A String Diagram Calculus for Predicate Logic
and C. S. Peirce’s System Beta

Geraldine Brady and Todd H. Trimble
1998 November 8; revised 2000 June 22

Abstract

In the late nineteenth century, C. S. Peirce developed a graphical sys-
tem for handling the first-order calculus of relations. This system, called
Beta, is reformulated here in modern terms, using developments in cate-
gorical logic and geometrical representations of monoidal categories. First,
we define the notion of (categorical predicate) theory as a particular case
of Lawvere’s hyperdoctrines (with Boolean fibers and satisfying the Beck-
Chevalley condition), and express the syntax of first-order logic in terms
of free theories on predicate languages. Observing that each (categorical
predicate) theory gives rise to (and is embedded in) a monoidal 2-category
of relations, the goal of the paper is to give a geometric presentation for the
monoidal 2-category of relations of a free theory on a predicate language,
obtaining Peirce’s calculus as a result.

This geometric presentation is based on “string diagrams,” akin to the
Feynman diagrams in theoretical physics, and developed for calculations
in general monoidal categories by Joyal-Street. The calculus of string
diagrams is extended by adjoining rewrite rules, so that terms in first-
order logic are represented by deformation equivalence classes of certain
string diagrams, and inferences between terms are represented by certain
rewrites of diagrams. The geometric calculus which so arises, which we
identify with Peirce’s system Beta, is shown to be sound and complete
with respect to first-order logic.
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1 Introduction

Toward the end of the 19th century, the American logician C. S. Peirce devel-
oped a remarkable calculus of planar graphs for expressing logical formulae and
inferences. Existential graphs, as he called them, evolved as a way of handling
the “logic of relatives” (i.e., the calculus of relations) which Peirce, beginning
in 1870, had invented as an outgrowth of his studies on Boolean algebra ([15]).
Although little was published in Peirce’s lifetime on existential graphs, he ex-
plicitly refers to this calculus as his “chef d’oeuvre,” and as an outline of the
logic of the future.



Existential graphs were developed in three stages of logical complexity. Al-
pha graphs, the initial part of his system, are geometrical representations of
propositional assertions, i.e., Boolean combinations of propositional variables.
(A rigorous modern formulation of system Alpha can be found in [4].) Next
come Beta graphs, which geometrically represent first-order relational expres-
sions. The basic operation, the relational product or composition, was seen
by Peirce as analogous to Boolean conjunction (and so there is a close tie-in
between his rules for Alpha and rules for Beta) but, as Peirce recognized, in-
volved existential quantification as an essential component. Thus, as Peirce
perceived, Beta could be used as a vehicle for expressing inferences in predi-
cate logic, particularly those involving logical quantification, in the same way
that first-order relational calculus adequately captures the language of first-
order logic. Finally, there are Gamma graphs, which Peirce never brought to
fruition and indeed were highly speculative by his own admission. Our reading
is that Peirce was hinting at ideas found in modal logic, temporal logic, and
“variable sets” (toposes), and that he suggests possibilities for “geometrizing”
higher-order logic, but clarification of these points will have to await a future
paper.

A remarkable feature about Beta graphs, the focus of the present paper,
is their metaphorical background: Peirce, guided by analogies with chemistry,
pictured an n-ary relation as something like an element with “valency n.” Com-
position of relations R and S is then pictured as a “bonding” between two or
more elements, as between atoms in a molecular configuration. For instance,
if R is a predicate expression with free variables z, y, and S is a predicate ex-
pression with free variables y, z, w, then the relational composite expressed by
A,R(z,y) A S(y, z,w) is pictured by drawing a “line of identity” connecting R
to S:

This metaphor of chemical bonding accords well with modern logical terminol-
ogy, where we say for example that the variable y is “bound” in the composite
expression.

Now, with a different set of scientific contexts in mind (namely, the use of
graphs in particle physics and relativity & la Feynman and Penrose), Joyal and
Street ([10]) have introduced a mathematical theory of so-called string diagrams,
in order to make rigorous the use of such diagrams in generalized tensor calculus.
The idea is that the lines or edges in a string diagram represent linear spaces
(e.g., Hilbert space representations of Lie groups), and nodes where lines meet
represent intertwining operators. (Thus an operator of the form

NR...V, W o...0 W,

is represented by a node incident to m edges coming from above and n edges



from below.) As Joyal and Street show, the appropriate language for formalizing
string diagrams is monoidal (or tensor) category theory, whereby string diagrams
are viewed as morphisms in a freely generated monoidal category.

The basic insight behind our approach to Peirce’s system Beta is that the
calculus of relations is profitably viewed as a certain type of monoidal category
(or rather a monoidal bicategory; cf. [6]), where relations are certain morphisms
between sets which compose by relational composition. (More exactly, we deal
with formal relations viewed as arrows between types, working in a typed cat-
egorical representation of first-order logic.) Then, applying the machinery of
string diagrams to present such monoidal categories, the graphs that result are
essentially the same as Peirce’s Beta graphs. The details of this approach re-
quire several ingredients not found in the string diagram calculus of [10], such
as surgeries on string diagrams, and the use of Peirce’s “sep lines” to handle
logical negation.

This paper is organized as follows. In section 2, we give a purely categorical
formulation of first-order logic based on Lawvere’s notion of hyperdoctrine ([11];
we need a particular variant of hyperdoctrines: where the base need only be
cartesian, not cartesian closed, and the fibers are Boolean algebras, and such
that the Beck-Chevalley condition is satisfied). This gives a presentation of first-
order logic which avoids the usual syntactic machinery of variables, in terms of
a hyperdoctrine freely generated from a predicate language. In section 3, we
sketch part of the construction of this free hyperdoctrine, emphasizing that it is
embedded in a formal calculus of relations which is constructed geometrically as
the paper progresses. In section 4, we introduce a variant of Joyal-Street string
diagrams, and more especially the notion of surgery needed to give geometric
presentations of monoidal categories. We use string diagrams and surgeries
to construct the base category of the free hyperdoctrine, as well as relations
which reflect the adjoint relationship between re-indexing and quantification,
together with the Beck-Chevalley condition. In section 5, we “fold in” the rules
of Peirce’s system Alpha, which expresses the Boolean algebra structures on
the fibers; this completes our description of Peirce’s Beta. In section 6, we
prove our main theorem: that the monoidal bicategory which was constructed
geometrically in the preceding sections is isomorphic to the monoidal bicategory
of relations generated by the free hyperdoctrine which represents first-order logic
(relative to a given predicate language). That is to say, that Beta is sound and
complete with respect to first-order logic.

2 Languages and theories

Definition 1 A (predicate) language consists of a set of predicates P, a set of
sorts S, and a typing function 7 : P — S*, where S* is the free monoid on S.

Viewing a set S as a discrete category and the free monoid on S* as a
monoidal category, a typing function 7 : P — S* amounts to a functor \ :
S* — Set. To get A from 7, define A\(w) as the set 7= ({w}). To get 7 from



A, define P as the disjoint sum ¥,cs+A(w), and if p € P, define 7(p) as w

whenever p € A(w). In what follows, we usually view a language as a pair
(S,\: 8* — Set).

Definition 2 A morphism or translation of languages (S, ) — (S', X') consists
of a function f :S — S’ together with a natural transformation 6 : A — X\ f*.

Equivalently, a morphism of languages (S, P,P = S*) — (S',P', P’ it (S"*)
consists of a pair of functions f : S — S', ¢ : P — P’ compatible with the
typing functions: if p has type (s1,..., sn), then ¢(p) has type (fsi1,..., fsn)-
As an example of a morphism, consider a set-theoretic model of a predicate
language. A model assigns to each sort s € S a set, say F(s). This gives a
function F': S — Ob(Set), from S to the class of sets, also denoted Sety. The
model then assigns to each predicate p of type (si,...,S,) a subset 8(p) of the
product F's; X ... X F's,. Now let A be the composite functor given by

Set; B Set & Set,

where the first map sends a list of sets Sy,...,S, to their cartesian product
and the second map is the (contravariant) power set functor: this gives a large
predicate language (Seto, A : Sety — Set). Then a set-theoretic model of a
language (S, A) may be described as a morphism (F,8) : (S, A) = (Setp, A) into
the language of sets.

The language of sets carries a lot of extra structure, such as the Boolean
algebra structures on power sets. A certain amount of this structure suffices to
model the semantic aspects of first-order logic. We abstract this structure in
the following definition, based on Lawvere’s theory of hyperdoctrines [11]:

Definition 3 A (categorical predicate) theory consists of a category C with fi-
nite products, together with a contravariant functor T : C — Bool (or a co-
variant functor C°P — Bool) mapping to the category of Boolean algebras, such
that

(1) For each morphism f: A — B in C, f* =T(f) : TB — TA has a left
adjoint 3 : TA - TB;

(2) Given a pullback
P—ts4
h f
B —g> c

in C, the following diagram commutes:

TA-" 7P

afl lah

TCT>TB.



