Spin®~-MANIFOLDS

BLAKE MELLOR

1. INTRODUCTION

Spint-structures on manifolds are a complex analogue to the more
common notion of spin structures on manifolds. They have been known
since the 1960’s (see [A-B-S]), but they had no real importance (as
far as [ can tell), until the recent announcement of the Seiberg-Witten
equations for 4-manifolds in [W]. These equations promise to vastly
simplify the study of smooth 4-manifolds, and their definition requires
the presence of a spin®-structure. In this paper I will review the def-
inition of spin®-structures on manifolds from both a geometric and
algebraic point of view, and prove their existence in some important
cases. [ will conclude by looking at how they appear in the formulation
of the Seiberg-Witten equations.

2. GEOMETRIC FORMULATION OF Sping

In one sense, spin and spin® structures are just generalizations of ori-
entations. Consider a smooth manifold M™ with tangent bundle T'M.
This vector space bundle gives rise to a principal O(n)-bundle of frames,
which we denote Po(TM). Recall that the manifold is said to be ori-
entable if this bundle can be reduced to an SO(n)-bundle Pso(TM),
making the fibers connected. This means that any trivialization of
the bundle over the (disconnected) 0-skeleton of M can be extended
to a trivialization over the (connected) 1-skeleton. The next step is
to make the fiber simply connected (where possible). This will mean
that a trivialization over the 1-skeleton of M can be extended over the
2-skeleton. Recalling that, for n > 3, 71(S0(n)) = Zs, we define Spin,
to be the double cover of SO(n). For n > 3, this is the universal (i.e.
simply- connected) cover; in the exceptional cases we have Spiny = S*
and Spin; = S° We then say that the manifold is spin if the bundle
Pso(T'M) has a double cover by a principal Spin,-bundle Ps,;,,(TM).

To find the complex analogue, we replace SO(n) by the group SO(n)x
U(1), and consider its double cover. With this in mind, we define:

Spin;, = (Spin, x U(1))/{£(1,1)} = Spin, xz, U(1)
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This is the desired double cover of SO(n) x U(1) via the map [A, A] —
[p(A), A?], where p is the double cover of SO(n) by Spin,. Finally, we
define M to be spin® if given the bundle Pso (T M), there are principal
bundles Py)(TM) and Pspine(TM) with a spin®-equivariant bundle
map:

f : Pspmc(TM) — Pso(TM) X PU(l)(TM)

This definition of Spin{ leads to a very nice geometric criterion for
the existence of a spin®-structure ([K2]). Since U(1) = SO(2), there is
a natural map SO(n) x U(1) — SO(n+2) which extends (via Whitney
sum) to a map of bundles. We can define Sping as the pullback by this
map of the covering map Spin,42 — SO(n + 2):

Spint —  Spingyo
l l
SO(n) xU(l) — SO(n+2)
Therefore, a spin®-structure on T'M consists of a complex line bundle
L and a spin-structure on TM @ L. We can restate this as:

Theorem 1. A manifold M is spin® (i.e. TM has a spin®-structure)
& there is a complex line bundle L over M such that TM & L has a
spn-structure.

So M is spin® if the obstruction to extending a trivialization of the
tangent bundle over the 2-skeleton can be removed by adding a complex
line bundle.

3. EXAMPLES OF Spin®~-MANIFOLDS

We start with examples of manifolds which have canonical Spin®-
structures.

Theorem 2. If M is a spin manifold, then M has a canonical spin°-
structure.

PrOOF: We simply extend the spin structure by taking the fiber prod-
uct with the trivial U(1)-bundle Uy, letting

Pspmc(TM) = Pspm(TM) XM, Zo Ul.D

Theorem 3. If M has an almost complex structure, then M has a
canonical spin®-structure.

PROOF: Let j : U(k) — SO(2k) denote the natural homomorphism.
Then we can define a homomorphism ¢ : U(k) — SO(2k) x U(1) by
g(A) = (j(A),det(A)). Although j does not lift to Spings, ¢ does lift
to Sping,. Denote this lift v. An almost complex structure on M
means T'M can be viewed as a complex vector bundle, and so M has
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an unitary frame bundle PU(n)(TM). We now construct the desired
Spin® bundle as an associated bundle:

Pspmc(TM) = PU(n)(TM) ><'y Spm%k O

In fact, we can give another, more algebraic, general criterion for
whether a manifold has a Spin®-structure:

Theorem 4. An orientable manifold M can be given a Spin®-structure
& the second Stiefel-Whitney class wy(M) is the mod 2 reduction of
an integral class.

