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We show that all criticisms raised by J.S. Gates and collaborators to our solution of the Lorentz Chern-Simons supersymmetri- 
zation problem are groundless. 

1. Introduction 

The discovery in 1984 of  the Green-Schwarz  
mechanism [ 1 ] and the advent  o f  heterotic string 
theory [ 2 ] posed a conceptually simple but techni- 
cally difficult problem. When the axion field strength 
is modified according to the rule 

where g2L(og) is the Lorentz Chern-Simons  three- 
form, the N =  1, D =  10 S U G R A + S Y M  theory is no 
longer supersymmetric, since the new interaction vi- 
olates SUSY as given by the old transformation 
rules a]. The problem is that  of  restoring supersym- 
metry by deriving new SUSY rules for all the fields 
of  the theory and, as a bonus of  supersymmetry, also 
the new field equations following from the closure of  
the algebra. In a second run one might also obtain the 
lagrangian from which such field equations follow. 

The first part of  this program has been achieved 
and corresponds to a solved, fully understood prob- 
lem. Indeed in a series o f  papers [ 3-13 ] due to the 
authors of  the present letter (and in one instance [ 5 ] 
also to Ferrara and Porrati)  the explicit derivation of  
the SUSY rules and of  the field equations has been 
obtained in closed form. The main bulk o f  these re- 
suits dates back to the years 1987-1988. 

We go back to such an old topic in order to react to 
a campaign of  criticisms raised by J.S. Gates and col- 
laborators against our work. These criticisms are spe- 
cifically contained in refs. [ 14,15 ] which have been 
published in Physics Letters B as well as in other pre- 
prints or drafts [ 16 ]. 

We will proceed as follows: first we summarize our 
results and the logic underlying their derivation. Then 
we analyze in detail the criticisms of  refs. [ 14-16 ]. 
We will show not only that the criticisms ofrefs. [ 14- 
16 ] are groundless, but also that some alternative 
procedures in refs. [ 14-17 ] are wrong. 

~ Here y is a constant whose value is fixed by anomaly cancel- 
lation while fl is fixed by supersymmetry. In the conventions 
of refs. [ 3,4 ] their value is y= - ~ and fl= - 4. 
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2. Anomaly free supergravity in the component 
formalism 

The field content of N=  1, D=  10 SUGRA+ SYM 
theory is the following: ( 1 ) the vielbein V~ (x); (2) 
the gravitino ~uu(x); (3) the axion B u , , ( x ) ;  (4) the 
dilatino Z(x); (5) the dilaton a(x) ;  (6) the gauge 
boson A u ( x ) ;  (7) the gaugino 2(x) .  In addition, if 
one uses the first order formalism, as we do, one has 
the spin connection ~o~,b(x). It is determined from 
the torsion equation 

~tu(m) V~] - ½i ~uF~,~ = T a b C V b u  Vcv , ( 1 ) 

once the torsion tensor T ~b¢ (fully antisymmetric) is 
expressed as a function of the seven physical fields. 

One of the main results of our construction is pro- 
vided by the differential equation that determines Tab~ 
in terms of the physical fields. Let 

H u v  p = 0 [ . u B v p  I - -  ½i  e 4/3°" q ) t u F d l f f p  Vu] d 

.q_ R~'~ ( Y M )  (L )  ,.._,,,,p (A) - yf2u,p (o9) (2) 

be the axion field strength. Its supercovariant form is 

P ) (3)  Hat,c= V~  Vb V c ( H u , ,  p __ ~.y((2.1 , f ( l , 2 ) ]  l ~ , u v p  -- ,v- 'x ,uup z 

where Y(=,~) and r(~,=) ~-~,~p ~-u~p are three-forms constructed 
out of T~bc itself, q/~ and the supercovariant gravitino 
field strength 

lZ u 1 m ijk Pab= Va V b (  ~ t u ( ~ ) ~ U , , l -  ggFmFok~utuV~,l T ). (4) 

The explicit expressions for y(2,~) y(~.=) .-u,,p or .-u,,p can be 
found in the original papers (e.g. in eq. (5.1a) and 
table 10 of ref. [ 4 ] or, more explicitly, in eqs. (16), 
( 17 ) of ref. [ 11 ] ). The differential equation for Tabc 
is 

