Cuts

These are cuts of the form (X, fL) and (X, tR), for all rules, X . Thus there are 36 of these reduction
rules. At the level of terms they can be expressed as two schemas, which are given in Figure 3.11.
These match precisely the commuting conversions for the additive units given in Chapter 2.

true(M,~x) ;cut true(~y, ~x)
falseA(M ; x) ;cut falseA(~y ; x)

where FV (M) = ~y.

Figure 3.11: Unit Cut Reduction Rules

5 Properties of Reduction Rules

We shall consider two important properties for the reduction rules: strong normalization and con-
fluence (Church-Rosser property). In particular, we shall only consider the β-reduction rules and
omit the commuting conversions. This is not only because we would normally only consider using
the β-reduction rules in any implementation, but also because of the explosion in complexity of con-
sidering the extra 102 commuting conversions! Given the uncertainty surrounding the additive units
(Chapter 2, §1.2), they have not been included either. The technique we shall use is adapted from
that used for the λ-calculus by Gallier [30], which is in turn adapted from proofs by Tait [74] and
Girard [34]. The proof proceeds in two parts: Firstly, we give an alternative inductive definition of
the linear terms (the so-called ‘candidates’) and then we show how the sets of strongly normalizing
terms and confluent terms both satisfy this alternative inductive definition.

5.1 Candidates for the Linear Term Calculus

If a term is the result of an introduction rule, then if it is applied to another term then a redex
could be formed. For the definition it is useful to divide terms up depending on whether they can
introduce redexes or not.

Definition 17.

1. An I-term is a term of the form M⊗N , λx: A.M , 〈M, N〉, inl(M), inr(M) or

promote ~M for ~x in N .

2. A simple term is one which is not an I-term.

§5. Properties of Reduction Rules 89

3. A stubborn term, M , is a simple term which is either irreducible or if M ;
+
β N then N is a

simple term.

Let P = PA be a family of nonempty sets of (typed) linear terms.

Definition 18. Properties (P1)–(P3) are defined as follows.

(P1) x ∈ PA for every variable of type A.

(P2) If M ∈ PA and M ;β N then N ∈ PA.

(P3) If M is simple and

1. If M ∈ PA−◦B, N ∈ PA and (λx: A.M ′)N ∈ PB whenever M ;
+
β λx: A.M ′ then MN ∈

PB.

2. If M ∈ P
A&B

and fst(〈M ′, N ′〉) ∈ PA and snd(〈M ′, N ′〉) ∈ PB whenever M ;
+
β 〈M ′, N ′〉

then fst(M) ∈ PA and snd(M) ∈ PB.

3. If M ∈ P!A and derelict(promote ~P for ~x in Q) ∈ PA whenever M ;
+
β promote ~P for ~x in Q

then derelict(M) ∈ PA.

4. If M ∈ P!A and Q ∈ PB and discard (promote ~M ′ for ~x in N) in Q ∈ PB whenever M ;
+
β

promote ~M ′ for ~x in N then discard M in Q ∈ PB.

5. If M ∈ P!A and Q ∈ PB and copy (promote ~M ′ for ~x in N) as y, z in Q ∈ PB whenever

M ;
+
β promote ~M ′ for ~x in N then copy M as y, z in Q ∈ PB .

Henceforth we only consider families P which satisfy conditions (P1)–(P3).

Definition 19. A non-empty set C of linear terms of type A is a P-candidate iff it satisfies the
following three conditions:

(R1) C ⊆ PA.

(R2) If M ∈ C and M ;β N then N ∈ C.

(R3) If M is simple, M ∈ PA and M ′ ∈ C whenever M ;
+
β M ′ and M ′ is an I-term, then M ∈ C.

Then given a family P , for every type A, we define [[A]] as follows.

Definition 20.

[[A]]
def
= PA, where A is atomic.

[[A−◦B]]
def
=

{
M |M ∈ PA−◦B, and for all N , if N ∈ [[A]] then MN ∈ [[B]]

}

[[A⊗B]]
def
=

{
M |M ∈ PA⊗B, M ′ ∈ [[A]] and N ′ ∈ [[B]] whenever M ;

∗
β M ′⊗N ′

}

[[I]]
def
= {M |M ∈ PI}

[[A&B]]
def
=

{
M |M ∈ P

A&B
and fst(M) ∈ [[A]] and snd(M) ∈ [[B]]

}

[[A ⊕ B]]
def
=

{
M |M ∈ PA⊕B and M ′ ∈ [[A]] whenever M ;

∗
β inl(M ′)

}

∩
{

M |M ∈ PA⊕B and M ′′ ∈ [[B]] whenever M ;
∗
β inr(M ′′)

}

[[!A]]
def
= {M |M ∈ P!A, derelict(M) ∈ [[A]] and ~M ′ ∈ ~P!B and [[N]] ∈ [[A]]

whenever M ;
∗
β promote ~M ′ for ~x in N}∩

{M |M ∈ P!A, discard ~M ′ in Q ∈ PC

whenever M ;
∗
β promote ~M ′ for ~x in N and Q ∈ PC }∩

{M |M ∈ P!A,

copy ~M ′ as ~u,~v in R[y := promote ~u for ~x in N, z := promote ~v for ~x in N] ∈ PD

whenever M ;
∗
β promote ~M ′ for ~x in N and R ∈ PD }

90 Chapter 3. Term Assignment

Lemma 4. If P is a family satisfying (P1)–(P3), then each [[A]] is a P-candidate which contains all
the stubborn terms in PA.

Proof. We proceed by induction on the type A.

Case A atomic. (R1) holds trivially, (R2) holds from property (P2) and (R3) also holds trivially.

Case A−◦B. Clearly (R1) holds by definition of [[A−◦B]]. To prove (R2) we assume that M ∈
[[A−◦B]] and that M ;β N . From (R1) we have that M ∈ PA−◦B. Thus by (P2) we have
that N ∈ PA−◦B. Let us take a Q ∈ [[A]]. By the definition of [[A−◦B]] we have that MQ ∈ [[B]].
Since we have that M ;β N then MQ ;β NQ by the definition of reduction. By induction
(at type B) we have that NQ ∈ [[B]]. We can now conclude from the definition of [[A−◦B]]
that N ∈ [[A−◦B]].

To prove (R3) we assume that M is simple, M ∈ PA−◦B and that λx: A.M ′ ∈ PA−◦B whenever
M ;

+
β λx: A.M ′. If M is stubborn then by induction at type B that M ∈ [[A−◦B]] and we

are done. If M is not stubborn then we know that M ;
+
β λx: A.M ′. We have by assumption

that λx: A.M ′ ∈ [[A−◦B]]. Thus taking an N ∈ [[A]], we have that (λx: A.M ′)N ∈ [[B]]. We
also know that N ∈ PA−◦B and hence by (P3), MN ∈ PB . Now consider the reduction of
MN . If MN is stubborn then we have by induction at type B that MN ∈ [[B]]. If MN is
not stubborn then its reduction path must be of the following form, where Q is an I-term and
N ;

∗
β N ′,

MN ;
∗
β (λx: A.M ′)N ′

;β M ′[x := N ′] ;
∗
β Q.

We know by (R2) that N ′ ∈ [[A]]. Hence by definition we have that (λx: A.M ′)N ′ ∈ [[B]].
Again by (R2) we have that Q ∈ [[B]]. Thus by induction at type B we have that MN ∈ [[B]]
for any N ∈ [[B]]. By definition we can conclude that M ∈ [[A−◦B]] and we are done.

Case A⊗B. Clearly (R1) holds by definition of [[A⊗B]]. To prove (R2) we shall assume that
M ∈ [[A⊗B]] and that M ;β N . We know from (R1) that M ∈ PA⊗B and, hence, by
(P2), N ∈ PA⊗B. By definition of M ∈ [[A⊗B]], if M ;

∗
β M ′⊗N ′ then M ′ ∈ [[A]] and

that N ′ ∈ [[B]]. It is clear that M ;
∗
β M ′⊗N ′ whenever N ;

∗
β M ′⊗N ′. Thus by definition

N ∈ [[A⊗B]].

To prove (R3) we assume that M is simple, M ∈ PA⊗B and that M ′⊗N ′ ∈ PA⊗B whenever
M ;

∗
β M ′⊗N ′. If M is stubborn then by the definition of [[A⊗B]] we have that M ∈ [[A⊗B]].

If M is not stubborn then we have that M ;
+
β M ′⊗N ′ and hence by (R2) we have that

M ′⊗N ′ ∈ [[A⊗B]]. By the definition of [[A⊗B]] we have that M ′ ∈ [[A]] and N ′ ∈ [[B]]. Thus
we can conclude that M ∈ [[A⊗B]].

Case I. Clearly (R1) holds by definition of [[I]]. To prove (R2) we assume that M ∈ [[I]] and that
M ;β N . Thus we have that M ∈ PI and then by (P2) that N ∈ PI . Clearly M ;

∗
β ∗

whenever N ;
∗
β ∗. We then have that N ∈ [[I]].

To prove (R3) we assume that M is simple and M ∈ PI . As M is always stubborn then
trivially by definition we have that M ∈ [[I]]

Case A&B. Clearly (R1) holds by definition of [[A&B]]. To prove (R2) we assume that N ∈ [[A&B]]
and M ;β N . By (R1) we have that M ∈ P

A&B
and by (P2) we have that N ∈ P

A&B
. By

definition of M ∈ [[A&B]] we have that fst(M) ∈ [[A]] and snd(M) ∈ [[B]]. Since fst(M) ;β

fst(N) and snd(M) ;β snd(N) we have by induction that fst(N) ∈ [[A]] and snd(N) ∈ [[B]].
Hence we can conclude that N ∈ [[A&B]].

To prove (R3) we assume that M is simple, M ∈ P
A&B

and that 〈M ′, N ′〉 ∈ [[A&B]] whenever

M ;
+
β 〈M ′, N ′〉. If M is stubborn then clearly both fst(M) and snd(N) are stubborn. We

know from (P3) that fst(M) ∈ PA and snd(M) ∈ PB and since by induction we have that
both [[A]] and [[B]] contain all the stubborn terms in PA and PB respectively, then we have
that fst(M) ∈ [[A]] and snd(M) ∈ [[B]]. Thus we can conclude that M ∈ [[A&B]]. If M is not

§5. Properties of Reduction Rules 91

stubborn then we have that M ;
+
β 〈M ′, N ′〉. By assumption we have that 〈M ′, N ′〉 ∈ [[A&B]].

Hence by definition we have that fst(〈M ′, N ′〉) ∈ [[A]] and snd(〈M ′, N ′〉) ∈ [[B]]. By induction
we also have that fst(〈M ′, N ′〉) ∈ PA and snd(〈M ′, N ′〉) ∈ PB. Hence by (P3) we have that
fst(M) ∈ PA and snd(M) ∈ PB. Let us consider fst(M) (the case for snd(M) is symmetric).
If fst(M) is stubborn then we have by induction that fst(M) ∈ [[A]]. If fst(M) is not stubborn
then its reduction path must be of the following form, where Q is an I-term,

fst(M) ;
+
β fst(〈M ′, N ′〉) ;β M ′′

;
∗
β Q.

Since fst(〈M ′, N ′〉) ∈ [[A]] we have by induction that Q ∈ [[A]]. Thus by induction we have that
fst(M) ∈ [[A]]. By similar reasoning we deduce that snd(M) ∈ [[B]] and hence by definition we
can conclude M ∈ [[A&B]].

Case A ⊕ B. Clearly (R1) holds by definition of [[A ⊕ B]]. To prove (R2) we assume that M ∈
[[A ⊕ B]] and that M ;β N . It is clear that M ∈ PA⊕B and from (P2) we have that
N ∈ PA⊕B. By definition of M ∈ [[A ⊕ B]] we have that M ′ ∈ [[A]] whenever M ;

∗
β inl(M ′)

and that M ′′ ∈ [[B]] whenever M ;
∗
β inr(M ′′). It is obvious that whenever M ;

∗
β inl(M ′)

then N ;
∗
β inl(M ′) and that whenever M ;

∗
β inr(M ′′) then N ;

∗
β inr(M ′′). Hence we can

conclude that N ∈ [[A ⊕ B]] and we are done.

To prove (R3) we assume that M is simple, M ∈ PA⊕B and M ′ ∈ [[A⊕B]] whenever M ;
+
β M ′

and M ′ is an I-term. If M is a stubborn term then we have that it is never the case that
M ;

+
β inl(M ′) nor M ;

+
β inl(M ′′), and so we conclude that M ∈ [[A ⊕ B]]. If M is not a

stubborn term then we know that M ;
+
β Q where Q is either inl(Q′) or inr(Q′′). Consider the

first case. We have by assumption that inl(Q′) ∈ [[A⊕B]]. By definition we can conclude that
Q′ ∈ [[A]]. Similarly we can conclude that Q′′ ∈ [[B]]. Thus we can conclude that M ∈ [[A⊕B]]
and we are done.

Case !A. Clearly (R1) holds by the definition of [[!A]]. To prove (R2) we assume that M ∈ [[!A]] and
that M ;β Q. We know that M ∈ P!A. Since M ∈ [[!A]] we know that a number of conditions

hold when M ;
∗
β promote ~M ′ for ~x in N . But clearly whenever M ;

∗
β promote ~M ′ for ~x in N

it is the case that Q ;
∗
β promote ~M ′ for ~x in N . Thus we conclude that Q ∈ [[!A]].

To prove (R3) we assume that M is simple, M ∈ P!A and that promote ~M for ~x in N ∈ [[!A]]

whenever M ;
+
β promote ~M for ~x in N . If M is stubborn then the conditions of [[!A]] hold

trivially and so we can conclude that M ∈ [[!A]]. If M is not stubborn then we have that

M ;
+
β promote ~M ′ for ~x in N and by assumption we have that promote ~M ′ for ~x in N ∈ [[!A]].

By definition we then have a number of conditions which hold when promote ~M ′ for ~x in N ;
∗
β

promote ~M ′′ for ~x′′ in N ′′. In particular we can take the zero reduction case, and then we have
the conditions sufficient to conclude that M ∈ [[!A]].

We can now extend the definition of P .

Definition 21. Properties (P4) and (P5) are defined as follows.

(P4) 1. If M ∈ PB and x ∈ FV (M) then λx: A.M ∈ PA−◦B.

2. If M ∈ PA and N ∈ PB then M⊗N ∈ PA⊗B.

3. ∗ ∈ PI .

4. If M ∈ PA and N ∈ PB then 〈M, N〉 ∈ P
A&B

.

5. If M ∈ PA then inl(M) ∈ PA⊕B .

6. If N ∈ PB then inr(N) ∈ PA⊕B.

7. If N ∈ PA and ~M ∈ ~P!B then promote ~M for ~x in N ∈ P!A.

(P5) 1. If N ∈ PA and M [x := N] ∈ PB then (λx: A.M)N ∈ PB.

92 Chapter 3. Term Assignment

2. If M ∈ PI , N ∈ PA then let M be ∗ in N ∈ PA.

3. If M ∈ PA⊗B and N [x := M ′, y := N ′] ∈ PC whenever M ;
∗
β M ′⊗N ′ then

let M be x⊗y in N ∈ PC .

4. If M ∈ PA and N ∈ PB then fst(〈M, N〉) ∈ PA and snd(〈M, N〉) ∈ PB.

5. If Q ∈ PA⊕B , M ∈ PC , N ∈ PC and M [x := Q′] ∈ PC whenever Q ;
∗
β inl(Q′) then

case Q of inl(x) → M ‖ inr(y) → N ∈ PC .

6. If Q ∈ PA⊕B, M ∈ PC , N ∈ PC and N [y := Q′′] ∈ PC whenever Q ;
∗
β inr(Q′′) then

case Q of inl(x) → M ‖ inr(y) → N ∈ PC .

7. If M ∈ P!A and N [~x := ~M ′] ∈ PB whenever M ;
∗
β promote ~M ′ for ~x in N then

derelict(M) ∈ PB .

8. If M ∈ P!A, Q ∈ PB and discard ~M ′ in Q ∈ PB whenever M ;
∗
β promote ~M ′ for ~x in N

then discard M in Q ∈ PB .

9. If M ∈ P!A, Q ∈ PB and

copy ~M ′ as ~u,~v in Q[y := promote ~u for ~x in N, z := promote ~v for ~x in N] ∈ PB

whenever M ;
∗
β promote ~M ′ for ~x in N then copy M as y, z in Q ∈ PB.

We can now prove some auxiliary facts.

Lemma 5. If P is a family satisfying conditions (P1)–(P5) then the following properties hold:

1. If for every N , (N ∈ [[A]] implies M [x := N] ∈ [[B]]) then λx: A.M ∈ [[A−◦B]].

2. If M ∈ [[A⊗B]] and for every N , Q, (N ∈ [[A]] and Q ∈ [[B]] implies R[x := N, y := Q] ∈ [[C]])
then let M be x⊗y in R ∈ [[C]].

3. If M ∈ [[A⊕B]] and for all N ∈ [[A]] such that Q[x := N] ∈ [[C]] and for all N ′ ∈ [[B]] such that
R[y := N ′] ∈ [[C]] then case M of inl(x) → Q ‖ inr(y) → R ∈ [[C]].

Proof. We tackle each case in turn. From Lemma 4 we have already that the sets of the form [[A]]
have properties (R1)–(R3).

1. We know that for all variables x ∈ [[A]]. By assumption we have that M [x := x] ∈ [[B]] and
hence M ∈ [[B]]. From lemma 4 we have that M ∈ PA. From (P4) we can conclude that
λx: A.M ∈ PA−◦B . Let us take a N ∈ [[A]], thus N ∈ PA. By assumption we also have that
M [x := N] ∈ [[B]] and hence M [x := N] ∈ PB. We have from (P5) that (λx: A.M)N ∈ PB .
If (λx: A.M)N is stubborn then we can conclude from (R3) that (λx: A.M)N ∈ [[B]]. If
(λx: A.M)N is not stubborn then its reduction path must be of the following form, where Q
is an I-term,

(λx: A.M)N ;
∗
β (λx: A.M ′)N ′

;β M ′[x := N ′] ;
∗
β Q.

We have that M [x := N] ∈ [[B]] and since M [x := N] ;
∗
β M ′[x := N ′] ;

∗
β Q then by (R2)

we have that Q ∈ [[B]]. By (R3) we can conclude that (λx: A.M)N ∈ [[B]]. Thus we have have
that for all N ∈ [[A]] that (λx: A.M)N ∈ [[B]] and so we can conclude that λx: A.M ∈ [[A−◦B]].

2. By assumption we have that M ∈ [[A⊗B]] and hence by lemma 4 M ∈ PA⊗B. If we take two
variables x and y, then we have that x ∈ [[A]] and y ∈ [[B]] and by assumption we have that
R[x := x, y := y] ∈ [[C]]; hence R ∈ [[C]]. If let M be x⊗y in R is stubborn then we have from
(R3) that let M be x⊗y in R ∈ [[C]]. If let M be x⊗y in R is not stubborn then its reduction
path must be of the following form, where T is an I-term,

let M be x⊗y in R ;
∗
β let M ′⊗N ′ be x⊗y in R′

;β R′[x := M ′, y := N ′] ;
∗
β T.

Since we have that M ∈ [[A⊗B]] then we know that M ′ ∈ [[A]] and N ′ ∈ [[B]]. We know then
by assumption that R[x := M ′, y := N ′] ∈ [[C]] and hence by (R2) R′[x := M ′, y := N ′] ∈ [[C]].
We can then conclude that let M be x⊗y in N ∈ [[C]].

§5. Properties of Reduction Rules 93

3. We have by assumption that M ∈ [[A⊕B]] and hence we have M ∈ PA⊕B. Taking variables x
and y we have that Q[x := x] ∈ [[C]] and R[y := y] ∈ [[C]]. Hence we also have that Q ∈ PC and
R ∈ PC . If M is stubborn it is easy to see that caseM of inl(x) → Q‖ inr(y) → R is stubborn
also. Also by (P4) we know that caseMofinl(x) → Q‖inr(y) → R ∈ PC . Since we know that all
the stubborn terms in PC are in [[C]], we can see that caseM of inl(x) → Q‖ inr(y) → R ∈ [[C]].
If M is not stubborn then consider the case where M ;

+
β inl(M ′). We have by (R2) that

inl(M ′) ∈ [[A ⊕ B]]. By defintion this gives us that M ′ ∈ [[A]] and hence M ′ ∈ PA. Thus from
(P5) we can conclude that case M of inl(x) → Q ‖ inr(y) → R ∈ PC .

If case M of inl(x) → Q ‖ inr(y) → R is stubborn then from (R3) we can conclude that
case M of inl(x) → Q ‖ inr(y) → R ∈ [[C]]. If case M of inl(x) → Q ‖ inr(y) → R is not
stubborn then its reduction path must be of the following form, where T is an I-term,

case M of inl(x) → Q ‖ inr(y) → R ;
∗
β

case inl(M ′) of inl(x) → Q′ ‖ inr(y) → R′
;β Q′[x := M ′] ;

∗
β T.

(and similarly if M ;
∗
β inr(M ′′).) Since M ∈ [[A ⊕ B]] we have by definition that M ′ ∈ [[A]].

We have by definition that P [x := M ′] ∈ [[C]] and hence we have that P ′[x := M ′] ∈ [[C]].
Performing the same reasoning for the case where M ;

∗
β inr(M ′′) enables us to conclude that

case M of inl(x) → Q ‖ inr(y) → R ∈ [[C]]

Lemma 6. If P is a family satisfying (P1)–(P5), then for every M of type A, for every substitution
φ such that φ(y) ∈ [[B]] for every y: B ∈ FV (M), we have that φ(M) ∈ [[A]].

Proof. By induction on the structure of M .

Case x. Trivial by the definition of φ.

Case MN . By induction we have that φ1(M) ∈ [[A−◦B]] and φ2(N) ∈ [[A]]. By the definition of
[[A−◦B]] we have that φ1(M)φ2(N) ∈ [[B]]. Thus by definition of substitution φ(MN) ∈ [[B]]
where φ = φ1 ∪ φ2.

Case λx: A.M . If we take a N such that N ∈ [[A]], then we can extend a substitution φ to φ†[x 7→ N].
Using this extended substitution, by induction we have that φ′(M) ∈ [[B]] which is equivalent
to φ(M)[x := N] ∈ [[B]]. By Lemma 1 we have that λx: A.M ∈ [[A−◦B]].

Case M⊗N . By induction we have that φ1(M) ∈ [[A]] and φ2(N) ∈ [[B]]. Thus we have that
φ1(M) ∈ PA and φ2(N) ∈ PB and hence by (P4) we have that M⊗N ∈ PA⊗B. If M⊗N is
stubborn then we have by definition that M⊗N ∈ [[A⊗B]]. If M⊗N is not stubborn then we
have that M⊗N ;

∗
β M ′⊗N ′. We have from (R2) that M ′ ∈ [[A]] and N ′ ∈ [[B]]. By definition

we can conclude that M⊗N ∈ [[A⊗B]].

Case let M be x⊗y in N . By induction we have that φ1(M) ∈ [[A⊗B]]. We also have by induction
that φ2(N) ∈ [[C]]. By considering FV (N) it is clear that φ2 is of the form φ3 † [x 7→ P, y 7→ Q]
for P ∈ [[A]] and Q ∈ [[B]]. Hence we have that (φ3(N))[x := P, y := Q] ∈ [[C]]. By lemma 5 we
have that let φ1(M) be x⊗y in φ3(N) ∈ [[C]]. By the definition of substitution we can conclude
φ(let M be x⊗y in N) ∈ [[C]] where φ = φ1 ∪ φ3.

Case ∗. From (P4) we have that ∗ ∈ PI and as ∗ is stubborn we have by (R3) that ∗ ∈ [[I]] and we
are done.

Case let M be ∗ in N . We have by induction that φ1(M) ∈ [[I]] and that φ2(N) ∈ [[A]]. We have that
φ1(M) ∈ PI and φ2(N) ∈ PA and then by (P5) we have that let φ1(M) be ∗ in φ2(N) ∈ PA.
If let φ1(M) be ∗ in φ2(N) is stubborn then we have trivially from (R3) that let φ1(M) be ∗
in φ2(N) ∈ [[A]]. If it is not stubborn then its reduction path must be of the following form,
where Q is an I-term,

94 Chapter 3. Term Assignment

let φ1(M) be ∗ in φ2(N) ;
∗
β let ∗ be ∗ in N ′

;β N ′
;

∗
β Q.

Since φ2(N) ∈ [[A]] then by (R2) we have that Q ∈ [[A]] and hence by (R3) we can conclude
that let φ1(M) be ∗ in φ2(N) = φ(let M be ∗ in N) ∈ [[A]], where φ = φ1 ∪ φ2.

Case 〈M, N〉. We have by induction that φ(M) ∈ [[A]] and φN ∈ [[B]] and by (R2) we have that
φ(M) ∈ PA and φ(N) ∈ PB . By (P4) we have that 〈φ(M), φ(N)〉 = φ(〈M, N〉) ∈ P

A&B
. We

know from (P5) that fst(φ(〈M, N〉)) ∈ PA and that snd(φ(〈M, N〉)) ∈ PB. Let us consider
fst(φ(〈M, N〉)) (the case for snd(φ(〈M, N〉)) is similar). If fst(φ(〈M, N〉)) is stubborn then we
have trivially from (R3) that fst(φ(〈M, N〉)) ∈ [[A]]. If it is not stubborn then its reduction
path must be of the following form, where Q is an I-term,

fst(φ(〈M, N〉)) ;
∗
β fst(〈M ′, N ′〉) ;β M ′

;
∗
β Q.

Since we have that φ(M) ∈ [[A]] we have by (R2) that Q ∈ [[A]]. By (R3) we can conclude that
fst(φ(〈M, N〉)) ∈ [[A]]. By similar reasoning we deduce that snd(φ(〈M, N〉)) ∈ [[B]] and hence
by definition we can conclude that φ(〈M, N〉) ∈ [[A&B]].

Case fst(M). By induction we have that φ(M) ∈ [[A&B]]. By definition we have that fst(φ(M)) ∈
[[A]] and hence φ(fst(M)) ∈ [[A]] and we are done.

Case snd(M). Similar to above case.

Case inl(M). We have by induction that φ(M) ∈ [[A]]. By (R1) we have that φ(M) ∈ PA and
by (P4), inl(φ(M)) = φ(inl(M)) ∈ PA⊕B. If φ(inl(M)) is stubborn then by (R3) trivially
we have that φ(inl(M)) ∈ [[A ⊕ B]]. If it is not stubborn then its reduction path must be
inl(φ(M)) ;

∗
β inl(M ′). By (R2) we have that M ′ ∈ [[A]] and hence we have by definition that

inl(φ(M)) ∈ [[A ⊕ B]].

Case inr(M). Similar to above case.

Case case M of inl(x) → N ‖ inr(y) → Q. By induction we have that φ1(M) ∈ [[A ⊕ B]] and that
φ2(N) ∈ [[C]] and φ3(Q) ∈ [[C]] where φ2 = φ4 † [x 7→ R] and φ3 = φ4 † [y 7→ S]. Thus we
have that (φ4(N))[x := R] ∈ [[C]] and (φ4(Q))[y := S] ∈ [[C]]. Then by lemma 5 we have
that case φ1(M) of inl(x) → φ4(N) ‖ inr(y) → φ4(Q) ∈ [[C]] and thus we can conclude that
φ(case M of inl(x) → N ‖ inr(y) → Q) ∈ [[C]] where φ = φ1 ∪ φ4.

Case derelict(M). We have by induction that φ(M) ∈ [[!A]]. By (R1) we have that φ(M) ∈ P!A. If
derelict(M) is stubborn then we have from (R3) trivially that derelict(M) ∈ [[A]]. If derelict(M)
is not stubborn then its reduction path must be of the following form, where Q is an I-term,

derelict(φ(M)) ;
∗
β derelict(promote ~M ′ for ~x in N) ;β N [~x := ~M ′] ;

∗
β Q.

By (R2) we have that promote ~M ′ for ~x in N ∈ [[!A]]. Then by definition (and considering the

zero reduction) we have that derelict(promote ~M ′ for ~x in N) ∈ [[A]]. Hence by (R2) we have
that Q ∈ [[A]] and thus by (R3) we can conclude that derelict(φ(M)) = φ(derelict(M)) ∈ [[A]].

Case discard M in N . We have by induction that φ1(M) ∈ [[!A]] and φ2(N) ∈ [[B]]. By (R1) we have
that φ1(M) ∈ P!A and φ2(N) ∈ PB. If φ1(M) is stubborn then trivially from (P5) we have that

discard φ1(M) in φ2(N) ∈ PB. If φ1(M) is not stubborn then φ1(M) ;
∗
β promote ~P for ~x in R.

We have from (R2) that promote ~P for ~x in R ∈ [[!A]]. Hence by definition we have that

discard ~P in φ2(N) ∈ PB.

As discard φ1(M) in φ2(N) is always stubborn, (R3) holds trivially and so we have that
discard φ1(M) in φ2(N) = φ(discard M in N) ∈ [[B]] where φ = φ1 ∪ φ2.

§5. Properties of Reduction Rules 95

Case copy M as x, y in N . We have by induction that φ1(M) ∈ [[!A]] and φ2(N) ∈ [[B]]. φ2

is clearly of the form φ3 † [x 7→ P, y 7→ Q] where P, Q ∈ [[!A]]. Thus we have that
(φ3(N))[x := P, y := Q] ∈ [[B]]. If φ1(M) is stubborn then by (P3) we have that
copy φ1(M) as x, y in φ3(N) ∈ PB . If it is not stubborn then we have that φ1(M) ;

+
β

promote ~P for ~w in R. By (R2) we have that promote ~P for ~w in R ∈ [[!A]]. By definition we

have that copy ~P as ~u,~v in φ3(N)[x := promote ~u for ~v in R, y := promote ~u for ~v in R] ∈ PB . By
(P5) we can conclude that copy φ1(M)as x, y in φ2(N) ∈ PB. As it is always stubborn then we
have trivially from (R3) that copy φ1(M) as x, y in φ2(N) ∈ [[B]]. Thus we can conclude that
φ(copy M as x, y in N) ∈ [[B]] where φ = φ1 ∪ φ3.

Case promote ~M for ~x in N . We have by induction that ~φ1(M) ∈ ~[[!A]] and that φ2(N) ∈ [[B]]

We have by (R1) that ~φ1(M) ∈ ~P!A and that φ2(N) ∈ PB . Thus from (P4) we can

conclude that promote ~φ1(M) for ~x in N ∈ P!B. If promote ~φ1(M) for ~x in N is stubborn

then we have from (R3) trivially that promote ~φ1(M) for ~x in N ∈ [[!B]]. If it is not stub-

born then promote ~φ1(M) for ~x in N ;
∗
β promote ~M ′ for ~x′ in N ′. We have from (R2) that

N ′ ∈ [[B]] and from (P2) that ~M ′ ∈ ~P!A. By taking the definition of [[!B]] we find that

promote ~φ1(M) for ~x in N ∈ [[!B]]. Hence we can conclude that φ(promote ~M for ~x in N) ∈ [[!B]]

where φ = ~φ1 ∪ φ2.

Theorem 17. If P is a family of linear terms satisfying conditions (P1)–(P5), then PA = ΛA for
every type A.

Proof. Apply the lemma above to every term M of type A taking the identity substitution (which
is valid since for all variables x of type B we have by (R3) that x ∈ [[B]]). Thus M ∈ [[A]] for every
term of type A, i.e. ΛA ⊆ PA. Since it is obvious that PA ⊆ ΛA, we can conclude that in fact
PA = ΛA.