The archetypal example of a theory is the theory of sets (Set, P : Set°? — Bool)
in which we regard the contravariant power set functor as valued in the category
of Boolean algebras. In this case, Pf : PB — PA sends a subset D C B to
its inverse image f~'(D) C A4; the left adjoint 3; : PA — PB corresponds to
taking direct images along f. The adjunction of (1) says

(x)  f(C)C Difandonlyif C C f}(D).

As is well known, direct images model existential quantification: if, for example,
m: A X B — B is projection to the second factor, and if C' C A x B is the
extension of a predicate p(a,b) relative to some set-theoretic model, then the
image

m(C)={b|Ja € A:pla,b)}

is the extension of the formula 3,p(a,b). In order to capture the taking of direct
images in Boolean algebras more general than power sets, one rewrites (x) as

3,C <D ifandonlyif C< f*D,

and so we require that each f* = Tf have a left adjoint 3. It follows that
universal quantification, defined by V¢ = —3;—, is right adjoint to f*.

Condition (2), called the Beck-Chevalley condition, also holds in the theory
of sets (as the reader can easily verify) and figures prominently in type-theoretic
versions of first-order categorical logic. To translate between the version given
here and standard presentations of first-order logic, the reader should bear in
mind that here we never write an inference p - ¢ between p, ¢ unless they have
the same type. At the semantic level, this ensures that their extensions E(p)
and E(q), relative to a given model, belong to the same Boolean algebra, so that
E(p) < E(q) makes sense. (Syntactically, it means that p and ¢ have the same
free variables; however, in our approach, variables are not needed.) Thus, if we
wish to compare the logical strengths of formulas p and g whose types do not
match, we may retype them by pulling them back to expressions f*p and g*q
over a common type T (syntactically: adjoin some dummy free variables), and
compare the retyped expressions. The Beck-Chevalley condition ensures that
the meaning or interpretation of quantification is preserved under such retyping
operations.

To translate between theories (C,T : C°? — Bool), we introduce the follow-
ing definition:

Definition 4 A morphism or translation of theories (C,T) — (C',T") consists
of a product-preserving functor F : C — C' together with a natural transforma-
tion ¢ : T — T'F°P such that for all morphisms f: A — B in C, the following
diagram commutes:

TA—2 pipa



By “product-preserving” we mean that the map (Fra, Frg) : F(A x B) —
FA x FB is an isomorphism. In our framework, products are not canonically
given, but are defined, as usual, only up to isomorphism. In order to have
adequate control over this feature, we need a further level of structure.

Definition 5 Given two translations (F,¢), (G,¢): (C,T) — (C",T"), a mod-

ification (F,¢) — (G, ) between them is a natural transformation F 5 G such
that the following diagram commutes:

T ¢ T'Fep
X %
TIGop

We thus have a 2-category of theories, translations between theories, and mod-
ifications between translations.

Each theory (C,T) has an underlying language, constructed as follows. The
set of sorts of the language is the set of objects Cy = Ob(C). The functor
C§ — Set is defined up to isomorphism as a composite

Cs 5oL Bool Y Set,

where | | : Bool — Set is the underlying-set functor and II sends a finite list of

objects in C' to their product. Of course, there is no unique choice of product,

so in general there are many underlying languages of a theory, but they are all

canonically isomorphic. Thus, it is harmless to suppose that we have chosen an

underlying language UT for every theory T. If (F,¢) : (C,T) — (C',T') is a
o 1 c

theory morphism, then we have a diagram
X

(Fo)* al F U¢| Set,

S

Cl
where o : FII = IIF{ is a canonical isomorphism which arises by virtue of
preservation of products by F. Hence, the pasting of the 2-cells,

(Co)"

T o - [T 2 [T — |T"[TLEG,

gives an underlying morphism between underlying languages, so we have an
underlying functor
U:Th— Lang



from the category of theories to the category of languages.

The syntax of first-order logic may be described as the construction of a
theory F'L which is freely generated from a language L. This means that given
a modeling p : L — UT of a language L in a theory 7', one can extend to a
translation 4 : FL — T between theories, uniquely up to invertible modifica-
tion: the category of translations and modifications Th(FL,T) is equivalent to
the discrete category or set of morphisms Lang(L,UT), in a 2-natural sense.
The construction we give of F'L avoids the usual variable-based syntactic ma-
chinery in favor of categorical and geometrically based constructions which are
intimately connected with Peirce’s system Beta.

3 The free theory of a language

The category of types C' of F'L is the “free category with finite products” gener-
ated by the set of sorts S of L, and may be described by means of “wreath prod-
ucts.” Let Fin be the category of finite cardinals {1,...,n} (empty if n = 0)
and functions between them. If D is any category, then there is a category
Fin [ D whose objects are pairs (m,{1,...,m} % D), where m € Fing and
is a functor on {1,...,m} as a discrete category; the morphisms (m,z) = (n,y)
are pairs (f,¢), where f : m — n is a morphism in Fin and ¢ : x — yf is a
natural transformation. An object (m,z) amounts to a list (xy,...,x,,) of ob-
jects in D, so that (Fin [ D)y = D§; a morphism is a function f together with
a list (¢1,...,¢m) of morphisms in D, where ¢; : ; — yy;. In particular, for
each object (x1, ..., T, ) there are mm morphisms k; : (1,z;) = (m, (z1,-..,Zm)),
where the image 1 — m is {i} and where k; : ; — x; is the identity. These
morphisms are injections which realize (z1,...,zy) as the coproduct £, z; in
Fin [ D. It is easy to show that Fin [ D is the free category with finite sums
(D) generated by D, in the sense that if E is any category with finite sums
(coproducts), there is a (2-)natural equivalence

Cat(D, E) ~ Coprod(Fin [ D, E)

between the functor category on the left and the category of coproduct-preserving
functors on the right. The free category with products is similarly formed as
II(D) = (Fin [ D°P)°P. If D is a discrete category S, then £(S) = Fin [ S and
II(S) = (X5)°P. Given a predicate language L = (S, S* A Set), the category of
types of F'L is defined to be II(S).

To complete the description of FL, we need to construct an appropriate

functor II(S)°P 4 Bool (or X(S) — Bool). The reader should think of (ILS), =



Sg as the collection of types of the free theory, and of

— > (T

Form = TES;
lzTGSS!
Sx ~ Z 1
0 - TeSs

as the collection of all formulas or terms in the free theory, fibered over the
collection of types. II(S) must be allowed to act both contravariantly Form —
Sg (by pullback operations f*) and covariantly (by existentially quantifying),
and of course locally (i.e., on a fiber Formy = 0(T') over a type T') there must
be an appropriate Boolean algebra structure.

To handle all this structure, it is useful to view the formulas p of type
(z1,...,2,) as formal n-ary relations of type z; X ... X z,, and, following Peirce,
to express the structure in terms of geometrized calculus of relations. Working in
a two-sided relational calculus (e.g., of relations R : A — B between sets, where

the relational composite of A 5 B 5 (' is defined by RS(a,c) = FyR(a,b) A
S(b,c)), we recall that the category of relations carries a monoidal product ®.
Namely, given R: A - Band S: C —- D, R®S : AxC — B x D is defined by
(R® S)({a,c),({b,d)) = R(a,b) A S(c,d), and the monoidal unit is the terminal
set 1.

Remark 1 If C is any regular category, then there is a monoidal category
Rel(C), where the objects are objects of C' and whose morphisms A — B are
relations, i.e., monic arrows R < A x B. In fact, this is a monoidal 2-category,
since relations of type A — B may be partially ordered by inclusion. Similarly,
there is a monoidal bicategory Span(C) of spans in C, if C has finite limits.

Remark 2 Rel(C) is compact closed: each functor A ® — has a right adjoint
of the form A* ® — (by taking A* = A). We remark that ® is not the carte-
sian product in Rel(C) (in fact, compact closed categories and, more generally,
x-autonomous categories whose monoidal product is the cartesian product are
equivalent to posets). In fact, the cartesian product is given by taking coprod-
ucts in C, if and only if C' is a lextensive category [5]).

Our strategy for constructing the theory F'L on a language L (with S as
set, of sorts) will be as follows. We build a monoidal (2-) category of relations
where the set of objects or 0-cells is S*, generated from predicates p € A(T)
in L (viewed as morphisms [i.e., relations] p : T — 1 to the unit 1 of S*) and
monoidal subcategories II(S) and 3(S). The theory FL is retrieved as follows.
Formulas of type T in FL will be defined as morphisms T' — 1. Pullback
operations and quantifications will then be defined as special cases of relational
composition. Conjunction of two formulas R: A — 1 and S : A — 1 is defined
as the composite

ASZ A0A™M 101>1



in which we pull back along the diagonal 6 : A — A x A in II(S).

