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Abstra
t

In the late nineteenth 
entury, C. S. Peir
e developed a graphi
al sys-

tem for handling the �rst-order 
al
ulus of relations. This system, 
alled

Beta, is reformulated here in modern terms, using developments in 
ate-

gori
al logi
 and geometri
al representations of monoidal 
ategories. First,

we de�ne the notion of (
ategori
al predi
ate) theory as a parti
ular 
ase

of Lawvere's hyperdo
trines (with Boolean �bers and satisfying the Be
k-

Chevalley 
ondition), and express the syntax of �rst-order logi
 in terms

of free theories on predi
ate languages. Observing that ea
h (
ategori
al

predi
ate) theory gives rise to (and is embedded in) a monoidal 2-
ategory

of relations, the goal of the paper is to give a geometri
 presentation for the

monoidal 2-
ategory of relations of a free theory on a predi
ate language,

obtaining Peir
e's 
al
ulus as a result.

This geometri
 presentation is based on \string diagrams," akin to the

Feynman diagrams in theoreti
al physi
s, and developed for 
al
ulations

in general monoidal 
ategories by Joyal-Street. The 
al
ulus of string

diagrams is extended by adjoining rewrite rules, so that terms in �rst-

order logi
 are represented by deformation equivalen
e 
lasses of 
ertain

string diagrams, and inferen
es between terms are represented by 
ertain

rewrites of diagrams. The geometri
 
al
ulus whi
h so arises, whi
h we

identify with Peir
e's system Beta, is shown to be sound and 
omplete

with respe
t to �rst-order logi
.
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1 Introdu
tion

Toward the end of the 19th 
entury, the Ameri
an logi
ian C. S. Peir
e devel-

oped a remarkable 
al
ulus of planar graphs for expressing logi
al formulae and

inferen
es. Existential graphs, as he 
alled them, evolved as a way of handling

the \logi
 of relatives" (i.e., the 
al
ulus of relations) whi
h Peir
e, beginning

in 1870, had invented as an outgrowth of his studies on Boolean algebra ([15℄).

Although little was published in Peir
e's lifetime on existential graphs, he ex-

pli
itly refers to this 
al
ulus as his \
hef d'oeuvre," and as an outline of the

logi
 of the future.
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Existential graphs were developed in three stages of logi
al 
omplexity. Al-

pha graphs, the initial part of his system, are geometri
al representations of

propositional assertions, i.e., Boolean 
ombinations of propositional variables.

(A rigorous modern formulation of system Alpha 
an be found in [4℄.) Next


ome Beta graphs, whi
h geometri
ally represent �rst-order relational expres-

sions. The basi
 operation, the relational produ
t or 
omposition, was seen

by Peir
e as analogous to Boolean 
onjun
tion (and so there is a 
lose tie-in

between his rules for Alpha and rules for Beta) but, as Peir
e re
ognized, in-

volved existential quanti�
ation as an essential 
omponent. Thus, as Peir
e

per
eived, Beta 
ould be used as a vehi
le for expressing inferen
es in predi-


ate logi
, parti
ularly those involving logi
al quanti�
ation, in the same way

that �rst-order relational 
al
ulus adequately 
aptures the language of �rst-

order logi
. Finally, there are Gamma graphs, whi
h Peir
e never brought to

fruition and indeed were highly spe
ulative by his own admission. Our reading

is that Peir
e was hinting at ideas found in modal logi
, temporal logi
, and

\variable sets" (toposes), and that he suggests possibilities for \geometrizing"

higher-order logi
, but 
lari�
ation of these points will have to await a future

paper.

A remarkable feature about Beta graphs, the fo
us of the present paper,

is their metaphori
al ba
kground: Peir
e, guided by analogies with 
hemistry,

pi
tured an n-ary relation as something like an element with \valen
y n." Com-

position of relations R and S is then pi
tured as a \bonding" between two or

more elements, as between atoms in a mole
ular 
on�guration. For instan
e,

if R is a predi
ate expression with free variables x, y, and S is a predi
ate ex-

pression with free variables y, z, w, then the relational 
omposite expressed by

9

y

R(x; y) ^ S(y; z; w) is pi
tured by drawing a \line of identity" 
onne
ting R

to S:

y

z w

SR

x

This metaphor of 
hemi
al bonding a

ords well with modern logi
al terminol-

ogy, where we say for example that the variable y is \bound" in the 
omposite

expression.

Now, with a di�erent set of s
ienti�
 
ontexts in mind (namely, the use of

graphs in parti
le physi
s and relativity �a la Feynman and Penrose), Joyal and

Street ([10℄) have introdu
ed a mathemati
al theory of so-
alled string diagrams,

in order to make rigorous the use of su
h diagrams in generalized tensor 
al
ulus.

The idea is that the lines or edges in a string diagram represent linear spa
es

(e.g., Hilbert spa
e representations of Lie groups), and nodes where lines meet

represent intertwining operators. (Thus an operator of the form

V

1


 : : :
 V

m

�!W

1


 : : :
W

n

is represented by a node in
ident to m edges 
oming from above and n edges
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from below.) As Joyal and Street show, the appropriate language for formalizing

string diagrams is monoidal (or tensor) 
ategory theory, whereby string diagrams

are viewed as morphisms in a freely generated monoidal 
ategory.

The basi
 insight behind our approa
h to Peir
e's system Beta is that the


al
ulus of relations is pro�tably viewed as a 
ertain type of monoidal 
ategory

(or rather a monoidal bi
ategory; 
f. [6℄), where relations are 
ertain morphisms

between sets whi
h 
ompose by relational 
omposition. (More exa
tly, we deal

with formal relations viewed as arrows between types, working in a typed 
at-

egori
al representation of �rst-order logi
.) Then, applying the ma
hinery of

string diagrams to present su
h monoidal 
ategories, the graphs that result are

essentially the same as Peir
e's Beta graphs. The details of this approa
h re-

quire several ingredients not found in the string diagram 
al
ulus of [10℄, su
h

as surgeries on string diagrams, and the use of Peir
e's \sep lines" to handle

logi
al negation.

This paper is organized as follows. In se
tion 2, we give a purely 
ategori
al

formulation of �rst-order logi
 based on Lawvere's notion of hyperdo
trine ([11℄;

we need a parti
ular variant of hyperdo
trines: where the base need only be


artesian, not 
artesian 
losed, and the �bers are Boolean algebras, and su
h

that the Be
k-Chevalley 
ondition is satis�ed). This gives a presentation of �rst-

order logi
 whi
h avoids the usual synta
ti
 ma
hinery of variables, in terms of

a hyperdo
trine freely generated from a predi
ate language. In se
tion 3, we

sket
h part of the 
onstru
tion of this free hyperdo
trine, emphasizing that it is

embedded in a formal 
al
ulus of relations whi
h is 
onstru
ted geometri
ally as

the paper progresses. In se
tion 4, we introdu
e a variant of Joyal-Street string

diagrams, and more espe
ially the notion of surgery needed to give geometri


presentations of monoidal 
ategories. We use string diagrams and surgeries

to 
onstru
t the base 
ategory of the free hyperdo
trine, as well as relations

whi
h re
e
t the adjoint relationship between re-indexing and quanti�
ation,

together with the Be
k-Chevalley 
ondition. In se
tion 5, we \fold in" the rules

of Peir
e's system Alpha, whi
h expresses the Boolean algebra stru
tures on

the �bers; this 
ompletes our des
ription of Peir
e's Beta. In se
tion 6, we

prove our main theorem: that the monoidal bi
ategory whi
h was 
onstru
ted

geometri
ally in the pre
eding se
tions is isomorphi
 to the monoidal bi
ategory

of relations generated by the free hyperdo
trine whi
h represents �rst-order logi


(relative to a given predi
ate language). That is to say, that Beta is sound and


omplete with respe
t to �rst-order logi
.

2 Languages and theories

De�nition 1 A (predi
ate) language 
onsists of a set of predi
ates P , a set of

sorts S, and a typing fun
tion � : P ! S

�

, where S

�

is the free monoid on S.

Viewing a set S as a dis
rete 
ategory and the free monoid on S

�

as a

monoidal 
ategory, a typing fun
tion � : P ! S

�

amounts to a fun
tor � :

S

�

! Set. To get � from � , de�ne �(w) as the set �

�1

(fwg). To get � from
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�, de�ne P as the disjoint sum �

w2S

�

�(w), and if p 2 P , de�ne �(p) as w

whenever p 2 �(w). In what follows, we usually view a language as a pair

(S; � : S

�

! Set).

De�nition 2 A morphism or translation of languages (S; �)! (S

0

; �

0

) 
onsists

of a fun
tion f : S ! S

0

together with a natural transformation � : �! �

0

f

�

.

Equivalently, a morphism of languages (S; P; P

�

! S

�

) ! (S

0

; P

0

; P

0

�

0

! (S

0

)

�

)


onsists of a pair of fun
tions f : S ! S

0

, � : P ! P

0


ompatible with the

typing fun
tions: if p has type hs

1

; : : : ; s

n

i, then �(p) has type hfs

1

; : : : ; fs

n

i.

As an example of a morphism, 
onsider a set-theoreti
 model of a predi
ate

language. A model assigns to ea
h sort s 2 S a set, say F (s). This gives a

fun
tion F : S ! Ob(Set), from S to the 
lass of sets, also denoted Set

0

. The

model then assigns to ea
h predi
ate p of type hs

1

; : : : ; s

n

i a subset �(p) of the

produ
t Fs

1

� : : :� Fs

n

. Now let � be the 
omposite fun
tor given by

Set

�

0

�

! Set

P

! Set;

where the �rst map sends a list of sets S

1

; : : : ; S

n

to their 
artesian produ
t

and the se
ond map is the (
ontravariant) power set fun
tor: this gives a large

predi
ate language (Set

0

;� : Set

�

0

! Set). Then a set-theoreti
 model of a

language (S; �) may be des
ribed as a morphism (F; �) : (S; �)! (Set

0

;�) into

the language of sets.

The language of sets 
arries a lot of extra stru
ture, su
h as the Boolean

algebra stru
tures on power sets. A 
ertain amount of this stru
ture suÆ
es to

model the semanti
 aspe
ts of �rst-order logi
. We abstra
t this stru
ture in

the following de�nition, based on Lawvere's theory of hyperdo
trines [11℄:

De�nition 3 A (
ategori
al predi
ate) theory 
onsists of a 
ategory C with �-

nite produ
ts, together with a 
ontravariant fun
tor T : C ! Bool (or a 
o-

variant fun
tor C

op

! Bool) mapping to the 
ategory of Boolean algebras, su
h

that

(1) For ea
h morphism f : A ! B in C, f

�

= T (f) : TB ! TA has a left

adjoint 9

f

: TA! TB;

(2) Given a pullba
k

P

k //

h

��

A

f

��
B

g

//
C

in C, the following diagram 
ommutes:

TA

k

�

//

9

f

��

TP

9

h

��
TC

g

�

//
TB:
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The ar
hetypal example of a theory is the theory of sets (Set; P : Set

op

! Bool)

in whi
h we regard the 
ontravariant power set fun
tor as valued in the 
ategory

of Boolean algebras. In this 
ase, Pf : PB ! PA sends a subset D � B to

its inverse image f

�1

(D) � A; the left adjoint 9

f

: PA ! PB 
orresponds to

taking dire
t images along f . The adjun
tion of (1) says

(�) f(C) � D if and only if C � f

�1

(D):

As is well known, dire
t images model existential quanti�
ation: if, for example,

� : A � B ! B is proje
tion to the se
ond fa
tor, and if C � A � B is the

extension of a predi
ate p(a; b) relative to some set-theoreti
 model, then the

image

�(C) = fb j 9a 2 A : p(a; b)g

is the extension of the formula 9

a

p(a; b). In order to 
apture the taking of dire
t

images in Boolean algebras more general than power sets, one rewrites (�) as

9

f

C � D if and only if C � f

�

D;

and so we require that ea
h f

�

= Tf have a left adjoint 9

f

. It follows that

universal quanti�
ation, de�ned by 8

f

= :9

f

:, is right adjoint to f

�

.

