
Dependent Type Theories à la Carte

Mitchell Riley

13th Sep 2022

1

Dependent Type Theory

Dependent type theories are formal systems for working
internal to (higher) categories.

2

Dependent Type Theory

Ordinary Foundations:

▶ First order logic (∀, ∃, ⊤,
⊥, ∧, ∨, =)

▶ Membership relation (∈)
▶ ZFC axioms

▶ Possibly more axioms

Dependent Type Theory:

▶ Membership is ‘built in’

▶ Pair types ×
▶ Function types →
▶ Identity types a = a′

▶ Universe type U
▶ Possibly some inductive

types (0,N, . . .)
▶ Possibly some axioms

3

Dependent Type Theory

In First Order Logic, there are two main judgements:

▶ x1, . . . , xn ⊢ ψ prop

▶ x1, . . . , xn | ϕ1, . . . , ϕn ⊢ ψ true

One might ask whether x ∈ z true.

In Dependent Type Theory, there are also two:

▶ x1 : A1, . . . , xn : An ⊢ B type

▶ x1 : A1, . . . , xn : An ⊢ b : B
Every term comes with its type.

4

Dependent Type Theory

Working in Dependent Type Theory feels a lot like working with
ordinary sets.

Pairs and functions are primitive, rather than being constructed
out of sets.

f : A×B → A× (B ×A)

f(x, y) := (x, (y, x))

5

Dependent Type Theory

x : Month ⊢ DayOf(x) type

x :M ⊢ TxM type

R : Ring ⊢ Mod(R) type

X : Top, c : Cover(X) ⊢ Subcover(X, c) type

It is natural to consider dependent pairs:

Example

(x : Month)×DayOf(x) is type of all days in the year.

(x :M)× TxM is the tangent bundle TM .

6

Rules for Dependent Pairs

▶ Given A and B(x) that may depend on x : A, there is a type

(x : A)×B(x) type

▶ For any a : A and b : B(a), we can form the pair

(a, b) : (x : A)×B(x)

▶ For any p : (x : A)×B(x), we can take the first and second
projection

pr1(p) : A

pr2(p) : B(pr1(p))

7

Judgements and Rules

rule-name
J1 . . . Jn (premises)

J (conclusion)

var
Γ, x : A,Γ′ ⊢ x : A

×-form
Γ ⊢ A type Γ, x : A ⊢ B type

Γ ⊢ (x : A)×B type

×-intro
Γ ⊢ a : A Γ ⊢ b : B[a/x]

Γ ⊢ (a, b) : (x : A)×B

×-pr1
Γ ⊢ p : (x : A)×B

Γ ⊢ pr1(p) : A
×-pr2

Γ ⊢ p : (x : A)×B

Γ ⊢ pr2(p) : B[pr1(p)/x]

8

Identity Types

▶ Form: For any A and elements a : A, a′ : A, there is a type
of identifications of a with a′, called a =A a

′.

▶ Intro: There is an identification from any a : A to itself
called refla : a =A a.

▶ Elim: To prove anything using a =A a
′, it suffices to prove it

for a generic reflw : w =A w.

=-form
Γ ⊢ a : A Γ ⊢ a′ : A

Γ ⊢ a =A a
′ type

=-intro
Γ ⊢ a : A

Γ ⊢ refla : a =A a

=-elim

Γ, x : A, y : A, z : x =A y ⊢ C type
Γ, w : A ⊢ c : C[w/x,w/y, reflw/z]

Γ ⊢ p : a =A a
′

Γ ⊢ let reflw := p in c : C[a/x, b/y, p/z]

9

Identity Types

For some types, a = a′ does behave just like ordinary equality.
The statement of commutativity of addition is the type

(n : N) → (m : N) → (n+m = m+ n)

A proof of commutativity is a function of this type.

10

Homotopy Type Theory

Definition
A type A is contractible if there is a term of the type

isContr(A) := (c : A)× ((x : A) → (c = x))

(Don’t worry, this doesn’t mean just path-connected!)

Definition
The fiber of a function f : A→ B over a point b : B is

fibf (b) := (x : A)× (f(x) = b)

Definition
A function is an equivalence if the fiber over every point is
contractible:

isEquiv(f) := (b : B) → isContr(fibf (b))

11

Interpretation into Categories

Γ ctx Object Γ
Γ ⊢ A type A→ Γ in C/Γ
(x : A)×B ΣA : C/A→ C/Γ on B
(x : A) → B ΠA : C/A→ C/Γ on B
x1 = x2 Path space PA→ A×Γ A in C/A×Γ A

.

Theorem (Shulman 2019)

Every ∞-topos can be presented by a model category that admits
a model of HoTT. (modulo closure of universes under HITs)

12

Homotopy Type Theory

With a few more type formers (some higher inductive types,
univalent universes) the system is called Homotopy Type Theory.

Theorem (Licata, Shulman)

Let S1 be the type freely generated by the terms base : S1 and
loop : base =S1 base. Then (base =S1 base) ≃ Z.

