
Hopf algebras and homology of loop suspension
spaces

Victor Buchstaber Jelena Grbić

Abstract

In this paper we explore new relations between Algebraic Topology and the the-
ory of Hopf Algebras. For an arbitrary topological space X , the loop space homology
H∗(ΩΣX;Z) is a Hopf algebra. We introduce a new homotopy invariant of a topo-
logical space X taking for its value the isomorphism class (over the integers) of the
Hopf algebra H∗(ΩΣX;Z). This invariant is trivial if and only if the Hopf algebra
H∗(ΩΣX;Z) is isomorphic to a Lie-Hopf algebra, that is, to a primitively generated
Hopf algebra. We show that for a given X these invariants are obstructions to the
existence of a homotopy equivalence ΣX ' Σ2Y for some space Y .

Further on, using the notion of Hopf algebras, we establish new structural prop-
erties of the cohomology ring, in particular, of the cup product. For example, using
the fact that the suspension of a polyhedral product X is a double suspension, we
obtain a strong condition on the cohomology ring structure of X . This gives an im-
portant application in toric topology. For an algebra to be realised as the cohomology
ring of a moment-angle manifold ZP associated to a simple polytope P , we found
an obstruction in the Hopf algebra H∗(ΩΣZP ).

In addition, we use homotopy decompositions to study particular Hopf algebras.

Keywords. Hopf algebra, Lie-Hopf algebra, loop suspension spaces, double suspen-
sion spaces, quasisymmetric functions

1 Introduction

The notion of Hopf algebras came from the study of the homology of topological spaces
with additional structures, that is, with multiplication. The expression Hopf algebra was
coined by Armand Borel in 1953, honouring the fundamental work of Heinz Hopf on
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Γ-manifolds. Soon after, Hopf algebras became a subject worthy of extensive study on
its own. Hopf algebras have nowadays numerous applications in various area of mathe-
matics and theoretical physics. In this paper we explore new relations between Algebraic
Topology and the theory of Hopf Algebras.

A pointed topological space X is an H-space if there is a continuous map µ : X ×
X −→ X called multiplication such that the base point acts as a left and right unit. H-
spaces appear in mathematics all the time. The most classical examples are topological
groups: spaces X with a group structure such that both the multiplication map µ : X ×
X −→ X and the inversion map X −→ X , x 7→ x−1, are continuous. Other examples
are based loop spaces, Eilenberg-MacLane spaces, finite H-spaces such as Lie groups,
and the 7 sphere, the homotopy fibre of an H-map and so on.

A significant breakthrough in the study of H-spaces was achieved by Hopf and Borel
(see [H, B]) who classified graded Hopf algebras which can be realised as the cohomol-
ogy rings of H-spaces, and consequently gave a necessary condition on a Hopf algebra to
be the cohomology algebra of an H-space. They showed that the existence of the comul-
tiplication in a Hopf algebra restricts the multiplicative structure considerably. Using this
Hopf algebra classification, it is easy to see that, for example, CP n is not an H-space.
The Hopf and Borel theorems give necessary but not sufficient conditions for a space
to be an H-space; for example, although the cohomology of BU(2) satisfies the condi-
tions of the Hopf and Borel theorems, BU(2) is not an H-space. It is worth noting that
Hopf and Borel studied possible multiplications of appropriate Hopf algebras and their
results are based on algebra isomorphisms of Hopf algebras while not studying further
their coalgebra structures.

Ever since Hopf and Borel’s work, there has been an extensive development of the the-
ory of graded connected Hopf algebras (see [MM]) using algebraic and topological tools.
Let A be a Hopf algebra. Denote by P (A) the primitives in A, by I(A) the augmentation
ideal of A, and by Q(A) = I(A)/I(A)2 the indecomposables. Then A is primitively gen-
erated if the natural map P (A) −→ I(A) −→ Q(A) is onto. Such a primitively generated
Hopf algebra A is called Lie-Hopf algebra.

Let R be a principal ideal domain and assume we work with a topological space X
such that H∗(X × X;R) ∼= H∗(X;R) ⊗ H∗(X;R). The diagonal map on X induces
the cup product in H∗(X;R) and dually it is closely related to the comultiplication in
the Hopf algebra H∗(ΩΣX;R). We show that the cup product presents in certain ways
obstructions to H∗(ΩΣX;R) be a Lie-Hopf algebra. Our starting point is the Bott and
Samelson theorem [BS] which in an analogous way to the Hopf and Borel classification
of Hopf algebras gives necessary conditions for graded Hopf algebras to be realised as
the homology algebras of loop-suspension spaces. Namely, they prove that the homology
H∗(ΩΣX;R) is the tensor algebra on the reduced homology of X .
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One of the classical problems in homotopy theory is the Milnor double suspension
problem, posed in 1961, in which he asked whether the double suspension of a homology
sphere is homeomorphic to the standard sphere. This problem can be generalised in ho-
motopy theory to the problem of describing all spaces which after being suspended twice
become a triple suspension space. Utilising the theory of graded connected Hopf alge-
bras, in particular by studying the properties of comultiplications, we look for a necessary
condition for a topological space X to have the property that ΣX ' Σ2Y for some Y .
Our approach is similar in nature to the one used in the study of H-spaces in the sense
that we explore certain properties of naturally arising Hopf algebras. The main result is
the following theorem.

Theorem 1.1. Let X be a space such that ΣX ' Σ2Y for some Y and assume that
H∗(X;Z) is torsion free. Then the Hopf algebra H∗(ΩΣX;Z) is isomorphic to a Lie-
Hopf algebra.

As will be discussed in Sections 4 and 5, spaces with the property that ΣX ' Σ2Y

are not rare; they appear, for example, in the context of polyhedral product functors -
which are functorial generalisations of moment-angle complexes ZK , complements of
hyperplane arrangements, some simply connected 4-manifolds and so on. Note that the
class of manifolds with this property seems to be quite narrow and hard to detect. Thus
the result about moment-angle manifolds, that is ZK when K is the dual of the boundary
of a simple polytope is of great importance.

