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Resumé

Atiyah-Segals fuldstændiggørelsessætning er et vigtigt bindeled mellem repræsenta-
tionsteori og algebraisk topologi. Sætningen relaterer fuldstændiggørelse forstået alge-
braisk og geometrisk, og giver en sammenligning af ækvivarientK-teori for et rum med
en virkning af en kompakt liegruppe med almindelig K-teori for borelkonstruktionen
for rummet.
I dette speciale vil vi gennemgå de nødvendige forudsætninger for at forstå sætningen

og dens bevis, og vi vil præsentere et moderne bevis. Teorien vil blive belyst gennem
eksempler.

Abstract

The Atiyah-Segal completion theorem is an important link between representation
theory and algebraic topology. The theorem relates the algebraic and the geometric
notions of completion, and gives a comparison between the equivariant K-theory of a
space with an action of a compact Lie group with the ordinary K-theory of the Borel
construction of the space.
In this thesis we will cover the prerequisites necessary in order to understand the

theorem and its proof, and we will present a modern proof. The theory will be illus-
trated by means of examples.
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Introduction 1

1 Introduction

This thesis is about various aspects of the Atiyah-Segal completion theorem and its
generalizations.

1.1 Organization This thesis is organized as follows:
Chapter 2 is a cursory introduction to Lie groups and their representation theory;
Chapter 3 gives an overview of prerequisites from equivariant homotopy theory;
Chapter 4 introduces complex equivariant K-theory;
Chapter 5 discusses the technicalities of progroups;
Chapter 6 does the same for algebraic machinery of completion;
Chapter 7 finally covers the completion theorem in its various guises;
Chapter 8 presents some examples.
The reader is assumed to be familiar with ordinary (non-equivariant) homotopy theory,
and we’ll develop the equivariant story from that.

1.2 Category theory We will extensively employ the language and results of category
theory; a basic reference is Mac Lane [15]. Here we work with a naive notion of
categories, but see the note by Feferman [8] for a discussion of the foundations.

1.3 Notation and terminology By a space we shall always mean a compactly gener-
ated weak Hausdorff space.
We will use the following notation for standard categories:

Set sets and functions,
Grp groups and group homomorphisms,
Ab abelian groups and homomorphisms,

Rng commutative unital rings and unital ring homomorphisms,
RMod left R-modules and homomorphism for a commutative unital ring R.

Top spaces and continuous functions (also called maps),
Top∗ based spaces and based continuous functions (also called based maps),



2 Groups and representations

2 Groups and representations

2.1 Group objects A group object in a category C with finite products is an object
G of C together with structure morphisms

• m : G×G→ G (multiplication)
• e : 1→ G (identity)
• i : G→ G (inverse)

such that the following axioms modeled on the usual group axioms are satisfied:
• m is associative: m ◦ (m× 1G) = m ◦ (1G ×m) as morphims G×G×G→ G.
• e is a two-sided unit: m ◦ (e× 1G) = 1G = m ◦ (1G × e) as morphism G→ G.
• i provides two-sided inverses: .

The group objects of C form a subcategory in which we can do group theory.

2.2 Actions A left G-object in C is an object X of C with an action morphism
a : G×X → X such that

• the action commutes with the multiplication: a ◦ (m × 1X) = a ◦ (1G × a) as
morphisms G×G×X → X.

• the identity fixes X: a ◦ (e× 1X) = 1X .
A left G-morphism from (X1, a1) to (X2, a2) is a morphism f : X1 → X2 in C with
f ◦ a1 = a2 ◦ (1G × f) as morphisms G × X1 → X2. The left G-objects with left
G-morphisms thus form a subcategory of C.
We define right G-objects and right G-morphisms analogously.

2.3 Topological groups We will in the sequel concern ourselves with topological
groups. A topological group is a group object in the category of spaces, Top. In the
sequel, the word subgroup will mean a closed subgroup of a topological group.
If G is a topological group, then the left G-objects in Topform a category of spaces

with a continuous left G-action, GTop, whose objects we call G-spaces. By a G-
equivariant map (or G-map for short) we mean a left G-morphism of G-spaces.

2.4 Lie groups A Lie group is a group object in the category of finite dimensional
smooth manifolds. That is, it is a smooth manifold equipped with a group struc-
ture, and whose structure maps are smooth. Lie groups are of course special cases of
topological groups.

2.5 Compenent group Given any topological group G, we denote by G0 the set of
components of G. By continuity of the group maps, the group structure on G induces
a group structure on G0. We call G0 the component group of G.

2.6 Descending chain condition Let us here note a fairly obvious, but quite im-
portant, properly of compact Lie groups, namely, that they satisfy the descending
chain condition. That is, given a compact Lie group G, every descending sequence of
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(closed) subgroups is eventually stationary. This follows, since a subgroup will either
be of smaller dimension, or else have a smaller component group. Thus, any strictly
descending chain of subgroups will terminate after at most ds terms, where d is the
dimension of G and s is the number of subgroups of the component group (which is
finite since G is compact).
A partially ordered set satisfies the descending chain condition if and only if it is

well-founded,1 so the importance of the descending chain condition is that it allows us
to do proofs by well-founded induction over subgroups.

2.7 Representations As usual, we will confine ourselves to the case of complex rep-
resentations. A basic reference is Adams’ book [2].
Fix a topological group G. A representation of G (or a G-vector space, or a G-

module) is a finite dimensional vector space V together with a continuous homomor-
phism ρ : G→ AutV . If we choose an n-element basis for V , then we can regard ρ as
taking values in GL(n,C).
A G-homomorphism of G-vector spaces V and W is a linear map f : V → W such

that f(gv) = gf(v) for all g ∈ G and v ∈ V .
Given G-vector spaces V andW we can form new G-vector spaces: the direct product

V ⊕W and the tensor product V ⊗W by setting

g(v, w) = (gv, gw) and g(v ⊗ w) = gv ⊗ gw for g ∈ G, v ∈ V and w ∈W .

We can also form the vector space HomC(V,W ) and equip it with a G-action such that

(gf)(v) = g(h(g−1v)) for g ∈ G, f ∈ HomC(V,W ) and v ∈ V .

Note that the G-homomorphisms from V to W are exactly the fixed points of this
action.
Having defined the Hom-representation, we can also define the dual representation,

V ∗, of a representation V by setting V ∗ = HomC(V,C), and the canonical isomorphism,
HomC(V,W ) ∼= V ∗ ⊗W , still holds equivariantly.

2.8 Compact groups Now we will restrict ourselves further to the case of complex
groups, which are very nicely behaved with respect to representation theory. This is
because we can integrate over complex groups [2, p. 33]. Namely, there is a positive
linear functional, ∫

G
− : C(G,R)→ R,

that is invariant under left and right translation,∫
y∈G

f(xy) =
∫
y∈G

f(y) =
∫
y∈G

f(yx) for x ∈ G and f ∈ C(G,R),

and normed such that the constant function 1 has integral 1. This integral/measure
was first constructed by Haar [10] in 1933.
We’ll mention two important results of using integration for a compact topological

group G.
1In full generality this statement requires the Axiom of Choice, but we will not be needing the full

force here.
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2.9 Proposition [2, 3.16] Given any G-vector space V , there is a Hermitian inner
product on V that is invariant under G.