The desired monoidal category is formed by extending the method of string
diagrams and their deformations, used in [11]. The extension is twofold. First,
we give presentations of monoidal categories by means of surgery rules on string
diagrams ([3]). Second, to incorporate negation operations, we follow Peirce
and introduce so-called “sep lines”: simple closed curves which surround subdi-
agrams of string diagrams (and regarded as negating these subdiagrams when
viewed as subexpressions). The complete collection of deformations and surgery
rules on diagrams is the geometric correlate of the rules of inference in the first-
order relational calculus, and may be viewed as a modern formulation of Peirce’s
system Beta.

4 The geometry of positive formulas

In this section, we begin by introducing a variant of the string diagram calculus
of [10] for symmetric monoidal categories, and a notion of surgery on diagrams
needed to construct presentations of (symmetric) monoidal categories. After
presenting the categories II(S) and ¥(S), we construct a monoidal 2-category
Rely (L) which gives the desired relational calculus for positive first-order for-
mulas. Throughout this section we assume familiarity with the terminology and
results of [10], including the notions of topological graph with boundary and of
tensor scheme.

4.1 Permutative diagrams

Definition 6 A permutative diagram consists of a topological graph G with
boundary 0G C Gy (i.e., a subset of Go consisting of nodes with valency 1)

together with a continuous map G 4 [ao, bo] % [a1,b1] such that
(1) ¢~ ({ao, bo} x [ay,b1]) is empty;
(2) ¢~ ([ao, bo] x {a1,b1}) = OG;

(8) The composite G — Gy — G 4 [ao, bo] x [a1,01] 33 a1, b1], when restricted
to each connected component of G — Gy, is a smooth embedding;

(4) ¢(x) = ¢(y) = = = y holds for x € OG and for all but finitely many
x €d.

These axioms have the following consequences: by (1) and (2), for each = €
Go — 0G, ¢(z) = (a,b) is interior to the rectangle [ag, bo] X [a1,b1]. Let I =
Gop — O0G be the set of “interior” nodes. If K is a connected component of
G — I, then by (3), K is a closed, open, or half-open line segment. If z € I
is an endpoint of (the closure of) K, then ¢(K) lies entirely above or entirely
below ¢(x), again by (3). We refer to the conditions of the preceding sentence
by saying K lies above/below = (€ K). In that case, if ¢(z) = (a,b), then for



all sufficiently small € > 0, the line y = b % € intersects ¢(K) exactly once.
Finally, by (4), if we consider the set of components K; such that z € J0K;
and K lies above/below z, then there exists € > 0 so small that for 0 < § < e,
A(K;)NG(EK ;)N ([ag, bo] x {b+d}) is empty whenever ¢ # j. Thus, for z € I there
is a left-to-right order o, /3, on those components K; lying above/below z, given
by the order of the horizontal (abscissa) coordinates of ¢(K;)N([ag, bo] x {bE£d}).

Definition 7 Let T = (A, S, A (0_#;) S* x 8*) be a tensor scheme; let D =
(G,0G, ¢) be a permutative diagram, with [ = Gy — 0G. A labeling of D in T
consists of a pair of functions Ay : I — A, Ay : mo(G — I) — S such that for
each x € I, oz = (Mo Kq,..., 2Kp), where (Kq,...,Ky,) is the order a,,
and TA\x = (AL, ..., AoLy), where (L1, ..., Ly) is the order (..

Each T-labeled permutative diagram is described by a quadruple (¢, A1, A2, 7),
where ¢ : G — R? is a continuous map, \; : I — A is a node-labeling function,
A2t mo(G — I) = S is a string-labeling function, and 7 is a poset structure on
the set of connected components of G — I (given by taking the disjoint sum of
the orders «, 8., where x ranges over I). Thus, given a tensor scheme T" and a
graph with boundary (G, 0G), the set A(G,0G;T) of all T-labeled permutative
diagrams over (G,9G) may be topologized as a subspace of

Map(G,R?) x AT x §7(G=1) x Pos(mo (G — I)),

where Map(G,R?), the set of continuous maps ¢ : G — R?Z, is given the
compact-open topology, whereas A, the set of functions I — A, S™(G=1)
and Pos(mo(G — I)), the set of poset structures on mo(G — I), are given the
discrete topologies.

Definition 8 A deformation of T-labeled permutative diagrams is a path -~ :
I - AG,0G;T).

A deformation is thus a homotopy through T-labeled diagrams, where the
node labelings and string labelings remain constant, as do the linear orders on
the source and target strings of nodes z € I. The left-right orders on points in
¥(t)(OG) N ([ag, bo] X {b1}) and in v(t)(OG) N ([ag, bo] x {a1}) remain constant as
well by condition (4). Defining T-labeled diagrams to be deformation equivalent
if there is a path between them in A(G,0G;T), each deformation-equivalence
class has a well-defined domain and codomain in S*, defined as the ordered lists
of labels of strings which abut these respective ordered lists of points.

Proposition 1 (¢f. [10]) Deformation-equivalence classes of T-labeled permu-
tative diagrams are the morphisms of a symmetric strict monoidal category,
naturally equivalent (as a symmetric monoidal category) to the free symmetric
monoidal category on the tensor scheme T .

To exhibit the symmetric monoidal structure, we need the following defini-
tion:

10



Definition 9 Let ¢ : G — [ag,bo] X [a1,b1] be a permutative diagram. A sub-
diagram consists of the pullback of ¢ along a subrectangle [co,dp] X [c1,d1] —
[a0, bo] X [a1,b1] such that ¢~ ({co,do} X [c1,d1]) is empty and ¢~ ([ao, bo] x
{a1,di}) C{x € G—1I]| ¢(x) = ¢(y) = = = y}. The pullback or restriction is
denoted res ¢.

It is straightforward that H = ¢~ ([co, do] x [c1,d1]), with OH = ¢~ ([co, do] %
{e1,d1}), is a topological graph with boundary, and that ¢ : (H,0H) — [co, do] X
[c1,d1] is a permutative diagram. Indeed, the restriction of ¢ to each of the rect-
angular sectors shown defines a permutative diagram in an analogous manner:

by

d

¢

4

4 o dy by
If [co,do] = [ao,bo] and ¢; = ay or di = by, then there are two vertically
juxtaposed permutative subdiagrams of G, and we regard G as their vertical
composite (i.e., morphism composition). Similarly, if [e1,d1] = [a1,b1] and

cog = ag or dy = by, then there are two horizontally juxtaposed permutative
subdiagrams, and G is their horizontal composite (i.e., tensor product). Given
two objects u = (s1,...,8m) and v = (t1,...,t,), the symmetry isomorphism
u®v — v ® u is represented by a diagram in which each string labeled s;
crosses each string labeled ¢;. Up to deformation, any permutative diagram G
is composed of diagrams of the following types:

where the first diagram is a single S-labeled string, the second is a crossing
of two (S-labeled) strings, corresponding to a symmetry isomorphism, and the
third corresponds to an element a € A of the tensor scheme (with strings labeled
appropriately by letters of o(a), 7(a)).

In the sequel, we will use a schematic to indicate subdiagrams and their
domains and codomains:

11



<

indicates a subdiagram f with domain « and codomain v; more precisely, u,v €
S* are word labels (u1, ..., un) and (v1,...,v,), where u; labels the ith string
from the left along the top edge of the subdiagram, etc. As an example of this
usage, our notion of deformation equivalence entails equalities of the following
type within a subdiagram:

N t s t

where, for example, the crossing of the “strings” labeled s and ¢ is a schematic
shorthand for a multiple string crossing of multiplicity mn, if s = (s1,...,Sm)
and t = (t1,...,t,). The equality, of course, is the geometric reflection of the
naturality of the symmetry isomorphism.

4.2 Surgery

Our theory also makes use of certain “surgeries” on permutative diagrams.

Definition 10 Let ¢ : G — [ag,bo] X [a1,b1] be a permutative diagram, with
subdiagram res ¢ : H — [cg,dp] X [c1,d1]. Suppose ¢ : H' — [co,dp] X [e1,d4] is
a permutative diagram such that res ¢ and 1 have the same C* germs on their
boundaries: restrict to the same function on some neighborhood of [co,dy] %
{e1,d1} in [co,do] X [c1,d1]. Define a new permutative diagram ¢[H/H'|, with
underlying graph G' defined by (G — H)U H', 0G' = 0G, and ¢[H/H'] : G' —
[ao, bo] x [a1,b1] defined by

ot/ (@) = { 00 e

Abusing language, we call this the surgical replacement of H by H'. This con-
struction permits consideration of equivalence relations on symmetric monoidal
categories freely generated from a tensor scheme.

More formally, if T = (4,5, A — S* x S*) is a tensor scheme, then a T'-
surgery rule is a pair of (deformation-equivalence classes of) T-labeled diagrams
of the form (¢ : H — R2,¢ : H' — R?) which have identical domain and

12



codomain (as words in S*). Given a set of T-surgery rules, define an equivalence
relation on deformation-equivalence classes of T-diagrams, generated by the
relation G ~ G', where G’ is obtained from G by surgical replacement of one
T-labeled subdiagram ¢ : H — R? by another ) : H' — R2, where (¢,) is a
pair of representatives of a T-surgery rule.