Corollary 1.2. Let ZK be a moment-angle complex such that H∗(ZK ;Z) is torsion free.
Then the comultiplication in H∗(ZK ;Z), dual to the ring structure of H∗(ZK ;Z), defines
a Hopf algebra structure on the tensor algebra T (H̃∗(ZK ;Z)) which over Z is isomorphic
to a Lie-Hopf algebra.

The last result motivates us to establish new structural properties of the cohomology
ring, in particular, of the cup product. Consider a topological spaceX such thatH∗(X;Z)

is torsion free. Although, in general, a topological space X might have a non-trivial cup
product, once suspended, all the cup products are trivialised. However, looking at the
Hopf algebra H∗(ΩΣX;Z), in particular at its coalgebra structure, we can recover the
information about the cup product in the cohomology of X . This way we associate to
the cup product in H∗(X;Z) a structural property that can be read off the Hopf algebra
H∗(ΩΣX;Z). For example, if a topological space X has the property that ΣX ' Σ2Y

for some Y , then the Hopf algebra H∗(ΩΣX;R) is isomorphic to a Lie-Hopf algebra
meaning that there is a change of basis overR inH∗(X;R) such that the reduced diagonal
∆̃ : H∗(X;R) −→ H∗(X;R) ⊗ H∗(X;R) becomes trivial. The dual statement gives a
structural property of the cup product in H∗(X;R).
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The strength and beauty of this approach lies in the strong connection between algebra
and topology. In Section 6 we detect some properties of the algebra of quasi-symmetric
functions by identifying it with H∗(ΩΣCP∞;R) and by applying homotopy theoretic
decomposition methods.

2 SnS-spaces

We start by introducing the notion of SnS-spaces.

Definition 2.1. For a given n ∈ N ∪ {0}, a CW complex X is said to be an SnS-space if
there is a CW complex Y such that ΣnX ' Σn+1Y .

It is seen readily from the definition that if X is an SnS-space, then it is also an
Sn+1S-space. Thus a trivial example of SnS-spaces is given by a suspension space X ,
that is, X ' ΣY for some topological space Y .

Milnor considered a homology 3-sphere M3 with π1(M) 6= 0 and asked whether the
double suspension of M3 is homeomorphic to S5. This was partially proved in 1975 by
Edwards [E], and in a sharper form in 1979 by Cannon [C]. It provided the first example
of a triangulated manifold which is not locally PL-homeomorphic to Euclidean space. The
solution of the Milnor double suspension problem provides us with a non-trivial example
of an S2S-space. In general, Cannon [C] proved that the double suspension Σ2SnH of
any homology n-sphere SnH is homeomorphic to the topological sphere Sn+2, therefore
showing that a homology sphere is an S2S-space.

Our study of SnS-spaces begins by detecting operations under which the family of
SnS-spaces is closed.

If we start with a topological pair (X1, X2) of SnS-spaces, a natural question to ask
is whether the quotient space X1/X2 is an SnS-space. The pair (Sk, Sk−1) where Sk−1

is imbedded as the equator in Sk gives one of the simplest examples where the quotient
Sk/Sk−1 ' Sk ∨ Sk is an S0S-space for k ≥ 1.

Lemma 2.2. Let (X1, X2) be a topological pair of SnS-spaces. Then the quotient space
X1/X2 is not in general an SnS-space.

Proof. We prove the lemma by constructing an example. Let E −→ S2 be a disc D2

bundle associated to the Hopf bundle over S2. Then ∂E = S3 and E/∂E = CP 2. In this
way we have constructed a topological pair (E, ∂E) of S1S-spaces such that E/∂E is not
an S1S-space.

There are several operations under which the property of being an SnS-space is pre-
served.
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Lemma 2.3. Let X1, . . . , Xk be SnS-spaces. Then the following spaces are SnS-spaces:

1. X1 ∨ . . . ∨Xk,

2. X1 ∧ . . . ∧Xk,

3. X1 × . . .×Xk.

Proof. Let us assume that ΣnXi ' Σn+1Yi for some Yi and i = 1, . . . , k.

1. The following homotopy equivalences

Σn(X1 ∨ . . . ∨Xk) ' ΣnX1 ∨ . . . ∨ ΣnXk ' Σn+1(Y1 ∨ . . . ∨ Yk)

give statement (1).

2. Statement (2) is proved by the following homotopy equivalences

Σn(X1∧. . .∧Xk) ' Σn+1Y1∧X2∧. . .∧Xk ' ΣY1∧Σn+1Y2∧. . .∧Xk ' Σn+kY1∧. . .∧Yk.

3. Notice that Σ(X1×X2) ' ΣX1∨ΣX2∨Σ(X1∧X2). Now by statements (1) and (2),
Σn(X1×X2) ' ΣnX1∨ΣnX2∨Σn(X1∧X2) ' Σn+1Y1∨Σn+1Y2∨Σn+2(Y1∧Y2).
The proof of statement (3) now follows by induction on k.

A generalisation of Lemma 2.3 can be given in terms of the Whitehead filtration of
X1 × . . .×Xk. For k pointed topological spaces (Xi, ∗), the Whitehead filtration T kk−l is
defined in the following way

T kk−l = {(x1, . . . .xk) | where xi = ∗ for at least l coordinates}.

Notice that T kk = X1 × . . . ×Xk, T kk−1 is known as the fat wedge, T k1 = X1 ∨ . . . ∨Xk,
and T k0 = ∗.

Lemma 2.4. Let X1, . . . , Xk be SnS-spaces. Then T kl is SnS-space for 0 ≤ l ≤ k.

Proof. We prove the lemma by induction on l. The statement for l = 1 is true by Lemma 2.3(1).
Let us assume that T kl is an SnS-space. Notice that T kl includes in T kl+1 for 0 ≤ l ≤ k− 1

and that there is a cofibration sequence

T kl −→ T kl+1 −→
∨

1≤i1<...<il+1≤k

Xi1 ∧Xi2 ∧ . . . ∧Xil+1

which after being suspended becomes trivial, that is,

ΣT kl+1 ' ΣT kl
∨ ∨

1≤i1<...<il+1≤k

ΣXi1 ∧Xi2 ∧ . . . ∧Xil+1

 .

