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1 Introduction

These notes provide a more or less detailed account on the intersection theory for
divisors on an arithmetic surface, which was first introduced by Suren Arakelov
in 1974 [1]. Important contributions to the topic were made by Gerd Faltings
in 1984 [5], developing a series of ideas that would lead to the proof of Mordell’s
conjecture.

These works constitute the starting point of the theory that later received
the name of arithmetic intersection theory, developed after 1990 after the intro-
duction of arithmetic Chow groups by Henri Gillet and Christophe Soulé [6] and
the generalisation of the theory of Arakelov to arithmetic schemes of arbitrary
dimension. A very important part of the theory is the development of a the-
ory of arithmetic K-groups and the connections between arithmetic K-theory
and arithmetic Chow theory. An important example of such a connection is
the arithmetic Riemann-Roch theorem of Gillet and Soulé [7], which was first
proved in the case of surfaces by Faltings in [5].

The contents of these notes cover the basics which are necessary to define
the Arakelov intersection pairing and to show its invariance under linear equiv-
alence. Very little knowledge of analytic geometry has been assumed, and this
is why there is a whole section containing the necessary ingredients: integration
of differential forms on and the existence of the Green function of a compact
analytic manifold.

It is not discarded that these notes will be enlarged in the future to include
the proof of the adjunction formula, Riemann-Roch theorem and some results
on Arakelov intersection theory on models of elliptic curves.

2 Ingredients of complex geometry

We review a few notions of complex geometry that play a very important role
in Arakelov theory. We refer to [12] for a more detailed account on the topics
covered in this section.

Let i =
√
−1.

2.1 Complex structure on and complexification of a real
vector space

Definition 2.1. Let V be a real vector space. A complex structure on V is an
R-linear endomorphism J : V → V such that J2 = −IdV .
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A real vector space V together with a complex structure J can be equipped
with the structure of a complex vector space by defining

(x+ iy)v := xv + yJ(v), x, y ∈ R, v ∈ V. (1)

We shall denote the resulting complex vector space by VJ .
Conversely, if V is a complex vector space, then it may also be considered

as a real vector space by restriction of scalars. Scalar multiplication by i is an
R-linear endomorphism which induces a complex structure on V .

Example 2.2. The components of any element (z1, . . . , zn) ∈ Cn may be writ-
ten in the form zj = xj + iyj for some xj , yj ∈ R, 1 ≤ j ≤ n. The vector
(z1, . . . , zn) may then be identified with the vector (x1, y1, . . . , xn, yn) ∈ R2n.
The complex structure on R2n induced by scalar multiplication by i is

J(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn). (2)

Of course, there are other different complex structures on R2n, some of which
are not C-linearly equivalent to Cn.

Definition 2.3. Let V be a real vector space. The complex vector space

VC := V ⊗R C (3)

obtained by base change is called the complexification of V .

A complex structure J on V extends to a C-linear endomorphism of VC by
setting

v ⊗ z 7→ J(v)⊗ z (4)

for any v ∈ V , z ∈ C. We will also denote this map by J . The identity
J2 = −IdVC still holds; it follows that J has two eigenvalues ±i.

Definition 2.4. We will denote by V 1,0 (resp. V 0,1) the eigenspace of VC of
eigenvalue i (resp. −i).

Hence, we have a decomposition of complex vector spaces

VC = V 1,0 ⊕ V 0,1. (5)

Definition 2.5. Conjugation of complex numbers extends to an R-linear auto-
morphism of VC by setting

v ⊗ z := v ⊗ z, v ∈ V, z ∈ C. (6)

It is easy to check that V 1,0 'R V 0,1 and that VJ is C-linearly isomorphic
to V 1,0.

2.2 Affine complex manifolds, complex manifolds and lo-
cal coordinates

We start discussion of complex manifolds by showing the very important exam-
ple of open sets in Cn.
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Definition 2.6. The polydisk of radius ε = (ε1, . . . , εn), εi ∈ R>0 centered at
a ∈ Cn is the following set:

∆n
a,ε := {z ∈ Cn; |zi − ai| < εi} . (7)

The topology on Cn obtained by taking the set of all polydisks as a basis is
called the complex topology. It is equivalent to the euclidean topology.

Definition 2.7. Let U be a domain in Cn (i.e. U is open and connected). A
function f : U → C is holomorphic (or analytic) at a ∈ U if and only if there
exists a polydisk ∆n

a,ε ⊂ U in which f can be represented as a convergent power
series

f(z) =
∑
α≥0

cα(z − a)α, (8)

where cα ∈ C, α = (α1, . . . , αn) ∈ Zn and (z−a)α = (z1−a1)α1 · · · (zn−an)αn .
We say that f is holomorphic on U if it is holomorphic at every point in U .

As being holomorphic is a local property, the rings of holomorphic functions
on open sets of U define a sheaf HU . This sheaf is obviously a subsheaf of the
sheaf of continuous functions on U , and the pair (U,HU ) is a ringed space.

