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Introduction

The notion of sheaf on a topological space emerged during the period around the
second world war, in order to provide an efficient tool to handle local problems.
It admits a straightforward generalization to the case of locales: lattices which
mimic the properties of the lattice of open subsets of a space. But the striking
generalization has been that of a sheaf on a site, that is, a sheaf on a small category
provided with a so-called Grothendieck topology. That notion became essential in
algebraic geometry, through the consideration of schemes. In the late sixties,
F.W. Lawvere introduced elementary toposes: categories satisfying axiomatically
the properties typical of the categories of sheaves of sets. Each topos provides
a model of intuitionistic logic. Except for what has just been mentioned in this
paragraph, we shall stay on the safe side in this text, avoiding to mention whatever
paternity of a notion or a result.

These notes intend to give a quick overview of some relevant aspects of topos
theory, without entering the details of the proofs. They assume some reasonable
familiarity with category theory.

Chapter 1 introduces the sheaves on a topological space and on a locale and
exhibits some structural properties of the corresponding localic topos. We provide
an application to ring theory.

Chapter 2 begins with the notion of a Grothendieck topology on a small cat-
egory and the corresponding notion of sheaf. It investigates some exactness and
structural properties of the corresponding Grothendieck topos.

In Chapter 3, we switch to the axiomatic of those categories called elementary
toposes and review some of their important properties.

Chapter 4 throws some light on the internal logic of a topos, which is intu-
itionistic, and the way to use it in order to prove theorems “elementwise”.

Chapter 5 investigates the morphisms of toposes, both the logical ones and the
geometriccal ones. The link is made with internal notions of topology and sheaf.

We conclude in Chapter 6 with the notion of the classifying topos E(T) of a
theory T: a Grothendieck topos which contains a generic model M of T. Generic
in the sense that every model of T in whatever Grothendieck topos F can be
reconstructed from M via the geometric morphism of toposes between F and
E(T).

I thank Olivia Caramello who faced me with the somehow foolish challenge of
introducing an audience to topos theory, up to the notion of a classifying topos,
through a series of six one hour talks. This has been the genesis of these notes.
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Chapter 1

Localic toposes

1.1 Sheaves on a topological space

In a first calculus course, one studies in particular the set of continuous functions
on the reals. The sheaf approach to this same question focuses on considering the
continuous functions existing at the neighborhood of a point. For example log x
and
√
x exist at the neighborhood of each r > 0, but not at the neighborhood

of r < 0. Of course, considering open neighborhoods suffices. So our sheaf
of continuous functions on the reals consists in specifying, for each open subset
U ⊆ R, the set C(U,R) of real continuous functions on U . Clearly, when V ⊆ U is
a smaller open subset, every f ∈ C(U,R) restricts as some f |V ∈ C(V,R). Writing
O(R) for the lattice of open subsets of the reals, we get so a contravariant functor

C(−,R) : O(R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set

to the category of sets.
Next, given two open subsets U , V and continuous functions f : U qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R,

g : V qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R which coincide on U ∩ V , we can “glue” f and g together to ex-
tend them in a continuous function defined on U ∪ V . And of course, the same
process holds when choosing an arbitrary number of fi : Ui qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R, not just two.
So our sheaf of continuous functions satisfies the property:

Given open subsets U=
⋃
i∈I Ui and continuous functions fi ∈ C(Ui,R)

If for all indices i, j, one has fi|Ui∩Uj
= fj|Ui∩Uj

Then there exists a unique f ∈ C(U,R) such that for each i, f |Ui
=fi.

Definition 1.1 Consider a topological space X and its lattice O(X) of open1
subsets.
A presheaf F on X is a contravariant functor F : O(X) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set.
When V ≤ U in O(X), let us write

F (U) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F (V ), a 7→ a|v

for the action of the functor F on the morphism V ⊆ U of O(X).
A sheaf F on X is a presheaf satisfying the axiom

Given U =
⋃
i∈I Ui in O(X) and ai ∈ F (Ui) for each i

If for all indices i, j one has ai|Ui∩Uj
= aj|Ui∩Uj

Then there exists a unique a ∈ F (U) such that for each i, a|Ui
= ai.

7



8 CHAPTER 1. LOCALIC TOPOSES

The morphisms of preseheaves or sheaves are the natural transformations between
them.

The considerations at the beginning of this section extend at once to yield the
following examples.

Example 1.2 Given a natural number k ∈ N, the mapping2

O(R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set, U 7→ Ck(U,R)

associating with an open subset U the set of k-times differentiable functions from
U to R, together with the restriction mappings, is a sheaf on R.

Example 1.3 Given two topological spaces X and Y , the mapping3

O(X) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set, U 7→ C(U, Y )

associating with an open subset U the set of continuous mappings from U to Y ,
together with the restriction mappings, is a sheaf on X.

Of course in the first example, when k ≤ l, the sheaf Cl(−,R) is a subsheaf of
Ck(−,R). In the second example, we obtain at once a subsheaf of C(−, Y ) when
considering:

Example 1.4 Given a continuous mapping p : Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X, the mapping4

O(X) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set, U 7→ S(U, Y ) = {s : U → Y | s ∈ C(U, Y ), p ◦ s = idU}

associating with an open subset U the set of continuous sections of p on U , together
with the restriction mappings, is a sheaf on X.

This last example is somehow “generic” since:

Proposition 1.5 Let F be a sheaf on the topological space X. There exists a5
topological space Y and a continuous mapping p : Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X such that F is isomor-
phic to the sheaf of continuous sections of p.

Sketch of the proof At the very beginning of this section, we insisted that the
sheaf of continuous functions on the reals focuses on the behavior of continuous
functions at the neighborhood of each point. Given a real number r, we intend
thus to consider all continuous real valued functions defined on a neighborhood of
r, identifying two such functions when they coincide on a (smaller) neighborhood
of r. What we perform so is the filtered colimit

Sr = colim U3rC(U,R).

The colimit is indeed filtered since given r ∈ U and r ∈ V , we have of course
r ∈ U ∩ V .

This construction generalizes at once to an arbitrary sheaf F on a topological
space X. Given a point x ∈ X, the stalk of the sheaf F at the point x is defined
as the filtered colimit

Sx = colim U3xF (U).
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The set Y is then the disjoint union
∐

x∈X Sx of these stalks and the mapping
p : Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X is the projection mapping the whole stalk Sx on the point x. Next for
every U ∈ O(X) and every element a ∈ F (U), we have a section of p

σUa : U qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Y x 7→ [a] ∈ Sx

where [a] indicates the equivalence class of a in the colimit. Let us provide Y with
the final topology for all these sections σUa , for all U ∈ O(X) and all a ∈ F (U). The
mapping p is continuous for that topology and with the notation of Example 1.5,
the mappings

F (U) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S(U, Y ), a 7→ σUa

constitute an isomorphism of sheaves. �

Proposition 1.5 is the essential ingredient of a more precise theorem.

Definition 1.6 A mapping p : Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X between topological spaces is étale when,6
for every point y ∈ Y , there exist open neighborhoods W of y and V of p(y), such
that p induces an homeomorphism between W and V .

It is immediate to observe that an étale mapping is both continuous and open
and that a composite of étale mappings is still étale. Moreover, given a commu-
tative triangle of continuous mappings

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqh
Z

@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f
�

�
�qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

g

X

if f and g are étale, so is h. So the category of étale mappings over X is a full
subcategory of Top/X.

Theorem 1.7 The category of sheaves on a topological space X is equivalent to7
the category of étale mappings over X.

Sketch of the proof Observing that the mapping p of Proposition 1.5 is étale,
Example 1.4 and Proposition 1.5 describe the equivalence at the level of objects.

�

A classical example of a non trivial étale mapping is the projection of a circular
helix on its base circle. A more trivial example is the codiagonal ∇ : X

∐
X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X

of the coproduct.

Let us conclude this section with emphasizing how strong is the notion of
étale mapping. The inclusion of a subspace provided with the induced topology
is generally not an étale mapping . . . except when the subspace is open. For
example the inclusion of the real line in the real plane is by no means étale.
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1.2 Sheaves on a locale

Definition 1.1 shows at once that the notion of sheaf on a topological space depends
only on the corresponding lattice of subobjects. So one would be tempted to
extend this definition to the case of an arbitrary complete lattice: complete, since
the definition of a sheaf on a topological space uses a condition like U =

⋃
i∈I Ui.

But completeness does not suffice. Indeed the notion of sheaf on a topological
space uses also in an essential way the restriction to a smaller open subset V ⊆
U . Of course since finite intersections and arbitrary unions of open subsets are
computed set theoretically, one gets at once

V = V ∩ U = V ∩
⋃
i∈I

Ui =
⋃
i∈I

(V ∩ Ui)

so that the covering of U restricts as a covering of V . Such a property is essential
in many of the proofs above.

We shall thus adopt the following definition:

Definition 1.8 A locale is a complete lattice in which finite meets distribute8
over arbitrary joins.

The condition in the definition is thus

u ∧
∨
i∈I

vi =
∨
i∈I

(u ∧ vi)

for all elements of the locale. Notice that a locale has a top element 1 (the join of
all its elements) and a bottom element 0 (the join of the empty family of elements).
It has also arbitrary meets (the join of all the lower bounds), but this is of little
interest since infima in a locale do not have any relevant property; in the case of
topological spaces, these infima are the interior of the set theoretical intersection.

Of course we define now:

Definition 1.9 Consider a locale L9
A presheaf on L is a contravariant functor F : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set.
When v ≤ u in L, let us write

F (u) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F (v), a 7→ a|v

for the action of the functor F on the morphism v ≤ u of L.
A sheaf on L is a presheaf F satisfying the axiom

Given u =
∨
i∈I ui in L and ai ∈ F (ui) for each i

If for all indices i, j one has ai|ui∧uj = aj|ui∧uj
Then there exists a unique a ∈ F (u) such that for each i, a|ui = ai.

The morphisms of presheaves or sheaves are the natural transformations between
them.

The families (ai)i∈I as in Definition 1.9 are generally referred to as compatible
families of elements along the covering u =

∨
i∈I ui; a ∈ F (u) is called the gluing

of that family.
Everything has of course been done to get as a first example:
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Example 1.10 Given a topological space X, its lattice O(X) of open subsets is10
a locale and the notions of sheaf on the space X and sheaf on the locale O(X)
coincide. �

Example 1.11 Each representable functor on a locale is a sheaf on that locale.10a

Sketch of the proof If u is an element of a locale L, the corresponding rep-
resentable functor has value the singleton on each v ≤ u, and the empty set
elsewhere. �

Example 1.12 Given a locale L,10b

Ω(u) = ↓u = {v ∈ L|v ≤ u}

is a sheaf on L.

Sketch of the proof A compatible family vi ∈ ↓ui glues as
∨
i∈I vi in ↓(

∨
i∈I ui).

�

Example 1.13 Every complete Boolean algebra is a locale.11

Sketch of the proof A Boolean algebra B is in particular a distributive lattice.
It follows easily that given three elements u, v, w in B

(u ∧ v) ≤ w iff u ≤ ({v ∨ w).

This shows that the functor −∧ v : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B admits the right adjoint {v ∨−, thus
preserves all colimits. �

The following result will play an essential role when studying the internal logic
of toposes.

Theorem 1.14 Every locale is a Cartesian closed category.12

Sketch of the proof Consider three elements u, v, w in a locale L. Put

(v ⇒ w) =
∨
{x ∈ L | x ∧ v ≤ w}.

It follows at once that

(u ∧ v) ≤ w iff a ≤ (v ⇒ w).

But u ∧ v is the product of u and v in the category L. We have thus observed
that the functor (− ∧ v) admits (v ⇒ −) as a right adjoint. �

The notation v ⇒ w in Theorem 1.14 calls for a comment. Imagine a moment
that the elements of the locale L are in fact statements in a theory that we are
developing. Considering the usual logical connectors and, or, implies, . . . , a
well-known rule of mathematical logic is:

From (u and v) one can infer w
if and only if

from u one can infer (v implies w).

In the locale L, identify now the operations ∧, ∨ with the logical connectors and,
or and interpret u ≤ v as “from u one can infer v”. You conclude at once that
the notation in Theorem 1.14 is the sensible one.
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1.3 Localic toposes

Let us introduce a first time the word topos

Definition 1.15 The category of sheaves on a locale is called a localic topos.17

This section focuses on some typical properties of a topos.

Proposition 1.16 A localic topos is complete and limits of sheaves are computed18
pointwise.

Sketch of the proof The terminal object is the constant sheaf on the singleton,
represented by the top element 1 of the locale L (see Example 1.11). The case
of products is trivial. Next consider two morphisms α, β of sheaves and their
pointwise equalizer K.

K κ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F
α

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

β
G

Given a covering u =
∨
i∈I in L, a compatible family (ai ∈ K(ui))i∈I admits a

unique gluing a ∈ F (u) because F is a sheaf. By naturality and since ai ∈ K(ui),
αu(a) and βu(a) restrict as αui(ai) = βui(ai). Since G is a sheaf, this forces
αu(a) = βu(a), thus a ∈ K(u). �

Proposition 1.17 A localic topos is Cartesian closed.19

Sketch of the proof Given two sheaves G, H on the locale L, we must find a
sheaf HG such that for every sheaf F

Nat(F ×G,H) ∼= Nat(F,HG).