5.2 Strong Normalization and Confluence

As we mentioned earlier, now we have an alternative definition of the linear terms we can use this
to check the terms for the desired properties. Indeed the proofs turn out to be rather simple as
all need to show is that the set of strongly normalizing and set of confluent terms both satisfy the
definition of P .

Theorem 18. The reduction relation, ;β, is strongly normalizing.

Proof. Let P be the family defined such that PA = SNA where SNA is the set of strongly
normalizing terms of type A. By Theorem 17 we simply have to show that this P satisfies the 23
conditions (P1)–(P5)! First we shall make the following observation which will facilitate the proof.
Since there are only a finite number of redexes in a term, then its reduction tree must be finitely
branching. If a term is strongly normalizing (SN), every path in its reduction tree is finite and
by König’s lemma we have that the tree is finite. For any SN term, M , we shall write d(M) to
denote the depth of its reduction tree. We can now check the conditions (P1)–(P5). As there are
23 conditions to check, we shall present only a few representative cases.

(P3)(1) We assume that M is simple, M ∈ SNA−◦B, N ∈ SNA and that (λx: A.M ′)N ∈ SNB

whenever M ;
+
β λx: A.M ′. Consider MN ;β P . It is either the case that P = M1N where

M ;β M1 or P = MN1 where N ;β N1. Considering the former when M1 is simple or the
latter case, it is easy to see that by induction on d(M) + d(N) we have that P ∈ SNB and
hence that MN ∈ SNB. If we take the former case where M1 = λx: A.M ′ then we have by
assumption that P ∈ SNB and hence we are done.

96 Chapter 3. Term Assignment

(P3)(3) We assume that M is simple, M ∈ SN!A and that derelict(promote ~M ′ for ~x in N) ∈ SNA

whenever M ;
+
β promote ~M ′ for ~x in N . Let us consider derelict(M) ;β P . We have

that either P = derelict(M1) where M1 is a simple term and that M ;β M1 or that

P = derelict(promote ~M ′ for ~x in N) where M ;β promote ~M ′ for ~x in N . In the former case by
induction on d(M) we have that P ∈ SNA. In the latter we have that P ∈ SNA by assumption
and so we are done.

(P3)(4) We assume that M is simple, M ∈ SN!A, Q ∈ SNB and that

discard (promote ~M ′ for ~x in N) in Q ∈ SNB whenever M ;
+
β promote ~M ′ for ~x in N . Let us

consider discard M in Q ;β P . We have three alternatives: Firstly, that P = discard M1 in Q
where M ;β M1 and M1 is simple. Secondly where P = discard M in Q1 where Q ;β Q1.

Thirdly where P = discard (promote ~M ′ for ~x in N) in Q where M ;β promote ~M ′ for ~x in N .
By induction on d(M) + d(Q) the first two cases give that P ∈ SNB. Considering the latter,
we have by assumption that P ∈ SNB and so we are done.

(P4)(1) We assume that M ∈ SNB. Let us consider λA.M ;β P . It is clear that P = λx: A.M1

where M ;β M1. By a simple induction on d(M) we have that λx: A.M ∈ SNA−◦B.

All the other cases for (P4) hold in the same (trivial) way.

(P5)(1) We assume that N ∈ SNA and M [x := N] ∈ SNB. Consider (λx: A.M)N ;β P . We
have three possibilities: firstly, where P = (λx: A.M1)N where M ;β M1; secondly where
P = (λx: A.M)N1 where N ;β N1 and thirdly where P = M ′[x := N] where M = λx: A.M ′.
Considering the first two cases, by induction on d(M) + d(N) we have that P ∈ SNB. By
assumption we have that for the third case P ∈ SNB and so we are done.

(P5)(7) We assume that M ∈ SN!A and that N [~x := ~M ′] ∈ SNB whenever M ;
∗
β

promote ~M ′ for ~x in N . Consider derelict(M) ;β P . Either P = derelict(M1) where M ;β M1;

or P = N [~x := ~M ′] where M ;β promote ~M ′ for ~x in N . In the former case, by induction on
d(M) we have that P ∈ SNB. In the latter case we have by induction that P ∈ SNB and we
are done.

(P5)(8) We assume that M ∈ SN!A, Q ∈ SNB and that discard ~M ′ in Q ∈ SNB whenever M ;
∗
β

promote ~M ′ for ~x in N . Let us consider discard M in Q ;β P . We have three possibilities:
Firstly where P = discard M1 in Q where M ;β M1; secondly where P = discard M in Q1

where Q ;β Q1 and thirdly where P = discard ~M ′ in Q where M = promote ~M ′ for ~x in N . In
the first two cases, by induction on d(M) + d(Q) we have that P ∈ SNB and for the third
case we have by assumption that P ∈ SNB and hence we are done.

Roorda [75, Chapter 21] has also proved strong normalization for (classical) linear logic using a
technique proposed by Dragalin [26]. Benton [12] has proved strong normalization for the multi-
plicative, exponential fragment of the linear term calculus by devising an ingenious translation into
terms of System F. This translation has the property that it preserves redexes and thus we can use
the fact that System F is strongly normalizing to deduce strong normalization for the linear term
calculus. We shall now consider the property of confluence.

Theorem 19. The reduction relation, ;β , is confluent.

Proof. Let P be the family defined such that PA = CRA where CRA is the set of confluent terms
of type A. Again all we have to show is that this P satisfies the 23 conditions (P1)–(P5). Again we
shall content ourselves with only a few examples.

(P3)(1) We assume that M is simple, M ∈ CRA−◦B , N ∈ CRA and (λx: A.P)N ∈ CRB whenever
M ;

+
β λx: A.P . Let us consider MN ;

∗
β R. It can be of two forms: Firstly MN ;

∗
β M ′N ′

where M ;
∗
β M ′ and N ;

∗
β N ′. We shall call this an ‘independent’ reduction. Secondly, it

could be of the form MN ;
+
β (λx: A.P)N ;

∗
β (λx: A.P ′)N ′

;β P ′[x := N ′] ;
∗
β R, which we

shall call a ‘top-level’ reduction. We thus have 4 cases to consider.

§5. Properties of Reduction Rules 97

1. Two independent reductions: MN ;
∗
β M1N1 and MN ;

∗
β M2N2. Since we have

by assumption that both M and N are confluent, we then have a term M3N3 where
M1 ;

∗
β M3, M2 ;

∗
β M3, N1 ;

∗
β N3 and N2 ;

∗
β N3 and then we are done.

2. Two top-level reductions:

MN ;
+
β (λx: A.M1)N ;

∗
β (λx: A.M1)N1 ;β M1[x := N1] ;

∗
β R1

and
MN ;

+
β (λx: A.M2)N ;

∗
β (λx: A.M2)N2 ;β M2[x := N2] ;

∗
β R2.

Since confluence holds for M , there is a M3 such that λx: A.M1 ;
∗
β M3 and λx: A.M2 ;

∗
β

M3. Hence we have that (λx: A.M1)N ;
∗
β M3N and (λx: A.M1)N ;

∗
β R1. By assump-

tion, then we have an R3 such that M3N ;
∗
β R3 and R1 ;

∗
β R3. We also have that

(λx: A.M2)N ;
∗
β R3 and (λx: A.M2)N ;

∗
β R2. Hence, also by assumption, there is a

term R4 such that R2 ;
∗
β R4 and R3 ;

∗
β R4. Thus we are done.

3. One independent and one to-level reduction:

MN ;
+
β (λx: A.M1)N ;

∗
β (λx: A.M1)N1 ;β M1[x := N1] ;

∗
β R1

and
MN ;

∗
β M2N2 = R2.

As M and N are confluent by assumption, we have that there is a R3 such that
(λx: A.M1)N1 ;

∗
β R3 and R2 ;

∗
β R3. Again, by assumption, the term (λx: A.M1)N1 is

confluent, and thus there exists a term R4 such that R1 ;
∗
β R4 and R3 ;

∗
β R4. Thus we

are done.

4. The symmetric case to the above. (Omitted)

(P3)(3) We assume that M is simple, M ∈ CR!A and derelict(promote ~P for ~x in Q) ∈ CR!A

whenever M ;
+
β promote ~P for ~x in Q. Let us consider derelict(M) ;

∗
β R; again, it

can be an independent reduction: derelict(M) ;
∗
β derelict(M ′) where M ;

∗
β M ′, or

it can be a top-level reduction where derelict(M) ;
+
β derelict(promote ~P for ~x in Q) ;

∗
β

derelict(promote ~P ′ for ~x in Q′) ;β Q′[~x := ~P ′] ;
∗
β R. We have 4 cases to consider.

1. Two independent reductions: derelict(M) ;
∗
β derelict(M1) and derelict(M) ;

∗
β

derelict(M2). As M is confluent by assumption, then there is a term M3 such that
derelict(M1) ;

∗
β derelict(M3) and derelict(M2) ;

∗
β derelict(M3) and we are done.

2. Two top-level reductions:

derelict(M) ;
+
β derelict(promote ~P1 for ~x in Q1)

;
∗
β derelict(promote ~P ′

1 for ~x1 in Q′
1) ;β Q′

1[~x := ~P ′
1] ;

∗
β R1

and
derelict(M) ;

+
β derelict(promote ~P2 for ~x in Q2)

;
∗
β derelict(promote ~P ′

2 for ~x in Q′
2) ;β Q′

2[~x := ~P ′
2] ;

∗
β R2.

We have that M is confluent and so we have that there is a term R3 such that
derelict(promote ~P1 for ~x in Q1) ;

∗
β derelict(R3) and derelict(promote ~P2 for ~x in Q2) ;

∗
β

derelict(R3). By assumption we than have that there exists a term R4 such that

derelict(R3) ;
∗
β R4 and R1 ;

∗
β R4. Also given that derelict(promote ~P2 for ~x in Q2) is

also a confluent term by assumption, then there exists a term R5 such that R4 ;
∗
β R5

and R2 ;
∗
β R5. Thus we are done.

3. One independent and one top-level reduction:

derelict(M) ;
+
β derelict(promote ~P1 for ~x in Q1)

;
∗
β derelict(promote ~P ′

1 for ~x in Q′
1) ;β Q′

1[~x := ~P ′
1] ;

∗
β R1

98 Chapter 3. Term Assignment

and
derelict(M) ;

∗
β derelict(M2) = R2.

As M is confluent by assumption, we have that there is a term R3 such that
R2 ;

∗
β R3 and derelict(promote ~P1 for ~x in Q1) ;

∗
β R3. Again, by assumption, the term

derelict(promote ~P1 for ~x in Q1) is confluent, and thus there exists a term R4 such that
R1 ;

∗
β R4 and R3 ;

∗
β R4. Thus we are done.

4. The symmetric case to the above. (Omitted)

(P4)(1) We assume that M ∈ CRB. If we have that λx: A.M ;
∗
β M2 and λx: A.M ;

∗
β M3, then it

must be the case that M2 = λx: A.M ′
2 and M3 = λx: A.M ′

3 where M ;
∗
β M ′

2 and M ;
∗
β M ′

3.
By assumption there exists a term M4 such that M2 ;

∗
β λx: A.M4 and M3 ;

∗
β λx: A.M4 and

hence we are done. All other cases for (P4) are similar.

(P5)(8) We assume that M ∈ CR!A, Q ∈ CRB and that discard ~P in Q ∈ CRB whenever M ;
∗
β

promote ~P for ~x in Q. Again we have two sorts of reductions and hence 4 cases to consider.

1. Two independent reductions: discard M in Q ;
∗
β discard M1 in Q1 and discard M2 in Q2.

Since we have assumption that both M and Q are confluent, then there are terms
M3 and Q3 such that discard M1 in Q1 ;

∗
β discard M3 in Q3 and discard M2 in Q2 ;

∗
β

discard M3 in Q3 and so we are done.

2. Two top-level reductions:

discard M in Q ;
∗
β discard (promote ~P1 for ~x in N1) in Q1 ;β discard ~P1 in Q1 ;

∗
β R1

and

discard M in Q ;
∗
β discard (promote ~P2 for ~x in N2) in Q2 ;β discard ~P2 in Q2 ;

∗
β R2.

As M and Q are both confluent by assumption, we have that there exists a term,
discard M2 in Q3, such that discard (promote ~P1 for ~x in N1) in Q1 ;

∗
β discard M2 in Q3 and

discard (promote ~P2 for ~x in N2) in Q2 ;
∗
β discard M2 in Q3. In fact, M2 must be of the

form promote ~P3 for ~x in N3. Thus we have that discard (promote ~P3 for ~x in N3) in Q3 ;β

discard ~P3 in Q3. We have by assumption that discard ~P1 in Q1 is confluent, and so there
exists a term R3 such that R1 ;

∗
β R3 and discard ~P3 in Q3. We also have by assumption

that discard ~P2 in Q2 is confluent and so there exists a term R4 such that R3 ;
∗
β R4 and

R2 ;
∗
β R4. Thus we are done.

3. One independent and one top-level reduction:

discard M in Q ;
∗
β discard (promote ~P1 for ~x in N1) in Q1 ;β discard ~P1 in Q1 ;

∗
β R1

and
discard M in Q ;

∗
β discard M2 in Q2 = R2.

As M and Q are both confluent by assumption, we have that there exists a term,
discard M3 in Q3, such that discard (promote ~P1 for ~x in N1) in Q1 ;

∗
β discard M3 in Q3

and discard M2 in Q2 ;
∗
β discard M3 in Q3. In fact M3 must be of the form

promote ~P2 for ~x in N2. Thus we have that discard (promote ~P2 for ~x in N2) in Q3 ;β

discard ~P2 in Q3. We have by assumption that discard ~P1 in Q1 is confluent and so there
exists a term R3 such that R1 ;

∗
β R3 and discard ~P3 in Q3 ;

∗
β R3. Also by assumption,

discard ~P2 in Q2 is confluent and so there exists a term R4 such that R2 ;
∗
β R4 and

R3 ;
∗
β R4. Thus we are done.

4. The symmetric case to the above. (Omitted)

§6. Compilation into Linear Combinators 99

6 Compilation into Linear Combinators

In §4.3 of Chapter 2 we gave a procedure for translating deductions from the natural deduction to
the axiomatic formulation. By using the Curry-Howard correspondence, we can express this as a
translation from terms of the linear term calculus to linear combinators. (As we mentioned earlier,
this can be thought of as an implementation technique in a similar way to that proposed by Turner
for the λ-calculus.) We give the resulting translation procedure, [[−]]C , in Figure 3.12.

[[x]]C
def
= x

[[λx: A.M]]C
def
= [x] [[M]]C

[[MN]]C
def
= [[M]]C [[N]]C

[[∗]]C
def
= unit

[[let M be ∗ in N]]C
def
= (let [[N]]C) [[M]]C

[[M⊗N]]C
def
= (tensor [[M]]C) [[N]]C

[[let M be x⊗y in N]]C
def
= (split [[M]]C) ([x]([y] [[N]]C))

[[〈M, N〉]]C
def
= with([[M]]C ,[[N]]C)

[[fst(M)]]C
def
= fst [[M]]C

[[snd(M)]]C
def
= snd [[M]]C

[[inl(M)]]C
def
= inl [[M]]C

[[inr(M)]]C
def
= inr [[M]]C

[[case M of inl(x) → N ‖ inr(y) → P]]C
def
= sdist (with([x][[N]]C ,[y][[P]]C)) [[M]]C

[[true(~M)]]C
def
= term (tensor . . .

tensor [[M1]]C [[M2]]C . . . [[Mn]]C)

[[falseA(~M ; N)]]C
def
= init [[N]]C [[M1]]C . . . [[Mn]]C

[[discard M in N]]C
def
= (disc [[N]]C) [[M]]C

[[copy M as x, y in N]]C
def
= (dupl ([x]([y] [[N]]C))) [[M]]C

[[derelict(M)]]C
def
= eps [[M]]C

[[promote ~M for ~x in N]]C
def
= acc(promote(~[x][[N]]C), ~[[M]]C)

where acc(e, [f1, f2, . . .])
def
= acc((B (edist e) delta f1), [f2, . . .])

acc(e, [])
def
= e

Figure 3.12: Compiling Linear Terms into Linear Combinators

We can also give a translation function, [[−]]λ, in the other direction, namely converting combi-
natory terms into linear terms. This is given in Figure 3.13.

As we might have expected, these translation functions have the desired property in that they
map valid linear terms to valid combinator terms and vice versa.

Lemma 7.

1. If ~x: Γ . M : A then ~x: Γ ⇒ [[M]]C : A.

2. If ~x: Γ ⇒ e: A then ~x: Γ . [[e]]λ: A.

Proof. By structural induction.

We did not mention reduction for the axiomatic formulation in Chapter 2, not least because it seems
hard to motivate unless considered within the context of an equivalent term calculus. Indeed, to the
best of my knowledge, there does not seem to be any natural method for deducing the reduction

100 Chapter 3. Term Assignment

[[IA]]λ
def
= λx : A.x

[[BA,B,C]]λ
def
= λg : (B−◦C).λf : (A−◦B).λx : A.fgx

[[CA,B,C]]λ
def
= λf : (A−◦(B−◦C)).λx : B.λy : A.fyx

[[tensorA,B]]λ
def
= λx : A.λy : B.x⊗y

[[splitA,B,C]]λ
def
= λx : A⊗B.λf : (A−◦(B−◦C)).let x be y⊗z in fyz

[[unit]]λ
def
= ∗

[[letA]]λ
def
= λx : A.λy : I.let y be ∗ in x

[[fstA,B]]λ
def
= λx : A&B.fst(x)

[[sndA,B]]λ
def
= λx : A&B.snd(x)

[[wdistA,B,C]]λ
def
= λf : ((A−◦B)&(A−◦C)).λy : A.〈(fst(f)y), (snd(f)y)〉

[[inlA,B]]λ
def
= λx : A.inl(x)

[[inrA,B]]λ
def
= λy : B.inr(y)

[[sdistA,B,C]]λ
def
= λf : ((A−◦C)&(B−◦C)).λx: A ⊕ B.

case x of

inl(x) → (fst(f))x ‖ inr(y) → (snd(f))y

[[initA]]λ
def
= λx: f .falseA(; x)

[[termA]]λ
def
= λx: A.true(x)

[[duplA]]λ
def
= λf : (!A−◦(!A−◦B)).λx :!A.copy x as y, z in fyz

[[discA,B]]λ
def
= λx : B.λy :!A.discard y in x

[[epsA]]λ
def
= λx :!A.derelict(x)

[[deltaA]]λ
def
= λx :!A.promote x for y in y

[[edistA,B]]λ
def
= λf :!(A−◦B).λx :!A.promote f, x for g, y in (derelict(g)derelict(y))

[[x]]λ
def
= x

[[ef]]λ
def
= [[e]]λ [[f]]λ

[[with(e,f)]]λ
def
= 〈([[e]]λ), ([[f]]λ)〉

[[promote(e)]]λ
def
= promote for in [[e]]λ

Figure 3.13: Compiling Linear Combinators into Linear Terms

§6. Compilation into Linear Combinators 101

rules. As we used the natural deduction formulation to deduce the set of combinators initially, it
seems appropriate to use the equivalence between linear terms and linear combinators along with
the β-reduction relation for linear terms to determine the reduction rules for the linear combinatory
terms. The resulting reduction relation, ;w, (where the w refers to the ‘weak’ sense of reduction)
is defined in Figure 3.14.

I e ;w e
B e f g ;w e (f g)
C e f g ;w (e g) f

split (tensor e f) g ;w g e f
let e unit ;w e

fst (with(e,f)) ;w e
snd (with(e,f)) ;w f

wdist (with(e,f)) g ;w with(eg,fg)

sdist (with(e,f)) (inl g) ;w eg
sdist (with(e,f)) (inr g) ;w fg

eps (promote(e)) ;w e
delta (promote(e)) ;w promote(promote(e))

edist (promote(e)) (promote(f)) ;w promote(ef)
disc e (promote(f)) ;w e
dupl e (promote(f)) ;w e (promote(f)) (promote(f))

Figure 3.14: Weak Reduction for Combinatory Terms

We have that this reduction relation reduces valid (combinatory) terms to valid terms. This
property is related to subject reduction for the linear term calculus.

Lemma 8. If ~x: Γ ⇒ e: A and e ;w f then ~x: Γ ⇒ f : A.

Proof. By induction on the structure of e.

In addition we have some further properties of linear combinators which we shall find useful.5

Lemma 9.

1. FV ([x]e) = FV (e) − {x}

2. ([x]e)x ;
∗
w e

3. ([x]e)f ;
∗
w e[x := f]

Proof. All by induction on the linear combinatory term.

We can now consider the similarity between reduction for the linear combinatory terms and for the
linear terms. As is the case for the λ-calculus [39, Chapter 9], one direction is easy.

Lemma 10. If e ;w f then [[e]]λ ;β [[f]]λ.

5We defined the set of free variables of a linear combinatory term (denoted by FV (e)) in Figure 3.5.

102 Chapter 3. Term Assignment

Proof. By induction on the structure of e.

The other direction, that β-reduction is mirrored by w-reduction, fails for the λ-calculus (and is why
reduction for combinatory logic is referred to as ‘weak’). Our refined use of ILL gives a glimmer of
hope for this problem. For a fragment of the term calculus (the non-exponential fragment) we find
that the required lemma does hold.

Lemma 11. Let M be a non-exponential term. If M ;β N then [[M]]C ;
∗
w [[N]]C .

Proof. By induction on the structure of the linear term, M .

However, as for the λ-calculus [39], we still do not have an immediate relationship between the
respective notions of normal form. This is a serious problem and one that has, by and large, been
ignored by the functional programming community (for one), who use combinatory reduction to
implement β-reduction in compilers [71, 78]. Despite our use of the refined setting of ILL, so far we
gain no new insight into this problem; this remains an important open question.

Proposition 5. If e is in w-normal form, then it is not necessarily the case that [[e]]λ is in β-normal
form.

Proof. (Counterexample) Consider the combinatory term let e. It is in w-normal form, but its
translation (λx.λy.let y be ∗ in x)[[e]]λ is clearly not in β-normal form.

7 Translations

In §5 of Chapter 2 we considered the logical power of ILL. In particular, we saw how the exponential
regained the power of IL and to that purpose we detailed a translation procedure, originally due
to Girard [31], from a natural deduction formulation of IL into the natural deduction formulation
of ILL. We can apply the Curry-Howard correspondence to this translation procedure to derive a
translation from the extended6 λ-calculus to the linear term calculus. First of all let us recall the
natural deduction formulation of the extended λ-calculus in Figure 3.15.

We shall denote the term translation function as | − |◦. However, the translation is really on
derivations rather than terms. There is a slight problem for the extended lambda calculus in that
there is no syntax for the structural rules, in particular the rule of Weakening. Thus there is no
difference between the term associated with the proof of Γ − A and one of Γ, ∆ − A which differs
only by its instances of the Id rule (where the Weakening rule is embedded). This is a fault of the
extended λ-calculus: the terms do not encode precisely the proof trees. Thus we shall include the
context with the translation function, thus | − |◦Γ. We give the translation procedure in Figure 3.16.

It should be noted that in some places α-conversions have been included. This is to ensure that
the free variables of the original and the translated term are the same. As we might expect the
translation maps valid λ-terms to valid linear terms.

Theorem 20. If `IL ~x: Γ . M : A then `ILL ~x: !(Γ◦) . |M |◦Γ: A◦.

Proof. By structural induction and use of Figure 3.16.

Let us return to the question raised in Chapter 2 concerning the preservation of normal forms by
the Girard translation. Take the λ-term λf : A ⊃ B.λx: A.fx. Clearly this term is in (β, c)-normal
form. However, consider its translation into a linear term:

λf : !(!A−◦B).λx: !A.copy f, x as f ′, f ′′, x′, x′′

in

(discard x′ in derelict(f ′))(promote f ′′, x′′ for f, x in (discard f in derelict(x)))

6The phrase ‘λ-calculus’ normally applies just to the implication fragment. We shall use the prefix ‘extended’ to
refer to the term calculus corresponding to the whole of IL.

§7. Translations 103

Id
Γ, x: A . x: A

Γ . M :⊥
(⊥E)

Γ . ∇A(M): A

Γ . M : A Γ . N : B
(∧I)

Γ . 〈M, N〉: A ∧ B

Γ . M : A ∧ B
(∧E−1)

Γ . fst(M): A

Γ . M : A ∧ B
(∧E−2)

Γ . snd(M): B

Γ, x: A . M : B
(⊃I)

Γ . λx: A.M : A ⊃ B

Γ . M : A ⊃ B Γ . N : A
(⊃E)

Γ . MN : B

Γ . M : A
(∨I−1)

Γ . inl(M): A ∨ B

Γ . M : B
(∨I−2)

Γ . inr(M): A ∨ B

Γ . M : A ∨ B Γ, x: A . N : C Γ, y: B . P : C
(∨E)

Γ . case M of inl(x) → N ‖ inr(y) → P : C

Figure 3.15: The Extended λ-Calculus

Although this term is in β-normal form, it is clearly not in c-normal form (the c-redex is underlined).
This essentially reveals an open problem concerning the desired evaluation strategy of a linear
functional language. We shall discuss this further in Chapter 5

As given in Definition 12 of Chapter 2, there is an alternative translation, (−)?, which for the
(⊃,∧)-fragment of IL only involves the multiplicatives. Extending it to a translation on terms gives
a translation which is the same as that in Figure 3.16 expect for the translation of pairs, which is
as follows.

|〈M, N〉|?Γ
def
= copy ~x as ~y, ~z in

(promote ~y for ~x in |M |?Γ)⊗(promote ~z for ~x in |N |?Γ)

|fst(M)|?Γ
def
= let |M |?Γ be y⊗z in (discard z in derelict(y))

|snd(M)|?Γ
def
= let |M |?Γ be y⊗z in (discard y in derelict(z))

Of course, this translation function has the same desired property as the Girard translation.

Theorem 21. If `IL ~x: Γ . M : A then `ILL ~x: !(Γ?) . |M |?Γ: A?.

Proof. By structural induction.

Also in Chapter 2 we gave a translation, (−)s, from ILL to IL. Again we can apply the Curry-
Howard correspondence to this translation to derive a translation from the linear term calculus to
the extended λ-calculus. We give the translation procedure in Figure 3.17.

Of course, this translation procedure has the expected following property.

Theorem 22. If `ILL Γ . M : A then `IL Γ . |M |s: As.

Proof. By structural induction.

104 Chapter 3. Term Assignment

|y|◦Γ
def
= discard ~x in derelict(y)

|λy: A.M |◦Γ
def
= λy: !A◦.(|M |◦Γ∪{y})

|MN |◦Γ
def
= copy ~x as ~x′, ~x′′

in ((|M [~x := ~x′]|◦Γ′)(promote ~x′′ for ~x in |N |◦Γ))

|〈M, N〉|◦Γ
def
= 〈|M |◦Γ, |N |◦Γ〉

|fst(M)|◦Γ
def
= fst(|M |◦Γ)

|snd(M)|◦Γ
def
= snd(|M |◦Γ)

|∇A(M)|◦Γ
def
= falseA(; |M |◦Γ)

|inl(M)|◦Γ
def
= inl(promote ~x for ~x′ in (|M [~x := ~x′]|◦Γ))

|inr(M)|◦Γ
def
= inr(promote ~x for ~x′ in (|M [~x := ~x′]|◦Γ))∣∣∣∣

case M of inl(y) → N ‖
inr(z) → P

∣∣∣∣
◦

Γ

def
= copy ~x as ~x′, ~x′′

in case |(M [~x := ~x′])|◦Γ′ of

inl(y) → |(N [~x := ~x′′])|◦Γ′′∪{y}

inr(z) → |(P [~x := ~x′′])|◦Γ′′∪{z}

where Γ = ~x.

Figure 3.16: Translating λ-Terms into Linear Terms

|x|s
def
= x

|λx: A.M |s
def
= λx: As.|M |s

|MN |s
def
= |M |s|N |s

|M⊗N |s
def
= 〈|M |s, |N |s〉

|let M be x⊗y in N |s
def
= |N |s[x := fst(|M |s), y := snd(|N |s)]

|〈M, N〉|s
def
= 〈|M |s, |N |s〉

|fst(M)|s
def
= fst(|M |s)

|snd(M)|s
def
= snd(|M |s)

|inl(M)|s
def
= inl(|M |s)

|inr(M)|s
def
= inr(|M |s)∣∣∣∣

case M of inl(y) → N ‖
inr(z) → P

∣∣∣∣
s def

= case |M |s of inl(y) → |N |s ‖
inr(z) → |P |s

|falseA(~N ; M)|s
def
= ∇A(|M |s)

|discard M in N |s
def
= |N |s

|copy M as x, y in N |s
def
= |N |s[x, y := |M |s]

|promote ~M for ~x in N |s
def
= |N |s[~x := ~|M |s]

Figure 3.17: Translating Linear Terms into λ-Terms

Chapter 4

Categorical Analysis

1 Linear Equational Logic

Traditional (categorical) treatments of many-sorted equational logics [60, 22] assume that the
rules for term formation automatically contain the structural rules of Weakening, Contraction and
Exchange. This leads to the result that a categorical model for a many-sorted equational logic is at
least a category with finite products. Here we are considering linear logic, where we do not have
Weakening and Contraction, so we need to linearize the equational logic. We shall proceed in detail
through the standard definitions, although, of course, in the linear set-up.

1.1 Signatures, Theories and Judgements

A signature, Sg, for a linear equational logic is specified by the following.

• A collection of types : σ, τ , . . .

• A collection of function symbols : f , g, . . .

• A sorting for each function symbol, which is a non empty list of types. We shall denote the
sorting of f as f : σ1, . . . , σn → τ . If n = 0 then we say that f is a constant of type τ .

Suppose we are given a signature Sg for a linear equational logic, we can then define an abstract
syntax signature, Σ, by two sets

1. Ar ={term}

2. Con = {f ∈ Sg | if f : σ1, . . . , σn → τ then f : term
n → term} ∪ {v1, . . .}1.

We say that the raw terms of a linear equational logic generated by the signature Sg are exactly
the closed expressions of the abstract syntax generated by Σ which have arity term.

A context is a finite list of pairs of (object level) variables and types and is denoted

Γ = [x1: σ1, . . . , xn: σn].

It is assumed that the xi are distinct. Given two disjoint contexts Γ and ∆ we denote their con-
catenation by Γ, ∆ and given a context Γ and a pair y: τ , their concatenation by Γ, y: τ .

A term in context consists of a raw term M and a context Γ containing all the variables occurring
in M . We denote it using a judgement of the form

Γ . M : σ.

These judgements are generated by the rules

Identity
x: σ . x: σ

,

and
Γ1 . M1: σ1 . . . Γn . Mn: σn where f : σ1, . . . , σn → τ is in Sg

Sort
Γ1, . . . , Γn . f(M1, . . . , Mn): τ

.

We can show that there are two further admissible rules.

1The vi are object level variables.

105

106 Chapter 4. Categorical Analysis

Lemma 12.

1. If ∆ . M : σ and Γ, x: σ . N : τ then Γ, ∆ . N [x := M]: τ .

2. If Γ, x: σ, y: τ . M : υ then Γ, y: τ, x: σ . M : υ.

Proof. Both by structural induction.

Writing these admissible rules out in full amounts to the rules

∆ . M : σ Γ, x: σ . N : τ
Substitution

Γ, ∆ . N [x := M]: τ
,

and
Γ, x: σ, y: τ . M : υ

Exchange
Γ, y: τ, x: σ . M : υ

.