A permutative diagram presentation of a symmetric monoidal category M
is defined to be a tensor scheme T together with a set of T-surgery rules such
that the symmetric monoidal category of T-labeled permutative diagrams mod-
ulo deformation- and surgery-equivalence is isomorphic to M. In the sequel,
T-surgeries are also used to construct certain symmetric monoidal categories
enriched in the category of posets. Namely, if hom(u,v) denotes the set of de-
formation classes of T-diagrams with source u and target v, then instead of
considering the equivalence relation generated by a set of T-surgeries, one may
consider the poset structure on hom(u,v) induced by the reflexive transitive
closure ~ on the set of T-surgeries (identifying f and g if f ~ g and g ~ f).
The poset structure coincides with the equivalence relation in case the set of
T-surgeries is already a symmetric relation on diagrams, i.e., if the inverse of
every surgery rule is a surgery rule. Thus, we will sometimes stipulate that
certain surgery rules are invertible.

The same idea applies to progressive string diagrams for monoidal categories
in the sense of Joyal-Street, where crossings of strings are not allowed. We now
give two examples for the monoidal case.

Example 1 Let T be the tensor scheme given by S = 1, A = {m,u}, and

A <0—’;> S* x S§* as indicated in the string diagrams

Let R be the equivalence relation generated by the surgery moves

13



The monoidal category, generated by deformation classes of planar progressive
diagrams modulo these surgery moves, is isomorphic to the simplical category
A (of finite ordinals and weakly increasing maps, including the empty ordinal).

Example 2 Let T be the tensor scheme given by S =1, A = {i, 09,1}, and

A <0—’;> S* x S§* as indicated in the string diagrams

Let R be the equivalence relation generated by the surgery moves

5 |- - g

The monoidal category with presentation (T, R) is precisely the cubical category
a.

4.3 Presentation of II(S) and X(S5)

Next, returning to the symmetric monoidal case, we present the category II(.S).
I1(S) is generated by deformation classes of permutative diagrams on a tensor

14



scheme (Ar, S, Ar ‘750 8% x %), with Ay = {6, | s € S} U {es | s € S}, and

to indicate the source-target function (o, 7) : Ap — S* x S*.

To describe the surgery moves, which are based partly on naturality require-
ments for diagonal maps § and projection maps €, we first need to describe
derived arrows §,, and €, for w € S*. If u = (s1,...,s,) and if v = us, we
define §, inductively as

where it is understood that the source of ¢, consists of n strings with the
label sequence (s1, ..., s,) and the target of 2n strings with the label sequence
S1...8p81 --.8p. Similarly, €, is defined inductively as

The schema for the surgery rules is as follows: given a subdiagram f, we have
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<

which correspond to naturality of § and €, and we also have

(S

which correspond to triangular equations for the adjoint pair A 4TI, where A is
the diagonal functor II(S) — II(S) x II(S) and II is the product I1(S) x II(S) —
I1(S). Displaying this set of surgery rules by (S1), we have the following theorem.

Theorem 1 The symmetric monoidal category generated by the tensor scheme
A={ds|se€StU{es|s €S}, modulo the surgery rules (S1), is isomorphic to
I(s).

The opposite category X(S) is obtained by inverting all diagrams of II(S). In
practice, we drop the labels § and € since no ambiguity will result in our dia-
grams. Peirce calls a configuration of strings which meet at a § a “ligature,”
and a string ending at an € a “loose end”; we will use this terminology in the
sequel.

4.4 Pullbacks and quantifiers

As we remarked earlier, both II(S) and X(S) act (contravariantly) on the set

of formulas Form(L) of the free theory FL of a language L = (S, S* A Set).
As also remarked, we follow Peirce and view all constructs of the theory (the
elements of Form(L), and also of II(S) and X(S)) as formal relations which

16



can be composed horizontally (the relational or horizontal product R ® S) and
vertically (the relational composite RS). The actions by II(S) and X(S), by
pulling back and existentially quantifying, emerge as operations derived from
horizontal and vertical compositions, which are viewed here and by Peirce as
more basic.

Thus, we will present a monoidal 2-category Rely (L), taking the generating

tensor scheme to be Agq U Ass U P <J—7;> S* x S*, where Ay — S* x S* and
As; = 8§* x S* are the tensor schemes used to present II(S) and X(S), where
P is the set of predicates of L, and where (o, 7)(p) = (type of p, 1), with 1 the
unit of S*. Those (deformation classes of) permutative diagrams generated by
this tensor scheme and with target 1 (i.e., the empty target) will be referred
to as positive geometric formulas. The collection of diagrams with given source
and target will be partially ordered, via a collection of surgery rules described
under (S2) and (S3).

In addition to the surgery rules used to present II(S) and X(S), we need
surgery rules (S2) to reflect the adjoint relationship between pullback operations
f* and existential quantifiers 3;. Later in this paper, we will see that these rules
are also derivable from Peirce’s so-called Alpha rules.

If p is a positive geometric formula of source type v and if f : u — v is
a morphism of II(S) viewed as a permutative diagram, we define f*p as the
diagram

u

<®
®

If g is of source type u and f is as before, then f°P : v — u in X(S) is obtained
by inverting the diagram for f, and we define 3¢q as

@

The unit and counit of the adjunction 3¢ 4 f* are expressed by surgery rules
(noninvertible in general):
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<

O

|

&

<

A basic example concerns existential quantification via the taking of direct im-
ages along a projection map (i.e., € : s — 1 in II(S)): the first move, for the
unit 1 — f*3g, is already in Peirce’s work and is called “breaking in positive

regions”:
l S

L

This is the case where f = €5 :5 = €.

Remark 3 These moves denote the unit and counit of 3 4 f* where f =
€s : s — 1. Notice that we have dropped the label € (as the label is superflu-
ous). Both the unit and counit moves of the preceding example are instances of
Peirce’s weakening rule, given in §4.2.

Lemma 1

Proof: The equality means that each diagram can be derived from the other
through surgeries. To get from the right to the left, we apply a unit
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where f = d5. To get from left to right, apply the sequence

where the first step is a local breaking, the second step indicates a decomposition
into subdiagrams, and the third applies surgery rules for ¥(S) and II(S) to these

subdiagrams. q. e. d.

Remark 4 The equality of Lemma 1 may be viewed as an instance of Peirce’s

iteration rule, given in §4.2.

The next two lemmas follow from Theorem 1: we isolate them for future

convenience.

Lemma 2

Cf. [5]: each object u has a comonoid structure. Lemma 3 asserts cocommuta-

tivity.

19



Lemma 3

4.5 Beck-Chevalley rules

Next, we introduce surgery rules (S3) which correspond to the Beck-Chevalley
condition. These concern pullbacks in II(S) or pushouts in £(S) = Fin [ S;
to visualize these pushouts geometrically, and ultimately to get an efficient set
of rules which are necessary and sufficient for Beck-Chevalley, first we observe
that a (permutative) diagram for a morphism in Fin [ S has two ingredients:

(1) A diagram for the underlying map in Fin (the case S = 1);

(2) A labeling of each connected component of a Fin-diagram by an element

of S.

Condition (2) is clear: each string of a generating diagram 0” or €% in the
tensor scheme for ¥(S) is labeled by the same element s € S, and connected
components of larger diagrams preserve this feature. The feature means essen-
tially that the arguments below, written in the case for Fin, apply generally
to Fin [ S. For example, since Fin admits all pushouts, our next observation
yields the following result:

Proposition 2 X(S) (II(S)) admits all finite pushouts (pullbacks).

Second, we observe that a pushout P, as in

may be visualized as the set of connected components of a permutative diagram

obtained by gluing together the diagrams for A JyBand A% C along the
set of nodes corresponding to A. Topologically it makes no difference whether
these diagrams read “top-down” or “bottom-up” (we get the same connected
components regardless); we may choose, for example,



>

This is the diagram used for the composite operation g*d;, and we calculate
the set of connected components of the composite diagram to get the pushout.

Example 3

has one connected component, so P = 1, and the remaining morphisms h, k of
the pushout in Fin are given as:

1 2

The second diagram represents the composite 3,k*, where h and k are diagonal
maps in II(S). Since g*3; = J,k* by Beck-Chevalley, we are obliged to include
a surgery rule which permits surgical replacement of each of the two preceding
diagrams by the other.