Choosing F = L(−, u) a representable sheaf (see Example 1.11), the Yoneda
lemma forces the definition:

HG(u) ∼= Nat
(
L(−, u), HG

) ∼= Nat
(
L(−, u)×G,H

) ∼= Nat
(
G|u, H

)
where G|u is the restriction of the sheaf G to the down segment ↓u, namely
G|u(v) = G(v) for v ≤ u and is empty elsewhere. The rest is routine computation.

�

Let us pursue this first chapter with the key property of a topos. In the
category of sets, every subset S ⊆ A admits a characteristic mapping

ϕ : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq {0, 1}, a 7→ 1 iff a ∈ S.

The inclusion {1} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq {0, 1} – which we shall write simply as v : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 2 – induces
then by pullback a bijection between the morphisms ϕ : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 2 and the subobjects
S ⊆ A.

Theorem 1.18 Every localic topos admits a subobject classifier, that is, a mono-20
morphism t : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω inducing by pullback, for every sheaf F , a bijection between
the morphisms ϕ : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω and the subobjects of F .
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Sketch of the proof 1 is the terminal sheaf represented by 1 ∈ L (Example 1.11)
and Ω is the sheaf in Example 1.12. The morphism t is defined by

tu : {?} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ↓u, ? 7→ u;

it is of course a monomorphism. Pulling back a morphism ϕ : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω along t
yields thus a subobject of F . Conversely, given a subsheaf S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F , define its
characteristic morphism by

ϕu : F (u) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω(u) = ↓u, a 7→
∨{

v ≤ u
∣∣a|v ∈ S(v)

}
.

It is routine to observe that this yields a bijection. �

The construction in Theorem 1.18 is worth a comment, which will take its full
importance in Chapter 4. Consider a subsheaf S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F and an element a ∈ F (u),
for some u ∈ L. One could ask the question: does a belong to S?. Well, what do
we mean by such a question? If it is does a belong to S(u), the answer is simply
“yes” or “no”. But the situation is much more subtle since maybe a 6∈ S(u), but
a restricts to some element in S(v) for some v < u. And as the construction in
the proof of Theorem 1.18 shows, there exists a biggest such v ∈ L. So when we
ask the question does a belong to S?, instead of answering simply true or false, we
better provide a much more precise answer by pointing out the greatest element
of L where this becomes the case. In this spirit, the morphism ϕ in the proof
of Theorem 1.18 applies the element a on the “best truth value” of the formula
a ∈ S. Thus Ω appears so as the sheaf of truth values of the theory of sheaves on
L.

We shall investigate, in the more general context of Chapter 2, the existence
of colimits in a localic topos and the universal construction of the sheaf associated
with a presheaf.

1.4 An application to ring theory

In this section, by a ring we always mean a commutative ring with unit. The
proofs of the various results that we mention are technically rather involved; an
explicit treatment of the question can be found in sections 2.10 and 2.11 of [2].

Let us recall that a prime ideal of a ring is a proper ideal I C R satisfying

∀r, s ∈ R rs ∈ I ⇒ r ∈ I or s ∈ I.

A ring admits always “enough” prime ideals, since given a prime ideal I C R and
an element r ∈ R such that for each n ∈ N, rn 6∈ I, there exists a prime ideal J
containing I but not r.

Let us recall also that a ring S is local when

∀s ∈ S s is invertible or 1− s is invertible.

The notion of local ring is a kind of (weak) generalization of the notion of field,
where the only non invertible element is 0 . . . but of course 1 − 0 is invertible.
Another easy example is the set of those rational numbers which can be written
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as a fraction whose denominator is not divisible by some prime number p (this is
a special case of a so-called ring of valuation). Another example of a local ring is
the ring of formal series with n variables on a field K.

Given a prime ideal J C R of a ring, the ring of fractions

RJ =
{ r
s

∣∣∣ r ∈ R, s ∈ R, s 6∈ J}
with the usual equality, sum and product of fractions, becomes a local ring.

Let us now canonically associate, with every ring R, a topological space and
a sheaf on it.

Definition 1.19 The spectrum of a ring is the set Spec(R) of its prime ideals21
provided with the topology generated by the basic open subsets, for all r ∈ R

Or = {J |J is a prime ideal, r 6∈ J}.

By definition of a prime ideal J , one has at once

r 6∈ J and s 6∈ J ⇔ rs 6∈ J

which means that Ors = Or ∩Os. Thus a general open subset of the spectrum is
an arbitrary union of subsets of the form Or.

Definition 1.20 The structural space of a ring R is the mapping22

γ :
∐

J∈Spec(R)

RJ
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Spec(R)

where the whole of each RJ is mapped on the single point J and the domain of γ
is provided with the final topology for all mappings

σrs : Or qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
∐

J∈Spec(R)

RJ , J 7→ r

s
∈ RJ , r, s ∈ R.

As you can expect, since this example is presented here:

Proposition 1.21 The structural space of a ring is an étale mapping. �23

By Theorem 1.7, the structural mapping of the ring R corresponds to a sheaf
Γ on Spec(R). Given an open subset U ⊆ Spec(R), Γ(U) is the set of continuous
sections of γ on U . Given such a section σ on U , we have thus

∀J ∈ U
(
σ(J) ∈ RJ is invertible or 1− σ(J) ∈ RJ is invertible

)
since each RJ is a local ring. But in fact a much stronger property holds.

Theorem 1.22 Consider a ring R, its structural space γ and the corresponding24
sheaf Γ as above.

1. The sheaf Γ is a sheaf of rings: that is, for each open subset U ⊆ Spec(R),
Γ(U) is a ring and each restriction mapping is a morphism of rings.
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2. The ring R is isomorphic to Γ
(
Spec(R)

)
, the ring of global sections of γ.

3. For every open subset U ⊆ Spec(R), every σ ∈ Γ(U) viewed as a continuous
section of γ on U and every J ∈ U , there exists an open neighborhood V of
J in U such that(
∀I ∈ V σ(I) ∈ RI is invertible

)
or
(
∀I ∈ V 1− σ(I) ∈ RI is invertible

)
.

Corollary 1.23 Consider a ring R, its structural space γ and the corresponding25
sheaf Γ as above. For every element r ∈ R viewed as a global continuous section
σ of γ, there exists an open covering of Spec(R) such that, on each piece Uof that
covering,

σ|U is invertible or (1− σ)|U is invertible.

Theorem 4.10 will turn Corollary 1.23 into the statement that, in its topos of
sheaves on its structural space, every ring becomes a local ring.
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Chapter 2

Grothendieck toposes

2.1 Sheaves on a site

Let us first revisit the notion of sheaf on a locale L in more categorical terms.
Let F be a presheaf on L. A compatible family (ai)i∈I in F along a covering
u =

∨
i∈I ui extends by restrictions to a compatible family along all the elements

v ∈ L smaller than some ui; of course, both data are equivalent. But defining

R(v) = {?} iff ∃i ∈ I v ≤ ui

we get now a subpresheaf R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L(−, u) and giving the extended family is the
same as giving a morphism of presheaves α : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F . Requiring the existence of
a unique gluing a ∈ F (u) is then equivalent, by the Yoneda lemma, to requiring
that α extends uniquely to L(−, u).

R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L(−, u)

α

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
β

F

So, calling covering a subobject R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L(−u) such that

u =
∨{

v
∣∣R(v) = {?}

}
the sheaf condition on a presheaf F is the so-called orthogonality condition to all
the covering subobjects.1

One could be tempted to define a site as a small category C provided, for each
object C ∈ C, with a family of subobjects of C(−, C) chosen as the “covering
ones”. But if one expects to extend the properties of sheaves encountered in the
case of a locale, the families of covering subobjects should mimic the properties
of the covering families in a locale L:

1. For each u ∈ L, u covers u.

1In a category, an object X is said orthogonal to a morphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B when each morphism
A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X factors uniquely through f .

17
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2. If the ui’s cover u and v ≤ u, then the v ∧ ui’s cover v.

3. If the ui’s cover u and the vj ≤ u are an arbitrary family whose restrictions
cover each ui, then the vj’s cover u.

Definition 2.1 Let C be a small category. Call sieve a subobject of a repre-26
sentable functor. A Grothendieck topology T on C consists in specifying, for each
object C ∈ C, a family T (C) of covering sieves, so that the following axioms are
satisfied.

1. For each C, C(−, C) covers C.

2. If R covers C and f : D qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C, then C(−, f)−1(R) covers D.

3. Let R cover C and consider S, an arbitrary sieve on C. If for every D ∈ C
and every f ∈ R(D), C(−, f)−1(S) covers D, then S covers D.

A small category provided with a Grothendieck topology is called a site

Definition 2.2 Let (C, T ) be a site.27
A presheaf on (C, T ) is a contravariant functor C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set.
A sheaf on (C, T ) is a presheaf F , orthogonal to every covering sieve.
A morphism of sheaves or presheaves is a natural transformation between them.
The category of sheaves on a site is called a Grothendieck topos.

Everything has been done so that:

Example 2.3 Every localic topos is a Grothendieck topos. �28

Other trivial examples are given by:

Example 2.4 Every category of presheaves on a small category C is a Grothen-29
dieck topos.

Sketch of the proof Choosing the identities on the representable functors as only
covering sieves yields a Grothendieck topology. Every presheaf is then a sheaf. �

Example 2.5 The category of sets is a Grothendieck topos.29a

Sketch of the proof The category of sets is that of presheaves on the terminal
category 1. �

Example 2.6 Given a group G, the category of G-sets is a Grothendieck topos.29b

Sketch of the proof Let us recall that a G-set is a set X provided with an action
of G, so that

∀x ∈ X ∀g, g′ ∈ G x · 1 = x, x · (gg′) = (x · g) · g′.

Viewing the multiplicative group G as a one-object category admitting G and its
multiplication as set of arrows, a G-set is just a presheaf. �
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Example 2.7 Let C be a small category. Declaring all sieves covering yields a30
Grothendieck topology, for which the only sheaf is the constant presheaf on the
singleton.

Sketch of the proof Just because the empty presheaf is covering. �

Observe that in Example 2.4, all representable functors are sheaves, while in
Example 2.7, they are not in general. In fact one can prove that:

Proposition 2.8 The Grothendieck topologies on a small category, ordered by31
inclusion, constitute a locale. �

Corollary 2.9 Given a small category C, there exists a biggest Grothendieck32
topology T on C such that all representable functors are sheaves. It is called the
canonical topology on C.

Sketch of the proof By Proposition 2.8, this is the supremum of all Grothendieck
topologies for which the representable functors are sheaves. �

2.2 The associated sheaf functor

Given a site (C, T ), this section investigates the existence of the sheaf aF univer-
sally associated with a presheaf F . That is, we want to prove the existence of a
left adjoint to the inclusion Sh(C, T ) ⊆ Pr(C) of the category of sheaves in that of
presheaves.

Assuming that the problem is solved, given a covering sieve R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C(−, C) and
a morphism f : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F , we get a unique factorization g as in the diagram

R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C(−, C)

f

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
g

F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq aF

where F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq aF is the unit of the adjunction. By the Yoneda lemma, giving g is
giving an element of aF (C): thus each f as above yields an element of aF (C).
This explains why we are interested in the following construction.

Proposition 2.10 Consider a site (C, T ). For every presheaf F and every object35
C ∈ C, define

α(F )(C) = colim R∈T (C)Nat(R,F ).

This extends at once as a presheaf α(F ) and further, as a functor

α : Pr(C) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Pr(C)

on the category of presheaves on C. �
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Lemma 2.11 Given a site C, T ), the intersection of two covering sieves on an34
object C is still a covering sieve.

Sketch of the proof This is a direct consequence of axiom 3 in Definition 2.1.
�

Corollary 2.12 In the conditions of Proposition 2.10, the functor α preserves34a
finite limits.

Sketch of the proof By Lemma 2.11, the colimit in the definition of α(F )(C) is
filtered. The result follows then from the commutation of finite limits with filtered
colimits in Set, thus also in every category of presheaves. �

To clarify the language, let us introduce an intermediate notion: in Defini-
tion 2.2, we keep only the uniqueness condition in the orthogonality condition.

Definition 2.13 Let (C, T ) be a site. A separated presheaf on this site is a33
presheaf F such that, given a covering sieve r : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C(−, C) and a morphism
f : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F , there is at most one factorization of f through r.

Proposition 2.14 In the situation of Proposition 2.10:36

1. the presheaf α(F ) is separated;

2. when F is separated, α(F ) is a sheaf.

Sketch of the proof See Section 3.3 of [2] for the involved details of the proof.
�

As a (non trivial) corollary, we obtain the expected result:

Theorem 2.15 Let (C, T ) be a site. The category Sh(C, T ) is a full reflective37
subcategory of the category Pr(C) of presheaves and the reflection, called the asso-
ciated sheaf functor, preserves finite limits.