Condition (2), 
alled the Be
k-Chevalley 
ondition, also holds in the theory

of sets (as the reader 
an easily verify) and �gures prominently in type-theoreti


versions of �rst-order 
ategori
al logi
. To translate between the version given

here and standard presentations of �rst-order logi
, the reader should bear in

mind that here we never write an inferen
e p ` q between p; q unless they have

the same type. At the semanti
 level, this ensures that their extensions E(p)

and E(q), relative to a given model, belong to the same Boolean algebra, so that

E(p) � E(q) makes sense. (Synta
ti
ally, it means that p and q have the same

free variables; however, in our approa
h, variables are not needed.) Thus, if we

wish to 
ompare the logi
al strengths of formulas p and q whose types do not

mat
h, we may retype them by pulling them ba
k to expressions f

�

p and g

�

q

over a 
ommon type T (synta
ti
ally: adjoin some dummy free variables), and


ompare the retyped expressions. The Be
k-Chevalley 
ondition ensures that

the meaning or interpretation of quanti�
ation is preserved under su
h retyping

operations.

To translate between theories (C; T : C

op

! Bool), we introdu
e the follow-

ing de�nition:

De�nition 4 A morphism or translation of theories (C; T )! (C

0

; T

0

) 
onsists

of a produ
t-preserving fun
tor F : C ! C

0

together with a natural transforma-

tion � : T ! T

0

F

op

su
h that for all morphisms f : A! B in C, the following

diagram 
ommutes:

TA

�

A //

9

f

��

T

0

FA

9

Ff

��
TB

�

B

//
T

0

FB:
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By \produ
t-preserving" we mean that the map hF�

A

; F�

B

i : F (A � B) !

FA � FB is an isomorphism. In our framework, produ
ts are not 
anoni
ally

given, but are de�ned, as usual, only up to isomorphism. In order to have

adequate 
ontrol over this feature, we need a further level of stru
ture.

De�nition 5 Given two translations (F; �), (G; ): (C; T )! (C

0

; T

0

), a mod-

i�
ation (F; �) ! (G; ) between them is a natural transformation F

�

! G su
h

that the following diagram 
ommutes:

T

� //

 ""E
EE

EE
EE

EE
T

0

F

op

T

0

�

op

zzttttttttt

T

0

G

op

:

We thus have a 2-
ategory of theories, translations between theories, and mod-

i�
ations between translations.

Ea
h theory (C; T ) has an underlying language, 
onstru
ted as follows. The

set of sorts of the language is the set of obje
ts C

0

= Ob(C). The fun
tor

C

�

0

! Set is de�ned up to isomorphism as a 
omposite

C

�

0

�

! C

T

! Bool

j j

! Set;

where j j : Bool ! Set is the underlying-set fun
tor and � sends a �nite list of

obje
ts in C to their produ
t. Of 
ourse, there is no unique 
hoi
e of produ
t,

so in general there are many underlying languages of a theory, but they are all


anoni
ally isomorphi
. Thus, it is harmless to suppose that we have 
hosen an

underlying language UT for every theory T . If (F; �) : (C; T ) ! (C

0

; T

0

) is a

theory morphism, then we have a diagram

C

�

0

� //

(F

0

)

�

��

C

F +j�j

��

jT j

  B
BB

BB
BB

B

� +

Set

(C

0

0

)

�

�

//
C

0

jT

0

j

>>||||||||

;

where � : F�

�

! �F

�

0

is a 
anoni
al isomorphism whi
h arises by virtue of

preservation of produ
ts by F . Hen
e, the pasting of the 2-
ells,

jT

0

j� � j�j� : jT j�! jT

0

j�F

�

0

;

gives an underlying morphism between underlying languages, so we have an

underlying fun
tor

U : T h! Lang
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from the 
ategory of theories to the 
ategory of languages.

The syntax of �rst-order logi
 may be des
ribed as the 
onstru
tion of a

theory FL whi
h is freely generated from a language L. This means that given

a modeling � : L ! UT of a language L in a theory T , one 
an extend to a

translation �̂ : FL ! T between theories, uniquely up to invertible modi�
a-

tion: the 
ategory of translations and modi�
ations T h(FL; T ) is equivalent to

the dis
rete 
ategory or set of morphisms Lang(L;UT ), in a 2-natural sense.

The 
onstru
tion we give of FL avoids the usual variable-based synta
ti
 ma-


hinery in favor of 
ategori
al and geometri
ally based 
onstru
tions whi
h are

intimately 
onne
ted with Peir
e's system Beta.

3 The free theory of a language

The 
ategory of types C of FL is the \free 
ategory with �nite produ
ts" gener-

ated by the set of sorts S of L, and may be des
ribed by means of \wreath prod-

u
ts." Let Fin be the 
ategory of �nite 
ardinals f1; : : : ; ng (empty if n = 0)

and fun
tions between them. If D is any 
ategory, then there is a 
ategory

Fin

R

D whose obje
ts are pairs (m; f1; : : : ;mg

x

! D), where m 2 Fin

0

and x

is a fun
tor on f1; : : : ;mg as a dis
rete 
ategory; the morphisms (m;x)! (n; y)

are pairs (f; �), where f : m ! n is a morphism in Fin and � : x ! yf is a

natural transformation. An obje
t (m;x) amounts to a list hx

1

; : : : ; x

m

i of ob-

je
ts in D, so that (Fin

R

D)

0

= D

�

0

; a morphism is a fun
tion f together with

a list h�

1

; : : : ; �

m

i of morphisms in D, where �

i

: x

i

! y

fi

. In parti
ular, for

ea
h obje
t hx

1

; : : : ; x

m

i there arem morphisms k

i

: (1; x

i

)! (m; hx

1

; : : : ; x

m

i),

where the image 1 ! m is fig and where k

i

: x

i

! x

i

is the identity. These

morphisms are inje
tions whi
h realize hx

1

; : : : ; x

m

i as the 
oprodu
t �

m

i=1

x

i

in

Fin

R

D. It is easy to show that Fin

R

D is the free 
ategory with �nite sums

�(D) generated by D, in the sense that if E is any 
ategory with �nite sums

(
oprodu
ts), there is a (2-)natural equivalen
e

Cat(D;E) ' Coprod(Fin

R

D;E)

between the fun
tor 
ategory on the left and the 
ategory of 
oprodu
t-preserving

fun
tors on the right. The free 
ategory with produ
ts is similarly formed as

�(D) = (Fin

R

D

op

)

op

. If D is a dis
rete 
ategory S, then �(S) = Fin

R

S and

�(S) = (�S)

op

. Given a predi
ate language L = (S; S

�

�

! Set), the 
ategory of

types of FL is de�ned to be �(S).

To 
omplete the des
ription of FL, we need to 
onstru
t an appropriate

fun
tor �(S)

op

�

! Bool (or �(S)! Bool). The reader should think of (�S)

0

=

7



S

�

0

as the 
olle
tion of types of the free theory, and of

Form

��

=

P

T2S

�

0

�(T )

�

T2S

�

0

!

��

S

�

0

�

=

P

T2S

�

0

1

as the 
olle
tion of all formulas or terms in the free theory, �bered over the


olle
tion of types. �(S) must be allowed to a
t both 
ontravariantly Form!

S

�

0

(by pullba
k operations f

�

) and 
ovariantly (by existentially quantifying),

and of 
ourse lo
ally (i.e., on a �ber Form

T

= �(T ) over a type T ) there must

be an appropriate Boolean algebra stru
ture.

To handle all this stru
ture, it is useful to view the formulas p of type

hx

1

; : : : ; x

n

i as formal n-ary relations of type x

1

� : : :�x

n

and, following Peir
e,

to express the stru
ture in terms of geometrized 
al
ulus of relations. Working in

a two-sided relational 
al
ulus (e.g., of relations R : A! B between sets, where

the relational 
omposite of A

R

! B

S

! C is de�ned by RS(a; 
) = 9

b

R(a; b) ^

S(b; 
)), we re
all that the 
ategory of relations 
arries a monoidal produ
t 
.

Namely, given R : A! B and S : C ! D, R
S : A�C ! B�D is de�ned by

(R 
 S)(ha; 
i; hb; di) = R(a; b) ^ S(
; d), and the monoidal unit is the terminal

set 1.

Remark 1 If C is any regular 
ategory, then there is a monoidal 
ategory

Rel(C), where the obje
ts are obje
ts of C and whose morphisms A ! B are

relations, i.e., moni
 arrows R ,! A�B. In fa
t, this is a monoidal 2-
ategory,

sin
e relations of type A! B may be partially ordered by in
lusion. Similarly,

there is a monoidal bi
ategory Span(C) of spans in C, if C has �nite limits.

Remark 2 Rel(C) is 
ompa
t 
losed: ea
h fun
tor A
 { has a right adjoint

of the form A

�


 { (by taking A

�

= A). We remark that 
 is not the 
arte-

sian produ
t in Rel(C) (in fa
t, 
ompa
t 
losed 
ategories and, more generally,

�-autonomous 
ategories whose monoidal produ
t is the 
artesian produ
t are

equivalent to posets). In fa
t, the 
artesian produ
t is given by taking 
oprod-

u
ts in C, if and only if C is a lextensive 
ategory [5℄).

Our strategy for 
onstru
ting the theory FL on a language L (with S as

set of sorts) will be as follows. We build a monoidal (2-) 
ategory of relations

where the set of obje
ts or 0-
ells is S

�

, generated from predi
ates p 2 �(T )

in L (viewed as morphisms [i.e., relations℄ p : T ! 1 to the unit 1 of S

�

) and

monoidal sub
ategories �(S) and �(S). The theory FL is retrieved as follows.

Formulas of type T in FL will be de�ned as morphisms T ! 1. Pullba
k

operations and quanti�
ations will then be de�ned as spe
ial 
ases of relational


omposition. Conjun
tion of two formulas R : A ! 1 and S : A ! 1 is de�ned

as the 
omposite

A

Æ

! A
A

R
S

! 1
 1

�

=

1

8



in whi
h we pull ba
k along the diagonal Æ : A! A�A in �(S).