PROOF: Recall that a manifold M has a spin-structure < the second
Stiefel-Whitney class wy(M) is 0 (see [L-M] and [K2]). So we apply
our geometric criterion from the last section, which says that M can
be given a spin®-structure < there is a complex line bundle L such
that TM & L is spin, which means wo(TM & L) is 0. But, since the

Stiefel-Whitney classes are stable, we have:

Both these bundles are orientable, so the first Stiefel-Whitney classes
are both 0, which means wy(T'M) + wy(L) = 0. Since these are mod
2 classes, wy(TM) = wy(L). wy(L) has an integral lift, the first Chern
class of the line bundle, so wy(T'M) = wy(M) also has an integral lift,
which proves the theorem in one direction. To go the other way, we can
follow the same argument backwards, since if wo(T M) lifts to an inte-
gral class e, we can always find a complex line bundle with first Chern
class e, which will be the line bundle we need for our spin®-structure. O

In particular, by [M], this means that any orientable four manifold
can be given a Spin-structure, which will be crucial to the formulation
of the Seiberg-Witten equations.

4. CLASSIFICATION OF spin°-STRUCTURES OF A MANIFOLD

We will classity spin®-structures by using classifying spaces, an im-
portant tool from algebraic topology. Our discussion here follows [?].
We start with a basic definition:

DEFINITION: A classifying space for a group G is a CW-complex BG
and principal G-bundle EG over BG such that given any space X and
a principal G-bundle F over X, there is a map f: X — BG such that
E = f*(EG).
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It is not hard to show that BG is unique up to homotopy equivalence.
From our definition and discussion of Spin! we have the following com-
mutative diagram of groups, with rows and columns exact:

Z, C U(l) — U(l)
! !
Z”g C Spng — SO(n) xU(1)
! !
SO(n) = SO(n)

This diagram induces a similar commutative diagram of classifying
spaces (by, for example, Milgram’s construction of the classifying space
in [P]). Therefore, we can view BSpin¢ as a bundle over BSO(n) with
fiber BU(1).

Now we view the tangent bundle of a manifold M as a mapn : M —
BSO(n). A spin®-structure on the tangent bundle is then a lift of this
map to BSpint, giving a commutative diagram:

BU(1) — BSpin®
/! !
M % BSO()

Theorem 5. The set of lifts of n is in bijective correspondence with
[M,BU(1)].

PROOF: Let h, denote the homeomorphism from BU(1) to the fiber
of BSpin§ over the point p € BSO(n). Given a map A € [M, BU(1)],
define the lift 7\ by n\(z) = k) 0 A(x). This is clearly an injective
map from [M, BU(1)] into the set of lifts; it is also surjective, since two
different lifts will have to disagree on at least one fiber. O

Since [M, BU(1)] is just the set of complex line bundles over M, which
are classified by their first Chern class, the theorem implies that the set
of lifts (and hence the spin®-structures on M) is in correspondence with
the second cohomology group H?*(M;Z). (Alternatively, we note from
[P] that BU(1) = BS' = CP*. Since CP*° = K(Z,2), the Eilenberg-
Maclane space, this means [M, BU(1)] = [M, K(Z,2)] = H*(M;Z), by
[K1].) We can combine this group structure with the correspondence
to define a simply transitive group action of [M, BU(1)] = H*(M;Z)
on the set of lifts:

Yo = Ty
7, A € H* (M Z)

We also want to consider our geometric criterion identifying a spin®-
structure on M with a complex line bundle L over M and a spin-
structure on T'M & L. The first question is whether the spin®-structure
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determines the complex line bundle in this description. The answer is
“Yes.” From the commutative diagram of groups drawn above, we can
induce the following commutative diagram:

BSping
v N
M 1 B(SO(n) x U(1))
N\ /
BSO(n)

where the map p : M — BSping is a lift of the map n : M — BSO(n),
and the maps on the right-hand side of the diagram are projections
induced from our commutative diagram of groups. So the lift u of n
canonically gives us a lift prop: M — B(SO(n) x U(1)). This lift is
the complex line bundle desired.