Definition 2.8. An affine complex manifold of dimension n is a ringed space
of the form (U,HU ), with U a domain in Cn and HU the sheaf of holomorphic
functions on it.

Definition 2.9. A complex manifold of dimension n is a ringed topological
space (X,H) which is Hausdorff and regular and such that it is locally iso-
morphic to an affine complex manifold. We will call the sheaf H the sheaf of
holomorphic functions on X.

Remark 2.10. Polynomials are a good example of holomorphic functions. We
may establish relations between algebraic sets and affine complex manifolds,
which lead to very deep relations between complex varieties and complex man-
ifolds. This is the object of study of Serre’s GAGA [11]. At the heart of these
relations there is a functor from projective complex varieties to compact complex
manifolds which is an equivalence of categories.

On a different level, the identification C ' R2 lets us realise that X is locally
isomorphic to an open set of R2n, and thus it has the structure of a (real) smooth
manifold of dimension 2n.

According to this, a complex variety can be viewed both as a complex man-
ifold and as a real smooth manifold. The interplay between these different
structures is one key ingredient of Arakelov theory.

Remark 2.11. In complex analysis of several variables, the adjectives holo-
morphic and analytic are used as synonyms, and their definition is as in 2.7.
This is a stronger property than being complex-differentiable (i.e: satisfying the
Cauchy-Riemann equations). More precisely, for an open set U ⊂ Cn, a func-
tion f : U → C is holomorphic if and only if it satisfies the Cauchy-Riemann
equations and it is square-integrable.

A complex manifold (X,H) may be covered by open sets Ui such that, for
every i, Ui is isomorphic to an affine complex manifold U ⊂ Cn. This means
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that points in P ∈ Ui may be identified with their complex coordinates z =
(z1, . . . , zn) ∈ U and that holomorphic functions in H(Ui) may be identified
with holomorphic functions on U .

If z1, . . . , zn are complex coordinates on an open set of X, we may write
zj = xj + iyj , 1 ≤ j ≤ n with x1, y1, . . . , xn, yn real coordinates on the same
open set of XR. By setting zj = xj − iyj , we also have z1, z1, . . . , zn, zn as real
coordinates on the same open set.

2.3 Differential study of complex manifolds

Until the end of the section, (X,H) will denote a complex manifold of dimension
n.

The symbol CR will denote the sheaf of real-valued smooth functions on X,
in the sense of differential geometry, and C := CR ⊗R C will denote the sheaf of
complex-valued smooth functions on X. We have natural inclusions of sheaves
CR ⊂ C and H ⊂ C.

In order to avoid confusion, we will denote the real manifold given by (X, CR)
by XR.

Let TX and T ∗X denote respectively the holomorphic tangent and cotangent
bundles of X. These are locally free H-modules of rank n. Similarly, denote
by TXR and T ∗XR the smooth tangent and cotangent bundles on XR. Let us
consider the complexifications

TXC = TXR ⊗R C, T ∗XC = T ∗XR ⊗R C. (9)

The linear algebra developed in the previous section applies in this situation
without much effort.

Let us focus on TXC; the definitions, results and notations for T ∗XC are
completely analogous.

Proposition 2.12. Let x ∈ X. The fibre TxXR is canonically isomorphic (as
real vector spaces) to the underlying real vector space of TxX. This induces a
complex structure Jx on TxXR.

Proof. We take three steps to construct the complex structure. Further details
may be found in [12], Chap. 1, Example 3.2.

Step 1. For the affine manifolds Cn and R2n, the complex structure is defined
by example 2.2.

Step 2. Fix an affine holomorphic neighbourhood x ∈ U ⊂ X. Define Jx :
TxXR → TxXR by pull-back of the structure defined in Step 1.

Step 3. Jx is well-defined. This follows from the Cauchy-Riemann equations
of the biholomorphic change of coordinates that arises when picking a different
affine holomorphic neighbourhood.

Definition 2.13. If J : TXR → TXR is a CR-linear endomorphism such that
for every x ∈ X Jx is a complex structure on TxXR, we shall say that (XR, J)
is an almost complex manifold.
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Proposition 2.14. The complex manifold (X,H) induces the structure of an
almost complex manifold on XR.

Proof. By proposition 2.12, we only need to show that J : TXR → TXR is a
morphism of CR-modules. In other words, we need to show that the map Jx is
smooth with respect to x ∈ X. We check CR-linearity locally. Let U ⊂ X be an
open set such that

TXR|U ' C2n
R |U . (10)

In this trivialization, for sections (ξ1, η1, . . . ξn, ηn), we have

J(ξ1, η1, . . . , ξn, ηn) = (−η1, ξ1, . . . ,−ηn, ξn), (11)

which is easily seen to be CR-linear.