Now by the induction hypothesis and Lemma 2.3(2), we get that T kl+1 is an SnS-space,
which proves the lemma.
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Lemma 2.5. Let X be an SnS-space. Then

1. the space ΩΣnX is an S1S-space,

2. the space ΩΣX is an SnS-space.

Proof. Both statements are direct corollaries of the James splitting [J], ΣΩΣZ '
∨∞
k=1 ΣZ(k),

where Z(k) denotes the k-fold smash power of Z.

The above elementary operations over SnS-spaces already indicate that the class of
SnS-spaces is wide.

In the remainder of the paper, of special interest to us will be the case n = 1. We show
that the class of S1S-spaces is unexpectedly large by describing non-trivial homotopy
theoretic constructions which produce S1S-spaces.

3 Applications of the theory of Hopf algebras to S1S-
spaces

We start by recalling some fundamental definition of the theory of Hopf algebras. Let R
be a commutative ring.

Definition 3.1. An R-algebra (A,mA, ηA) is a Hopf algebra if it has an additional struc-
ture given by R-algebra homomorphisms: ∆A : A −→ A ⊗R A called comultiplication;
εA : A −→ R called counit, and an R-module homomorphism SA : A −→ A called an-
tipode that satisfy the following properties

1. coassociativity:

(IdA ⊗∆A)∆A = (∆A ⊗ IdA)∆: A −→ A⊗ A⊗ A;

2. counitarity:
mA(IdA ⊗ εA)∆A = IdA = mA(εA ⊗ IdA)∆A;

3. antipode property:

mA(IdA ⊗ SA)∆A = ηAεA = mA(SA ⊗ IdA)∆

where mA : A⊗ A −→ A is the multiplication in A and ηA is the unit map.

Definition 3.2. Two Hopf algebras (A,mA,∆A, εA, ηA, SA) and (B,mB,∆B, εB, ηB, SB)

overR are isomorphic if there is an algebra isomorphism f : (A,mA, ηA) −→ (B,mB, ηB)

satisfying
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i) (f ⊗ f) ◦∆A = ∆B ◦ f ,

ii) f ◦ SA = SB ◦ f ,

iii) εA = εB ◦ f .

Note that f uniquely determines the Hopf algebra structure of B if the Hopf algebra
structure of A is given.

Definition 3.3. A Hopf algebra A is called a Lie-Hopf algebra if the set of multiplicative
generators {ai}i∈N comprises primitives, that is,

∆ai = ai ⊗ 1 + 1⊗ ai for every i.

LetR be a PID and letX be a connected space such thatH∗(X;R) is torsion free. Then
the Bott-Samelson theorem [BS] asserts that the homology H∗(ΩΣX;R) is isomorphic
as an algebra to the tensor algebra T (H̃∗(X;R)) and the adjoint of the identity on ΣX ,
the suspension map E : X −→ ΩΣX induces the canonical inclusion of H̃∗(X;R) into
T (H̃∗(X;R)). This tensor algebra can be given many different Hopf algebra structures
by considering different coalgebra structures on the module H̃∗(X;R) not necessarily
coming form the topology of the space X . In the following proposition we identify that
Hopf algebra structure that is naturally coming from the topology of the space ΩΣX .

Proposition 3.4. Let T (H̃∗(X;R)) be the Hopf algebra where the coalgebra structure is
generated by the comultiplication on H̃∗(X;R) induced by the diagonal ∆X : X −→ X×
X . This Hopf algebra structure coincides with the Hopf algebra structure ofH∗(ΩΣX;R)

where the comultiplication is induced by the diagonal map ∆ΩΣX : ΩΣX −→ ΩΣX ×
ΩΣX .

Proof. For any H-space H with multiplication µH , we have the following commutative
diagram

H ×H µH //

∆H×∆H

��

H

∆H

��
H ×H ×H ×H Id×T×Id // H ×H ×H ×HµH×µH// H ×H

where T is the twist map. Since the composite (µH × µH) ◦ (Id × T × Id) is the natural
multiplication on H×H induced by µH , we have that the diagonal ∆H is a multiplicative
map.

To prove the proposition notice further that ΩΣX is a universal space in the category
of homotopy associativeH-spaces (see [J]). The universal property states that anyH-map
from ΩΣX to a homotopy associative space is determined by its restriction to X . Now



8 Victor Buchstaber, Jelena Grbić

since the diagonal ∆ΩΣX : ΩΣX −→ ΩΣX × ΩΣX is an H-map, it is determined by its
restriction to X which is the composite X ∆X−→ X ×X E×E−→ ΩΣX × ΩΣX . This proves
the proposition.

Corollary 3.5. LetC be a co-H-space. Then the Hopf algebraH∗(ΩΣC;R) is a Lie-Hopf
algebra, that is, it is primitively generated.

Proof. By Proposition 3.4, the comultiplication in H∗(ΩΣC;R) is generated by the co-
multiplication on H̃∗(C;R). Now directly from the definition of a co-H-space, we have
that the reduced diagonal ∆̃ : C −→ C ∧ C is trivial, showing that H̃∗(C;R) consists
only of primitive elements.

We generalise the last statement to spaces which are not necessarily co-H-spaces but
once suspended become a suspension of a co-H-space.

Theorem 3.6. Let X be a topological space such that ΣX ' ΣC where C is a co-H-
space and assume thatH∗(X;Z) is torsion free. Then over Z the Hopf algebraH∗(ΩΣX;Z)

is isomorphic to a Lie-Hopf algebra, that is, to a primitively generated Hopf algebra.

Proof. Let ϕ : ΣX −→ ΣC be a homotopy equivalence. Since Ωϕ is anH-map it induces
a Hopf algebra morphism Ωϕ∗ : H∗(ΩΣX) −→ H∗(ΩΣC) which is an isomorphism
of Hopf algebras as Ωϕ is a homotopy equivalence. Now the statement of the theorem
follows from Corollary 3.5 since H∗(ΩΣC) is a Lie-Hopf algebra.

Throughout the rest of this paper we assume the coefficient ring R = Z and thus, for
the sake of convenience, in integral homology and cohomology we suppress the coeffi-
cients from the notation.