We can also ask the question in reverse: does the complex line bun-
dle determine the spin®-structure? Here, the answer is unsurprisingly
“No.” Recall from the proof of Theorem 4 in Section 3 that we must
have wy(TM) = wy(L) = ¢1(L) mod 2. Hence there are strictly less
than |H?*(M;Z)| possible line bundles, so these cannot determine the
|H?(M;Z)| spinc-structures in a one-to-one fashion. The question now
becomes: given a complex line bundle, how many different spin® -
structures are associated with that bundle?

As a first approximation, we compute the number of spin-structures
on T'M @ L. As above, the spin-structures on T'"M @ L correspond to
lifts of a map n : M — BSO(n+2) to BSpin, 12, so we have a diagram:

BZy —  BSping,
/ !
M 2 BSO(n +2)

Exactly as in the previous theorem, we find that the set of lifts is in
bijective correspondence with [M, BZ,]. [P] proves that BZ, = RP>.
But RP* is just the Eilenberg-Maclane space K(Zz,1), so we have
(M, BZy] = [M, K(Z2,1)] = H'(M;Z5) (the last equality is proved in
[K1]). Therefore, the set of spin-structures on T'M & L corresponds
to HY(M;Z,).

While each of these spin-structures pulls back to a different lift from
B(SO(n)xU(1)) to BSpint, they are not all different when considered
as lifts from BSO(n) to BSpin¢. We will not completely answer the
question of when they are or are not different, but we will show:

Theorem 6. Two lifts which differ by the action of an element in
HY(M;Z5) which comes from H'(M;Z) give the same spin°-structure,
assuming the complex line bundles are the same.
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PROOF: As above, we have that H'(M;Z) = [M,K(Z,1)] = [M, S'].
It will clearly suffice to show that a lift corresponding to an element in
H'(M;Z5) which comes from H'(M;Z) gives the same spin‘- struc-
ture as the lift corresponding to the 0 element. Such a lift would
factor through S' in each fiber; i.e. the image of the lift in each fiber
BZ, = RP* lies in the canonical copy of S* embedded in RP* as RP".
However, when we view BSpin¢ as a bundle over BSO(n), the fiber is
BU(1) = CP*, which is simply-connected. Therefore the copies of S*
can all be homotoped to a point in these fibers (simultaneously, since
the homotopy is the same in each fiber), which means the lift is the
same as the 0-lift. O

Hence, the number of spin®-structures on M associated with each
complex line bundle over M is at most

| ' (M ; Zy)modulothoseelementscomingfrom i (M; Z)|.

5. A DESCRIPTION OF Spin{ VIA CLIFFORD MODULES

In this section I will give a much more algebraic formulation of the
groups Spin, and Spin§. This formulation will give us information
about the structure of these groups which is very useful in studying
vector bundles. However, before diving into a sea of algebra, I will try
to give some geometrical motivation, following [K2].

Recall that an element of the orthogonal group O(n) can always be
written as a product of reflections p; across hyperplanes through the
origin. Each such reflection is determined by a unit normal v; to the
hyperplane; note that v; and —v; determine the same reflection. So we
can write an element of O(n) as a “product” [vy-vy----- vg|, where each
equivalence class contains a product and its negative, and 0 < k < n.
Then the double cover of O(n) is just the group of signed products,
which is called Pin, (a play on SO(n) and Spin, which stuck). We
will define the Clifford algebra C'(,, so that it contains Pin, in a natural
way.

DEFINITION: Given a real vector space V' with an inner product @,
the Clifford algebra CU(V, Q) is the quotient algebra 7 (V)/Z(V), where
T (V) is the tensor algebra @ V', and Z(V) is the ideal generated by el-

ements of the form v @ v — Q(v,v).