Remark 2.15. Almost complex structures on complex manifolds do not nec-
essarily arise from the complex structure. As an example, the sphere S6 carries
an almost complex structure induced by S7 viewed as the set of octonions of
norm 1. It is unknown if S6 carries a complex structure.

As TXR has a complex structure J , we can extend J to a C-linear automor-
phism of TXC satisfying J2 = −IdTXC . The linear algebra from the previous
section applies without further effort. In particular,

• We have a C-linear decomposition TXC = TX1,0 ⊕ TX0,1.

• Complex conjugation interchanges the eigenspaces: TX1,0 = TX0,1.

• There are canonical C-linear isomorphisms TX ' (TXR)J ' TX1,0.

Remark 2.16. We shall identify TX and TX1,0 from now on. We shall also
use the notations T ∗X1,0, T ∗X0,1, etc. for the objects which are analogous to
those we have constructed when TX is replaced by T ∗X.

We briefly indicate how complex manifolds are oriented real manifolds.

Definition 2.17. Let (X, CR) be a smooth real manifold, and let F be a rank
k locally free CR-sheaf on X. We say that F is orientable if there exists an
affine open cover X = ∪αUα and a non-zero section ωα ∈ ∧kF|Uα

for every α
such that at every point x ∈ Uα ∩ Uβ there is a positive real number λ such
that (ωα)x = λ(ωβ)x. If F is orientable, then the collection {(Uα, ωα)} is called
an orientation of F . Finally, we say that X is orientable if its tangent bundle
admits an orientation.

We remark that having chosen an orientation on a complex real manifold,
the coordinate change maps

ρα,β : Uα ∩ Uβ → Uα ∩ Uβ (12)

have positive jacobian.

Proposition 2.18. A complex manifold is an oriented real smooth manifold.

Proof. This is a consequence of the Cauchy-Riemann equations.

It is important to stress the fact that if (X,H) is a complex manifold, then
XR has a natural orientation. From now on, and especially when defining inte-
gration, we will assume that this is the integration given on XR.
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2.4 Sheaves of complex differential forms

We shall work directly with the sheaf C of complex valued smooth functions on
X, as we are primarily interested in the relation between this sheaf and H.

Definition 2.19. We denote by Ek the sheaf of complex differential k-forms on
(X, C). Hence,

• E0 := C,

• E1 := T ∗XC,

• Ek :=
∧k E1, k ≥ 0.

Lemma 2.20 (Poincaré). Exterior differentiation extends to the complex E• to
give an exact sequence

0 → C → E0 d→ E1 d→ E2 → · · · . (13)

Definition 2.21. We have E1
X = T ∗XC. Let E1,0 := T ∗X1,0 and E0,1 :=

T ∗X0,1. By taking exterior powers, the decomposition E1 = E1,0 ⊕ E0,1 carries
on to a decomposition

Ek =
⊕

p+q=k

Ep,q, (14)

where

Ep,q :=
p∧
E1,0 ∧

q∧
E0,1. (15)

We will refer to Ep,q as the sheaves of complex differential forms on X of type
(p, q).

Exterior differentiation maps forms of type (p, q) to Ep+1,q ⊕ Ep,q+1, and
hence can be written as the sum of two morphisms d = ∂ + ∂, with

∂ : Ep,q → Ep+1,q, ∂ : Ep,q → Ep,q+1. (16)

Definition 2.22. We will say that ∂ is the holomorphic exterior differential
operator, and that ∂ is the antiholomorphic exterior differential.

Proposition 2.23. We have ∂2 = ∂
2

= ∂∂ + ∂∂ = 0.

Proof. We have 0 = d2 = (∂ + ∂)2 = ∂2 + ∂∂ + ∂∂ + ∂
2
. By comparison of the

different types of forms, we reach the conclusion.

Definition 2.24. The module Ωp of holomorphic differential p-forms on X
consists of exactly those forms in Ep,0 that are mapped to zero by the antiholo-
morphic exterior differential. In other words,

Ωp = Ker
(
∂ : Ep,0 → Ep,1

)
. (17)

It is not difficult to see that the sequence

0 → C → Ω0 ∂→ Ω1 ∂→ Ω2 → · · · (18)

is a resolution of the constant sheaf C.
What has been explained in this section constitutes a starting point for

the study of Hodge theory. This theory is concerned with the study of the
cohomology groups Hp,q(X) := Hp(X,Ωq) and their properties.
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2.5 Integration of forms on a complex manifold

In this section we review the basic definitions of integrals of differential forms
on a complex manifold (X,H) of complex dimension n. In fact, it is only
necessary to take the underlying differential structure of XR into account. A
simple introduction to the topic may be found in [4]. We do not proof the
existence of partitions of unity. Integration of differential forms on a smooth
manifold depends on the choice of an orientation; we assume XR is endowed
with the orientation coming from the complex structure.