Sketch of the proof Given a presheaf F , one defines aF = α
(
α(F )

)
. We obtain

a natural transformation σF : F ⇒ α(F ) by putting

σF,C : F (C) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq α(F )(C), x 7→ [x] ∈ Nat
(
C(−, C), F

)
where [x] is the equivalence class in the colimit of the morphism C(−, C) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F
corresponding to the element x ∈ F (C) by the Yoneda lemma. The unit of the
adjunction is then given by the composite σα(F ) ◦ σF . �
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2.3 Limits and colimits in Grothendieck toposes

First of all:

Proposition 2.16 A Grothendieck topos is complete and cocomplete.38

Sketch of the proof Given a site (C, T ), the category Pr(C) is complete and
cocomplete: limits and colimits are computed pointwise. The category Sh(C, T )
is complete and cocomplete as a full reflexive subcategory of Pr(C). �

Proposition 2.17 In a Grothendieck topos Sh(C, T )39

1. finite limits commute with filtered colimits;

2. colimits are universal;2

3. sums are disjoint.3

Sketch of the proof All these properties hold in Set, thus in the topos Pr(C) of
presheaves where limits and colimits are computed pointwise.

By Theorem 2.15, the category Sh(C, T ) is stable in Pr(C) under limits, while
colimits are obtained by applying the associated sheaf functor to the correspond-
ing colimit computed in Pr(C). This allows to conclude, since the associated sheaf
functor preserves all colimits and finite limits (thus also in particular, monomor-
phisms and the initial object). �

Let us recall that an epimorphism is regular when it is a coequalizer. In
Set, this means just being surjective. In a topos Pr(C) of presheaves, this means
therefore being pointwise surjective. The inclusion of sheaves in presheaves does
not in general preserve colimits, thus a regular epimorphism of sheaves has no
reason to be pointwise surjective.

Proposition 2.18 Every Grothendieck topos Sh(C, T ) is a regular and exact40
category.

Sketch of the proof Let us recall that a finitely complete and cocomplete cate-
gory is regular when regular epimorphisms are pullback stable. It is exact when
moreover, every equivalence relation is effective, that is, is the kernel pair of its
cokernel. This is the case in Set, thus in every topos of presheaves.

If f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is a regular epimorphism of sheaves, factor it through its image
in Pr(C)

A
p qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq I i qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B.

We have f = a(f) = a(i) ◦ a(p); a(i) is a monomorphism because the functor a
preserves them (see Theorem 2.15), but is also a regular epimorphism since so is
f . Thus a(i) is an isomorphism and f , up to isomorphism, has the form a(p) for
a regular epimorphism p of presheaves and so is regular. The rest is routine. �

2A colimit A = limi Ai is universal when pulling it back along whatever morphism B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A
yields another colimit cocone.

3The canonical morphisms Ai
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
∐

i Ai are monomorphisms and the intersection of two of
them is the initial object.
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2.4 Closure operator and subobject classifier

In this section, we want to generalize to the case of a Grothendieck topos the
properties of localic toposes exhibited in Section 1.3. We have already observed
that a Grothendieck topos is both complete and cocomplete (see Proposition 2.16).

Proposition 2.19 Every Grothendieck topos is Cartesian closed.41

Sketch of the proof Let (C, T ) be a site. The Cartesian closedness of the category
Pr(T ) of presheaves means the existence, given two presheaves G and H, of a
presheaf HG such that for every presheaf F

Nat(F ×G,H) ∼= Nat(F,HG).

Putting F = C(−, C), the Yoneda lemma indicates that necessarily

HG(C) ∼= Nat
(
C(−, C), HG

) ∼= Nat
(
C(−, C)×G,H

)
.

It is routine to observe that putting

HG(C) = Nat
(
C(−, C)×G,H

)
yields the expected result in the topos of presheaves.

To conclude in the case of sheaves, it suffices to observe that when G and H
are sheaves, so is HG. In fact, for HG being a sheaf, it suffices that H be a sheaf.

�

The case of the subobject classifier is more involved. Let us begin with the
easy case of presheaves.

Proposition 2.20 Every topos of presheaves admits a subobject classifier.43

Sketch of the proof Let C be a small category. If a subobject classifier t : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω
exists in Pr(C), one must have, by the Yoneda lemma and the definition of a
subobject classifier

Ω(C) ∼= Nat
(
C(−, C),Ω

) ∼= {S|S is a subobject of C(−, C)}.

It is routine to observe that the definition

Ω(C) = {S|S is a subobject of C(−, C)}

yields the expected result. �

Definition 2.21 Consider a site (C, T ). Given a presheaf P and a subpresheaf46
S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P , the subpresheaf S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P defined by

S(C) =
{
x ∈ P (C)

∣∣∃R ∈ T (C) ∀D ∀f ∈ R(D) P (f)(x) ∈ S(D)
}

is called the closure of the subobject S for the topology T .

The closure of a subpresheaf S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P consist thus in adding to S all those
elements of P which lie “locally” in S, that is, whose restrictions along all the
morphisms of a covering sieve lie in S.

Lemma 2.22 Given a site (C, T ), the corresponding closure operator on sub-48
sheaves is pullback stable.

Sketch of the proof By routine computation. �
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Proposition 2.23 Let (C, T ) be a site. The corresponding topos of sheaves ad-47
mits the subobject classifier tcl : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ωcl where

Ωcl(C) =
{
S
∣∣S is a closed subobject of C(−, C)

}
and tcl : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ωcl is the factorization of t (see Proposition 2.20) through Ωcl.

Sketch of the proof By Lemma 2.22, Ωcl is a presheaf. It is routine to check
that Ωcl is a sheaf, but you can also find a detailed proof in Example 5.2.9 of
[2]. To conclude, it remains essentially to observe that given a subsheaf S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F
and its characteristic mapping ϕ : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω in the topos of presheaves (see Propo-
sition 2.20), ϕ factors through Ωcl. �

Let us conclude this section with a link between Grothendieck toposes and
locales.

Proposition 2.24 In a Grothendieck topos, the subobjects of every object con-42
stitute a locale.

Sketch of the proof Consider a sheaf F . The pointwise intersection of two sub-
sheaves of F remains a subsheaf. Next given a family (Si qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F )i∈I of subobjects,
the union of that family is the image factorization4 of the corresponding factoriza-
tion

∐
i∈I Si

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F through the coproduct. By Propositions 2.17 and 2.18, coprod-
ucts and image factorizations are preserved by pullbacks. This is in particular the
case when pulling back along an arbitrary subobject S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F . �

4In a regular category, every morphism factors as a regular epimorphism followed by a
monomorphism
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Elementary toposes

3.1 The axioms for a topos

As we shall observe, amazingly enough, all main characteristic properties of Groth-
endieck toposes can be inferred from the following elementary axioms:

Definition 3.1 An elementary topos is a category E satisfying the following50
three axioms:

1. E has finite limits;

2. E is Cartesian closed;

3. E admits a subobject classifier t : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω.

Lawvere’s original definition of an elementary topos required also the existence
of finite colimits. It has been later observed that this axiom was redundant, but
the proof of this fact is very involved (see Section 5.7 in [2]).

Theorem 3.2 An elementary topos has finite colimits.60

Sketch of the proof The idea is to use the Beck monadicity criterion to prove
that the functor

Ω(−) : Eop qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E
is monadic. When this is done, since E has finite limits, so does its dual category
Eop; thus E has finite colimits. �

As observed in Sections 1.3 and 2.4:

Example 3.3 Every Grothendieck topos, thus in particular every localic topos,51
is an elementary topos. �

To support the intuition, we shall often illustrate our results in the very basic
case of the topos Set of sets (see Example 2.5).

Example 3.4 The structure of the category of sets as an elementary topos.51a

Sketch of the proof Given sets G and H, HG is just the set of mappings from G
to H. On the other hand Ω = {0, 1} and ΩG is isomorphic to the set of subsets
of G. �

25
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But probably, Example 2.6 is also worth a closer look, since it provides a less
trivial but nevertheless easy to handle situation.

Example 3.5 Given a group G, the structure of the category of G-sets as an55
elementary topos.

Sketch of the proof Given two G-sets A and B, elementary computations show
the the power object BA is simply given by

BA = {f |f : A→ B is an ordinary mapping}

together with the action, for an element g ∈ g

f · g : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B, a 7→ f(a · g−1) · g.

On the other hand the subobject classifier Ω is the set of sub-G-sets of G (see
Proposition 2.20), the only representable functor. But since every element in G
has an inverse, there are only two such subobjects: the empty subobject and G
itself. So Ω = {∅, G} is the two-point G-set.

Putting these results together, we obtain that ΩA is the set of ordinary map-
pings A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 2, which is thus isomorphic to the set of ordinary subsets of A: ordi-
nary subsets, not sub-G-sets. �

Observe also that, since only finite limits are required:

Example 3.6 The category of finite sets is an elementary topos. �52

and more generally

Example 3.7 The category of presheaves of finite sets on a finite category is an53
elementary topos. �

But maybe more amazingly, without any finiteness condition on G:

Example 3.8 Given an arbitrary group G, the category of finite G-sets is an54
elementary topos.

Sketch of the proof This follows at once from the constructions in Example 3.5.
�

3.2 Some set theoretical notions in a topos

Let us observe at once that various usual set-theoretical notions translate at once
in an elementary topos.

Definition 3.9 Given an object A of an elementary topos E, the characteristic56
mapping of the diagonal of A is called the equality on A.
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A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1

∆A

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
t

A× A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq=A
Ω

In the case of sets, the subobject classifier is

t : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω = {0, 1}, ? 7→ 1

which from now on we shall instead write

t : {true} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq {false, true}.
In the situation of Definition 3.9, we have then, for two elements a, b ∈ A(

=A (a, b) = true
)

iff
(
a = b

)
.

Definition 3.10 Given an object A of an elementary topos E, the morphism =A57
of Definition 3.9 corresponds by Cartesian closedness to a morphism

{·}A : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ΩA

which is called the singleton on A.

In the case of sets, ΩA is the set of subsets of A and given an element a ∈ A,
the morphism {·}A maps precisely a on the singleton {a}.
Definition 3.11 Given an object A of an elementary topos E, the identity on58
ΩA corresponds by Cartesian closedness to a morphism

∈A : A× ΩA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω

which is called the membership relation on A.

Again in the case of sets and with the notation above, the identity on ΩA

corresponds by Cartesian closedness to the mapping

(a ∈ A,ϕ : A→ Ω) 7→
(
ϕ(a) ∈ Ω

)
.

The morphism ϕ is the characteristic mapping of some subset S ⊆ A and in terms
of subobjects, instead of characteristic mappings, the description of ∈A becomes

∈A (a, S) = true iff a ∈ S.
Let us observe the behavior of these morphisms =A, {·}A and ∈A in the more

involved case of a localic topos.

Example 3.12 Given a locale L and a sheaf F on L,59

1. (=F )u(a, b) =
∨{

v ≤ u
∣∣a|v = b|v

}
;

2. {·}u(a) is the subsheaf of A constituted of all the restrictions of a at all lower
levels v ≤ u;

3. ∈A (a, S) =
∨{

v ≤ u
∣∣a|v ∈ S(v)

}
;

where u, v ∈ L, a, b ∈ A(u) and S ⊆ A.

Once more, we observe that these expressions indicate “to which extent” the
corresponding classical expressions are true, thus underline once more the “local
character” of the logic of a topos.
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3.3 The slice toposes

See Section 5.8 of [2] for detailed proofs of the various results of this section.

Proposition 3.13 Given an elementary topos E and an object I ∈ E, the slice60a
category E/I is still a topos. �

The proof of Proposition 3.13 is quite involved, but the spirit of it is easily
grasped in the case of the topos of sets.

Example 3.14 The topos Set/I of sets over I, which is equivalent to SetI .65

Sketch of the proof Given a set I, the slice category Set/I of arrows over I can
be equivalently seen as the category of I-families of sets: an arrow p : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq I
yields the family

(
p−1(i)

)
i∈I and conversely, a family (Ai)i∈I of sets yields the set

A =
∐

i∈I Ai, with the obvious projection p : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq I mapping the whole of Ai on
i ∈ I. The slice category Set/I is thus equivalent to the category of I-families
of sets, that is, to the power category SetI . In that particular case of sets, this
is trivially a topos, with the exponentiation and the subobject classifier defined
pointwise as in Set, for every index i ∈ I. �

Theorem 3.15 Consider a morphism f : I qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq J in an elementary topos E. The66
pullback functor

f ∗ : E/J qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E/I
preserves exponentiation and the subobject classifier, and admits both a left adjoint
Σf and a right adjoint πf .

Sketch of the proof The existence of the left adjoint Σf is a general fact which
has nothing to do with the topos structure: Σf (p) = f ◦ p. The existence of the
right adjoint πf is a deep result. �

Again, the case of sets will throw an interesting light on the question.

Example 3.16 The functors f ∗, Σf and πf in the topos of sets.67

Sketch of the proof In terms of families of sets, the mapping f : I qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq J yields
the pullback functor

f ∗ : Set/J qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set/I, (Bj)j∈J 7→
(
Bf(i)

)
i∈I

which acts just by re-indexing the families of sets. The preservation of the expo-
nentiation and the subobject classifier follows then from their pointwise definition,
as observed in Example 3.14.

It is routine to check that the left adjoint Σf of f ∗ is simply

Σf (Ai)i∈I =

 ∐
{i|f(i)=j}

Ai


j∈J

while the right adjoint πf is given by

πf (Ai)i∈I =

 ∏
{i|f(i)=j}

Ai


j∈J

.

The existence of Σf and πf in the case of an elementary topos is thus some kind
of existence of internal coproducts and products. �
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The functors Σf and πf will play an important role in developing the internal
logic of a topos and in particular, the quantifiers. This can be guessed at once
from the following proposition.