Let ϕ : ΣX → Σ2Y be a homotopy equivalence. Then by the Bott-Samelson theorem,
we have

H∗(ΩΣX) ∼= T (H̃∗(X)), H∗(ΩΣ2Y ) ∼= T (H̃∗(ΣY )).

Let {ai} be an additive basis for H̃∗(X) and let {bi} be an additive basis for H̃∗(ΣY ).
Then the elements bi are primitive, that is, ∆bi = 1⊗bi+bi⊗1. If we know the cohomology
ring H∗(X), we can calculate the comultiplication ∆X : H∗(X)→ H∗(X)⊗H∗(X).

Lemma 3.7. The comultiplication ∆X : H∗(X)→ H∗(X)⊗H∗(X) is determined by the
Hopf algebra homomorphism

ϕ∗ : H∗(ΩΣX) −→ H∗(ΩΣ2Y ).

Proof. From the definition of a Hopf algebra isomorphism, the comultiplication ∆X is
determined by the formula ∆ΩΣ2Y ϕ∗(a) = ϕ∗ ⊗ ϕ∗(∆ΩΣXa) where a ∈ H∗(X).
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Proposition 3.8. The Hopf algebra H∗(ΩΣX) for X = ΩΣZ with Z a co-H-space is
isomorphic to a Lie-Hopf algebra. The change of homology generators is given by Hopf
invariants.

Proof. The proof follows from the James splitting of X , that is, ΣX ' ΣΩΣZ '
Σ(
∨∞
k=1 Z

(k)). Since Z is a co-H-space, H∗(ΩΣ(
∨∞
k=1 Z

(k))) is primitively generated.
Since the James splitting is given by Hopf invariants, the statement of the proposition
follows.

Hopf and Borel used the theory of Hopf algebras to find a necessary condition on
homology of X so that X is an H-space. Using the same theory but studying in detail
the coalgebra structure, we give a necessary condition on the homology of X to be an
S1S-space.

Corollary 3.9. Let X be a CW-complex such that H∗(X) is torsion free and let the di-
agonal ∆: H∗(X)→ H∗(X)⊗H∗(X) define a Hopf algebra structure on H∗(ΩΣX) ∼=
T (H̃∗(X)). If the Hopf algebra H∗(ΩΣX) is not isomorphic to a Lie-Hopf algebra, then
X is not an S1S-space.

4 Examples of S1S-spaces

In this section we present several examples of S1S-spaces. In doing so we also illustrate
how our invariant can be explicitly calculated and related to some classical homotopy
invariants.

4.1 “Small” CW-complexes

The “smallest” topological spaces amongst which we can find non-trivial S1S-spaces
are two cell complexes. Let α : Sk −→ Sl where k > l such that Σα ' ∗. Taking its
homotopy cofibre, we obtain a spaceX = Sl∪αek+1 which is an S1S-space. Slightly more
generally start with a wedge of spheres and attach to them a single cell by an attaching
map α such that Σα ' ∗. In this case we also obtain an S1S-space. As an explicit example,
take the Whitehead product Sm+n−1 ω−→ Sm∨Sn which is the attaching map for Sm×Sn.
As Σω ' ∗, there is a stable splitting Σ(Sm × Sn) ' Sm+1 ∨ Sn+1 ∨ Sm+n+1, proving
that Sm × Sn is an S1S-space.

4.2 Simply-connected 4-manifolds

Note that the classical Pontryagin-Whitehead theorem (see for example [F]) asserts that
closed simply-connected 4-dimensional manifolds with isomorphic integer cohomology
rings are homotopy equivalent. This result was strengthen by Freedman who proved that
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smooth, closed simply-connected 4-manifolds with isomorphic integer cohomology rings
are homeomorphic.

Using our invariant we can reformulate Pontryagin-Whitehead and Freedman theorem
in the following way.

Proposition 4.1. Let M1 and M2 be closed simply-connected 4-manifolds. If ΣM1 '
ΣM2, then the manifolds M1 and M2 are homotopy equivalent.

Proof. The statement will follow readily from Proposition 4.4.

Corollary 4.2. LetM1 andM2 be smooth closed simply-connected 4-manifolds. If ΣM1 '
ΣM2, then M1 and M2 are homeomorphic.

Recall that the Hopf invariant is a classical obstruction to ΣCP 2 being a double sus-
pension. Here, as a mere illustration of the calculation of our invariant, we show that that
CP 2 is not an S1S-space. To prove that, according to Corollary 3.9 we need to show that
the Hopf algebra H∗(ΩΣCP 2) is not isomorphic to a Lie-Hopf algebra. We first calculate
the coproduct structure of H∗(CP 2). Let u1 ∈ H2(CP 2) and u2 ∈ H4(CP 2) be gener-
ators. Then the coproduct in H∗(CP 2) is determined by ∆u1 = 1 ⊗ u1 + u1 ⊗ 1 and
∆u2 = 1⊗ u2 + u1⊗ u1 + u2⊗ 1. By Proposition 3.4, the coproduct in the Hopf algebra
H∗(ΩΣCP 2) ∼= T (u1, u2) is determined by the coproduct in H∗(CP 2). Thus we have

∆u1 = 1⊗ u1 + u1 ⊗ 1, ∆u2 = 1⊗ u2 + u1 ⊗ u1 + u2 ⊗ 1.

We use the bar notation to denote the tensor product in T (u1, u2). The groupH4(ΩΣCP 2) =

Z ⊕ Z is generated by u2 and u1|u1. The only possible change of basis is given by
w1 = u1, w2 = u2 + λu1|u1 for some integer λ. From the fact that w2 is a primitive
element, we have the following relation

∆w2 = 1⊗w2 +w2⊗1 = 1⊗u2 +u1⊗u1 +u2⊗1+λ(1⊗u1 +u1⊗1)|(1⊗u1 +u1⊗1).

Thus we obtain the following condition on λ

1 + 2λ = 0. (4.1)

This equation has no solution over the integers, proving that CP 2 is not an S1S-space as
there is no Hopf algebra isomorphism between H∗(ΩΣCP 2) and a Lie-Hopf algebra. In
this way we have also reproved the classical well known result that the suspension of the
Hopf map S3 −→ S2 is not null homotopic.