Tabc = [ - 3Habc + 4i Tr(,~Ya~cA ) - 27Wabc ] e - 4 / 3 a ,  ( 5 )  

where Waac is a shorthand for the following 
expression: 

6 W a ~ , ~ = ~ T , : , b ~ +  3 T o t a R  bc] + 3Ti[abRic] 

+ 4 T i m [ a T m b n T c l n  l 2 2 1 -  ,j ki - T,a,c T - ~ p j 7  abckP 

-- 6fii[a Fi j  bP~lj -- 3fii~F ~ [abPc] i__ 3fiitaFbPcl i 

--9pi[aFiPbcl • (6) 

In eq. (6) R at'ca is the supercovariant Riemann ten- 
sor given by 

[I.z g] ab - ab m R a b c d +  V c V d [ R . u ~ ( O ) ) - ~ t . u O m  V u  

5-;Tabc'r~ P "" I T i j k~urab i j k~ ,  ] (7) 
- -  6 l ~  7".u~ eV 'v  - -  36 

with 0 ab defined as 

O,~blc = 2iFcPab -- 3 i F  m t,,bPc],, . ( 8 )  

AS one can see, eq. (5) is a highly complicated non 
linear equation for Tab~. When 7=0 everything sim- 
plifies and one gets the algebraic identification 

T a b c  = - 3 V Ua Vg VP~H~,va e4/3a+ 4i e -4/30 Tr (~Fab~2). 

(9) 

When 7# 0 eq. (5) can be solved perturbatively in 7 
yielding, at each order 7", Tabc as a functional Of Habo 

The key equation (5) comes from the closure of 
the supersymmetry algebra that is represented by the 
following transformation rules: 

8 V~, =i~-Ta~uu, (10a) 

8~u~=~ue + t r r . ~ ' r ' O k  (10b) ~ 1  a I i j k t V # l  

8Bu~ = i  e 4/3a gF"~ t  u va]  

+ y(¢J X(l'z))u~ + 7 ( e J X ( Z ' l ) ) u , , ,  (10c) 

~ X = - - 2 i F a e v u a ( O u G - - ¼ ~ u z )  Wil"abcEZabc, (10d) 

8 a = ¼ ¢ Z ,  (10e) 

~A/ .  t ~ - - a -- 2 i2FaEV u , (10f) 

82 = - ¼ F,,6 ~.F ab , (10g) 

where Z ~b~ is a short hand for a certain expression in 
T~ac and the other fields given for instance in table 10 
of ref. [4] or in eqs. (18a ) , (18b)o f re f .  [11], and 
where F ~b is the supercovariant gauge boson field 
strength: 

,u v F , ~ b = V , , V b ( O t u A , ,  1 -- ½[Au,  A , , ] + 2 i  21,,- ¢t,,, V~,,~ ) . 

(11) 

Furthermore (~]X (~,2))u~ and (EJX (2,1))u~ are the 
expressions obtained from the corresponding three- 
forms Xpu,, applying the formal operation Ep 6/6~Up. 

From the closure of the commutator algebra asso- 
ciated with the transformations (10),  one obtains not 
only eq. (5) for the torsion T~bc but also the other 
field equations for all the seven physical fields. Their 
explicit form has been recently obtained by one of us 
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with the aid of a dedicated symbolic manipulation 
program [ 11,12,18 ]. 

As the reader can see, all our results have been 
summarized in a component form without ever men- 
tioning superspace, Bianchi identities and super- 
fields. This is not the most economical way of pre- 
senting our formulae, which are equivalently, but 
more elegantly, written as rheonomic parametriza- 
tions (for a review see ref. [19])  of the superspace 
curvatures fulfilling Bianchi identities [ = closure of  
the SUSY algebra ]. We want to emphasize that in this 
approach going from superspace to components sim- 
ply amounts to take the 0~  0 limit of  all the relevant 
superfield equations. No choice of Wess-Zumino 
gauge is ever made; indeed one never considers any 
explicit 0-expansion of superfields. Moreover the 
SUSY transformations in eq. (10) which correspond 
to superspace diffeomorphisms are uniquely deter- 
mined once the rheonomic parametrization of the 
superform curvatures is given, i.e. certain constraints 
are imposed on the curvatures themselves. 