Proposition 3.17 In the category of sets, consider a projection of a binary68
product: pB : A×B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B. Consider further a subset s : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A×B. Writing Im
for the image of a mapping

Im ΣpB(s) = {b ∈ B|∃a ∈ A (a, b) ∈ S} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B

πpB(s) = {b ∈ B|∀a ∈ A (a, b) ∈ S} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B

Sketch of the proof Since s is injective, S(a,b) = s−1(a, b) is the singleton {(a, b)}
when (a, b) ∈ S and is empty otherwise. �

In view of proposition 3.17, it is sensible to define:

Definition 3.18 In a topos, consider a projection of a product p : A×B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B.68a
Consider further a subobject s : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A×B. We shall write

• ∃p(S) for the image of Σp(s), as subobject of B;

• ∀p(S) for πp(s), as subobject of B.

3.4 Exactness properties

This section extends to elementary toposes various properties encountered in the
case of a Grothendieck topos (see Section 2.3).

Proposition 3.19 In an elementary topos, all existing colimits are universal.69

Sketch of the proof The pullback functors have right adjoints by Theorem 3.15,
thus preserve colimits. �

Proposition 3.20 An elementary topos is a regular and exact category.70

Sketch of the proof Coequalizers exist by Theorem 3.2 and are universal by
Proposition 3.19. Thus the topos is a regular category. Its exactness means that
every equivalence relation is effective, that is, is the kernel pair of its coequalizer.
That part of the proof is technically more involved; see Proposition 5.9.6 in [2].
�

Corollary 3.21 In an elementary topos, every monomorphism is regular and72
every epimorphism is regular.

Sketch of the proof The subobject classifier t : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω admits the trivial re-
traction r : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1, thus is a regular monomorphism: the equalizer of the pair
(idΩ, t ◦ r). Every monomorphism is then regular, as pullback of t along its char-
acteristic morphism.

By Proposition 3.20, an epimorphism f factors as f = i ◦ p, with p a regular
epimorphism and i a monomorphism. Since f is an epimorphism, so is i. But i is
also a regular monomorphism, thus an isomorphism. �
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Proposition 3.22 In an elementary topos74

1. The initial object 0 is strict;

2. 0 is a subobject of every object;

3. the canonical morphism A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A
∐
B of a coproduct is a monomorphism;

4. finite coproducts are disjoint;

5. finite unions of subobjects exist.

Sketch of the proof The strictness of 0 means that every morphism A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 0
is an isomorphism. This is the case by universality of the empty colimit (see
Proposition 3.19). As a consequence, given any two morphisms u, v : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 0,
A is an initial object and u = v, so that every morphism with domain 0 is a
monomorphism.

One can prove (see Proposition 5.9.10 in [2]) that in a topos, the pushout of a
monomorphism remains a monomorphism and the corresponding pushout square
is also a pullback. But a coproduct A

∐
B is the pushout of these two objects over

0. The morphisms of the coproduct are thus monomorphisms and the pushout
square is also a pullback: this is the so-called disjointness of coproducts.

The union of two subobjects R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A and S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A is the image of the corre-
sponding factorization R

∐
S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A. �

3.5 Heyting algebras in a topos

Let us introduce the notion of a Heyting algebra, which is closely related to that
of a locale.

Definition 3.23 A Heyting algebra is a lattice with top and bottom element, in75
which for every two elements s, t, there exists an element s⇒ t such that for each
element r

r ∧ s ≤ t iff r ≤ s⇒ t.

Proposition 3.24 The locales are exactly the complete Heyting algebras.76

Sketch of the proof By Theorem 1.14, every locale is a Heyting algebra. Con-
versely in a Heyting algebra viewed as a category, − ∧ s admits the right adjoint
s⇒ −, thus preserves all existing joins. �

Proposition 3.25 Every Boolean algebra is a Heyting algebra.76a

Sketch of the proof Simply define (s⇒ t) = {s ∨ t. �

Complements do not exist in a Heyting algebra, but a weaker property holds:

Proposition 3.26 In a Heyting algebra H, every element u has a pseudo-com-13
plement, that is, a greatest element ¬u whose meet with u is the bottom element
0.

Sketch of the proof In Definition 3.23, simply put ¬u = (u⇒ 0). �
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Example 3.27 In the locale of open subsets of a topological space, ¬U is the14
interior of the set-complement of U . �

Theorem 3.28 In an elementary topos, the subobjects of every object constitute77
a Heyting algebra.

Sketch of the proof Given two subobjects σ : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A and τ : T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A, it remains
to prove the existence of the subobject (S ⇒ T ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A. Writing ϕR for the
characteristic morphism of a subobject ρ : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A, S ⇒ T is defined as the
following equalizer

(S ⇒ T ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A
ϕS∩T

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ϕS
Ω.

By definition of an equalizer, we have

R ⊆ (S ⇒ T ) iff ϕS ◦ ρ = ϕS∩T ◦ ρ
iff R ∩ S = R ∩ (S ∩ T )

iff R ∩ S ⊆ T.

Let us recall that in the case of sets, given subobjects S and T of a set A,
(S ⇒ T ) = {S ∪ T (see Example 1.13). But more interestingly, avoiding to use
the Boolean algebra structure,

(S ⇒ T ) =
{
a ∈ A

∣∣{a} ⊆ (S ⇒ T )
}

=
{
a ∈ A

∣∣{a} ∩ S ⊆ T
}

=
{
a ∈ A

∣∣a ∈ S implies a ∈ T
}

which justifies further the notation. �

It is well-know that a notion like that of a Heyting algebra H can be internal-
ized in every category C with finite limits:

• giving the top and bottom elements is giving morphisms 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H;

• giving the operations ∧, ∨, ⇒ is giving morphisms H ×H qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H.

The internal poset structure of H is defined as the equalizer

≤H qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq H ×H
∧

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

p1
H.

One translates then the set theoretical axioms for a Heyting algebra via equalities
or factorizations of arrows constructed from the given ones. For example

(r ∧ s) ≤ t iff r ≤ (s⇒ t)

can be translated via the existence of the two canonical natural transformations
of the adjunction (− ∧ s) a (s⇒ −):

(s⇒ t) ∧ s ≤ t, r ≤
(
s⇒ (r ∧ s)

)
.
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Theorem 3.29 The object Ω of an elementary topos E is provided with the78
structure of an internal Heyting algebra. For every object A ∈ E, this induces
by composition a Heyting algebra structure on the set E(A,Ω) of morphisms; in
terms of corresponding subobjects of A, this is the Heyting algebra structure of
Theorem 3.28.

Sketch of the proof The various ingredients for an internal Heyting algebra are
defined as follows:

• the top element 1 is the subobject classifier t : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω; (t for “true”);

• the bottom element 0 is the characteristic morphism of the zero subobject
0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1; it is generally written f : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω (f for “false”);

• ∧ : Ω × Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω is the characteristic morphism of ∆Ω : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω × Ω, the
diagonal of Ω;

• ∨ : Ω× Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω is the characteristic morphism of the union of the two sub-
objects t× idΩ : 1× Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω× Ω and idΩ × t : Ω× 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω;

• ⇒ : Ω × Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω is the characteristic morphism of the poset structure sub-
object ≤Ω

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω× Ω (see above);

• ¬ : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω, that is (• ⇒ 0) (see Corollary 3.26), is then the characteristic
morphism of f : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω.

The rest is straightforward calculation. �

A last comment. When we think Ω as an object of truth values (see the
comment after Theorem1.18), the internal poset structure of Ω “coincides” thus
with the implication, as the definition of⇒ in the proof of Theorem 3.29 indicates.



Chapter 4

Internal logic of a topos

In this chapter “topos” always means “elementary topos”, except otherwise spec-
ified.

4.1 The language of a topos

Suppose you want to study the field of real numbers. You will have to handle80
“actual numbers” like 5, 2

3
, π,
√

2, and so on. We call these constants of type R:
there are thus as many such constants as real numbers. But you will also have to
handle formulæ like

a× (b+ c) = (a× b) + (a× c)
where a, b, c stand now for arbitrary, unspecified real numbers. We call a, b,
c variables of type R. Since a formula which you can write is a finite sequence
of symbols, you only need each time a finite (possibly very big) number of such
variables . . . thus it suffices to give yourself a denumerable set of variables of type
R in order to be able to write down all possible formulæ. The number of variables
has thus nothing to do with the number of elements of R. And notice that if you
wanted to study instead the singleton ... you would already need two variables in
order to express that the singleton has only one element

∀x ∀y x = y.

Definition 4.1 The language of a topos E consists in giving, for every object81
A ∈ E

• a formal symbol, called a constant of type A, for every arrow 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A;

• a denumerable set of formal symbols, called the variables of type A.

From these ingredients, for every object A ∈ E , one constructs inductively, as
usual, the terms and formulæ. Again as usual, the notion of free variable is that
of a variable which is not bounded by a quantifier ∃ or ∀. Of course a term or a
formula with free variables a1, . . . , an can always be seen as a term or a formula
with a bigger set of variables ... where the additional variables do not appear.
In this spirit, there is generally no restriction in considering that two terms or
formulæ have the same set of free variables. A precise discussion on the effect of
handling such “ghost variables” can be found in Section 6.4 of [2].

33
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It is probably useful to recall that in a topos (see Definition 3.1), the “con-
stants” of type ΩA, that is, the morphisms 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ΩA, are in bijection with the
morphisms A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω and thus further with the subobjects of A. Thus ΩA should
be thought as the “object of subobjects of A”.

Definition 4.2 In a topos E, the terms of the internal language are the formal82
expressions defined inductively by:

1. the constants of type A are terms of type A;

2. the variables of type A are terms of type A;

3. if τ is a term of type A and f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is a morphism in E, f(τ) is a term
of type B;

4. if τ1, . . . , τn are terms of respective types A1, . . . , An, then (τ1, . . . , τn) is a
term of type A1 × · · · × An;

5. if τ is a term of type A with free variables a1, . . . , an of respective types
A1, . . . , An; if σ1, . . . , σn are terms of respective types A1, . . . , An, not con-
taining any bound variable of τ , then τ(σ1, . . . , σn) remains a term of type
A;

6. if ϕ is a formula with free variables a1, . . . , an, b1, . . . , bm of respective types
A1, . . . , An, B1, . . . , Bm{

(a1, . . . , an)
∣∣ϕ(a1, . . . , an, b1, . . . , bm)

}
is a term of type ΩA1×...×An.

Definition 4.3 In a topos E, the formulæ of the internal language are the formal83
expressions defined inductively by:.

1. the symbols true and false are formulæ;

2. if τ and σ are terms of type A, then τ = σ is a formula.

3. if τ is a term of type A and Σ is a term of type ΩA, then τ ∈ Σ is a formula;

4. if ϕ is a formula, then ¬ϕ is a formula;

5. if ϕ and ψ are formulæ, then ϕ ∧ ψ, ϕ ∨ ψ and ϕ⇒ ψ are formulæ;

6. if ϕ is a formula with free variables a, b1, . . . , bn of respective types A,B1,
. . . , Bn, then

∃a ϕ(a, b1, . . . , bn), ∀a ϕ(a, b1, . . . , bn)

are formulæ with free variables b1, . . . , bn;

7. if ϕ is a formula with free variables a1, . . . , an of respective types A1, . . . , An
and σ1, . . . , σn are terms of respective types A1, . . . , An with the same free
variables b1, . . . , bm of respective types B1, . . . , Bm, then

ϕ
(
σ1(b1, . . . , bm), . . . , σn(b1, . . . , bm)

)
is a formula with free variables b1, . . . , bm.
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Of course as usual, ∃!xϕ(x) is an abbreviation for(
∃xϕ(x)

)
∧
(
(ϕ(y) ∧ ϕ(z))⇒ (y = z)

)
.

In other words, this section can be summarized by saying that the language
of a topos mimics exactly the usual language of set theory.

4.2 Interpretation of terms and formulæ

Let us go back to our example of real numbers. Given a rational number a and
a natural number b, we can construct the real number baπ. In the language of
Section 4.1, baπ is thus a term of type R with two variables a, b of respective types
Q and N. Such a term induces thus a mapping

Q× N qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R, (a, b) 7→ baπ.

That mapping is what we shall call the realization of the term baπ.
The construction which will follow intends to associate, with every term τ of

type A with free variables a1, . . . , an of respective types A1, . . . , An, a “realization”
morphism

pτq : A1 × · · · × An qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A.

Next consider, for three variables of type R, the formula a+ b = c. This yields
at once a mapping

R× R× R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq {true, false}

which maps each concrete triple (a, b, c) of real numbers on the “truth value” of
a + b = c. This mapping is what we shall call the truth table of the formula
a + b = c. Let us recall that in the topos of sets, {true, false} is precisely Ω, the
subobject classifier..

The comment following Theorem 1.18 points out that, in a localic topos, the
object Ω is worth being thought as the object of truth values. The construction
which will follows extends this idea to an elementary topos. We shall associate,
with every formula ϕ with free variables a1, . . . , an of respective types A1, . . . , An,
a “truth table” morphism

pϕq : A1 × · · · × An qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω.

The subobject classified by this morphism will be written

[ϕ] =
{

(a1, . . . , an)
∣∣ϕ(a1, . . . , an)

}
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 × · · · × An.

Again the definitions proceed inductively. For short, we use without recalling
them the notation and numeration of Definitions 4.2 and 4.3.