An algebraic theory, Th, is a pair (Sg, Ax), where Sg is a signature and Ax is a collection of equations
in context. An equation in context is of the form

Γ . M = N : σ,

where Γ . M : σ and Γ . N : σ are (well formed) terms in context.
The equations in Ax are often referred to as the axioms of the theory Th. The theorems of Th

consists of the least collection of equations in context which contain the axioms of Th and are closed
under the rules

Γ . M : σ
Reflexive

Γ . M = M : σ

Γ . M = N : σ
Symmetry

Γ . N = M : σ

Γ . M = N : σ Γ . N = P : σ
Transitive

Γ . M = P : σ

∆ . M = N : σ Γ, x: σ . P = Q: τ
Substitution.

Γ, ∆ . P [x := M] = Q[x := N]: τ

2 Categorical Semantics for Linear Equational Logic

For completeness let us first define a symmetric monoidal category.

Definition 22. A symmetric monoidal category (SMC), (C, •, 1, α, λ, ρ, γ), is a category C equipped
with a bifunctor •: C × C → C with a neutral element 1 and natural isomorphisms α, λ, ρ and γ:

1. αA,B,C : A • (B • C)
∼
−→ (A • B) • C

2. λA: 1 • A
∼
−→ A

3. ρA: A • 1
∼
−→ A

4. γA,B: A • B
∼
−→ B • A,

which make the following ‘coherence’ diagrams commute.

A • (B • (C • D))
αA,B,C•D- (A • B) • (C • D)

αA•B,C,C- ((A • B) • C) • D

A • ((B • C) • D)

idA • αB,C,D

?

αA,B•C,D

- (A • (B • C)) • D

6

αA,B,C • idD

§2. Categorical Semantics for Linear Equational Logic 107

(A • B) • C
αA,B,C- A • (B • C)

γA,B•C- (B • C) • A

(B • A) • C

γA,B • idC

?

αB,A,C

- B • (A • C)
idB • γA,C

- B • (C • A)

αB,C,A

?

A • (1 • B)
αA,1,B- (A • 1) • B

A • B

idA • λB

?
========== A • B

?

ρA • idB

A • B
γA,B- B • A

@@

A • B
?

γB,A

A • 1
γA,1- 1 • A

A

ρA

?
========= A

?

λA

The following equality is also required to hold:

λ1 = ρ1: 1 • 1 → 1

Definition 23. A symmetric monoidal closed category (SMCC), (C, •,−◦, 1, α, λ, ρ, γ), is a SMC
such that for all objects A in C, the functor −⊗A has a specified right adjoint A−◦−.

Let C be a SMC (C, •, 1, α, λ, ρ, γ). A structure, M, in C for a given signature Sg is specified by
giving an object [[σ]] in C for each type σ, and a morphism [[f]]: [[σ1]] • . . . • [[σn]] → [[τ]] in C for each
function symbol f : σ1, . . . , σn → τ . In the case where n = 0 then the structure assigns a morphism
[[c]]: 1 → [[τ]] to a constant c: τ .

Given a context Γ = [x1: σ1, . . . , xn: σn] we define [[Γ]] to be the product [[σ1]] • . . . • [[σn]]. We
represent the empty context with the neutral element 1. We need to define the bracketing convention.
It shall be assumed that the tensor product is left associative, i.e. A1 • A2 • . . . • An will be taken
to mean (. . . (A1 • A2) • . . .) • An. We find it useful to define two ‘book-keeping’ functions,

Split(Γ, ∆): [[Γ, ∆]] → [[Γ]] • [[∆]]

Split(Γ, ∆)
def
=

λ−1
∆ If Γ empty

ρ−1
Γ If ∆ empty

idΓ•A If ∆ = A
Split(Γ, ∆′) • idA; α−1

Γ,∆′,A If ∆ = ∆′, A

Join(Γ, ∆): [[Γ, ∆]] → [[Γ]] • [[∆]]

Join(Γ, ∆)
def
=

λ∆ If Γ empty
ρΓ If ∆ empty
idΓ•A If ∆ = A
αΓ,∆′,A; Join(Γ, ∆′) • idA If ∆ = ∆′, A

We shall also refer to indexed variants of these; for example

Splitn(Γ1, . . . , Γn): [[Γ1, . . . , Γn]] → [[Γ1]] • . . . • [[Γn]],

108 Chapter 4. Categorical Analysis

which is defined in the obvious way.
The semantics of a term in context is then specified by a structural induction on the term.

[[x: σ . x: σ]]
def
= idσ

[[Γ1, . . . , Γn . f(M1, . . . , Mn): τ]]
def
= Splitn(Γ1, . . . , Γn); [[Γ1 . M1: σ1]] • . . . • [[Γn . Mn: σn]]; [[f]]

We have seen earlier that we can consider two further admissible rules for forming terms in context.
Let us consider the categorical import of these rules; firstly the Exchange rule.

Lemma 13. Let Γ, x: σ, y: τ . M : υ be a valid term in context, then

[[Γ, y: τ, x: σ . M : υ]] = α−1
Γ,τ,σ; idΓ • γτ,σ; αΓ,σ,τ ; [[Γ, x: σ, y: τ . M : υ]].

This essentially means that the Exchange rule is handled implicitly by the symmetry of the model
(i.e. the γ natural isomorphism). Now let us consider the Substitution rule.

Lemma 14. Let x1: σ1, . . . , xn: σn . M : τ , Γ1 . M1: σ1, . . . , Γn . Mn: σn be valid terms in context
then

[[Γ1, . . . , Γn . M [x1 := N1, . . . , xn := Nn]: τ]] =

Splitn(Γ1, . . . , Γn); [[Γ1 . N1: σ1]] • . . . • [[Γn . Nn: σn]]; [[x1: σ1, . . . , xn: σn . M : τ]].

Proof. By induction on the derivation.

The above lemma represents an important feature of categorical logic and one which will be central
to this chapter and as such deserves to be repeated: substitution in the term calculus corresponds
to composition in the category.

Let M be a structure for a signature Sg in a SMC C. Given an equation in context for the
signature

Γ . M = N : σ,

we say that the structure satisfies the equation if the morphisms it assigns to Γ . M : σ and Γ . N : σ
are equal. Then given an algebraic theory Th = (Sg,Ax), if a structure M satisfies all the equations
in Ax it is called a model.

Theorem 23. Let C be a SMC, Th an algebraic theory and M a model of Th in C. Then M
satisfies any equation in context which is a theorem of Th.

Proof. Essentially we are trying to show that if Γ . M = N : σ is a theorem then [[Γ . M : σ]] =
[[Γ . N : σ]]. Since M is a model we know that it satisfies all the axioms of Th. Thus we need to
show that it satisfies all the equations given in §1.1. It is trivial to see that it satisfies Reflexive,
Symmetric and Transitive. It satisfies Substitution by induction and from Lemma 14.

3 Analysing the Linear Term Calculus

In the previous section we have seen that to model an equational logic with just the structural rules
of Identity, Exchange and Substitution, we need a SMC. We take this as a basis and consider the
linear term calculus from Chapter 3. In that chapter we identified a series of β-reduction rules. Here
we shall take those as equalities to form equations in contexts.

After giving the signature for the linear term calculus we shall consider each rule in turn to
discover what extra structure is needed on top of a SMC to model the calculus. We shall also make
some simple assumptions which will uncover some η-like rules as well as some rules which follow
from considerations of naturality.

§3. Analysing the Linear Term Calculus 109

3.1 Preliminaries

Definition 24. A linear term calculus signature (LTC-signature), L, is given by

• a collection of types . We have a collection of ground types which contains the distinguished
ground types I, t and f . The collection of types is given by the following grammar

A
def
= γ | A⊗A | A−◦A | A&A | A ⊕ A | !A

where γ represents any ground type,

• a collection of function symbols , containing the distinguished symbols App, LamA, Tensor,
SplitA1,A2 , Unit, Let, With, Fst, Snd, Inl, Inr, Case, True, FalseA, CopyA, DiscardA,
Derelict and PromoteA1,...,An

, and

• a sorting for each function symbol.

Given such a LTC-signature, we can define an abstract syntax signature Σ = (GAr,Con). The
collection of ground arities is just the set {term}. The collection of constants Con consists of
the basic function symbols, which are given the arity term

n → term whenever they have the
sorting A1, . . . , An → An+1 in Sg, a countably infinite set of object level variables with arity term,
together with the distinguished function symbols. To these distinguished function symbols we assign
the following arities:

• App: term→ term→ term

• LamA: (term→ term) → term

• Tensor: term→ term→ term

• Split: term→ (term
2 → term)→ term

• Unit: term

• Let: term→ term→ term

• With: term→ term→ term

• Fst,Snd: term→ term

• Inl,Inr: term→ term

• Case: term→ (term→ term) → (term→ term) → term

• True: term
n → term

• False:term→(term
n →term)

• Copy: term→ (term
2 → term)→ term

• Discard: term→ term→ term

• Derelict: term→ term

• Promote: term
n →(term

n →term)→ term

We can now give the rules for forming (object level) terms in context. These judgements are the
same as for the simple linear equational logic but from the enriched signature L given in Definition 24.
These judgements are as follows.

110 Chapter 4. Categorical Analysis

Identity
x: A . x: A

Γ1 . M1: A1 . . . Γn . Mn: An where f : A1, . . . , An → B is in Sg
Sort

Γ1, . . . , Γn . f(M1, . . . , Mn): B

Γ, x: A . M : B
(−◦I)

Γ . LamA((x)M): A−◦B

Γ . M : A−◦B ∆ . N : A
(−◦E)

Γ, ∆ . App(M, N): B

(II)
.Unit: I

Γ . M : A ∆ . N : I
(IE)

Γ, ∆ . Let(M, N): A

Γ . M : A ∆ . N : B
(⊗I)

Γ, ∆ . Tensor(M, N): A⊗B

∆ . M : A⊗B Γ, x: A, y: B . N : C
(⊗E)

Γ, ∆ . Split(M, (x, y)N): C

Γ . M : A ∆ . N : B
(&I)

Γ, ∆ . With(M, N): A&B

Γ . M : A&B
(&E−1)

Γ . Fst(M): A

Γ . M : A&B
(&E−2)

Γ . Snd(M): B

Γ1 . M1: A1 · · · Γn . Mn: An
(tI)

Γ1, . . . , Γn . True(~M): t

Γ1 . M1: A1 · · · Γn . Mn: An ∆ . N : f
(fE)

Γ1, . . . , Γn, ∆ . FalseB(~M, N): B

Γ . M : A
(⊕I−1)

Γ . Inl(M): A ⊕ B

Γ . M : B
(⊕I−2)

Γ . Inr(M): A ⊕ B

Γ . M : A ⊕ B ∆, x: A . N : C ∆, y: B . P : C
(⊕E)

Γ, ∆ . Case(M, (x)N, (y)P): C

∆1 . M1: !A1 · · · ∆n . Mn: !An x1: !A1, . . . , xn: !An . N : B
Promotion

∆1, . . . , ∆n . Promote(M1, . . . , Mn, (x1, . . . , xn)N): !B

Γ . M : !A ∆ . N : B
Weakening

Γ, ∆ . Discard(M, N): B

∆ . M : !A Γ, x: !A, y: !A . N : B
Contraction

Γ, ∆ . Copy(M, (x, y)N): B

Γ . M : !A
Dereliction

Γ . Derelict(M): A

However to keep consistency with the rest of this thesis we shall not use this Martin-Löf-style
notation for the linear term calculus. Rather we shall use the same syntax as in Chapter 3. Of
course, the two notations are equivalent and before proceeding we shall list this equivalence.

App(M, N) ⇐⇒ MN

LamA((x)M) ⇐⇒ λx: A.M

Tensor(M, N) ⇐⇒ M⊗N

Split(M, (x, y)N) ⇐⇒ let M be x⊗y in N

Unit ⇐⇒ ∗

Let(M, N) ⇐⇒ let M be ∗ in N

§3. Analysing the Linear Term Calculus 111

With(M, N) ⇐⇒ 〈M, N〉

Fst(M) ⇐⇒ fst(M)

Snd(M) ⇐⇒ snd(N)

Inl(M) ⇐⇒ inl(M)

Inr(M) ⇐⇒ inr(M)

Case(M, (x)N, (y)P) ⇐⇒ case M of inl(x) → N ‖ inr(y) → P

True(~M) ⇐⇒ true(~M)

FalseA(~M, N) ⇐⇒ falseA(~M ; N)

Copy(M, (x, y)N) ⇐⇒ copy M as x, y in N

Discard(M, N) ⇐⇒ discard M in N

Promote(~M, (~x)N) ⇐⇒ promote ~M for ~x in N

Using this more familiar syntax the judgements for forming valid terms in context are repeated in
Figure 4.1.

It is easy to check that within this enriched theory the rules for Substitution and Exchange are
still admissible.

A linear term calculus theory (LTC-theory), T , is a pair (L,A) where L is a LTC-signature and
A is a collection of equations in context. An equation in context, as before, takes the form

Γ . M = N : A,

where Γ . M : A and Γ . N : A are valid terms in context as generated by the rules in Figure 4.1. The
equations in A are known as axioms of the theory. To start we shall take the β-rules from Chapter 3
and consider them as equations in context, although later we shall include some extra equations.
The theorems of T are then the least collection of equations in context which contain the axioms A
and are closed under the β-equations and those from §1.1. These rules are given in Figure 4.2.2

3.2 Analysis

Starting with a SMC (C, •, 1, α, λ, ρ, γ), we shall take each connective in turn and consider its
categorical import. We shall see that the category theory employed will also suggest some new
equations in context.

Linear Implication

The introduction rule for linear implication is of the form

Γ, x: A . M : B
(−◦I).

Γ . λx: A.M : A−◦B

We know that a term in context is represented as a morphism. A logical rule is then modelled by
an operation on morphisms, or, in other words, on Hom-sets. The introduction rule above suggests
an operation on the Hom-sets of the form

Φ: C(Γ • A, B) → C(Γ, A−◦B).

We know that in terms of the syntax we can substitute freely for any of the free variables of λx: A.M ,
i.e. those contained in Γ. Since substitution in the term calculus is modelled by composition in the

2As is standard, we shall assume the obvious congruence equations in context; for example

Γ, x:A . M = N : B
−◦Cong

Γ . λx: A.M = λx:A.N :A−◦B

112 Chapter 4. Categorical Analysis

Identity
x: A . x: A

Γ1 . M1: A1 . . . Γn . Mn: An where f : A1, . . . , An → B is in Sg
Sort

Γ1, . . . , Γn . f(M1, . . . , Mn): B

Γ, x: A . M : B
(−◦I)

Γ . λx: A.M : A−◦B

Γ . M : A−◦B ∆ . N : A
(−◦E)

Γ, ∆ . MN : B

(II)
.∗: I

Γ . M : A ∆ . N : I
(IE)

Γ, ∆ . let N be ∗ in N : A

Γ . M : A ∆ . N : B
(⊗I)

Γ, ∆ . M⊗N : A⊗B

∆ . M : A⊗B Γ, x: A, y: B . N : C
(⊗E)

Γ, ∆ . let M be x⊗y in N : C

Γ . M : A ∆ . N : B
(&I)

Γ, ∆ . 〈M, N〉: A&B

Γ . M : A&B
(&E−1)

Γ . fst(M): A

Γ . M : A&B
(&E−2)

Γ . snd(M): B

Γ1 . M1: A1 · · · Γn . Mn: A1
(tI)

Γ1, . . . , Γn . true(~M): t

Γ1 . M1: A1 · · · Γn . Mn: An ∆ . N : f
(fE)

Γ1, . . . , Γn, ∆ . falseB(~M ; N): B

Γ . M : A
(⊕I−1)

Γ . inl(M): A ⊕ B

Γ . M : B
(⊕I−2)

Γ . inr(M): A ⊕ B

∆ . M : A ⊕ B Γ, x: A . N : C Γ, y: B . P : C
(⊕E)

Γ, ∆ . case M of inl(x) → N ‖ inr(y) → P : C

Γ1 . M1: !A1 · · · Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B
Promotion

Γ1, . . . , Γn . promote M1, . . . , Mn for x1, . . . , xn in N : !B

Γ . M : !A ∆ . N : B
Weakening

Γ, ∆ . discard M in N : B

∆ . M : !A Γ, x: !A, y: !A . N : B
Contraction

Γ, ∆ . copy M as x, y in N : B

Γ . M : !A
Dereliction

Γ . derelict(M): A

Figure 4.1: Term in Context Judgements for the Linear Term Calculus.

§3. Analysing the Linear Term Calculus 113

Γ . M : σ
Reflexive

Γ . M = M : σ

Γ . M = N : σ
Symmetry

Γ . N = M : σ

Γ . M = N : σ Γ . N = P : σ
Transitive

Γ . M = P : α

∆ . M = N : σ Γ, x: σ . P = Q: τ
Substitution

Γ, ∆ . P [x := M] = Q[x := N]: τ

Γ, x: A . M : B ∆ . N : A
−◦Eq

Γ, ∆ . (λx: A.M)N = M [x := N]: B

Γ . M : A . ∗: I
IEq

Γ . let ∗ be ∗ in M = M : A

Γ . M : A ∆ . N : B Θ, x: A, y: B . P : C
⊗Eq

Γ, ∆, Θ . let M⊗N be x⊗y in P = P [x := M, y := N]: C

Γ . M : A Γ . N : B
&Eq−1

Γ . fst(〈M, N〉) = M : A

Γ . M : A Γ . N : B
&Eq−2

Γ . snd(〈M, N〉) = N : B

∆ . M : A Γ, x: A . N : C Γ, y: B . P : C
⊕Eq−1

Γ, ∆ . case inl(M) of inl(x) → N ‖ inr(y) → P = N [x := M]: C

∆ . M : A Γ, x: A . N : C Γ, y: B . P : C
⊕Eq−2

Γ, ∆ . case inr(M) of inl(x) → N ‖ inr(y) → P = P [y := M]: C

Γ1 . M1: !A1 . . . Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B
DerEq

Γ1, . . . , Γn . derelict(promote M1, . . . , Mn for x1, . . . , xn in N)
= N [x1 := M1, . . . , xn := Mn]: B

Γ1 . M1: !A1

Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B ∆ . P : C
DiscEq

Γ1, . . . , Γn, ∆ . discard (promote M1, . . . , Mn for x1, . . . , xn in N) in P
= discard M1, . . . , Mn in P : C

Γ1 . M1: !A1

Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B ∆, x: !B, y: !B . P : C
CopyEq

Γ1, . . . , Γn, ∆ . copy (promote M1, . . . , Mn for x1, . . . , xn in N) as x, y in P
= copy M1, . . . , Mn as (x′

1, . . . , x
′
n), (x′′

1 , . . . , x′′
n) in

P [x := promote x′
1, . . . , x

′
n for x1, . . . , xn in N,

y := promote x′′
1 , . . . , x′′

n for x1, . . . , xn in N]: C

Figure 4.2: Equations in Context for linear term calculus

114 Chapter 4. Categorical Analysis

category (Lemma 14), this means that Φ should be a natural transformation which is natural in Γ.
Taking morphisms m: Γ • A → B and c: Γ′ → Γ, then naturality gives the equation

c; ΦΓ(m) = ΦΓ′((c • idA); m).

Let us write Cur instead of Φ. Then we make the definition

[[Γ . λx: A.M : A−◦B]]
def
= Cur([[Γ, x: A . M : B]]). (4.1)

The elimination rule for linear implication is of the form

Γ . M : A−◦B ∆ . N : A
(−◦E)

Γ, ∆ . MN : B
,

which suggests a natural transformation with components

ΨΓ,∆: C(Γ, A−◦B) × C(∆, A) → C((Γ, ∆), B).

Taking morphisms e: Γ → A−◦B, f : ∆ → A, c: Γ′ → Γ, d: ∆′ → ∆, applying naturality gives the
equation

Split(Γ′, ∆′); c • d; Join(Γ, ∆); ΨΓ,∆(e, f) = ΨΓ′,∆′(c; e, d; f).

In particular taking e to be idA−◦B, f to be idA, c to be a morphism m: Γ → A−◦B and d to be a
morphism n: ∆ → A, then by naturality

Split(Γ, ∆); m • n; ΨA−◦B,A(idA−◦B , idA) = ΨΓ,∆(m, n).

Defining the morphism App
def
= ΨA−◦B,A(idA−◦B, idA) then we can make the definition

[[Γ, ∆ . MN : B]]
def
= Split(Γ, ∆); [[Γ . M : A−◦B]] • [[∆ . N : B]]; App. (4.2)

We have the following equation in context for the linear implication

Γ, x: A . M : B ∆ . N : A
−◦Eq

Γ, ∆ . (λx: A.M)N = M [x := N]: B
.

Taking morphisms m: Γ • A → B and n: ∆ → A, this rule amounts to the condition

Split(Γ, ∆); Cur(m) • n; App = Split(Γ, ∆); idΓ • n; m, (4.3)

or diagrammatically

Γ • ∆
Cur(m) • id∆- A−◦B • A

idA−◦B • n- A−◦B • A

Γ • A

idΓ • n

?

m
- B.

?

App

In particular, taking ∆ ≡ A and n = idA then

§3. Analysing the Linear Term Calculus 115

Γ • A
Cur(m) • idA- A−◦B • A

@
@

@
@

@
m

R
B.
?

App

We shall make the simplifying assumption that this factorization is unique, namely that a given
morphism m: Γ • A → B can be factored uniquely as

Cur(m) • idΓ; App = m. (4.4)

Let us consider the case where m = App. Then Cur(App) • id; App = App and from the uniqueness
assumption we can conclude that

Cur(App) = idA−◦B. (4.5)

We can define two natural transformations

(−)∗: C(Γ • A, B) → C(Γ, A−◦B)
f 7→ Cur(f),

and
(−)∗: C(Γ, A−◦B) → C(Γ • A, B)
g 7→ g • idA; App.

Let us consider their composition. First take a morphism f : Γ • A → B, then

((f)∗)∗ = (Cur(f))∗

= Cur(f) • idA; App

= f Rule 4.4.

Alternatively take a morphism g: Γ → A−◦B, then

((g)∗)
∗ = (g • idA; App)∗

= Cur(g • idA; App)
= g; Cur(App) Naturality of Cur

= g Rule 4.5.

Considering in detail this equality and taking a morphism n: Γ → A−◦B gives

n = Cur(n • idA; App)
[[Γ . N : A−◦B]] = Cur([[Γ . N : A−◦B]] • [[x: A . x: A]]; App)
[[Γ . N : A−◦B]] = Cur([[Γ, x: A . Nx: B]]) Rule 4.2
[[Γ . N : A−◦B]] = [[Γ . λx: A.Nx: A−◦B]].

This is known as a η-rule in λ-calculus nomenclature. It provides the new equation in context

Γ . N : A−◦B
−◦η.

Γ . λx: A.Nx = N : A−◦B

Essentially we have shown that there exists a natural isomorphism between the following maps

Γ • A → B
=========
Γ → A−◦B,

thus −◦ provides us with a closed structure on the category corresponding to the bifunctor •. Hence
we extend our categorical model to a symmetric monoidal closed category, (C, •, 1,−◦, α, λ, ρ, γ).

116 Chapter 4. Categorical Analysis

Tensor

The introduction rule for Tensor is of the form

Γ . M : A ∆ . N : B
(⊗I)

Γ, ∆ . M⊗N : A⊗B
.

To interpret this rule we need a natural transformation with components

ΦΓ,∆: C(Γ, A) × C(∆, B) → C((Γ, ∆), A⊗B).

Given morphisms e: Γ → A, f : ∆ → B, c: Γ′ → Γ and d: ∆′ → ∆, naturality gives the equation

Split(Γ′, ∆′); c • d; Join(Γ, ∆); ΦΓ,∆(e, f) = ΦΓ′,∆′((c; e), (d; f)).

In particular if we take e to be idA, f to be idB, c to be a morphism m: Γ → A and d to be a
morphism n: ∆ → B then by naturality we have

Split(Γ, ∆); m • n; ΦA,B(idA, idB) = ΦΓ,∆(m, n).

If we define the morphism ⊗
def
= ΦA,B(idA, idB) then we can make the definition

[[Γ, ∆ . M⊗N : A⊗B]]
def
= Split(Γ, ∆); [[Γ . M : A]] • [[∆ . N : B]];⊗. (4.6)

The elimination rule for the tensor is of the form

∆ . M : A⊗B Γ, x: A, y: B . N : C
(⊗E).

Γ, ∆ . let M be x⊗y in N : C

This suggests a natural transformation with components

Ψ∆,Γ: C(∆, A⊗B) × C(Γ • A • B, C) → C((Γ, ∆), C).

Taking morphisms e: ∆ → A⊗B, f : Γ • A • B → C, c: ∆′ → ∆ and d: Γ′ → Γ, applying naturality
gives the equation

Split(Γ′, ∆′); d • c; Join(Γ, ∆); Ψ∆,Γ(e, f) = Ψ∆′,Γ′((c; e), ((d • idA • idB); f)).

In particular if we take e to be idA⊗B, f to be some morphism n: Γ • A • B → C, c to be some
morphism m: ∆ → A⊗B and d to be idΓ, then by naturality we have

Split(Γ, ∆); idΓ • m; ΨA⊗B,Γ(idA⊗B, n) = Ψ∆,Γ(m, n).

Thus Ψ∆,Γ(m, n) can be expressed as the composition Split(Γ, ∆); idΓ•m; ΥΓ(n) where Υ is a natural
transformation with components

ΥΓ: C(Γ • A • B, C) → C(Γ • A⊗B, C).

We shall write (−)∗ for the effect of this natural transformation and so we can make the definition

[[Γ, ∆ . let M be x⊗y in N : C]]
def
= Split(Γ, ∆); idΓ • [[∆ . M : A⊗B]]; ([[Γ, x: A, y: B . N : C]])∗.(4.7)

We shall make the simplifying assumption that (−)∗: C(Γ • A • B, C) → C(Γ • A⊗B, C) is natural
in C. Thus for morphisms m: Γ • A • B → C and n: ∆ • C → C′, we have the equality

§3. Analysing the Linear Term Calculus 117

Split(∆, (Γ, A⊗B)); id∆ • (m)∗; n = (Split(∆, (Γ, A, B)); id∆ • m; n)∗. (4.8)

At the level of terms, this produces the equation in context

∆ . M : A⊗B Γ, x: A, y: B . N : C Θ, z: C . P : D
⊗nat.

Θ, Γ, ∆ . P [z := let M be x⊗y in N] = let M be x⊗y in P [z := N]: C

We have the following equation in context for the tensor

Γ . M : A ∆ . N : B Θ, x: A, y: B . P : C
⊗Eq.

Θ, Γ, ∆ . let M⊗N be x⊗y in P = P [x := M, y := N]: C

If we take morphisms m: Γ → A, n: ∆ → B and p: Θ •A •B → C, this rule amounts to the equation

Split(Θ, (Γ, ∆)); idΘ • Split(Γ, ∆); idΘ • (m • n); idΘ • ⊗; p∗ = Split3(Θ, Γ, ∆); idΘ • m • n; p,(4.9)

or diagrammatically

Θ • (Γ • ∆)
idΘ • (m • n)- Θ • (A • B)

idΘ • ⊗- Θ • A⊗B

(Θ • Γ) • ∆

α

?

(idΘ • m) • n
- (Θ • A) • B

?

α

p
- C.

?

p∗

We shall make the simplifying assumption that the factorization suggested above is unique, namely
that a morphism p: Θ • A • B → C can be factored uniquely as

p = α−1
Θ,A,B; idΘ • ⊗; p∗. (4.10)

In particular, let us consider the case when p = ⊗ and Θ is empty. We have that ⊗; (⊗)∗ = ⊗, and
from our uniqueness assumption we can conclude that

(⊗)∗ = idA⊗B. (4.11)

Using the morphism ⊗ we can define a natural transformation (−)∗: C(Γ•A⊗B, C) → C(Γ•A•B, C)
by g 7→ α−1

Γ,A,B; idΓ • ⊗; g. Let us consider whether this is an inverse to the (−)∗ transformation.
If we take a morphism g: Γ • A⊗B → C then

((g)∗)
∗ = (α−1

Γ,A,B; idΓ • ⊗; g)∗

= idΓ • (⊗)∗; g Rule 4.8
= g Rule 4.11.

If we take a morphism f : Γ • A • B → C then

((f)∗)∗ = α−1
Γ,A,B; idΓ • ⊗; f∗

= f Rule 4.10.

Thus we have a natural isomorphism between the maps

Γ • A • B → C
============
Γ • A⊗B → C.

118 Chapter 4. Categorical Analysis

Hence we shall assume that • coincides with ⊗. We know from above that given a morphism
n: Γ •A⊗B → C, the equality (α−1

Γ,A,B; idΓ •⊗; n)∗ = n holds. If we precompose with the composite
Split(Γ, ∆); idΓ • m given a morphism m: ∆ → A⊗B, then we have

Split(Γ, ∆); idΓ • m; (α−1
Γ,A,B; idΓ • ⊗; n)∗ = Split(Γ, ∆); idΓ • m; n

Split(Γ, ∆); idΓ • m; (α−1
Γ,A,B; idΓ • [[x: A, y: B . x⊗y: A⊗B]]; [[Γ, z: A⊗B . N : C]])∗ = Split(Γ, ∆); idΓ • m; n

Split(Γ, ∆); idΓ • m; ([[Γ, x: A, y: B . N [z := x⊗y]: C]])∗ = Split(Γ, ∆); idΓ • m; n

Split(Γ, ∆); id • [[∆ . M : A⊗B]]; ([[Γ, x: A, y: B . N [z := x⊗y]: C]])∗ = [[Γ, ∆ . N [z := M]: C]]

[[Γ, ∆ . let M be x⊗y in N [z := x⊗y]: C]] = [[Γ, ∆ . N [z := M]: C]].

This represents another η-rule and gives the equation in context

∆ . M : A⊗B Γ, z: A⊗B . N : C
⊗η.

Γ, ∆ . let M be x⊗y in N [z := x⊗y] = N [z := M]: C

Unit

The introduction rule for the unit is of the form

(II).
.∗: I

We interpret this rule with a unique map 〈〉: 1 → I. The elimination rule for the unit is of the form

Γ . N : A ∆ . M : I
(IE).

Γ, ∆ . let M be ∗ in N : A

To interpret this rule we need a natural transformation with components

ΦΓ,∆: C(Γ, A) × C(∆, I) → C((Γ, ∆), A).

Given morphisms e: Γ → A, f : ∆ → I, c: Γ′ → Γ and d: ∆′ → ∆, naturality gives the equation

Split(Γ′, ∆′); c • d; Join(Γ, ∆); ΦΓ,∆(e, f) = ΦΓ′,∆′((c; e), (d; f)).

In particular if we take e to be idA, f to be idI , c to be a morphism m: Γ → A and d to be a
morphism n: ∆ → I, then by naturality we have

Split(Γ, ∆); m • n; ΦA,I(idA, idI) = ΦΓ,∆(m, n).

If we define φ
def
= ΦA,I(idA, idI), then we can make the definition

[[Γ, ∆ . let M be ∗ in N : A]]
def
= Split(Γ, ∆); [[Γ . N : A]] • [[∆ . M : I]]; φ. (4.12)

We shall make the simplifying assumption that φ: A • I → A is natural in A. Taking a morphism
f : Γ • A → B this gives

α−1
Γ,A,I ; idΓ • φA; f = f • idI ; φB .

At the level of terms this gives the equation in context

Γ . N : A ∆ . M : I Θ, z: A . P : B
Inat.

Θ, Γ, ∆ . P [z := let M be ∗ in N] = let M be ∗ in P [z := N]: B

§3. Analysing the Linear Term Calculus 119

We have the following equation in context for the unit

.∗: I Γ . M : A
IEq.