Proof. If (−,−) is any inner product on V , define a new inner product by setting

〈v, w〉 =
∫
g∈G

(g−1v, g−1w).

This is easily seen to be invariant under G. �

2.10 Proposition [2, 3.18] Any short exact sequence of G-vector spaces split.

Proof. Given a short exact sequence of G-vector spaces

0 //M
µ
// N

ν // P //

σ
ii i_U 0

where σ is a nonequivariant splitting, we define an equivariant splitting τ by setting

τ(p) =
∫
g∈G

gσ(g−1p). �

2.11 Reducibility We say that a nonzero G-space V is reducible if there is some proper
subspace of V that is fixed by G. Otherwise V is called irreducible. A fundamental
tool is the following classic:

2.12 Lemma (Schur) [2, 3.22] Let G be a topological group.
(i) If f : V → W is a G-homomorphism of irreducible G-vector spaces V and W ,

then f is either zero or an isomorphism.
(ii) If f : V → V in a G-endomorphism of an irreducible G-vector space V , then f

is multiplication by some λ ∈ C.

Proof. (i) The kernel and the image of f are G-subspaces, and so either 0 or every-
thing, and the result follows.

(ii) Let λ be an eigenvalue for f , then f − λ can’t be an isomorphism, and so must
be 0 by (i). �

2.13 The Grothendieck construction [13, p. 39] Given an additively written com-
mutative monoid M , we define a commutative group K(M) as follows. Let Z(M)

denote the free abelian group generated by the elements of M , and let K(M) be the
quotient of Z(M) module the subgroup generated by elements of the form

δx+y − δx − δy

for elements x and y in M , and where δx denotes the generator of ZM corresponding
to x ∈M .
There is a canonical monoid homomorphism γ : M → K(M) defined by taking

x ∈ M to the class [x] ∈ K(M) represented by δx ∈ Z(M). Evidently, γ is injective if
and only if the cancellation law holds in M .
We call K(M) the Grothendieck group corresponding to M , and the construction

is sometimes called the Grothendieck construction. We have the following universal
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property. If f : M → A is a monoid homomorphism of M to an abelian group A, then
there is a unique group homomorphism f∗ : K(M)→ A such that f = f∗γ.
If in addition to being a commutative monoid, M is a semiring (that is, M has a

multiplication that distributes over addition), then K(M) becomes a ring, which is
commutative if the multiplication on M is.

2.14 The representation ring For a compact topological group G we let R(G) be the
free abelian group generated by the equivalence classes of irreducible representations
of G. By induction using Proposition 2.10, every representation of G is the direct
sum of irreducible representations, and by Schur’s Lemma, such a decomposition is
unique. Thus, the equivalence classes of representations of G are in 1-1 correspondence
with the elements of R(G) with nonnegative coefficients, and we see that we can also
obtain R(G) as the Grothendieck construction on the monoid of isomorphism classes
of representations with direct sum.
Using the tensor product of representations, we can make R(G) into a commutative

ring, called the representation ring of G. The unit of R(G) is the trivial representation.
There is an augmentation homomorphism ε(G) : R(G) → Z defined by sending an

irreducible representation to its dimension. The kernel of ε is denoted I(G) – this is
the augmentation ideal.
Segal published a papar [22] describing the representation ring of a compact Lie

group. He attributes the following key result to Atiyah:

2.15 Theorem [22, Proposition 3.2] If H is a subgroup of G, then the restriction
R(G) → R(H) makes R(H) a finitely generated module over R(G). In particular,
R(G) is a finitely generated Noetherian ring for all G.

2.16 Supports Given any subgroup H ⊂ G we can consider the restriction homomor-
phism rGH : R(G) → R(H) and the induced map of prime ideal spectra SpecR(H) →
SpecR(G). Fixing a prime p ∈ SpecR(G) we then consider the set of subgroups H
such that p comes from an element of SpecR(H). This set has minimal elements
since the set of subgroups of G is well-founded, and any minimal element is called the
support of p. This terminology is justified by the following result:

2.17 Proposition The support of a prime p of R(G) is determined up to conjugation
in G, and all supports are cyclic subgroups.

This is a part of (i) in Proposition 3.7 in Segal’s paper. It is proved by considering
the various fibers of the canonical map SpecR(G)→ SpecZ (and thus corresponding
to various primes (including 0) of Z).

2.18 Lemma [1, Lemma 3.5] If S ⊂ H is a support of a prime ideal q ⊂ R(H), then
S is a support of p = (rGH)−1(q) ⊂ R(G).

Proof. Since rGS = rHS r
G
H , we conclude that p comes from R(S). Since S is minimal for

q, it is also minimal for p, and we conclude that S is a support of p. �
The important point of this lemma is that if a prime p of R(G) comes from R(H),
then p has a support that is a subgroup of H.
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3 Equivariant homotopy theory

In this chapter we will briefly outline the machinery of equivariant homotopy theory
based on the introduction given by May [18, Chapter 1]. See also the papers by
Matumoto [17] and Waner [24].
Fix a topological group G. We have a category GTop of G-spaces and G-maps. We

define a G-homotopy of G-maps X → Y to be a G-map X×I → Y , where the interval
I has the trivial G-action. We can then go on to develop equivariant homotopy theory
analogously to the development of ordinary homotopy theory of spaces. For every
subgroup H ⊂ G we have a functor of fixed points (−)H : GTop → Top sending a
G-space X to the space

XH = {x ∈ X | ∀g ∈ H : gx = x }.

We say that a G-map f : X → Y is a weak equivalence in GTop if fH : XH → Y H is
a weak equivalence for all H ⊂ G.
A cofibration in GTop is defined by the homotopy extension property, just as for

ordinary spaces. That is, the G-map f : A→ X is a cofibration if for every solid arrow
commutative diagram in GTop

A
i0 //

f

��

A× I

{{wwwwwww

f×1I

��

Y

X

>>~~~~~~

i0
// X × I

ccG G G G

we can find the dotted arrow making the entire diagram commute.
Analogously, a fibration in GTop is defined by the homotopy lifting property.

3.1 Adjunctions We have several useful adjunctions relating different functors oc-
curring in equivariant topology. First, let us note that the familiar nonequivariant
adjunction

MapG(X × Y,Z) ∼= MapG(X,MapG(Y,Z))
is a G-homeomorphism for G-spaces X, Y and Z.
Given a subset H ⊂ G, consider the forgetful functor U : GTop → HTop that

restricts the action. This is right adjoint to the functor G ×H − : HTop → GTop
defined for X ∈ HTop by setting

G×H X = G×X/ ∼, where (gh, x) ∼ (g, hx) for g ∈ G, h ∈ H and x ∈ X.

We call G×H X the induced G-space. Thus,

homGTop(G×H X,Y ) ∼= homHTop(X,UY )
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for X ∈ HTop and Y ∈ GTop.
The forgetful functor is left adjoint to functor MapH(G,−) : HTop→ GTop, where

the left G-action on MapH(G, Y ) is given by setting (gf)(g′) = f(g′g) for g, g′ ∈ G
and f ∈ MapH(G, Y ). Then we have the adjunction

homHTop(UX, Y ) ∼= homGTop(X,MapH(G, Y )).

