Dependent Type Theories à la Carte

Mitchell Riley

 $13^{\rm th}~{\rm Sep}~2022$

Dependent type theories are formal systems for working internal to (higher) categories.

Ordinary Foundations:

- First order logic $(\forall, \exists, \top, \bot, \land, \lor, =)$
- ightharpoonup Membership relation (\in)
- ► ZFC axioms
- Possibly more axioms

Dependent Type Theory:

- ► Membership is 'built in'
- ► Pair types ×
- ightharpoonup Function types \rightarrow
- ldentity types a = a'
- ightharpoonup Universe type \mathcal{U}
- Possibly some inductive types $(0, \mathbb{N}, \dots)$
- ▶ Possibly some axioms

In First Order Logic, there are two main *judgements*:

- $ightharpoonup x_1, \ldots, x_n \vdash \psi$ prop
- $ightharpoonup x_1, \ldots, x_n \mid \phi_1, \ldots, \phi_n \vdash \psi \text{ true}$

One might ask whether $x \in z$ true.

In Dependent Type Theory, there are also two:

- ▶ $x_1: A_1, ..., x_n: A_n \vdash B$ type
- $ightharpoonup x_1: A_1, \ldots, x_n: A_n \vdash b: B$

Every term comes with its type.

Working in Dependent Type Theory feels a lot like working with ordinary sets.

Pairs and functions are *primitive*, rather than being constructed out of sets.

$$f: A \times B \to A \times (B \times A)$$

$$f(x, y) := (x, (y, x))$$

$$x: \mathrm{Month} \vdash \mathrm{DayOf}(x) \ \mathsf{type}$$

$$x: M \vdash T_x M \ \mathsf{type}$$

$$R: \mathrm{Ring} \vdash \mathrm{Mod}(R) \ \mathsf{type}$$

$$X: \mathrm{Top}, c: \mathrm{Cover}(X) \vdash \mathrm{Subcover}(X,c) \ \mathsf{type}$$

It is natural to consider *dependent* pairs:

Example

 $(x : Month) \times DayOf(x)$ is type of all days in the year.

 $(x:M) \times T_x M$ is the tangent bundle TM.

Rules for Dependent Pairs

▶ Given A and B(x) that may depend on x : A, there is a type

$$(x:A) \times B(x)$$
 type

For any a: A and b: B(a), we can form the pair

$$(a,b):(x:A)\times B(x)$$

For any $p:(x:A)\times B(x)$, we can take the first and second projection

$$\begin{aligned} &\operatorname{pr}_1(p):A\\ &\operatorname{pr}_2(p):B(\operatorname{pr}_1(p)) \end{aligned}$$

Judgements and Rules

Rule-name
$$\frac{\mathcal{J}_1 \quad \dots \quad \mathcal{J}_n \quad \text{(premises)}}{\mathcal{J} \quad \text{(conclusion)}}$$

$$^{\text{VAR}} \overline{\Gamma, x : A, \Gamma' \vdash x : A}$$

$$\times \text{-}\mathrm{FORM} \ \frac{\Gamma \vdash A \ \mathsf{type}}{\Gamma \vdash (x : A) \times B \ \mathsf{type}}$$

$$\times \text{-INTRO} \ \frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B[a/x]}{\Gamma \vdash (a,b) : (x : A) \times B}$$

$$\times - \mathrm{pr}_1 \; \frac{\Gamma \vdash p : (x : A) \times B}{\Gamma \vdash \mathrm{pr}_1(p) : A} \qquad \qquad \times - \mathrm{pr}_2 \; \frac{\Gamma \vdash p : (x : A) \times B}{\Gamma \vdash \mathrm{pr}_2(p) : B[\mathrm{pr}_1(p)/x]}$$

Identity Types

- Form: For any A and elements a:A, a':A, there is a type of *identifications* of a with a', called $a =_A a'$.
- ▶ Intro: There is an identification from any a:A to itself called $refl_a:a=_Aa$.
- ▶ Elim: To prove anything using $a =_A a'$, it suffices to prove it for a generic $\operatorname{refl}_w : w =_A w$.