To increase the resemblance to our geometric motivation (and to
make things easier to write) we will usually write products as vw rather
than v @ w. The relation given in the definition can be rewritten as
vw+wo = 2Q(v,w). These relations have a particularly nice form when
we consider an orthonormal basis {eq, ..., e, } for V, and assume that ¢
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is positive definite. Then we have that e;e; = —eje; and e;e; = 1. From
these, we can see that a basis for CU(V,Q)is {e; = €, ...¢€;, where i1 <
iy < -+ <lip, and 0 < k < n} (when k = 0 we get the identity 1 = ¢p).
Therefore, the dimension of CU(V, Q) is 2", where n is the dimension
of V.

CUV, Q) has a natural Zygrading CU(V, Q) = CO(V,Q)BCH(V,Q)
where the first term is generated by products of an even number of
elements of V', and the second is generated by products of an odd
number of elements of V. We consider the multiplicative group of units
in the Clifford algebra, denoted C'¢*(V, Q). This group has a natural

representation in the Clifford algebra, called the adjoint representation:

Ad : OV, Q) — Aut(CU(V,Q))

Ad(g)(x) = pre™

If v e V with Q(v,v) # 0, then v is a unit (v™' = —v/Q(v,v)), and
Ad(v) preserves the inner product (Q(Ad(v)(w), Ad(v)(w)) = Q(w,w));
so Ad restricts to a representation of P(V, Q) ={v € V s.t. Q(v,v) #

0} in O(V,Q) ={X € GL(V) preserving Q}. Now we define:

Pin(V,Q) C P(V,Q) is the subgroup generated by v € V with Q(v,v) = £1
Spin(V,Q) = Pin(V,Q) N CE(V,Q)

We can show that these groups (for a real vector space) are double

covers of O(V, Q) and SO(V, Q) respectively, so this agrees with our

geometric definition of the spin groups.

We are particularly interested in the case when V' = R”, and () is
the usual positive definite inner product (dot product). Then we define
Cl, = CUV,Q), Spin, = Spin(V,Q), etc. We now define the groups
Spinf as before:

Sping, = Spin, xz, U(1)
We associate with C'l,, a volume element w = e1eq -+ - ¢, where {e1,... ,e,}
is an orthonormal basis for R”™ (with a given orientation). w is inde-
pendent of the choice of this basis (in C'(,), and we have the relation:

w? — (_1)n(n—|—1)/2

Similarly, we consider the case when V' is a complex vector space and
define C/,, to be C{,, @ C. Notice that Spin; C Cl,,. Again, we define
a volume element we = A*+D/2l, In this case, we find the square of
the volume element is always 1.

These volume elements give us useful decompositions of vector spaces
which have C'0,,- representations.

DEFINITION: A C{, —module is a real vector space W together with a
representation p : Cl, — Homp(W, W). We often denote p(¢)(w) by
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@ - w, and call this operation Clifford multiplication. Similarly, in the
complex case we define Cl,,-modules.

If W is a Cl,-module, and w? = 1, then we get a decomposition
W = W+ @ W~ into the eigenspaces of w, so W* = (1/2)(1 £ w)W.
In the complex case, the square of the volume element is always 1, so
the decomposition always exists.

We say that the representation p is reducible it W can be written
Wi & Ws, where p(¢)(W;) C W, for every ¢ € C{,. Otherwise, we call
the representation irreducible. We call two representations p; : C'(,, —
Hom(W;, W;) equivalent if there is a linear isomorphism F : Wy — W,
such that F o py(¢) o F~! = pa(¢) for every ¢ € Cl,,. There is a well-
understood classification of Clifford algebras (see [L-M]) which gives
us the following fact:

Theorem 7. The number of inequivalent irreducible real representa-
tions of Cly, is 2if n+1 = 0 (mod 4), and 1 otherwise. The number of
inequivalent irreducible complex representations of Cl,, is 2 if n is odd
and 1 if n is even.

Finally, we will introduce one more type of bundle - the spinor bun-
dles of a manifold:

DEFINITION: If the manifold M has a spin structure ¢ : Psy;,(TM) —
Pso(T'M), a real spinor bundle is an associated bundle S(M) = Ps,i(T'M) %,
W, where W is a left module for C?, and u : Spin, — SO(W)

is the representation given by Clifford multiplication by elements of
Spin, C C(°. Similarly, we define a complex spinor bundle, with W a
complex left module for C/,, = C/¢, @ C.