We call MapH(G, Y ) the coinduced G-space.
Also important is the fact that the fixed point functor (−)H : GTop→ Top is right

adjoint to the functor G/H ×− : Top→ GTop, that is,

homGTop(G/H ×X,Y ) ∼= homTop(X,Y H) for X ∈ Top and Y ∈ GTop.

3.2 The based story As for ordinary spaces, there’s a seperate story for the based
case. We take the category GTop∗ to be the category of based G-spaces where the
basepoint is fixed by the action. There is a functor (−)+ : GTop → GTop∗ adjoining
a disjoint basepoint to a G-space. The categorical coproduct is the wedge sum, and
the smash product, defined as for ordinary spaces, is a symmetric monoidal product.
We have adjunctions similar to the ones in the unbased case.
A based homotopy of based G-maps is given by a based G-map X ∧ I+ → Y . The

construction of the homotopy category follows the usual route.

3.3 G-CW-complexes A short introduction is given by May [18, Section I.3]. We
would like to have a family of spaces in GTop that are as nice as CW-complexes are
in Top. CW-complexes are constructed by attaching cells modeled on spheres. In the
equivariant world, we must attach spaces with a nice G-action. It turns out that the
right notion of an equivariant n-cell is a space of the form (G/H)×Dn for subgroups
H ⊂ G attached via G-maps out of (G/H)× Sn−1. Here G acts trivially on Dn.
Of course, by adjunction, an attaching G-map G/H × Sn−1 → X is equivalent to a

map Sn−1 → XH .
Attachment makes sense since GTop has all small colimits (as well as limits). We

can now define G-CW-complexes analogously to ordinary CW-complexes.

3.4 Definition A G-CW-decomposition of a pair (X,A) is a filtration A = X−1 ⊂
X0 ⊂ X1 ⊂ · · · ⊂ X such that:

1. X =
⋃
nXn.

2. For each n ≥ 0 the space Xn is obtained from Xn−1 by attaching G-equivariant
n-cells.

3. The topology on X is the topology of the union.

Let GCW denote the category of (absolute) G-CW-complexes, and let GCW∗ de-
note the category of G-CW-complexes relative the the fixed basepoint ∗.
An important fact is that when G is compact Lie group, then all smooth G-manifolds

are G-CW-complexes [16,24].
There is an equivariant version of the homotopy extension and lifting property for

G-CW-complexes [24, Theorem 3.3]. Using this we can prove the equivariant version
of the Whitehead Theorem, and there is a good notion G-CW-approximation, unique
up to G-homotopy equivalence.
Given a subgroup H ⊂ G we have a restriction functor GTop → HTop given by

considering a G-space as an H-space. This functor restricts to a functor GCW →
HCW.
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4 Equivariant K-Theory

4.1 Convention In this chapter we shall introduce the theory of complex equivariant
K-theory. In most of the following G will denote a fixed topological group, and we
will concern ourselves exclusively with complex vector spaces, and thus our bundles
will be complex vector bundles and so on. Much of the theory can of course also be
developed also for real vector bundles.
4.2 G-vector bundles We will now go on to develop the theory of G-vector bundles.
There are a lot of references for this material, I’ve used mainly Atiyah’s book [4],
Hatcher’s online manuscript-in-progress [11], May’s concise book [19], and, where the
equivariant case differs from the nonequivariant case, Segal’s paper on equivariant
K-theory [21].
A G-vector bundle over a G-space X is a G-space E with a G-map p : E → X (called

the projection) such that:
(i) The map p : E → X is the projection of an ordinary (nonequivariant) complex

vector bundle on X.
(ii) For each g ∈ G and x ∈ X the map of fibers g : Ex → Egx is linear.

We call the space E the total space, and the space X the base space.
E

p

��

X

s

VV

�

�
)We define a section of a G-vector bundle p : E → X to be a (nonequivariant)

map s : X → E such that ps = 1X (as in the diagram on the right). The section
form a vector space ΓE, and we denote by ΓGE the subspace of equivariant
sections, that is, those that happen to be G-maps.
Given G-vector bundles E and F over X we can form the direct sum E⊕F and the

tensor product E⊗F , which are againG-vector bundles overX with (E⊕F )x = Ex⊕Ex
and (E ⊗ F )x = Ex ⊗ Fx. We can also form the bundle Hom(E,F ) whose fiber over
x is the vector space HomC(Ex, Fx).

E
ϕ

//

p   
AAAA F

q~~}}}}

X

The G-vector bundles over X form a category when we define a
G-homomorphism from p : E → X to q : F → X to be a G-map
ϕ : E → F such that qϕ = p and such that restricted to each fiber, ϕ
is a linear map ϕx : Ex → Fx. The G-homomorphisms from E to F

form a vector space isomorphic to ΓG Hom(E,F ).
Note that a G-vector bundle over the point is just the same as a G-vector space

defined as in Section 2.7. Given any G-vector space V and a G-space X we can form
the G-vector bundle X×V → X. Any G-vector bundle isomorphic to a bundle of this
form will be called trivial.
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4.3 Restriction and pullback of bundles Given a G-subspace Y ⊂ X and a G-vector
bundle p : E → X we can take the restriction of E to Y . This is just the restriction
p : p−1(Y )→ Y , and we denote it E|Y .
More generally, given any G-map f : Y → X, we can define the pullback of E along

f to be f∗(p) : f∗(E)→ Y , where we take the pullback in the category of G-spaces

f∗E //

f∗(p)
��

E

p

��

Y
f
// X

so f∗E consists of pairs (y, e) ∈ Y ×E such that f(y) = p(e). For y ∈ Y , the fiber over
y is then identified with the fiber Ef(y) of E over f(y), and it thus acquires a natural
vector space structure.
Given two composable maps f : Y → X and g : Z → Y there is a natural isomor-

phism g∗f∗(E) ∼= (fg)∗E.
From now on, we’ll assume that G is a compact group.

4.4 Lemma [21, Proposition 1.1] If E is a G-vector bundle over a compact G-space
X, and A is a closed G-subspace of X, then every equivariant section of E|A extends
to an equivariant section of E.

Proof. Let s : A → E be a section of E|A. Use the Tietze Extension Theorem to
extend s to all of X. Use the Haar integral to average the extension over all X so as
to obtain an equivariant extension. �
Using this on the bundle Hom(E,F ), we can extend an isomorphism E|A ∼= F |A to
an isomorphism over a G-neighborhood U of A. Using this, we get:

4.5 Lemma [21, Proposition 1.3] Let X by a compact G-space, Y a G-space, and ft
a G-homotopy of maps X → Y . If E is a G-vector bundle over Y , then f∗0E and f∗1E
are isomorphic G-bundles over X.