Remark 4.3. In an analogous way we can prove that no Hopf invariant one complexes
are S1S-spaces and as a consequence we see that the suspension of the Hopf map is not
null homotopic.
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If instead of CP 2 we take S2×S2, then the analogous equation to (4.1) takes the form
1 + λ = 0 which is solvable over Z by taking λ = −1. Thus there is a change of basis in
H∗(ΩΣ(S2 × S2)) which induces a Hopf algebra isomorphism with a Lie-Hopf algebra.
Topologically, following the arguments of Subsection 4.1, we also know that S2 × S2 is
an S1S-space, as Σ(S2 × S2) ' Σ2(S1 ∨ S1 ∨ S3).

To approach simply-connected 4-dimensional manifolds M4 more generally, we use
their classifications in terms of the intersection form on H2(M4). Let us denote the
intersection form matrix by A. We ask for a condition on A so that M4 is an S1S-
space. Following our programme we want to construct a looped homotopy equivalence
ΩΣM4 −→ ΩΣ2Y for some CW -complex Y . Let us assume that H2(M4) ∼= Zk is gen-
erated by ui for 1 ≤ i ≤ k. For dimensional reasons all ui are primitive. If the matrix A
is non-trivial, then a generator v ∈ H4(M4) is not primitive and its coproduct is given by
∆v = v ⊗ 1 + 1⊗ v + u>Au. Thus we are looking for a change of basis

ui
f−→ λi1w1 + λi2w2 + . . .+ λikwk

where all wi for 1 ≤ i ≤ k are primitive. In matrix form f(u) = Λw where Λ is the
k-matrix (λij) such that det Λ = ±1. In degree 4, we look to find a primitive generator
w̃ ∈ H4(M4). For dimensional reasons, f(v) = w̃ +

∑
γklwk|wl for some γkl ∈ Z; or

equivalently, in matrix form f(v) = w̃ + w>Γw for the k-matrix Γ = (γij).
For M4 to be an S1S-space, the following diagram needs to commute

v

∆
��

f // w̃ + w>Γw

∆
��

v ⊗ 1 + 1⊗ v + u>Au
f // w̃ ⊗ 1 + 1⊗ w̃ + (w ⊗ 1 + 1⊗ w)>Γ(w ⊗ 1 + 1⊗ w).

From here we deduce the necessary condition

Λ>AΛ = −Γ− Γ>

or equivalently, if we denote Λ−1 by L, then

A = L>(−Γ− Γ>)L.

rem Since all ui are primitive, as a particular case we can choose Λ to be the identity
matrix. rem For an easy illustrative example, consider S2×S2 and its associated quadratic
matrix

A =

(
0 1
1 0

)
.

Taking Λ to be
(

1 0
0 1

)
, then Γ =

(
0 −1
0 0

)
satisfies the condition A = L>(−Γ−Γ>)L.
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Proposition 4.4. Let M1 and M2 be simply-connected 4-dimensional manifolds. Then
M1 and M2 are homotopy equivalent if and only if as Hopf algebras, H∗(ΩΣM1) and
H∗(ΩΣM2) are isomorphic over Z.

Proof. Recall that the homotopy type of simply-connected 4-dimensional manifold M is
classified in terms of the intersection form on H2(M). A Hopf algebra isomorphism of
H∗(ΩΣM1) ∼= T (H̃∗(M1)) and H∗(ΩΣM2) ∼= T (H̃∗(M2)) induces an isomorphism of
the intersection forms on H2(M1) and H2(M2), which proves the non-trivial part of the
proposition.

4.3 The complement of a hyperplane arrangement

Let A be a complex hyperplane arrangement in Cl, that is, a finite set of hyperplanes in
Cl. Denote by M(A) its complement, that is, M(A) = Cl \ supp A. The cohomology
of M(A) is given by the Orlik-Solomon algebra A(A) (see for example [OT]). As there
are many non-trivial products in this algebra, we can see the Hopf algebra H∗(ΩΣM(A))

is not primitively generated. On the other hand, it is well known that ΣM(A) breaks
into a wedge of spheres (see for example [S]) and therefore it is an S1S-space. Thus
we can conclude that the Hopf algebra H∗(ΩΣM(A)) is isomorphic to the Lie-Hopf
algebra H∗(Ω

∨
Snα). In a subsequent paper we will study properties of the cup product

in H∗(M(A)), that is, of the Orlik-Solomon algebra A(A).

5 Polyhedral products as S1S-spaces

A new large family of S1S-spaces appeared as a result of recent work of Bahri, Bendersky,
Cohen, and Gitler [BBCG]. We start by recalling the definition of a polyhedral product
functor. Let K be an abstract simplicial complex on m vertices, that is, a finite set of
subsets of [m] = {1, . . . ,m} which is closed under formation of subsets and includes the
empty set. Let (X,A) = {(Xi, Ai, xi)}mi=1 denote m choices of connected, pointed pairs
of CW-complexes. Define the functor D : K −→ CW∗ by

D(σ) =
m∏
i=1

Bi, where Bi =

{
Xi if i ∈ σ
Ai if i ∈ [m] \ σ

with D(∅) = A1 × . . .× Am. Then the polyhedral product (X,A)K is given by

(X,A)K = colim
σ∈K

D(σ).

When (X,A) = (D2, S1), we recover the definition of the moment-angle complex ZK
introduced by Buchstaber and Panov [BP].
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In [BBCG] it was proved that

Σ(Dn+1, Sn)K '
∨
I /∈K

Σ2+n|I||KI |

which shows that (Dn+1, Sn)K , and in particular the moment-angle complexes ZK , are
S1S-spaces. This shows that the collection of S1S-spaces is large and consists of many
important spaces which are studied in various mathematical disciplines such as toric
topology, complex, symplectic and algebraic geometry, combinatoric and so on.

A natural question that arises is to determine which polyhedral products are S1S-
spaces. Recall that for two topological spaces X and Y , the join X ∗ Y is homotopy
equivalent to ΣX ∧ Y . Following [BBCG], the space D̂(σ) denotes the smash product
Bi1∧. . .∧Bik for σ = {i1, . . . , ik}. Similarly, X̂I denotes the smash productXi1∧. . .∧Xik

for I = {i1, . . . , ik}. We now collect three statements on the stable homotopy type of
certain polyhedral product functors proven in [BBCG].