To get a complete set of surgery rules which capture the Beck-Chevalley
condition, we study geometric representations of pushouts in Fin along lines
similar to those of Example 3. We observe that epi-mono factorization in Fin
induces epi-mono factorization in Fin [ S, so that it suffices to analyze the
possibilities in Fin for the following three cases:

e pushing out a mono along a mono;
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e pushing out a mono along an epi;
e pushing out an epi along an epi.
The first two possibilities are cases where Beck-Chevalley holds automatically:

any monic in Fin decomposes into a sequence of monics of type n — n+1; thus,

if g:n —>n+1isamonic and n Lomis any map in Fin, then (without loss
of generality) the gluing of diagrams of f and g is represented by the left-hand
diagram below:

and now, in the second diagram, each of the connected components of f (one for
each element in m) crosses the dotted line exactly once, so that the pushout P
has cardinality m+1, and the Beck-Chevalley equality g*3¢ = J3h*, for g monic,
follows from instances of deformation equivalence for permutative diagrams as
displayed in the equation.

The last possibility is slightly more interesting, but simple to analyze nonethe-
less. Each epi decomposes into a sequence of epis of type n+1 — n. In pushing
out one epi of this type along another, one can arrange the diagrams (by ma-
nipulating symmetry isomorphisms and Lemma 3) until one has a subdiagram,
involving a pushout of two instances of the epi 2 — 1 (possibly “expanded” by
applications of m X — or — x m), fitting into one of the following cases:
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M ;

@

©)

The Beck-Chevalley equality pertaining to case (1) follows from Lemma 1. For
case (3), it follows from a deformation resulting in, respectively,

................... or e

This leaves case (2), discussed in the prior example. Summarizing, the Beck-
Chevalley condition is equivalent to certain deformations plus (invertible) surgery
moves
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(83)

Remark 5 An interesting alternative to the string diagram representations of
Peirce’s system Beta, as given here, involves consideration of “surface diagrams”
(see [12, 1]). In this formulation, instead of representing morphisms in II(S) and
3(S) by planar immersions of one-dimensional topological graphs, one thickens
the graphs out to two-dimensional surfaces with boundary (by embedding the
graphs in R® and taking their normal bundles; for example, the graph of ¢
is thickened out to a “pair of pants”). These surface diagrams give oriented
cobordisms between sets of circles, and the surgery rules (S1) together with
the Beck-Chevalley rules (S3) are captured precisely by cobordism equivalence.
Thus, among the surgery rules discussed thus far, only the rules (S2) for adjunc-
tions 3¢ 4 f* change the cobordism type of such surface diagrams. Thus, if Cs
denotes the symmetric monoidal category of two-dimensional cobordisms, then
the symmetric monoidal category generated by II(S) and £(S) (as symmetric
monoidal subcategories), and subject to the Beck-Chevalley equations, may be
presented as a wreath product Cs [ S, whose morphisms are two-dimensional
cobordisms with connected components labeled in S. In the sequel, we refer to
this fact by calling the rules of (S1) and (S3) cobordism rules.

5 Rules for first-order diagrams

In this section, we complete our formulation of Peirce’s system Beta, first by
expanding our class of diagrams so as to include “lines of negation,” and corre-
spondingly expanding our notion of deformation between such diagrams. Sec-
ond, after giving rules of interpretation of these diagrams, we adjoin surgery
rules to reflect Boolean algebra structure.

5.1 Negation

To incorporate negation, we essentially follow Peirce and introduce the following
definition:
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Definition 11 A sep line (on a Rely(L)-diagram with underlying graph G L
[ao, bo] X [a1, b1]) is the boundary of a rectangle [co,do] X [c1,d1] C [ao, bo] X [a1, b1]
such that

(1) ¢ *({co,do} X [c1,d1]) is empty;

(2) ¢ *([co,do] x {c1}) contains no node labeled by an element of Ar(syU P,
and ¢~ ([co, do] x {d1}) contains no node labeled by an element of AssyU
P.

A first-order diagram consists of a Rel (L)-diagram together with a finite col-
lection of nonintersecting sep lines. A first-order form (or form for short) is a
first-order diagram with empty target. A first-order subdiagram of a first-order
diagram D consists of a subdiagram ¢ : H — [cg, dp] X [¢1,d;] of the underlying
Rel(L)-diagram of D (such that [co,dp] X [c1,d4], relative to any given sep
line of D, contains the sep line or is exterior to it), together with all of the sep
lines contained in [¢g, dp] X [¢1,d1]. A subform is such a subdiagram with empty
target.

The intention is that a sep line negates the region it encloses. Keeping
the notation used in the preceding definition, the rectangle [co + 0, dy — ] %
[c1 + 0,d; — d] defines a subdiagram for all sufficiently small §, and under some

model (S, S* A Set) — (Sety, Set} A Set), the subdiagram is interpretable
(independently of sufficiently small §) as a relation R < A x B on sets A and
B, where A is the interpretation of the source of the subdiagram, and B of its
target. The semantics of placing a sep line around such a region, as in the prior
definition, is to take the complement of R in A x B. “Sepping” can be iterated,
where one sep line is interior to another; if there are no nodes between two such
sep lines, then the appropriate semantics of multiple seppings is the iterating of
negations or complementations.

A further intention is that there is a space of first-order diagrams on a graph
G labeled in a tensor scheme T (topologized as a subspace

A(G,9G;T) < Map(G,R?) x Al x §™(G=D x Pos(my(G — I)) x exp(R*),

where the last factor denotes the free commutative topological monoid on the
space of quadruples (co, dp, c1,d1) representing sep lines), and that the logical
interpretation of a first-order diagram is invariant under deformation (i.e., along
a path in the space of first-order diagrams).

Definition 12 A deformation of T-labeled first-order diagrams is a path v :
I - A(G,0G;T).

In practice, this means that the top of the sep line in a diagram undergoing
deformation is allowed to pass back and forth over nodes labeled as 6, € in Ap(g),
and over “crossing points” (where ¢ : G — R? is not injective). It corresponds
to the fact that pullback operations f*, for f a morphism in II(S), commute
with negation —, as required in the definition of (categorical predicate) theory
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(where f* = T'(f) is a morphism of Boolean algebras). Since the category of
relations is self-dual, the bottoms of sep lines may pass back and forth across
nodes labeled in Ay,g) and over crossing points.

For the reader’s convenience, we present a few examples of first-order dia-
grams, deformations, and their interpretations as formulas in first-order logic.
In these examples, solid rectangles denote sep lines and a dotted line represents
the boundary of a diagram or subdiagram, p and ¢ are predicates or formulas
labeling nodes, and the strings abutting these nodes have been labeled, not by
the appropriate sorts but by variable terms of those sorts. (It is hoped that this
last convention will assist the reader in making the translation into the stan-
dard variable-based notation which accompanies these diagrams, even though
our approach eschews variables.)

In interpreting subdiagrams, distinct variables are assigned to each sort of
the source and each sort of the target, and are then assigned to each string
whose closure is interior to the subdiagram; two distinct variables are explicitly
asserted to be equal if they label the same strings, or strings which meet at a
ligature. Horizontal juxtapositions of subdiagrams are interpreted as conjunc-
tions. In interpreting vertical composites, variables which label strings which
meet at a boundary between two subdiagrams are identified (i.e., should be
literally the same).

Example 4

5 N

In the first diagram, the source variable x and the target variable y are asserted
to be equal; in the second diagram, the equality is negated by the sep line.

Example 5




As in Example 4, this is also an equality predicate (with two free variables z, y).
However, Example 4 should be interpreted as an identity arrow X — X in the
monoidal category of relations; Example 5, as an arrow of the form 1 —+ X x X
mated with the identity X — X.

In the next example, a deformation equivalence between diagrams is inter-
preted as an equality between formulas.

Example 6

&
en

=(p(@) Ay =y]) = —p(x) Ay =yl

When vertically composing two subdiagrams, variables are identified across
boundaries (e.g., the instances of z or y in the example).

Example 7

J2r3y—(3z[z = z Az = y]) Ap(z) Ap(y).
This asserts that there exist two distinct elements z, y which satisfy p.

Example 8

e
|
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FzFzy(z =z Az=y) Ap(x) Aqly) N[z =2] =
(FzyFe[z =z Az =y]Ap(z) Aqly)) AL,
where 1 denotes “false.” Observe that the first of these expressions is self-

contradictory.

Example 9

1
\
<1

________________________________________

JxIyFz-[z =2 Az =y]Ap(x) Ap(y) =
JzIyFuTvIz[z =u Az =v]A-[u=z Av=y]Apx)Apy).

This says that there exist two elements of a given type, and at least one of them
satisfies p.

We extend the surgery rules (S1), (S2), and (S3) to the class of first-order
diagrams as follows. First, such a surgery rule can only be applied to a subdia-
gram which, relative to any given sep line ~, is interior or exterior to y. We say
that such a subdiagram is oddly enclosed if it is in the open interior of an odd
number of sep lines, and evenly enclosed otherwise. If a subdiagram is evenly
enclosed, then (S1), (S2), and (S3) may be applied to it; if it is oddly enclosed,
then the inverse of (S1), (S2), and (S3) may be applied to it. Since (S1) and
(S3) are already invertible by definition, this convention has an effect only on
the unit and counit rules (S2). However, as mentioned earlier, (S2) is derivable
from the rules of “system Alpha,” given below. If we drop (S2) for now and
retrieve it later from Alpha, we may say that the sep-parity convention has no
effect on the rules (S1), (S3) (i.e., “rules of cobordism”; cf. remark 5) given thus
far.