4.6 Generalized cohomology theories Let us now recall the axioms for a generalized
(unreduced) cohomology theory, but phrase the axioms so that they apply equivari-
antly (the ordinary case emerges when we take G to be the trivial group).
Let GCW(2) denote the category of all G-CW-pairs (X,A) and G-maps of pairs

(X,A)→ (Y,B). We have a restriction functor R : GCW(2) → GCW(2) that takes a
pair (X,A) to (A, ∅) and a map f to the restriction f |A.
On GCW(2) we have a good notion of relative equivariant homotopies, and we let

hGCW(2) denote the corresponding homotopy category. Of course, R descends to a
functor on the homotopy category, which we also denote R.
We now define an unreduced equivariant cohomology theory on hGCW(2) to be a

sequence of contravariant functors hn : (hGCW(2))op → Ab and natural transforma-
tions δn : hn ◦R→ hn+1 for n ∈ Z satisfying:
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1. Exactness: For every pair (X,A) ∈ hGCW(2) the long sequence

· · · // hn−1(X, ∅) // hn−1(A, ∅)*+,
(/. δn−1
��

??

hn(X,A) // hn(X, ∅) // hn(A, ∅)*+,
(/. δn
��

hn+1(X,A) // hn+1(X, ∅) // · · ·

is exact where the short arrows are induced by the inclusions (A, ∅) ↪→ (X, ∅) ↪→
(X,A).

2. Excision: For every G-CW-triad (X;A,B) (A, B subcomplexes of X with A ∪
B = X) the inclusion (A,A ∪ B) ↪→ (X,B) induces an isomorphism on hn for
each n ∈ Z.

Similarly, using the reduced suspension functor Σ: hGCW∗ → hGCW∗ on the
homotopy category of the category of based G-CW-complexes, hGCW∗, we define
a reduced equivariant cohomology theory to be a sequence of contravariant functors
h̃n : (hGCW∗)op → Ab and natural equivalences σn : h̃n ◦ Σ → h̃n−1 for n ∈ Z
satisfying:

1. Exactness: For every pointed pair (X,A, x0) and n ∈ Z the sequence

h̃n(X ∪ CA, ∗)→ h̃n(X,x0)→ h̃n(A, x0)

induced by the inclusions (A, x0) ↪→ (X,x0) ↪→ (X ∪ CA, ∗) is exact.
2. Wedge Axiom: For every set { (Xα, xα) | α ∈ A } of based G-CW-complexes and

every n ∈ Z the inclusions Xα ↪→
∨
β∈AXβ together induce an isomorphism

h̃n
(∨

α∈A
Xα
) ∼=−→ ⊕

α∈A
h̃n(Xα).

As usual, unreduced and reduces theories are in one-to-one correspondence with
each other.

4.7 Equivariant K-theory Fix a compact G-space X. The isomorphism classes of
G-vector bundles on X for a monoid, to which we can apply the Grothendieck Con-
struction (Section 2.13). Thus we get an abelian group KG(X). The tensor product
makes KG(X) into a commutative ring.
Since pullback preserve direct sums and tensor product, KG(−) becomes a con-

travariant functor from the category of compact G-spaces to the category of commu-
tative rings.
Of course, when G is the trivial group, we recover ordinary K-theory. Given a

subgroup H ⊂ G we get a restriction KG(X)→ KH(X).

4.8 Note Since a G-equivariant vector bundle over the point is the same as a complex
representation of G, we have a canonical isomorphism R(G) ∼= KG(∗). Thus, KG(X)
is always an algebra over R(G).

By Lemma 4.5, KG(−) becomes a functor on the homotopy category.
The following property is fundamental:
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4.9 Proposition [21, Proposition 2.1] Let G be a compact Lie group. If G act freely
on the G-space X, then there is a canonical ring isomorphism:

KG(X) ∼= K(X/G)

Proof. Since G is a compact Lie group, given any G-vector bundle p : E → X we can
form the nonequivariant vector bundle E/G→ X/G. This gives a ring homomorphism
KG(X) → K(X/G). The inverse is given by pulling back along the quotient map
X → X/G.1 �
From now on, G will always be assumed to be a compact Lie group.
Of fundamental importance for the development of the theory is the following gen-

eralization of Proposition 2.10:

4.10 Proposition [21, Proposition 2.4] Any G-vector bundle over X embeds into a
trivial G-vector bundle.

The proof relies on the Peter-Weyl Theorem.
For a based G-space X, we define reduced equivariant K-theory of X, K̃G(X), to be

the kernel of the map KG(X)→ KG(x0) induced by the inclusion of the basepoint. If
we define K̃−qG (X) = K̃G(ΣqX) for q ∈ N, then K≤0

G (X) becomes a graded ring. Then
we have equivariant Bott periodicity:

4.11 Theorem [21, Proposition 3.5] K−qG (X) is naturally isomorphic to K−q−2
G (X).

This allows us to define Kn
G(X) for all n ∈ Z, and then we can verify that equivariant

K-theory becomes a generalized equivariant cohomology theory. The details of this
are in Segal’s paper [21].

4.12 The multiplicative structure Similarly to ordinary cohomology, K-theory is
a multiplicative cohomology theory; we have already seen how to do the internal
product in KG(X). Recall [23, Chapter 13] that a multiplicative cohomology theory
is a generalized cohomology theory h∗ equipped with a natural external product

hp(X,A)⊕ hq(Y,B) ×−→ hp+q(X × Y,X ×B ∪A× Y ).

For K-theory this is constructed in the following way: For vector bundles ξ → X and
η → Y we can construct the tensor product bundle ξ⊗ η → X×Y . Composition with
the map in K-theory induced by the diagonal X → X×X gives us back the definition
of the product in KG(X).

4.13 Thom isomorphism We are now ready to state the fundamental theorem of
equivariant K-theory, which is actually a generalization of Bott periodicity.

4.14 Theorem Let X be a compact G-space and V a G-vector space. Then there’s an
element λV ∈ KG(V ) (the Bott class), multiplication by which induces an isomorphism

KG(X)→ KG(V ×X),

where we use K-theory with compact support. For the proof we refer to Atiyah [5,
Theorem 4.3].

1Another way to get the map R(G) → K(BG) is to map a representation ρ : G → U(n) to the
composite BG→ BU(n) ↪→ {n} ×BU ↪→ Z×BU , and then use [BG,Z×BU ] ∼= K(BG).



12 Progroups

5 Progroups

We will have to works with progroups, because the cohomology theories we consider
(primarily complex K-theory) are not well-behaved on infinite complexes. By letting
the cohomology take values in progroups we can analyze the system of the cohomology
groups on finite subcomplexes as a single entity.
Here we state the basic results about proobjects in an arbitrary category, and about

progroups in particular. The basic references are Grothendieck [9] and the appendix
of Artin-Mazur [3].

5.1 Representable functors Fix an arbitrary locally small category C. We consider
the functor category Fun(Cop,Set) of contravariant functors from C to the category
of sets, in other words, the covariant functors from the dual of C to Set.1
Any X ∈ C defines a functor hX ∈ Fun(Cop,Set) by setting

hX(Y ) = homC(Y,X)

for any Y ∈ C. Since homC is a bifunctor homC : Cop × C → Set this defines a
functor h : C → Fun(Cop,Set), and the Yoneda Lemma [15, p. 61] tells us that h is
fully faithful, i.e., that the induced function

homC(X,X ′)→ homFun(Cop,Set)(hX , hX′)

is bijective.
As a corollary of the Yoneda Lemma we note that if a functor F ∈ Fun(Cop,Set)

is isomorphic to a functor of the form hX , then X is uniquely determined up to a
unique isomorphism. We call such functors representable. Thus the functor h sets
up an equivalence of categories between C and the full subcategory of Fun(Cop,Set)
consisting of representable functors.