For simplicity in the exposition, let us assume that X is compact: an anal-
ogous theory of integration may be obtained if we replace differential forms on
a compact manifold by compactly supported differential forms on a not neces-
sarily compact manifold. Also for simplicity, we will only define integration of
volume forms, that is, sections of E2n; integration of forms of lower degree may
also be defined by using the corresponding definitions of integrals of forms in
euclidean space.

Let ω ∈ E2n(U) for some open set U ⊂ X. Let K be the support of ω, that
is the closure of the set of points x ∈ X such that ωx 6= 0. The set K is compact
in X. We define the integral of ω on U in three steps.

Step 1. Assume there is an affine neighbourhood Uα such that K ⊂ Uα. Then,
in local coordinates (x1, y1, . . . , xn, yn) we have

ω = fα · dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn (19)

for some fα ∈ C(Uα). We define∫
X

ω =
∫

K

ω =
∫

Uα

fα · dx1dy1 · · · dxndyn, (20)

where the right-hand side is to be computed as an integral in R2n.

Step 2. It is necessary to check that this definition is consistent with changes
of coordinates. Assume K ⊂ Uβ for some other affine open set of X. Let
(ξ1, η1, . . . , ξn, ηn) be coordinates on Uβ . The isomorphism

ρα,β : Uα ∩ Uβ → Uα ∩ Uβ (21)

that changes coordinates from Uβ to Uα is a smooth function between two open
sets in R2n which preserves orientation, i.e: its jacobian J(ρα,β) is positive. We
have

ωβ = J(ρα,β)fβ · dξ1 ∧ dη1 ∧ · · · ∧ dξn ∧ dηn, (22)

where fβ = fα ◦ ρα,β . The jacobian transformation formula tells us∫
Uα

fα · dx1dy1 . . . dxndyn =
∫

Uβ

J(ρα,β)fβ · dξ1dη1 . . . dξndηn, (23)

giving the invariance of the definition of the integral with respect to the affine
neighbourhood in which the support of ω is contained. Notice that this definition
is not correct if an orientation of X is not chosen beforehand.
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Step 3. We need to extend the definition to forms whose support is not nec-
essarily contained in an affine neighbourhood. Let {Ui}1≤i≤r be a finite affine
covering of X, and let {ϕi}i be a partition of unity subordinated to this cov-
ering. Let us recall what this means: for every i, ϕi is a smooth real-valued
function on X, the support of ϕi is contained in Ui, and 0 ≤ ϕi ≤ 1. Finally,
we have

∑r
i=1 ϕi = 1.

The support of the form ϕiω is contained in Ui. By using the previous steps,
we may define ∫

X

ω =
r∑

i=1

∫
X

ϕiω. (24)

Step 4. This last definition does not depend on the choice of finite affine cov-
ering and partition of unity subordinated to the covering. Suppose {Vj}1≤j≤s

is another finite affine covering of X and that {ψj}j is a partition of unity
subordinated to this covering.

We have that {Ui ∩ Vj}i,j is a new finite affine covering of X, and that
{ϕiψj}i,j is a partition of unity subordinated to this covering. We have

r∑
i=1

∫
X

ϕiω =
s∑

i=1

∫
X

ϕi

 s∑
j=1

ψj

ω =
∑
i,j

∫
X

ϕiψjω. (25)

On the other hand, we also have

s∑
j=1

∫
X

ψjω =
s∑

j=1

∫
X

ψj

(
r∑

i=1

ϕi

)
ω =

∑
i,j

∫
X

ϕiψjω, (26)

and hence the two definitions of the integral are equivalent.

2.6 Hermitian metrics on a locally free sheaf

Let F be a locally free coherent H-module.

Definition 2.25. An hermitian metric on F is a pairing

〈·, ·〉 : F × F → C (27)

which defines an hermitian inner product on the fibres F(P ) := FP /mX,PFP of
F above any point P ∈ X. We recall that the fibre F(P ) is a finite dimensional
C-vector space. We shall say that (F , 〈·, ·〉) is an hermitian sheaf. The complex
manifold (X,H) is said to be an hermitian manifold if TX is equipped with an
hermitian metric.

Remark 2.26. The following are consequences of the previous definition, for
an hermitian sheaf (F , 〈·, ·〉) on X:

1. The pairing 〈·, ·〉 is H-linear in the first component.

2. For any two sections ξ, η of F , we have 〈ξ, η〉 = 〈η, ξ〉.

3. The pairing is positive definite, which means that for any section ξ of F ,
the smooth function 〈ξ, ξ〉 takes positive real values.
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Theorem 2.27 ([12], Chap. 3, Theorem 1.2). Every locally free coherent H-
module admits an hermitian metric.

There is a natural way to define metrics on all the usual H-module opera-
tions such as direct sums, tensor products, homomorphism spaces, duals, etc.
provided that the modules we start with are equipped with an hermitian metric.

2.7 Riemann surfaces. Curvature and volume forms

Let us specialise the previous results to the case of Riemann surfaces, that is, to
complex manifolds (X,H) of complex dimension 1. For the rest of this section,
X will denote a compact, connected Riemann surface of genus g > 0.