The desired monoidal 
ategory is formed by extending the method of string

diagrams and their deformations, used in [11℄. The extension is twofold. First,

we give presentations of monoidal 
ategories by means of surgery rules on string

diagrams ([3℄). Se
ond, to in
orporate negation operations, we follow Peir
e

and introdu
e so-
alled \sep lines": simple 
losed 
urves whi
h surround subdi-

agrams of string diagrams (and regarded as negating these subdiagrams when

viewed as subexpressions). The 
omplete 
olle
tion of deformations and surgery

rules on diagrams is the geometri
 
orrelate of the rules of inferen
e in the �rst-

order relational 
al
ulus, and may be viewed as a modern formulation of Peir
e's

system Beta.

4 The geometry of positive formulas

In this se
tion, we begin by introdu
ing a variant of the string diagram 
al
ulus

of [10℄ for symmetri
 monoidal 
ategories, and a notion of surgery on diagrams

needed to 
onstru
t presentations of (symmetri
) monoidal 
ategories. After

presenting the 
ategories �(S) and �(S), we 
onstru
t a monoidal 2-
ategory

Rel

+

(L) whi
h gives the desired relational 
al
ulus for positive �rst-order for-

mulas. Throughout this se
tion we assume familiarity with the terminology and

results of [10℄, in
luding the notions of topologi
al graph with boundary and of

tensor s
heme.

4.1 Permutative diagrams

De�nition 6 A permutative diagram 
onsists of a topologi
al graph G with

boundary �G � G

0

(i.e., a subset of G

0


onsisting of nodes with valen
y 1)

together with a 
ontinuous map G

�

! [a

0

; b

0

℄� [a

1

; b

1

℄ su
h that

(1) �

�1

(fa

0

; b

0

g � [a

1

; b

1

℄) is empty;

(2) �

�1

([a

0

; b

0

℄� fa

1

; b

1

g) = �G;

(3) The 
omposite G�G

0

,! G

�

! [a

0

; b

0

℄� [a

1

; b

1

℄

�

2

! [a

1

; b

1

℄, when restri
ted

to ea
h 
onne
ted 
omponent of G�G

0

, is a smooth embedding;

(4) �(x) = �(y) ) x = y holds for x 2 �G and for all but �nitely many

x 2 G.

These axioms have the following 
onsequen
es: by (1) and (2), for ea
h x 2

G

0

� �G, �(x) = (a; b) is interior to the re
tangle [a

0

; b

0

℄ � [a

1

; b

1

℄. Let I =

G

0

� �G be the set of \interior" nodes. If K is a 
onne
ted 
omponent of

G � I , then by (3), K is a 
losed, open, or half-open line segment. If x 2 I

is an endpoint of (the 
losure of) K, then �(K) lies entirely above or entirely

below �(x), again by (3). We refer to the 
onditions of the pre
eding senten
e

by saying K lies above/below x (2 K). In that 
ase, if �(x) = (a; b), then for

9



all suÆ
iently small � > 0, the line y = b � � interse
ts �(K) exa
tly on
e.

Finally, by (4), if we 
onsider the set of 
omponents K

i

su
h that x 2 �K

i

and K

i

lies above/below x, then there exists � > 0 so small that for 0 < Æ < �,

�(K

i

)\�(K

j

)\([a

0

; b

0

℄�fb�Æg) is empty whenever i 6= j. Thus, for x 2 I there

is a left-to-right order �

x

=�

x

on those 
omponentsK

i

lying above/below x, given

by the order of the horizontal (abs
issa) 
oordinates of �(K

i

)\([a

0

; b

0

℄�fb�Æg).

De�nition 7 Let T = (A;S;A

h�;�i

! S

�

� S

�

) be a tensor s
heme; let D =

(G; �G; �) be a permutative diagram, with I = G

0

� �G. A labeling of D in T


onsists of a pair of fun
tions �

1

: I ! A, �

2

: �

0

(G � I) ! S su
h that for

ea
h x 2 I, ��

1

x = h�

2

K

1

; : : : ; �

2

K

m

i, where hK

1

; : : : ;K

m

i is the order �

x

,

and ��

1

x = h�

2

L

1

; : : : ; �

2

L

n

i, where hL

1

; : : : ; L

n

i is the order �

x

.

Ea
h T -labeled permutative diagram is des
ribed by a quadruple (�; �

1

; �

2

; �),

where � : G! R

2

is a 
ontinuous map, �

1

: I ! A is a node-labeling fun
tion,

�

2

: �

0

(G � I) ! S is a string-labeling fun
tion, and � is a poset stru
ture on

the set of 
onne
ted 
omponents of G � I (given by taking the disjoint sum of

the orders �

x

, �

x

, where x ranges over I). Thus, given a tensor s
heme T and a

graph with boundary (G; �G), the set �(G; �G;T ) of all T -labeled permutative

diagrams over (G; �G) may be topologized as a subspa
e of

Map(G;R

2

)�A

I

� S

�

0

(G�I)

� Pos(�

0

(G� I));

where Map(G;R

2

), the set of 
ontinuous maps � : G ! R

2

, is given the


ompa
t-open topology, whereas A

I

, the set of fun
tions I ! A, S

�

0

(G�I)

,

and Pos(�

0

(G � I)), the set of poset stru
tures on �

0

(G � I), are given the

dis
rete topologies.

De�nition 8 A deformation of T -labeled permutative diagrams is a path 
 :

I ! �(G; �G;T ).

A deformation is thus a homotopy through T -labeled diagrams, where the

node labelings and string labelings remain 
onstant, as do the linear orders on

the sour
e and target strings of nodes x 2 I . The left-right orders on points in


(t)(�G)\ ([a

0

; b

0

℄�fb

1

g) and in 
(t)(�G)\ ([a

0

; b

0

℄�fa

1

g) remain 
onstant as

well by 
ondition (4). De�ning T -labeled diagrams to be deformation equivalent

if there is a path between them in �(G; �G;T ), ea
h deformation-equivalen
e


lass has a well-de�ned domain and 
odomain in S

�

, de�ned as the ordered lists

of labels of strings whi
h abut these respe
tive ordered lists of points.

Proposition 1 (
f. [10℄) Deformation-equivalen
e 
lasses of T -labeled permu-

tative diagrams are the morphisms of a symmetri
 stri
t monoidal 
ategory,

naturally equivalent (as a symmetri
 monoidal 
ategory) to the free symmetri


monoidal 
ategory on the tensor s
heme T .

To exhibit the symmetri
 monoidal stru
ture, we need the following de�ni-

tion:
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De�nition 9 Let � : G ! [a

0

; b

0

℄ � [a

1

; b

1

℄ be a permutative diagram. A sub-

diagram 
onsists of the pullba
k of � along a subre
tangle [


0

; d

0

℄ � [


1

; d

1

℄ ,!

[a

0

; b

0

℄ � [a

1

; b

1

℄ su
h that �

�1

(f


0

; d

0

g � [


1

; d

1

℄) is empty and �

�1

([a

0

; b

0

℄ �

f


1

; d

1

g) � fx 2 G � I j �(x) = �(y) ) x = yg. The pullba
k or restri
tion is

denoted res �.

It is straightforward that H = �

�1

([


0

; d

0

℄� [


1

; d

1

℄), with �H = �

�1

([


0

; d

0

℄�

f


1

; d

1

g), is a topologi
al graph with boundary, and that � : (H; �H)! [


0

; d

0

℄�

[


1

; d

1

℄ is a permutative diagram. Indeed, the restri
tion of � to ea
h of the re
t-

angular se
tors shown de�nes a permutative diagram in an analogous manner:

b1

d0c0

a1

d1

c1

a0 b0

.

If [


0

; d

0

℄ = [a

0

; b

0

℄ and 


1

= a

1

or d

1

= b

1

, then there are two verti
ally

juxtaposed permutative subdiagrams of G, and we regard G as their verti
al


omposite (i.e., morphism 
omposition). Similarly, if [


1

; d

1

℄ = [a

1

; b

1

℄ and




0

= a

0

or d

0

= b

0

, then there are two horizontally juxtaposed permutative

subdiagrams, and G is their horizontal 
omposite (i.e., tensor produ
t). Given

two obje
ts u = hs

1

; : : : ; s

m

i and v = ht

1

; : : : ; t

n

i, the symmetry isomorphism

u 
 v �! v 
 u is represented by a diagram in whi
h ea
h string labeled s

i


rosses ea
h string labeled t

j

. Up to deformation, any permutative diagram G

is 
omposed of diagrams of the following types:





 .   .   .

 .   .   .

,a

where the �rst diagram is a single S-labeled string, the se
ond is a 
rossing

of two (S-labeled) strings, 
orresponding to a symmetry isomorphism, and the

third 
orresponds to an element a 2 A of the tensor s
heme (with strings labeled

appropriately by letters of �(a), �(a)).

In the sequel, we will use a s
hemati
 to indi
ate subdiagrams and their

domains and 
odomains:
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f

u

v

indi
ates a subdiagram f with domain u and 
odomain v; more pre
isely, u; v 2

S

�

are word labels hu

1

; : : : ; u

m

i and hv

1

; : : : ; v

n

i, where u

i

labels the ith string

from the left along the top edge of the subdiagram, et
. As an example of this

usage, our notion of deformation equivalen
e entails equalities of the following

type within a subdiagram:

s t

u v

s t

u v

= ,f g fg

where, for example, the 
rossing of the \strings" labeled s and t is a s
hemati


shorthand for a multiple string 
rossing of multipli
ity mn, if s = hs

1

; : : : ; s

m

i

and t = ht

1

; : : : ; t

n

i. The equality, of 
ourse, is the geometri
 re
e
tion of the

naturality of the symmetry isomorphism.

4.2 Surgery

Our theory also makes use of 
ertain \surgeries" on permutative diagrams.

De�nition 10 Let � : G ! [a

0

; b

0

℄ � [a

1

; b

1

℄ be a permutative diagram, with

subdiagram res � : H ! [


0

; d

0

℄� [


1

; d

1

℄. Suppose  : H

0

! [


0

; d

0

℄� [


1

; d

1

℄ is

a permutative diagram su
h that res � and  have the same C

1

germs on their

boundaries: restri
t to the same fun
tion on some neighborhood of [


0

; d

0

℄ �

f


1

; d

1

g in [


0

; d

0

℄ � [


1

; d

1

℄. De�ne a new permutative diagram �[H=H

0

℄, with

underlying graph G

0

de�ned by (G�H) [H

0

, �G

0

= �G, and �[H=H

0

℄ : G

0

!

[a

0

; b

0

℄� [a

1

; b

1

℄ de�ned by

�[H=H

0

℄(x) =

�

�(x) if x 2 G�H ;

 (x) if x 2 H

0

:

Abusing language, we 
all this the surgi
al repla
ement of H by H

0

. This 
on-

stru
tion permits 
onsideration of equivalen
e relations on symmetri
 monoidal


ategories freely generated from a tensor s
heme.

More formally, if T = (A;S;A ! S

�

� S

�

) is a tensor s
heme, then a T -

surgery rule is a pair of (deformation-equivalen
e 
lasses of) T -labeled diagrams

of the form (� : H ! R

2

;  : H

0

! R

2

) whi
h have identi
al domain and

12




odomain (as words in S

�

). Given a set of T -surgery rules, de�ne an equivalen
e

relation on deformation-equivalen
e 
lasses of T -diagrams, generated by the

relation G ; G

0

, where G

0

is obtained from G by surgi
al repla
ement of one

T -labeled subdiagram � : H ! R

2

by another  : H

0

! R

2

, where (�;  ) is a

pair of representatives of a T -surgery rule.