5.2 Proposition Suppose I is a small category and F : I → C is an I-shaped diagram
in C such that the limit lim←−F exists. Then h(lim←−F ) is (canonically) isomorphic to
lim←−h ◦ F (this limit always exists and can be computed pointwise in Set).

Proof. By the universal property of lim←−F ◦ h there is a unique morphism g : hlim←−F
→

lim←−F ◦ h. This is given on an object X ∈ C by the function

g(X) : homC(X, lim←−F )→ lim←− homC(X,F (−))

and this is bijective by the universal property of lim←−F .
2 �

1This category will in general have hom-classes instead of hom-sets. See Section 1.2 for notes on
foundational issues

2This is discussed in further detail in Mac Lane [15, p. 116].
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5.3 Algebraic objects As a consequence of this proposition we see that to give a object
X ∈ C some algebraic structure based on one or more compositions (for instance, to
make X a group-object or a ring-object in C) is the same as to give a lifting of the
functor hX : Cop → Set to the corresponding algebraic category (for instance, Grp
or Rng) compatible with the forgetful functor from that category to Set. This is
because, by the proposition, giving a composition X ×X → X is equivalent to giving
a composition hX×X = hX × hX → hX , and checking the relevant algebraic axioms
amount to the same in the two instances.

5.4 Corepresentable functors What we have said for representable functors can of
course be dualized by considering the dual of C, Cop. In this case we have a con-
travariant functor k : Cop → Fun(C,Set), where for X ∈ C the functor kX is the
covariant functor

kX : C→ Set, Y 7→ kX(Y ) = homCop(Y,X) = homC(X,Y ).

The analogue of Proposition 5.2 says that k carries colimits in C to limits in Fun(C,Set)
such that

klim−→F (X) = homC(lim−→F,X) ∼= lim←− homC(F (−), X)

when the colimit of F : I → C exists.
We will have use for the following proposition:

5.5 Proposition Suppose I is a small category and F : I → C is I-shaped diagram in
C. Then we have a natural bijection

homFun(C,Set)(kX , lim−→ k ◦ F ) ∼= lim−→ homC(F (−), X)

for any X ∈ C.

Proof. To ease notation, we’ll drop the subscript on homsets for this proof. First note
that for any Y ∈ C we have

(lim−→ k ◦ F )(Y ) = lim−→ hom(F (−), Y )

since limits and colimits in the functor category are computed pointwise. Thus we get
a natural function

Φ: hom(kX , lim−→ k ◦ F )→ lim−→ hom(F (−), X), ϕ 7→ ϕX(1X).

Conversely, a natural transformation ϕ ∈ hom(kX , lim−→ k◦F ) is determined by its value
ϕX(1X), since for any g : X → Y we have a naturality square

hom(X,X) ϕX //

g∗

��

lim−→ hom(F (−), X)

g∗

��

hom(X,Y ) ϕY
// lim−→ hom(F (−), Y )

and therefore ϕY (g) = g∗ϕX(1X). �
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5.6 Filtered categories Let us here recall the theory of filtered limits and colimits [15,
p. 211]. First we must define filtered categories.
We say a category I is filtered if I is not empty, has coequalizers, and satisfies that

for any two objects i, j ∈ I there is a k ∈ I with morphisms i→ k and j → k.
Note that the product of two filtered categories again is filtered.

5.7 Filtered limits We define a filtered colimit to be the colimit of a functor from a
filtered category, while a filtered limit is the limit of a functor defined on a cofiltered
category (i.e., a category whose dual is filtered).
Sometimes we use the term projective limit instead of filtered limit.

5.8 Proobjects From now on, we will use the notation X = (Xi)i∈I to indicate an
I-shaped diagram in C with I a small cofiltered category. We call such diagrams
projective systems in C.
A projective system X = (Xi)i∈I defines a covariant functor kX : C→ Set by setting

kX = lim−→
i

kXi

Such functors are called prorepresentable. For two projective systems X = (Xi)i∈I and
Y = (Yj)j∈J we have a sequence of canonical bijections

homFun(C,Set)(kY , kX ) ∼= lim←−
j

homFun(C,Set)(kYj , kX )

∼= lim←−
j

lim−→
i

homC(Xi, Yj) (5.1)

where the second is Proposition 5.5. This inspires us to define the category Pro(C)
of proobjects in C, whose objects are the projective systems and whose homsets are

homPro(C)(X ,Y) = lim←−
j

lim−→
i

homC(Xi, Yj)

for proobjects X = (Xi)i∈I and Y = (Yj)j∈J . Futhermore, (5.1) shows that we can
consider k as a contravariant functor

k : Pro(C)op → Fun(C,Set)

that establises an equivalence of categories between the dual of Pro(C) and the full
subcategory of prorepresentable functors.
An object X ∈ C defines a canonical proobject, also denoted X, defined on the

category ∗ with a single object and only the identity morphism on that object. Thus
C is equivalent to a full subcategory of Pro(C).
Using these equivalences we see that for a projective system X = (Xi)i∈I we have

an isomorphism
X ∼= lim←−

i

Xi

in Pro(C) (and with the limit taken in Pro(C)) coming from the defined equality

kX = lim−→
i

kXi

in Fun(C,Set).
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5.9 Warning! If a projective system X = (Xi)i∈I has a projective limit lim←−Xi in C
then this is generally not isomorphic to the projective limit X in Pro(C).

5.10 Proposition [3, Proposition A.4.4]
The category Pro(C) has all small projective limits.

Proof. Let (X j)j∈J be a projective system in Pro(C) with J a small cofiltering cat-
egory, where the X j are themselves projective systems X j = (Xj

i )i∈Ij in C. Define a
new small category K with objects

(j, i) ∈
⋃
j∈J

Ij

and hom-sets
homK

(
(j, i), (j′, i′)

)
=
{

(j α−→ j′, Xj
i
f−→ Xj′

i′ )
}

where f represents the i′-th factor of α∗ : X j → X j′ . Then K is a cofiltered category,
and we have an obvious projective system

Y = (Xj
i )(j,i)∈K

with a bijection

lim←−
j∈J

homPro(C)(Z,X j) ∼= lim←−
(j,i)∈K

homPro(C)(Z,X
j
i ) = homPro(C)(Z,Y).