Γ . let ∗ be ∗ in M = M : A

If we take morphisms 〈〉: 1 → I and m: Γ → A, this rule amounts to the condition

ρ−1
Γ ; m • 〈〉; φA = m. (4.13)

As with the case for the Tensor, we shall assume that this factorization is unique. Diagrammatically

Γ
ρ−1
Γ ; m • 〈〉- A • I

@
@

@
@

@
m

R
A.
?

φA

In particular, let us take the case when m = φA. We have that ρ−1; φ • 〈〉; φ = φ, and from our
uniqueness assumption we can conclude

ρ−1
A•I ; φA • 〈〉 = idA•I . (4.14)

We can formulate two natural transformations,

(−)∗: C(Γ • I, A) → C(Γ • 1, A)
f 7→ idΓ • 〈〉; f,

and
(−)∗: C(Γ • 1, A) → C(Γ • I, A)
g 7→ φΓ; ρ−1

Γ ; g.

Let us consider whether these are inverses to each other. First take a morphism f : Γ • I → A,then

((f)∗)∗ = (idΓ • 〈〉; f)∗
= φΓ; ρ−1; idΓ • 〈〉; f
= ρ−1

Γ•1; φΓ • id1; idΓ • 〈〉; f
= ρ−1

Γ•1; φΓ • 〈〉; f
= f Rule 4.14.

If we take a morphism g: Γ • 1 → A then

((g)∗)
∗ = (φ; ρ−1; g)∗

= idΓ • 〈〉; φ; ρ−1; g
= ρ; id;ρ

−1; g Rule 4.13
= g.

Thus we have a natural isomorphism between the maps

Γ • I → A
========
Γ • 1 → A.

Hence, as for Tensor, we can assume that I coincides with 1. We know from above that given a
morphism n: Γ•I → A, the equality φ; ρ−1; idΓ•〈〉; n = n holds. Precomposing with Split(Γ, ∆); idΓ•
m, given a morphism m: ∆ → I gives

Split(Γ, ∆); idΓ • m; φ; ρ−1; idΓ • 〈〉; n = Split(Γ, ∆); idΓ • m; n
[[Γ, ∆ . let M be ∗ in N [z := ∗]: A]] = [[Γ, ∆ . N [z := M]: A]].

120 Chapter 4. Categorical Analysis

This represents another so-called η-rule and gives the equation in context

∆ . M : I Γ, z: I . N : A
Iη.

Γ, ∆ . let M be ∗ in N [z := ∗] = N [z := M]: A

In summary we have seen that ⊗ coincides with • and I with 1 and, hence, from now on we shall
use the logical symbols for both the logic and the categorical model.

With

In contrast with the problems this connective caused in the proof theoretical study in Chapter 2, it
is unproblematic as far as finding a categorical model. The introduction rule for With is

Γ . M : A Γ . N : B
(&I).

Γ . 〈M, N〉: A&B

To interpret this rule we need a natural transformation with components

ΦΓ: C(Γ, A) × C(Γ, B) → C(Γ, A&B).

Given morphisms e: Γ → A, f : Γ → B and c: Γ′ → Γ, naturality gives the equation

c; ΦΓ(e, f) = ΦΓ′((c; e), (c; f)).

In particular if we take c to be 〈m, n〉: Γ → A × B (where m: Γ → A and n: Γ → B), e to be
fst: A × B → A and f to be snd: A × B → B then by naturality we have

〈m, n〉; Φ(fst, snd) = Φ(m, n).

If we define the morphism pair
def
= Φ(fst, snd) then we can make the definition

[[Γ . 〈M, N〉: A&B]]
def
= 〈[[Γ . M : A]], [[Γ . M : B]]〉; pair. (4.15)

The first elimination rule for the With is of the form

Γ . M : A&B
(&E−1).

Γ . fst(M): A

This suggests a natural transformation

Ψ: C(−, A&B) → C(−, A).

However, by the Yoneda lemma [53, Page 61] we know that there is the bijection

[Cop, Sets](C(−, A&B), C(−, A)) ∼= C(A&B, A).

By actually constructing this isomorphism we find that the components of Ψ are induced by post-
composition with a morphism π1: A&B → A. Thus we can make the definition

[[Γ . fst(M): A]]
def
= [[Γ . M : A&B]]; π1. (4.16)

The second elimination rule for With proceeds in a similar fashion and results in the definition
(where π2: A&B → B).

§3. Analysing the Linear Term Calculus 121

[[Γ . snd(M): B]]
def
= [[Γ . M : A&B]]; π2. (4.17)

We have the following equations in context for With.

Γ . M : A Γ . N : B
&Eq−1

Γ . fst(〈M, N〉) = M : A

Γ . M : A Γ . N : B
&Eq−2

Γ . snd(〈M, N〉) = N : B

If we take morphisms m: Γ → A and n: Γ → B, these rules amount to the equations

〈m, n〉; pair; π1 = m, (4.18)

and

〈m, n〉; pair; π2 = n, (4.19)

or diagrammatically

Γ
〈m, n〉- A × B

pair- A&B

@
@

@
@

@
m

R 	�
�

�
�

�

π1

A

and

Γ
〈m, n〉- A × B

pair- A&B

@
@

@
@

@
n

R 	�
�

�
�

�

π2

B.

We shall make the simplifying assumption that the factorizations suggested above are unique. By
taking the case where m = π1 and n = π2, this amounts to the equation

id
A&B

= 〈π1, π2〉; pair. (4.20)

We can hence form two operations.

(−)∗: C(Γ, A&B) → C(Γ, A × B)
f 7→ 〈f ; π1, f ; π2〉,

and
(−)∗: C(Γ, A × B) → C(Γ, A&B)
g 7→ g; pair.

If we take a morphism f : Γ → A&B then

((f)∗)∗ = 〈f ; π1, f ; π2〉; pair

= f ; 〈π1, π2〉; pair Naturality
= f Rule 4.20.

If we take morphisms g: Γ → A and h: Γ → B then

((〈m, n〉)∗)∗ = 〈(〈m, n〉; pair; π1), (〈m, n〉; pair; π2)〉
= 〈m, n〉 Rules 4.18 and 4.19 .

122 Chapter 4. Categorical Analysis

Hence we shall assume that × coincides with & and, again, we shall use the logical symbol for both
the logic and the categorical model. We can precompose the uniqueness equality (Rule 4.20) with
a morphism m: Γ → A&B to get

m; 〈π1, π2〉; pair = m
m; 〈[[x: A&B . fst(x): A]], [[x: A&B . snd(x): B]]〉; pair = m

[[Γ . M : A&B]]; [[x: A&B . 〈fst(x), snd(x)〉: A&B]] = [[Γ . M : A&B]]
[[Γ . 〈fst(M), snd(M)〉: A&B]] = [[Γ . M : A&B]].

This represents another η-rule and gives the equation in context

Γ . M : A&B
&η.

Γ . 〈fst(M), snd(M)〉 = M : A&B

The Additive Disjunction

The (first) introduction rule for the additive disjunction is of the form

Γ . M : A
⊕I−1.

Γ . inl(M): A ⊕ B

To interpret this rule we need a natural transformation

Φ: C(−, A) → C(−, A ⊕ B).

Again by the Yoneda lemma [53, Page 61] we know that there is the bijection

[Cop, Sets](C(−, A), C(−, A ⊕ B) ∼= C(A, A ⊕ B).

By actually constructing this isomorphism we find that the components of Φ are induced by post-
composition with a morphism iA⊕B: A → A ⊕ B. Thus we can make the definition

[[Γ . inl(M): A ⊕ B]]
def
= [[Γ . M : A]]; iA⊕B. (4.21)

The second introduction rule for the additive disjunction can be modelled in a similar way and we
arrive at the definition (where jA⊕B: B → A ⊕ B)

[[Γ . inr(M): A ⊕ B]]
def
= [[Γ . M : B]]; jA⊕B. (4.22)

The elimination rule is of the form

∆ . M : A ⊕ B Γ, x: A . N : C Γ, y: B . P : C
(⊕E).

Γ, ∆ . case M of inl(x) → N ‖ inr(y) → P : C

To interpret this rule we need a natural transformation with components

ΨΓ,∆: C(∆, A ⊕ B) × C(Γ⊗A, C) × C(Γ⊗B, C) → C((Γ, ∆), C).

Given morphisms e: ∆ → A ⊕ B, f : Γ⊗A → C, g: Γ⊗B → C, c: ∆′ → ∆ and d: Γ′ → Γ, naturality
gives the equation

Split(Γ′, ∆′); d⊗c; Join(Γ, ∆); ΨΓ,∆(e, f, g) = ΨΓ′,∆′((c; e), (d; f), (d; g)).

In particular if we take c to be a morphism m: ∆ → A⊗B, e to be idA⊕B, f to be some morphism
n: Γ⊗A → C, g to be some morphism p: Γ⊗B → C and d to be idΓ, then by naturality we have

§3. Analysing the Linear Term Calculus 123

Split(Γ, ∆); idΓ⊗m; Ψ(idA⊕B, n, p) = Ψ(m, n, p).

Thus Ψ(m, n, p) can be expressed as the composite Split(Γ, ∆); idΓ⊗m; Ω(n, p) where Ω is the natural
transformation with components

ΩΓ: C(Γ⊗A, C) × C(Γ⊗B, C) → C(Γ⊗(A ⊕ B), C).

We shall make the simplifying assumption that Ω is natural in C. Taking morphisms e: Γ⊗A → C,
f : Γ⊗B → C and g: ∆⊗C → D, this amounts to

Split(∆, (Γ, A⊗B)); id∆⊗Ω(e, f); g = Ω((Split(∆, (Γ, A)); id∆⊗e; g), (Split(∆, (Γ, B)); id∆⊗f ; g)).

In particular if we take e to be inl: Γ⊗A → (Γ⊗A) ⊕ (Γ⊗B), f to be inr: Γ⊗B → (Γ⊗A) ⊕ (Γ⊗B),
and g to be [m, n] where m: Γ⊗A → C and n: Γ⊗B → C, then naturality amounts to

ΩΓ(inl, inr); [m, n] = Ω(e, f).

Thus writing distΓ for the morphism ΩΓ(inl, inr), we can make the definition

[[Γ, ∆ . case M of inl(x) → N ‖ inr(y) → P : C]]
def
=

Split(Γ, ∆); idΓ⊗[[∆ . M : A ⊕ B]]; distΓ; [[[Γ, x: A . N : C]], [[Γ, y: B . P : C]]]. (4.23)

The naturality of the coproduct construction gives rise to the equation in context

∆ . M : A ⊕ B Γ, x: A . N : C Γ, y: B . P : C Θ, z: C . Q: D
⊕nat.

Θ, Γ, ∆ > Q[z := case M of inl(x) → N ‖ inr(y) → P]
= case M of inl(x) → (Q[z := N]) ‖ inr(y) → (Q[z := P]): D

We have the following two equations in context for the additive disjunction

∆ . M : A Γ, x: A . N : C Γ, y: B . P : C
⊕Eq−1,

Γ, ∆ . case inl(M) of inl(x) → N ‖ inr(y) → P = N [x := M]: C

and
∆ . M : A Γ, x: A . N : C Γ, y: B . P : C

⊕Eq−2.
Γ, ∆ . case inr(M) of inl(x) → N ‖ inr(y) → P = P [y := M]: C

Taking morphisms m: ∆ → A ⊕ B, n: Γ⊗A → C and p: Γ⊗B → C these amount to the equations

Split(Γ, ∆); idΓ⊗(m; i); dist; [n, p] = Split(Γ, ∆); idΓ⊗m; n,

and

Split(Γ, ∆); idΓ⊗(m; j); dist; [n, p] = Split(Γ, ∆); idΓ⊗m; p.

We shall make the simplifying assumption that the factorizations suggested above are unique and
thus given morphisms e: Γ → C and f : ∆ → C, the following equalities hold

i; [e, f] = e,

and

j; [e, f] = f,

124 Chapter 4. Categorical Analysis

or diagrammatically

Γ
i- Γ ⊕ ∆ �j

∆

@
@

@
@

@
e

R 	�
�

�
�

�

f

C.
?

[e, f]

Thus we shall model the additive disjunction with a coproduct and hence the morphisms i and j are
modelled by the injection morphisms inl and inr respectively.

Taking the uniqueness assumption from above, we derive the equality

idA⊕B = [inl, inr].

Precomposing this with a morphism m: Γ → A ⊕ B we get

m; [inl, inr] = m

m; [[[x: A . inl(x): A ⊕ B]], [[y: B . inr(y): A ⊕ B]]] = m

[[Γ . case M of inl(x) → inl(x) ‖ inr(y) → inr(y): A ⊕ B]] = [[Γ . M : A ⊕ B]].

This represents another η-rule and gives the equation in context

Γ . M : A ⊕ B
⊕η.

Γ . case M of inl(x) → inl(x) ‖ inr(y) → inr(y) = M : A ⊕ B

The Additive Units

The introduction rule for t is of the form

Γ1 . M1: A1 · · · Γn . Mn: An
(tI).

Γ1, . . . , Γn . true(~M): t

To interpret this rule we need a natural transformation with components

ΦΓ1,...,Γn
: C(Γ1, A1) × · · · × C(Γn, An) → C((Γ1, . . . , Γn), t).

Given morphisms ei: Γi → Ai and ci: Γ
′
i → Γi, then naturality gives the equality

Splitn(Γ′
1, . . . , Γ

′
n); c1⊗ · · · ⊗cn; Joinn(Γ1, . . . , Γn); Φ(e1, . . . , en)

= Φ((c1; e1), . . . , (cn; en)).

If we take ci to be morphisms mi: Γi → Ai and ei to be idAi
, then by naturality we have

Splitn(Γ1, . . . , Γn); m1⊗ · · · ⊗mn; Φ(idA1 , . . . , idAn
) = Φ(m1, . . . , mn).

We shall write > in place of Φ(idA1 , . . . , idAn
): A1⊗ · · ·⊗An → t. We have little else to guide us

and we shall make the simplifying assumption that t is a terminal object and thus > is the terminal
morphism.

[[Γ . true(~M): t]]
def
= >Γ. (4.24)

The elimination rule for f is as follows

§3. Analysing the Linear Term Calculus 125

Γ1 . M1: A1 · · · Γn . Mn: An ∆ . N : f
(fE).

Γ1, . . . , Γn, ∆ . falseB(~M ; N): B

To interpret this rule we need a natural transformation with components

ΦΓ1,...,Γn,∆: C(Γ1, A1) × · · · × C(Γn, An) × C(∆, f) → C((Γ1, · · · , Γn, ∆), B).

Given morphisms ei: Γi → Ai, ci: Γ
′
i → Γi, g: ∆ → f and d: ∆′ → ∆, naturality gives

Splitn+1(Γ
′
1, . . . , Γ

′
n, ∆′); c1⊗ · · · ⊗cn⊗d; Joinn+1(Γ1, . . . , Γn, ∆); ΦΓ1,...,Γn,∆(e1, . . . , en, g) =

ΦΓ′
1
,...,Γ′

n,∆′((c1; e1), . . . , (cn; en), (d; g)).

In particular if we take ci to be morphisms mi: Γi → Ai, d to be a morphism p: ∆ → f , ei to be idAi

and g to be idf , then by naturality we have

Splitn+1(Γ1, . . . , Γn; ∆); m1⊗ · · · ⊗mn⊗p; Φ(idA1 , . . . , idAn
, idf) = Φ(m1, . . . , mn, p). (4.25)

Note that there can be zero m terms, in which case we would have

p; Φf (idf) = Φ∆(p). (4.26)

We shall write ⊥B for the morphism Φf (idf): f → B. We recall from our analysis of the additive
disjunction, that we introduced a natural transformation distΓ: Γ⊗(A⊕B) → (Γ⊗A)⊕ (Γ⊗B).3 As
we are dealing with the nullary version of this connective, we shall introduce a natural transformation
ndistΓ: Γ⊗f → f . Hence we shall make the definition

[[Γ1, . . . , Γn, ∆ . falseB(~M ; N): B]]
def
= Splitn+1(Γ1, . . . , Γn; ∆);

[[Γ1 . M1: A1]]⊗ · · ·⊗[[Γn . Mn: An]]⊗[[∆ . N : f]];

ndistΓ1⊗···⊗Γn
;⊥B. (4.27)

An important question is whether we take f to be the initial object (and hence ⊥ to be the initial
morphism). Certainly there is nothing so far to suggest this categorically appealing assumption.
Indeed, the similar assumption for categorical models of IL is somewhat controversial, and, as shown
by Harnik and Makkai [37], ensures that certain well-known properties fail. In particular they quote
the abstract result of Lambek and Scott [52, Page 67] that in a bicartesian closed category4 there
is at most one morphism A → f for any object A. Thus if we define negation of a proposition A
as A ⊃ f , this means that no matter how many proofs we have of a proposition A, all the proofs
of its negation ¬A (and also its double negation) will be collapsed as a single morphism in the
categorical model. However, taking the reductions from Chapter 3 and in particular the commuting
conversions, we find that we need to model equations in context such as

∆ . N : f
.

∆ . fst(false
A&B

(; N)) = falseA(; N): A

Categorically this amounts to the equality

n;⊥
A&B

; fst = n;⊥A.

Certainly if we require our categorical model to model all the reductions, including the commuting
conversions, then we need the assumption of initiality.5 With this motivation we shall make the
simplifying assumption that f is the initial object.

3In fact, abstract reasoning tells us that this is a natural isomorphism.

4A bicartesian closed category is a CCC with coproducts and an initial object.

5This is also the case for IL.

126 Chapter 4. Categorical Analysis

The Exponential

The rule for Promotion is of the form

Γ1 . M1: !A1 · · · Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B
Promotion.

Γ1, . . . , Γn . promote M1, . . . , Mn for x1, . . . , xn in N : !B

To interpret this rule we need a natural transformation with components

ΦΓ1,...,Γn
: C(Γ1, !A1) × . . . × C(Γn, !An) × C(!A1⊗ . . .⊗!An, B) → C((Γ1, . . . , Γn), !B).

Given morphisms ei: Γi →!Ai, ci: Γ
′
i → Γi and d: !A1⊗ . . .⊗!An → B, naturality gives the equation

Splitn(Γ′
1, . . . , Γ

′
n); c1⊗ . . .⊗cn; Joinn(Γ1, . . . , Γn); ΦΓ1,...,Γn

(e1, . . . , en, d)
= ΦΓ′

1
,...,Γ′

n
((c1; e1), . . . , (cn; en), d).

In particular if we take ci to be morphisms mi: Γi →!Ai, ei to be id!Ai
and d to be morphism

p: !A1⊗ . . .⊗!An → B, then by naturality we have

Splitn(Γ1, . . . , Γn); m1⊗ . . .⊗mn; Φ!A1,...,!An
(id!A1 , . . . , id!An

, p) = ΦΓ1,...,Γn
(m1, . . . , mn, p).

Thus Φ(m1, . . . , mn, p) can be expressed as the composition Splitn(Γ1, . . . , Γn); m1⊗ . . .⊗mn; Ψ(p),
where Ψ is a transformation

Ψ: C(!A1⊗ . . .⊗!An, B) → C(!A1⊗ . . .⊗!An, !B).

We shall write (−)∗ for the effect of this transformation and so we can make the preliminary definition

[[Γ1, . . . , Γn . promote M1, . . . , Mn for x1, . . . , xn in N : !B]]
def
=

Splitn(Γ1, . . . , Γn); [[Γ1 . M1: !A1]]⊗ . . .⊗[[Γn . Mn: !An]]; ([[x1: !A1, . . . , xn: !An . N : B]])∗.

(We shall see later that further analysis will lead us to a more precise definition.) The rule for
Dereliction is of the form

Γ . M : !A
Dereliction.

Γ . derelict(M): A

To interpret this rule we need a natural transformation

Φ: C(−, !A) → C(−, A).

However, by the Yoneda lemma [53, Page 61] we know that there is the bijection

[Cop, Sets](C(−, !A), C(−, A)) ∼= C(!A, A).

By actually constructing this isomorphism, we find that the components of Φ are induced by post-
composition with a morphism ε: !A → A. Thus we can make the definition

[[Γ . derelict(M): A]]
def
= [[Γ . M : !A]]; ε. (4.28)

We have the following equation in context for Dereliction

Γ1 . M1: !A1 . . . Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B
DerEq.

Γ1, . . . , Γn . derelict(promote M1, . . . , Mn for x1, . . . , xn in N)
= N [x1 := M1, . . . , xn := Mn]: B

§3. Analysing the Linear Term Calculus 127

If we take morphisms mi: Γi →!Ai and p: !A1⊗ . . .⊗!An → B this rule amounts to the equality

Splitn(Γ1, . . . , Γn); m1⊗ . . .⊗mn; (p)∗; ε = Splitn(Γ1, . . . , Γn); m1⊗ . . .⊗mn; p, (4.29)

or diagrammatically,

Γ1⊗ . . .⊗Γn

m1⊗ . . .⊗mn- !A1⊗ . . .⊗!An

p∗ - !B

@
@

@
@

@
p

R
B.
?

ε

In accordance with our treatment of Tensor and Unit, we might make the assumption that the
factorization suggested above be unique. However let us consider an immediate consequence of such
an assumption. The equation in context for Dereliction gives us that

!!A
id!!A- !!A

(!εA)∗- !!A

@
@

@
@

@
!εA

R
!A,

?

ε!A

commutes. An assumption of uniqueness implies that (!εA)∗ = id!!A. Hence we derive the equality

!εA = ε!A. (4.30)

Although at the moment this may seem reasonable, we shall see later how such an equality is
sufficient to collapse the model so that !A ∼=!!A. For now, therefore, we shall not demand the
uniqueness of the factorization; but rather we shall consider some different constructions.

We can certainly define the operation

!: C(Γ, B) → C(!Γ, !B)
f 7→ (εΓ; f)∗.

Thus we have an operation of the form

Γ
f

−→ A

!Γ
!f
−→!A.

We shall make the simplifying assumption that this operation is a functor . However we still need
some extra structure. If Γ is represented by the object A1⊗ . . .⊗An then !Γ will be represented by
!(A1⊗ . . .⊗An), but clearly by !Γ we really mean !A1⊗ . . .⊗!An.6 Thus we shall make the additional
assumption that ! is a (symmetric) monoidal functor. This notion is due to Eilenberg and Kelly [27]
(although originally given in the enriched setting) and for completeness we repeat the definition.

Definition 25. (Eilenberg and Kelly) A symmetric monoidal functor between SMCs
(C, •, 1, α, λ, ρ, γ) and (C′, •′, 1′, α′, λ′, ρ′, γ′) is a functor F : C → C′ equipped with

6This additional complication is essentially due to our use of a tensor product to represent the comma on the left
hand side of a sequent. Ideally we should use some form of multicategory [51]. Currently this concept is not well
developed, although recent work by de Paiva and Ritter [25] looks promising.

128 Chapter 4. Categorical Analysis

1. A morphism m1′ : 1′ → F1.

2. For any two objects A and B in C, a natural transformation mA,B: F (A) •′ F (B) → F (A •B).

These must satisfy the following diagrams:

F1 •′ FA
m1,A- F (1 • A)

1′ •′ FA

m1′ •′ idFA

6

λ′
FA

- FA
?

F (λA)

FA •′ F1
mA,1- F (A • 1)

FA •′ 1′

idFA •′ m1′

6

ρ′FA

- FA
?

F (ρA)

(FA •′ FB) •′ FC
mA,B •′ idFC- F (A • B) •′ FC

mA•B,C- F ((A • B) • C)

FA •′ (FB •′ FC)

α′
FA,FB,FC

6

idFA •′ mB,C

- FA •′ F (B • C)
mA,B•C

- F (A • (B • C))

6

F (αA,B,C)

FA •′ FB
mA,B- F (A • B)

FB •′ FA

γ′
A,B

?

mB,A

- F (B • A)
?

F (γA,B)

However in our particular case, assuming that ! is a symmetric monoidal (endo)functor means that
! comes equipped with a natural transformation

mA,B: !A⊗!B →!(A⊗B)

and a morphism

mI : I →!I

(where mI is just the nullary version of the natural transformation.) The diagrams given in the
above definition become the following:

!I⊗!A
mI,A- !(I⊗A)

I⊗!A

mI⊗id!A

6

λ!A

- !A
?

!(λA)

!A⊗!I
mA,I- !(A⊗I)

!A⊗I

id!A⊗mI

6

ρ!A

- !A
?

!(ρA)

(!A⊗!B)⊗!C
mA,B⊗id!C- !(A⊗B)⊗!C

mA⊗B,C- !((A⊗B)⊗C)

!A⊗(!B⊗!C)

α!A,!B,!C

6

id!A⊗mB,C

- !A⊗!(B⊗C)
mA,B⊗C

- !(A⊗(B⊗C))

6

!(αA,B,C)

§3. Analysing the Linear Term Calculus 129

!A⊗!B
mA,B- !(A⊗B)

!B⊗!A

γA,B

?

mB,A

- !(B⊗A)
?

!(γA,B)

We have appropriate candidates for these monoidal morphisms in the interpretation of the proofs

A − A
Dereliction

!A − A

B − B
Dereliction

!B − B
(⊗R)

!A, !B − A ⊗ B
Promotion

!A, !B − !(A ⊗ B)
(⊗L),

!A⊗!B − !(A ⊗ B)

and
− I

Promotion
− !I

(IL).
I − !I

There are some extra notions of symmetric monoidal functors, depending on any extra properties
of the morphisms. Let us give some examples.

Definition 26. A symmetric monoidal functor, (F, mA,B , m1′): C → C′, is said to be

1. Strict if mA,B and m1′ are identities.

2. Strong if mA,B and m1′ are natural isomorphisms.

The equation in context for Dereliction gives us that

!A1
id!A1- !A1

(εA; f)∗- !B

@
@

@
@

@
εA; f

R
B
?

εB

commutes, or in other words

!A
!f - !B

A

εA

?

f
- B

?

εB

commutes. Given that we have made the assumption that ! is a (symmetric) monoidal functor,
this diagram suggests that ε is a monoidal natural transformation. We shall make this assumption
and write ε for the monoidal natural transformation ε: !

.
→ Id. We shall repeat the definition of a

monoidal natural transformation, which, again, is due to Eilenberg and Kelly.

Definition 27. (Eilenberg and Kelly) A monoidal natural transformation between two monoidal
functors F, F ′: C → C′ is a natural transformation σ: F

.
→ F ′ which satisfies the following diagrams:

130 Chapter 4. Categorical Analysis

1′

@
@

@
@

@

m′
1′

R
F1

m1′

?

σ
- F ′(1)

FA •′ FB
σ • σ- F ′(A) •′ F ′(B)

F (A • B)

mA,B

?

σA•B

- F ′(A • B)
?

m′
A,B

Again in our setup this says that the natural transformation ε: !
.
→ Id satisfies the following diagrams.

!A⊗!B
mA,B- !(A⊗B)

A⊗B

εA⊗εB

?
======= A⊗B

?

εA⊗B

I

@@

!I

mI

?

εI

- I

We have seen that from an identity morphism id!A: !A →!A we can form the canonical morphism
δ = (id!A)∗: !A →!!A. We know little about δ, other that given by equality 4.29, namely

δA; ε!A = id!A.

This equation is one of the three for a comonad. First let us repeat the definition of a comonad.

Definition 28. A comonad on a category C is a triple (!, ε, δ), where !: C → C is an endofunctor,
and ε: !

.
→ Id and δ: !2

.
→! are natural transformations, which make the following diagrams commute:

!A
δA - !2A

!2A

δA

?

δ!A

- !3A

?

!(δA)

!A

�� @@

!A �
ε!A

!2A

?

δA

!(εA)
- !A

We shall assume that (!, ε, δ) form a comonad. In addition since ! and ε are monoidal, we shall assume
that δ is also a monoidal natural transformation, and, hence, we have a (symmetric) monoidal
comonad. The assumption that δ is a monoidal natural transformation amounts to requiring that
the following diagrams commute.

!A⊗!B
mA,B - !(A⊗B)

!!A⊗!!B

δA⊗δB

?

m!A,!B

- !(!A⊗!B)
!mA,B

- !!(A⊗B)
?

δA⊗B

I
mI - !I

!I

mI

?

!mI

- !!I
?

δI

We are now in a position to make a refined definition of the interpretation of the Promotion rule

§3. Analysing the Linear Term Calculus 131

[[Γ1, . . . , Γn . promote M1, . . . , Mn for x1, . . . , xn in N : !B]]
def
= Splitn(Γ1, . . . , Γn); [[Γ1 . M1: !A1]]⊗ . . .⊗[[Γn . Mn: !An]];

δ⊗ . . .⊗δ; m!A1,...,!An
; !([[x1, . . . , xn . N : !B]]). (4.31)

As a slight aside, we can now reconsider the question of uniqueness for the factorization of the
Dereliction rule (Rule 4.29) in the light of our new assumption of a comonad. We derived that the
uniqueness assumption implied the equality ε!A =!εA. We could then deduce the following

!εA; δA = δ!A; !!εA Naturality of δ
ε!A; δA = δ!A; !!εA Rule 4.30
ε!A; δA = δ!A; !ε!A Rule 4.30
ε!A; δA = id!A Def of a comonad.

Since δA; ε!A = id!A by definition of a comonad, we can see that the uniqueness assumption would
have lead to the model collapsing to the extent that !A ∼=!!A, or, in other words, that the comonad
was idempotent . It should be made clear that our model does not have an idempotent comonad.

Finally one of the comonad equalities suggests a term equality as follows

δ; !(ε) = id!A

id!A; δ; !(id!A; ε) = id!A

[[x: !A . x: !A]]; δ; !([[y: !A . derelict(y): A]]) = [[x: !A . x: !A]]

[[x: !A . promote x for y in derelict(y): !A]] = [[x: !A . x: !A]].

Or, in other words, the (new) equation in context

Comonad.
x: !A . promote x for y in derelict(y) = x: !A

The rule for Weakening is of the form

Γ . M : !A ∆ . N : B
Weakening.

Γ, ∆ . discard M in N : B

To interpret this rule we need a natural transformation with components

ΦΓ,∆: C(Γ, !A) × C(∆, B) → C((Γ, ∆), B).

Given morphisms e: Γ →!A, f : ∆ → B, c: Γ′ → Γ and d: ∆′ → ∆, naturality gives the equation

Split(Γ′, ∆′); c⊗d; Join(Γ, ∆); ΦΓ,∆(e, f) = ΦΓ′,∆′((c; e), (d; f)). (4.32)

In particular if we take e to be id!A, f to be idB, c to be a morphism m: Γ →!A and d to be a
morphism n: ∆ → B then by naturality we have

Split(Γ, ∆); m⊗n; Φ!A,B(id!A, idB) = ΦΓ,∆(m, n).

We shall make the simplifying assumption that the natural transformation Φ is also natural in B.
Given morphisms e: Γ →!A, f : ∆ → B and g: B⊗Θ → C, this gives

Split((Γ, ∆), Θ); Φ(e, f)⊗idΘ; g = Φ(e, (Split(∆, Θ); f⊗idΘ; g)). (4.33)

At the level of terms this gives the equation in context

132 Chapter 4. Categorical Analysis

Γ . N : !A ∆ . M : B x: B, Θ . P : C
Weakeningnat.