Definition 2.28. Let L be an hermitian sheaf on X. The curvature of L is a
(1, 1)-form on the surface defined as follows. Let s ∈ L(X), s 6= 0. Then,

curvL := ∂∂ log ‖s‖2 ∈ E1,1. (28)

The definition of the curvature does not depend on the choice of global
section s, since the quotient of two different non-zero global sections of L is a
constant function on X.

Proposition 2.29. The curvature form of an hermitian line bundle satisfies∫
X

curvL = 2πidegL. (29)

Proof. The result follows easily from Stokes’ formula. See [8], Proposition 4.1.
We remark that this book refers to the curvature of the line bundle as the first
Chern form of the metric, and denotes it by c1(ρ).

It is important to be aware that in the case of Riemann surfaces, dimC E1,0 =
dimC E0,1 = 1. From here, we deduce that E2,0 = E0,2 = 0.

Definition 2.30. A volume form on X is a global section of E2 = E1,1 that is
nowhere zero.

Remark 2.31. A volume form ω on X defines a Borel measure µω on X by
setting

µω(U) =
∫

U

ω (30)

for any Borel set U of X.

We have a natural hermitian product on global sections of Ω1 defined by
integration

Ω1(X)× Ω1(X) −→ C
(ω, η) 7−→ i

2

∫
X
ω ∧ η. (31)

Let ω1, . . . , ωg be an orthonormal basis for this hermitian product and let

µ :=
i

2g

g∑
k=1

ωk ∧ ωk ∈ E1,1. (32)
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It is very easy to check that µ is a volume form on X that does not depend on
the choice of orthonormal basis. Moreover, we have∫

X

µ = 1. (33)

Definition 2.32. We say that µ is the canonical volume form on X.

2.8 The Arakelov-Green function of a Riemann surface

Theorem 2.33. There is a unique function G : X ×X → R≥0 such that

1. G ∈ CR(X ×X) and vanishes only at the diagonal ∆X ⊂ X ×X.

For a point P ∈ X, let GP = G(P, ·) : X → R≥0.

2. For any point P ∈ X, any affine open neighbourhood U of P with local
coordinate z, we have

logGP (z) = log |z − P |+ f(z) (34)

for z ∈ U \ {P} and some f ∈ CR(U).

3. For any P ∈ X, ∂∂ logGP = 2πiµ at points Q 6= P .

4. For any P ∈ X,
∫

X
logGPµ = 0.

Remark 2.34. Condition 2 in the statement of the theorem says that one may
think of GP as a uniformizer for the local ring CR,P .

Condition 3 says that GP is the solution to a partial differential equation
while condition 4 expresses a contour condition. Hence, we may think that
the existence of G is provided by condition 3, while uniqueness is provided by
condition 4.

Proof. We refer to [1], Section 2 for proof of existence.
In order to proof uniqueness of G, suppose that G,H are two functions

satisfying all the conditions in the statement. At any point P ∈ X, we have

∂∂ log
GP

HP
= 0 (35)

by condition 3. This last equation implies that logGP /HP is a harmonic func-
tion on X, while condition 1 implies that it is smooth. Hence, logGP /HP is a
constant function on X. Finally, condition 4 ensures that this constant is zero.
Therefore, for every point P ∈ X, we have GP = HP .

Definition 2.35. We say that G is the Arakelov-Green function of X.

Notation. Many conditions regarding the Green function of a point P ∈ X
need to be stated in terms of the logarithm of GP . So let us denote, from now
on, gP := logGP . We have gp : X \ {P} → R.

Given a divisor D =
∑
niPi on X, we denote

gD :=
∑

nigPi . (36)

The function gD is defined for points in X \ Supp(D).
In particular, we shall write g(D,P ) = gD(P ) for any point. Finally, using

this convention the notation g(D,E) for two effective divisors D,E on X makes
sense.
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Notation. Let us recall that d = ∂ + ∂, and let us denote

dc =
1

4πi
(∂ − ∂), (37)

so that we have
ddc =

i

2π
∂∂. (38)

Theorem 2.36 (Symmetry of the Green function). Let P 6= Q be two points
on X. Then gP (Q) = gQ(P ).

Proof. The symmetry of the Green function is a direct consequence of Stokes’
formula. Let us compute the integral

i

2π

∫
X

(
gP∂∂gQ − gQ∂∂gP

)
(39)

in two different ways. First, the defining properties of gP and gQ imply:

i

2π

∫
X

(
gP∂∂gQ − gQ∂∂gP

)
=

i

2π

∫
X

(2πigP · µ− 2πigQ · µ) = 0. (40)

Now let z be a coordinate about P or Q, ε > 0 a real positive num-
ber and UP (ε), UQ(ε) be open neighbourhoods of P and Q, respectively on
X, corresponding to discs around P and Q defined by |z| < ε. Let Y (ε) =
X \ (UP (ε) ∪ UQ(ε)). Finally, let ω = gP d

cgQ − gQd
cgP . We have

i

2π

∫
X

(
gP∂∂gQ − gQ∂∂gP

)
=
∫

X

(gP dd
cgQ − gQdd

cgP ) = lim
ε→0

∫
Y (ε)

(gP dd
cgQ − gQdd

cgP ) .