Definition 4.4 In a topos E, with the notation and the numeration of Defini-84
tion 4.2, the realization pτq of a term τ is defined inductively by:

1. the realization of a constant is the constant itself;

2. the realization of a variable of type A is the identity on A;
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3. pf(τ)q = f ◦ pτq;

4. p(τ1, . . . , τn)q = (pτ1q, . . . , pτnq)

5. pτ(σ1, . . . , σn)q = pτq ◦ (pσ1q, . . . , pσnq);

6. p{(a1, . . . , an)|ϕ}q is the morphism B1×· · ·×Bm
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ΩA1×···×An correspond-

ing to pϕq by Cartesian closedness.

Definition 4.5 In a topos E, with the notation and the numeration of Definition85
4.3 and using the various constructions in Definition 3.9, Definition 3.11, Theo-
rem 3.29, Definition 3.18, the truth table pϕq of a formula ϕ is defined inductively
by:

1. ptrueq = t and pfalseq = f ;

2. pτ = σq = (=A) ◦ (pτq, pσq);

3. pτ ∈ Σq =∈A ◦(pτq, pΣq);

4. p¬ϕq = ¬ ◦ pϕq;

5. pϕ ∧ ψq = ∧ ◦ (pϕq), pψq),
pϕ ∨ ψq = ∨ ◦ (pϕq), pψq),
pϕ⇒ ψq = (⇒) ◦ (pϕq), pψq);

6. writing p : A× B1 × · · · × Bn
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B1 × · · · × Bn for the first projection and

S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A×B1 × · · · ×Bn for the subobject classified by pϕq,

p∃a ϕ(a, b1, . . . , bn)q = ∃p(S), p∀a ϕ(a, b1, . . . , bn)q = ∀p(S);

7. pϕ(σ1, . . . , σn)q = pϕq ◦ (pσ1q, . . . , pσnq).

Of course true and false are formulæ without free variable. If you view them
as formulæ with a (non appearing) free variable a of type A, the corresponding
truth table are then

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 t qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω, A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1
f qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω.

Let us conclude this section with an obvious but useful observation.

Proposition 4.6 In a topos E, consider two formulæ ϕ, ψ with the same free86
variables a1, . . . , an of respective types A1, . . . , An. Write [ϕ] and [ψ] for the subob-
jects of A1×· · ·×An classified by pϕq and pψq. Then the subobjects of A1×· · ·×An
classified by

ptrueq, pfalseq, pϕ ∧ ψq, pϕ ∨ ψq, pϕ⇒ ψq, p¬ϕq

are simply

A1 × · · · × An, 0, [ϕ] ∧ [ψ], [ϕ] ∨ [ψ], [ϕ]⇒ [ψ], ¬[ϕ]

in the Heyting algebra of subobjects of A1 × · · · × An.

Sketch of the proof Routine computations from the definitions. �
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Proposition 4.6 suggests at once that in the case of Grothendieck toposes, ar-
bitrary conjunctions and disjunctions can be handled in the internal logic of the
topos. Indeed, a Grothendieck topos is complete and cocomplete (see Proposi-
tion 2.16); in particular, arbitrary intersections and unions of subobjects exist.
Consider then an arbitrary family (ϕi)i∈I of formulæ with the same free vari-
ables, their corresponding truth tables (pϕiq)i∈I and the corresponding classified
subobjects ([ϕi])i∈I . The characteristic mappings of the subobjects

⋂
i∈I [ϕi] and⋃

i∈I [ϕi] are then chosen as the truth tables of the formulæ
∧
i∈I ϕi and

∨
i∈I ϕi.

4.3 Propositional calculus in a topos

We have now to explain what it means for a formula to be true and to infer the
corresponding rules valid in the internal logic of a topos.

Definition 4.7 In a topos E, let ϕ be a formula with variables a1, . . . , an of87
respective types A1, . . . , An. We shall say that this formula is true and we shall
write |= ϕ when pϕq = ptrueq, that is, equivalently, when the subobject classified
by pϕq is A1 × · · · × An itself.

Theorem 4.8 In a topos E, all the rules of intuitionistic propositional calculus88
hold. More explicitly, consider three formulæ ϕ, ψ, θ with the same free variables.
The following properties hold.

(P1) |= ϕ⇒ (ψ ⇒ ϕ)
(P2) |=

(
ϕ⇒ (ψ ⇒ θ)

)
⇒
(
(ϕ⇒ ψ)⇒ (ϕ⇒ θ)

)
(P3) |= ϕ⇒

(
ψ ⇒ (ϕ ∧ ψ)

)
(P4) |= ϕ ∧ ψ ⇒ ϕ
(P5) |= ϕ ∧ ψ ⇒ ψ
(P6) |= ϕ⇒ (ϕ ∨ ψ)
(P7) |= ψ ⇒ (ϕ ∨ ψ)
(P8) |= (ϕ⇒ θ)⇒

(
(ψ ⇒ θ)⇒ ((ϕ ∨ ψ)⇒ θ)

)
(P9) |= (ϕ⇒ ψ)⇒

(
(ϕ⇒ ¬ψ)⇒ ¬ϕ

)
(P10) |= ¬ϕ⇒ (ϕ⇒ ψ)
(P11) If |= ϕ and |= ϕ⇒ ψ then |= ψ (Modus Ponens)

Sketch of the proof By Definition 4.7 and Proposition 4.6, it suffices to prove th
corresponding properties in the Heyting algebra of subobjects of A1 × · · · × An.
We must thus prove that the subobject of A1 × · · · × An classified by the truth
value of each of these formulæ is A1 × · · · × An itself.

In fact, (P1) to (P11) hold in every Heyting algebra (see Definition 3.23). For
example if a, b are two elements in a Heyting algebra H, proving (P1) is proving

1 =
(
a⇒ (b⇒ a)

)
.

Of course this is equivalent to proving

1 ≤
(
a⇒ (b⇒ a)

)
.

that is
a = 1 ∧ a ≤ b⇒ a.
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This is further equivalent to proving

a ∧ b ≤ a

which is obvious. �

The following proposition underlines a first significant difference with classical
logic.

Proposition 4.9 In a topos E, let ϕ and ψ be two formulæ with the same free89
variables.

• If |= ϕ ∧ ψ, then |= ϕ and |= ψ.

• But if |= ϕ ∨ ψ, one does not have in general |= ϕ or |= ψ.

Sketch of the proof As in the proof of Proposition 4.8, it suffices to consider the
situation in an arbitrary Heyting algebra H. Given a, b ∈ H, of course a ∧ b = 1
forces a = 1 and b = 1. But trivially also, a ∨ b = 1 does not imply that one of
the two elements is equal to 1. �

Let us further illustrate this difference with classical logic by proving that,
choosing to work in the adequate topos . . . every ring becomes a local ring.

Theorem 4.10 Consider a commutative ring with unit R and the corresponding90
sheaf Γ in the topos of sheaves on the structural space γ of R (see Corollary 1.23).
In the internal logic of this topos, the ring Γ is a local ring.

Sketch of the proof By Theorem 1.22 and with the notation of its point 3, the
truth value of “σ is invertible” is the biggest open subset V ⊆ U on which it is
the case; analogously, the truth value of “1− σ is invertible” is the biggest open
subset W ⊆ U where it is the case. By Definition 4.5, the truth value of

(σ is invertible) or (1− σ is invertible)

is then V ∪W = U . So the truth table of that formula is precisely that of true
(see Theorem 1.18). �

This example shows that in the internal logic of a topos, a statement like
|= ϕ ∨ ψ is somehow only a local statement. You do not have |= ϕ or |= ψ (see
Proposition 4.9), but in this case of sheaves on a topological space, each point
admits a neighborhood on which you have |= ϕ or |= ψ.

4.4 Predicate calculus in a topos

We consider now the additional logical rules involving quantifiers.
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Theorem 4.11 In a topos E, all the rules of intuitionistic predicate calculus91
hold. More explicitly, consider two formulæ ϕ, ψ with the same free variables.
Consider further a term τ . The following properties hold.

(P12) |=
(
∀x(ϕ⇒ ψ)

)
⇒
(
(∀xϕ)⇒ (∀xψ)

)
(P13) |=

(
∀x(ϕ⇒ ψ)

)
⇒
(
(∃xϕ)⇒ (∃xψ)

)
(P14) |= ϕ⇒ (∀xϕ) when x is not a free variable of ϕ
(P15) |= (∃xϕ)⇒ ϕ when x is not a free variable of ϕ
(P16) |= (∀xϕ)⇒ ϕ(τ) when τ does not contain any bound variable of ϕ

and ϕ(τ) is the result of replacing x by τ in ϕ
(P17) |= ϕ(τ)⇒ (∃xϕ) when τ does not contain any bound variable of ϕ

and ϕ(τ) is the result of replacing x by τ in ϕ
(P18) If |= ϕ then |= ∀xϕ

Sketch of the proof To simplify the notation, imagine that ϕ and ψ have the
free variables x, a of respective types X, A. The formula in (P12) has the free
variable a, thus proving (T12) reduces to proving the corresponding result in the
Heyting algebra of subobjects of A. We consider the projection p : X × A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A.
Going back to Theorem 3.15, we must prove that

A =
[(
∀x(ϕ⇒ ψ)

)
⇒
(
(∀xϕ)⇒ (∀xψ)

)]
which is the same as

A ≤
[
∀x(ϕ⇒ ψ)

]
⇒
([
∀xϕ

]
⇒
[
∀xψ

])
By definition of ⇒ in a Heyting algebra, this reduces to[

∀x(ϕ⇒ ψ)
]

= A ∧
[
∀x(ϕ⇒ ψ)

]
≤
([
∀xϕ

]
⇒
[
∀xψ

])
and further to [

∀x(ϕ⇒ ψ)
]
∧
[
∀xϕ

]
≤
[
∀xψ

]
.

Now using the adjunction p−1 a πp of Theorem 3.15, this is still equivalent to

p−1
([
∀x(ϕ⇒ ψ)

]
∧
[
∀xϕ

])
≤
[
ψ
]

and thus to

p−1
[
∀x(ϕ⇒ ψ)

]
∧ p−1

[
∀xϕ

]
≤
[
ψ
]
.

The counit of the adjunction p−1 a πp indicates that p−1∀x(S) ≤ S for every
subobject S of A. Therefore

p−1
[
∀x(ϕ⇒ ψ)

]
∧ p−1

[
∀xϕ

]
≤ [ϕ⇒ ψ] ∧ [ϕ] =

(
[ϕ]⇒ [ψ]

)
∧ [ϕ] ≤ [ψ].

The other properties are proved in an analogous way. �

Let us conclude this section with another observation on the “local character”
of the logic of a topos: this time of the existential quantifier. With the notation
of the proof of Theorem 4.11, [∃xϕ] is the image of [ϕ] under p:
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[ϕ] qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
q

[∃xϕ]
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

X × A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqp A

(see Definition 3.18). First observe that p is generally not an epimorphism: this is
already the case in the topos of sets, when X is empty. And in a localic topos, the
same kind of phenomena can appear when the sheaf X is empty at some levels.

But our point is different. By definition of an image, q is an epimorphism.
Consider again the case of a localic topos. An epimorphism is generally not
surjective at each level. Indeed, consider a non-compatible family (xi ∈ X(ui))i∈I
and a compatible family (ai ∈ A(ui))i∈I , with gluing a ∈ A(u), where u =

∨
ui.

Then the family (xi, ai)i∈I in X × A is not compatible and thus does not admit
any gluing at the level u . Suppose that this non-compatible family (xi, ai)i∈I
lies in [ϕ]. Then the (ai)i∈I lie in [∃xϕ] and, since [∃xϕ] is a sheaf, so does the
gluing a of that compatible family. But as we have seen, there is no reason for the
gluing a to arise from some (x, a) ∈ [ϕ](u). We can so very well obtain an element
a ∈ [∃xϕ](u) for which there does not exist an element x ∈ X(u) such that
(x, a) ∈ [ϕ](u). But by construction, there exists a covering u =

∨
ui such that,

on each piece of this covering, there exists xi ∈ Xi such that (xi, a|ui) ∈ [ϕ](ui).
Thinking of the case of sheaves on a topological space, we end up again with the
fact that at the neighborhood of each point, there exists an x such that ϕ(x, a)
holds, but this element x can vary from one place to the other one.

4.5 Structure of a topos in its internal language

This section intends to provide some – highly non-exhaustive – examples of basic
categorical notions, expressed in the internal language of a topos. Let us recall
that given a formula ϕ on an object A, the subobject of A classified by the truth
table of ϕ (see Definition 4.5) is written {a|ϕ(a)}.

Proposition 4.12 In a topos E, consider93

• objects A, B;

• morphisms f, g : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B and h : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B;

• subobjects A1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A, A2

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A and B′ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B;

• variables a, a′ of type A, b of type B and c of type C.

The following properties hold:

1. f = g iff |= f(a) = g(a);

2. f is a monomorphism iff |=
(
f(a) = f(a′)

)
⇒
(
a = a′

)
;

3. f is an epimorphism iff |= ∃a f(a) = b;

4. A1 ∩ A2 = {a|(a ∈ A1) ∧ (a ∈ A2)};
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5. A1 ∪ A2 = {a|(a ∈ A1) ∨ (a ∈ A2)};

6. ∃fA1 =
{
b
∣∣∃a ((a ∈ A1) ∧ (b = f(a)

)}
;

7. ∀fA1 =
{
b
∣∣∀a ((f(a) = b)⇒ (a ∈ A1)

)}
;

8. f−1(B′) = {a|f(a) ∈ B′};

9. Im (f) = {b|∃a f(a) = b};

10. Ker (f, g) = {a|f(a) = g(a)};

11. f ×B h = {(a, c)|f(a) = h(c)} (pullback of f and h).