Example 10 The following moves are valid inside a single sep line:

lu
!
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where in the graph at the beginning of the second move both strings are labeled
by the same sort. Peirce would view this example as an instance of Alpha
weakening: to oddly enclosed regions, an expression may be added (just as
an inference may be weakened by adding an extra hypothesis); from evenly
enclosed regions, an expression may be deleted (just as an inference is weakened
by deleting a conclusion). For instance, in the second move above, one adds an
assertion which equates two variables (cf. Example 4).

5.2 Boolean algebras and system Alpha

We formulate the remainder of Peirce’s rules (based on his system Alpha [4]) as
follows.

(1) Given a first-order diagram G and a first-order subdiagram p whose un-
derlying Rel, (L)-diagram is a subdiagram of a Rely (L)-subdiagram of G
of the form

where the “empty” subdiagram D consists only of the loose ends la-
beled u and v, a first-order diagram deformation-equivalent to p may be
(smoothly) attached to the u-string and v-string inside D, provided that
D is enclosed by any sep line which encloses p:

This surgery rule, called Alpha iteration, is invertible.

(2) The following directed move may be applied whenever a first-order subdi-
agram p is evenly enclosed:
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This surgery rule is reversed if p is oddly enclosed. This is the Alpha
weakening rule.

(3) Two nested sep lines may be inserted or removed, provided that no nodes
lie in the region between them, e.g.,

This invertible rule is called double sep elimination/introduction.

As shown in [4], the Alpha rules may be exploited to put a Boolean algebra
structure on the set of (deformation classes of) first-order diagrams with given
source and target. Given diagrams f, g : u — v, their conjunction is

and the negation of f is given by surrounding the diagram f by a sep line.
The actual case considered in [4] is, in the context of this paper, the case
where one restricts to diagrams of the form T' — 1 which have no subdia-
grams belonging to ¥(S) (corresponding to quantifier-free formulas); we call
these “propositional forms.” This restriction puts some obvious restrictions on
which surgeries are allowed (e.g., (S2) must be removed); the remaining set of
surgeries we call propositional surgeries. Then deformation classes of proposi-
tional forms, modulo propositional surgeries, is essentially equivalent to a typed
form of propositional logic. That is to say: if we define a propositional theory
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as in definition 3 but drop conditions (1) and (2) in that definition (i.e., if we
drop quantification), and if we define a translation of propositional theories as
in definition 4 but drop the quantification-preservation condition, then we have
the following result:

Theorem 2 (see [4]) Deformation classes of propositional forms on a predicate
language L, modulo propositional surgery, is isomorphic (as a IL(S)-fibration)
to the free propositional theory on L.

It is straightforward to extend the methods of [4] to show that deformation
classes of diagrams in hom(u, v), modulo all of the surgery rules, form a Boolean
algebra. As an example, we present “modus ponens” (f = g) A f ~ g for
f»g € hom(u,v):

\
Lemma 3 ' deiteration ./
Q @ = = |©
deformation ! .\
Lemma 2 !
deformation
cobordism
weakening
double sep
elimination
g -~ g

We also present the “dual” of modus ponens, f~» (g = (f Ag)):
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deformation

double sep Lo
introduction cobordism ' ' weakening
£ =S £ =S ! : =S
\/.

L

e e 0 Lemma 2

-

deformation

T |

Similarly, it is easy to show that equivalence classes of diagrams v — v form
a meet-semilattice (using iteration and weakening), a lattice (using the sep-
parity convention and double-sep elimination/introduction), a Heyting algebra
(using modus ponens and its dual above), and finally a Boolean algebra (Heyting
algebra plus double-sep elimination/introduction).

6 Soundness and completeness of Beta

In this section, we show that the first-order relational calculus (and inferences
therein) is expressed precisely by first-order diagrams and deformations and
surgery rules thereon.

6.1 The monoidal 2-category Rel(C,T)

We begin by recalling the relationship between first-order logic and first-order re-
lational calculus, whereby each theory (C,T') gives rise to a monoidal 2-category
Rel(C,T) of two-sided relations. As we shall see, each theory (C,T) can be re-
trieved in turn from Rel(C,T).

For the theory of sets, Rel(Set,Set? ER Bool) is constructed as follows.
Objects of Rel(Set, P) are sets A, B, ..., and hom(A, B) is defined as P(A4 x B)
(viewed as the set of relations from A to B). The monoidal product

hom(A, B) x hom(C, D) -2 hom(A x C, B x D)
is defined as a composite

P(AxB)x P(CxD)— P(AxBxC x D)= P(AxC xBxD,),

32



where the first map sends a pair of subsets to their product, and the second one
arises from middle-four interchange. Composition of morphisms (i.e., relational
product)

hom(A4, B) x hom(B,C) — hom(4,C)
(R(a,b),S(b, C)) = Ele(a'ab) A S(ba C)
may be defined as a composite
PAxB)xP(BxC) 3 PAxBxC) %Y pAxBx0)2 PAx0)
(R(a,b),S(V',c)) + R(a,b) AS(b,c) — FyR(a,b) AS(b,c).

The idea is to generalize this construction for the theory of sets to any theory
(C,T), to obtain a formal calculus of relations Rel(C,T).

Before establishing the monoidal category axioms on Rel(C,T'), we first gen-
eralize a few well-known results which concern the covariant power set functor
P :Set — Set.

Given a theory (C,T), let 3 : C' — Bool denote the covariant functor defined
on objects by 34 =T A and on morphisms f: A = B by 3f =3, : TA - TB.
Let M : C — Pos be the composite

C 3 Bool ‘—i Pos,

where | | is the underlying poset functor. We define structure maps n : M X x
MY — M(X xY)and 7:1 — M1; 7 is the map from a singleton 1 which
names the element “true”: the maximal element in the Boolean algebra T'1.
The map 7 is given by a composite

Tx| % |TY] D v T x Y] L [T x V)
Lemma 4 The map n is natural.

Proof: We must show that

* *
Tx XTI'Y

TXxTY — L T(X xYV)xT(X xY) —2— > T(X xY)

foagl lafxg

TX' x TY' ———— T(X'x V) x (X' x V') — = T(X' x V")

Ty X Ty
commutes, i.e., for A € TX and B € TY, we have
T AfAANTY FgB = 3pyg(mx AN Ty B).

To prove this, we apply Beck-Chevalley (BC) in conjunction with “Frobenius
reciprocity (Frob),”

(Frob) Hf(f*B A=) =BA 35,
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which obtains by taking left adjoints on the equation f*(B = —) = (f*B =
f).
We have

oA AATE B T i AN T B

223, (1% ) 3park AN Ty B)

L 3, @pall x gtk AA TS B)

2 3,30 (Lx ) Tk AN (f x 1)*13B)
Ay (rxAATYB). g.e.d.

func

Theorem 3 The triple (M,n,7) : C — Pos is a lax monoidal functor.

Proof: The statement is the conjunction of Lemma 4 together with the statement
that the following diagrams commute:

TX xTY xTZ XX (X x V) x TZ

lxnyzl lﬂx,yxz

TX x T(Y x Z)77—>T(X><Y>< 7Z),

X XY,Z

IxTX 5 71 xTX
Al ln

and
TX xTY ——=T(X xY)

Ul lTJ
TY x TX ——=T(Y x X).

The commutativity of these diagrams, which is left to the reader, is straight-
forward; e.g., for the first (second, third) diagram, one combines associativity
(identity, symmetry, resp.) together with functoriality and the fact that maps
of the form f* preserve conjunction A. q. e. d.