(41)
A very quick computation yields

gP dd
cgQ − gQdd

cgP = d (gP d
cgQ − gQd

cgP ) = dω, (42)

and by Stokes’ formula we deduce∫
Y (ε)

dω = −
∫

∂UP (ε)

ω −
∫

∂UQ(ε)

ω. (43)

Let us fix our attention at P in order to compute the first integral on the
right-hand side of this last equation. The computation of the second integral is
completely analogous. We claim:

lim
ε→0

∫
∂UP (ε)

gP d
cgQ = 0, (44)

lim
ε→0

∫
∂UP (ε)

gQd
cgP = gQ(P ). (45)

Checking this claim is a computation that we leave to the reader: gP = log r2+v
in polar coordinates (r, θ), and for h smooth on the circle of radius r,

dch =
r

4π
∂h

∂r
· dθ. (46)

Finally, we may compare the two computations of (39) to obtain:

0 =
i

2π

∫
X

(
gP∂∂gQ − gQ∂∂gP

)
= gQ(P )− gP (Q). (47)
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The Arakelov-Green function of X gives rise to certain hermitian metrics
on invertible holomorphic sheaves that we will distinguish. To show how these
metrics may be obtained, it is enough to consider the case of an hermitian
invertible sheaf H(P ) that is associated to the divisor of a point P ∈ X, as we
may obtain every invertible sheaf as a tensor product of sheaves associated to a
divisors of points on X.

In this situation, the constant function 1 is a distinguished section of H(P )
and we may set, for any Q ∈ X,

‖1‖Q := G(P,Q). (48)

This defines an hermitian metric on H(P ), and it is very easy to check, using
property 3 of the Arakelov-Green function, that the curvature of H(P ) as an
hermitian invertible sheaf with this metric is equal to µ. In general, if D is any
divisor on X, the metric that we have constructed on H(D) satisfies

curvH(D) = degD · µ (49)

Definition 2.37. We will say that an hermitian line bundle is admissible if
its curvature form is a multiple of µ. In such a situation, we will also call the
metric ‖ · ‖ admissible.

Proposition 2.38. Two admissible metrics on a holomorphic invertible sheaf
on X are equal up to multiplication by a constant.

Proof. Let ‖ · ‖ and ‖ · ‖′ be two admissible metrics on a holomorphic invertible
sheaf L. We have

∂∂ log
‖ · ‖
‖ · ‖′

= ∂∂ log ‖ · ‖ − ∂∂ log ‖ · ‖′ =
degL

2
· µ− degL

2
· µ = 0. (50)

Hence, the function ‖ · ‖/‖ · ‖′ is smooth and harmonic on X. Therefore, it is
constant.

Let us briefly sketch the steps which are necessary in order to prove the
existence of the Green function using admissible metrics on invertible sheaves.

Proposition 2.39 ([1], Proposition 2.1). Let L be an invertible sheaf on X.
There exists an admissible hermitian metric on L.

The proof of this theorem is complicated, but the metric on L is not defined
using the Green function of X.

Example 2.40. We define a metric on P1
C by stating that its volume form is

µ =
i

2π
dz ∧ dz

(1 + |z|2)2
. (51)

We stress the fact that this is a genus zero surface, and as such it does not have
a canonical metric defined via a scalar product on Ω1(X); this space is zero.

The green function of P1
C with respect to µ is given at a point P by

GP (z) =
e

1
2 |P − z|

(1 + |P |2) 1
2 (1 + |z|2) 1

2
. (52)
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3 Arakelov intersection theory on arithmetic
surfaces

The main references for this part of the notes is [3]. The original work of
Arakelov [1] may also provide a good insight of the topic. Other available
references are [2], Chapter XII and [8].

Let us fix notations. Let K be a number field and OK its ring of integers.
Let S := SpecOK and denote its generic point by η.

Let p : X → S be an arithmetic surface. That is: X is a regular 2-
dimensional scheme, p is a proper and flat morphism of schemes and the generic
fibre Xη is a geometrically connected curve over K.

Let Σ denote the set of archimedean places of K. An archimedean place
σ ∈ Σ is an embedding of K into R or C, with the convention that if we are
dealing with the latter case we shall assume that σ /∈ Σ. For a complex place
of K, | · |σ will denote the square of the (usual) complex module, so that the
product formula for K may be written as∏

p∈S

|a|p ×
∏
σ∈Σ

|a|σ = 1, a ∈ K×. (53)

Every archimedean place of K gives rise to a Riemann surface related to X
in the following way. For σ ∈ Σ, let Kσ denote the completion of K at σ. Let
XKσ = X ×S Kσ = X ×K Kσ. Then

Xσ := XKσ
(Kσ) (54)

is the set of complex points of a complex algebraic curve, and may be viewed
as a Riemann surface in a natural way.