Γ, ∆, Θ . P [x := discard M in N] = discard M in P [x := N]: C

Let us consider the second naturality equation (4.33) with the morphisms e = λ!A: I⊗!A →!A,
f = idI⊗B and g = λB : I⊗B → B, then we get the equality

Φ(λ!A, λB) = Φ(λ!A, idI⊗B); λB. (4.34)

Again, let us consider the second naturality equation (4.33) but with the morphisms e = λ!A: I⊗!A →
!A, f = idI and g = idI⊗B, then we get the equality

α−1
I⊗!A,I,B

; Φ(λ!A, idI⊗B) = Φ(λ!A, idI)⊗idB; idI⊗B. (4.35)

Now if we take the first naturality equation (4.32) with the morphisms e = λ!A, c = λ−1
!A , f = λB

and d = λ−1
B we get the equality

Φ((λ−1
!A ; λ!A), (λ−1

B ; λB)) = λ−1
!A ⊗λ−1

B ; α; Φ(λ!A, λB)
Φ(id!A, idB) = λ−1

!A ⊗λ−1
B ; α; Φ(λ!A, λB)

= λ−1
!A ⊗λ−1

B ; α; Φ(λ!A, idI⊗B); λB Rule 4.34
= λ−1

!A ⊗λ−1
B ; α; Φ(λ!A, idI)⊗idB; λB Rule 4.35

= λ−1
!A ⊗id; id⊗λ−1

B ; α; Φ(λ, id)⊗id; λ
= λ−1

!A ⊗id; ρ−1
I⊗!A

⊗id; Φ(λ!A, idI)⊗idB; λB Def of a SMC

= (λ−1; ρ−1; Φ(λ!A, idI))⊗idB; λB .

The operation λ−1; ρ−1; Φ(λ!A, idI) we shall denote as e: !A → I. Thus we can express the morphism
Φ(id!A, idB) in terms of this simpler operation. We can then make the definition

[[Γ, ∆ . discard M in N : B]]
def
= Split(Γ, ∆); [[Γ . M : !A]]⊗[[∆ . N : B]]; e⊗idB; λB. (4.36)

We have the following equation in context for Weakening

Γ1 . M1: !A1

Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B ∆ . P : C
DiscEq.

Γ1, . . . , Γn, ∆ . discard (promote M1, . . . , Mn for x1, . . . , xn in N) in P
= discard M1, . . . , Mn in P : C

To simplify the presentation, let us consider the case when n = 1. If we take morphisms c: Γ →!A,
d: !A → B and f : ∆ → C, this rule amounts to the diagram

Γ⊗∆
c⊗id- !A⊗∆

δ- !!A⊗∆
!d⊗id- !B⊗∆

e⊗id- I⊗∆

I⊗∆

e⊗id

?

λ
- ∆

?

λ

C.
?

f

The rule for Contraction is of the form

§3. Analysing the Linear Term Calculus 133

∆ . M : !A Γ, x: !A, y: !A . N : B
Contraction.

Γ, ∆ . copy M as x, y in N : B

To interpret this rule we need a natural transformation with components

ΦΓ,∆: C(∆, !A) × C(Γ⊗!A⊗!A, B) → C((Γ, ∆), !B).

Given morphisms e: ∆ →!A, f : Γ⊗!A⊗!A → B, c: Γ′ → Γ and d: ∆′ → ∆, naturality gives the
equation

Split(Γ′, ∆′); c⊗d; Join(Γ, ∆); Φ∆,Γ(e, f) = Φ∆′,Γ′((d; e), (c⊗id!A⊗id!A; f)).

In particular if we take e to be id!A, f to be a morphism m: Γ⊗!A⊗!A → B, c to be idΓ and d to be
a morphism m: ∆ →!A, then by naturality we have

Split(Γ, ∆); idΓ⊗m; Φ!A,Γ(id!A, n) = ΦΓ,∆(m, n).

Thus ΦΓ,∆(m, n) can be expressed as the composite Split(Γ, ∆); idΓ⊗m; ΨΓ(n), where Ψ is a natural
transformation with components

ΨΓ: C(Γ⊗!A⊗!A, B) → C(Γ⊗!A, B).

We shall make the simplifying assumption that Φ is natural in B. Given the definition above, this
implies that Ψ should be natural in B. Given morphisms e: Γ⊗!A⊗!A → B and f : Θ⊗B → C, this
gives the equation

Split(Θ, (Γ, !A)); idΘ⊗Ψ(e); f = Ψ(Split(Θ, Γ)⊗id!A⊗id!A; α−1⊗id!A; α−1; idΘ⊗e; f). (4.37)

At the level of terms this gives the equation in context

∆ . M : !A Γ, x: !A, y: !A . N : B Θ, z: B . P : C
Contractionnat.

Θ, Γ, ∆ . P [z := copy M as x, y in N] = copy M as x, y in P [z := N]: C

If we take the naturality equation 4.37 with the morphisms e = id!A⊗id!A and f = m: Γ⊗!A⊗!A → B
we get the equality

Ψ(f) = idΓ⊗Ψ(id!A⊗id!A); f.

If we define d
def
= Ψ(id!A⊗id!A), then we can make the definition

[[Γ, ∆ . copy M as x, y in N : B]]
def
=

Split(Γ, ∆); idΓ⊗[[∆ . M : !A]]; idΓ⊗d; [[Γ, x: !A, y: !A . N : B]]. (4.38)

We have the following equation in context for Contraction

Γ1 . M1: !A1

Γn . Mn: !An x1: !A1, . . . , xn: !An . N : B ∆, x: !B, y: !B . P : C
CopyEq.

Γ1, . . . , Γn, ∆ . copy (promote M1, . . . , Mn for x1, . . . , xn in N) as x, y in P
= copy M1, . . . , Mn as (x′

1, . . . , x
′
n), (x′′

1 , . . . , x′′
n) in

P [x := promote x′
1, . . . , x

′
n for x1, . . . , xn in N,

y := promote x′′
1 , . . . , x′′

n for x1, . . . , xn in N]: C

134 Chapter 4. Categorical Analysis

To simplify the presentation as earlier, let us consider the case when n = 1. If we take morphisms
m: ∆ →!A, n: !A → B and p: Γ⊗!B⊗!B → C, this rule amounts to the diagram

Γ⊗∆
id⊗m- Γ⊗!A

id⊗δ - Γ⊗!!A
id⊗!n - Γ⊗!B

Γ⊗!A⊗!A
?

id⊗d

id⊗δ⊗δ
- Γ⊗!!A⊗!!A

id⊗!n⊗!n
- Γ⊗!B⊗!B

?

id⊗d

C.
?

p

Let us review what we know so far about the rules of Weakening and Contraction. We have
established that they are modelled with the use of morphisms e: !A → I and d: !A →!A⊗!A, and
that the following diagrams commute for a morphism f : !A → B

!A
δ - !!A

!f - !B

I

eA

?
====================== I

?

eB

and

!A
δ - !!A

!f - !B

!A⊗!A

dA

?

δ⊗δ
- !!A⊗!!A

!f⊗!f
- !B⊗!B.

?

dA

We can see that the morphisms e and d act upon morphisms of the form !f (for some f) and δ.
This suggests some other categorical properties of the morphisms. Firstly, we should expect that e

and d are natural transformations and hence both

!A
!f - !B

I

eA

?
========= I

?

eB

and

!A
!f - !B

!A⊗!A

dA

?

!f⊗!f
- !B⊗!B

?

dB

should commute for any morphism f : A → B.We might also like to assume that d and e are monoidal
natural transformations. First we need the following proposition.

§3. Analysing the Linear Term Calculus 135

Proposition 6. Given a monoidal functor, (!, mA,B, mI), on a SMC, C, then both the functors
!⊗!: C × C → C and I: C → I7 are monoidal.

Proof. Trivial, by construction.

We shall make the simplifying assumption that d and e are monoidal natural transformations and
we shall spell out the categorical consequences in the next section.

Before considering the categorical import of d and e acting upon δ, let us review some standard
categorical structures.

Definition 29. Given a comonad, (!, ε, δ), on a category C, a coalgebra is a pair (A, hA: A →!A)
where A is an object of C and hA is a morphism in C (called the ‘structure map’ of the coalgebra)
which makes the following diagrams commute.

A
hA - !A

!A

hA

?

δA

- !!A
?

!hA

A
hA - !A

@@

A
?

εA

A coalgebra morphism between two coalgebras (A, h) and (A′, h′) is a morphism f : A → A′ in C

which makes the following diagram commute.

A
h - !A

A′

f

?

h′
- !A′

?

!f

Definition 30. Given a comonad, (!, ε, δ), on a category C, we can form the category of coalgebras ,
C!, with objects the coalgebras and morphisms the coalgebra morphisms in C.

The opposite notion of this construction (i.e. that generated by a monad) is often referred to as
the “Eilenberg-Moore category” [53, Page 136]. Given this definition we can identify some useful
coalgebras which exist in a SMC with a (symmetric) monoidal comonad.

Proposition 7. Given a comonad, (!, ε, δ), on a SMC C, then (!A, δA: !A →!!A) is a coalgebra.

Proof. We require the following diagrams to commute.

!A
δA - !!A

!!A

δA

?

δ!A

- !!!A
?

!δA

!A
δA - !!A

@@

!A
?

ε!A

Both these diagrams commute from the definition of a comonad.

7Where I is the constant functor which maps the category C to the one object category.

136 Chapter 4. Categorical Analysis

Proposition 8. Given a monoidal comonad, (!, ε, δ, mA,B, mI), on a SMC C, then (I, mI : I →!I) is
a coalgebra.

Proof. We require the following diagrams to commute.

I
mI - !I

!I

mI

?

δI

- !!I
?

!mI

I
mI - !I

@@

I
?

εI

The left hand diagram commutes since δ is a monoidal natural transformation, and the right hand
diagram commutes because ε is a monoidal natural transformation.

Proposition 9. Given a monoidal comonad, (!, ε, δ, mA,B, mI), on a SMC C, then
(!A⊗!A, (δA⊗δA; m!A,!A)) is a coalgebra.

Proof. We require the following diagrams to commute.

!A⊗!A
δ⊗δ - !!A⊗!!A

m!A,!A- !(!A⊗!A)

!!A⊗!!A

δ⊗δ

? δ!A⊗δ!A- !!!A⊗!!!A
?

!δ⊗!δ

m- !(!!A⊗!!A)
?

!(δ⊗δ)

!(!A⊗!A)

m

?

δ
- !!(!A⊗!A)

?

!m

!A⊗!A
δ⊗δ- !!A⊗!!A

m- !(!A⊗!A)

@@

!A⊗!A
?

ε⊗ε

===== !A⊗!A
?

ε

In the top diagram the upper left square commutes by definition of a comonad, the upper right
square commutes since m is a natural transformation and the lower square commutes since δ is a
monoidal natural transformation. In the lower diagram, the left hand triangle holds by the definition
of a comonad, and the square commutes since ε is a monoidal natural transformation.

Proposition 10. Given a comonad, (!, δ, ε), on a category C, then given a coalgebra (A, hA: A →!A),
the structure map, hA, is also a coalgebra morphism between the coalgebras (A, hA) and (!A, δ).

Proof. By definition of hA being a structure map.

Returning to the question of the relationship between d, e and δ, we might now expect that e and d

are coalgebra morphisms. This assumption amounts to requiring the following diagrams to commute.

§3. Analysing the Linear Term Calculus 137

!A
δ - !!A

I

eA

?

mI

- !I
?

!eA

!A
δ - !!A

!A⊗!A

dA

?

δ⊗δ
- !!A⊗!!A

m!A,!A

- !(!A⊗!A)
?

!dA

These equalities lead to new equations in context. The left hand diagram above gives the force of
the following diagram commuting.

!A1⊗ . . .⊗!An

δ⊗ . . .⊗δ - !!A1⊗ . . .⊗!!An

(1)

!A1⊗!!A2⊗ . . .⊗!!An

?

id⊗δ⊗ . . .⊗δ

δ⊗id - !!A1⊗ . . .⊗!!An

wwwwwwwwww
m- !(!A1⊗ . . .⊗!An)

(2) (3)

!A1⊗!(!A2⊗ . . .⊗!An)

id⊗m

? δ⊗id- !!A1⊗!(!A2⊗ . . .⊗!An)
?

id⊗m

m- !(!A1⊗ . . .⊗!An)

wwwwwwwww

(4) (5)

!A1⊗!B

id⊗!f

? δ⊗id - !!A1⊗!B
?

id⊗!f

m - !(!A1⊗B)

!(id⊗f)

?

(6) (7)

I⊗!B

e⊗id

? mI⊗id - !I⊗!B
?

!e⊗id

mI,B - !(I⊗B)

!(e⊗id)

?

(8)

!B

λ

?
== !B

!λ

?

Squares (1), (2) and (4) commute trivially. Squares (3) and (8) commute by definition of m. Squares
(5) and (7) commutes by naturality of m. Square (6) commutes by our new assumption that e is a
coalgebra morphism.

This diagram amounts to the following (new) equation in context.

Γ1 . M1: !A1

Γn . Mn: !An x2: !A2, . . . , xn: !An . N : B
Coalgebra1

Γ1, . . . , Γn . promote (M1, . . . , Mn) for (x1, . . . , xn) in discard x1 in N
= discard M1 in promote (M2, . . . , Mn) for (x2, . . . , xn) in N : !B

In a similar way (which we shall omit), assuming that d is a coalgebra morphism makes another
large diagram commute. It amounts to the following new equation in context.

Γ1 . M1: !A1

Γn . Mn: !An y: !A1, z: !A1, x2: !A2, . . . , xn: !An . N : B
Coalgebra2

Γ1, . . . , Γn . promote (M1, . . . , Mn) for (x1, . . . , xn) in copy x1 as y, z in N
= copy M1 as y′, z′ in

promote (y′, z′, M2, . . . , Mn) for (y, z, x2, . . . , xn) in N : !B

138 Chapter 4. Categorical Analysis

We have a final piece of categorical structure which it seems useful to utilize. First we shall review
some of the standard definitions.

Definition 31. Given a SMC, (C,⊗, I, α, λ, ρ, σ), a commutative comonoid in C is a triple (C, d, e)
where C is an object in C and d: C → C⊗C and e: C → I are morphisms in C such that the following
diagrams commute.

C⊗C � d
C

d - C⊗C

C⊗(C⊗C)

idC⊗d

?

αC,C,C

- (C⊗C)⊗C
?

d⊗idC

C

	�
�

�
�

�
λ−1

C

@
@

@
@

@

ρ−1
C

R
I⊗C �

e⊗idC

C⊗C
?

d

idC⊗e
- C⊗I

C
d- C⊗C

C

wwwwwwwwww

d
- C⊗C

?

γC,C

Definition 32. A comonoid morphism between two comonoids (C, d, e) and (C′, d′, e′) is a mor-
phism f : C → C′ such that the following diagrams commute

C
f - C′

I

e

?
========= I

?

e′

C
f - C′

C⊗C

d

?

f⊗f
- C′⊗C′

?

d′

Definition 33. Given a SMC, C, the category of commutative comonoids , coMonc(C), has as
objects the commutative comonoids and morphisms the comonoid morphisms in C.

It would seem appealing (from both a computational and categorical viewpoint) to assume that d

and e form a commutative comonoid, (!A, d, e). Again this assumption provides some extra equations
in context. For example, take morphisms m: ∆ →!A and n: Γ⊗!A → B, then the following diagram
commutes.

§3. Analysing the Linear Term Calculus 139

Γ⊗∆
id⊗m- Γ⊗!A

id⊗d- Γ⊗!A⊗!A
n⊗id- B⊗!A

Γ⊗!A⊗I

id⊗e

? n⊗id- B⊗I
?

id⊗e

Γ⊗!A

wwwwwwwwwwwwwwwwwwwwwwww
======= Γ⊗!A

ρ

? n - B
?

ρ

B

n

?
======================== B

wwwwwwwwww

The left hand square commutes by the assumption that d and e form a commutative comonoid.
The upper right hand square commutes trivially and the middle right hand square commutes by
naturality of ρ.

This diagram amounts to the following equation in context.

∆ . M : !A Γ, y: !A . N : B
Comonoid1

Γ, ∆ . copy M as x, y in discard x in N = N [y := M]: B

Similar reasoning using the other properties of a commutative comonoid gives three other equations
in context.

∆ . M : !A Γ, x: !A . N : B
Comonoid2

Γ, ∆ . copy M as x, y in discard x in N = N [y := M]: B

∆ . M : !A Γ, x: !A, y: !A, .N : B
Comonoid3

Γ, ∆ . copy M as x, y in N = copy M as y, x in N : B

∆ . M : !A Γ, x: !A, y: !A, z: !A . N : B
Comonoid4

Γ, ∆ > copy M as x, w in copy w as y, z in N
= copy M as w, z in copy w as x, y in N : B

In the next section we shall summarize the analysis given in this section and define a categorical
model for ILL. As we have seen, the analysis so far has produced some new equations in context
beyond those given by β-reduction. For completeness we shall repeat these new equations in context
in Figures 4.3, 4.4 and 4.5.

Using these new equations in context we can now define what we consider to be a linear term
calculus theory.

Definition 34. A linear term calculus theory (LTC-theory), T = (L,A) where

• L is a LTC-signature (Definition 24)

• A are the equations in context given in Figures 4.2, 4.3, 4.4 and 4.5.

140 Chapter 4. Categorical Analysis

Γ . N : A−◦B
−◦η

Γ . λx: A.Nx = N : A−◦B

∆ . M : A⊗B Γ, z: A⊗B . N : C
⊗η

Γ, ∆ . let M be x⊗y in N [z := x⊗y] = N [z := M]: C

∆ . M : I Γ, z: I . N : A
Iη

Γ, ∆ . let M be ∗ in N [z := ∗] = N [z := M]: A

Γ . M : A&B
&η

Γ . 〈fst(M), snd(M)〉 = M : A&B

Γ . M : A ⊕ B
⊕η

Γ . case M of inl(x) → inl(x) ‖ inr(y) → inr(y) = M : A ⊕ B

Figure 4.3: ‘η’ Equations in Context

4 The Model for Intuitionistic Linear Logic

In this section we sum up the analysis given in the previous sections by detailing the categorical
model for ILL.8 First we shall define the model and then consider some properties of the definition.

Definition 35. A Linear category, C, consists of:

1. A SMCC, C, with finite products and coproducts, together with:

2. A symmetric monoidal comonad (!, ε, δ, mA,B, mI) such that

(a) For every free !-coalgebra (!A, δA) there are two distinguished monoidal natural transfor-
mations with components eA: !A → I and dA: !A →!A⊗!A which form a commutative
comonoid and are coalgebra morphisms.

(b) Whenever f : (!A, δA) → (!B, δB) is a coalgebra morphism between free coalgebras, then it
is also a comonoid morphism.

Let us consider in detail the conditions in this definition. Requiring that eA: !A → I is a monoidal
natural transformation amounts to requiring that the following three diagrams commute, for any
morphism f : A → B.

!A
eA - I

!B

!f

?

eB

- I

wwwwwwwwww

8The multiplicative, exponential part of this model is originally due to de Paiva and Hyland and appeared in a
preliminary form in [15]. That presented here is a slight simplification of their model and is also extended to model
the additives.

§4. The Model for Intuitionistic Linear Logic 141

∆ . M : A⊗B Γ, x: A, y: B . N : C Θ, z: C . P : D
⊗nat

Θ, Γ, ∆ . P [z := let M be x⊗y in N] = let M be x⊗y in P [z := N]: C

Γ . N : A ∆ . M : I Θ, z: A . P : B
Inat

Θ, Γ, ∆ . P [z := let M be ∗ in N] = let M be ∗ in P [z := N]: B

∆ . M : A ⊕ B Γ, x: A . N : C Γ, y: B . P : C Θ, z: C . Q: D
⊕nat

Θ, Γ, ∆ > Q[z := case M of inl(x) → N ‖ inr(y) → P]
= case M of inl(x) → (Q[z := N]) ‖ inr(y) → (Q[z := P]): D

Γ . N : !A ∆ . M : B x: B, Θ . P : C
Weakeningnat

Γ, ∆, Θ . P [x := discard M in N] = discard M in P [x := N]: C

∆ . M : !A Γ, x: !A, y: !A . N : B Θ, z: B . P : C
Contractionnat

Θ, Γ, ∆ . P [z := copy M as x, y in N] = copy M as x, y in P [z := N]: C

Figure 4.4: ‘Naturality’ Equations in Context

I

@@

!I

mI

?

eI

- I

!A⊗!B
eA⊗eB- I⊗I

!(A⊗B)

mA,B

?

eA⊗B

- I
?

λI

Requiring that dA: !A →!A⊗!A is a monoidal natural transformation amounts to requiring that the
following three diagrams commute, for all f : A → B.

!A
dA- !A⊗!A

!B

!f

?

dB

- !B⊗!B
?

!f⊗!f

I
λ−1

- I⊗I

!I

mI

?

dI

- !I⊗!I
?

mI⊗mI

!A⊗!B
dA⊗dB- (!A⊗!A)⊗(!B⊗!B)

iso- (!A⊗!B)⊗(!A⊗!B)

!(A⊗B)

mA,B

?

dA⊗B

- !(A⊗B)⊗!(A⊗B)
?

mA,B⊗mA,B

Where iso represents a combination of the natural isomorphisms.9 Requiring that (!A, dA, eA) forms
a commutative comonoid amounts to requiring that the following three diagrams commute.

9For example, we could take

iso
def
= α−1

!A,!A,(!B⊗!B)
; id⊗γ!A,!B⊗!B; id⊗α−1

!B,!B,!A
; id⊗(id⊗γ!B,!A); α!A,!B,!A⊗!B.

142 Chapter 4. Categorical Analysis

Comonad
x: !A . promote x for y in derelict(y) = x: !A

Γ1 . M1: !A1

Γn . Mn: !An x2: !A2, . . . , xn: !An . N : B
Coalgebra1

Γ1, . . . , Γn . promote (M1, . . . , Mn) for (x1, . . . , xn) in discard x1 in N
= discard M1 in

promote (M2, . . . , Mn) for (x2, . . . , xn) in N : !B

Γ1 . M1: !A1

Γn . Mn: !An y: !A1, z: !A1, x2: !A2, . . . , xn: !An . N : B
Coalgebra2

Γ1, . . . , Γn . promote (M1, . . . , Mn) for (x1, . . . , xn) in copy x1 as y, z in N
= copy M1 as y′, z′ in

promote (y′, z′, M2, . . . , Mn) for (y, z, x2, . . . , xn)
in N : !B

∆ . M : !A Γ, y: !A . N : B
Comonoid1

Γ, ∆ . copy M as x, y in discard x in N = N [y := M]: B

∆ . M : !A Γ, x: !A . N : B
Comonoid2

Γ, ∆ . copy M as x, y in discard x in N = N [y := M]: B

∆ . M : !A Γ, x: !A, y: !A . N : B
Comonoid3

Γ, ∆ . copy M as x, y in N = copy M as y, x in N : B

∆ . M : !A Γ, x: !A, y: !A, z: !A . N : B
Comonoid4

Γ, ∆ > copy M as x, w in copy w as y, z in N
= copy M as w, z in copy w as x, y in N : B

Figure 4.5: ‘Categorical’ Equations in Context

§4. The Model for Intuitionistic Linear Logic 143

!A

	�
�

�
�

�
ρ−1

@
@

@
@

@

λ−1

R
!A⊗I �

id!A⊗eA

!A⊗!A
?

dA

eA⊗id!A

- I⊗!A

!A
dA - !A⊗!A

!A⊗!A

dA

?

dA⊗id!A

- (!A⊗!A)⊗!A
α!A,!A,!A

- !A⊗(!A⊗!A)
?

id!A⊗dA

!A
dA- !A⊗!A

!A

wwwwwwwwww

dA

- !A⊗!A
?

γ!A,!A

We have that (!A, δ) and (I, mI) are coalgebras (Propositions 7 and 8). Requiring that eA is a
coalgebra morphism amounts to requiring that the following diagram commutes.

!A
eA - I

!!A

δA

?

!eA

- !I
?

mI

We have that also (!A⊗!A, (δ⊗δ; mA,A)) is a coalgebra (Proposition 9). Requiring that dA is a
coalgebra morphism amounts to requiring that the following diagram commutes.

!A
δA - !!A

!A⊗!A

dA

?

δA⊗δA

- !!A⊗!!A
m!A,!A

- !(!A⊗!A)
?

!dA

We also require that all coalgebra morphisms between free coalgebras are also comonoid morphisms.
Thus given a coalgebra morphism f , between the free coalgebras (!A, δ) and (!B, δ), i.e. which makes
the following diagram commute.

!A
f - !B

!!A

δ

?

!f
- !!B

?

δ

144 Chapter 4. Categorical Analysis

Then it is also a comonoid morphism between the comonoids (!A, eA, dA) and (!B, eB, dB), i.e. it
makes the following diagram commute.

I � eA
!A

dA- !A⊗!A

I

wwwwwwwwww
�

eB

!B

f

?

dB

- !B⊗!B
?

f⊗f

These amount to some strong conditions on the model and we shall explore some of their conse-
quences. Firstly notice that in the definition a comonoid structure is only required for the free
coalgebra structure. We shall consider the question of a comonoid structure on any coalgebra.

Definition 36. In the category of coalgebras for a Linear category, for any coalgebra (A, hA: A →!A)
we define two morphisms, d!: A → A⊗A and e!: A → I in terms of the free coalgebra and comonoid
structures.

d! def
= hA; dA; εA⊗εA

e! def
= hA; eA

We shall consider some properties of these morphisms.

Lemma 15. In the category of coalgebras for a Linear category d! and e! are natural transforma-
tions.

Proof. Take a morphism f : A → B. For e! to be a natural transformation, the following diagram
must commute.

A
f - B

!A

h

? !f - !B
?

h′

I

eA

?
========= I

?

eA

The upper square commutes by f being a coalgebra morphism (as it is a morphism in the category
of coalgebras) and the lower square commutes by the naturality of eA. For d! to be a natural
transformation, the following diagram must commute.

§4. The Model for Intuitionistic Linear Logic 145

A
f - B

!A

h

? !f - !B
?

h′

!A⊗!A

dA

? !f⊗!f- !B⊗!B
?

dB

A⊗A

εA⊗εA

? f⊗f- B⊗B
?

εA⊗εA

The upper square commutes by f being a coalgebra morphism; the middle square commutes by the
naturality of d and the lower square by naturality of ε.

Corollary 3. Whenever f : (A, h) → (A′, h′) is a coalgebra morphism between any two coalgebras
then it is a comonoid morphism.

We shall define a notion which is opposite to that given by MacLane [53].

Definition 37. Given two parallel morphisms f, g: B → C in a category C, a cofork is a morphism
c: A → B such that c; f = c; g, i.e. the two paths in the following diagram are equal.

A
c - B

f -

g
- C

We can see that it is easy to extend this notion to an equalizer of two morphisms.10 We can also
isolate a special case of a cofork.

Definition 38. An identity cofork of two morphisms f, g: B → A is a morphism c: A → B such
that c; f = c; g = idA.11

Using these notions, for example, we can reformulate the definition of a comonad.

Definition 39. A comonad on a category C is a triple (!, ε, δ) where ! is an endofunctor and δ: !
.
→!2

and ε: !
.
→ Id are natural transformations such that δA is a cofork of δ!A and !δA and is also the

identity cofork of εA and !εA.

Let us use this notion to isolate some useful coforks within our notion of a Linear category.

Proposition 11. Given a Linear category, C, the morphism (hA; dA): A →!A⊗!A is a cofork of the
two morphisms (εA⊗εA; idA⊗hA) and (εA⊗id!A): !A⊗!A → A⊗!A.

10A morphism c:A → B is an equalizer of two morphisms f, g: B → C if it is a cofork and for all morphisms
h:D → B, h; f = h; g implies that there exists a unique morphism k:D → A such that h = k; c.

11Alternative terminology due to Linton [56] is that if an identity cofork exists for a pair of morphisms, then the
pair is said to be reflexive.

146 Chapter 4. Categorical Analysis

Proof. We shall prove this equationally rather than use diagrams.

hA; dA; ε⊗ε; id⊗hA = dA; h⊗h; ε⊗ε; id⊗hA Proposition 10 and Corollary 3
= dA; (h; ε)⊗(h; ε); id⊗hA

= dA; id⊗hA Definition of a coalgebra
= dA; (h; ε)⊗hA

= dA; (h; ε)⊗(hA; id!A)
= dA; (h⊗h); (ε⊗id!A)
= hA; dA; (ε⊗id!A) h is a comonoid morphism

Thus we have a commutative comonoid structure on the free coalgebras by definition, and we have
constructed in Definition 36 candidates for a commutative comonoid structure on any coalgebra.
We shall now prove that these candidates do indeed form a commutative comonoid structure on any
coalgebra.

Proposition 12. In the category of coalgebras for a Linear category, the natural transformations
d! and e! form a commutative comonoid.

Proof. For (A, d!, e!) to be a commutative comonoid we need the four following diagrams to com-
mute.

A
d!

- A⊗A

A⊗A

d!

?

d!⊗idA

- (A⊗A)⊗A
αA,A,A

- A⊗(A⊗A)
?

idA⊗d!

A

@
@

@
@

@

λ−1

R
A⊗A

d!

?

e!⊗idA

- I⊗A

A

@
@

@
@

@

ρ−1

R
A⊗A

d!

?

idA⊗e!
- A⊗I

A
d!

- A⊗A

A

wwwwwwwwww

d!
- A⊗A

?

γA,A

Using the definitions of the morphisms d! and e!, we can show that these diagrams commute. We
take the diagrams in turn; considering the first diagram we shall make the usual simplification and
ignore the associativity morphism.

A
h - !A

dA - !A⊗!A
ε ⊗ ε - A ⊗ A

!A

h

? id!A - !A

id!A

? dA - !A⊗!A

id!A⊗id!A

? ε⊗id!A - A⊗!A

idA⊗h

?

!A⊗!A

dA

? id!A⊗id!A- !A⊗!A

dA

? dA⊗!A- !A⊗!A⊗!A

id!A⊗dA

? ε⊗id!A⊗id!A- A⊗!A⊗!A

idA⊗dA

?

A ⊗ A

ε ⊗ ε

?

h⊗idA

- !A ⊗ A

id!A⊗ε

?

dA⊗idA

- !A⊗!A ⊗ A

id⊗id⊗ε

?

ε⊗ε⊗idA

- A ⊗ A ⊗ A

id!A⊗id!A⊗ε

?

§4. The Model for Intuitionistic Linear Logic 147

The upper left square commutes trivially. The upper middle square commutes because of the
naturality of d. The upper right square does not commute, but rather follows from Proposition 11.
The middle left square commutes from the naturality of d. The middle square commutes by definition
of a comonoid. The middle right square commutes by the naturality of d. The lower left square
does not commute but similarly follows from Proposition 11. The lower middle square commutes
by the naturality of d and the lower right square commutes trivially.

Considering the second diagram

A
λ−1

- A⊗I

!A

hA

? λ−1
- !A⊗I

εA⊗idI- A⊗I

wwwwwwwwww

!A⊗!A

dA

? id!A⊗eA- !A⊗I

wwwwwwwwww
ε⊗idI- A⊗I

wwwwwwwwww

@
@

@
@

@
ε⊗id!A

R
A⊗A

ε⊗ε

?

idA⊗hA

- A⊗!A
idA⊗eA

- A⊗I

wwwwwwwwww

The upper square commutes using the following reasoning

hA; λ−1; ε⊗idI = λ−1; hA⊗idI ; ε⊗idI Naturality of λ−1

= λ−1; (hA; ε)⊗(idI ; idI)
= λ−1; (idA)⊗(idI) Definition of coalgebra
= λ−1

The middle left square commutes by definition of a comonoid, and the middle right commutes
trivially. The lower left triangle does not commute, but we have from Proposition 11 that hA; dA is
a cofork of ε⊗ε; idA⊗hA and ε⊗id!A. The lower right square commutes trivially.