Lemma 5 Given f: X — X', g: Y = Y', the following diagram commutes:

TX'x TY' ——=T(X' x V)

f*Xg*l J((fxg)*

TX x TY ——T(X x Y).
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Proof: The fact that the diagram

* *
Tt XLy

TX' xTY — I T(X' xY)xT(X'xY') —2— > T(X'xY")
f*w*l l(fxg)*X(fxg)* l(fXg)*
TXXxTY ————>T(X xY) xT(X xY) — =T (X xY)

Tx X7y

commutes is trivial: commutativity of the left square follows from functoriality;
the right square commutes because (f x g)* is a Boolean map. q. e. d.
Now we define the monoidal 2-category Rel(C,T). Objects of Rel(C,T') are

types, i.e., objects of C'. Morphisms A K B are triples (A, B, R € M(A x B));
the hom set hom(A, B) is partially ordered by the relation < coming from
the Boolean algebra structure on M (A x B), and instances R < S may be re-
garded as 2-cells. (Observe that 2-cell isomorphisms are equalities.) A monoidal
product is defined on objects A, B, ... by taking cartesian products in C. On
morphisms, the monoidal product

hom(A, B) x hom(C, D) 3 hom(A x C, B x D)
is defined as the composite
M(AXxB)x M(C x D)3 M(AxBxCxD)S M(AxC xBxD),

where the second map is M (or |T'|) applied to a middle-four interchange. The
unit of ® is the object 1 € C'. Composition

hom(A4, B) x hom(B,C) — hom(A4, C)
is defined by the composite
M(AxB)xM(BxC) % M(AxB?*xC) 5" ppaxBxc) M3 paxc),
and the unit is the equality predicate

15 M1S MAMY M4 x A).

Lemma 6 Rel(C,T) is a (poset-enriched) category.
Proof: In this, and in other proofs in this section, most details are left to the
reader; we give a sketch as follows. To save space, we abbreviate M (A x B)

to AB, and in a similar way M (4; x ... x A,) to A;...A,, unless n = 1
(where we write M A, instead). Associativity of vertical composition amounts
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to commutativity of a diagram of the form

nx1 16p1)* X (lel)x1
AB x BC x CD —— ABBC x C —>ABCxCD—>ACxCD
1xn Thm 3 n Lem 5 n Lem 4 n
n (16B1)* (1el)
AB x BCCD —— ABBCCD —— ABCCD —— ACCD
1x(16¢c1)" Lem 5 (16c1)" func (16c1)* BC (16¢1)"
(16p1)" (1e1)

AB x BCD ABBCCD ABCD ACD
1x(lel) Lem 4 (1el) BC (1el) func (1el)
AB x BD — ABBD ABD AD.

(16p1)* (1el)

Similarly, one of the the unit laws for vertical composition follows from

1x AB

hm 4

func
(161

M1 x AB <22 A x ABM™2% A4 « AB

/ N\iﬂs w4
€l)

n

(1e1)

1AB G AAB— AAAB

/\AB) func . /
(5%1) (151)

q.e. d

Before proceeding further, we point out that both of the preceding commu-
tative diagram proofs were discovered with the help of beta diagram moves,
which were subsequently translated into commutative squares.
for example, corresponds to the move

R(SU)

(RS)U

Associativity,

which may be decomposed into a sequence of four moves, which locally have the

form:
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(M
BC

(@)
func

3)

func

“4)
BC

These moves are subsequently translated into the squares labeled “BC,” “func”
in the commutative diagram proof of associativity.

Thus, commutative diagram proofs (of this result and of others in this sub-
section) may be analyzed into two distinct components: one which involves
instances of Theorem 3 and Lemmas 4 and 5 (and which are connected with
assertions that interpretations of certain beta diagrams are independent of the
order in which the diagrams are constructed), and another involving instances
of functoriality of ' and M and “BC” (which are connected with certain defor-
mations and surgery rules applied to these beta diagrams).

In the spirit of the beta methodology, we therefore express proofs of certain
results in this subsection using certain beta moves which are certainly shorter,
and in our opinion easier to comprehend, than proofs involving large commuta-
tive diagrams. (And in these cases, the translation from Beta to commutative
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diagrams is straighforward enough to remove any objection that this procedure,

prior to establishing that Beta is sound, is circular).

The next result expresses beta surgery equivalences which translate into
parts of the diagrams for the unit laws in the course of proving Lemma 6 (parts
labeled “func” and “BC”).

Lemma 7

Lemma 8 The monoidal product ® of Rel(C,T) is functorial with respect to

vertical composition in Rel(C,T).

Proof: Tt suffices to show that (1) A ® — and —® B are functorial for objects

A, B; (2) the following interchange diagram commutes:

Ax 025 4xD

R®S
R®D

BXCT@S)BXD

R@Cl

The proof that A ® — preserves composition is given as follows:

A B

A

D

C

<2

(A@R) (A®S)

BC

func

A

B

A

D

A

B

Lemma 7
—_—

A®(RS)

The remaining details of (1) are left to the reader. The proof that the lower

triangle of (2) commutes is given as follows:
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BC Lemma 7
— —
func

Remaining details of (2) are left to the reader.

Finally, we observe that ® is symmetric monoidal: the associativity, sym-
metry, and unit constraints may be defined as those induced from constraints
for (C, x), via a functor C' — Rel(C,T) given below (their naturality will be
left as an exercise). q.e. d.

Theorem 4 Rel(C,T) is a compact symmetric monoidal 2-category.

Proof: By the preceding results, Rel(C,T) is a symmetric monoidal category
enriched in the category of posets. The adjunction which expresses compactness,

hom(X ® Y, Z) 2 hom(X, (Y ® Z)),

follows immediately from M((X xY) x Z) 2 M(X x (Y x Z)). q.e. d.

Next, we show how to retrieve the theory (C,T) from Rel(C,T). Define
functors C' — Rel(C,T) and from C°? — Rel(C,T), both acting as identities
on objects, and which send a morphism f : A — B to the value 1 under the
composite given respectively as:

15 M1S ma™

I araxB), 15 M1S MAMEY pBx A).
It is trivial that each of these morphism assignments preserves identities.
Lemma 9 C — Rel(C,T) and C°? — Rel(C,T) are functorial.

Proof: We show C — Rel(C,T) preserves compositions in the following
diagram; the case for C°? — Rel(C,T) is similar:

1% 1—25 M1 s M1 pma s MBS B o a0

NT Thm 3 Ul/ Lem 5 Ul Lem 4 n
! Yo b wne b
Tl ((1,1))*l func l((l,f))* BC (161)*
M1 ———> M1 ——— pa e
(o U
AC.
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q.e. d.
It is now clear that both C' — Rel(C,T) and C? — Rel(C,T) are strict
monoidal functors, in view of the observation preceding Theorem 4.

Let Form denote the set of 1-cells of Rel(C,T) which are of the form A — 1.
By definition of Rel(C,T), there is a natural bijection

Form = Y TA.
AeCy

Let C x ¢, Form denote the pullback of the domain or typing function Form —
Cy along the codomain function C; — Cy. The functor C' — Rel(C,T) induces
a map

Ci x¢, Form — Rel(C,T)1 x¢, Form,

which one may compose with Rel(C,T); X¢, Form P Form, where comp is
defined by composition in Rel(C,T). The result is a map

P
Cy x¢, Form — Form.

Lemma 10 P(A L BB 3 1)=A1¢1.

Proof:
€*x1 ((L,f))x1
Bl——= M1xBl—— MA x Bl——= AB x Bl
N e )
N n Lem 5 7 Lem 4 n
\ (e1) ((1L.H1)
1 1Bl ——— AB1l —— ABBI1
func l((l,f)l)* BC (161)*
((1,1)1)
D Al AB1
N (1el)
Al.
q.e. d.
cod

A similar construction results by pulling back (C°P); = Cy along Form —
Cp and forming the composite @ of

(Cop)l XCo Form — Rel(ca T)l X o Form C(l)np fo*rm,

where the first map is induced from C°? — Rel(C,T). If A I B denotes a
morphism in C°P, then by imitating the proof of Lemma 10, one may show that

Q(B EN A,B % )=4 a—fiq 1. In this way, the structure of a theory (C,T) is
completely retrieved from the structure of the monoidal 2-category Rel(C,T):

Theorem 5 The functors C°P L Bool and C > Bool of a theory, viewed
as fibrations, are isomorphic to the (split) fibrations (Form — Co, P), (Form
— OO) Q)
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6.2 Soundness and Completeness

Let B(L) denote the monoidal category of first-order diagrams modulo defor-
mation equivalence. There is a reflexive transitive relation ~g on 3(L), gener-
ated by surgery rules; let 3(L)/ ~3 denote the poset-enriched category where
hom(u, v) carries the poset structure induced from ~g. The goal of this subsec-
tion is to prove

Theorem 6 There is an isomorphism of (compact, monoidal) poset-enriched
categories

BL)/ ~5== Rel(IL(S), 6),
where (I1(S), 8 : II(S)°? — Bool) is the free (categorical predicate) theory on L.

It is in this sense that Peirce’s Beta is isomorphic to first-order relational cal-
culus.

The proof proceeds as follows. First, we construct a functor ¢ : S(L) —
Rel(II(S), #) which is the identity on objects and which is defined on morphisms
by induction on the rank of representative first-order diagrams, where the rank is
defined as the number of sep lines and interior and crossing nodes. We show that
the functor ¢ respects deformation equivalence; then we show that g respects
the surgery relations on 3, and then show that ¢ is a surjection of 2-categories.
The theorem follows easily from there.

Let D be a first-order diagram. To define ¢(D), the idea is to partition D
into first-order subdiagrams: to tile the rectangle R in which D is immersed into
subrectangles, in such a way that D can be obtained through a succession of
horizontal and vertical compositions. If each subdiagram has a lesser rank than
D, then by induction the value of ¢ on each subdiagram will have been defined,
and we define ¢(D) as the corresponding iterated composite in the monoidal
category Rel(II(S), ).