A permutative diagram presentation of a symmetri
 monoidal 
ategory M

is de�ned to be a tensor s
heme T together with a set of T -surgery rules su
h

that the symmetri
 monoidal 
ategory of T -labeled permutative diagrams mod-

ulo deformation- and surgery-equivalen
e is isomorphi
 to M . In the sequel,

T -surgeries are also used to 
onstru
t 
ertain symmetri
 monoidal 
ategories

enri
hed in the 
ategory of posets. Namely, if hom(u; v) denotes the set of de-

formation 
lasses of T -diagrams with sour
e u and target v, then instead of


onsidering the equivalen
e relation generated by a set of T -surgeries, one may


onsider the poset stru
ture on hom(u; v) indu
ed by the re
exive transitive


losure ; on the set of T -surgeries (identifying f and g if f ; g and g ; f).

The poset stru
ture 
oin
ides with the equivalen
e relation in 
ase the set of

T -surgeries is already a symmetri
 relation on diagrams, i.e., if the inverse of

every surgery rule is a surgery rule. Thus, we will sometimes stipulate that


ertain surgery rules are invertible.

The same idea applies to progressive string diagrams for monoidal 
ategories

in the sense of Joyal-Street, where 
rossings of strings are not allowed. We now

give two examples for the monoidal 
ase.

Example 1 Let T be the tensor s
heme given by S = 1, A = fm;ug, and

A

h�;�i

! S

�

� S

�

as indi
ated in the string diagrams

m u .

Let R be the equivalen
e relation generated by the surgery moves

13






m




m

m

u


 m

m

m

u

;

.

The monoidal 
ategory, generated by deformation 
lasses of planar progressive

diagrams modulo these surgery moves, is isomorphi
 to the simpli
al 
ategory

� (of �nite ordinals and weakly in
reasing maps, in
luding the empty ordinal).

Example 2 Let T be the tensor s
heme given by S = 1, A = fi; Æ

0

; Æ

1

g, and

A

h�;�i

! S

�

� S

�

as indi
ated in the string diagrams

.i d1d0

Let R be the equivalen
e relation generated by the surgery moves

.
i

d0

i

d1

The monoidal 
ategory with presentation hT;Ri is pre
isely the 
ubi
al 
ategory

2.

4.3 Presentation of �(S) and �(S)

Next, returning to the symmetri
 monoidal 
ase, we present the 
ategory �(S).

�(S) is generated by deformation 
lasses of permutative diagrams on a tensor

14



s
heme (A

�

; S; A

�

h�;�i

! S

�

� S

�

), with A

�

= fÆ

s

j s 2 Sg [ f�

s

j s 2 Sg, and

ds es

s s

ss

to indi
ate the sour
e-target fun
tion h�; �i : A

�

! S

�

� S

�

.

To des
ribe the surgery moves, whi
h are based partly on naturality require-

ments for diagonal maps Æ and proje
tion maps �, we �rst need to des
ribe

derived arrows Æ

w

and �

w

for w 2 S

�

. If u = hs

1

; : : : ; s

n

i and if v = us, we

de�ne Æ

v

indu
tively as

su

,u ssu
du ds

where it is understood that the sour
e of Æ

u


onsists of n strings with the

label sequen
e hs

1

; : : : ; s

n

i and the target of 2n strings with the label sequen
e

s

1

: : : s

n

s

1

: : : s

n

. Similarly, �

v

is de�ned indu
tively as

s

eseu

u

.

The s
hema for the surgery rules is as follows: given a subdiagram f , we have
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f
u

v
e e

u

;

;d

f
u

v
d

v v

ff

vv

u

u u

(S1)

whi
h 
orrespond to naturality of Æ and �, and we also have

u u

.d

e e

du

u

u

u

(S1)

whi
h 
orrespond to triangular equations for the adjoint pair � a �, where � is

the diagonal fun
tor �(S)! �(S)��(S) and � is the produ
t �(S)��(S)!

�(S). Displaying this set of surgery rules by (S1), we have the following theorem.

Theorem 1 The symmetri
 monoidal 
ategory generated by the tensor s
heme

A = fÆ

s

j s 2 Sg [ f�

s

j s 2 Sg, modulo the surgery rules (S1), is isomorphi
 to

�(S).

The opposite 
ategory �(S) is obtained by inverting all diagrams of �(S). In

pra
ti
e, we drop the labels Æ and � sin
e no ambiguity will result in our dia-

grams. Peir
e 
alls a 
on�guration of strings whi
h meet at a Æ a \ligature,"

and a string ending at an � a \loose end"; we will use this terminology in the

sequel.

4.4 Pullba
ks and quanti�ers

As we remarked earlier, both �(S) and �(S) a
t (
ontravariantly) on the set

of formulas Form(L) of the free theory FL of a language L = (S; S

�

�

! Set).

As also remarked, we follow Peir
e and view all 
onstru
ts of the theory (the

elements of Form(L), and also of �(S) and �(S)) as formal relations whi
h
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an be 
omposed horizontally (the relational or horizontal produ
t R
 S) and

verti
ally (the relational 
omposite RS). The a
tions by �(S) and �(S), by

pulling ba
k and existentially quantifying, emerge as operations derived from

horizontal and verti
al 
ompositions, whi
h are viewed here and by Peir
e as

more basi
.

Thus, we will present a monoidal 2-
ategoryRel

+

(L), taking the generating

tensor s
heme to be A

�

[ A

�

[ P

h�;�i

! S

�

� S

�

, where A

�

! S

�

� S

�

and

A

�

! S

�

� S

�

are the tensor s
hemes used to present �(S) and �(S), where

P is the set of predi
ates of L, and where h�; �i(p) = (type of p, 1), with 1 the

unit of S

�

. Those (deformation 
lasses of) permutative diagrams generated by

this tensor s
heme and with target 1 (i.e., the empty target) will be referred

to as positive geometri
 formulas. The 
olle
tion of diagrams with given sour
e

and target will be partially ordered, via a 
olle
tion of surgery rules des
ribed

under (S2) and (S3).

In addition to the surgery rules used to present �(S) and �(S), we need

surgery rules (S2) to re
e
t the adjoint relationship between pullba
k operations

f

�

and existential quanti�ers 9

f

. Later in this paper, we will see that these rules

are also derivable from Peir
e's so-
alled Alpha rules.

If p is a positive geometri
 formula of sour
e type v and if f : u ! v is

a morphism of �(S) viewed as a permutative diagram, we de�ne f

�

p as the

diagram




f
u

v
p .

If q is of sour
e type u and f is as before, then f

op

: v ! u in �(S) is obtained

by inverting the diagram for f , and we de�ne 9

f

q as




f  
op

v

u
q

.

The unit and 
ounit of the adjun
tion 9

f

a f

�

are expressed by surgery rules

(noninvertible in general):
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u

.

;

(S2)

v



v

u

f

v

f  
op



v

u

f  
op

f

u

A basi
 example 
on
erns existential quanti�
ation via the taking of dire
t im-

ages along a proje
tion map (i.e., � : s ! 1 in �(S)): the �rst move, for the

unit 1 ! f

�

9

f

, is already in Peir
e's work and is 
alled \breaking in positive

regions":






.; 



s

s

s

s

This is the 
ase where f = �

s

: s! e.

Remark 3 These moves denote the unit and 
ounit of 9

f

a f

�

where f =

�

s

: s ! 1. Noti
e that we have dropped the label � (as the label is super
u-

ous). Both the unit and 
ounit moves of the pre
eding example are instan
es of

Peir
e's weakening rule, given in x4.2.

Lemma 1




.


s=

s

s

ss

Proof: The equality means that ea
h diagram 
an be derived from the other

through surgeries. To get from the right to the left, we apply a unit
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,





where f = Æ

s

. To get from left to right, apply the sequen
e





 .=




where the �rst step is a lo
al breaking, the se
ond step indi
ates a de
omposition

into subdiagrams, and the third applies surgery rules for �(S) and �(S) to these

subdiagrams. q. e. d.

Remark 4 The equality of Lemma 1 may be viewed as an instan
e of Peir
e's

iteration rule, given in x4.2.

The next two lemmas follow from Theorem 1: we isolate them for future


onvenien
e.

Lemma 2

= .

Cf. [5℄: ea
h obje
t u has a 
omonoid stru
ture. Lemma 3 asserts 
o
ommuta-

tivity.
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Lemma 3

= .

4.5 Be
k-Chevalley rules

Next, we introdu
e surgery rules (S3) whi
h 
orrespond to the Be
k-Chevalley


ondition. These 
on
ern pullba
ks in �(S) or pushouts in �(S) = Fin

R

S;

to visualize these pushouts geometri
ally, and ultimately to get an eÆ
ient set

of rules whi
h are ne
essary and suÆ
ient for Be
k-Chevalley, �rst we observe

that a (permutative) diagram for a morphism in Fin

R

S has two ingredients:

(1) A diagram for the underlying map in Fin (the 
ase S = 1);

(2) A labeling of ea
h 
onne
ted 
omponent of a Fin-diagram by an element

of S.

Condition (2) is 
lear: ea
h string of a generating diagram Æ

op

s

or �

op

s

in the

tensor s
heme for �(S) is labeled by the same element s 2 S, and 
onne
ted


omponents of larger diagrams preserve this feature. The feature means essen-

tially that the arguments below, written in the 
ase for Fin, apply generally

to Fin

R

S. For example, sin
e Fin admits all pushouts, our next observation

yields the following result:

Proposition 2 �(S) (�(S)) admits all �nite pushouts (pullba
ks).

Se
ond, we observe that a pushout P , as in

A

f //

g

��

B

k

��
C

h

//
P

;

may be visualized as the set of 
onne
ted 
omponents of a permutative diagram

obtained by gluing together the diagrams for A

f

! B and A

g

! C along the

set of nodes 
orresponding to A. Topologi
ally it makes no di�eren
e whether

these diagrams read \top-down" or \bottom-up" (we get the same 
onne
ted


omponents regardless); we may 
hoose, for example,
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f

A

B

g

C

This is the diagram used for the 
omposite operation g

�

9

f

, and we 
al
ulate

the set of 
onne
ted 
omponents of the 
omposite diagram to get the pushout.

Example 3

A

g

f

C

B

1

1

1 2

2

2 3

has one 
onne
ted 
omponent, so P = 1, and the remaining morphisms h, k of

the pushout in Fin are given as:

P

h

k

C

B

1

1

1 2

2

.

The se
ond diagram represents the 
omposite 9

h

k

�

, where h and k are diagonal

maps in �(S). Sin
e g

�

9

f

= 9

h

k

�

by Be
k-Chevalley, we are obliged to in
lude

a surgery rule whi
h permits surgi
al repla
ement of ea
h of the two pre
eding

diagrams by the other.