Theorem 5.1 ( [BBCG]). Let K be an abstract simplicial complex with m vertices, and
let

(X,A) = {(Xi, Ai, xi)}mi=1

denote m choices of connected, pointed pairs of CW-complexes with the inclusion Ai ⊂
Xi null-homotopic for all i. Then there is a homotopy equivalence

Σ(X,A)K −→ Σ

(∨
I

( ∨
σ∈KI

|∆(K̄I)<σ| ∗ D̂(σ)

))
.

Theorem 5.2 ( [BBCG]). If all of the Ai are contractible with Xi and Ai closed CW-
complexes for all i, then there is a homotopy equivalence

Σ(X,A)K −→ Σ

(∨
I∈K

X̂I

)
.

Theorem 5.3 ( [BBCG]). If all of theXi in (X,A) are contractible withXi andAi closed
CW-complexes for all i, then there is a homotopy equivalence

Σ(X,A)K −→ Σ

(∨
I /∈K

|KI | ∗ ÂI
)
.

Corollary 5.4. The polyhedral products considered in Theorems 5.1 and 5.3 are S1S-
spaces. For the polyhedral products in Theorem 5.2 to be S1S-spaces we additionally
need each Xi to be a suspension space.
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5.1 Structural properties of the cup product

From the point of view of cohomology rings, a particularly interesting case of polyhe-
dral products is the moment-angle complex ZK = (D2, S1)K where K is an arbitrary
simplicial complex. The cohomology of the moment-angle complex is known in terms of
the Stanley-Reisner algebra Z[K] (see for example [BP]). Our approach to the theory of
Hopf algebras allows us to give a condition on the algebra necessary for it to be realised
as the cohomology of a moment-angle complex. The previous analysis showed that the
moment-angle complexes are S1S-spaces, implying that the Hopf algebra H∗(ΩΣZK ;Z)

is isomorphic, as a Hopf algebra, to a Lie-Hopf algebra. In other words, in the Hopf al-
gebra T (H̃∗(ZK)) where the coproduct is induced by the coproduct in H∗(ZK) there is a
change of basis such that T (H̃∗(ZK)) becomes primitively generated. Dually, this prop-
erty can be seen as a new structural property of the cup product. Thus we proved the
following characterisation property of the cup product for the moment-angle complexes.

Proposition 5.5. For an algebra A to be the cohomology algebra of the moment-angle
complex ZK , there must exist a change of basis in T (A∗) such that T (A∗) becomes a
Lie-Hopf algebra, where A∗ denotes the dual of A.

This statement readily generalises to the whole family of S1S-spaces.

Proposition 5.6. For an algebra A to be the cohomology algebra of an S1S-space, there
must exist a change of basis in T (A∗) such that T (A∗) becomes a Lie-Hopf algebra.

Example 5.7. Let us consider the 6-dimensional moment-angle manifoldM = (D2, S1)K

where K is a square, that is,

K =
{
{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 4}

}
.

From the work of Buchstaber and Panov [BP], we know

H∗((D2, S1)K ;Z) ∼= H∗ [Λ[u1, u2, u3, u4]⊗ Z[v1, v2, v3, v4]/(v1v3, v2v4) ; d]

where |u1| = 1, |vi| = 2 and the differential d is given by d(ui) = vi and d(vi) = 0 for
1 ≤ i ≤ 4. By a straightforward calculation, we find that the 3-dimensional cycles are
a1 = u1v3, a2 = u2v4, the 6-dimensional cycle is b = u1u2v3v4, and the intersection form
on H3(M6) is given by the following matrix

A =

(
0 1
−1 0

)
.

Thus in integral homology we have H∗(ΩΣM ;Z) ∼= T (a1, a2, b), where |a1| = |a2| = 3

and |b| = 6, and the comultiplication is given by ∆(ai) = 1 ⊗ ai + ai ⊗ 1 for i = 1, 2
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and ∆(b) = 1 ⊗ b + a1 ⊗ a2 − a2 ⊗ a1 + b ⊗ 1. Therefore this Hopf algebra is not
primitively generated. We want to show that this Hopf algebra is however isomorphic
to a Lie-Hopf algebra by describing the change of this basis to a primitive one. As a1

and a2 are primitive elements, we take wi = ai for i = 1, 2. For dimensional reasons,
w3 = b+λ1a1|a2 +λ2a2|a1 +λ3a1|a1 +λ4a2|a2. As we want w3 to be primitive, we need
the following relation to hold

∆(w3) = 1⊗w3+w3⊗1 = ∆(b)+λ1∆(a1)∆(a2)+λ2∆(a2)∆(a1)+λ3∆(a1)∆(a1)+λ4∆(a2)∆(a2).

By a direct calculation, we conclude that forw3 one can take, for example,w3 = b+a2|a1.
Thus we have confirmed that H∗(ΩΣM ;Z) is isomorphic to a Lie-Hopf algebra.

Example 5.8. Now let us look at the 7-dimensional moment-angle manifoldM = (D2, S1)K

where K is a pentagon, that is,

K =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}{1, 5}

}
.