$$= - \text{FORM} \ \frac{\Gamma \vdash a : A \qquad \Gamma \vdash a' : A}{\Gamma \vdash a =_A \ a' \ \text{type}} \qquad = - \text{INTRO} \ \frac{\Gamma \vdash a : A}{\Gamma \vdash \text{refl}_a : a =_A \ a}$$

$$\begin{split} \Gamma, x : A, y : A, z : x =_A y \vdash C \text{ type} \\ \Gamma, w : A \vdash c : C[w/x, w/y, \text{refl}_w/z] \\ =-\text{ELIM} & \frac{\Gamma \vdash p : a =_A a'}{\Gamma \vdash \text{let refl}_w := p \text{ in } c : C[a/x, b/y, p/z]} \end{split}$$

Identity Types

For some types, a=a' does behave just like ordinary equality. The *statement* of commutativity of addition is the type

$$(n:\mathbb{N}) \to (m:\mathbb{N}) \to (n+m=m+n)$$

A *proof* of commutativity is a function of this type.

Homotopy Type Theory

Definition

A type A is *contractible* if there is a term of the type

$$isContr(A) := (c : A) \times ((x : A) \rightarrow (c = x))$$

(Don't worry, this doesn't mean just path-connected!)

Definition

The fiber of a function $f: A \to B$ over a point b: B is

$$fib_f(b) := (x : A) \times (f(x) = b)$$

Definition

A function is an *equivalence* if the fiber over every point is contractible:

$$isEquiv(f) := (b : B) \rightarrow isContr(fib_f(b))$$

Interpretation into Categories

$$\begin{array}{c|cccc} \Gamma & \operatorname{ctx} & \operatorname{Object} \ \Gamma \\ \Gamma \vdash A \ \operatorname{type} & A \to \Gamma \ \operatorname{in} \ \mathcal{C}/\Gamma \\ (x:A) \times B & \Sigma_A : \mathcal{C}/A \to \mathcal{C}/\Gamma \ \operatorname{on} \ B \\ (x:A) \to B & \Pi_A : \mathcal{C}/A \to \mathcal{C}/\Gamma \ \operatorname{on} \ B \\ x_1 = x_2 & \operatorname{Path \ space} \ PA \to A \times_{\Gamma} A \ \operatorname{in} \ \mathcal{C}/A \times_{\Gamma} A \\ & \cdots & \cdots \end{array}$$

Theorem (Shulman 2019)

Every ∞ -topos can be presented by a model category that admits a model of HoTT. (modulo closure of universes under HITs)

Homotopy Type Theory

With a few more type formers (some higher inductive types, univalent universes) the system is called Homotopy Type Theory.

Theorem (Licata, Shulman)

Let S^1 be the type freely generated by the terms base : S^1 and loop : base $=_{S^1}$ base. Then (base $=_{S^1}$ base) $\simeq \mathbb{Z}$.

Some other synthetic results:

- ➤ Some homotopy groups of spheres (Shulman, Brunerie, Licata)
- ► Freudenthal Suspension Theorem (Lumsdaine, Licata)
- ► Localisation (Christensen, Opie, Rijke, Scoccola)
- ▶ Blakers–Massey Theorem (Anel, Biedermann, Finster, Joyal)
- ➤ Serre Spectral Sequence (Avigad, Awodey, Buchholtz, Rijke, Shulman, van Doorn)

A cohesive topos \mathcal{H} is one equipped with an adjoint quadruple

$$\mathcal{H}$$

$$\downarrow \Pi_0 \qquad \uparrow \operatorname{disc} \qquad \downarrow \Gamma \qquad \uparrow \operatorname{codisc}$$
 \mathcal{S}

(+ some conditions)

Examples

- \triangleright Sh(CartSp_{top}): Topological homotopy types
- ightharpoonup Sh(CartSp_{smooth}): Smooth homotopy types
- ▶ PSh(Glo): Global equivariant homotopy types
- \triangleright PSh(\triangle): Simplicial homotopy types

We want to use these adjoints in type theory.

- \triangleright $\flat :\equiv \operatorname{disc} \circ \Gamma$ (retopologise discretely)
- ▶ $\sharp :\equiv \operatorname{codisc} \circ \Gamma$ (retopologise codiscretely)

Theorem (Shulman)

Any internal coreflector on Type has the form $\Box A \simeq A \times U$ for some proposition U.