In order to discuss further the criticisms contained 
in refs. [ 14-16] it is convenient to go back to the 
more elegant superform language. For an easier com- 
parison with refs. [ 14-17], we use the notation of 
refs. [2,5,9,10] which is completely equivalent to that 
of refs. [ l, 3,4,8,1 l, 12 ] utilized so far. 

In the notation of refs. [ 2,5,9,10 ] we have the su- 
pervielbein one-form EA= (V a, ~ ) ,  the supertor- 
sion tw0-form T A = ( TaW ½i ~Fa~l, pa), the Lorentz 
and Yang-Mills two-form supercurvatures 
RA~= ½ECEDRocA B, F= ½ECEDFDo Furthermore one 
has the three-form 

H=dB+cl  Tr(AdA + ~A 3 ) 

_c2 Tr(12 dr2+ 2 3 ~t2 ) ,  (12) 

where c1, c 2 correspond to the fl, y constants previ- 
ously introduced. The Bianchi identities are 

AT a =EBR8 A , (13a) 

ARA B = 0 ,  (13b) 

dH=c l  Tr (FF) - c2  Tr (RR)  , (13c) 

zkF=0.  (13d) 

Let us come now to the discussion of the con- 
straints. The torsion constraints which are in one-to- 

one correspondence with the SUSY transformations 
(lOa, lOb) are 

T,~p c= 2 (FC),~#, (14a) 

T~a Y=0= Tab ~', T~# = (Fa)p,(Fok)'~T ijk , (14b) 

The constraints (14a) and (14b) are a possible choice 
but one can prove that once (14a) is fixed, ( 14b ) as 
well as all other choices found in the literature can be 
obtained by field redefinitions [ 9 ] (the same result 
has been proven by Shapiro and Taylor [20] and 
adopted recently by Howe in ref. [ 21 ] ). 

We pause a moment  on this subject because here 
the criticisms of refs. [ 14-16] fall more copiously. In 
particular in ref. [ 15 ] we meet the assertion that the 
result in ref. [ 9 ] is wrong and our field redefinitions 
are added assumptions, since the superconformal 
group is the largest superspace symmetry in this con- 
text (and does not include the field redefinitions of 
ref. [9 ] ). Moreover in ref. [ 16 ] it is claimed that, 
with the above field redefinitions, qualified as sin- 
gular gauge transformations, we are just gauging away 
the gravitino; hence, it is concluded that our results 
are inconsistent. 

Let us straighten this matter and disentangle the 
issues involved. First of  all, one can take the attitude 
that (14a), (14b) are just one's choice. We fix the 
vielbein and the gravitino SUSY transformation to 
he of  the form (10a), ( 10b ) and proceed. All the rest 
follows: we have a closed SUSY algebra and a set of  
field equations, namely a consistent supersymmetric 
theory. In particular there has been no loss of the 
gravitino, whose presence is in front of everyone's 
eyes. The next question is whether by choosing (14a), 
(14b) we are losing generality. The answer contained 
in ref. [9] and ref. [20] is clearly no: we are dealing 
with linear and invertible fields redefinitions involv- 
ing tensor superfields, scalar under superdiffeo- 
morphisms. Only (14a) is the significant choice, in 
other words if the SUSY transformation for the viel- 
bein is the canonical one (10a), then the gravitino 
transformation can always be brought to the canoni- 
cal form (10b) by a suitable field redefinition. This 
can be proven, if one wishes, in component language 
without even mentioning superspace, Wess-Zumino 
gauge and the like, or else one can work with super- 
fields. No ad hoc assumptions are made or needed: 
the constraints in (14b) lead to a solution of the 
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Bianchi identities which is completely equivalent to 
the solution one would obtain with other consistent 
choices. Here by equivalence we mean that  the two 
solutions can be obtained f rom each other through a 
field redefinition: this field redefinition is not to be 
confused with a symmetry transformation. 

The very nice feature of  the constraints (14a) ,  
(14b)  is that the Bianchi identities (13a) ,  (13b)  are 
satisfied, independently of  the presence or absence of  
CS-terms in the H-field strength, provided Tab c obeys 
the equations @~Tab~ = 0 and R ab = ] T~jk T ~jk. 