The symmetric case for ρ−1 instead of λ−1 works similarly. Considering the fourth diagram:

A ========= A

!A

hA

?
========= !A

?

hA

!A⊗!A

dA

?

γ!A,!A

- !A⊗!A
?

dA

A⊗A

ε⊗ε

?

γA,A

- A⊗A
?

ε⊗ε

The upper square commutes trivially. The middle square commutes because (!A, dA, eA) is a com-
mutative comonoid by definition. The lower square commutes by naturality of γ.

148 Chapter 4. Categorical Analysis

We have in the definition of a Linear category, that the comonoid morphisms, dA and eA, are also
coalgebra morphisms. Let us consider whether our candidates, e! and d!, have this property.

Proposition 13. The morphism e! is a coalgebra morphism between the coalgebras (A, h) and
(I, mI).

Proof. For e! to be a coalgebra morphism the following diagram must commute.

A
hA - !A

!A

hA

? δ - !!A
?

!hA

I

eA

?

mI

- !I
?

!eA

The upper square commutes by definition of a coalgebra. The lower square commutes since eA is a
coalgebra morphism (by definition).

Proposition 14. The morphism (hA; dA) is a cofork of the morphisms (ε⊗ε; hA⊗hA) and
(δ⊗δ; !ε⊗!ε): !A⊗!A →!A⊗!A.

Proof. Again we shall prove this equationally rather than with the use of diagrams.

hA; dA; ε⊗ε; h⊗h = d; h⊗h; ε⊗ε; h⊗h Proposition 10 and Corollary 3
= d; (h; ε)⊗(h; ε); h⊗h
= d; h⊗h Definition of a coalgebra
= h; d
= h; d; id⊗id

= h; d; (δ; !ε)⊗(δ; !ε) Definition of a comonad
= h; d; (δ⊗δ); (!ε⊗!ε)

Proposition 15. The morphism d! is a coalgebra morphism between the coalgebras (A, hA) and
(A⊗A, (hA⊗hA; mA,A)).

Proof. For d! to be a coalgebra morphism the following diagram must commute.

§4. The Model for Intuitionistic Linear Logic 149

A
hA - !A

!A

hA

? δ - !!A
?

!hA

!A⊗!A

dA

? δ⊗δ- !!A⊗!!A
m!A,!A- !(!A⊗!A)

?

!dA

A⊗A

ε⊗ε

?

h⊗h
- !A⊗!A

!ε⊗!ε

?

mA,A

- !(A⊗A)
?

!(ε⊗ε)

The upper square commutes by the definition of a coalgebra. The middle square commutes as dA

is a coalgebra morphism between the coalgebras (!A, δ) and (!A⊗!A, (δ⊗δ; m!A,!A)). The lower left
square does not commute, but follows from Proposition 14.12 The lower right square commutes
from the naturality of m.

Thus we have shown that for any coalgebra we have two morphisms, d! and e!, and that these are
natural transformations, form a commutative comonoid and are coalgebra morphisms.

We can now state a important property of our categorical model: soundness

Theorem 24. A Linear category, C, is a model of the LTC-theory (L,A).

Proof. To prove that C is a structure for the LTC-theory we simply proceed by induction over
the structure of a given term in context. To verify that C models the equations in context in A we
simply check them exhaustively. We shall simply give two examples.

1. Consider the following equation in context (which is slightly less general for clarity):

Γ1 . M1: !A1 Γ2 . M2: !A2 x1: !A1, x2: !A2 . N : B
DerEq

Γ1, Γ2 . derelict(promote M1, M2 for x1, x2 in N) = N [x1 := M1, x2 := M2]: B

This term in context amounts to the following diagram:

Γ1⊗Γ2
m1⊗m2- !A1⊗!A2

δ⊗δ- !!A1⊗!!A2
m- !(!A1⊗!A2)

!n - !B

@@

!A1⊗!A2

?

ε⊗ε

===== !A1⊗!A2

?

ε

n
- B

?

ε

The left triangle commutes by the definition of a comonad. The middle square commutes by
the fact that ε is a monoidal natural transformation and the right hand square commutes by
naturality of ε.

12In fact it would be disastrous were this square to commute. We would then have that hA; ε = id!A = ε;hA. In
other words we would have succeeded in collapsing the model to the extent that A ∼=!A.

150 Chapter 4. Categorical Analysis

2. Consider the following equation in context:

Γ1 . M1: !A1 Γ2 . M2: !A2 x1: !A1, x2: !A2 . N : B ∆ . P : C
DiscEq

Γ1, Γ2, ∆ . discard (promote M1, M2 for x1, x2 in N) in P
= discard M1, M2 in P : C

This term in context amounts to the following diagram:

Γ1⊗Γ2⊗∆
m1⊗m2⊗id- !A1⊗!A2⊗∆

δ⊗δ⊗id- !!A1⊗!!A2⊗∆
m⊗id- !(!A1⊗!A2)⊗∆

!n⊗p- !B⊗C

I⊗I⊗∆
?

eA⊗eA⊗id

============ I⊗I⊗∆
?

eA⊗eA⊗id

λI⊗id

- I⊗A

?

eA⊗id

id⊗p
- I⊗C

?

eA⊗id

C

?

λ

The left hand square commutes as δ is a comonoid morphism by definition. The middle square
commutes as eA is a monoidal natural transformation. The right hand square commutes by
naturality of e.

In fact, it is the case that a Linear category models all the reduction rules from Chapter 3, if they
are regarded as equations in context. For example, consider the following equation in context which
arises from the cut elimination process.

Γ1 . M1: !A ∆ . M2: !B Θ . M3: !C x: !A, y: !C . N : D

Γ, ∆, Θ . promote M1, (discard M2 in M3) for x, y in N
= discard M2 in (promote M1, M3 for x, y in N) :!D

Categorically this amounts to the following equational reasoning

m1⊗m2; id⊗δ; id⊗!n; δ⊗δ; m!A,!A; !p
= m1⊗m2; id⊗δ; δ⊗id; id⊗!n; id⊗δ; m!A,!C ; !p
= m1⊗m2; id⊗δ; δ⊗id; id⊗δ; id⊗!!n; m!A,!C ; !p Naturality of δ.
= m1⊗m2; id⊗δ; δ⊗id; id⊗δ; m; !(id⊗!n); !p Naturality of m.
= m1⊗m2; δ⊗δ; id⊗δ; m; !(id⊗!n); !p
= m1⊗m2; δ⊗δ; id⊗!δ; m; !(id⊗!n); !p Def of a comonad.
= m1⊗m2; δ⊗δ; m; !(id⊗δ); !(id⊗!n); !p

The other reduction rules follow by similar (trivial) reasoning.

5 An Example Linear Category

There are many categories which satisfy the definition of a Linear category. In this section we shall
detail just one, although from a computer science perspective, it is an extremely important one. We
shall consider the category of domains and strict morphisms. This is an important example, as it is
not a CCC, and hence, not directly a model of the extended λ-calculus. The fact that it is a Linear
category, along with the Girard translation, shows us how it can be considered as a model for the
extended λ-calculus.

§6. Comparison: Seely’s Model 151

5.1 The Category Doms

This is the category of pointed ω-cpos (domains) and strict morphisms. We take A⊗B to be the
smash product of the domains A and B, A−◦B to be the set of strict morphisms from A to B
ordered pointwise, I to be the two point domain (2), A&B to be the cartesian product and A⊕B to
be the coalesced sum. We shall use the lifting construction to represent !A. The lifting of a domain
A, written A⊥, is the set {(0, a)|a ∈ A} ∪ {⊥} as a carrier and is ordered by x v y if x = ⊥ or
x = (0, a) and y = (0, a′) and a vA a′.

We can define two constructions: delta: A⊥ → A⊥⊥ which maps ⊥ to ⊥ and (0, a) to (0, (0, a))
and eps: A⊥ → A which maps ⊥ to ⊥ and (0, a) to a. It is not hard to see that the lifting functor,
together with eps and delta form a comonad on Doms. We can then define a morphism mI : I → I⊥
which maps ⊥ to ⊥ and 0 to (0, 0). We can also define a family of morphisms mA,B: A⊥⊗B⊥ →
(A⊗B)⊥ which map ⊥ to ⊥ and ((0, a), (0, b)) to (0,⊥) if either a = ⊥ or b = ⊥ and to (0, (a, b))
otherwise. We can also define two other families of morphisms: dA: A⊥ → A⊥⊗A⊥ which maps ⊥
to ⊥ and (0, a) to ((0, a), (0, a)) and eA: A⊥ → 2 which maps ⊥ to ⊥ and (0, a) to 0. It is then
routine to check that these constructions satisfy the definition of a Linear category.

6 Comparison: Seely’s Model

The most well-known alternative definition of a categorical model of ILL is that due to Seely [69].
Rather than use coalgebras, Seely’s model provides a pair of natural isomorphisms which relates the
tensor product and the categorical product. It should be noted that this means that products must
exist to model the exponential. This is an important difference between Seely’s model and a Linear
category where the exponential can be fully given without reference to products (and indeed was
done so in an earlier presentation [15]).

In this section we shall consider in detail Seely’s proposal and, where appropriate, compare it
with that given in Definition 35. First let us recall Seely’s definition.

Definition 40. A Seely category, C, consists of:

1. A SMCC with finite products, together with a comonad (!, ε, δ).

2. For each object A of C, (!A, dA, eA) is a comonoid with respect to the tensor product.

3. There exists natural isomorphisms n: !A⊗!B
∼
−→!(A&B) and p: I

∼
−→!t.

4. The functor ! takes the comonoid structure of the cartesian product to the comonoid structure
of the tensor product.

The naturality of n amounts to the following diagram commuting for morphisms f : A → C and
g: B → D.

!A⊗!B
n- !(A&B)

!C⊗!D

!f⊗!g

?

n
- !(C&D)

?

!(f&g)

Condition 4 (which seems to have been overlooked13 by Barr [10] and Troelstra [75]) amounts to
requiring that the following two diagrams commute.

13Asperti and Longo [6, Lemma 5.5.4] (falsely) claim it holds automatically.

152 Chapter 4. Categorical Analysis

!A
d- !A⊗!A

!A

wwwwwwwwww

!∆
- !(A&A)

?

n

!A
e - I

!A

wwwwwwwwww

!>
- !t

?

p

We have appropriate candidates for the natural isomorphisms n, n−1, p and p−1 in the interpretation
of the following proofs.

A − A
Dereliction

!A − A
Weakening

!A, !B − A

B − B
Dereliction

!B − B
Weakening

!A, !B − B
(&R)

!A, !B − A&B
Promotion

!A, !B − !(A&B)
(⊗L)

!A⊗!B − !(A&B)

A − A
(&L)

A&B − A
Dereliction

!(A&B) − A
Prom.

!(A&B) − !A

B − B
(&L)

A&B − B
Dereliction

!(A&B) − B
Prom.

!(A&B) − !B
(⊗R)

!(A&B), !(A&B) − !A⊗!B
Cont.

!(A&B) − !A⊗!B

(tR)
− t

Promotion
− !t

(IL)
I − !t

(IR)
− I

Weakening
!t − I

Essentially the main difference arises in the interpretation of the Promotion rule. With a Seely
category this is interpreted:

[[Γ1, . . . , Γn . promote M1, . . . , Mn for x1, . . . , xn in N : !B]]
def
= [[Γ1 . M1: !A1]]⊗ . . .⊗[[Γn . Mn: !An]]; n; δ; !n−1; !([[x1: !A1, . . . , xn: !An . N : B]])

Let us consider the n morphism. Since it maps the tensor product to the categorical product, we
might expect it to preserve the symmetric monoidal structure of the tensor product (as a categorical
product can be thought of as a tensor product). For example, we might expect it to preserve the
symmetry of the tensor product.

!A⊗!B
n- !(A&B)

!B⊗!A

γ

?

n
- !(B&A)

?

!γ& (4.39)

(Where we write γ& to denote the symmetry morphism for the categorical product.) However given
Seely’s definition this diagram does not necessarily commute. Condition 4 of the definition only
entails that the following diagram commutes.

§6. Comparison: Seely’s Model 153

!A⊗!A
n- !(A&A)

!A⊗!A

γ

?

n
- !(A&A)

?

!γ&

Unfortunately, we can find situations where we require diagram 4.39. Consider the following two
proofs (given in the sequent calculus formulation).

π1

!A, !B − C
Exchange

!B, !A − C
Promotion

!B, !A − !C
Exchange

!A, !B − !C

π1

!A, !B − C
Promotion

!A, !B − !C

Clearly these two proofs are equivalent (they are given the same terms by the term assignment system
from Chapter 3). Let us consider their interpretation. In a Linear category, their interpretations
are equal as the following diagram commutes.

!A⊗!B
γ - !B⊗!A

!!A⊗!!B

δ⊗δ

? γ- !!B⊗!!A
?

δ⊗δ

!(!A⊗!B)

m

? !γ- !(!B⊗!A)
?

m

@@

!C

![[π1]]

?
�

![[π1]]
!(!A⊗!B)

?

!γ

The upper square commutes by naturality of γ, and the middle square commutes by definition of
m. The left triangle commutes trivially and the right triangle commutes by definition of a SMC. In
a Seely category the equivalence of the two proofs implies the following diagram commuting.

154 Chapter 4. Categorical Analysis

!A⊗!B
γ - !B⊗!A

!(A&B)

n

?
!(B&A)

?

n

!!(A&B)

δ

?
!!(B&A)

?

δ

!(!A⊗!B)

!n−1

?
!(!B⊗!A)

?

!n−1

!C

![[π1]]

?
�

![[π1]]
!(!A⊗!B)

?

!γ

There seems to be no way of filling in this diagram using Seely’s original definition. However if we
include condition 4.39 given earlier, we can complete the diagram in the following way.

!A⊗!B
γ - !B⊗!A

!(A&B)

n

? !(γ&)- !(B&A)
?

n

!!(A&B)

δ

? !!(γ&)- !!(B&A)
?

δ

!(!A⊗!B)

!n−1

? !γ- !(!B⊗!A)
?

!n−1

@@

!C

![[π1]]

?
�

![[π1]]
!(!A⊗!B)

?

!γ

The upper square square commutes given our new condition, the middle square commutes by natu-
rality of δ and the lower square again by our new condition. The two triangles commute as for the
Linear category case.

Thus we might extend the definition of a Seely category to incorporate the fact that the n (and p)
morphisms should preserve the symmetric monoidal structure of the tensor product. This amounts
to four commuting diagrams which are given in Figure 4.6.

§6. Comparison: Seely’s Model 155

!A⊗!B
n- !(A&B)

!B⊗!A

γ

?

n
- !(B&A)

?

!γ&

(!A⊗!B)⊗!C
n⊗id!C- !(A&B)⊗!C

n- !((A&B)&C)

!A⊗(!B⊗!C)

α

?

id!A⊗n
- !A⊗!(B&C)

n
- !(A&(B&C))

?

!α&

I⊗!A
p⊗id!A- !1⊗!A

!A

λ

?
�

!snd
!(1&A)

?

n

!A⊗I
id!A⊗p- !A⊗!1

!A

ρ

?
�

!fst
!(A&1)

?

n

Figure 4.6: Four Additional Conditions for a Seely Category.

Given these new conditions let us now consider the property of soundness for a Seely category.
Seely showed that all terms in context were modelled by a Seely category.

Proposition 16. (Seely) A Seely category, C, is a structure for the LTC-theory (L,A).

However for a Seely category to also be a model for a LTC-theory we need to show that the equations
in context in A are modelled by equal morphisms. Unfortunately, for a Seely category we find that
it is not true.

Lemma 16. Given a Seely category, C, and the LTC-theory (L,A), it is not the case that for all
equations in context, Γ . M = N : A, in A that [[Γ . M : A]] =C [[Γ . N : A]].

A counter-example is the CopyEq equation in context. First let us recall the equation in context (in
fact we only need use a simplified version where the promoted term has only one free variable).

Γ . M : !A x: !A . N : B y: !B, z: !B . P : C
CopyEq

Γ . copy (promote M for x in N) as y, z in P
= copy M as x′, x′′ in

P [y := promote x′ for x in N, z := promote x′′ for x in N]: C

This equation in context implies the same commuting diagram for a Linear category as for a Seely
category.

Γ
m - !A

δ - !!A
!n - !B

!A⊗!A

d

?

δ⊗δ
- !!A⊗!!A

!n⊗!n
- !B⊗!B

?

d

p
- C

156 Chapter 4. Categorical Analysis

For a Linear category we can complete the diagram in the following way.

Γ
m - !A

δ - !!A
!n - !B

!A⊗!A

d

?

δ⊗δ
- !!A⊗!!A

?

d

!n⊗!n
- !B⊗!B

?

d

p
- C

The left hand square commutes by the condition that all free coalgebra morphisms are comonoid
morphisms. The right hand square commutes by naturality of d. Unfortunately it is not clear how
to make this diagram commute for a Seely category. The right hand square commutes by naturality
(as for a linear category), but then we can only reduce the left square to the following.

!A
δ - !!A

@
@

@
@

@

!(∆)

R 	�
�

�
�

�
!(∆)

!A⊗!A

d

?

n
- !(A&A) !(!A&!A) �

n
!!A⊗!!A

?

d

!A⊗!A

wwwwwwwwww

δ⊗δ
- !!A⊗!!A

wwwwwwwwww

In fact we find that neither the CopyEq nor the DiscEq equations in context are modelled correctly.
It is clear that we need to improve on Seely’s original definition to obtain a sound model of ILL.
Following a suggestion of Martin Hyland, we shall reconsider Seely’s model in a slightly more abstract
way. Let us consider some of the motivation behind the Seely construction.

First we shall recall a construction, the opposite of which (i.e. that generated by a monad) is
known as the “Kleisli category” [53, Page 143].

Definition 41. Given a comonad, (!, ε, δ) on a category C, we take all the objects A in C and for

each morphism f : !A → B in C we take a new morphism f̂ : A → B. The objects and morphisms
form the co-Kleisli category, C!, where the composition of the morphisms f̂ : A → B and ĝ: B → C
is defined by the following:

f̂ ; ĝ
def
= ̂(δA; !f ; g)

It is easy to see that this has strong similarities with the Girard translation given in Chapter 2 of

IL into ILL where the intuitionistic implication is decomposed: (A → B)◦
def
= !(A◦)−◦ B◦. In fact,

as first shown by Seely [69], the co-Kleisli construction can be thought of as a categorical equivalent
of the Girard translation.

Proposition 17. (Seely) Given a Seely category, C, the co-Kleisli category C! is cartesian closed.

Proof. (Sketch) Given two objects A and B their exponent is defined to be !A−◦B. Then we have
the following sequence of isomorphisms.

C!(A&B, C) ∼= C(!(A&B), C) By definition
∼= C(!A⊗!B, C) By use of the n isomorphism
∼= C(!A, !B−◦C) By C having a closed structure
∼= C!(A, !B−◦C) By definition

§6. Comparison: Seely’s Model 157

We know from Kleisli’s construction that we have the following adjunction.

C!

C

G

6

`

?

F

Seely’s model arises from the desire to make the co-Kleisli category cartesian closed, which is achieved
by including the n and p natural isomorphisms. This means we have an adjunction between a SMCC
(C) and a CCC (C!). As we can trivially view a CCC as a SMCC, we then have an adjunction between
two SMCCs. We might expect that this is a monoidal adjunction.

Definition 42. A monoidal adjunction, 〈F, G, η, ε〉: C ⇀ D is an adjunction where F and G are
monoidal functors and η and ε are monoidal natural transformations.

Let us now state a new definition for a Seely-style category and then investigate some of its prop-
erties.

Definition 43. A new-Seely category, C, consists of

1. a SMCC, C, with finite products, together with

2. a comonad, (!, ε, δ), and

3. two natural isomorphisms, n: !A⊗!B
∼
−→!(A&B) and p: I

∼
−→!t

such that the adjunction, 〈F, G, η, ε〉, between C and C! is a monoidal adjunction.

Assuming that F is monoidal gives us the following morphism and natural transformation:

mI : I → F t
mA,B: FA⊗FB → F (A&B)

Assuming that G is monoidal gives us the following morphism and natural transformation;

m′
t: t → GI

m′
A,B: GA&GB → G(A⊗B)

We also assume that ε and η are monoidal natural transformations. This amounts to the following
diagrams

FG(A)⊗FG(B)
εA⊗εB - A⊗B

F (GA&GB)

mGA,GB

?

Fm′
A,B

- FG(A⊗B)

6

εA⊗B

I ========= I

F t

mI

?

FG(I)

Fm′
t

?

εI

- I

wwwwwwwwwwwwwwwwwwwwwwww

158 Chapter 4. Categorical Analysis

A&B
ηA&ηB- GF (A)&GF (B)

GF (A&B)

η
A&B

?
�
GmA,B

G(FA⊗FB)
?

m′
FA,FB

t ========= t

GI
?

m′
t

t

wwwwwwwwwwwwwwwwwwwwwwww

ηt

- GF (t)
?

GmI

It is easy to see that mI is Seely’s morphism p and mA,B is Seely’s natural transformation n. In
fact, we can define their inverses:

m−1
I

def
= Fm′

t; εI : F t → I

m−1
A,B

def
= F (ηA&ηB); Fm′

FA,FB; εFA⊗FB: F (A&B) → FA⊗FB

Lemma 17. (m−1
I and mI) and (m−1

A,B and mA,B) are inverses.

Proof. By easy construction.

Hence the monoidal adjunction itself provides the isomorphisms !A⊗!B ∼=!(A&B) and I ∼=!t. It is
amusing to notice the following fact.

Proposition 18. Given a new-Seely category, C, the diagrams in Figure 4.6 hold by the fact that
F is a monoidal functor.

Proof. By writing our what it means for F to be a monoidal functor yields the relevant diagrams.

As the co-Kleisli category is a CCC it has a canonical commutative comonoid structure, (A,4,>), on
all objects A. We can use this and the natural transformations arising from the monoidal adjunction
to define a comonoid structure, (F (A), d, e), on the objects of C:

d
def
= F (4); m−1

A,A: F (A) → F (A)⊗F (A)

e
def
= F (>); m−1

I : F (A) → I

Again taking mA,A as nA,A and mI as p, these definitions amount to condition 4 of Seely’s original
definition. Additionally we know from basic category theory [53, Page 143–144] that the adjunction
induces a (particular) comonad on C.

Proposition 19. Given a new-Seely category, there is a comonad (FG, FηG, ε) induced on C,
which is precisely (!, ε, δ).

Thus we now know that we have at least as much structure as Seely’s original definition. Of course,
we have the extra structure of a monoidal adjunction and we shall see how these are precisely enough
to produce a sound model for the LTC-theory. First of all, let us consider the comonad.

Proposition 20. Given a new-Seely category, the induced comonad (FG, FηG, ε) is a monoidal
comonad (FG, FηG, ε, mA,B, mI).

Proof. Take the following:

mI
def
= mI ; Fm′

t: I → FG(I)

mA,B
def
= mGA,GB; Fm′

A,B: FG(A)⊗FG(A) → FG(A⊗B)

§6. Comparison: Seely’s Model 159

First we shall check the naturality of mA,B: given two morphisms f : A → C and g: B → D

FG(A)⊗FG(B)
mG(A),G(B)- F (G(A)&G(B))

Fm′
A,B- FG(A⊗B)

FG(C)⊗FG(D)

FG(f)⊗FG(g)

?

mG(C),G(D)

- F (G(C)&G(D))
?

F (Gf&Gg)

Fm′
C,D

- FG(C&D)
?

FG(f⊗g)

The left hand square commutes by naturality of m and the right hand square commutes by naturality
of m′.

Now we shall check that FG is a monoidal functor. As it is the composition of two monoidal
functors, this is immediately obvious, and so a formal proof is omitted. We know that ε is a monoidal
natural transformation by assumption. We also have that η is a monoidal natural transformation
and it is a simple exercise to see that FηG is a monoidal functor.

Lemma 18. Given a new-Seely category, the comonoid morphisms e: FG(A) → I and d: FG(A) →
FG(A)⊗FG(A) are monoidal natural transformations.

Proof. We shall just give the proofs for d and e being natural transformations, the diagrams to
prove that they are monoidal are laborious and omitted. For d to be a natural transformation, the
following diagram must commute.

FG(A)
FG(f) - FG(B)

F (GA&GA)

F (4)

? F (Gf&Gf) - F (GB&GB)
?

F (4)

FG(A)⊗FG(B)

m−1

?

FG(f)⊗FG(f)
- FG(B)⊗FG(B)

?

m−1

The upper square commutes by naturality of 4 and the lower by naturality of m−1. For e to be a
natural transformation, the following diagram must commute.

FG(A)
FG(f)- FG(B)

F t

F (>)

?
========== F t

?

F (>)

I

m−1
I

?
============ I

?

m−1
I

160 Chapter 4. Categorical Analysis

Lemma 19. Given a new-Seely category, the comonoid morphisms e: FG(A) → I and d: FG(A) →
FG(A)⊗FG(A) are coalgebra morphisms.

Proof. Requiring that e: FG(A) → I is a coalgebra morphism amounts to the following diagram
commuting.

FG(A)
FηGA - FG(FG(A))

F t

F>

?
FGF t

?

FGF>

I

m−1
I

?

mI

- F t
Fm′

t

- FG(I)
?

FG(m−1
I)

We prove that this commutes equationally

FηGA; FGF (>); FG(m−1
I)

= FηGA; FGF (>); FGF (m′
t); FG(εI)

= F>; Fη; FGF (m′
t); FG(εI) Naturality

= F>; Fm′
t; FηGI ; FG(εI) Naturality

= F>; Fm′
t Def of adjunction

= F>; m−1
I ; mI ; Fm′

t

Requiring that d: FG(A) → FG(A)⊗FG(A) is a coalgebra morphism amounts to the following
diagram commuting.

F G(A)
F ηGA - F G(F G(A))

F (GA&GA)

F (4)

?
F GF (GA&GA)

?
F GF (4)

F G(A)⊗F G(A)

m
−1
GA,GA

?
F ηGA⊗F ηGA

- F GF G(A)⊗F GF G(A)
mGF GA,GF GA

- F (GF GA&GF GA)
Fm′

F GA,F GA

- F G(F GA⊗F GA)

?
F G(m

−1
GA,GA

)

We prove that this commutes equationally.

F (4); m−1
GA,GA; FηG⊗FηG; mGFGA,GFGA; F (m′

FGA,FGA)

= F (4); m−1
GA,GA; FηG⊗FηG; mGFGA,GFGA; F (m′

FGA,FGA); FηG; ε

= F (4); F (ηG&ηG); m−1; m; Fm′; FηG; ε Nat of m−1

= F (4); F (ηG&ηG); Fm′; FηG; ε
= F (4); F (ηG&ηG); Fη; FGF (m′); ε Nat of η
= F (4); Fη; FGF (ηG&ηG); FGF (m′); ε Nat of η
= Fη; FGF (4); FGF (ηG&ηG); FGF (m′); ε Nat of η
= Fη; FGF (4); FG(m−1)

Lemma 20. Given a new-Seely category, if f : (FG(A), FηGA) → (FG(B), FηGB) is a coalgebra
morphism then it is also a comonoid morphism.

§6. Comparison: Seely’s Model 161

Proof. Assuming that f is a coalgebra morphism amounts to the following diagram commuting.

FG(A)
FηGA- FG(FG(A))

FG(B)

f

?

FηGB

- FG(FG(B))
?

FG(f)

If f is a comonoid morphism then two diagrams must commute. Firstly:

FG(A)
f - FG(B)

@
@

@
@

@

FηG

R

(1)

	�
�

�
�

�
FηG

FG(FG(A))
FG(f)

- FG(FG(B))

(2) (3) (4)

F t

F (>)

?
========== F t

?

F (>)

=============== F t
?

F (>)

========== F t
?

F (>)

I

m−1

t

?
============ I

m−1

t

?
================ I

?

m−1

t

============ I
?

m−1

t

Square (1) commutes by assumption. Squares (2), (3) and (4) commute by definition of >. The
lower squares all commute trivially. The second diagram is as follows.

F G(A)
f - F G(B)

@@@
F ηG

R
(1)

	���F ηG

F G(F G(A))
F G(f) - F G(F G(B))

(2) (3) (4)

F (GA&GA)

F (4)

?
F (ηG&ηG)- F (GF GA&GF GA)

?
F (4)

F (Gf&Gf) - F (GF GB&GF GB)

F (4)

?
� F (ηG&ηG)

F (GB&GB)

?
F (4)

(5) (6) (7)

F G(F G(A))⊗F G(F G(A))

?
m−1

F G(f)⊗F G(f)- F G(F G(B))⊗F G(F G(B))

m−1

?

���F ηG⊗F ηG �
	���

ε⊗ε
(8) @@@ε⊗ε R

I@@@
F ηG⊗F ηG

F G(A)⊗F G(A)

m−1

?
f⊗f

- F G(B)⊗F G(B)

?

m−1

Square (1) commutes by assumption. Squares (2), (3) and (4) commute by naturality of 4. Squares
(5), (6) and (7) commute by naturality of m−1 and, finally, square (8) commutes by naturality of ε.

Thus we can state the following relationship.

Theorem 25. Every new-Seely category is a Linear category.

162 Chapter 4. Categorical Analysis

Proof. From Proposition 20 and lemmas 18, 19 and 20.

We can hence show that a new-Seely category is a sound model for the LTC-theory.

Theorem 26. A new-Seely category, C, is a model for the LTC-theory, (L,A).

Somewhat surprisingly, we find that the so-called Seely isomorphisms (n and p) exist in a Linear
category with products.

Lemma 21. Given a Linear category with finite products we can define the following natural
isomorphisms:

n
def
= δ⊗δ; m!A,!B; !(4); !((id⊗eB)&(eA⊗id)); !(ρ&λ); !(ε&ε): !A⊗!B →!(A&B)

n−1 def
= d

A&B
; !fst⊗!snd: !(A&B) →!A⊗!B

p
def
= mI ; !>: I →!t

p−1 def
= et: !t → I

Proof. By (long) construction.

Given these isomorphisms we can repeat the reasoning of Proposition 17 to get the following property
of the co-Kleisli category associated with a Linear category.

Proposition 21. Given a Linear category, C, its co-Kleisli category, C!, is cartesian closed.

It is important to note that the co-Kleisli category is only cartesian closed if C has (strong) products.
If a Linear category does not have products it is still a model for the multiplicative, exponential
fragment of ILL, unlike Seely’s model which critically requires the products.

Given our earlier calculations we might consider the adjunction between a Linear category and
its co-Kleisli category, where we find that the following holds.

Lemma 22. The adjunction between a Linear category, C, (with finite products) and its co-Kleisli
category, C!, is a monoidal adjunction.

Thus when considering the complete intuitionistic fragment, the new-Seely and Linear categories are
equivalent. Theorem 25 shows that a monoidal adjunction between a particular SMCC (a new-Seely
category) and CCC (its co-Kleisli category) yielded a structure of a Linear category. Lemma 22
shows that a Linear category has the structure of a monoidal adjunction between it (a SMCC) and
its associated co-Kleisli category (a CCC). Thus the notion of a Linear category is in some senses
equivalent to the existence of a monoidal adjunction between a SMCC and a CCC. This observation
has been used by Benton [11] to derive the syntax of a mixed linear and non-linear term calculus.

7 Comparison: Lafont’s Model

In his thesis [47, 46], Lafont proposed an alternative model for ILL. Rather than directly using
comonad or coalgebra structures his model relies on imposing a strict condition involving a comonoid
structure.

Definition 44. A Lafont category, C consists of

1. A SMCC with finite products

2. For each object A of C, !A is the co-free commutative comonoid co-generated by A

An alternative (and equivalent) definition is given by Lafont in terms of categorical combinators.