The problem is that the universal property applies in any context. I.e., that, if B is in the coreflective subcategory,

$$(\epsilon_A \circ -): (B \to \Box A) \to (B \to A)$$

is an equivalence.

Following the pattern of adjoint logic, we put in a judgemental version of \flat and have the type formers interact with it.

$$\Delta \mid \Gamma \vdash a : A \qquad \text{corresponds to} \qquad a : \flat \Delta \times \Gamma \to A$$

We need two variable rules:

VAR
$$\frac{\text{VAR-CRISP}}{\Delta \mid \Gamma, x: A, \Gamma' \vdash x: A} = \frac{\Delta, x:: A, \Delta' \mid \Gamma \vdash x: A}{\Delta}$$

The second rule comes from the counit $\flat A \to A$.

How to think about the different kinds of assumptions?

- $ightharpoonup \Delta \mid \Gamma, x : A, \Gamma' \vdash b : B \text{ means } b \text{ varies continuously over } A.$
- $ightharpoonup \Delta, x :: A, \Delta' \mid \Gamma \vdash b : B \text{ means } B \text{ varies (possibly)}$ discontinuously over A.

The introduction rule for b is restricted:

$$\flat\text{-INTRO}\ \frac{\Delta\mid\cdot\vdash a:A}{\Delta\mid\Gamma\vdash a^{\flat}:\flat A}$$

This rescues us from the no-go theorem: we can only show

$$\flat(B \to \flat A) \to \flat(B \to A)$$

is an equivalence.

Commuting Cohesions?

TED-K involves multiple notions of cohesion. How can we use all of them in a single type theory?

Parameterised Spectra

"Definition"

A *spectrum* is an object that represents a cohomology theory.

"Definition"

A parameterised spectrum is a bundle of spectra over a space.

Theorem (Biedermann, Joyal 2008)

The ∞ -category of parameterised spectra PSpec is an ∞ -topos.

Almost Cohesive Type Theory

Comparing the setting of Cohesive Type Theory:

We could use Cohesive Type Theory by asserting $\flat A \to A \to \sharp A$ is an equivalence.

Smash Product

For two types A and B, there should be a type $A \otimes B$ that corresponding to the 'external smash product'.

Linear Homotopy Type Theory

- ▶ (Vákár 2014) has linear type formers, but its dependent pairs/functions work differently to MLTT
- ➤ (Isaev 2021; Krishnaswami, Pradic, and Benton 2015) are 'LNL' type theories that separate linear types from non-linear types, so existing synthetic results can't be used
- ▶ (McBride 2016; Atkey 2018) are 'quantitative type theories' with only one kind of type, but do not allow 'ordinary' dependence

These mostly have models in monoidal fibrations $\mathcal{L} \to \mathcal{C}$, where \mathcal{C} is a topos.

Bunched Homotopy Type Theory

In our setting we can do better: $P\mathrm{Spec} \to \mathcal{S}$ is a monoidal fibration and $P\mathrm{Spec}$ is a topos.

Theorem

The universe of types is equivalent to

$$\mathcal{U} \simeq (X: \operatorname{Space}) \times (E: X \to \natural \operatorname{Spec}) \times ((x:X) \to \Sigma(E(x))_{\natural})$$

Can this type theory formalise any of the work in the *Differential Cohomology* and *Proper Orbifold Cohomology* papers?

References I

- Robert Atkey (2018). "Syntax and Semantics of Quantitative Type Theory". In: *Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science*. DOI: 10.1145/3209108.3209189.
- Valery Isaev (2021). "Indexed type theories". In: Mathematical Structures in Computer Science 31.1. DOI: 10.1017/S0960129520000092.
- André Joyal (2008). Notes on Logoi. URL: http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf.
- Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton (2015). "Integrating Linear and Dependent Types". In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. DOI: 10.1145/2676726.2676969.
- Conor McBride (2016). "I Got Plenty o' Nuttin". In: A list of successes that can change the world. Vol. 9600. DOI: 10.1007/978-3-319-30936-1_12.

References II

```
Michael Shulman (2019). All (\infty, 1)-toposes have strict univalent universes. arXiv: 1904.07004 [math.AT].
```

Matthjis Vákár (2014). Syntax and Semantics of Linear Dependent Types. arXiv: 1405.0033 [cs.AT].