Sketch of the proof Let us prove the first statement. By definition of the mor-
phism =, [f(a) = g(a)] is the inverse image of the diagonal of B along (f, g), that
is the equalizer Ker (f, g). And of course Ker (f, g) = A is equivalent to f = g. �

Much more could be said about constructions in terms of the internal logic
of the topos. Let us just mention that, even if a topos is only finitely complete
and finitely cocomplete, the internal logic of a topos allows somehow handling
“arbitrary internal constructions”.

We have already observed that ΩA should be thought as the “object of subob-
jects” of A. Thus a subobject S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ΩA can be thought as a family of subobjects
of A. The following expressions make sense in the internal logic of the topos, with
a a variable of type A an Σ a variable of type ΩA, and they define subobjects of
A: ⋂

S =
{
a
∣∣∀Σ (Σ ∈ S ⇒ a ∈ Σ)

}
⋃
S =

{
a
∣∣∃Σ (Σ ∈ S ∧ a ∈ Σ)

}
These subobjects are of course the internal intersection and the internal union of
the internal family of internal subobjects.

4.6 Boolean toposes

Let us first observe that

Proposition 4.13 A Heyting algebra H is a Boolean algebra when a ∨ ¬a = 194
for every element a ∈ H.

Sketch of the proof One implication is the content of Proposition 3.25. Con-
versely, ¬a = (a ⇒ 0) is the greatest element such that a ∧ ¬a = 0. When
moreover a ∨ ¬a = 1, ¬a becomes the complement of a. �

Definition 4.14 A topos E is Boolean when Ω is an internal Boolean algebra95
(see Theorem 3.29).

In a Boolean topos, given a formula ϕ, one has thus always |= ϕ ∨ ¬ϕ: this is
the so called law of the excluded middle. On the other hand ¬¬ϕ = ϕ since ¬¬ is
just the double-complement {{ in a Boolean algebra.
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Proposition 4.15 In a Boolean topos E, the lattice of subobjects of every object96
is a Boolean algebra.

Sketch of the proof For every object A, the internal Boolean algebra structure
of Ω induces a Boolean algebra structure on the set E(A,Ω) of morphisms, thus
on the subobjects of A classified by these. �

Example 4.16 The topos of sheaves on a complete Boolean algebra is Boolean.97

Sketch of the proof Going back to Example 1.12, each Ω(u) is a Boolean algebra,
where the complement of v ∈↓ u is {v ∧ u. �

Example 4.17 If E is a Boolean topos and I ∈ R, then the topos E/I is Boolean98
as well..

Sketch of the proof Let us observe the result in the case E = Set. The topos
Set/I is equivalent to SetI , as observed in Example3.14. But in SetI , the topos
structure is defined pointwise as in Set, thus is Boolean. �

Example 4.18 Given a group G, the topos of G-sets is Boolean (see Exam-99
ple 2.6).

Sketch of the proof As Example 3.5 shows, Ω = {∅, G} is the two-point Heyting
algebra, which is thus trivially a Boolean algebra. �

4.7 The axiom of choice

The axiom of choice says that given a family (Ai)i∈I of non-empty sets, it is pos-
sible to pick up one element ai in each Ai. Put A =

∐
i∈I Ai and write p : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq I

for the projection sending all the elements of Ai on i. Saying that the Ai’s are
non-empty is saying that p is surjective. Picking up an element ai in each Ai is
choosing a section s of p. Therefore we define:

Definition 4.19 A topos E satisfies the axiom of choice when every epimorphism100
admits a section.

Let us mention, without any proof, that

Theorem 4.20101

1. A topos satisfying the axiom of choice is Boolean.

2. A Grothendieck topos satisfying the axiom of choice in localic.

3. A localic topos satisfies the axiom of choice if and only if it is Boolean.

Example 4.21 The topos of sheaves on a complete Boolean algebra satisfies the102
axiom of choice.

Sketch of the proof By Example 4.16 and Theorem 4.20.3. �
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Counterexample 4.22 Given a non-trivial group G, the topos of G-sets does103
not satisfy the axiom of choice.

Sketch of the proof Consider the epimorphism G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1. The unique element of
1 is by force stable under the action of every element of G, but no element with
that property exists in G. Thus there cannot be any morphism 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G. �

4.8 The axiom of infinity

In order to develop arithmetic, and further analysis in a topos, one needs to
construct objects like N, Z, Q, R, C, and so on.

Definition 4.23 A Natural Number Object in a topos is a triple (N, 0, s)104

1 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq N s qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq N

so that, for every other such triple (X, x, σ), there exists a unique morphism χ
making the following diagram commutative:

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq0 N qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqs N
@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

x

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
χ

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
χ

X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqσ X

The uniqueness condition in Definition 4.23 implies that when it exists, a
Natural Number Object is unique up to an isomorphism. In the case of sets, it
suffices to take for s the “successor” operation: s(n) = n+ 1.

Definition 4.24 A topos E satisfies the axiom of infinity when it contains a105
Natural Number Object.

Example 4.25 Every Grothendieck topos satisfies the axiom of infinity.106

Sketch of the proof Let (C, T ) be a site (see Definition 2.1). In the topos of
presheaves on C, the Natural Number Object is defined pointwise as in Set. The
sheaf associated with this presheaf (see Theorem 2.15) is the Natural Number
Object in the topos of sheaves on (C, T ). �

Of course in a topos with a Natural Number Object, one defines at once
constants of type N by putting

0, 1 = s ◦ 0, 2 = s ◦ 1, 3 = s ◦ 2, and so on.

But one should be aware that there are in general other constants of type N. For
example in the topos Set×Set (see Example 4.17), the object part of the Natural
Number Object is the pair (N,N) and every pair (n,m) of natural numbers is a
constant of type (N,N).

As a first hint on the way to develop arithmetics in a topos, let us just indicate
how one can define the addition on N.
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Proposition 4.26 In a topos E satisfying the axiom of choice, the object N can107
be provided with an addition such that |=

(
s(n) = n+ 1

)
, with n a variable of type

N.

Sketch of the proof Consider the following diagram

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq0 N qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqs N
@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ι

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
α

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
α

NN qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
sN

NN

where ι corresponds to the identity on N by Cartesian closedness. The definition
of a Natural Number Object forces the existence of the morphism α, which cor-
responds, again by Cartesian closedness, to a morphism N×N qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq N which is the
expected addition. �

Let us mention another possible approach of the axiom of infinity.

Definition 4.27 An object of a topos E is infinite when there exists an isomor-108
phism X

∐
1
∼= qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X.

Proposition 4.28 A topos E satisfies the axiom of infinity if an only if it con-109
tains an infinite object.

Sketch of the proof Given a natural number object (N, 0, s), the factorization

(s, 0) : N
∐

1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq N

is an isomorphism, proving that N is infinite;

Conversely consider an isomorphism σ : X
∐

1
∼= qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X and write x for the fol-

lowing constant of type X

x : 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X
∐

1 σ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X.

Using the internal logic of the topos E and going back to the constructions at the
end of Section 4.5, one defines N as the intersection of all the internal subobjects
of X which contain x and are stable under σ. �
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Morphisms of toposes

5.1 Logical morphisms

The most immediate notion of a morphism of toposes is that directly inspired by
the Definition 3.1 of an elementary topos.

Definition 5.1 A logical morphism F : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F of toposes is a functor which117
preserves finite limits, the Cartesian closed structure and the subobject classifier.

As you can expect from Theorem 3.2, even if not obvious to prove:

Proposition 5.2 A logical morphism of toposes preserves finite colimits. �118

And also:

Proposition 5.3 A logical morphism of toposes preserves the truth table and the118a
validity of every formula.

Sketch of the proof This is just straightforward from Definition 5.1 and Propo-
sition 5.2, except for the universal quantifier whose explicit construction is more
involved. �

Example 5.4 Given a morphism f : I qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq J in a topos E, pulling back along f119
yields a logical morphism E/J qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E/I.

Sketch of the proof The proof is rather involved, as already that of Proposi-
tion 3.13. In the particular case of sets (see Example 3.14), the statement becomes
equivalent to proving that the functor

SetJ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq SetI , (Aj)j∈J 7→
(
Af(i)

)
i∈I

is a logical morphism. This is trivially the case since the topos structure is defined
pointwise in both toposes. �

45
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5.2 Geometric morphisms

Let us now focus on a different notion of morphism of toposes, directly inspired
by the case of sheaves on topological spaces. This notion will turn out to be even
more useful and important than the notion of logical morphism.

Proposition 5.5 A continuous mapping f : X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Y between topological spaces110
induces a pair of adjoint functors

f∗ : Sh(X) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(Y ), f ∗ : Sh(Y ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(X), f ∗ a f∗

with the functor f ∗ preserving finite limits.

Sketch of the proof With the notation of Section 1.1, given a sheaf F on X, the
composite

O(Y )
f−1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq O(X) F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set

is a sheaf on Y which we define to be f∗(F ).
Conversely by Theorem 1.7, a sheaf G on Y corresponds to an étale mapping

g : Z qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Y . Pulling g back along f yields an étale mapping over X, whose corre-
sponding sheaf is chosen to be f ∗(G). This functor f ∗ preserves finite limits since
so does the pullback operation.

It turns out – even if not obvious – that f ∗ is left adjoint to f∗. �

Proposition 5.5 can be extended to the more general case of locales. For this
observe that:

Lemma 5.6 A continuous mapping f : X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Y between two topological spaces111
induces a pair of adjoint functors

f! : O(X) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq O(Y ), f−1 : O(Y ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq O(X), f−1 a f!

with the functor f−1 preserving finite meets.

Sketch of the proof The functor f−1 preserves finite meets. Since the functor
f−1 between complete lattices preserves also arbitrary joins, by the adjoint functor
theorem, it admits a right adjoint. �

Definition 5.7 A morphism of locales f : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M consists in a pair of adjoint112
functors

f! : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M, f−1 : M qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, f−1 a f!

with the functor f−1 preserving finite meets.

And as you can expect:

Proposition 5.8 A morphism of locales f : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M induces a pair of adjoint113
functors

f∗ : Sh(L) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(M), f ∗ : Sh(M) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(L), f ∗ a f∗

with the functor f ∗ preserving finite limits.
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Sketch of the proof Again given a sheaf F on L, the composite

M
f−1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set

is a sheaf on M which we define to be f∗(F ).
Since limits of sheaves are computed pointwise, it follows at once that f∗

preserves limits. The adjoint functor theorem implies easily the existence of f ∗.
But proving that f ∗ preserves finite limits is inferred via an explicit construction,
for example in terms of “étale morphisms” of locales. �

The definition in which we are interested is thus the following one:

Definition 5.9 A geometric morphism f : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F of toposes is a pair of adjoint114
functors

f∗ : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F , f ∗ : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E , f ∗ a f∗
with the functor f ∗ preserving finite limits. The functor f∗ is called the direct
image functor and the functor f ∗, the inverse image functor.

The case of Grothendieck toposes provides at once some other examples:

Example 5.10 Every site (C, T ) induces a corresponding geometric morphism114c
Sh(C, T ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Pr(C) between the toposes of sheaves and presheaves.

Sketch of the proof By Theorem 2.15. �

Proposition 5.11 Given a Grothendieck topos E, there exists a unique (up to114a
isomorphism) geometric morphism f : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set.

Sketch of the proof An inverse image functor f ∗ : Set qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E is such that f ∗(1) = 1,
since it preserves finite limits. It preserves also arbitrary coproducts, since it has
a right adjoint f∗. But a set A can be written A =

∐
a∈A{a}; this forces the

definition f ∗(A) =
∐

a∈A 1 and thus the uniqueness of f ∗.
To prove the existence, write E as the topos of sheaves Sh(C, T ) on a site (C, T ).

One gets a geometric morphism when composing the following two geometric
morphisms:

Sh(C, T )
a

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

i
Pr(C)

∆
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

lim
Set.

i is the inclusion functor and a is its left adjoint, the associated sheaf functor (see
Theorem 2.15). ∆ is the functor applying a set A on the constant presheaf on A:
∆ preserves all limits and colimits since these are computed pointwise in Pr(C).
Moreover ∆ has both a left and a right adjoint, namely the functors applying a
presheaf F on colimF and limF . �

Example 5.12 When X is a Hausdorff topological space, the points of X are in115
bijection with the geometric morphisms Set qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(X).

Sketch of the proof By Proposition 5.5, each continuous mapping {x} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X
induces a geometric morphism Set ∼= Sh({x}) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(X). Conversely, a geometric
morphism Set ∼= Sh({x}) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(X) restricts on the locales of subobjects of 1 of
both toposes, that is, yields a morphism of locales f :

{
∅, {∗}

}
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq O(X). Since 1

and X are Hausdorff spaces (this assumption is even too strong; “sober” suffices),
this is the same as a continuous function 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X. �
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This justifies the next definition:

Definition 5.13 A point of a Grothendieck topos E is a geometric morphism116
Set qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E.