§7. Comparison: Lafont’s Model 163

Definition 45. A Lafont category, C, consists of

1. A SMCC with finite products

2. Three (families of) combinators:

readA : !A → A
killA : !A → I

duplA : !A →!A⊗!A

such that (!A, killA, duplA) forms a commutative comonoid.

3. A combinator formation rule

C: A → B er: A → I du: A → A⊗A

make(C, er, du): A →!B

with the following conditions

(a) (A, er, du) forms a commutative comonoid.

(b) make(C, er, du) is the only morphism π: A →!B such that

i. π; readB = C

ii. π; killB = er

iii. π; duplB = du

Lafont showed that this could be considered a categorical model of ILL in a similar way to Seely:
namely, by checking that the co-Kleisli category is cartesian closed.

Proposition 22. (Lafont) Given a Lafont category, C, there are canonical isomorphisms

!A⊗!B ∼= !(A&B)

I ∼= !t

Theorem 27. (Lafont) Given a Lafont category, C, then C! is cartesian closed.

Proof. By construction and use of Proposition 22.

Of course, as we have seen earlier with Seely’s model, there is more to producing a sound model of
ILL than simply ensuring that a particular construction yields a cartesian closed category. Rather
than considering directly whether a Lafont category is a sound model of ILL we shall first give a
slightly more abstract (but equivalent) definition of a Lafont category and then use this to consider
the relationship between a Lafont category and a Linear category.

Definition 46. A Lafont category arises from requiring that there is the following adjunction
between a SMCC C, and its category of commutative comonoids, coMonc(C).

coMonc(C)

C

F

?

a

6

G

where G maps objects A to the ‘free’ comonoid (GA, dA, eA) and F is the forgetful functor (and G
is right adjoint to F).

164 Chapter 4. Categorical Analysis

The definition of an adjunction tells us that there exists a natural transformation ε: FG
.
→ Id, such

that for all objects (A, d, e) in coMonc(C) and objects B in C, for all morphisms g: F (A, d, e) → B
there is a unique morphism f : (A, d, e) → G(B) such that the following diagram commutes:

F (A, d, e)
Ff- F (G(B))

@
@

@
@

@
g

R
B
?

εB

Expanding out this diagram gives the following (where ! = FG)

A
f - !B

@
@

@
@

@
g

R
B
?

εB

Since we have that f is a morphism in the category of comonoids, we know that it will also satisfy
the following diagrams.

A
f - !B

I

e

?
========= I

?

eB

A
f - !B

A⊗A

d

?

f⊗f
- !B⊗!B

?

dB

Thus writing make(g, d, e) for f and read for ε, we have precisely Lafont’s (second) definition for a
Lafont category. The definition of an adjunction also says that there exists a natural transformation
η: Id

.
→ GF such that for all objects (A, d, e) in coMonc(C) and objects B in C, for all morphisms

f : (A, d, e) → G(B) there is a unique morphism g: F (A, d, e) → B such that the following diagram
commutes:

(A, d, e)
ηA- GF (A, d, e)

@
@

@
@

@
f

R
G(B)

?

Gg

It is worth pointing out that the components of the natural transformation η are morphisms in
coMonc(C) and as such are comonoid morphisms .

We shall make use of the following fact that the forgetful functor F : coMonc(C) → C preserves
the symmetric monoidal structure ‘on the nose’.

Lemma 23. The forgetful functor F : coMonc(C) → C is a strict (and, hence, strong) symmetric
monoidal functor (F, mA,B, mI).

Given that we have an adjunction, basic category theory [53, Page 134] tells us that there is a
comonad induced on C.

Proposition 23. Given a Lafont category, there is a comonad (FG, FηG, ε) induced on C.

In fact, we can prove that this comonad is a monoidal comonad.

§7. Comparison: Lafont’s Model 165

Proposition 24. Given a Lafont category, the induced comonad (FG, FηG, ε) is a monoidal
comonad (FG, FηG, ε, mA,B, mI).

Proof. Take the following morphisms

ε⊗ε : FG(A)⊗FG(B) → A⊗B

idI : I → I

Then by definition of an adjunction we have that the following diagrams commute.

FG(A)⊗FG(B)
f ′
- FG(A⊗B)

@
@

@
@

@
ε⊗ε

R
A⊗B

?

ε

I
f ′′

- FG(I)

@@

I
?

ε

Moreover we know that the morphisms f ′ and f ′′ are unique and so we shall call them mA,B and
mI respectively. It is worth pointing out that these morphisms are also comonoid morphisms. First
we shall check the naturality of mA,B, given two morphisms f : A → C and g: B → D, this implies
the following required equality.

mA,B; FG(f⊗g) = FG(f)⊗FG(g); mC,D

By the definition of an adjunction, we know that for all morphisms h: FA → B there exists a unique
morphism k: FA → FG(B) such that the following diagram commutes.

FA
k- FG(B)

@
@

@
@

@
h

R
B
?

ε

We shall take as h the morphism (FG(f)⊗FG(g); ε⊗ε): FG(A)⊗FG(B) → C⊗D and the two sides
in the equality above as candidates for k. First we have to check that they satisfy the diagram.
Considering the first candidate:

mA,B; FG(f⊗g); ε = mA,B; ε; f⊗g
= ε⊗ε; f⊗g
= FG(f)⊗FG(g); ε⊗ε

Considering the second candidate:

FG(f)⊗FG(g); mC,D; ε = FG(f)⊗FG(g); ε⊗ε

We can see that they are both valid candidates for k, but as k is unique by definition, we conclude
that the candidates are equal, and thus the naturality equation holds.

Now we shall check that FG is a symmetric monoidal functor. Recalling Definition 25, this
amounts to requiring four equalities to hold and we shall take each in turn. First consider the
equality for λ.

mI⊗idFG(A); mI,A; FG(λ) = λFG(A)

Again, we verify this using the definition of an adjunction. We take as h the morphism
(λFG(A); ε): I⊗FG(A) → A and the two sides in the above equality as candidates for k. Check-
ing the first candidate:

166 Chapter 4. Categorical Analysis

mI⊗id; m; FG(λ); ε = mI⊗id; m; ε; λ
= mI⊗id; ε⊗ε; λ
= mI⊗id; ε⊗id; id⊗ε; λ
= id⊗ε; λ
= λ; ε

Checking the second candidate is trivial. Thus as they are both valid candidates, and the uniqueness
of the adjunction tells us that they must be equal. The equality for ρ holds similarly and is omitted.
Next we consider the associativity isomorphism α.

m⊗id; m; FG(α) = α; id⊗m; m

Again we verify this using the definition of an adjunction. We take as h the morphism
((ε⊗ε)⊗ε; α): (FG(A)⊗FG(B))⊗FG(C) → A⊗(B⊗C) and the two sides in the above equality as
candidates for k. Checking the first candidate:

m⊗id; m; FG(α); ε = m⊗id; m; ε; α
= m⊗id; ε⊗ε; α
= m⊗id; ε⊗id; id⊗ε; α
= (ε⊗ε)⊗id; id⊗ε; α
= (ε⊗ε)⊗ε; α

Checking the second candidate:

α; id⊗m; m; ε = α; id⊗m; ε⊗ε
= α; id⊗m; id⊗ε; ε⊗id

= α; id⊗(ε⊗ε); ε⊗id

= α; ε⊗(ε⊗ε)
= (ε⊗ε)⊗ε; α

Thus they are both valid candidates and the uniqueness of the adjunction tells us that they must
be equal. Finally we consider the equality for the symmetry isomorphism γ.

mA,B; FG(γ) = γ; mB,A

Again we verify this using the definition of an adjunction. We take h to be the morphism
(ε⊗ε; γ): FG(A)⊗FG(B) → B⊗A and the two sides in the above equality as candidates for k.
Checking the first candidate:

m; FG(γ); ε = m; ε; γ
= ε⊗ε; γ

Checking the second candidate:

γ; m; ε = γ; ε⊗ε
= ε⊗ε; γ

Thus they are both valid candidates and the uniqueness of the adjunction tells us that they must
be equal.

Now we have to check that ε is a monoidal natural transformation. Recalling Definition 27 this
amounts to requiring that two diagrams commute. These diagrams are as follows.

FG(A)⊗FG(B)
mA,B- FG(A⊗B)

A⊗B

ε⊗ε

?
============ A⊗B

?

ε

I
mI- FG(I)

@@

I
?

ε

§7. Comparison: Lafont’s Model 167

Both these diagrams commute trivially by definition of an adjunction. Finally we shall check that
FηG is a monoidal natural transformation which amounts to two equalities. Firstly, we require the
equality:

mA,B; FηG = FηG⊗FηG; mFG(A),FG(B); FG(mA,B)

We shall verify this using the definition of an adjunction and take mA,B as h, and the two sides in
the above equality as candidates for k. Checking the first candidate:

m; FηG; ε = m

Checking the second candidate:

FηG⊗FηG; m; FG(m); ε = FηG⊗FηG; m; ε; m
= FηG⊗FηG; ε⊗ε; m
= m

Thus they are both valid candidates and the uniqueness of the adjunction tells us that they must
be equal. The second equality is:

mI ; FηG = mI ; FG(mI)

We verify this using the definition of an adjunction and take mI for h and the two sides in the above
equality as candidates for k. Checking the first candidate:

mI ; FηG; ε = mI

Checking the second candidate:

mI ; FG(mI); ε = mI ; ε; mI

= mI

Thus they are both valid candidates and the uniqueness of the adjunction tells us that they are
equal. Thus we are done.

Let us briefly consider the comonoid structures. We know that G maps an object A to the ‘free’
comonoid (GA, dA, eA). Let us consider the structure (FG(A), dA, eA) where we have the following
definitions.

dA
def
= F (dA); mGA,GA

eA
def
= F (eA); mI

We have from Lemma 23 that F is a strict, symmetric monoidal functor, and so both mA,B and mI

are identities. It is then easy to see the following.

Lemma 24. The structure (FG(A), dA, eA) is a commutative comonoid.

Proof. By construction (Omitted).

Lemma 25. Given a Lafont category, C, it is the case that eA: FG(A) → I and dA: FG(A) →
FG(A)⊗FG(A) are monoidal natural transformations.

Proof. The fact that they are monoidal is given by the fact that both mA,B and mI are monoidal
morphisms by definition. For d to be a natural transformation, the following diagram must commute.

168 Chapter 4. Categorical Analysis

FG(A)
FG(f) - FG(B)

F (GA⊗GA)

F (dA)

? F (Gf⊗Gf) - F (GB⊗GB)
?

F (dB)

FG(A)⊗FG(A)

m−1

?

FG(f)⊗FG(f)
- FG(B)⊗FG(B)

?

m−1

The upper square commutes since Gf is a comonoid morphism for all morphisms f . The lower
square commutes by naturality of m. For e to be a natural transformation the following diagram
must commute.

FG(A)
FG(f)- FG(B)

FI

F (eA)

?
========== FI

?

F (eB)

I

m−1
I

?
============ I

?

m−1
I

The upper square commutes since Gf is a comonoid morphism for all morphisms f . The lower
square commutes trivially.

Lemma 26. Given a Lafont category, C, it is the case that eA: FG(A) → I and dA: FG(A) →
FG(A)⊗FG(A) are also coalgebra morphisms.

Proof. Requiring that eA: FG(A) → I is a coalgebra morphism amounts to the following equality.

eA; mI = FηGA; FG(eA)

As in the previous proof, we shall verify this using the definition of an adjunction and take eA as h
and the two sides of the above equality as candidates for k. Checking the first candidate:

eA; mI ; ε = eA

Checking the second candidate:

FηG; FG(eA); ε = FηG; ε; eA

= eA

Thus they are both valid candidates and the uniqueness of the adjunction tells us that they are
equal.

Requiring that dA: FG(A) → FG(A)⊗FG(A) is a coalgebra morphism amounts to the following
equality.

§7. Comparison: Lafont’s Model 169

FηGA; FG(dA) = dA; FηGA⊗FηGA; mFG(A),FG(A)

We verify this using the definition of an adjunction and take dA as h and the two morphisms in the
above equality as candidates for k. Checking the first candidate:

FηG; FG(d); ε = FηG; ε; d
= d

Checking the second candidate:

d; FηG⊗FηG; m; ε = d; FηG⊗FηG; ε⊗ε
= d

Thus they are both valid candidates and the uniqueness of the adjunction tells us that they are
equal.

Lemma 27. Given a Lafont category, C, if f : (FG(A), FηG) → (FG(B), FηG) is a coalgebra
morphism, then it is also a comonoid morphism.

Proof. Assuming that f is a coalgebra morphism amounts to the following diagram commuting.

FG(A)
FηG- FG(FG(A))

FG(B)

f

?

FηG

- FG(FG(B))
?

FG(f)

If f is a comonoid morphism then two diagrams must commute. Firstly:

FG(A)
f - FG(B)

@
@

@
@

@

FηG

R

(1)

	�
�

�
�

�
FηG

FG(FG(A))
FG(f)

- FG(FG(B))

(2) (3) (4)

FI

F (eA)

?
========== FI

?

F (eFG(A))

=============== FI
?

F (eFG(B))

============ FI
?

F (eB)

I

m−1
I

?
============ I

?

m−1
I

================ I
?

m−1
I

============= I
?

m−1
I

Square (1) commutes by assumption. Squares (2) and (4) commute by the fact that η is a comonoid
morphism. Square (3) commutes by the fact that Gf is a comonoid morphism for all morphisms f .
The lower squares all commute trivially. The second diagram is as follows.

170 Chapter 4. Categorical Analysis

F G(A)
f - F G(B)

@@@
F ηG

R
(1)

	���F ηG

F G(F G(A))
F G(f) - F G(F G(B))

(2) (3) (4)

F (GA⊗GA)

F (dA)

?
F (ηG⊗ηG)- F (GF GA⊗GF GA)

?
F (dF GA)

F (Gf⊗Gf) - F (GF GB⊗GF GB)

F (dF GB)

?
� F (ηG⊗ηG)

F (GB⊗GB)

?
F (dB)

(5) (6) (7)

F G(F G(A))⊗F G(F G(A))

?
m−1

F G(f)⊗F G(f)- F G(F G(B))⊗F G(F G(B))

m−1

?

���F ηG⊗F ηG �
	���

ε⊗ε
(8) @@@ε⊗ε R

I@@@
F ηG⊗F ηG

F G(A)⊗F G(A)

m−1

?
f⊗f

- F G(B)⊗F G(B)

?

m−1

Square (1) commutes by assumption. Squares (2) and (4) commute by the fact that η is a comonoid
morphism. Square (3) commutes by the fact that G(f) is a comonoid morphism for all morphisms
f . Squares (5), (6) and (7) commute by naturality of m−1 and finally square (8) commutes by
naturality of ε.

Thus we can now state precisely the relationship between a Lafont category and a Linear category.

Theorem 28. Every Lafont category is a Linear category.

Proof. By Proposition 24 and Lemmas 25, 26 and 27.

We can show that a Lafont category is a sound model for the LTC-theory.

Theorem 29. A Lafont category, C, is a model for the LTC-theory (L,A).

8 Translations

In Chapter 2 we saw how the exponential connective (!) via the Girard translation gives ILL the
logical strength of IL. It is well known (see, for example, the book by Lambek and Scott [52]) that a
categorical model of IL is a cartesian closed category (CCC). As we have modelled the exponential
as a comonad (with particular structure) we would therefore expect this to generate a CCC in some
way. In fact we have already seen how the comonad along with the so-called Seely isomorphisms
in a Linear category ensures that the co-Kleisli construction yields a CCC. For completeness let us
repeat that proposition.

Proposition 25. Given a Linear category, C, the co-Kleisli category, C!, is cartesian closed.

Basic category theory [52, Corollary 6.9] shows that the co-Kleisli category is related to the category
of coalgebras in the following way.

Lemma 28. The co-Kleisli category is equivalent to the full subcategory of the category of coalge-
bras consisting of all free coalgebras.

Thus we have the following situation, where C is a Linear category.

§8. Translations 171

C
!

�
�

�
�

��

	�
�

�
�

�

C

@
@

@
@

@R

I@
@

@
@

@
C!

∪

6

We shall consider the category of coalgebras in more detail, as well as a certain subcategory which
was first identified by Hyland [15].

Proposition 26. Given a monoidal comonad, (!, ε, δ, mA,B, mI), on a SMC C, then C! is a symmetric
monoidal category.

Proof. The unit of this SMC is the coalgebra (I, mI). Given two coalgebras (A, hA) and (B, hB)
their tensor product is defined to be

(A, hA)⊗!(B, hB)
def
= (A⊗B, (hA⊗hB; mA,B)).

It is easy to verify that this is a coalgebra. Checking that the category of coalgebras is a SMC is
relatively simple and omitted.

It is interesting to note in the above proof the essential use of the monoidal structure of the
comonad and also the fact that given two free coalgebras (!A, δA) and (!B, δB), their tensor product
(!A⊗!B, (δ⊗δ; mA,B)) is not necessarily a free coalgebra.

The next obvious question is whether a symmetric monoidal closed category induces a closed
structure on the category of coalgebras. We find that this is not quite the case although we can
isolate those cases where it is true.

Proposition 27. Given a monoidal comonad (!, ε, δ, mA,B, mI) on a SMCC C, then within the
category of coalgebras, C!, the free coalgebras (!A, δ) have an internal hom.

Proof. We shall show that

(B, hB)−◦!(!A, δA)
def
= (!(B−◦A), δB−◦A),

is an internal hom. This can be checked by simple analysis of the adjunction F a G between C!

and C, where the forgetful functor F forgets the coalgebra structure, and the functor G maps any
object A to the free coalgebra (!A, δA). By definition the following bijection holds.

(A, hA)
f

−→ GB = (!B, δB)
=====================

F (A, hA) = A
f̂

−→ B

Hence the following sequence of bijections shows that the free coalgebras have an internal hom.

(C, hC) −→ (!(B−◦A), δ) in C!

============================
C −→ B−◦A in C

============================
C⊗B −→ A in C

==================================
(C⊗B, (hC⊗hB; m)) −→ (!A, δ) in C!

We can now consider some properties of the category of coalgebras for a Linear category.

172 Chapter 4. Categorical Analysis

Proposition 28. Given a Linear category C and consider its category of coalgebras, C!. The tensor
product of any two coalgebras (A, hA) and (B, hB) is actually a cartesian product.

Proof. We recall from Proposition 26 that the tensor product of the two coalgebras (A, hA) and
(B, hB) is defined as (A⊗B, (hA⊗hB; mA,B)). Proposition 12 shows that in the category of coalge-
bras every coalgebra has a monoidal structure given by the two natural transformations d! and e!.
These natural transformations can be used to define projection and diagonal morphisms, viz.

fst!
def
= idA⊗e!; ρA: A⊗B → A

snd! def
= e!⊗idB; λA: A⊗B → B

4! def
= d!: A → A⊗A.

Propositions 13 and 15 show that e! and d! are coalgebra morphisms and it is trivial to see that the
projection and diagonal are also coalgebra morphisms.

Let us check the proposed cartesian structure. Take a coalgebra (A, hA: A →!A) such that
f : (A, hA) → (B, hB) and g: (A, hA) → (C, hC) are coalgebra morphisms. We can take as a mor-
phism from (A, hA) to (B⊗C, (hB⊗hC ; mB,C)) the composite 4!; f⊗g. For this composite to be
a coalgebra morphism the following diagram must commute (recalling that d! is defined as the
composite hA; dA; ε⊗ε).

A
hA - !A

!A

hA

? δ - !!A
?

!hA

!A⊗!A

dA

? δ⊗δ - !!A⊗!!A
mA,A- !(!A⊗!A)

?

!dA

A⊗A

ε⊗ε

? hA⊗hA - !A⊗!A
?

!ε⊗!ε

mA,A- !(A⊗A)
?

!(ε⊗ε)

B⊗C

f⊗g

?

hB⊗hC

- !A⊗!B
?

FG(f)⊗FG(g)

mA,B

- !(A⊗B)
?

!(f⊗g)

The upper square commutes by definition of hA being a coalgebra structure map. The upper
middle square commutes as d is a coalgebra morphism. The left lower middle square commutes
by Proposition 14 (the fact that (hA; dA) is a cofork of δ⊗δ; !ε⊗!ε and ε⊗ε; hA⊗hA). The right
lower middle square commutes by naturality of m. The left lower square commutes as f and g are
coalgebra morphisms by assumption and the right lower square commutes by naturality of m.

For there to be a cartesian structure we require the following diagram to commute.

§8. Translations 173

A

	�
�

�
�

�
f

@
@

@
@

@

g

R
B A⊗A

?

4!

C

I@
@

@
@

@
fst!

�
�

�
�

�

snd!

�

B⊗C
?

f⊗g

We shall consider only the left hand square as the right hand one is similar. Expanding out the
definitions of 4! and fst!, gives the following diagram

A =================================== A

��

A ========== A �
ε

!A
?

hA

(1)

	�
�

�
�

�
ρ−1

(2)

!A⊗I �id⊗eA
!A⊗!A

?

dA

	�
�

�
�

�
ε⊗id

	�
�

�
�

�
ε⊗id

(3)

A

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
�

ρ
A⊗I

ρ−1

?
�
id⊗eA

A⊗!A �
id⊗hA

A⊗A
?

ε⊗ε

(4) (5) (6)

B

f

?
�

ρ
B⊗I

f⊗id

?
�
id⊗eC

B⊗!C

f⊗!g

?
�
id⊗hC

B⊗C
?

f⊗g

.

Square (1) commutes by naturality of ρ−1. Triangle (2) commutes by the definition of a commutative
comonoid (Definition 31). Triangle (3) does not commute but holds from an earlier cofork equality
(Proposition 11). Square (4) commutes by naturality of ρ, square (5) by naturality of e and square
(6) by g being a coalgebra morphism. The other squares commute trivially.

Lemma 29. Given a Linear category C and consider its category of coalgebras, C!. The coalgebra
(I, mI) is the terminal object and the morphism e!: A → I is the terminal morphism.

Proof. Recall that e! def
= hA; eA. Assuming that there is another terminal morphism f : A → I,

which as it is a coalgebra morphism must also be a comonoid morphism, and so make the following
diagram commute.

A
f - I

I

e!

?
========= I

?

e!

174 Chapter 4. Categorical Analysis

Thus the following holds.

e! = f ; e!

= f ; mI ; e Def
= f ; id e is monoidal
= f

Proposition 27 shows that internal homs exists for all the free coalgebras. Proposition 28 shows that
in the category of coalgebras for a linear category the tensor product is actually a cartesian product.
Thus all the free coalgebras are exponentiable, i.e. have internal homs with respect to the cartesian
structure. It is not just the free coalgebras which are exponentiable. Take two exponentiable
coalgebras (C, hC) and (D, hD) and form their product (Proposition 28 gives that the product is
equivalent to the tensor product). We take as the internal hom of the product of these coalgebras

(B, hB)−◦!((C, hC)&!(D, hD))
def
= ((B, hB)−◦!(C, hC))&!((B, hB)−◦!(D, hD)),

for all coalgebras (B, hB). Then the product of two exponentiable coalgebras is also an exponentiable
coalgebra by the following reasoning.

C
!(A⊗B, C&D)

=====================
C

!(A⊗B, C)&C
!(A⊗B, D)

======================
C

!(A, B−◦C)&C
!(A, B−◦D)

======================
C

!(A, (B−◦C)&(B−◦D))
===================

C
!(A, B−◦C&D)

The following subcategory was first identified by Hyland [15].

Theorem 30. (Hyland) The full subcategory of exponentiable objects, Exp(C!), of the category
of coalgebras of a Linear category C forms a CCC containing the category of free coalgebras.

Thus we have the following situation where C is a Linear category.

C
!

�
�

�
�

��

	�
�

�
�

�

C Exp(C!)

∪

6

@
@

@
@

@R

I@
@

@
@

@
C!

∪

6

We have considered two particular subcategories of the category of coalgebras which are cartesian
closed, a natural question is to ask which conditions are necessary to make the whole category
cartesian closed.

Definition 47. A pair of morphisms f, g: A → B is said to be a coreflexive pair if there exists a
morphism k: B → A such that f ; k = idA = g; k.

Proposition 29. In the category of coalgebras for a Linear category, C
!, the morphism hC is an

equalizer of the (coreflexive) pair (!hC , δC), i.e.

§8. Translations 175

(C, hC)
hC- (!C, δC)

!hC-

δC

- (!!C, δ!C)

Proof. The pair (!hC ; δC) is a coreflexive pair as !hC ; !εC = id!C = δC ; !εC . The morphism hC is a
cofork of the pair (hC , δ) by definition of a coalgebra. Assume that there exists another coalgebra
morphism f : (B, hB) → (!C, δC) such that f ; !hC = f ; δC . Hence the following holds.

f ; δC = f ; !hC

f ; δC ; ε!C = f ; !hC ; ε!C

f = f ; !hC ; ε!C

f = (f ; εC); h

Thus given any f which is also a cofork of the pair (!h, δ), there is a morphism, k(= f ; εC), such
that k; hC = f . It is easy to see that k is unique and it is a coalgebra morphism by the following
reasoning.

(f ; εC); hC = f ; !hC ; ε!C

= f ; δC ; ε!C

= f
= f ; δC ; !εC

= hB; !f ; !εC

= hB; !(f ; εC)

Theorem 31. (Hyland) Given a Linear category C and consider its category of coalgebras C!.
This category is cartesian closed if it has equalizers of coreflexive pairs.

Proof. (Sketch) The problematic part of this theorem is showing that an internal hom exists between
any two coalgebras. Recalling from Lemma 27 that internal homs exist for all free coalgebras (where

(B, hB)−◦!(!C, δC)
def
= (!(B−◦C), δB−◦C)) and taking the coreflexive pair from Proposition 29, there

is the following equalizer diagram.

(D, hD)
a- (B, hB)−◦!(!C, δC)

((B, hB)−◦!−)(!hC)-

((B, hB)−◦!−)(δC)
- (B, hB)−◦!(!!C, δ!C)

�
�

�
�

�

l

�

(A, hA)

k

6

Taking a coalgebra morphism f : A⊗B → C, we form the morphism (hA; !Cur(f)): A →
(B, hB)−◦!(!C, δC). It is simple to see that this is a cofork for the coreflexive pair
(((B, hB)−◦!−)(!hC), ((B, hB)−◦!−)(δC)). Then by the equalizer assumption there is a unique mor-
phism k: (A, hA) → (D, hD).

In the opposite direction, taking a coalgebra morphism g: (A, hA) → (D, hD), one can form
the morphism (g⊗idB; a⊗idB; id!(B−◦C)⊗hB; m; !App): A⊗B →!C. It is routine to see that this is
a cofork for the (coreflexive) pair (!hC , δC). From Proposition 29 there is then a unique coalgebra
morphism j: A⊗B → C.

It is routine to see that the two operations described above form a bijection, i.e.

f : (A⊗B) → C
============

f̂ : A → D
.

176 Chapter 4. Categorical Analysis

Hence (D, hD) can be taken as the internal hom (B, hB)−◦!(C, hC).

Jacobs [45] has also considered this construction but he takes a different candidate for the internal
hom which requires the stronger condition that there are equalizers for all parallel pairs of morphisms
in C

!.
We shall now consider the rôle of coproducts. We have assumed that a Linear category, C, has

coproducts and so we shall consider whether the three candidate CCCs have a coproduct structure
induced on them.

Seely [69] demonstrated that the co-Kleisli category C! does not have coproducts if C does. He
pointed out that there are the following bijections.

C!(A, C)
=======
C(!A, C)

C!(B, C)
=======
C(!B, C)

====================
C(!A⊕!B, C)

We might be tempted to insist that !(A ⊕ B) ∼= !A⊕!B (i.e. make the coproduct of two free coal-
gebras isomorphic to a free coalgebra) which would certainly entail that the co-Kleisli category has
coproducts but as it is not logically the case that !(A ⊕ B) − !A⊕!B, this would seem to be too
strong a condition.

However it is possible to identify a weak coproduct structure in C!.

Lemma 30. Given two free coalgebras (!A, δA) and (!B, δB), we define their coproduct to be

(!(!A⊕!B), δ!A⊕!B). We define the injection morphisms to be inl!
def
= δA; !inl: !A →!(!A⊕!B) and inr!

def
=

δB; !inr: !B →!(!A⊕!B), which are coalgebra morphisms. Given two (free) coalgebra morphisms
f : !A →!C and g: !B →!C, then the morphism (![f, g]; !εC): !(!A⊕!B) →!C is a (free) coalgebra
morphism and makes a coproduct diagram commute.

Proof. That the morphism (![f, g]; !εC) is a coalgebra morphism amounts to the following diagram.

!(!A⊕!B)
δ!A⊕!B- !!(!A⊕!B)

!!C

![f, g]

? δC - !!!C
?

!![f, g]

!C

!εC

?

δC

- !!C
?

!!εC

Both squares commute by naturality of δ. The fact that the injection morphisms are coalgebra
morphisms is trivial and omitted. The relevant coproduct diagram is of the form:

!(!A⊕!B)

�
�

�
�

�
δ; !inl

� I@
@

@
@

@

δ; !inr

!A !!C
?

![f, g]

!B

@
@

@
@

@
f

R 	�
�

�
�

�

g

!C
?

!εC

§8. Translations 177

Let us consider the left hand triangle. This commutes by the following equational reasoning.

δ; !inl; ![f, g]; !ε = δ; !f ; !ε
= f ; δ; !ε f is a coalgebra morphism
= f

The rôle of coproducts in Hyland’s subcategory is slightly more problematic. It is not the case that
it has coproducts, nor weak coproducts. This would seem to suggest that a further subcategory of
coalgebras could be defined, which consists of those coalgebras which not only have internal homs
with respect to the cartesian structure, but also have a (possibly weak) coproduct structure. This
remains future work.

Let us consider the coproducts in the category of coalgebras.

Lemma 31. If (A, hA) and (B, hB) are coalgebras, then (A⊕B, [(hA; !inl), (hB ; !inr)]) is a coalgebra.

Proof. We require two diagrams to commute. The first diagram is as follows.

A ⊕ B
[(hA; !inl), (hB ; !inr)] - !(A ⊕ B)

!(A ⊕ B)

[(hA; !inl), (hB; !inr)]

?

δ
- !!(A ⊕ B)

?

![(hA; !inl), (hB; !inr)]

This diagram commutes by the following equational reasoning.

[(hA; !inl), (hB; !inr)]; ![(hA; !inl), (hB; !inr)]
= [(hA; !inl; ![(hA; !inl), (hB; !inr)]), (hB ; !inr; ![(hA; !inl), (hB ; !inr)])]
= [(hA; !(hA; !inl)), (hB ; !(hB; !inr))]
= [(hA; !hA; !!inl), (hB; !hB; !!inr)]
= [(hA; δ; !!inl), (hB ; δ; !!inr)]
= [(hA; !inl; δ), (hB; !inr; δ)]
= [(hA; !inl), (hB ; !inr)]; δ

The second diagram is as follows.

A ⊕ B
[(hA; !inl), (hB ; !inr)]- !(A ⊕ B)

@@

A ⊕ B
?

ε

This diagram commutes by the following equational reasoning.

[(hA; !inl), (hB ; !inr)]; ε = [(hA; !inl; ε), (hB; !inr; ε)]
= [(hA; ε; inl), (hB; ε; inr)]
= [inl, inr]
= idA⊕B

We can easily see that the following is true.

Lemma 32. The morphisms inl: A → A ⊕ B and inr: B → A ⊕ B are coalgebra morphisms.