Let us now discuss the constraints on H and F cor- 
responding to the SUSY rules (10c) and (10f )  re- 
spectively. For F one writes 

F , p = 0 .  (15)  

This constraint  is well known, it concerns only the 
YM sector and will not be commented  upon here. On 
the other hand the constraints for the three-form H 
are obtained in the following way: first one proves 
that  

Tr  (RR)  + d X + K ,  ( 16 ) 

with X and K suitable Lorentz and gauge invariant  
superforms and that K has the same structure as 
T r ( F F )  [2].  Then one defines f I = H + c 2 X  so that  
(13c) becomes 

d / l =  cl Tr  (FF)  - c 2 K .  (17)  

Now the problem is conceptually the same as in the 
case c z = 0  [22].  So one can impose on the compo-  
nents o f / t  the conditions 

/t.B~ = 0 ,  (18a)  

I2I,~p~ = F,~&O , (18b)  

where ~ - e  4/3a. The constraints (18)  are consistent 
with the Bianchi identities and yield a unique set o f  
equations of  motion,  derived in explicit form by 
Pesando in refs. [ 11,12 ]. 

As discussed in ref. [ 10 ], in the splitting between 
dX and K in (16)  there is a possible f reedom which 
may lead to physically different theories (non-mini-  
mal anomaly  free supergravities [ 10 ] ) (see also ref. 
[23 ] ). O f  course this f reedom must  be compat ible  
with the Bianchi identities, i.e. the new K must  have 
the same structure as T r ( F F ) .  In part icular  in ref. 
[23 ] strong arguments  are given that the if(3 ) stringy 

correction (the Grisaru, Zanon and Van de Ven [ 24 ] 
t e rm)  can be accounted for in this way. This is to 
point  out that, contrary to the claim of  refs. [ 14-16 ], 
our  approach is capable of  reproducing stringy 
corrections. 

3. Browsing through the work of Gates and 
collaborators 

We finally address few more  specific criticisms 
contained in refs. [ 14-16 ]. Whenever  possible we will 
use the notat ion of  refs. [ 14-17 ], except for the con- 
vention that  ~/p.q will denote the part  of  a superform 

homogeneous of  degree p in the vector-like super- 
vielbein E a -  V a and homogeneous of  degree q in the 
spinor-like supervielbein E% A translation dictionary 
between refs. [6,7,9,10] and refs. [ 14-17] is shown 
in table 1. The essence of  the would be criticisms of  
ref. [ 14 ] is contained in the claim that  in refs. [ 3-  
13 ] a constraint is imposed on G3,o (equat ion (4.1) 
of  ref. [14] ). (This would imply that the construc- 
tion of  refs. [ 3-13 ] is not a correct Wess -Zumino  
construction and would lead to inconsistencies at the 
component  level.) This is not the case: in refs. [ 3 -  
13] the only constraints are on G<o,3), G<~,2) and 
G~2,1 ). Using the notat ion of  ref. [ 14 ], we have 

G~o,3) :Y'X(o.3) , 

G(1,2) =½i ECEaEP(~.),~ + y'X(,.2) + Y ' Q ( m ) ,  

G~2.1) =y'X~2,,)+y'Q~2,1), (19) 

The resulting equation at level (3,0) (i.e. eq. (4.1) 
ofref.  [ 14] ) reveals that no constraint is imposed on 
G<3.o): indeed eq. (4.1) ofref .  [ 14] comes f rom the 
consistent solution of  the Bianchi identity d G - 0  in 

~2 In the notation of refs. [3-5,8,11-13] the three 120 superten- 
sors related by the aforementioned equations are named Habc, 
Ta~ and Za~ and correspond in the given order to G~b~, T~bc 
and 0~b~- 

Table 1 

Refs. [6,7,9,10] Refs. [14-17] 

dB G 
X Q 
combination of YM 

and Lorentz CS X 
rc ~c 
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the sector (2,2) once it has been solved in the sectors 
(0.4) and (1,3). More precisely [dG] (2,2)=0 gives 
two relations involving three supertensors: Gabc, Tabc 
and Oabc (the 120 ofD,xDpq~) ~2. Eq. (4.1) ofref. [ 14] 
is obtained by eliminating ~ab~ from these two rela- 
tions and obtaining Tab~ in terms of something else, 
which is not a constraint since Tab~ is an auxiliary 
superfield (this is eq. (4.8) of ref. [7] or, equiva- 
lently eq. (5.11 ) of ref. [4] or eq. (5) of the present 
paper: it is a very complicated equation since the su- 
pertensor T~bc, which is the unknown, appears in a 
highly non-linear way). Alternatively one can elimi- 
nate Tabo in which case eq. (4.1) of ref. [14] gives 
the (complicated) expression of the 120 in the sector 
D~Da0, which is not a constraint either: indeed this 
120 supertensor just defines the SUSY transforma- 
tion rule of the dilatino (see eq. (5.1 lb)  of ref. [4] 
or equivalently eq. (10d) of the present paper). Since 
eq. (4.1) of ref. [14] is not a constraint, the con- 
struction of refs. [ 3-13 ] is perfectly Wess-Zumino 
and consistent with the component approach. 