To get a 
omplete set of surgery rules whi
h 
apture the Be
k-Chevalley


ondition, we study geometri
 representations of pushouts in Fin along lines

similar to those of Example 3. We observe that epi-mono fa
torization in Fin

indu
es epi-mono fa
torization in Fin

R

S, so that it suÆ
es to analyze the

possibilities in Fin for the following three 
ases:

� pushing out a mono along a mono;
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� pushing out a mono along an epi;

� pushing out an epi along an epi.

The �rst two possibilities are 
ases where Be
k-Chevalley holds automati
ally:

any moni
 in Fin de
omposes into a sequen
e of moni
s of type n! n+1; thus,

if g : n ! n + 1 is a moni
 and n

f

! m is any map in Fin, then (without loss

of generality) the gluing of diagrams of f and g is represented by the left-hand

diagram below:

,

f

n

n + 1

m

n

g

f

m

f
n

n + 1

m

m + 1

h

k
m

and now, in the se
ond diagram, ea
h of the 
onne
ted 
omponents of f (one for

ea
h element in m) 
rosses the dotted line exa
tly on
e, so that the pushout P

has 
ardinalitym+1, and the Be
k-Chevalley equality g

�

9

f

= 9

k

h

�

, for g moni
,

follows from instan
es of deformation equivalen
e for permutative diagrams as

displayed in the equation.

The last possibility is slightly more interesting, but simple to analyze nonethe-

less. Ea
h epi de
omposes into a sequen
e of epis of type n+1! n. In pushing

out one epi of this type along another, one 
an arrange the diagrams (by ma-

nipulating symmetry isomorphisms and Lemma 3) until one has a subdiagram,

involving a pushout of two instan
es of the epi 2! 1 (possibly \expanded" by

appli
ations of m� { or {�m), �tting into one of the following 
ases:
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;

.

;(1)

(3)

(2) 


or

or

The Be
k-Chevalley equality pertaining to 
ase (1) follows from Lemma 1. For


ase (3), it follows from a deformation resulting in, respe
tively,

.or

This leaves 
ase (2), dis
ussed in the prior example. Summarizing, the Be
k-

Chevalley 
ondition is equivalent to 
ertain deformations plus (invertible) surgery

moves
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;

(S3)

.

Remark 5 An interesting alternative to the string diagram representations of

Peir
e's system Beta, as given here, involves 
onsideration of \surfa
e diagrams"

(see [12, 1℄). In this formulation, instead of representing morphisms in �(S) and

�(S) by planar immersions of one-dimensional topologi
al graphs, one thi
kens

the graphs out to two-dimensional surfa
es with boundary (by embedding the

graphs in R

3

and taking their normal bundles; for example, the graph of Æ

is thi
kened out to a \pair of pants"). These surfa
e diagrams give oriented


obordisms between sets of 
ir
les, and the surgery rules (S1) together with

the Be
k-Chevalley rules (S3) are 
aptured pre
isely by 
obordism equivalen
e.

Thus, among the surgery rules dis
ussed thus far, only the rules (S2) for adjun
-

tions 9

f

a f

�


hange the 
obordism type of su
h surfa
e diagrams. Thus, if C

2

denotes the symmetri
 monoidal 
ategory of two-dimensional 
obordisms, then

the symmetri
 monoidal 
ategory generated by �(S) and �(S) (as symmetri


monoidal sub
ategories), and subje
t to the Be
k-Chevalley equations, may be

presented as a wreath produ
t C

2

R

S, whose morphisms are two-dimensional


obordisms with 
onne
ted 
omponents labeled in S. In the sequel, we refer to

this fa
t by 
alling the rules of (S1) and (S3) 
obordism rules.

5 Rules for �rst-order diagrams

In this se
tion, we 
omplete our formulation of Peir
e's system Beta, �rst by

expanding our 
lass of diagrams so as to in
lude \lines of negation," and 
orre-

spondingly expanding our notion of deformation between su
h diagrams. Se
-

ond, after giving rules of interpretation of these diagrams, we adjoin surgery

rules to re
e
t Boolean algebra stru
ture.

5.1 Negation

To in
orporate negation, we essentially follow Peir
e and introdu
e the following

de�nition:
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De�nition 11 A sep line (on a Rel

+

(L)-diagram with underlying graph G

�

!

[a

0

; b

0

℄�[a

1

; b

1

℄) is the boundary of a re
tangle [


0

; d

0

℄�[


1

; d

1

℄ � [a

0

; b

0

℄�[a

1

; b

1

℄

su
h that

(1) �

�1

(f


0

; d

0

g � [


1

; d

1

℄) is empty;

(2) �

�1

([


0

; d

0

℄� f


1

g) 
ontains no node labeled by an element of A

�(S)

[ P ,

and �

�1

([


0

; d

0

℄�fd

1

g) 
ontains no node labeled by an element of A

�(S)

[

P .

A �rst-order diagram 
onsists of a Rel

+

(L)-diagram together with a �nite 
ol-

le
tion of noninterse
ting sep lines. A �rst-order form (or form for short) is a

�rst-order diagram with empty target. A �rst-order subdiagram of a �rst-order

diagram D 
onsists of a subdiagram � : H ! [


0

; d

0

℄� [


1

; d

1

℄ of the underlying

Rel

+

(L)-diagram of D (su
h that [


0

; d

0

℄ � [


1

; d

1

℄, relative to any given sep

line of D, 
ontains the sep line or is exterior to it), together with all of the sep

lines 
ontained in [


0

; d

0

℄� [


1

; d

1

℄. A subform is su
h a subdiagram with empty

target.

The intention is that a sep line negates the region it en
loses. Keeping

the notation used in the pre
eding de�nition, the re
tangle [


0

+ Æ; d

0

� Æ℄ �

[


1

+ Æ; d

1

� Æ℄ de�nes a subdiagram for all suÆ
iently small Æ, and under some

model (S; S

�

�

! Set) ! (Set

0

;Set

�

0

�

! Set), the subdiagram is interpretable

(independently of suÆ
iently small Æ) as a relation R ,! A � B on sets A and

B, where A is the interpretation of the sour
e of the subdiagram, and B of its

target. The semanti
s of pla
ing a sep line around su
h a region, as in the prior

de�nition, is to take the 
omplement of R in A�B. \Sepping" 
an be iterated,

where one sep line is interior to another; if there are no nodes between two su
h

sep lines, then the appropriate semanti
s of multiple seppings is the iterating of

negations or 
omplementations.

A further intention is that there is a spa
e of �rst-order diagrams on a graph

G labeled in a tensor s
heme T (topologized as a subspa
e

�(G; �G;T ) ,! Map(G;R

2

)�A

I

� S

�

0

(G�I)

�Pos(�

0

(G� I))� exp(R

4

);

where the last fa
tor denotes the free 
ommutative topologi
al monoid on the

spa
e of quadruples (


0

; d

0

; 


1

; d

1

) representing sep lines), and that the logi
al

interpretation of a �rst-order diagram is invariant under deformation (i.e., along

a path in the spa
e of �rst-order diagrams).

De�nition 12 A deformation of T -labeled �rst-order diagrams is a path 
 :

I ! �(G; �G;T ).

In pra
ti
e, this means that the top of the sep line in a diagram undergoing

deformation is allowed to pass ba
k and forth over nodes labeled as Æ, � in A

�(S)

,

and over \
rossing points" (where � : G! R

2

is not inje
tive). It 
orresponds

to the fa
t that pullba
k operations f

�

, for f a morphism in �(S), 
ommute

with negation :, as required in the de�nition of (
ategori
al predi
ate) theory
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(where f

�

= T (f) is a morphism of Boolean algebras). Sin
e the 
ategory of

relations is self-dual, the bottoms of sep lines may pass ba
k and forth a
ross

nodes labeled in A

�(S)

and over 
rossing points.

For the reader's 
onvenien
e, we present a few examples of �rst-order dia-

grams, deformations, and their interpretations as formulas in �rst-order logi
.

In these examples, solid re
tangles denote sep lines and a dotted line represents

the boundary of a diagram or subdiagram, p and q are predi
ates or formulas

labeling nodes, and the strings abutting these nodes have been labeled, not by

the appropriate sorts but by variable terms of those sorts. (It is hoped that this

last 
onvention will assist the reader in making the translation into the stan-

dard variable-based notation whi
h a

ompanies these diagrams, even though

our approa
h es
hews variables.)

In interpreting subdiagrams, distin
t variables are assigned to ea
h sort of

the sour
e and ea
h sort of the target, and are then assigned to ea
h string

whose 
losure is interior to the subdiagram; two distin
t variables are expli
itly

asserted to be equal if they label the same strings, or strings whi
h meet at a

ligature. Horizontal juxtapositions of subdiagrams are interpreted as 
onjun
-

tions. In interpreting verti
al 
omposites, variables whi
h label strings whi
h

meet at a boundary between two subdiagrams are identi�ed (i.e., should be

literally the same).

Example 4

.

x

y

[x = y]

x

y

[x = y]5

In the �rst diagram, the sour
e variable x and the target variable y are asserted

to be equal; in the se
ond diagram, the equality is negated by the sep line.

Example 5

x y

z

9z[z = x ^ z = y℄.
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As in Example 4, this is also an equality predi
ate (with two free variables x, y).

However, Example 4 should be interpreted as an identity arrow X ! X in the

monoidal 
ategory of relations; Example 5, as an arrow of the form 1! X �X

mated with the identity X ! X .

In the next example, a deformation equivalen
e between diagrams is inter-

preted as an equality between formulas.

Example 6

x y x y

=p p
x xy

:(p(x) ^ [y = y℄) = :p(x) ^ [y = y℄.

When verti
ally 
omposing two subdiagrams, variables are identi�ed a
ross

boundaries (e.g., the instan
es of x or y in the example).

Example 7

x y

z

pp

9x9y:(9z[z = x ^ z = y℄) ^ p(x) ^ p(y).

This asserts that there exist two distin
t elements x, y whi
h satisfy p.

Example 8

x y

pp

z

x y
z

=

pp
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9z9x9y(z = x ^ z = y) ^ p(x) ^ q(y) ^ :[z = z℄ =

(9x9y9z[z = x ^ z = y℄ ^ p(x) ^ q(y)) ^ ?;

where ? denotes \false." Observe that the �rst of these expressions is self-


ontradi
tory.

Example 9

=

x y
pp

x y
pp

z z

9x9y9z:[z = x ^ z = y℄ ^ p(x) ^ p(y) =

9x9y9u9v9z[z = u ^ z = v℄ ^ :[u = x ^ v = y℄ ^ p(x) ^ p(y):

This says that there exist two elements of a given type, and at least one of them

satis�es p.

We extend the surgery rules (S1), (S2), and (S3) to the 
lass of �rst-order

diagrams as follows. First, su
h a surgery rule 
an only be applied to a subdia-

gram whi
h, relative to any given sep line 
, is interior or exterior to 
. We say

that su
h a subdiagram is oddly en
losed if it is in the open interior of an odd

number of sep lines, and evenly en
losed otherwise. If a subdiagram is evenly

en
losed, then (S1), (S2), and (S3) may be applied to it; if it is oddly en
losed,

then the inverse of (S1), (S2), and (S3) may be applied to it. Sin
e (S1) and

(S3) are already invertible by de�nition, this 
onvention has an e�e
t only on

the unit and 
ounit rules (S2). However, as mentioned earlier, (S2) is derivable

from the rules of \system Alpha," given below. If we drop (S2) for now and

retrieve it later from Alpha, we may say that the sep-parity 
onvention has no

e�e
t on the rules (S1), (S3) (i.e., \rules of 
obordism"; 
f. remark 5) given thus

far.