Thus, Y is the limit of the system (X j)j∈J in Pro(C). �

5.11 Abelian categories If C is an additive (Abelian) category, then Pro(C) is
additive (Abelian). [3, Proposition A.4.5]
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6 Algebraic completion

6.1 Change of rings Consider a homomorphism of commutative rings ϕ : A → B.
Any B-module then becomes an A-module through ϕ and we get a functor BMod→
AMod called restriction of scalars. This functor is obviously exact.
We can also go the other way an get a functor AMod→ BMod called extension of

scalars. This is obtained by associating to an A-moduleM the tensor product B⊗AM
with the obvious B-scalar multiplication. Extension is left-adjoint to restriction.
The extension functor is always right-exact and it is exact if and only if ϕ is a flat

ring homomorphism.
The is a another functor AMod→ BMod called induction. This takes an A-module

M to the B-module HomA(B,M) with the scalar multiplication

B ×HomA(B,M) 3 (b, f) 7→
(
B 3 c 7→ f(bc) ∈M

)
∈ HomA(B,M).

Induction is right-adjoint to restriction.

6.2 Adjointness and exactness Let (F,G) be a pair of adjoint functors of abelian
categories. Then F is right-exact and G is left-exact.
Recall also, that any left adjoint functor is cocontinuous and any right adjoint functor

is continuous.

6.3 Completion Let R be a commutative ring, and let I ⊂ R be a proper ideal.
Then we define the completion RÎ to be the projective limit RÎ = lim←−R/I

n. There
is another way to view this completion. Give R the I-adic topology in which a basis
of the open neighborhoods of 0 is given by the sets In for n ≥ 1, and the the other
neighborhoods bases are obtained by translation. Then RÎ can be identified with the
completion of R with respect to the I-adic topology. The completion is a complete
topological ring.
Completion can also be applied to modules M ∈ RMod by taking the projective

limit MÎ = lim←−M/InM . Completion is then a functor RMod→ RÎ Mod.
If R is Noetherian, then RÎ is flat over R. For finitely generated modules, we can

also view completion as extension by scalars as in Section 6.1. The completion functor
is then exact on sequences of finitely generated modules [7, Lemma 7.15].

6.4 Computation by power series If R is Noetherian, and a = (a1, . . . , an) an ideal,
then

Râ
∼= RJx1, . . . , xnK/(x1 − a1, . . . , xn − an).

This follows from the development in Chapter 7 in Eisenbud [7].
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7 The completion theorem

7.1 Outline In this chapter we will discuss the various forms of the completion the-
orem, how they relate to each other and how to prove them. First, we will apply the
machinery of proobjects to define progroup-valued K-theory. This will allow us to
state our main theorem as it appeared in the article by Adams, Haeberly, Jackowski
and May [1]. Then we can go on to the proof of the theorem, the bulk of which lies
in the analysis of a special case. When we are done with the proof, we can then finish
the chapter by discussing how to derive other versions of the theorem.

7.2 Progroup K-theory We define a sequence of functors for KnG(−) : GCW →
Pro(Grp) for n ∈ Z that takes a G-CW-complex X to the prosystem {Kn

G(Xα)},
where Xα runs through the finite subcomplexes of X. This defines a progroup-valued
multiplicative cohomology theory. We will also have use for corresponding reduced
theory. It is clear that relevant axioms are satisfied, since term-wise exactness implies
pro-exactness.
We will interpret K∗G(−) as taking values in pro-R(G)-modules or pro-R(G)-algebras

when convenient.

7.3 The general theorem We a now ready to deal with the generalized completion
theorem as it appeared in the article by Adams, Haeberly, Jackowski and May [1].
Fix a compact Lie group G and a family of closed subgroups, J , closed under

subconjugacy (taking subgroups and conjugating). Given a closed subgroup H of G
we have a restriction homomorphism rGH : R(G) → R(H). Let IGH denote the kernel.
Thus, I(G) = IG1 .
Finite products of the ideals IGH for H ∈ J determine a directed system of ideals

in R(G) with respect to which we can form a completion functor, (−)Ĵ . Since R(G)
is Noetherian, completion is exact, so we get a completed multiplicative cohomology
theory, K∗G(−)Ĵ .
Explicitly, to a space X ∈ GCW consider the cofiltered category F(X)op×I, where
F(X) is the set of finite subcomplexes of X, and I is the set of ideals of R(G) that
are finite products of ideals IGH with H ∈ J . The image of X is then the progroup
determined by the projective system{

Kn
G(Xα)/JKn

G(Xα)
}

(Xα,J)∈F(X)op×I .

Now we can state our main theorem:

7.4 Theorem [1, Theorem 1.1] If a G-map f : X → Y restricts to a homotopy equiv-
alence fH : XH → Y H for each H ∈ J , then KnG(f)Ĵ is an isomorphism of progroups.

Note, that if J is a finite set, then completion with respect to J is the same as
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completion with respect to the ideal

I(J ) =
⋂
H∈J

IGH .

In particular, if we take J = {1}, then we recover the Atiyah-Segal completion theorem
as stated in the original article [6].

7.5 Proof strategy We will prove Theorem 7.4 by proving the following, equivalent,
theorem:

7.6 Theorem If X ∈ GCW∗ has XH contractible for all H ∈ J , then K∗G(X)Ĵ ∼= 0.

Proof (that theorems 7.4 and 7.6 are equivalent). Assume have proved Theorem 7.4,
and let X ∈ GCW∗ satisfy the hypothesis of Theorem 7.6. Then the conclusion of
Theorem 7.6 follows from consideration of the map ∗ → X.
Conversely, if f : X → Y satisfies the hypothesis of Theorem 7.4, then we can

apply Theorem 7.6 to the cofiber sequence corresponding to f together with the Five-
Lemma. �
We will now go on to the proof of Theorem 7.6. We start with some useful lemmas
about representation spheres. If V is a representation on G, we can form the one-point
compactification SV , and this is the representation sphere.

7.7 Lemma If i : V ↪→ W is inclusion of a subrepresentation such that the comple-
ment W − V has a fixpoint by the subgroup H ⊂ G, then i is H-nullhomotopic.

Proof. Suppose w ∈ (W − V )H . We have an explicit H-nullhomotopy:

SV × I →SW

(v, t) 7→
{
v + 1

1−tw, for v 6=∞ and t 6= 1,
∞, otherwise.

�

7.8 Lemma Let V be a subrepresentation of W . Then the map i∗ : K̃∗G(SW ) →
K̃∗G(SV ) induced by the inclusion i : SV ↪→ SW is given by multiplication with the
Euler class of the complement, χW−V ∈ R(G).

Proof. The Euler class χV ∈ KG(∗) ∼= R(G) of a representation V is obtained from
the Bott class λV ∈ KG(V ) by applying the map induced from the inclusion 0 ↪→ V .
By construction of the Bott class [5], we have λW = λW−V λV . By Theorem 4.14,

K̃∗G(SV ) is a free K̃∗G(S0)-module generated by the Bott class λV ∈ K̃0
G(SV ). We then

have
i∗(xλW ) = xχW−V λV ,

so i∗ is indeed multiplication by χW−V . �
We now prove Theorem 7.6 by reducing to the following special case. Consider a
countable set {Vi}i∈I of non-trivial representations of G such that V G

i = 0 for all i,
and for each proper subgroup H of G there is some i with V H

i 6= 0. Then form the
infinite dimensional representation U by taking a sum of the representations Vi, where
each Vi occurs countably many times.
The finite dimensional subrepresentations of U form a directed system, and we take

Y to be the colimit of the one-point compactifications of these.
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7.9 Lemma We have Y G = S0 and for all proper subgroups H ⊂ G, we have that
Y H is contractible.