5.3 Coherent and geometric formulæ

As Proposition 5.3 indicates, a logical morphism of toposes preserves the whole
internal logic of the toposes. But what about the geometric morphisms? Given a
geometric morphism f : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F of toposes, by adjunction and definition, the di-
rect image functor f∗ preserves limits while the inverse image functor f ∗ preserves
colimits and finite limits. So f ∗ will preserve the part of the internal logic which
can be defined in terms of finite limits and colimits.

Definition 5.14 In a topos E, the coherent terms are those obtained as in Def-140
inition 4.2, when applying the following restrictions:

1. in entries 3, 4, 5, the terms involved are chosen coherent;

2. the terms as in entry 6 do not appear.

The coherent formulæ are those obtained as in Definition 4.3, when applying the
following restrictions:

1. the symbols ∈, ¬, ⇒ and ∀ do not appear;

2. in entries 2, 7, the terms involved are chosen coherent;

3. in entries 5, 6, 7, ϕ and ψ are coherent formulæ.

Proposition 5.15 Let f : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F be a geometric morphism of toposes. The141
inverse image functor f ∗ : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E preserves the truth table of every coherent for-
mula.

Sketch of the proof Going back to Definitions 4.4 and 4.5, one observes at once
that the realization of every coherent term and the truth table of every coherent
formula are constructed exclusively in terms of fine limits and colimits, thus are
preserved by f ∗. �

But as far as the validity of a formula is concerned, one has even more:

Proposition 5.16 Let f : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F be a geometric morphism of toposes. Given142
two coherent formulæ ϕ and ψ, the inverse image functor f ∗ : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E preserves
the validity of ϕ, ¬ϕ and ϕ⇒ ψ.

Proof By Proposition 5.15, the truth tables of ϕ and ψ are preserved, thus also
their possible validity.

In a Heyting algebra

(u⇒ v) = 1 iff 1 ≤ (u→ v) iff 1 ∧ u ≤ v iff u ≤ v.

In particular, |= (ϕ ⇒ ψ) is equivalent to [ϕ] ≤ [ψ] and this validity is preserved
by f ∗ since it preserves the truth tables of ϕ and ψ. The case of ¬ϕ is the special
case ψ = false. �
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Corollary 5.17 Let f : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F be a geometric morphism of toposes. Given a142a
coherent formula ϕ, the inverse image functor f ∗ : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E preserves the validity
of ∃!xϕ(x).

Sketch of the proof The validity of ∃!xϕ(x) is equivalent to the validity of both
formulæ

|= ∃xϕ(x), |=
(
ϕ(y) ∧ ϕ(z)

)
⇒
(
y = z)

)
and one concludes by Proposition 5.16. �

Going back to the observation at the end of Section 4.2, in the case of Grothen-
dieck toposes, the inverse image functor f ∗ of a geometric morphism preserves
arbitrary unions of subobjects, thus will preserve the truth table of an arbitrary
disjunction

∨
i∈I ϕi as soon as it preserves the truth table of each individual for-

mula ϕi. Therefore, leaving to the reader the precise formulation of the following
definition:

Definition 5.18 In a Grothendieck topos, geometric terms and geometric for-140g
mulæ are defined as in Definition 5.14, but allowing arbitrary disjunctions.

Of course, we get at once:

Proposition 5.19 In the case of Grothendieck toposes, the various results of140gr
this section carry over to the case of geometric formulæ. �

5.4 Grothendieck topologies revisited

Our purpose is now to exhibit an important class of geometric morphisms. We
borrow our intuition from the case of Grothendieck toposes.

Let (C, T ) be a site. In Proposition 2.18, we have observed that the subobject
classifier of the corresponding topos Pr(C) of presheaves is given by

Ω(C) = {S|S is a subobject of C(−, C)}

while for a morphism f ∈ C, Ω(f) acts by pulling back along f . By condition 3 in
Definition 2.1, T is a subobject of Ω. Let us write j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω for its characteristic
morphism. Thus, given R a subobject of C(−, C) , we have

jC(R)(D) = {g : D → C|C(−, g)−1(R) ∈ T (D)}.

Proposition 5.20 The natural transformation j as above makes commutative120
the following diagrams:

Ω Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
j

Ω Ω× Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
j × j

Ω× Ω

t

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

t
@
@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

j
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
j ∧

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
∧

Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
j Ω Ω Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

j Ω
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Sketch of the proof We refer freely to the three conditions in Definition 2.1. The
first diagram is commutative because T is closed under pullbacks. The inclusion
R ⊆ jC(R) is trivial, from which already jC(R) ⊆ jCjC(R); the other inclusion
follows from the third axiom for a Grothendieck topology; this takes care of the
second diagram. The last diagram commutes because pulling back preserves in-
tersections and each T (D) is stable under finite intersections. �

Theorem 5.21 Let C be a small category. There exists a bijection between121

1. the Grothendieck topologies T on C;

2. the morphisms j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω, in the topos Pr(C) of presheaves, which make
commutative the three diagrams of Proposition 5.20.

Sketch of the proof We have just seen how to construct j from T . Conversely
given j, it suffices to define T as the subobject of Ω classified by j. The rest is
routine. �

5.5 Internal topologies and sheaves

With in view Theorem 5.21, we define:

Definition 5.22 A topology in a topos E is a morphism j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω satisfying122

j ◦ t = t, j ◦ j = j, j ◦ ∧ = ∧ ◦ (j × j)

(see the diagrams in Proposition 5.20).

As in Definition 2.21, we introduce a corresponding closure operator:

Definition 5.23 Let E be a topos an j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω a topology in E. Given a sub-123
object S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P with characteristic morphism ϕ : P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω, the subobject S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P
classified by j ◦ ϕ is called the closure of S.

Example 5.24 Consider a site (C, T ) and, by Theorem 5.21, the corresponding124
topology j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω in the topos Pr(C) of presheaves. The closure operators defined
respectively in 2.21 and 5.23 coincide.

Sketch of the proof Just observe the form of jC(R)(D) given at the beginning of
Section 5.4. �

Definition 5.25 Let E be a topos and j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω a topology in E. Given a125
subobject S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P

1. S is closed in P when S = S;

2. S is dense in P when S = P .
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Example 5.26 Consider a site (C, T ) and, by Theorem 5.21, the corresponding126
topology j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω in the topos Pr(C) of presheaves. The dense subobjects of a
representable presheaf are exactly its covering sieves.

Sketch of the proof The closure of a subobject R of C is the subobject jC(R)
described at the beginning of Section 5.3. If R is dense, choosing g = idC in this
expression shows that R ∈ T (C). The converse holds by stability of T under
pullbacks. �

Definition 2.1 suggests to define further:

Definition 5.27 Let E be a topos and j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω a topology in E. An object127
F ∈ E is called a j-sheaf when it is orthogonal to every j-dense subobject.

Let us recall that the orthogonality condition means that given a dense sub-
object s : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P , every morphism f : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F factors uniquely through s.

Example 5.28 Consider a site (C, T ) and, by Theorem 5.21, the corresponding128
topology j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω in the topos Pr(C) of presheaves. The two notions of sheaf in
Definitions 2.2 and 5.27 coincide.

Sketch of the proof Every j-sheaf is a T -sheaf by Example 5.26. Conversely, given
a j-dense subobject s : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq P , write P as a colimit of representable functors and,
by universality of colimits in Pr(C) and pullback stability of dense subobjects,
write s as a colimit of dense sieves. �

Theorem 5.29 Let E be a topos and j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω a topology in E.129

1. The full subcategory Shj of j-sheaves is a topos.

2. The Ω-object of Shj is the image Ωj of j in E.

3. The inclusion i : Shj ↪→ E preserves the Cartesian closed structure.

4. This inclusion i has a left adjoint preserving finite limits. This adjoint is
called the associated sheaf functor

Sketch of the proof Well . . . this is a very deep theorem! See Sections 9.2 and 9.3
of [2] for a proof. �

Corollary 5.30 Let E be a topos and j : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω a topology in E. The inclu-130
sion i : Shj ↪→ E together with the associated sheaf functor constitute a geometric
morphism of toposes. �
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5.6 Back to Boolean toposes

This section points out that every topos contains a Boolean subtopos of sheaves.
We take advantage of this section to provide an example of working in the internal
logic of a topos.

Proposition 5.31 In a topos E, the double negation ¬¬ : Ω qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ω is a topology.131

Sketch of the proof We write down the proof in the internal language of the
topos E . First in a Heyting algebra, ¬1 = 0 and ¬0 = 1, thus ¬¬1 = 1.

By definition, a ≤ ¬b if and only if a ∧ b = 0. Putting a = ¬c, if b ≤ c, we
have ¬c∧ b ≤ ¬c∧ c = 0, thus ¬c ≤ ¬b. So ¬ reverses the ordering and therefore,
¬¬ preserves the ordering.

Second, putting b = ¬a we get a ≤ ¬¬a; putting further a = ¬x, we obtain
¬x ≤ ¬¬¬x. But since ¬ reverses the ordering, from x ≤ ¬¬x we get ¬¬¬x ≤ ¬x.
So finally, ¬¬¬ = ¬ and (¬¬) ◦ (¬¬) = ¬¬.

Third, since ¬¬ preserves the ordering, ¬¬(x ∧ y) ≤ ¬¬x ∧ ¬¬y. Conversely

¬(x∧ y)∧ x∧ y = 0 ⇒ ¬(x∧ y)∧ x ≤ ¬y = ¬¬¬y ⇒ ¬(x∧ y)∧ x∧¬¬y = 0.

The same trick can be applied to x, yielding ¬(x ∧ y) ∧ ¬¬x ∧ ¬¬y = 0 and thus
¬¬x ∧ ¬¬y ≤ ¬¬(x ∧ y). �

Lemma 5.32 Given a topos E, in the internal language of E, the Ω-object of the131a
subtopos E¬¬ of sheaves for the double negation topology is

Ω¬¬ = {ω|¬¬ω = ω}

(the so-called regular elements of Ω), with of course ω a variable of type Ω.

Sketch of the proof We know that Ω¬¬ is the image of ¬¬ in E , that is

Ω¬¬ = {¬¬ω|ω ∈ Ω}.

Since ¬¬(¬¬ω) = ¬¬ω (see Proposition 5.31), this is trivially equivalent to the
definition in the statement. �

Theorem 5.33 Given a topos E the subtopos E¬¬ of sheaves for the double nega-132
tion topology is a Boolean topos.

Sketch of the proof Again we write down the proof in the internal language of
the topos E . By the third axiom for a topology, the meet of two elements of Ω¬¬ is
their meet in Ω. On the other hand it is immediate that the join of two elements
in Ω¬¬ is, in terms of the operations of Ω, ¬¬(ω ∨ ω′).

Since ¬¬¬ = ¬ (see the proof of Proposition 5.31), ω ∈ Ω¬¬ implies ¬ω ∈ Ω¬¬.
Let us prove that ¬ω is the complement of ω in Ω¬¬. We have of course ω∧¬ω = 0.
It remains to prove that ¬¬(ω ∨ ¬ω) = 1. For that, it suffices to prove that
¬(ω ∨ ¬ω) = 0; this will be the case if every ω′ such that ω′ ∧ (ω ∨ ¬ω) = 0 is
itself 0. By distributivity we have (ω′ ∧ ω) ∨ (ω′ ∧ ¬ω) = 0, thus both ω′ ∧ ω = 0
and ω′ ∧ ¬ω = 0. This second equality implies ω′ ≤ ¬¬ω = ω and putting this in
the first equality, we obtain ω′ = 0. �



Chapter 6

Classifying toposes

This last chapter intends to show that for a large class of mathematical theories T
(the so-called coherent theories), there exists a somehow “generic” model of T in
some Grothendieck topos: a model from which one can recapture all the models of
T in all the possible Grothendiek toposes. The proofs are sometimes technically
involved; they can be found in Chapter 4 of [2].

6.1 What is a classifying topos?

It is well-known that given an algebraic theory – that of groups, rings, R-modules,
Heyting algebras, and so on – the models of such a theory in a category C with
finite products can equivalently be defined as finite product preserving functors
T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C, where T is itself a category with finite products. In these cases, T is the
dual of the category of finitely generated free models of T.

Let us begin with – in a sense – a more general definition.

Definition 6.1 Let T be a mathematical theory whose models in every Groth-160
endieck topos F can equivalently be presented as functors T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F with adequate
properties, on a given small category T . The theory T admits a classifying topos
when there exists a Grothendieck topos E [T] and a T-model M : T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E [T] such
that, for every Grothendieck topos F , the category of T-models in F is equivalent
to the category of geometric morphisms f : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E [T], the equivalence associating
with a geometric morphism f the model f ∗ ◦M .

Of course the theories considered in Definition 6.1 are much more general than
just algebraic theories . . . but on the other hand the range of categories in which
one considers the T-models, and for which the results of this chapter will apply,
are only the Grothendieck toposes.

Proposition 6.2 Let T be a theory admitting the classifying topos E [T]. The161
category of points of E is equivalent to the category of T-models in Set.

Sketch of the proof Just by Definitions 5.13 and 6.1. �

53
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6.2 The theory classified by a topos

One often says – even if this sentence does not make any mathematical sense –
that a flat functor is one which preserves all existing and even unexisting finite
limits. A basic example is that of a representable functor

C(C,−) : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set

which somehow is “predestinated” to preserve all limits, whatever the category C.1
And since in Set finite limits commute with filtered colimits, a functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set
which is a filtered colimit of representable functors should also be considered as
“predestinated” to preserve finite limits.