Example 10 The following moves are valid inside a single sep line:






;


 


u

u

u .
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where in the graph at the beginning of the se
ond move both strings are labeled

by the same sort. Peir
e would view this example as an instan
e of Alpha

weakening: to oddly en
losed regions, an expression may be added (just as

an inferen
e may be weakened by adding an extra hypothesis); from evenly

en
losed regions, an expression may be deleted (just as an inferen
e is weakened

by deleting a 
on
lusion). For instan
e, in the se
ond move above, one adds an

assertion whi
h equates two variables (
f. Example 4).

5.2 Boolean algebras and system Alpha

We formulate the remainder of Peir
e's rules (based on his system Alpha [4℄) as

follows.

(1) Given a �rst-order diagram G and a �rst-order subdiagram p whose un-

derlying Rel

+

(L)-diagram is a subdiagram of a Rel

+

(L)-subdiagram of G

of the form




p

v

u

,

where the \empty" subdiagram D 
onsists only of the loose ends la-

beled u and v, a �rst-order diagram deformation-equivalent to p may be

(smoothly) atta
hed to the u-string and v-string inside D, provided that

D is en
losed by any sep line whi
h en
loses p:




p

v

u




p

v

u

p .

This surgery rule, 
alled Alpha iteration, is invertible.

(2) The following dire
ted move may be applied whenever a �rst-order subdi-

agram p is evenly en
losed:
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v

.

u
u

v

p

This surgery rule is reversed if p is oddly en
losed. This is the Alpha

weakening rule.

(3) Two nested sep lines may be inserted or removed, provided that no nodes

lie in the region between them, e.g.,




.



pp

This invertible rule is 
alled double sep elimination/introdu
tion.

As shown in [4℄, the Alpha rules may be exploited to put a Boolean algebra

stru
ture on the set of (deformation 
lasses of) �rst-order diagrams with given

sour
e and target. Given diagrams f; g : u! v, their 
onjun
tion is




f

v

u

,g

and the negation of f is given by surrounding the diagram f by a sep line.

The a
tual 
ase 
onsidered in [4℄ is, in the 
ontext of this paper, the 
ase

where one restri
ts to diagrams of the form T ! 1 whi
h have no subdia-

grams belonging to �(S) (
orresponding to quanti�er-free formulas); we 
all

these \propositional forms." This restri
tion puts some obvious restri
tions on

whi
h surgeries are allowed (e.g., (S2) must be removed); the remaining set of

surgeries we 
all propositional surgeries. Then deformation 
lasses of proposi-

tional forms, modulo propositional surgeries, is essentially equivalent to a typed

form of propositional logi
. That is to say: if we de�ne a propositional theory
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as in de�nition 3 but drop 
onditions (1) and (2) in that de�nition (i.e., if we

drop quanti�
ation), and if we de�ne a translation of propositional theories as

in de�nition 4 but drop the quanti�
ation-preservation 
ondition, then we have

the following result:

Theorem 2 (see [4℄) Deformation 
lasses of propositional forms on a predi
ate

language L, modulo propositional surgery, is isomorphi
 (as a �(S)-�bration)

to the free propositional theory on L.

It is straightforward to extend the methods of [4℄ to show that deformation


lasses of diagrams in hom(u; v), modulo all of the surgery rules, form a Boolean

algebra. As an example, we present \modus ponens" (f ) g) ^ f ; g for

f; g 2 hom(u; v):


 


g




ff g f f g fY YLemma 3

deformation
Lemma 2

deiteration

deformation

weakening

g

g

double sep
elimination

Y

Y

cobordism

We also present the \dual" of modus ponens, f ; (g ) (f ^ g)):
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f f







g fY YY cobordism weakening
double sep

introduction

deformation
f

g fg




deformation

Y

Yfgg

iteration

Lemma 2

Similarly, it is easy to show that equivalen
e 
lasses of diagrams u! v form

a meet-semilatti
e (using iteration and weakening), a latti
e (using the sep-

parity 
onvention and double-sep elimination/introdu
tion), a Heyting algebra

(using modus ponens and its dual above), and �nally a Boolean algebra (Heyting

algebra plus double-sep elimination/introdu
tion).

6 Soundness and 
ompleteness of Beta

In this se
tion, we show that the �rst-order relational 
al
ulus (and inferen
es

therein) is expressed pre
isely by �rst-order diagrams and deformations and

surgery rules thereon.

6.1 The monoidal 2-
ategory Rel(C; T )

We begin by re
alling the relationship between �rst-order logi
 and �rst-order re-

lational 
al
ulus, whereby ea
h theory (C; T ) gives rise to a monoidal 2-
ategory

Rel(C; T ) of two-sided relations. As we shall see, ea
h theory (C; T ) 
an be re-

trieved in turn from Rel(C; T ).

For the theory of sets, Rel(Set;Set

op

P

! Bool) is 
onstru
ted as follows.

Obje
ts of Rel(Set; P ) are sets A;B; : : :, and hom(A;B) is de�ned as P (A�B)

(viewed as the set of relations from A to B). The monoidal produ
t

hom(A;B)� hom(C;D)




�! hom(A� C;B �D)

is de�ned as a 
omposite

P (A�B)� P (C �D)! P (A�B � C �D)

�

! P (A� C �B �D);
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where the �rst map sends a pair of subsets to their produ
t, and the se
ond one

arises from middle-four inter
hange. Composition of morphisms (i.e., relational

produ
t)

hom(A;B)� hom(B;C) ! hom(A;C)

(R(a; b); S(b; 
)) 7! 9

b

R(a; b) ^ S(b; 
)

may be de�ned as a 
omposite

P (A�B)� P (B � C)




! P (A�B

2

� C)

(1�Æ

B

�1)

�

! P (A�B � C)

9

b

! P (A� C)

(R(a; b); S(b

0

; 
)) 7! R(a; b) ^ S(b; 
) 7! 9

b

R(a; b) ^ S(b; 
):

The idea is to generalize this 
onstru
tion for the theory of sets to any theory

(C; T ), to obtain a formal 
al
ulus of relations Rel(C; T ).

Before establishing the monoidal 
ategory axioms on Rel(C; T ), we �rst gen-

eralize a few well-known results whi
h 
on
ern the 
ovariant power set fun
tor

P : Set! Set.

Given a theory (C; T ), let 9 : C ! Bool denote the 
ovariant fun
tor de�ned

on obje
ts by 9A = TA and on morphisms f : A! B by 9f = 9

f

: TA! TB.

Let M : C ! Pos be the 
omposite

C

9

! Bool

j j

! Pos;

where j j is the underlying poset fun
tor. We de�ne stru
ture maps � : MX �

MY ! M(X � Y ) and � : 1 ! M1; � is the map from a singleton 1 whi
h

names the element \true": the maximal element in the Boolean algebra T1.

The map � is given by a 
omposite

jTX j � jTY j

hjT�

X

j;jT�

Y

ji

�! jT (X � Y )j � jT (X � Y j

^

�! jT (X � Y )j:

Lemma 4 The map � is natural.

Proof: We must show that

TX � TY

�

�

X

��

�

Y //

9

f

�9

g

��

T (X � Y )� T (X � Y )

^ //
T (X � Y )

9

f�g

��
TX

0

� TY

0

�

�

X

0

��

�

Y

0

//
T (X

0

� Y

0

)� T (X

0

� Y

0

)

^

//
T (X

0

� Y

0

)


ommutes, i.e., for A 2 TX and B 2 TY , we have

�

�

X

0

9

f

A ^ �

�

Y

0

9

g

B = 9

f�g

(�

�

X

A ^ �

�

Y

B):

To prove this, we apply Be
k-Chevalley (BC) in 
onjun
tion with \Frobenius

re
ipro
ity (Frob),"

(Frob) 9

f

(f

�

B ^ {) = B ^ 9

f

{;
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whi
h obtains by taking left adjoints on the equation f

�

(B ) {) = (f

�

B )

f

�

{).

We have

�

�

X

0

9

f

A ^ �

�

Y

0

9

g

B

BC

= 9

f�1

�

�

X

A ^ 9

1�g

�

�

Y

B

Frob

= 9

1�g

((1� g)

�

9

f�1

�

�

X

A ^ �

�

Y

B)

BC

= 9

1�g

(9

f�1

(1� g)

�

�

�

X

A ^ �

�

Y

B)

Frob

= 9

1�g

9

f�1

((1� g)

�

�

�

X

A ^ (f � 1)

�

�

�

Y

B)

fun


= 9

f�g

(�

�

X

A ^ �

�

Y

B): q: e: d:

Theorem 3 The triple (M; �; �) : C ! Pos is a lax monoidal fun
tor.

Proof: The statement is the 
onjun
tion of Lemma 4 together with the statement

that the following diagrams 
ommute:

TX � TY � TZ

�

XY

�1//

1��

Y Z

��

T (X � Y )� TZ

�

X;Y�Z

��
TX � T (Y � Z)

�

X�Y;Z

//
T (X � Y � Z);

1� TX

��1 //

�

��

T1� TX

�

��
TX

T (1�X);

M�

oo

and

TX � TY

� //

�

��

T (X � Y )

T�

��
TY � TX

�

//
T (Y �X):

The 
ommutativity of these diagrams, whi
h is left to the reader, is straight-

forward; e.g., for the �rst (se
ond, third) diagram, one 
ombines asso
iativity

(identity, symmetry, resp.) together with fun
toriality and the fa
t that maps

of the form f

�

preserve 
onjun
tion ^. q. e. d.

Lemma 5 Given f : X ! X

0

, g : Y ! Y

0

, the following diagram 
ommutes:

TX

0

� TY

0

� //

f

�

�g

�

��

T (X

0

� Y

0

)

(f�g)

�

��
TX � TY

�

//
T (X � Y ):

34



Proof: The fa
t that the diagram

TX

0

� TY

0

�

�

X

0

��

�

Y

0//

f

�

�g

�

��

T (X

0

� Y

0

)� T (X

0

� Y

0

)

^ //

(f�g)

�

�(f�g)

�

��

T (X

0

� Y

0

)

(f�g)

�

��
TX � TY

�

�

X

��

�

Y

//
T (X � Y )� T (X � Y )

^

//
T (X � Y )


ommutes is trivial: 
ommutativity of the left square follows from fun
toriality;

the right square 
ommutes be
ause (f � g)

�

is a Boolean map. q. e. d.