Definition 3.1. We shall call Xσ the fibre of X above σ.

We will also need a formal symbol Fσ for every σ ∈ Σ. We will also call Fσ

the fibre of X over σ; no confusion shall arise as we may identify Fσ and Xσ

from a formal point of view.
For every archimedean place σ ∈ Σ, let µσ denote the canonical volume

form on Xσ previously introduced, and let Gσ : Xσ × Xσ → R≥0 denote the
corresponding Arakelov-Green function. Correspondingly, denote gσ = logGσ.

Notation. Let D = {y} be an irreducible horizontal divisor on X, with y ∈ Xη.
Let σ ∈ Σ. There are at most n = [k(y) : K] points y1, . . . , yn ∈ Xσ which lie
over y. These are the points of D on the archimedean fibre Xσ. For a shorthand
notation, we shall denote

Dσ :=
n∑

i=1

yi (55)

as a divisor on X.

3.1 Arakelov divisors. Linear equivalence

Definition 3.2. The group of Arakelov divisors on X is the group

D̂iv(X) := Div(X)⊕
⊕
σ∈Σ

R · Fσ, (56)
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where Div(X) denotes the group of Weil divisors on X. Thus, an Arakelov
divisor on X is an expression of the type

D = Dfin +Dinf , (57)

where Dfin is a Weil divisor on X and

Dinf =
∑
σ∈Σ

ασFσ, ασ ∈ R. (58)

Definition 3.3. Let f ∈ K(X)×. We associate an Arakelov divisor to f in the
following way:

(f) = (f)fin + (f)inf , (59)

where (f)fin is the principal Weil divisor associated to f and

(f)inf =
∑
σ∈Σ

vσ(f) · Fσ, (60)

with
vσ(f) := −

∫
Xσ

log |f |σ · µσ. (61)

Arakelov divisors of the form (f) for some f ∈ K(X)× shall be called principal
Arakelov divisors in the sequel.

It is very easy to check that principal Arakelov divisors form a subgroup of
D̂iv(X).

Definition 3.4. Two Arakelov divisors are said to be linearly equivalent if their
difference is a principal Arakelov divisor. We shall denote the group of Arakelov
divisors modulo linear equivalence by Ĉl(X). We shall refer to this group as the
class group of Arakelov divisors on X.

The analogous definitions of Arakelov divisors, principal Arakelov divisors
and class group of Arakelov divisors may be given for S, we recover the defini-
tions in [10], Chapter III. In particular,

D̂iv(S) = Div(S)⊕
⊕
σ∈Σ

R · Fσ, (62)

the group Div(S) being isomorphic to the group of fractional ideals of K. The
group Ĉl(S) may be defined in a similar manner. We have surjective group
homomorphisms

D̂iv(X) � Div(X) (63)

D̂iv(S) � Div(S) (64)

which factor through linear equivalence and give two epimorphisms

Ĉl(X) � Cl(X) (65)

Ĉl(S) � Cl(S). (66)

Finally, we have a pull-back group homomorphism p∗ : Ĉl(S) → Ĉl(X)
which is given by the pull-back of Weil divisors along the morphism p : X → S.
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3.2 Arakelov intersection pairing

We define the Arakelov intersection pairing by its properties in the following
proposition.

Proposition 3.5. The Arakelov intersection pairing is the unique symmetric
bilinear pairing

(·, ·) : D̂iv(X)× D̂iv(X) → R (67)

satisfying the following conditions:

1. If D1 = (D1)fin is a Weil divisor and D2 is a vertical Weil divisor that
has no common components with D1,

(D1, D2) =
∑
s∈S0

is(D1, D2) log #k(s), (68)

where is is the intersection multiplicity of D1 and D2 above a closed point
s ∈ S (cf. [9], Theorem 9.1.12; see remark 3.6).

2. If D1 is a horizontal divisor, (D1, Fσ) = eσ degD1 for every σ ∈ Σ, where
eσ = [Kσ : R].

3. If D1 and D2 are horizontal irreducible divisors, define

(D1, D2) = (D1, D2)fin + (D1, D2)inf (69)

with
(D1, D2)fin =

∑
s∈S0

is(D1, D2) log #k(s) (70)

and
(D1, D2)inf = −

∑
σ∈Σ

eσgσ(Dσ
1 , D

σ
2 ). (71)

4. If D is a vertical Weil divisor, (D,Fσ) = 0 for every σ ∈ Σ.

5. For every σ, τ ∈ Σ, (Fσ, Fτ ) = 0.

Proof. The proof of the proposition amounts to showing that the conditions
exposed in the statement determine a unique symmetric bilinear pairing.