178 Chapter 4. Categorical Analysis

Let us now consider the morphism [f, g] where f and g are coalgebra morphisms.

Lemma 33. Given two coalgebra morphisms f : A → C and g: B → C, then [f, g]: A ⊕ B → C is a
coalgebra morphism.

Proof. We require the following diagram to commute.

!(A ⊕ B)
![f, g]- !C

A ⊕ B

[(hA; !inl), (hB; !inr)]

6

[f, g]
- C

6

hC

We shall prove this equationally.

[(hA; !inl), (hB; !inr)]; ![f, g] = [(hA; !inl; ![f, g]), (hB; !inr; ![f, g])]
= [(hA; !f), (hB; !g)]
= [(f ; hC), (g; hC)]
= [f, g]; hC

In fact we can identify the initial object and initial morphism.

Lemma 34. Given a SMC, C, with a monoidal comonad and coproducts, then (f ,⊥!f) is a coalge-
bra.

Lemma 35. Given a Linear category C and consider its category of coalgebras, C!. The coalgebra
(f ,⊥!f) is the initial object and the morphism ⊥A: f → A is the initial morphism.

Proof. Assume that we have another morphism gA: f → A. As it is a coalgebra morphism the
following diagram must commute.

f
g - A

!f

⊥!f

?

!g
- !A

?

hA

Then we have

g; hA = ⊥!f ; !g
g; hA = ⊥!A

g; hA; εA = ⊥!A; εA

g = ⊥A

Proposition 30. Given a Linear category C (with coproducts) then the category of coalgebras C!

has coproducts.

Chapter 5

Conclusions and Further Work

In this chapter we summarize the work presented in this thesis. We then present and compare
an alternative natural deduction formulation proposed by Troelstra [76]. We also briefly introduce
classical linear logic (CLL) and consider some of its features. We then conclude by considering
some immediate further work arising from this thesis.

1 Summary of Thesis

In Chapter 2 we presented the proof theory of ILL. We took the sequent calculus of Girard and gave
a detailed proof of cut elimination. We then saw how this implied a simple proof of the subformula
property. We then derived a natural deduction formulation, observing that our formulation was
closed under substitution. We also saw how we have a number of choices with regards to the
additive connectives. We then gave the β-reductions. The subformula property was considered and
shown to hold provided a number of new reductions, the commuting conversions, were added. We
then showed how an axiomatic formulation can be derived from the natural deduction formulation.
Functions were given to map deductions from one formulation to another. Finally we considered
the translation of Girard, which translates deductions in IL into deductions in ILL.

In Chapter 3 we saw how we could apply the Curry-Howard correspondence to the natural
deduction formulation to derive a term assignment system for ILL. We also considered how to derive
a term assignment system given a sequent calculus formulation. We derived a linear combinatory
logic, by applying a Curry-Howard correspondence to the axiomatic formulation from the previous
chapter. The various methods of proof reduction from Chapter 2 were analysed at the level of terms
to suggest term reduction rules. We then considered the β-reduction rules and showed how the
reduction system is both strongly normalizing and confluent. We also considered how the linear
term calculus could be ‘compiled’ into linear combinators. Finally we gave Girard’s translation at
the level of terms.

In Chapter 4 we reviewed the terminology of equational logic. We took the term assignment
system and the β-reduction rules as an equational theory and then analysed it categorically. This
analysis not only resulted in suggesting certain categorical structures, but also in suggesting some
new term equalities (some of which we had seen in Chapter 3). We then defined a model for ILL, a
Linear category, and considered some of its properties. Alternative models by Seely and Lafont were
then studied and compared. Surprisingly Seely’s model was shown to be unsound as it does not
model some term equalities with equal morphisms. We showed how Seely’s model could be seen in a
more abstract setting and how this suggested an alternative definition which lead to a sound model,
which was shown to yield the structure of a Linear category. Lafont’s model was studied and also
shown to yield the structure of a Linear category. Finally we considered a categorical equivalent of
Girard’s translation using a construction due to Hyland.

2 An Alternative Natural Deduction Presentation

As we saw in Chapter 2, the natural deduction formulation of the Promotion rule is slightly unusual
as it not only includes a check of all the free assumptions but also introduces many parasitic formulae,
the consequence of which is the need for an extra commuting conversion. We might ask whether
there is a simpler formulation. Prawitz [61] considered formulating certain modal logics in a natural
deduction system. As we have remarked before, the rules for the necessity modality (2) are the same

179

180 Chapter 5. Conclusions and Further Work

as Promotion and Dereliction. Troelstra [76] has subsequently taken Prawitz’s ideas and applied
them to ILL.

The idea for the alternative formulation of the Promotion rule is that we relax the restriction
that all the open assumptions are of the form !Ai, to one which says that we can find a complete
set of assumptions of the form !Ai which could have subsequently had deductions substituted in for
them.1 In tree-form this amounts to the rule (where the complete set of assumptions are in bold
face)

∆1
·
·
·

!A1 · · ·

∆n
·
·
·

!An
·
·
·

B
Promotion′.

!B

In term form this rule is of the form

Γ1, . . . , Γn . M [~x := ~N]: B where ~x = FV (M) and Γi . Ni: !Ai for some Ai
Promotion′.

Γ1, . . . , Γn . bang(M [~x := ~N]): !B

Troelstra has shown that there is an equivalence between this formulation and that presented in
Chapter 2, in that there exist mappings from one to the other and vice versa. As Troelstra points out
an immediate advantage of this formulation is that the commuting conversions previously required
for the Promotion rule are not needed in this formulation (the conversion is mapped to an identity on
derivations). However, returning to the term system there do appear to be problems. For example,
consider the following derivation in this new formulation

!!!A
Dereliction

(1) !!A
Dereliction

(2) !A
Dereliction

A
Promotion′.

!A

The term assigned to this deduction is

x: !!!A . bang(derelict(derelict(derelict(x)))): !A.

The problem is determining whether the assumption which has been substituted for is (1) or (2) in
the above proof, or in other words, whether the above term is morally of the form

bang(derelict(derelict(z)))[z := derelict(x)]

or
bang(derelict(z))[z := derelict(derelict(x))].

Of course, in the formulation presented in this thesis, these alternatives represent two distinct
derivations, viz.

!!!A
Dereliction

!!A

[!!A]
Dereliction

!A
Dereliction

A
Promotion

!A

1This complete set of assumptions is called a basis by Troelstra [76].

§2. An Alternative Natural Deduction Presentation 181

and
!!!A

Dereliction
!!A

Dereliction
!A

[!A]
Dereliction

A
Promotion,

!A

which are assigned the (distinct) terms

x: !!!A . promote derelict(x) for z in derelict(derelict(z)): !A

and
x: !!!A . promote derelict(derelict(x)) for z in derelict(z): !A.

The alternative formulation essentially collapses these two derivations into one. Let us consider the
consequences of this with respect to the categorical model. The two terms above are modelled by
the morphisms

ε!!A; δ!A; !ε!!A; !ε!A: !!!A →!A

and
ε!!A; ε!A; δA; !εA: !!!A →!A,

respectively. If we insist that these morphisms are equal, we arrive at the equality

ε!!A; !εA = ε!!A; ε!A.

Precomposing with the morphism δ!A gives

!εA = ε!A. (5.1)

We have seen on page 131 that this equality is sufficient to make the comonad idempotent.2

A final problem is with the relationship between the alternative definitions of a normal form.
One particular term equality (from Figure 4.5) which we derived from the categorical model is

Comonad.
x: !A . promote x for y in derelict(y) = x: !A

The corresponding term equality in the alternative formulation is

Comonad′.
x: !A . bang(derelict(x)) = x: !A

However, consider the term

x: !!A . promote derelict(x) for y in y: !!A,

which is in normal form. This corresponds to the term

x: !!A . bang(derelict(x)): !!A,

in the new formulation, which is not in normal form, as the Comonad′ rule applies, and so it is
rewritten to the term x: !!A . x: !!A. (Again, analysing this categorically will lead to an idempotent
comonad). So there appears to be a mismatch between the respective notions of normal form.

Thus, despite the proof theoretical advantage of this alternative formulation (the removal of the
commuting conversions for the Promotion rule), we can identify immediately three problems with
this alternative formulation with respect to the approach we have taken in this thesis.

2In a slightly different context, Wadler [79] has also pointed out how a similar syntax implies an idempotent
comonad.

182 Chapter 5. Conclusions and Further Work

1. Terms do not uniquely encode deductions, but rather represent sets of deductions. Lincoln
and Mitchell [55] have also considered a term calculus based on linear logic where this is the
case.

2. A corresponding notion of normal form does not appear to be straightforward to define.

3. Categorically, the term syntax suggests an idempotent comonad. Nearly all models of ILL do
not have this feature. (Filinski’s proposal [28] is the only example of which I am aware which
has an idempotent comonad.)

3 Classical Linear Logic

This thesis has concentrated solely on the intuitionistic fragment of linear logic. Of course, there is
a classical version of linear logic (CLL). Here derivations are of the form Γ − ∆, i.e. where we have
more than one conclusion. In addition there are some new connectives and units. For completeness
we shall give the (two-sided) sequent calculus formulation in Figure 5.1.

The exciting feature of CLL is that it is a constructive logic and it has the logical power of
classical logic. Thus if we extend the translation procedure from Chapter 2 by

(¬A)◦
def
= !A◦−◦f ,

then the equivalence can be formalized as follows.

Proposition 31. (Girard) If `CL Γ − ∆ then `CLL !Γ◦ − ∆◦.

One particular feature of note is linear negation (−)⊥. In particular it obeys the same kind of laws
as classical negation. It can be characterized as follows.

Definition 48.

A−◦B
def
= A⊥..

...........
...................................... B

(A⊥)⊥ ≡ A
(A⊗B)⊥ ≡ A⊥..

............
..................................... B⊥

(A
..
...........
...................................... B)⊥ ≡ A⊥⊗B⊥

(A ⊕ B)⊥ ≡ A⊥&B⊥

(A&B)⊥ ≡ A⊥ ⊕ B⊥

(!A)⊥ ≡ ?A⊥

(?A)⊥ ≡ !A⊥

I⊥ ≡ ⊥
f⊥ ≡ t

Clearly CLL is a symmetric logic, in that a sequent Γ − ∆ is equivalent to the sequent − Γ⊥, ∆.
We can then give a succint presentation of CLL as a one-sided sequent calculus in Figure 5.2.

Presenting these rules in a graphical way leads to a formulation known as Proof Nets [31]. It
seems that proof nets are the natural deduction for CLL; Abramsky [1] gives a term assignment
for proof nets and gives an execution technique inspired by Berry and Boudol’s (highly parallel)
Chemical Abstract Machine [17]. It remains future work to devise a more traditional [63] natural
deduction formulation of CLL.

Categorically, most models proposed for CLL are extensions of Seely’s model for ILL to
*-autonomous categories [68, 9]. It would seem likely that the problems identified with Seely’s
model in Chapter 4 would apply to these models. It should be the case that extending a Linear
category with a dualizing object gives a model of CLL, although this has not been checked in detail.
It would be interesting to see if an analysis such as that used in Chapter 4 would give rise to a similar
categorical model. A particularly interesting class of models is given by various categories of games .
It would appear that there are close connections between CLL and game theory [2]. Indeed this
connection has been used (along with the Girard translation) to give fully abstract semantics for
sequential computation [3, 44]. Clearly this is an extremely exciting area for future work.

§3. Classical Linear Logic 183

Identity
A − A

Γ1 − A, ∆1 A, Γ2 − ∆2
Cut

Γ1, Γ2 − ∆1, ∆2

Γ1, A, B, Γ2 − ∆
ExchangeL

Γ1, B, A, Γ2 − ∆

Γ − ∆1, A, B, ∆2
ExchangeR

Γ − ∆1, B, A, ∆2

(tR)
Γ − t, ∆

(fL)
Γ, f − ∆

(⊥L)
⊥ −

Γ − ∆
(⊥R)

Γ − ⊥, ∆

Γ − ∆
(IL)

Γ, I − ∆
(IR)

− I
(>R)

Γ − >, ∆

Γ, A, B − ∆
(⊗L)

Γ, A⊗B − ∆

Γ1 − A, ∆1 Γ2 − B, ∆2
(⊗R)

Γ1, Γ2 − A⊗B, ∆1, ∆2

Γ1 − A, ∆1 Γ2, B − ∆2
(−◦L)

Γ1, A−◦B, Γ2 − ∆1, ∆2

Γ, A − B, ∆
(−◦R)

Γ − A−◦B, ∆

Γ, A − ∆
(&L−1)

Γ, A&B − ∆

Γ, B − ∆
(&L−2)

Γ, A&B − ∆

Γ − A, ∆ Γ − B, ∆
(&R)

Γ − A&B, ∆

Γ, A − ∆ Γ, B − ∆
(⊕L)

Γ, A ⊕ B − ∆

Γ − A, ∆
(⊕R−1)

Γ − A ⊕ B, ∆

Γ − B, ∆
(⊕R−2)

Γ − A ⊕ B, ∆

Γ1, A − ∆1 Γ2, B − ∆2
(
..
...........
......................................
L)

Γ1, Γ2, A
..
............
..................................... B − ∆1, ∆2

Γ − A, B, ∆
(
..
...........
......................................
R)

Γ − A
..
............
..................................... B, ∆

Γ − A, ∆
(⊥L)

Γ, A⊥ − ∆

Γ, A − ∆
(⊥R)

Γ − A⊥, ∆

Γ − ∆
WeakeningL

Γ, !A − ∆

Γ − ∆
WeakeningR

Γ − ?A, ∆

Γ, !A, !A − ∆
ContractionL

Γ, !A − ∆

Γ − ?A, ?A, ∆
ContractionR

Γ − ?A, ∆

Γ, A − ∆
DerelictionL

Γ, !A − ∆

Γ − A, ∆
DerelictionR

Γ − ?A, ∆

!Γ, A − ?∆
PromotionL

!Γ, ?A − ?∆

!Γ − A, ?∆
PromotionR

!Γ − !A, ?∆

Figure 5.1: Two-Sided Sequent Calculus Formulation of CLL

184 Chapter 5. Conclusions and Further Work

Identity
− A⊥, A

− Γ, A, B, ∆
Exchange

− Γ, B, A, ∆

− Γ, A − A⊥, ∆
Cut

− Γ, ∆
I

− I

− Γ
⊥

− Γ,⊥

− Γ, A − ∆, B
⊗

− Γ, ∆, A⊗B

− Γ, A, B
..
...........
......................................

− Γ, A
..
............
..................................... B

− Γ, A − Γ, B
&

− Γ, A&B

− Γ, A
⊕1

− Γ, A ⊕ B

− Γ, B
⊕2

− Γ, A ⊕ B

− Γ
Weakening

− Γ, ?A

− Γ, ?A, ?A
Contraction

− Γ, ?A

− Γ, A
Dereliction

− Γ, ?A

− ?Γ, A
Promotion

− ?Γ, !A

Figure 5.2: One-Sided Sequent Calculus Formulation of CLL

4 Further Work

There are many areas for further work arising from this thesis. In this section we shall consider
some of them.

4.1 Further Categorical Analysis

Although the categorical analysis of Chapter 4 is thorough, there are still a number of interesting
leads to follow. In particular further work is needed on finding a suitable subcategory of coalgebras
which is cartesian closed and has coproducts.

4.2 Applications to Functional Programming

There are essentially two approaches to using linear logic for functional programming. The first is
to consider a functional language which is based on the linear term calculus in the same way that
existing functional languages are based on the λ-calculus. Some proposals have been made [57, 20]
although it is probably fair to say that more theoretical work is needed.

Lafont [46] showed how an abstract machine based on linear logic needed no garbage collector.
However, it should be noted that this depends on an implementation based on copying, whereas most
implementations use sharing. It is not clear if linear logic can be used to give a logical foundation
for sharing techniques. The second use of linear logic is to translate functional languages into the
linear term calculus and use some of the fine grain information to suggest possible optimizations.
This translation is essentially that presented in Chapter 3. However, that translation involves a
large number of exponentials. It is then desirable to minimize the number of exponentials used in
the translation. Some preliminary results exist [18, 24] on translating functional languages using a
minimal number of exponentials, but it remains to be seen whether this technique will yield more
efficient functional language implementations.

There is still work remaining concerning the correct notion of canonical form for the linear term
calculus. When implementing a functional language, we introduce an operational semantics , which
consists of a relation, written ‘⇓’, between terms and canonical forms. Normally these operational
semantics correspond to the β-reduction rules which are applied using a particular strategy (e.g. call-

§4. Further Work 185

by-value or call-by-name) until a particular form of term is reached. It is not instantly clear whether
this can be quite so simply applied for the linear term calculus. Certainly the rules employed by
others [1, 57, 55] do not seem to have this property. For example, consider the rule for the discard

constructor [1]

N ⇓ c
Discard.

discard M in N ⇓ c

There is an additional problem with the explicit discard and copy constructors, as we noted in
the proof of strong normalization; once one of these constructors is on the ‘outside’ of a term, it
never disappears. However, we certainly do not want these term constructors to get in the way of
evaluation. Consider the reduction sequence

MN ;
+
β (discard ~P in λx: A.Q)R.

At this stage the term is in β-normal form, but we clearly would like to apply a commuting conversion
to allow the subsequent reduction sequence

(discard ~P in λx: A.Q)R ;c discard ~P in (λx: A.Q)R ;β discard ~P in Q[x := R] ;
∗
β S.

This suggests that actually we should implement some of the commuting conversions within the
operational semantics. Exactly how this would take shape remains future work. It is also interesting
to note that the commuting conversions for the copy constructor are reminiscent of some of the
manipulations performed during an optimal reduction strategy [5]. Again this is another area for
future work.

4.3 Quantifiers

We have avoided completely the question of quantifiers for ILL. Proof theoretically these correspond
to the following rules (with the traditional restriction on the ∀R and ∃L rules).

Γ, A[α/β] − B
(∀L)

Γ, ∀β.A − B

Γ − A
(∀R)

Γ − ∀α.A

Γ, A − B
(∃L)

Γ, ∃α.A − B

Γ − A[α/β]
(∃R)

Γ − ∃β.A

At the level of terms, such a system can be adapted to give a Linear System F [1]. A thorough
investigation of this refinement of System F remains future work. In particular it would be interesting
to see if the refinement of the connectives offers useful new representations of inductive datatypes [34,
§11.5].

Seely [69] proposed modelling the quantifiers by moving to an indexed category. Ambler [4]
has also considered various categorical models for (exponential free) linear logic with first order
quantifiers.

4.4 Intuitionistic Modal Logics

The techniques developed in this thesis apply to a whole range of logics which have modalities. As
we mentioned before the rules of Dereliction and Promotion correspond to the modality rules for
S4-like modalities. A study of the necessity modality for intuitionistic S4 has been performed by
the author and de Paiva [19]. Studies of other modal logics remains future work.3

From a slightly different perspective, the author with de Paiva and Benton [13] have shown how
the computational λ-calculus of Moggi [58] corresponds via the Curry Howard correspondence to
a logic with a slightly unusual (at least from a traditional modal viewpoint) possibility modality.
In particular this work has highlighted the logical status of the axioms of the computational λ-
calculus. From a categorical perspective, Benton [11] has been investigating relationships between
the computational λ-calculus and the linear term calculus.

3It should be noted that the field of intuitionistic modal logics is relatively unexplored, although Simpson [70] has
carried out a recent study.

186 Chapter 5. Conclusions and Further Work

Bibliography

[1] S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111(1–2):3–57, 1993. Previously Available as Department of Computing, Imperial College
Technical Report 90/20, 1990.

[2] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic.
Technical Report 92/24, Department of Computing, Imperial College, London, September 1992.

[3] S. Abramsky, R. Jagadeesan, and P. Malacaria. Games and full abstraction for PCF. Unpub-
lished Manuscript, July 1993.

[4] S.J. Ambler. First Order Linear Logic in Symmetric Monoidal Closed Categories. PhD thesis,
Laboratory for Foundations of Computer Science, Department of Computer Science, University
of Edinburgh, 1992.

[5] A. Asperti. Linear logic, comonads and optimal reductions. Unpublished Manuscript, April
1993.

[6] A. Asperti and G. Longo. Categories, Types and Structures (An Introduction to Category
Theory for the Working Computer Scientist). MIT Press, Cambridge, Mass., 1991.

[7] A. Avron. The semantics and proof theory of linear logic. Theoretical Computer Science,
57:161–184, 1988.

[8] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
logic and the foundations of mathematics. North-Holland, revised edition, 1984.

[9] M. Barr. *-autonomous categories, volume 752 of Lecture Notes in Mathematics. Springer-
Verlag, 1979.

[10] M. Barr. *-autonomous categories and linear logic. Mathematical Structures in Computer
Science, 1:159–178, 1991.

[11] P.N. Benton. A mixed linear and non-linear λ-calculus. Unpublished Manuscript, 1993.

[12] P.N. Benton. Strong normalization for the linear term calculus. Technical Report 305, Com-
puter Laboratory, University of Cambridge, July 1993. To appear in Journal of Functional
Programming.

[13] P.N. Benton, G.M. Bierman, and V.C.V. de Paiva. Computational types from a logical per-
spective I. Unpublished Manuscript, August 1993.

[14] P.N. Benton, G.M. Bierman, V.C.V. de Paiva, and J.M.E. Hyland. Linear λ-calculus and
categorical models revisited. In E. Börger et al., editors, Proceedings of The Sixth Workshop
on Computer Science Logic, volume 702 of Lecture Notes in Computer Science, pages 61–84,
1992.

[15] P.N. Benton, G.M. Bierman, V.C.V. de Paiva, and J.M.E. Hyland. Term assignment for intu-
itionistic linear logic. Technical Report 262, Computer Laboratory, University of Cambridge,
August 1992.

[16] P.N. Benton, G.M. Bierman, V.C.V. de Paiva, and J.M.E. Hyland. A term calculus for intu-
itionistic linear logic. In M. Bezem and J.F. Groote, editors, Proceedings of The International
Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in Com-
puter Science, pages 75–90, 1993.

187

188 Bibliography

[17] G. Berry and G. Boudol. The chemical abstract machine. In Proceedings of Symposium on
Principles of Programming Languages, pages 81–94, 1990.

[18] G.M. Bierman. Type systems, linearity and functional languages. In Proceedings of CLICS
Workshop, pages 71–92, March 1992. Available as Aarhus University Technical Report DAIMI
PB 397-I.

[19] G.M. Bierman and V.C.V. de Paiva. Intuitionistic necessity revisited. In Proceedings of Logic
at Work Conference. Amsterdam, Holland, December 1992. To appear in forthcoming book:
Arrow Logics and Multi-modal Logics.

[20] J. Chirimar, C.A. Gunter, and J.G. Riecke. Proving memory management invariants for a
language based on linear logic. Technical Report MS-CIS-91-98, Department of Computer and
Information Science, School of Engineering and Applied Science, University of Pennsylvania,
December 1991.

[21] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. In Proceedings
of Conference on Functional Programming Languages and Computer Architecture, pages 50–64.
ACM, 1985.

[22] R.L. Crole. Categories, equational logic and typed lambda calculi. Notes for a Graduate Lecture
Course, September 1990.

[23] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, second edition, 1968.

[24] V. Danos, J.-B. Joinet, and H. Schellinx. The structure of exponentials: uncovering the dy-
namics of linear logic proofs. Technical Report ML–93–10, Institute for Logic, Language and
Computation, University of Amsterdam, May 1993.

[25] V.C.V. de Paiva and E. Ritter. Syntactic multicategories. Unpublished Manuscript, 1993.

[26] A.G. Dragalin. Mathematical Intuitionism—Introduction to Proof Theory. American Mathe-
matical Society, 1988.

[27] S. Eilenberg and G.M. Kelly. Closed categories. In Proceedings of Conference on Categorical
Algebra, La Jolla, 1966.

[28] A. Filinski. Linear continuations. In Proceedings of Symposium on Principles of Programming
Languages, pages 27–38, January 1992.

[29] J. Gallier. Constructive logics part I: A tutorial on proof systems and typed λ-calculi. Theo-
retical Computer Science, 110(2):249–339, March 1993.

[30] J. Gallier. On the correspondence between proofs and λ-terms. Unpublished Manuscript,
January 1993.

[31] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–101, 1987.

[32] J.-Y. Girard. The system F of variable types, fifteen years later. In G. Huet, editor, Logical
Foundations of Functional Programming, chapter 6. Addison-Wesley, 1990.

[33] J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In Proceedings of TAPSOFT
87, volume 250 of Lecture Notes in Computer Science, pages 52–66, 1987. Previously Available
as INRIA Report 588, 1986.

[34] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[35] J.-Y. Girard, A. Scedrov, and P.J. Scott. Bounded linear logic: a modular approach to poly-
nomial time computability. Theoretical Computer Science, 97:1–66, 1992.

Bibliography 189

[36] R.P. Goré. Cut-free Sequent and Tableau Systems for Propositional Normal Modal Logics.
PhD thesis, Computer Laboratory, University of Cambridge, 1992. Available as Computer
Laboratory Technical Report 257.

[37] V. Harnik and M. Makkai. Lambek’s categorical proof theory and Läuchli’s abstract realizabil-
ity. The Journal of Symbolic Logic, 57(1):200–230, March 1992.

[38] W.H. Hesselink. Axioms and models of linear logic. Formal Aspects of Computing, 2:139–166,
1990.

[39] J.R Hindley and J.P. Seldin. Introduction to Combinators and λ-Calculus, volume 1 of London
Mathematical Society Student Texts. Cambridge University Press, 1986.

[40] W. Hodges. Elementary predicate logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic. Volume 1, chapter 1, pages 1–131. D. Reidel, 1983.

[41] W.A. Howard. The formulae-as-types notion of construction. In J.R. Hindley and J.P. Seldin,
editors, To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism. Academic
Press, 1980.

[42] P. Hudak, S. Peyton Jones, and P. Wadler (Eds). Haskell: A non-strict, purely functional
language. ACM SIGPLAN Notices, 27(5), May 1992.

[43] J.M.E. Hyland and V.C.V. de Paiva. Full intuitionistic linear logic. Unpublished Manuscript.
To appear in Journal of Symbolic Logic, 1993.

[44] J.M.E. Hyland and C.-H.L. Ong. Dialogue games and innocent strategies: An approach to
(intensional) full abstraction for PCF. Unpublished Manuscript, July 1993.

[45] B. Jacobs. Conventional and linear types in a logic of coalgebras. Unpublished Manuscript,
April 1993.

[46] Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–180, 1988.
Corrections ibid. 62:327–328, 1988.

[47] Y. Lafont. Logiques, Catégories et Machines. PhD thesis, Université de Paris 7, 1988.

[48] J. Lambek. Deductive systems and categories I. Mathematical Systems Theory, 2:287–318,
1968.

[49] J. Lambek. Deductive systems and categories II. In P. Hilton, editor, Category Theory, Homol-
ogy Theory and their applications, volume 86 of Lecture Notes in Mathematics, pages 76–122,
1969.

[50] J. Lambek. Deductive systems and categories III. In F.W. Lawvere, editor, Toposes, algebraic
geometry and logic, volume 274 of Lecture Notes in Mathematics, pages 57–82, 1972.

[51] J. Lambek. Multicategories revisited. In Conference on Categories in Computer Science and
Logic, volume 92 of AMS Contemporary Mathematics, pages 217–239, June 1989.

[52] J. Lambek and P.J. Scott. Introduction to higher order categorical logic, volume 7 of Cambridge
studies in advanced mathematics. Cambridge University Press, 1987.

[53] S. Mac Lane. Categories for the Working Mathematican, volume 5 of Graduate Texts in Math-
ematics. Springer Verlag, 1971.

[54] F.W. Lawvere. Adjointness in foundations. Dialetica, 23(3–4):281–296, 1969.

[55] P. Lincoln and J. Mitchell. Operational aspects of linear lambda calculus. In Proceedings of
Symposium on Logic in Computer Science, pages 235–246, June 1992.

190 Bibliography

[56] F.E.J. Linton. Coequalizers in categories of coalgebras. In B. Eckman, editor, Seminar on
Triples and Categorical Homology Theory, volume 80 of Lecture Notes in Mathematics, pages
75–90, 1969.

[57] I. Mackie. Lilac: A functional programming language based on linear logic. Master’s thesis,
Department of Computing, Imperial College, London, September 1991.

[58] E. Moggi. Computational lambda-calculus and monads. In Proceedings of Symposium on Logic
in Computer Science, pages 14–23, June 1989.

[59] P.W. O’Hearn. Linear logic and interference control (preliminary report). In Proceedings
of Conference on Category Theory and Computer Science, volume 530 of Lecture Notes in
Computer Science, pages 74–93, September 1991.

[60] A.M. Pitts. Notes on categorical logic. Unpublished Manuscript, 1991.

[61] D. Prawitz. Natural Deduction, volume 3 of Stockholm Studies in Philosophy. Almqvist and
Wiksell, 1965.

[62] D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proceedings of Second
Scandinavian Logic Symposium, pages 235–307, 1971.

[63] D. Prawitz and P.-E. Malmnäs. A survey of some connections between classical, intuitionistic
and minimal logic. In A. Schmidt, K. Schütte, and H.J. Thiele, editors, Contributions to
Mathematical Logic, pages 215–229. North-Holland, 1968.

[64] D. Roorda. Resource Logics: Proof-Theoretical Investigations. PhD thesis, University of Ams-
terdam, 1991.

[65] B. Russell and A.N. Whitehead. Principia Mathematica. Cambridge University Press, 1910.

[66] P. Schroeder-Heister. A natural extension of natural deduction. The Journal of Symbolic Logic,
49(4):1284–1300, December 1984.

[67] H. Schwichtenberg. Proof theory: Some applications of cut-elimination. In J. Barwise, editor,
Handbook of Mathematical Logic, chapter D.2, pages 867–896. North Holland, 1977.

[68] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda calculus. The Journal
of Symbolic Logic, 52(4):969–989, 1987.

[69] R.A.G. Seely. Linear logic, *-autonomous categories and cofree algebras. In Conference on
Categories in Computer Science and Logic, volume 92 of AMS Contemporary Mathematics,
pages 371–382, June 1989.

[70] A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logics. PhD thesis,
Laboratory for Foundations of Computer Science, Department of Computer Science, University
of Edinburgh, 1993. To appear.

[71] W.R. Stoye. The Implementation of Functional Languages using Custom Hardware. PhD thesis,
Computer Laboratory, University of Cambridge, 1985. Available as Computer Laboratory
Technical Report 81.

[72] A. Suárez. Compiling ML into CAM. In G. Huet, editor, Logical Foundations of Functional
Programming, chapter 4. Addison-Wesley, 1990.

[73] M.E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-Holland, 1969.

[74] W.W. Tait. Intensional interpretation of functionals of finite type. The Journal of Symbolic
Logic, 32:198–212, 1967.

[75] A.S. Troelstra. Lectures on Linear Logic, volume 29 of Lecture Notes. CSLI, 1992.

Bibliography 191

[76] A.S. Troelstra. Natural deduction for intuitionistic linear logic. Technical Report ML–93–09,
Institute for Logic, Language and Computation, University of Amsterdam, May 1993.

[77] D.A. Turner. A new implementation technique for applicative languages. Software—Practice
and Experience, 9:31–49, 1979.

[78] D.A. Turner. Miranda: a non-strict functional language with polymorphic types. In Proceedings
of Conference on Functional Programming Languages and Computer Architecture, volume 201
of Lecture Notes in Computer Science, pages 1–16, 1985.

[79] P. Wadler. There’s no substitute for linear logic. Paper presented at Workshop on Programming
Language Semantics, Oxford, April 1992.