Proof. Since V G
i = 0 for all i ∈ I, we get Y G equals S0 on the nose. Given a proper

subgroup H ⊂ G, we can choose an ascending sequence of finite-dimensional subspaces
V1 ⊂ V2 ⊂ · · · ⊂ U , such that (Vn+1 − Vn)H 6= 0 and U is the union of the Vn. Then
by Lemma 7.7, each inclusion SVn ↪→ SVn+1 is H-nullhomotopic, and so Y = lim−→SVn

is H-contractible. Therefore, Y H is contractible. �

7.10 Lemma [1, Lemma 3.2] If G 6∈ J , then K̃∗G(Y )Ĵ ∼= 0.

Proof. By the proof of Proposition 5.10, K̃∗G(Y )Ĵ is the limit in the category of proob-
jects of the K̃∗G(Y )/JK̃∗G(Y ) for J in I. Thus we need only show that each of these is
prozero. That is, we must show that for any finite module V ∈ U there is a module
W ⊃ V such that the inclusion i : SV ↪→ SW induces the zero map

i∗ : K̃∗G(SW )/JK̃∗G(SW )→ K̃∗G(SV )/JK̃∗G(SV ).

Let J = IGH1
· · · IGHk be given, and choose W such that W − V is the sum of modules

Wi with WHi
i 6= 0. Then by Lemma 7.8, i∗ : K̃∗G(SW ) → K̃∗G(SV ) is multiplication by

χW1 · · ·χWk
, and by Lemma 7.7, thus product lies in J . �

7.11 Lemma For any based G-space X,

K̃∗G
(
(G/H)+ ∧X

)
Ĵ
∼= K̃∗H(X)Ĵ |H .

Proof. As pro-R(G)-modules,

K̃∗G
(
(G/H)+ ∧X

) ∼= K̃∗H(X).

Thus we get the stated isomorphim from the following Lemma. �

7.12 Lemma The J -adic and (J |H)-adic topologies coincide on R(H).

Proof. Here we are considering R(H) as a module over R(G) via the restriction ho-
momorphism.
Consider first a subgroup L ∈ J |H. Then rGH(IGL ) ⊂ IHL since rGL is the composition

R(G)
rGH // R(H)

rHL // R(L).

So J induces on R(H) a topology finer than the (J |H)-adic topology.
Conversely, consider K ∈ J and the induced ideal I = rGH(IGK)R(H). Since R(H) is

Noetherian, we have primary decompositions [13, Theorem 3.3; 14, Proposition III.2.1],
so we can find contained in I a finite product of prime ideals of R(H) each containing
I. Note that any prime of R(H) contains IHS , where S is a support of the prime. Thus,
we need only show that for a prime q ⊃ I, the support S of q lies in J .
Let p = (rGH)−1(q) and note that

p ⊃ (rGH)−1(rGH(IGK)
)
⊃ IGK .

Since R(K) is finitely generated over R(G) by Proposition 2.15, we have that R(K)
is an integral ringextension of R(G), so we can “go up” [7, Proposition 4.15] and find
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p′ ∈ SpecR(K) mapping to p. Thus, p has a support S′ in K, and since any two
supports are conjugate in G by Proposition 2.17 and J is closed under subconjugacy,
we conclude that S′ ∈ J . �
Finally, at long last, we are ready for:

Proof (of Theorem 7.6). By the Equivariant Whitehead Theorem, X is is H-contracti-
ble for all H ∈ J , so K̃∗H(X) is prozero for H ∈ J . If G ∈ J , there is nothing to prove,
so assume G 6∈ J . The descending chain condition on the subgroups of G (Section 2.6)
allows us to proceed by well-founded induction on the subgroup lattice. The base case
G = 1 is trivial.
For the induction step, assume K̃∗H(X)Ĵ |H is prozero for all proper subgroups H ⊂

G. We have a cofiber sequence

S0 → Y → Y/S0

from which we obtain a new cofiber sequence

X → X ∧ Y → X ∧ (Y/S0)

by smashing with X.
By the long-exact sequence for cofiber sequences together with the Five-Lemma, it

suffices to show that K̃∗G(X ∧ Y )Ĵ and K̃∗G(X ∧ (Y/S0))Ĵ are prozero. This follows
from the following observations:
(i) K∗G(W ∧ Y )Ĵ is prozero for any W ∈ GCW∗.
(ii) K∗G(X ∧ Z)Ĵ is prozero for any Z ∈ GCW∗ with ZG = ∗.

As for (i), by induction over cells we are reduced to showing this for cells W =
(G/H)+ ∧Sn, and thus by the suspension isomorphism for W = (G/H)+. For H = G
we can use Lemma 7.10, and for H 6= G we can use lemmata 7.9 and 7.11.
As for (ii), we again reduce to Z = (G/H)+, but here H must be a proper subgroup,

so we are done by Lemma 7.11 and the induction hypothesis. �

This concludes the proof of the main theorem, Theorem 7.4.

7.13 The special case We will now dwelve a bit on the special case where J = {1}.

7.14 A note on Lusternik-Schnirelmann category We shall need a result related to
the notion of Lusternik-Schnirelmann category (or LS-category for short). The LS-
category of a space X, denoted catX, is the minimum cardinality of an open covering
of X by subsets that are contractible in X. Thus, a contractible space has LS-category
1, while suspensions (spheres in particular) have LS-category 2. It can be shown that
LS-category is an invariant of homotopy type. [12].
Suppose given a path-connected based space X with LS-category at most n. Then

we will show that the product of n elements of K̃∗(X) is zero. In fact, this holds for
any reduced multiplicate cohomology theory h̃∗, as defined in Section 4.12.
Let U1 ∪ · · · ∪ Un be an open covering of X by subsets contractibe in X. Picking

a basepoint xi in each Ui, for 1 ≤ i ≤ n, the inclusion Ui ↪→ X induces the trivial
map h̃∗(X,xi) → h∗(Ui, xi). By the long exact sequence of the triple (X,Ui, xi), the
map h∗(X,Ui)→ h̃∗(X,xi) is surjective. Of course, since X is path-connected we can
identify each of the h̃∗(X,xi) with h̃∗(X, ∗), so if we are given n elements α1, . . . , αn
in h̃∗(X, ∗), we can then find elements ᾱi ∈ h∗(X,Ui) mapping to the αi.
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Consider now the commutative diagram

h∗(X,U1)⊕ · · · ⊕ h∗(X,Un) //

×
��

h̃∗(X)⊕ · · · ⊕ h̃∗(X)

×
��

h∗(Xn,U) //

∆∗
��

h̃∗(Xn)

∆∗
��

h∗(X,X) // h̃∗(X)

where
U = U1 ×X × · · · ×X ∪X × U2 × · · · ×X ∪X ×X × · · · × Un.

Starting with the ᾱi’s, if we go right along the top and then down, we arrive in the
bottom right at the product α1 · · ·αn ∈ h̃∗(X), which is then zero, since going down
and right, we pass through h∗(X,X), which is trivial.