Now we de�ne the monoidal 2-
ategoryRel(C; T ). Obje
ts of Rel(C; T ) are

types, i.e., obje
ts of C. Morphisms A

R

! B are triples hA;B;R 2 M(A� B)i;

the hom set hom(A;B) is partially ordered by the relation � 
oming from

the Boolean algebra stru
ture on M(A � B), and instan
es R � S may be re-

garded as 2-
ells. (Observe that 2-
ell isomorphisms are equalities.) A monoidal

produ
t is de�ned on obje
ts A;B; : : : by taking 
artesian produ
ts in C. On

morphisms, the monoidal produ
t

hom(A;B) � hom(C;D)




! hom(A� C;B �D)

is de�ned as the 
omposite

M(A�B)�M(C �D)

�

!M(A�B � C �D)

�

!M(A� C �B �D);

where the se
ond map is M (or jT j) applied to a middle-four inter
hange. The

unit of 
 is the obje
t 1 2 C. Composition

hom(A;B) � hom(B;C)! hom(A;C)

is de�ned by the 
omposite

M(A�B)�M(B�C)

�

!M(A�B

2

�C)

(1�Æ

B

�1)

�

! M(A�B�C)

M(1��

B

�1)

! M(A�C);

and the unit is the equality predi
ate

1

�

!M1

�

�

!MA

MÆ

A

! M(A�A):

Lemma 6 Rel(C; T ) is a (poset-enri
hed) 
ategory.

Proof: In this, and in other proofs in this se
tion, most details are left to the

reader; we give a sket
h as follows. To save spa
e, we abbreviate M(A � B)

to AB, and in a similar way M(A

1

� : : : � A

n

) to A

1

: : : A

n

, unless n = 1

(where we write MA

1

instead). Asso
iativity of verti
al 
omposition amounts
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to 
ommutativity of a diagram of the form

AB �BC � CD

��1 //

1��

Thm 3

��

ABBC � CD

(1Æ

B

1)

�

�1//

�

Lem 5

��

ABC � CD

(1�1)�1 //

�

Lem 4

��

AC � CD

�

��
AB �BCCD

� //

1�(1Æ

C

1)

�

Lem 5

��

ABBCCD

(1Æ

B

1)

�

//

(1Æ

C

1)

�

fun


��

ABCCD

(1�1) //

(1Æ

C

1)

�

BC

��

ACCD

(1Æ

C

1)

�

��
AB �BCD

� //

1�(1�1)

Lem 4

��

ABBCCD

(1Æ

B

1)

�

//

(1�1)

BC

��

ABCD

(1�1) //

(1�1)

fun


��

ACD

(1�1)

��
AB �BD

�

//
ABBD

(1Æ

B

1)

�

//
ABD

(1�1)

//
AD:

Similarly, one of the the unit laws for verti
al 
omposition follows from

M1�AB

�

�

�1 //

�

Lem 5

''OOOOOOOOOOO
MA�AB

MÆ

A

�1//

�

Lem 4

''OOOOOOOOOOO
AA�AB

�

''NNNNNNNNNNN

1�AB

��1

88qqqqqqqqqq

�

AB

Thm 4

��<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

< 1AB

(�

AB

)

fun


��

(�1)

�

//
AAB

(1�1) //

(Æ1)

�

wwoooooooooooo
AAAB

(1Æ1)

�

BC

wwooooooooooo

AB

(Æ1) //

1

wwoooooooooooo
AAB

(1�1)

fun


ssgggggggggggggggggggggggggg

AB

: q: e: d:

Before pro
eeding further, we point out that both of the pre
eding 
ommu-

tative diagram proofs were dis
overed with the help of beta diagram moves,

whi
h were subsequently translated into 
ommutative squares. Asso
iativity,

for example, 
orresponds to the move

B

R S U R S U

C

C

B

A D A D

,

(RS)U R(SU)

whi
h may be de
omposed into a sequen
e of four moves, whi
h lo
ally have the

form:
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BC

func

func

BC

(1)

(2)

(3)

(4)

These moves are subsequently translated into the squares labeled \BC," \fun
"

in the 
ommutative diagram proof of asso
iativity.

Thus, 
ommutative diagram proofs (of this result and of others in this sub-

se
tion) may be analyzed into two distin
t 
omponents: one whi
h involves

instan
es of Theorem 3 and Lemmas 4 and 5 (and whi
h are 
onne
ted with

assertions that interpretations of 
ertain beta diagrams are independent of the

order in whi
h the diagrams are 
onstru
ted), and another involving instan
es

of fun
toriality of T and M and \BC" (whi
h are 
onne
ted with 
ertain defor-

mations and surgery rules applied to these beta diagrams).

In the spirit of the beta methodology, we therefore express proofs of 
ertain

results in this subse
tion using 
ertain beta moves whi
h are 
ertainly shorter,

and in our opinion easier to 
omprehend, than proofs involving large 
ommuta-

tive diagrams. (And in these 
ases, the translation from Beta to 
ommutative
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diagrams is straighforward enough to remove any obje
tion that this pro
edure,

prior to establishing that Beta is sound, is 
ir
ular).

The next result expresses beta surgery equivalen
es whi
h translate into

parts of the diagrams for the unit laws in the 
ourse of proving Lemma 6 (parts

labeled \fun
" and \BC").

Lemma 7

= = .

Lemma 8 The monoidal produ
t 
 of Rel(C; T ) is fun
torial with respe
t to

verti
al 
omposition in Rel(C; T ).

Proof: It suÆ
es to show that (1) A
 { and {
B are fun
torial for obje
ts

A;B; (2) the following inter
hange diagram 
ommutes:

A� C

A�S //

R
C

��

R
S

%%KK
KK

KKK
KKK

A�D

R
D

��
B � C

B
S

//
B �D:

The proof that A
 { preserves 
omposition is given as follows:

BC

func

B

R S

C

A

(A   R) (A   S)

A D

qq

B

R S

C

A A D B

R S

C

A

A   (RS)

A D

q

Lemma 7 .

The remaining details of (1) are left to the reader. The proof that the lower

triangle of (2) 
ommutes is given as follows:
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BC
func

B

R S

C

A D B

R S

A D

Lemma 7 .

BC

B

R

A DBC

S

C

C

Remaining details of (2) are left to the reader.

Finally, we observe that 
 is symmetri
 monoidal: the asso
iativity, sym-

metry, and unit 
onstraints may be de�ned as those indu
ed from 
onstraints

for (C;�), via a fun
tor C ! Rel(C; T ) given below (their naturality will be

left as an exer
ise). q. e. d.

Theorem 4 Rel(C; T ) is a 
ompa
t symmetri
 monoidal 2-
ategory.

Proof: By the pre
eding results, Rel(C; T ) is a symmetri
 monoidal 
ategory

enri
hed in the 
ategory of posets. The adjun
tion whi
h expresses 
ompa
tness,

hom(X 
 Y; Z)

�

=

hom(X; (Y 
 Z));

follows immediately from M((X � Y )� Z)

�

=

M(X � (Y � Z)). q. e. d.

Next, we show how to retrieve the theory (C; T ) from Rel(C; T ). De�ne

fun
tors C ! Rel(C; T ) and from C

op

! Rel(C; T ), both a
ting as identities

on obje
ts, and whi
h send a morphism f : A ! B to the value 1 under the


omposite given respe
tively as:

1

�

!M1

�

�

!MA

M(h1;fi)

! M(A�B); 1

�

!M1

�

�

!MA

M(hf;1i)

! M(B �A):

It is trivial that ea
h of these morphism assignments preserves identities.

Lemma 9 C ! Rel(C; T ) and C

op

! Rel(C; T ) are fun
torial.

Proof: We show C ! Rel(C; T ) preserves 
ompositions in the following

diagram; the 
ase for C

op

! Rel(C; T ) is similar:

1� 1

���//
M1�M1

�

�

��

�

//

�

Lem 5

��

MA�MB

(h1;fi)(h1;gi)//

�

Lem 4

��

AB �AC

�

��
1

�

= Thm 3

OO

�

��

11

(���)

�

//

(h1;1i)

�

fun


��

AB

(h1;fih1;gi)//

(h1;fi)

�

��

ABBC

(1Æ1)

�

BC

��
M1

1

//
M1

�

�

//
MA

(h1;f;gfi) //

(h1;gfi) ''PPPPPPPPPPPP ABC

(1�1)

fun


��
AC:
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q. e. d.

It is now 
lear that both C ! Rel(C; T ) and C

op

! Rel(C; T ) are stri
t

monoidal fun
tors, in view of the observation pre
eding Theorem 4.

Let Form denote the set of 1-
ells of Rel(C; T ) whi
h are of the form A! 1.

By de�nition of Rel(C; T ), there is a natural bije
tion

Form

�

=

P

A2C

0

TA:

Let C

1

�

C

0

Form denote the pullba
k of the domain or typing fun
tion Form!

C

0

along the 
odomain fun
tion C

1

! C

0

. The fun
tor C ! Rel(C; T ) indu
es

a map

C

1

�

C

0

Form! Rel(C; T )

1

�

C

0

Form;

whi
h one may 
ompose with Rel(C; T )

1

�

C

0

Form


omp

! Form, where 
omp is

de�ned by 
omposition in Rel(C; T ). The result is a map

C

1

�

C

0

Form

P

! Form:

Lemma 10 P (A

f

! B;B

p

! 1) = A

f

�

p

! 1.

Proof:

B1

//

Thm 3

�

= %%JJ
JJ

JJ
JJ

JJ

1

��8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8 M1�B1

�

�

�1 //

�

Lem 5

��

MA�B1

(h1;fi)�1//

�

Lem 4

��

AB �B1

�

��
1B1

(�1)

�

//

fun


��

AB1

(h1;fi1) //

(h1;fi1)

�

��

ABB1

(1Æ1)

�

BC

��
B1

(f1

�

)

//
A1

(h1;fi1) //

1

''OOOOOOOOOOOO AB1

(1�1)

fun


��
A1:

q. e. d.

A similar 
onstru
tion results by pulling ba
k (C

op

)

1


od

! C

0

along Form!

C

0

and forming the 
omposite Q of

(C

op

)

1

�

C

0

Form! Rel(C; T )

1

�

C

0

Form


omp

! Form;

where the �rst map is indu
ed from C

op

! Rel(C; T ). If A

f

op

! B denotes a

morphism in C

op

, then by imitating the proof of Lemma 10, one may show that

Q(B

f

! A;B

q

! 1) = A

9

f

g

! 1. In this way, the stru
ture of a theory (C; T ) is


ompletely retrieved from the stru
ture of the monoidal 2-
ategory Rel(C; T ):

Theorem 5 The fun
tors C

op

T

! Bool and C

9

! Bool of a theory, viewed

as �brations, are isomorphi
 to the (split) �brations (Form ! C

0

; P ), (Form

! C

0

; Q).
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6.2 Soundness and Completeness

Let �(L) denote the monoidal 
ategory of �rst-order diagrams modulo defor-

mation equivalen
e. There is a re
exive transitive relation �

�

on �(L), gener-

ated by surgery rules; let �(L)= �

�

denote the poset-enri
hed 
ategory where

hom(u; v) 
arries the poset stru
ture indu
ed from �

�

. The goal of this subse
-

tion is to prove

Theorem 6 There is an isomorphism of (
ompa
t, monoidal) poset-enri
hed


ategories

�(L)= �

�

�

=

�! Rel(�(S); �);

where (�(S); � : �(S)

op

! Bool) is the free (
ategori
al predi
ate) theory on L.

It is in this sense that Peir
e's Beta is isomorphi
 to �rst-order relational 
al-


ulus.

The proof pro
eeds as follows. First, we 
onstru
t a fun
tor q : �(L) !