We easily generalize this definition to spin.-manifolds by defining the
spinor bundle S(M) = Pspine(TM) xa V, where V is a complex CC,,-
module, and A : Spin§ — GL(V) is the restriction of the C'/(, repre-
sentation to Spind C Cl, @ C. If this representation is irreducible, we
say that the spinor bundle is fundamental. So by the theorem above,
there is one fundamental spinor bundle if n is even, and two if n is
odd. However, in the odd case the two bundles are equivalent when
restricted to Spint, so in fact there is always a unique fundamental
spinor bundle, which we denote S(M). Since we are in the complex
case, we can use the volume element we to decompose S(M) into two
bundles SE(M) = (1/2)(1 £ we)S(M). We will use these bundles in

the next section to define the Seiberg-Witten equations.
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6. THE SEIBERG-WITTEN EQUATIONS

To define the Seiberg-Witten equations, we specialize to the case of
orientable 4-manifolds, following [T] and [A]. We know, from section
3, that any orientable 4-manifold has a spin®-structure. We also know,
from the classification of Clifford algebras in [L-M], that Cl, = C(4),
the algebra of 4 x 4 complex matrices. The unique irreducible complex
representation is the natural representation of this group on C*, so
the fundamental spinor bundle S(M) is a C*-bundle, which splits (as
described in section 4) into two C?-bundles S*¥(M). By restricting
this representation to the natural copy of R* lying inside Cl,, Clifford
multiplication gives us a map ¢ from the cotangent bundle T*(M) into
the skew-adjoint endomorphisms of S(M) = ST(M) @ S~(M) (skew-
adjoint because of the relation vv = —Q(v,v)). ¢ induces the following
map by duality:

o S""(M) @T*(M)— S~
o(s @v) = p-(c(v)(s,0))
where p_ is the projection S(M) — S=(M).
We will construct the fundamental spinor bundles S (M) explicitly

as associated bundles to representations. First, we recall the following
Lie group isomorphisms:

Sping = SU(2) x SU(2)
SO(4) = (SU(2) x SU(2))/{£1}
Sping = (SU(2) x SU(2) x U(1))/{£1}
These give us two natural actions of SO(4) on R*:

At 1 SO(4) x R? — R?

At ([p. gl @) — Im(pz)

A= ([p, gl x) — Im(qx)

where we are identifying SU(2) = S® with the unit quaternions, and R?
with the imaginary quaternions. The associated R*bundles to these
representations are isomorphic to Ay (the self-dual two-forms) and A_
(the anti-self-dual two-forms) respectively. We extend these actions to
actions of Sping on the quaternions H:

sy Sping x H — H

st ([py g, N, @) — pad~!
5= (g, Ny ) — gaA~?
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We view the associated R*-bundles to these actions as C*-bundles, and
by [A] these are the spinor bundles ST(M) and S~ (M), respectively.

Then we have a pairing:
(): SHM) @ (M) — A,
which is the equivariant extension of the map on fibers given by:
(.) 2z @y — Im(ziy)

where the bundle of imaginary quaternions is identified with Ay as
before.

Our penultimate step is to introduce the complex line bundle L =
det(ST(M)), together with a connection A. Together with the rie-
mannian connection on T*(M), A induces a covariant derivative V4 on
ST(M) which maps sections of ST(M) to sections of ST(M) @ T*(M).
We define the Dirac operator D4 as the composition of this map with
o:

Dy :T(SH(M)) — T(S™(M))
Da(s)(m) = o(Va(s)(m))

We are now ready to state the Seiberg-Witten equations. The data

for these equations is a pair (A, ) where A is a connection on L and

is a section of S*(M), and we let F'f denote the self-dual part of the
curvature of A:

Da(4) =0
F,:Il— = (¢7 ¢*)
The Seiberg-Witten invariant is given by properly counting the so-

lutions to these equations, as described in [T]. Taubes also states the
fundamental theorem:

Theorem 8. If M is a compact, oriented, connected {-manifold with
by > 1, then the Seiberg- Witten invariant SW is a map from the space
of spin®-structures on M to the integers Z which depends only on the
underlying smooth structure of M.
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