Following [BP], the cohomology algebra is given ny

H∗((D2, S1)K ;Z) ∼= H∗ [Λ[u1, u2, u3, u4, u5]⊗ Z[v1, v2, v3, v4, v5]/(v1v3, v1v4, v2v4, v2v5, v3v5) ; d]

where |u1| = 1, |vi| = 2 and the differential d is given by d(ui) = vi and d(vi) = 0 for
1 ≤ i ≤ 5. There are five 3-dimensional cycles a1 = u1v3, a2 = u4v1, a3 = u2v4, a4 =

u5v2, a5 = u3v5; five 4-dimensional cycles b1 = u4u5v2, b2 = u2u3v5, b3 = u5u1v3, b4 =

u3u4v1, b5 = u1u2v4 and one 7-dimensional cycle c = u1u2u3v4v5. All non-trivial cup
products are given by aibi = biai = c for 1 ≤ i ≤ 5. Thus in integral homology we
have H∗(ΩΣM ;Z) ∼= T ({ai, bi}5

i=1, c), where |ai| = 3, |bi| = 4 and |c| = 7, and the
comultiplication is given by ∆(ai) = 1⊗ai+ai⊗1, ∆(bi) = 1⊗bi+bi⊗1 for 1 ≤ i ≤ 5

and ∆(c) = 1 ⊗ c +
∑5

i=1(ai ⊗ bi + bi ⊗ ai) + c ⊗ 1. Thus this Hopf algebra is not
primitively generated. We want to show that this Hopf algebra is however isomorphic to a
Lie-Hopf algebra by describing the change of this basis to a primitive one. As ai and bi are
primitive elements, we take for w2i−1 = ai and w2i = bi for 1 ≤ i ≤ 5. For dimensional
reasons, w11 = c +

∑5
i=1(λiai|bi + λi+5bi|ai). As we want w11 to be primitive, we need

the following relation to hold

∆(w11) = 1⊗ w11 + w11 ⊗ 1 = ∆(c) +
5∑
i=1

(λi∆(ai)∆(bi) + λi+5∆(bi)∆(ai)) .

We conclude that for w11 one can take, for example, w11 = c−
∑5

i=1 ai|bi. Thus we have
confirmed that H∗(ΩΣM ;Z) is isomorphic to a Lie-Hopf algebra.
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6 Applications to algebra

6.1 Quasi-symmetric polynomials

In this section we use our new homotopy invariant to study the ring of quasi-symmetric
functions. We start by recalling the main definitions, following mainly the notation of
Hazewinkel [Ha]. For more details on applications of topological methods to the study of
quasi-symmetric functions see Buchstaber and Erokhovets [BE].

Definition 6.1. A composition ω of a number n is an ordered set ω = (j1, . . . , jk), for
ji > 1, such that n = j1 + . . . + jk. Let us denote |ω| = n, l(ω) = k. The empty
composition of 0 we denote by (). Then |()| = 0, l(()) = 0.

Definition 6.2. Let t1, t2, . . . be a finite or an infinite set of variables of degree 2. For a
composition ω = (j1, . . . , jk), consider a quasi-symmetric monomial

Mω =
∑

l1<...<lk

tj1l1 . . . t
jk
lk
, M() = 1.

whose degree is equal to 2|ω| = 2(j1 + . . .+ jk).
For any two monomialsMω′ andMω′′ , their product in the ring of polynomials Z[t1, t2, . . .]

is equal to

Mω′Mω′′ =
∑
ω

( ∑
Ω′+Ω′′=ω

1

)
Mω

where for the compositions ω = (j1, . . . , jk), ω
′ = (j′1, . . . , j

′
l′), ω

′′ = (j′′1 , . . . , j
′′
l′′),Ω

′

and Ω′′ are all the k-tuples such that

Ω′ = (0, . . . , j′1, . . . , 0, . . . , j
′
l, . . . , 0), Ω′′ = (0, . . . , j′′1 , . . . , 0, . . . , j

′′
l′′ . . . , 0).

This multiplication rule of compositions is called the overlapping shuffle multiplication.

Thus finite integer combinations of quasi-symmetric monomials form a ring. This ring
is called the ring of quasi-symmetric functions and is denoted by QSymm[t1, . . . , tn],
where n is the number of variables. In the case of an infinite number of variables it is
denoted by QSymm[t1, t2, . . .] or QSymm.

The diagonal map ∆: QSymm −→ QSymm⊗QSymm given by

∆M(a1,...,ak) =
k∑
i=0

M(a1,...,ai) ⊗M(ai+1,...,ak)

defines on QSymm the structure of a graded Hopf algebra.
In [Ha] Hazewinkel proved the Ditters conjecture that QSymm[t1, t2, . . .] is a free

commutative algebra of polynomials over the integers.
Let R be a commutative associative ring with unit.



Hopf algebras and loop homology of suspension spaces 17

Definition 6.3. A Leibnitz-Hopf algebra over the ring R is an associative Hopf algebra
H over the ring R with a fixed sequence of a finite or countable number of multiplicative
generators Hi, i = 1, 2, . . . satisfying the comultiplication formula

∆(Hn) =
∑
i+j=n

Hi ⊗Hj, H0 = 1.

A universal Leibnitz-Hopf algebra A over the ring R is a Leibnitz-Hopf algebra with
the universal property: for any Leibnitz-Hopf algebra H over the ring R the correspon-
dence Ai −→ Hi defines a Hopf algebra homomorphism.

Of special interest to us will be the free associative Leibnitz-Hopf algebra over the
integers Z = Z〈Z1, Z2, . . .〉 in countably many generators Zi.

Definition 6.4. A universal commutative Leibnitz-Hopf algebra C = Z[C1, C2, . . .] is a
free commutative polynomial Leibnitz-Hopf algebra in generators Ci of degree 2i. We
have C = Z/JC , where the ideal JC is generated by the relations ZiZj − ZjZi.

The Leibnitz-Hopf algebra C is a self-dual Hopf algebra and the graded dual Hopf
algebra is naturally isomorphic to the algebra of symmetric functions Z[σ1, σ2, . . .] =

Symm[t1, t2, . . .] ⊂ QSymm[t1, t2, . . .] generated by the symmetric monomials

σi = Mωi =
∑

l1<...<li

tl1 . . . tli

where σi = (1, ..., 1︸ ︷︷ ︸
i

).

The isomorphism C = C∗ is given by the correspondence Ci −→ σi.
The Hopf algebra of symmetric functions Symm has a non-commutative analogue

NSymm obtained by replacing the polynomial algebra in the definition by a free asso-
ciative algebra NSymm = Z〈σ1, . . . , σm, . . .〉. The diagonal of NSymm is defined by
the same formula as in Symm and is still cocommutative. The dual of NSymm is the
commutative algebra of quasi-symmetric functions QSymm.

Looking at the homology of ΩΣCP∞ with integral coefficients we get a Hopf algebra
which is isomorphic to NSymm (see [BR]). This was the starting point for Baker and
Richter to positively solve Ditters conjecture using topological methods. By calculating
the cohomology algebraH∗(ΩΣCP∞) they showed that QSymm is a polynomial algebra.