Rel(�(S); �) whi
h is the identity on obje
ts and whi
h is de�ned on morphisms

by indu
tion on the rank of representative �rst-order diagrams, where the rank is

de�ned as the number of sep lines and interior and 
rossing nodes. We show that

the fun
tor q respe
ts deformation equivalen
e; then we show that q respe
ts

the surgery relations on �, and then show that q is a surje
tion of 2-
ategories.

The theorem follows easily from there.

Let D be a �rst-order diagram. To de�ne q(D), the idea is to partition D

into �rst-order subdiagrams: to tile the re
tangle R in whi
h D is immersed into

subre
tangles, in su
h a way that D 
an be obtained through a su

ession of

horizontal and verti
al 
ompositions. If ea
h subdiagram has a lesser rank than

D, then by indu
tion the value of q on ea
h subdiagram will have been de�ned,

and we de�ne q(D) as the 
orresponding iterated 
omposite in the monoidal


ategory Rel(�(S); �).

The only trouble is that not all tilings 
an be sensibly interpreted as 
om-

posites. Re
all that two subdiagrams are (horizontally or verti
ally) 
omposed

by \erasing" an edge they have in 
ommon (given by a dotted line, as in Lemma

1).

De�nition 13 (see [7℄): A tiling of a re
tangle is 
omposable if repeatedly re-

pla
ing two tiles with a 
ommon edge by a single tile whi
h is their union 
an

eventually redu
e the tiling to a single tile.

The basi
 instan
e of an un
omposable tiling is the \pinwheel,"

,
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and we will take advantage of deformation equivalen
e to ensure that this will

not o

ur.

For example, 
onsider the �rst-order diagram D given by

,

where the solid re
tangular lines are sep lines. In order to evaluate q(D), we

deform two of the sep lines to obtain

,

whereupon it be
omes possible to tile D into 
omposable subdiagrams as shown

by the dotted lines.

Suppose D is a �rst-order diagram whi
h is not surrounded by a sep line, up

to deformation equivalen
e. [If this 
ondition is not met, we 
an de�ne q(D) as

:q(D

0

), where D

0

is obtained by removing the outermost sep line of D.℄ A sep

line of D is maximal if it is not interior to any other sep line. Sin
e D is not

deformable to a diagram surrounded by a single sep line, one of the following


ases holds:

� D has two or more maximal sep lines;

� D has one maximal sep line and nodes exterior to that sep line;

� D has no sep lines.

In the latter two 
ases, it is relatively trivial to de
ompose D into a 
omposable

tiling, i.e., a de
omposition into subdiagrams of lesser rank than D. In the �rst


ase: sin
e the sep lines are disjoint, D 
an be tiled so that ea
h tile de�nes

a �rst-order subdiagram and 
ontains at most one maximal sep line (whi
h we

assume to be in the tile's interior), and we just need to ensure that this tiling is


omposable. This ne
essitates the following abstra
t 
onsiderations on tilings,

given in [7℄.

Given a tiling of a re
tangle, we de�ne partial orders �

1

and �

2

on the set

of tiles A;B; : : :, where A �

1

B if the right edge of A meets the left edge of B

in more than one point, and A �

2

B if the top edge of A meets the bottom
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edge of B in more than one point. (The partial orders �

1

and �

2

are the

re
exive transitive 
losures of these two relations.) Tilings of re
tangles may

be abstra
tly 
hara
terized in terms of su
h double orders (
alled tileorders), so

that, for example, the pinwheel tiling given above may be referred to in terms

of its tileorder.

Theorem 7 (see [7℄) A tileorder fails to be 
omposable if and only if every

sequen
e of 
ompositions eventually yields a tileorder 
ontaining a pinwheel as

a sub-double-order.

If a pinwheel (arising from a tiling of a �rst-order diagram, as des
ribed

above) is rea
hed, we simply de
ompose it further, as we indi
ated earlier:

,

The only obstru
tion o

urs when one of the dotted lines of the de
omposition

passes through a (maximal) sep line of a tile. All one needs to do here is to

apply an isotopy to the tile a
ting as the identity on a neighborhood of the tile's

boundary, and whi
h shrinks the sep line and the re
tangle it surrounds into a

smaller subre
tangle. Then, without loss of generality, we may assume that the

sep line lies above or below the dotted line, so that the de
omposition 
an be


arried out.

Now we de�ne q : �(L) ! Rel(�(S); �) by indu
tion, by tiling a (defor-

mation equivalen
e 
lass of a) �rst-order diagram D into subdiagrams D

0

of

lesser rank in the manner given above, and 
omposing their values q(D

0

) in the

monoidal 
ategory Rel(�(S); �). If D has rank less than 2, then without loss

of generality, D is either one of the primitive diagrams given in the dis
ussion

of x3.1 after de�nition 9, or the se
ond diagram of Example 4. In the former


ase, D 
ould be a single string or 
ould have a single 
rossing node, where

q(D) is an identity or a symmetry isomorphism, or 
ould have a single node

labeled Æ or �, where q(D) is the image of a diagonal or proje
tion map under

�(S) ! Rel(�(S); �), or 
ould have a node labeled Æ

op

or �

op

, where q(D) is

the image of �(S)

op

! Rel(�(S); �), or 
ould have a node labeled p 2 P in the

predi
ate language, where q(D) is the evident morphism h�(p); 1; p 2 �(�(p)�1)i

in Rel(�(S); �). In the 
ase where D 
onsists only of a sep line surrounding

strings, q(D) is hA;A;:E

A

2 �(A�A)i, where E

A

is the equality predi
ate:

1

�

! �1

�

�

! �A

9

Æ

! �(A�A);

and A is the sour
e/target of D.

Lemma 11 The fun
tor q : �(L)! Rel(�(S); �) is well-de�ned.
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Proof: The well-de�nedness of q may be analyzed into three distin
t 
ompo-

nents: (1) the 
ase where, during a deformation t 7! D

t

, a node of D

t


rosses

a sep line of D

t

; (2) the 
ase of the deformation where two nodes inter
hange

their relative heights. We must also show (3) that q(D) is independent of the

tiling of D. In 
ases (1) and (2), we must show that q(D

t

) is independent of

t. But 
ases (2) and (3) are essentially 
onsequen
es of the theory of [10℄ (plus

the fa
t that Rel(�(S); �) is a symmetri
 monoidal 
ategory). As for 
ase (1),

we may 
onsider separately the 
ase (1a) where a node 
rosses the top of a sep

line; the argument for this 
ase essentially follows from Lemma 10 plus the fa
t

that f

�

, for f a morphism of �(S), preserves negation. Case (1b), where a node


rosses the bottom of a sep line, is dual (here we invoke the fa
t that A 
 { is

adjoint to itself, as in Theorem 4, so that Rel(�(S); �) is self-dual). Thus, q is

well-de�ned. q. e. d.

Next, we must verify that q indu
es a well-de�ned map

�(L)= �

�

! Rel(�(S); �)

by showing that if f ;

�

g, then q(f) � q(g). Now the partial order ;

�

is

generated from surgery rules (S1), (S2), (S3) [taking into a

ount the sep-parity


onvention℄ and the rules of Alpha. But q respe
ts (S1) by Theorem 5 and


onstru
tion of �(S) (Theorem 1), and similarly (S2) and (S3) by Theorem 5

and 
onditions (1) and (2) of De�nition 3. The fa
t that the rules of Alpha are

respe
ted by q is 
overed under the Soundness Theorem of [4℄: the hardest rule

to verify is iteration, but this essentially follows from re
ursive appli
ation of

the Boolean equations

f ^ :(f ^ g) = f ^ :g

f ^ (g ^ h) = f ^ (f ^ g ^ h):

Details are left to the reader. Thus we have proved

Lemma 12 (Soundness of Beta): The map ~q : �(L)= �

�

! Rel(�(S); �) in-

du
ed from q is well-de�ned.

Lemma 13 (Completeness of Beta): The poset-enri
hed fun
tor ~q : �(L)= �

�

!

Rel(�(S); �) is surje
tive on 1-
ells and on 2-
ells.

Proof: Surje
tivity on the level of 1-
ells may be de
omposed into two parts:

(a) showing that relations of the form A ! 1 in Rel(�(S); �) are in the image

of q; (b) all relations of the form A! B in Rel(�(S); �) are in the image of q.

Statement (b) follows easily from statement (a): from (a), we have that every

relation of the form hA � B; 1; R 2 T (A � B)i is the image of a 
orresponding

beta diagram of the form

R

A B

44



under q. The 
orresponding relation hA;B;R 2 T (A�B)i is then the image of

R

A B

Here impli
it use is made of 
ompa
tness of Rel(�(S); �) (Theorem 4) and of

�(L)= �

�

(see Lemma 7).

As for statement (a): Relations of the form A! 1 
orrespond bije
tively to

elements in �

w2S

�

�(w) by Theorem 5. Formulas, i.e., elements in �

w2S

�

�(w),

are formed by applying rules (i){(iv), whi
h are a

ompanied by the �rst-order

diagrams whose image under q is the given formula:

(i) p 2 �

w2S

�

�(w) is an element of �

w2S

�

�(w) (image of

p

s1 sn
.  .  .

(ii) If p; q 2 �(w), then p ^ q 2 �(w), :p 2 �(w) (image of

w

qp

w
  ,

qp

  ,
w

.
p

w

(iii) If p 2 �(w) and V

f

!W in �(S), then f

�

p 2 �(v) (image of

f
v

w
p

.

(iv) If p 2 �(v) and V

f

!W in �(S), then 9

f

p 2 �(w) (image of

f  op

w

v
p

.
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This 
ompletes the proof of statement (a), so that q is surje
tive on 1-
ells.

Surje
tivity on the level of 2-
ells is proved by showing that every instan
e

of the relation p � q between 1-
ells in Rel(�(S); �) follows from a relation

f ;

�

g in �(L)= �

�

. It suÆ
es to 
he
k the 
ase where p; q : A! 1, i.e., where

p and q are formulas of the free theory FL (
f. the redu
tion of statement (b)

by statement (a) earlier in this proof). But by freeness, instan
es of p � q here

follow purely from the axioms of theories and equations of �(S). As we saw

in x3.3, the equations of �(S) are 
overed by (S1), the adjun
tions 9

f

a f

�

by

(S2), Be
k-Chevalley by (S3), and the Boolean algebra axioms are 
overed by

the dis
ussion at the end of x4.2. Thus the surje
tivity at the 2-
ell level is 
lear.

q. e. d.

Proof of Theorem 6: Let;

�

� �(L)

1

��(L)

1

and;

�

� �(L)

1

��(L)

1

denote

the re
exive and transitive relations on the 1-
ells of �(L) indu
ed by pulling

ba
k the 2-
ell relations � in �(L)= �

�

and in Rel(�(S); �) along the respe
tive

quotient maps �(L) ! �(L)= �

�

and �(L)

q

! Rel(�(S); �). It suÆ
es to show

;

�

=;

�

. That ;

�

�;

�

follows from Lemma 12. That ;

�

�;

�

follows from

Lemma 13. The proof is 
omplete. q. e. d.

The authors are very grateful to Saunders Ma
 Lane for his sustained support

and his interest in this paper.
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