Let us recall that given a functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set, its category Elt(F ) of elements
has for objects the pairs (C, x), with x ∈ F (C); the arrows are the morphisms in
C preserving the corresponding elements. The functor Elt(F ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq [C, Set] mapping
(C, x) on C(C,−) is contravariant and its colimit is F . For this colimit being
filtered, the category Elt(F ) has thus to be cofiltered.

Definition 6.3 A functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set is flat when its category of elements is200
cofiltered.

Everything has been done so that:

Proposition 6.4 A flat functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set preserves all existing finite limits.201a
�

But more importantly:

Theorem 6.5 Given a small category C, a functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set is flat if and201k
only if its left Kan extension along the Yoneda embedding preserves finite limits.

Sketch of the proof We have the situation

C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqY [Cop
, Set] Y (C) = C(−, C)

@
@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

LanY F

Set

where the triangle is commutative (up to an isomorphism), because Y is full and
faithful. Moreover

LanY F (G) ∼= colim (C,x)G(C)

where (C, x) runs through the category of elements of F . The proof reduces to
lengthy but routine computations on the Yoneda isomorphism, finite limits and
filtered colimits in Set. �

1Another class of functors “predestinated” to preserve all limits are those having a left adjoint;
they turn out to be flat.
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Corollary 6.6 Let C be a small category with finite limits. A functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set201c
is flat if and only if it preserves finite limits.

Sketch of the proof The Yoneda embedding preserves finite limits. �

Some authors use the notation LanY F (G) = F⊗G: flatness can so be rephrased
as F⊗− preserving finite limits. This throws light on the origin of the terminology
flat, when thinking of the case of modules on a ring.

We are now ready to define flat functors to Grothendieck toposes.

Definition 6.7 Let C be a small category and E, a Grothendieck topos. A func-202
tor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E is flat when its left Kan extension along the Yoneda embedding
preserves finite limits.

Theorem 6.8 Every Grothendieck topos E is the classifying topos of a mathe-162
matical theory T.

Sketch of the proof Write E as the topos of sheaves on a site (C, T ). We shall
prove that the topos E classifies the theory T of flat functors on C, transforming
the covering sieves into colimit cocones. The generic T-model in Sh(C, T ) will be
the composite of the Yoneda embedding and the associated sheaf functor

C Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Pr(C) a qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sh(C, T ).

Let us first observe that a◦Y is flat. Indeed the left Kan extension of Y along
Y is just the identity and since a has a right adjoint, the left Kan extension of
a ◦ Y along Y is obtained by further composing with a. The Kan extension of
a ◦ Y along Y is thus a, which preserves finite limits (see Theorem 2.15); so a ◦ Y
is flat. Next given a covering sieve r : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C(−, C), R – as every presheaf – is
the colimit of the representable functors over it. That colimit is preserved by a
and since R is covering, a(r) is an isomorphism. Thus a ◦ Y transforms the sieve
R into a colimit cocone and a ◦ Y is a T-model.

Next, given a geometric morphism f : F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E between Grothendieck toposes,
f ∗ has a right adjoint f∗. Therefore again, the left Kan extension of f ∗◦a◦Y along
the Yoneda embedding is simply the composite of f ∗ with the left Kan extension
of a ◦ Y , that is f ∗ ◦ a. This composite preserves finite limits and thus f ∗ ◦ a ◦ Y
is flat. And since f ∗ preserves all colimits, f ∗ ◦ a ◦ Y remains a T-model.

Conversely let M : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F be a T-model. The left Kan extension of M along
a ◦ Y yields a functor g∗ : Sh(C, T ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F . From the construction of the Kan
extension in terms of colimits, one infers that g∗ preserves colimits. By the adjoint
functor theorem, g∗ has a right adjoint g∗. It remains to infer the left exactness
of the left Kan extension g∗ from the flatness of M . �

Corollary 6.9 The theory of flat functors on a small category C admits the topos164
Pr(C) of presheaves as classifying topos, with the Yoneda embedding as generic
model.

Sketch of the proof In the proof of Theorem 6.8, simply put E = Pr(C), which
is the topos of sheaves for the topology on C whose only covering sieves are the
identities. �
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Let us make clear that non-isomorphic sites can very well give rise to equiva-
lent toposes of sheaves. Thus a same Grothendieck topos is in general the classify-
ing topos of various mathematical theories, these theories having thus equivalent
categories of models in all Grothendieck toposes. This is already the case for
the theories of flat functors, since non equivalent categories can very well admit
equivalent toposes of presheaves.

6.3 Coherent and geometric theories

Let us treat first the case of a coherent theory, which makes sense in every ele-
mentary topos.

Definition 6.10 In a topos E, by an operation of type A with free variables of150
types A1, . . . , An, we mean a morphism

A1 × · · · × An qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A

For example a group (G,+) has three operation

0: 1 = G0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G, +: G×G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G, − : G qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G.

Definition 6.11 In a topos E, by a relation with free variables of types A1, . . . , An,151
we mean a subobject

R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 × · · · × An.

For example, an ordering on an object A will be a binary relation on A: a
subobject R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A× A.

Leaving to the reader the task of writing down an exhaustive definition in the
spirit of those in Section 4.1, we put for short:

Definition 6.12 A coherent theory consists in giving152

• type symbols;

• constants with a prescribed type;

• operation symbols τ : (A1, . . . , An) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A from a finite sequence of types to a
single type;

• relation symbols R on finite sequences (A1, . . . , An) of types;

• axioms of the form |= (ϕ⇒ ψ) where ϕ and ψ are coherent formulæ.

Of course a constant can equivalently be seen as an operation on the empty
sequence of types. Let us also recall that |= ϕ is the same as |= (true ⇒ ϕ) and
|= ¬ϕ is the same as |= (ϕ ⇒ false). Thus Definition 6.12 takes care of these
cases.

Again, leaving to the reader the task of writing down a precise definition, we
put for short:
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Definition 6.13 Let T be a coherent theory. A model of T in a topos E consists153
first in specifying

• an object pAq of E for each type of the theory;

• a morphism 1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pAq of E for each constant of type A;

• a morphism pA1q × · · · × pAnq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pAq for each operation τ as in Defini-
tion 6.12;

• a subobject pRq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pA1q× · · · × pAnq in E for each relation R as in Defi-
nition 152.

Those data constitute a model of T when all the axioms of T become valid formulæ
in the internal logic of the topos E.
A morphism of such models consists in a family of morphisms of E, one for each
type of the theory, in such a way that all the operations and relations of the theory
are preserved by this family of morphisms.

And everything has been done so that:

Proposition 6.14 The inverse image functor of a geometric morphism between154
elementary toposes preserves the models of every coherent theory.

Sketch of the proof Just by Propositions 5.15 and 5.16. �

We leave once more to the reader an exhaustive formulation of the following
definition.

Definition 6.15 In the context of Grothendieck toposes, a geometric theory is210
defined analogously to a coherent theory, but allowing ϕ and ψ in Definition 6.12
to be geometric formulæ(see Defintion 5.18).

Obviously, in the case of Grothendieck toposes, we get the following general-
ization of Proposition 6.14.

Proposition 6.16 The inverse image functor of a geometric morphism between154g
Grothendieck toposes preserves the models of a geometric theory. �

6.4 The classifying topos of a geometric theory

This last section will show in particular that one can handle the operations and
relations of a coherent or geometric theory in terms of cones and cocones as done
earlier in this chapter. We shall reduce our attention to the case of Grothendieck
toposes and therefore, we shall work at once with the more general notion of
geometric theory. In the case of coherent theories, the theory of the classifying
topos can be generalized to the case of elementary toposes “over a base topos”: in
the case of Grothendieck toposes, this base topos is that of sets. But this escapes
the scope of these notes.
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Lemma 6.17 Let C be a small category provided with a set D of discrete cocones165
(fi : Ci qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C)i∈I . Let T be the theory of flat functors on C which transform every
discrete cocone of D in an epimorphic family. Then T has a classifying topos.

Sketch of the proof Each family (fi : Ci qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C)i∈I in D generates a corresponding
sieve r : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C(−, C). Since r is a monomorphism, by Proposition 6.42, a flat
functor to a Grothendieck topos maps r on a monoomorphism and thus the corre-
sponding cocone on a colimit cocone, precisely when it maps it on an epimorphic
family. It is easily seen that this property carries over to all the covering sieves
constituting the Grothendieck topology T generated by the sieves R induced from
the families in D. The proof of Theorem 6.8 shows that Sh(C, T ) is the expected
classifying topos. �

Theorem 6.18 Every coherent or geometric theory admits a classifying topos.166

Sketch of the proof Let us first construct a graph G associated with a coherent or
geometric theory T. For each finite sequence (A1, . . . , An) of types, we put a corre-
sponding object in the graph, together with arrows pi : (A1, . . . , An) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ai for each
index i. For each relation R on the finite sequence (A1, . . . , An) of types, we put
further an object R in G together with an arrow r : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (A1, . . . , An). For each
operation π : (A1, . . . , An) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A, we introduce a morphism π : (A1, . . . , An) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A
in G. Finally, for each constant c of type A, we introduce a morphism c : ( ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A,
where ( ) indicates the empty sequence of types.

We define P to be the “path category” of the graph G: the objects are those
of G and the morphisms are the finite sequences of “consecutive” arrows of G.
Observe at once that writing T0 for the theory obtained from T when omitting
all the axioms, a model of T0 in a Grothendieck topos E is the same as a func-
tor F : P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E such that F (A1, . . . , A,) = F (A1) × · · · × F (An) and F (r) is a
monomorphism for each relation R.

Adding to P the required factorizations, one forces (A1, . . . , An) to become
an actual finite product and (R, idR, idR) to become the pullback of r with itself,
that is, we force r to become a monomorphism. Just for the sake of facility,
let us further add formally finite limits to the category so obtained.3 We end
up eventually with a small finitely complete category C such that the left exact
functors C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E to a Grothendieck topos correspond exactly to the models of T0.

It remains to take care of the axioms of T. To achieve this, for every geometric
formula ϕ with free variables a1, . . . , an of types A1, . . . , An, we shall specify a
family of morphisms (fi : Bi

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 × · · · × An)i∈I in C such that for each exact
functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E to a Grothendieck topos E

[ϕ] =
⋃
i∈I

ImF (fi).

We shall do this by induction on the complexity of the geometric formula ϕ. In
the case of a coherent family, the set I of indices will be finite.

2The morphism r being a monomorphism is equivalent to the pullback of r with itself being
given by twice the identity on R.

3One can avoid adding all finite limits and work with flat functors instead of left exact ones.
But then some arguments below are less evident.
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With the formula true we associate the family reduced to the identity on 1
and with the formula false, we associate the empty family, viewed as a family
with codomain 1.

We consider first the formula τ = σ, for two geometric terms τ and σ of type A,
which we can assume to have the same free variables of types A1, . . . , An. Observe
that since C has finite limits, the restriction on the form of the geometric terms
implies that these have already a realization in C (see Definitions 5.14 and 4.4).
Consider the the pullback

B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A

b

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

∆A

Ai × · · · × An qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq(
pτq, pσq

) A× A

Given a left exact functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E to a Grothendieck topos, [τ = σ] is simply
F (B), that is, the image of the single morphism F (b).

Next consider two geometric formulæ ϕ and ψ with the same free variables
of types A1, . . . , An. Assume that we have already constructed corresponding
respective families

(fi : Bi
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 × · · · × An)i∈I , (gj : Cj qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 × · · · × An)j∈J

as above. Consider this time the pullbacks

Zij qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
cij Cj

bij

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
gj

Bi
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

fi
A1 × · · · × An

in C. Put further hij = fi ◦ bij = gj ◦ cij. Given a left exact functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E to
a Grothendieck topos,

[ϕ ∧ ψ] =
⋃
i,j

(
ImF (fi) ∩ ImF (gj)

)
=
⋃
i,j

ImF (hij)

Consider now an arbitrary family (ϕi)i∈I of formulæ with the same free vari-
ables of types A1, . . . , An. Assume that we have already constructed corresponding
families

(fji : Bji
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 × · · · × An)ji∈Ji

as above. Given a left exact functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E to a Grothendieck topos,[∨
i∈I

ϕi

]
=

⋃
i∈I, ji∈Ji

ImF (fji).

Finally consider a geometric formula ϕ with free variables x, a1, . . . , an of re-
spective types X,A1, . . . , An and a family (fi : Bi

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X × A1 × · · · × An)i∈I as
above. Writing p : X × A1 × · · · × An qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 × · · · × An for the projection

[∃xϕ] =
⋃
i∈I

ImF (p ◦ fi).
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We are ready to conclude. A left exact functor F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq E to a Grothendieck
topos determines a T-model when |= (ϕ ⇒ ψ) holds for every axiom of the
theory T. This is the case precisely when [ϕ] ⊆ [ψ] that is, when the inclusion
[ϕ]∩ [ψ] ⊆ [ψ] is also an epimorphism, that is, an isomorphism. Going back to the
last diagram above, this is the case when the family of the bij’s is mapped by F
on an epimorphic family. By Lemma 6.17, we get the existence of a corresponding
classifying topos. �
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