Another statement contained in ref. [14] is the 
claim that in refs. [ 3-13 ] the roles of Gab~ and T~bc 
are confused. It is really hard to understand where 
this claim comes from. Eq. (4.8) of ref. [7] (or 
equivalently eq. (5) of the present paper) is 

T~bc= -- ~-~ (G~b~+7'Xab~)- ?'Qab~(T, ...) 

1~ t -- ¢ 
+ - -  ~ b(2aabc,~.) + ~ Labc(T, . . . ) ,  (20) 

where b= fl'/~,' is a finite number and the notation of 
ref. [ 14] has been used (except for Labc which is the 
one as in ref. [ 7 ], not the one appearing in ref. [ 14 ] ). 
Q~bc and Lab c a r e  complicated functions of T~bc. Solv- 
ing (20) iteratively (as one must do if one wants to 
compare the solution of refs. [ 3-13 ] with string the- 
ory) one just gets the expression of Tabc (not of G~b~) 
in terms of y'. All this has already been discussed in 
the component formulation. 

Finally we notice that the particular form of the 
constraints we use, including those on the three-form 
H, have been retrieved by one of us [25 ] in a totally 
different framework, namely from the cancellation of 
the x-anomaly in a Green-Schwarz formulation of the 
2D a-model. 

Now, as mentioned in the introduction, we want to 

show that refs. [ 14-17 ] contain an error. Since dG= 0 
and dX= b tr (FF)  + tr (RR), applying to eq. (19) the 
exterior differential d, one obtains 

tr(RR)0,4 + (dQ)o.4 = 0 ,  (21 ) 

tr (RR)t,3 + (dQ)t,3 = 0 .  (22) 

The difference between refs. [ 3-13 ] and refs. [ 14- 
17] is in the choice one makes for Q~,2 and Q2,1 in 
order to define the constraints (19). Both refs. [ 3- 
13 ] and refs. [ 14-17 ] choose a Q1,2 compatible with 
eq. (21 ). However it is important to remark that (21 ) 
leaves an arbitrariness in the choice of Q~.2, say 

Q1,2 = Qi,2 + Yt,2, (23) 

where (~ is what one gets from tr(RR)o,4 using the 
identity (2.4) ofref. [ 14], while 

YI,2 =EaE#EY( cTa) #a Y~ . (24) 

Indeed from eq. (24) it follows that 

(dY~.2)o,4 = 0 ,  (25a) 

since 

a a __ (25b) 

In refs. [ 14,17 ] the choice Y~,2 = 0 is made, but this 
choice is incompatible with eq. (22). 

The main result of ref. [ 6 ] is that one can choose 
Y~,2 (and QzA) in such a way that eq. (22) be satis- 
fied. It turns out that Y] is just given by 
( aabcd)~OaT bcd. 

It is not correct to claim, as in ref. [ 14 ], that once 
Q~,2 satisfies the Bianchi identity dG = 0 in the sector 
(0,4), the solution of the Bianchi identities in the 
other sectors is a mere exercise. One must consis- 
tently solve the Bianchi identity also in the sector 
(1,3) and only then the game becomes a (compli- 
cated) exercise. 

In ref. [ 14 ] the term Y~,2 was neglected. That this 
is not allowed can be further exposed by the follow- 
ing considerations: 

(i) In the component approach the choice of Q1.2 
gives rise to a contribution in the SUSY transforma- 
tion of the axion field Bu~, 

..."{-C2E mapq/ iuVv l .  d~B m ' = -,~ a p a 

Obviously the closure of the SUSY algebra deter- 
mines the form of the coefficient MSp in terms of 
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physical fields. Forgetting YI,2 means to forget an es- 
sential contribution to M~p proportional to the de- 
rivative DtaTbca I of  the torsion. 