7.15 Milnor’s Construction Milnor showed [20] how to construct a functorial model
for EG. Recall the definition of the join of two spaces X and Y : X ∗Y = X×Y ×I/ ∼,
where

(x0, y0, t0) ∼ (x1, y1, t1)⇔
(

(t0 = t1 = 0 ∧ y0 = y1) ∨ (t0 = t1 = 1 ∧ x0 = x1)
)
.

We identify X and Y with the subspaces of X ∗ Y with t = 0 and t = 1 respectively.
The join is then the union of linesegments from a point in X to a point in Y .
The join is commutative and associative up to homeomorphism. In fact, we can think

of the join X0 ∗ · · · ∗Xn of the spaces X0, . . . , Xn as the formal convex combinations
t0x0 + · · · + tnxn of points xi ∈ Xi, 0 ≤ i ≤ n, where the point xi is irrelevant when
ti = 0.
When X and Y are CW-complexes, there is a natural CW-complex construction of

X ∗ Y , whose topology agrees with the quotient topology we used above in the cases,
we’re interested in.
We note that the join of a space X with a point is the cone CX, and the join with

S0 is the suspension SX. Thus, the join of two spheres is another sphere,

Sp ∗ Sq ∼=

p+1︷ ︸︸ ︷
(S0 ∗ · · · ∗ S0) ∗

q+1︷ ︸︸ ︷
(S0 ∗ · · · ∗ S0) ∼=

p+q+2︷ ︸︸ ︷
(S0 ∗ · · · ∗ S0) ∼= Sp+q+1.

This illustrates the crucial property of joins, namely that if X0, . . . Xn are spaces
such that Xi is ci-connected, then the join X0 ∗ · · · ∗ Xn is (c0 + · · · + cn + 2n)-
connected. [20, Lemma 2.3]
Given a topological group G, we can then define for n ≥ 1 the space EnG as the

join of n copies of G. The action of G by multiplication on the individual factors is
then a free action, and since the connectivity increases, EG = lim−→EnG is contractible.
If we set BnG = EnG/G, then we have principal G-bundles EnG→ BnG. Letting

BG = lim−→BnG we obtain the universal principal G-bundle EG → BG, and we call
BG the classifying space for G.
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7.16 The original article Consider the map αn : K∗G(∗)→ K∗G(EnG) induced by the
map EnG→ ∗. Using Proposition 4.9 and Note 4.8 we can identify it with the middle
vertical map in the diagram below with exact rows.

0 // I(G) //

��

R(G) ε //

αn

��

Z // 0

0 // K̃∗(BnG) // K∗(BnG) ε // Z // 0

We can write EnG as a union of the n open subsets Vi, for 1 ≤ i ≤ n, where the ith
join coordinate is non-zero. Then Vi is G-homotopy equivalent to G, so Ui = Vi/G is
contractible. Thus, BnG is the union of the n open contractible subsets Ui. By the
result of Section 7.14, this means that the product of any n elements of K̃∗(BnG) is
zero. Thus, the map αn factors through the projection R(G)→ R(G)/I(G)n.
Using this we can analyse the map p∗ : K∗G(X) → K∗G(X × EnG) induced by the

projection p : X × EnG → X. Since the external product is natural, we have a com-
mutative square

K∗G(X)⊕K∗G(∗) ×
//

1⊕αn
��

K∗G(X)

p∗

��

K∗G(X)⊕K∗G(EnG) ×
// K∗G(X × EnG)

from which we gather that p∗ factors through the projection

K∗G(X)→ K∗G(X)/I(G)nK∗G(X).

It follows that the prohomomorphism K∗G(X)Ĵ → K∗G(X × EG)Ĵ is represented by
the maps

K∗G(X)/I(G)nK∗G(X)→ K∗G(X × EnG)

This is the prohomomorphism that Atiyah and Segal originally studied in their 1969
article [6]. From the completion theorem we can now conclude that since K∗G(X×EG)Ĵ
satisfies the Mittag-Leffler condition, then K∗G(X)Ĵ does so as well, so there is no lim1

term, and we get the well-known formulation of the Atiyah-Segal completion theorem:

7.17 Theorem If X is a finite G-CW complex, then the projection X × EG → X
induces an isomorphism

K∗G(X)Î(G) → K∗G(X × EG).

In particular, for X = ∗ we get K0(BG) ∼= R(G)Î(G) and K1(BG) ∼= 0.
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8 Examples

8.1 Cyclic groups For a cyclic group G = Cn, the representation ring is Z[x]/(xn−1),
where we can take x to be the representation taking a generator of Cn to exp(2πi/n).
The base space of the universal principal Cn-bundle is the infinite lens space, Ln.

By the completion theorem, we get an isomorphism

K(Ln) ∼=(Z[x]/(xn − 1))(̂x−1)
∼=(Z[t]/((t+ 1)n − 1))(̂t)
∼=ZJtK/((t+ 1)n − 1),

where we set t = x− 1.
Now consider the case where n = p, a prime. Let R = Z[t]/((t + 1)p − 1). Note

that in the module tR, the ideals (t) and (p) generate the same topology. Indeed,
0 ≡ (t+ 1)p − 1 is congruent to tp (mod pt) and to pt (mod t2), so

(t)p ⊂ (t)(p) ⊂ (t)2,

from which we get

(t)(p)k−1 ⊂ (t)k and (t)1+pk ⊂ (t)(p)k.

Thus, for reduced K-theory, we get K̃(Lp) ∼= (x − 1)Z(̂p)[x]/(xp − 1). A similar
conclusion holds for any p-group.

8.2 The circle Consider now the circle group, G = S1. A model for BS1 is CP∞.
The representation ring is the Laurant polynomial ring Z[x, x−1], where we take x to
be the canonical character

x : S1 ↪→ C×.

The augmentation ideal is (x− 1), and by changing variables such that t = x− 1, we
see that

K(CP∞) ∼= Z[t, (1 + t)−1]JyK/(y − t) ∼= ZJtK

since (1 + t) is invertible in the power series ring.
Both of these examples can by the way also be done via the Atiyah-Hirzebruch

spectral sequence, which collapses in these cases.
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Index

Ab, 1
abelian category, 15
additive category, 15
adjunctions, 6
augmentation, 5
augmentation ideal, 5

BG, 21

classifying space, 21
cofibration, 6
coinduced G-space, 7
component group, 2

descending chain condition, 2
direct product, 3
dual, 3

EG, 21
equivariant cell, 7

fibration, 6
filtered category, 14
filtered limit, 14

G-CW-complex, 7
G-homotopy, 6
G-vector bundles, 8
GCW, 7
Grp, 1

Haar integral, 3
Hom, 3
homotopy extension property, 6
homotopy lifting property, 6

induced G-space, 6
irreducible, 4

K∗G, 17

Lie group, 2

Lusternik-Schnirelmann category, 20

proobject, 14

reducible, 4
representable functor, 12
representation, 3
representation ring, 5
restriction functor, 7
RMod, 1
Rng, 1

section, 8
Set, 1
space, 1
support, 5

tensor product, 3
Top, 1

universal principal bundle, 21

weak equivalence, 6
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