For the sake of completeness and as an illustration of the close relation between topol-
ogy and algebra, we explicitly calculate Hopf algebras related to the quasi-symmetric al-
gebra QSymm by identifying them with the (co)homology of certain topological spaces.

We have the following Hopf algebras:
I.
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1. H∗(CP∞) is a divided power algebra Z[u1, u2, . . .]/I , where the ideal I is generated
by the relations uiuj −

(
i+j
i

)
ui+j , with the comultiplication

∆un =
n∑
k=0

uk ⊗ un−k; (6.1)

2. H∗(CP∞) ∼= Z[u] is the polynomial algebra generated by a single generator u in
degree 2.

II.

1. H∗(ΩΣCP∞) ∼= T (H̃∗(CP∞)) = Z〈u1, u2, . . .〉 with ui being non-commuting
variables of degree 2i. Thus there is an isomorphism of rings

H∗(ΩΣCP∞) ∼= Z

under which un corresponds to Zn.

The coproduct ∆ on H∗(ΩΣCP∞) induced by the diagonal in ΩΣCP∞ is compat-
ible with the one in Z:

∆un =
∑
i+j=n

ui ⊗ uj.

Thus there is an isomorphism of graded Hopf algebras.

2. H∗(ΩΣCP∞) is the graded dual Hopf algebra to H∗(ΩΣCP∞).

III.
H∗(BU) ∼= H∗(BU) ∼= Z[σ1, σ2, . . . ] ∼= C. It is a self-dual Hopf algebra of symmetric

functions. In cohomology σi are represented by Chern classes.
IV.

1. H∗(ΩΣS2) ∼= H∗(ΩS
3) ∼= Z[w] is a polynomial ring with degw = 2 and the

comultiplication
∆w = 1⊗ w + w ⊗ 1

2. H∗(ΩΣS2) ∼= Z[u1, u2, . . .]/I , where the ideal I is generated by the relations uiuj−(
i+j
i

)
ui+j , is a divided power algebra. Thus H∗(ΩΣS2) ∼= H∗(CP∞).

V.
H∗(ΩΣ(ΩΣS2)) ∼= Z〈w1, w2, . . . 〉. It is a free associative Hopf algebra with the co-

multiplication

∆wn =
n∑
k=0

(
n

k

)
wk ⊗ wn−k. (6.2)
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VI.
H∗ (ΩΣ (

∨∞
i=1 S

2i)) ∼= Z〈ξ1, ξ2, . . .〉. It is a free associative algebra and has the struc-
ture of a graded Hopf algebra with the comultiplication

∆ξn = 1⊗ ξn + ξn ⊗ 1. (6.3)

Lemma 6.5. (i) Over the rationals, NSymm ⊗ Q ∼= H∗(ΩΣCP∞;Q) is isomorphic
to a Lie-Hopf algebra.

(ii) Over the integers, NSymm ∼= H∗(ΩΣCP∞) is not isomorphic to a Lie-Hopf alge-
bra.

Proof. (i) Let f : ΩΣS2 −→ K(Z, 2) ' CP∞ be the map which realises a generator
ofH2(ΩΣS2) ∼= Z. This map is a rational homotopy equivalence. AsH∗(ΩΣS2;Q) ∼=
Q[w] with degw = 2 is a Lie-Hopf algebra, the map fQ induces a Hopf iso-
morphism between NSymm ⊗ Q ∼= H∗(ΩΣCP∞;Q) and the Lie-Hopf algebra
H∗(ΩΣS2;Q).

(ii) Following the first example in Section 3.1, we conclude that NSymm ∼= H∗(ΩΣCP∞)

is not isomorphic to a Lie-Hopf algebra.

We will use topological methods to find a maximal subalgebra of the algebraH∗(ΩΣCP∞)

which over Q is isomorphic to H∗(ΩΣCP∞;Q) but over Z is a Lie-Hopf algebra.

Theorem 6.6. The Hopf algebraH∗(ΩΣΩΣS2) is a maximal subHopf algebra ofH∗(ΩΣCP∞)

which is isomorphic to a Lie-Hopf algebra.

Proof. Let us start with the map f : ΩΣS2 −→ CP∞ which realises a generator of
H2(ΩΣS2) ∼= Z and which induces an isomorphism in rational homology but which ob-
viously does not induce an isomorphism over the integers (see examples I (1) and IV (1)).
By taking the loop suspension of f , we get a loop map ΩΣf : ΩΣΩΣS2 −→ ΩΣCP∞

which in rational homology induces a Hopf algebra isomorphism. Using the James-Hopf
invariants, we produce a homotopy equivalence between ΣΩΣS2 and Σ

∨∞
i=1 S

2i show-
ing that ΩΣS2 is an S1S-space. Now by Theorem 3.6, we have that H∗(ΩΣΩΣS2) is
isomorphic as a Hopf algebra to a Lie-Hopf algebra, which finishes the proof.

6.2 Obstructions to desuspending a map

In this subsection we explicitly write obstructions to desuspending the homotopy equiva-
lence

Σ
(
ΩΣS2

)
−→ Σ

(
∞∨
i=1

S2i

)
. (6.4)
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The homotopy equivalence

a : ΩΣ

(
∞∨
i=1

S2n

)
−→ ΩΣ(ΩΣS2)

induces an isomorphism of graded Hopf algebras

a∗ : Z〈ξ1, ξ2, . . .〉 −→ Z〈w1, w2, . . .〉

and its algebraic form is determined by the conditions

∆a∗ξn = (a∗ ⊗ a∗)(∆ξn).

For example, a∗ξ1 = w1, a∗ξ2 = w2 − w1|w1, a∗ξ3 = w3 − 3w2|w1 + 2w1|w1|w1.
Thus using topological results we have obtained that two Hopf algebra structures on

the free associative algebra with comultiplications (6.2) and (6.3) are isomorphic over Z.
This result is interesting from the topological point of view, since the elements (wn −

a∗ξn) for n ≥ 2 are obstructions to the desuspension of homotopy equivalence (6.4).
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