Remark 3.6. For greater convenience, we review the definition of the usual
intersection pairing for Weil divisors on a regular fibred surface, given in [9],
Sections 9.1.1 and 9.1.2.

First, for two effective divisors D1, D2 on X with no common component
and a closed point x ∈ X, define the local intersection index of D1 and D2 at x
as

ix(D1, D2) := lengthOX,x

(
OX,x

OX(−D1)x +OX(−D2)x

)
. (72)

Second, if D1 and D2 are two divisors on X with no common component,
write each of them as a difference of effective divisors and use bilinearity and
(72) to define ix(D1, D2).
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Third, if s ∈ S is a closed point, let Divs(X) denote the subgroup of Div(X)
generated by the irreducible components of Xs. There exists a unique bilinear
map

is : Div(X)×Divs(X) → Z (73)

which, among other characterising properties, is invariant under linear equiva-
lence on the first component, is symmetric when restricted to Divs(X)×Divs(X)
and satisfies

is(D1, D2) =
∑

x∈(Xs)0

ix(D1, D2) [k(x) : k(s)] (74)

whenever D1 and D2 have no common component.
The pairing is may be correctly defined a posteriori if we use formula (74),

invariance under linear equivalence and the moving lemma.

The strength of this new intersection index for Arakelov divisors is a conse-
quence of the following theorem, first proved in [1].

Theorem 3.7. The pairing defined above is invariant under linear equivalence.
That is, the map (67) factors to a bilinear symmetric pairing

Ĉl(X)× Ĉl(X) → R. (75)

Before proving this result, we will compute the Green function attached to
the divisor of a meromorphic function on a Riemann surface. We do this in the
lemma below.

Lemma 3.8. Let σ ∈ Σ. For a meromorphic function f on Xσ and a point
P ∈ Xσ, we have

Gσ ((f), P ) = evσ(f) · |f |(P ) (76)

Proof. Let P ∈ Xσ \ Supp(f). Since f is holomorphic away from Supp(f),
at these points we have ∂∂ log |f | = 0. We also have that ∂∂gσ ((f), P ) = 0,
because deg(f) = 0. Combining these two facts, we deduce that

Gσ ((f), P ) = eα · |f |(P ) for some α ∈ R. (77)

Finally, we may take logarithms and integrate to find

0 =
∫

Xσ

logGσ ((f), P ) · µσ = α+
∫

Xσ

log |f |σ · µσ. (78)

From here we deduce that α = vσ(f).

Proof of Theorem 3.7. It is enough to show that, given f ∈ K(X)× and D =
{y} an irreducible horizontal curve on X for some y ∈ Xη, we have ((f), D) = 0.
Let n = [k(y) : k] and denote the n points of Xσ over y by yσ

1 , . . . , y
σ
n, for every

σ ∈ Σ. Let us write

((f), D) = ((f)fin, D)fin + ((f)fin, D)inf + ((f)inf , D) (79)

and consider the three summands in the right-hand side separately.
The third summand is easy to compute:

((f)inf , D) =
∑
σ∈Σ

vσ(f) · (Fσ, D) = n
∑
σ∈Σ

eσvσ(f). (80)
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The other two summands are a bit harder to tackle. We have

((f)fin, D)fin =
∑
s∈S0

is (D, (f)fin) log #k(s). (81)

We may express is as a sum over closed points x ∈ Xs in the following way:

is ((f)fin, D) =
∑

x∈Xs

ix ((f)fin, D) [k(x) : k(s)] . (82)

Since D ≥ 0, we may also restrict to D and compute the intersection index ix
in the following way (cf. [9], Lemma 9.1.4):

ix ((f)inf , D) = multx ((f)fin|D) = vx (f |D) , (83)

with x ∈ D, and vx is the corresponding valuation on k(y).
We get

((f)fin,D)fin =
∑
s∈S0

is ((f)fin, D) log #k(s) = (84)

∑
s∈S0

∑
x∈D∩Xs

vx (f |D) [k(x) : k(s)] log #k(s) = (85)

∑
x∈D0

vx (f |D) log #k(x). (86)

Regarding the last summand, we use Lemma 3.8:

((f)fin, D)inf = −
∑
σ∈Σ

eσgσ ((f)fin , D) = (87)

−
∑
σ∈Σ

eσ

n∑
i=1

log
(
evσ(f) · |f |σ(yσ

i )
)

= (88)

−
∑
σ∈Σ

eσnvσ(f)−
∑
σ∈Σ

∑
x∈Dσ

eσ log |f |σ(x). (89)

Finally, we can add up all three expressions to get

((f), D) =
∑

x∈D0

vx(f |D) log #k(x)−
∑
σ∈Σ

∑
x∈Dσ

eσ log |f |σ(x) = 0 (90)

by the product formula for k(y). We note that the points on Dσ correspond to
the places of k(y) which extend σ.
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