(ii) Since the authors o f  ref. [14 ] use exactly the 
same constraints as in ref. [8 ], a direct comparison 
of  formulae and results is easily established. Ref. [ 14] 
merely presents a subset o f  the results in ref. [ 8 ] as 
we now show: eqs. (2.1), ( 2.2 ) and (2.3) in ref. [ 14 ] 
are simply 

X~-~ ~~ (L) =Tr (0 )d0 )+  2 0 ) 2 )  , 

d X =  tr( R R  ) , 

d G = 0 ,  

where G = d B = H +  c292 CL). Moreover eq. (2.5) in ref. 
[ 14 ] can be read directly from eqs. (7) ,  (10) ,  ( 11 ), 
(14) and ( 17 ) in ref. [ 8 ], once these last equations 
are evaluated at Y1,2=0, i.e. with the choice (20) o f  
ref. [8] which implies (21),  as explained in ref. [8].  
Finally eqs. (3.1) in ref. [ 14 ] are linear combina- 
tions ofeqs .  (22) in ref. [8].  As it has been clearly 
stressed in ref. [ 8 ] these equations do not provide 
the correct linear order solution of  the Bianchi iden- 
tities and the choice Yl,2=0 is definitely wrong, it 
solves the linearized Bianchi identity but it does not 
provide the first order term of  the unique all order 
solution. In a perturbative approach this can be 
checked by a second order calculation, which has 
never been attempted in refs. [ 14-16 ]. 

sion of  the higher order string corrections with an ex- 
plicit localization o f  where they sit (the example o f  
the ( ( 3 )  correction explicitly worked out ~3 

(v)  Full-fledged comparison with the dual formu- 
lation in terms of  the seven-form. 

(vi) Comparison of  the D =  10 case with the D = 4  
one. Extension of  the Bonora-Pas t i -Tonin  theorem 
to D = 4, with the proof  that in the lower dimensional 
case it reproduces the results obtained by Ferrara, 
Girardello, Cecotti and Villasante in different ways. 
Understanding of  why in D = 4  one introduces no 
ghosts, while in D =  10 one does introduce ghosts. 

Finally we emphasize that contrary to the state- 
ment in ref. [ 14 ] it is not true that the (1,3) sector 
o f  the H Bianchi identities is automatically solved 
once the (0,4) sector is solved. Explicit calculations 
show that, keeping the constraints (14) fixed once 
and for all, the H Bianchi identities in the ( 1,3 ) sec- 
tor imply the term r~ ~r F'abcae L"a • bcd--otfl Gates et al. are miss- 
ing. It is a crucial term responsible in particular for 
the appearance of  ghosts. Possibly, if  one relaxes the 
constraints (14) at order 7 then the crucial cocycle 
mentioned above might be shifted from the (1,2) 
sector o f  the H curvature to another place. Apart from 
the fact that this is not obvious, it is also irrelevant. 
Indeed since we can go back to the constraints (14) 
by means o f  a field redefinition, the same field rede- 
finition will place back the cocycle to its canonical 
position in H. 

4. Conclusions 

All criticisms raised by Gates et al. are groundless. 
The correctness o f  our approach can be summarized 
in the following results: 

(i) Closed SUSY algebra with explicit SUSY 
transformation rules for every physical field in terms 
of  physical fields. 

(ii) Complete understanding of  the generality of  
the constraints and their derivation even from the 
Green-Schwarz  x-anomaly cancellation requirement 
[251. 

(iii) Explicit equations o f  mot ion for all the phys- 
ical fields, admitt ing in particular Calabi-Yau spaces 
as exact solutions. 

( iv) Clear separation between the supersymmetri-  
zation o f  the Lorentz Chern-Simons  and the discus- 

#3 We should stress that in refs. [ 14-17 ] there is often a confu- 
sion between minimal supersymmetrization of the Lorentz 
Chern-Simons term and complete effective theory for the su- 
perstring massless sector. In this paper we have been discuss- 
ing the first issue. Ghosts appear necessarily in minimal 
anomaly free supergravity. We interpret this as an incompati- 
bility between the simultaneous requirements of (a) locality, 
(b) unitarity, (c) absence of anomalies, (d) supersymmetry. 
It is not clear to us whether there exists a ghost free complete 
non-minimal effective theory (see the discussion in refs. [7, 
9]). 
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