Some other synthetic results:

▶ Some homotopy groups of spheres (Shulman, Brunerie,
Licata)

▶ Freudenthal Suspension Theorem (Lumsdaine, Licata)

▶ Localisation (Christensen, Opie, Rijke, Scoccola)

▶ Blakers–Massey Theorem (Anel, Biedermann, Finster, Joyal)

▶ Serre Spectral Sequence (Avigad, Awodey, Buchholtz, Rijke,
Shulman, van Doorn)

13

Cohesive Type Theory

A cohesive topos H is one equipped with an adjoint quadruple

H

S

Π0 disc Γ codisc

(+ some conditions)

Examples

▶ Sh(CartSptop): Topological homotopy types

▶ Sh(CartSpsmooth): Smooth homotopy types

▶ PSh(Glo): Global equivariant homotopy types

▶ PSh(∆): Simplicial homotopy types

14

Cohesive Type Theory

We want to use these adjoints in type theory.

▶ ♭ :≡ disc ◦ Γ (retopologise discretely)

▶ ♯ :≡ codisc ◦ Γ (retopologise codiscretely)

Theorem (Shulman)

Any internal coreflector on Type has the form □A ≃ A× U for
some proposition U .

The problem is that the universal property applies in any
context. I.e., that, if B is in the coreflective subcategory,

(ϵA ◦ −) : (B → □A) → (B → A)

is an equivalence.

15

Cohesive Type Theory

Following the pattern of adjoint logic, we put in a judgemental
version of ♭ and have the type formers interact with it.

∆ | Γ ⊢ a : A corresponds to a : ♭∆× Γ → A

We need two variable rules:

var

∆ | Γ, x : A,Γ′ ⊢ x : A

var-crisp

∆, x :: A,∆′ | Γ ⊢ x : A

The second rule comes from the counit ♭A→ A.

16

Cohesive Type Theory

How to think about the different kinds of assumptions?

▶ ∆ | Γ, x : A,Γ′ ⊢ b : B means b varies continuously over A.

▶ ∆, x :: A,∆′ | Γ ⊢ b : B means B varies (possibly)
discontinuously over A.

The introduction rule for ♭ is restricted:

♭-intro
∆ | · ⊢ a : A

∆ | Γ ⊢ a♭ : ♭A

This rescues us from the no-go theorem: we can only show

♭(B → ♭A) → ♭(B → A)

is an equivalence.

17

Commuting Cohesions?

TED-K involves multiple notions of cohesion. How can we use all
of them in a single type theory?

18

Parameterised Spectra

“Definition”
A spectrum is an object that represents a cohomology theory.

“Definition”
A parameterised spectrum is a bundle of spectra over a space.

Theorem (Biedermann, Joyal 2008)

The ∞-category of parameterised spectra PSpec is an ∞-topos.

19

Almost Cohesive Type Theory

Comparing the setting of Cohesive Type Theory:

E

S

ΓΠ0 disc codisc

PSpec

S

⊣0 ⊣ 0

We could use Cohesive Type Theory by asserting ♭A→ A→ ♯A
is an equivalence.

20

Smash Product

For two types A and B, there should be a type A⊗B that
corresponding to the ‘external smash product’.

⊗

21

Linear Homotopy Type Theory

▶ (Vákár 2014) has linear type formers, but its dependent
pairs/functions work differently to MLTT

▶ (Isaev 2021; Krishnaswami, Pradic, and Benton 2015) are
‘LNL’ type theories that separate linear types from
non-linear types, so existing synthetic results can’t be used

▶ (McBride 2016; Atkey 2018) are ‘quantitative type theories’
with only one kind of type, but do not allow ‘ordinary’
dependence

These mostly have models in monoidal fibrations L → C, where C
is a topos.

22

Bunched Homotopy Type Theory

In our setting we can do better: PSpec → S is a monoidal
fibration and PSpec is a topos.

Theorem
The universe of types is equivalent to

U ≃ (X : Space)× (E : X → ♮Spec)× ((x : X) → Σ(E(x))♮)

Can this type theory formalise any of the work in the Differential
Cohomology and Proper Orbifold Cohomology papers?

23

References I

Robert Atkey (2018). “Syntax and Semantics of Quantitative Type
Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. doi:
10.1145/3209108.3209189.

Valery Isaev (2021). “Indexed type theories”. In: Mathematical
Structures in Computer Science 31.1. doi:
10.1017/S0960129520000092.

André Joyal (2008). Notes on Logoi. url:
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf.

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton (2015).
“Integrating Linear and Dependent Types”. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. doi: 10.1145/2676726.2676969.

Conor McBride (2016). “I Got Plenty o’ Nuttin’”. In: A list of
successes that can change the world. Vol. 9600. doi:
10.1007/978-3-319-30936-1_12.

24

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1017/S0960129520000092
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1007/978-3-319-30936-1_12

References II

Michael Shulman (2019). All (∞, 1)-toposes have strict univalent
universes. arXiv: 1904.07004 [math.AT].

Matthjis Vákár (2014). Syntax and Semantics of Linear Dependent
Types. arXiv: 1405.0033 [cs.AT].

25

https://arxiv.org/abs/1904.07004
https://arxiv.org/abs/1405.0033

	Dependent Type Theory
	Cohesive Type Theory
	Spectra and Parameterised Spectra
	References