The only trouble is that not all tilings can be sensibly interpreted as com-
posites. Recall that two subdiagrams are (horizontally or vertically) composed
by “erasing” an edge they have in common (given by a dotted line, as in Lemma
1).

Definition 13 (see [7]): A tiling of a rectangle is composable if repeatedly re-
placing two tiles with a common edge by a single tile which is their union can
eventually reduce the tiling to a single tile.

The basic instance of an uncomposable tiling is the “pinwheel,”
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and we will take advantage of deformation equivalence to ensure that this will
not occur.
For example, consider the first-order diagram D given by

HEN |

/]| |

where the solid rectangular lines are sep lines. In order to evaluate ¢(D), we
deform two of the sep lines to obtain

whereupon it becomes possible to tile D into composable subdiagrams as shown
by the dotted lines.

Suppose D is a first-order diagram which is not surrounded by a sep line, up
to deformation equivalence. [If this condition is not met, we can define g(D) as
—q(D"), where D' is obtained by removing the outermost sep line of D.] A sep
line of D is mazimal if it is not interior to any other sep line. Since D is not
deformable to a diagram surrounded by a single sep line, one of the following
cases holds:

e D has two or more maximal sep lines;
e D has one maximal sep line and nodes exterior to that sep line;
e D has no sep lines.

In the latter two cases, it is relatively trivial to decompose D into a composable
tiling, i.e., a decomposition into subdiagrams of lesser rank than D. In the first
case: since the sep lines are disjoint, D can be tiled so that each tile defines
a first-order subdiagram and contains at most one maximal sep line (which we
assume to be in the tile’s interior), and we just need to ensure that this tiling is
composable. This necessitates the following abstract considerations on tilings,
given in [7].

Given a tiling of a rectangle, we define partial orders <; and <, on the set
of tiles A, B, ..., where A <; B if the right edge of A meets the left edge of B
in more than one point, and A <, B if the top edge of A meets the bottom
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edge of B in more than one point. (The partial orders <; and <, are the
reflexive transitive closures of these two relations.) Tilings of rectangles may
be abstractly characterized in terms of such double orders (called tileorders), so
that, for example, the pinwheel tiling given above may be referred to in terms
of its tileorder.

Theorem 7 (see [7]) A tileorder fails to be composable if and only if every
sequence of compositions eventually yields a tileorder containing a pinwheel as
a sub-double-order.

If a pinwheel (arising from a tiling of a first-order diagram, as described
above) is reached, we simply decompose it further, as we indicated earlier:

The only obstruction occurs when one of the dotted lines of the decomposition
passes through a (maximal) sep line of a tile. All one needs to do here is to
apply an isotopy to the tile acting as the identity on a neighborhood of the tile’s
boundary, and which shrinks the sep line and the rectangle it surrounds into a
smaller subrectangle. Then, without loss of generality, we may assume that the
sep line lies above or below the dotted line, so that the decomposition can be
carried out.

Now we define ¢ : S(L) — Rel(II(S),0) by induction, by tiling a (defor-
mation equivalence class of a) first-order diagram D into subdiagrams D' of
lesser rank in the manner given above, and composing their values ¢(D') in the
monoidal category Rel(II(S),6). If D has rank less than 2, then without loss
of generality, D is either one of the primitive diagrams given in the discussion
of §3.1 after definition 9, or the second diagram of Example 4. In the former
case, D could be a single string or could have a single crossing node, where
q(D) is an identity or a symmetry isomorphism, or could have a single node
labeled 0 or €, where ¢(D) is the image of a diagonal or projection map under
II(S) — Rel(II(S), ), or could have a node labeled 6°? or €°?, where g(D) is
the image of II(S)°? — Rel(II(S), ), or could have a node labeled p € P in the
predicate language, where ¢(D) is the evident morphism (7(p), 1,p € 8(7(p) x1))
in Rel(II(S),0). In the case where D consists only of a sep line surrounding
strings, (D) is (A, A,~E4 € (A x A)), where E4 is the equality predicate:

15601504 86(4x A),
and A is the source/target of D.
Lemma 11 The functor q : S(L) — Rel(I1(S),0) is well-defined.
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Proof: The well-definedness of ¢ may be analyzed into three distinct compo-
nents: (1) the case where, during a deformation ¢t — D;, a node of D; crosses
a sep line of Dy; (2) the case of the deformation where two nodes interchange
their relative heights. We must also show (3) that ¢(D) is independent of the
tiling of D. In cases (1) and (2), we must show that ¢(D;) is independent of
t. But cases (2) and (3) are essentially consequences of the theory of [10] (plus
the fact that Rel(II(S), ) is a symmetric monoidal category). As for case (1),
we may consider separately the case (1a) where a node crosses the top of a sep
line; the argument for this case essentially follows from Lemma 10 plus the fact
that f*, for f a morphism of TI(S), preserves negation. Case (1b), where a node
crosses the bottom of a sep line, is dual (here we invoke the fact that A ® — is
adjoint to itself, as in Theorem 4, so that Rel(II(S), #) is self-dual). Thus, ¢ is
well-defined. q. e. d.
Next, we must verify that ¢ induces a well-defined map

B(L)] ~5— Rel(II(S),0)

by showing that if f ~3 g, then ¢(f) < ¢(g9). Now the partial order ~»3 is
generated from surgery rules (S1), (S2), (S3) [taking into account the sep-parity
convention] and the rules of Alpha. But ¢ respects (S1) by Theorem 5 and
construction of II(S) (Theorem 1), and similarly (S2) and (S3) by Theorem 5
and conditions (1) and (2) of Definition 3. The fact that the rules of Alpha are
respected by ¢ is covered under the Soundness Theorem of [4]: the hardest rule
to verify is iteration, but this essentially follows from recursive application of
the Boolean equations

fA=(fAg) = fA-g
fA@AR) = fA(fAgAR).

Details are left to the reader. Thus we have proved

Lemma 12 (Soundness of Beta): The map ¢ : B(L)/ ~g— Rel(II(S),0) in-
duced from q is well-defined.

Lemma 13 (Completeness of Beta): The poset-enriched functor ¢ : f(L)/ ~5—
Rel(I1(S), 8) is surjective on 1-cells and on 2-cells.

Proof: Surjectivity on the level of 1-cells may be decomposed into two parts:
(a) showing that relations of the form A — 1 in Rel(II(S),0) are in the image
of ¢; (b) all relations of the form A — B in Rel(II(S), ) are in the image of g.

Statement (b) follows easily from statement (a): from (a), we have that every
relation of the form (A x B,1,R € T(A x B)) is the image of a corresponding

beta diagram of the form
AVB
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under g. The corresponding relation (A, B, R € T(A x B)) is then the image of

Here implicit use is made of compactness of Rel(II(S),#) (Theorem 4) and of
B(L)/ ~p (see Lemma 7).

As for statement (a): Relations of the form A — 1 correspond bijectively to
elements in ¥,c5-0(w) by Theorem 5. Formulas, i.e., elements in X,,cs-0(w),
are formed by applying rules (i)—(iv), which are accompanied by the first-order
diagrams whose image under ¢ is the given formula:

(i) p € Zypes-A(w) is an element of ¥,,cs+0(w) (image of

) If p,q € B(w), then p A g € O(w), —p € B(w) (image of

A [T

(iii) If p € O(w) and V 5w in II(S), then f*p € §(v) (image of

\

Oy

w

(iv) Tf p € B(v) and V L W in TI(S), then I;p € f(w) (image of

¢
®
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This completes the proof of statement (a), so that ¢ is surjective on 1-cells.

Surjectivity on the level of 2-cells is proved by showing that every instance
of the relation p < ¢ between 1-cells in Rel(II(S),0) follows from a relation
f~pgin B(L)/ ~p. It suffices to check the case where p,q: A — 1, i.e., where
p and ¢ are formulas of the free theory F'L (cf. the reduction of statement (b)
by statement (a) earlier in this proof). But by freeness, instances of p < ¢ here
follow purely from the axioms of theories and equations of II(S). As we saw
in §3.3, the equations of II(S) are covered by (S1), the adjunctions 3¢ 4 f* by
(52), Beck-Chevalley by (S3), and the Boolean algebra axioms are covered by
the discussion at the end of §4.2. Thus the surjectivity at the 2-cell level is clear.
q. e. d.

Proof of Theorem 6: Let ~3C B(L)1 x B(L)1 and ~»C B(L)1 x (L)1 denote
the reflexive and transitive relations on the 1-cells of #(L) induced by pulling
back the 2-cell relations < in f(L)/ ~3 and in Rel(II(S), #) along the respective
quotient maps B(L) — B(L)/ ~5 and B(L) 2 Rel(I1(S),6). It suffices to show
~»g=~»p. That ~»3C~sy follows from Lemma 12. That ~»pC~sg follows from
Lemma 13. The proof is complete.  q. e. d.

The authors are very grateful to Saunders Mac Lane for his sustained support
and his interest in this paper.
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