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Abstract

Equivariant K-theory for actions of groupoids is defined and shown to be

a cohomology theory on the category of finite equivariant CW-complexes.

Under some conditions, these theories are representable. We use this fact to

define twisted equivariant K-theory for actions of groupoids. A classification

of possible twistings is given. We also prove a completion theorem for twisted

and untwisted equivariant K-theory. Finally, some applications to proper

actions of Lie groups are discussed.
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Chapter 1

Introduction

Symmetries have always played a very important role in mathematics. In

algebraic topology, these are usually realized by actions of groups on topo

logical spaces. A groupoid is a generalization of a group with the difference

that multiplication is not globally defined. Actions of groupoids give rise

to more general symmetries. Groupoids can also be seen as a generaliza

tions of topological spaces. A particular kind of groupoids, orbifolds, have

been extensively studied lately in algebraic topology, algebraic geometry and

physics. When studying orbifolds, it is convenient to consider two orbifolds

to be the same not when they are isomorphic, but when they satisfy a weaker

condition, called Morita equivalence. In fact, a similar concept, that of weak

equivalence of groupoids, helps us identify when two actions are equivalent

in a sense.

The recent theorem of Freed, Hopkins and Teleman [17, 18, 19] relates

the complex equivariant twisted K-theory of a simply-connected compact

Lie group acting on itself by conjugation to the Verlinde algebra. This result

links information about the conjugation action with the action of the ioop

group on its universal space for proper actions. If we use the language of

groupoids, the two associated groupoids are Morita equivalent. The invari

ance of orbifold K-theory under Morita equivalence [1] also seems to suggest

that the language of groupoids is an appropriate framework to work with

proper actions. We introduce all the necessary background on groupoids

in chapter 2, as well as new constructions that will allow us to construct

equivariant K-theory for g.roupoid actions.

The complex representation ring of a compact Lie group G can be iden

1



Chapter 1. Introduction

tified with the G-equivariant complex K-theory of a point. Equivariant

complex K-theory is defined via equivariant complex bundles, but this pro

cedure does not give a cohomology theory for proper actions of non-compact

Lie groups in general, as shown in [35]. Phillips constructed an equivari

ant cohomology theory for any second countable locally compact group G

on the category of proper locally compact G-spaces. This is done using

infinite-dimensional complex G-Hilbert bundles. Sometimes it is enough to

use finite-dimensional vector bundles, for example in the case of discrete

groups [28]. In this paper we will construct complex equivariant K-theory

for actions of a Lie groupoid by using extendable complex equivariant bun

dles, defined in section 2.7. These bundles are finite-dimensional, but are

required to satisfy an additional condition which will make sure that we

have a Mayer-Vietoris sequence.

The Grothendieck construction then gives a cohomology theory on the

category of 9-spaces. For any 9-space X, K(X) is a module over K(Go)

and the latter can be identified with Kb(9) when 9 is an orbifold. But

this theory does not satisfy Bott periodicity in general. In fact, it may

fail to agree with classical equivariant K-theory when the action on the

space is equivalent to the action of a compact Lie group. In order to solve

this problem we introduce 9-cells, which are 9-spaces whose 9-action is

equivalent to the action of a compact Lie group on a finite complex. The

condition of Bredon-compatibility makes sure that 9-equivariant K-theory

agrees with classical equivariant K-theory on the 9-cells. This condition

also implies Bott periodicity for finite 9-CW-pairs. The following theorem

is proved in chapter 3:

Theorem 1.0.1. If 9 is a Bredon-compatible Lie groupoid, the groups

K(X, A) define a 7L/2-graded multiplicative cohomology theory on the cat

egory of finite 9-CW-pairs.

Atiyah and Segal twist equivariant K-theory for actions of a compact

Lie group G using G-stable projective bundles [6]. Since stable projective

bundles and sections behave well under weak equivalences, it seems natural
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Chapter 1. Introduction

to use 9-stable projective bundles, which can be defined in an similar way,

to twist 9-equivariant K-theory.

G-equivariant K-theory can be represented by a space of Fredhoim op

erators on a G-stable Hubert space. This is used to construct twisted K-

theory in [6]. For a G-stable projective bundle, we can consider a suitable

bundle of Fredholm operators associated to it and define twisted K-theory

with the sections of this bundle [6]. For actions of groupoids, we have a

representability theorem if we consider not all maps into such a space of

Fredholm operators, but only those which are extendable. The definition of

extendable sections and the space Fred’ (H) can be found in section 3.4.

Theorem 1.0.2. Let H be a stable representation of a Bredon-compatible

finite Lie groupoid 9. Then:

K9(X) = [X,Fred’(H)]t

Choosing all sections of the Fredholm bundle corresponds to choosing all

vector bundles in the untwisted case. To make these new theories an exten

sion of untwisted K-theory, we need to consider extendable sections. Then

we can define twisted 9-equivariant K-theory as the group of extendable

homotopy classes of extendable sections of a suitable Fredholm bundle, that

is, homotopy classes where the homotopies run over extendable sections.

Extending it to all degrees as in [6], we obtain a cohomology theory:

Theorem 1.0.3. If 9 is a Bredon-compatible finite Lie groupoid, the groups

K(X) define a Z/2-graded cohomology theory on the category of finite

9-CW-complexes with 9-stable projective bundles, which is a module over

untwisted 9-equivariant K-theory.

The category of 9-orbits behaves similarly to the corresponding category

for a compact Lie group. In particular, we are able to use some of these

properties to prove an analogue of Elmendorf’s construction [15]. This con

struction is the key to the classification of 9-stable projective bundles. In

fact, we show that isomorphism classes of 9-stable projective bundles over X
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Chapter 1. Introduction

are classified by H (X). This is done by constructing a particular model for

the space that represents H(—) which admits a natural 9-stable projective

bundle on it. Chapter 4 contains all the definitions and results concerning

twisted K-theory.

In chapter 5, we prove corresponding completion theorems for twisted

and untwisted K-theory. We introduce a universal 9 space E9 as the limit

of a sequence of free 9-spaces E’9 as in the case of compact Lie groups. The

quotient of E9 by the 9-action is B9, the classifying space of 9. We can

then form the fibered product X XT E9 over G0 and prove a generalization

of the completion theorem of Atiyah and Segal [5] when 9 is finite, that is,

when G0 is a finite 9-CW-complex:

Theorem 1.0.4. Let 9 be a Bredon-compatible, finite Lie groupoid and X

a finite 9-CW-complex. Then we have an isomorphism of pro-rings

{K(X)/IK(X)} {K(X x’,. E9/9)}

The recent completion theorem for twisted equivariant K-theory for ac

tions of compact Lie groups in [26] provides the necessary results to use

induction over cells. In the twisted case, however, the completion theo

rem will relate the completion of twisted 9-equivariant K-theory of X with

respect to I to the twisted 9-equivariant K-theory of X x’,- E9.

Theorem 1.0.5. Let 9 be a Bredon-compatible finite Lie groupoid, X a

finite 9-CW-complex and P a 9-stable projective bundle on X. Then we

have an isomorphism of K(Go)-modules:

PXE9KTh(X x E9)

Some applications are discussed in chapter 6. When S is a Lie group, not

necessarily compact, we can define twisted equivariant K-theory for proper

actions of S using the groupoid S >i ES, where ES is the universal space

for proper actions of S. These groupoids provide particular instances where

these theorems apply and can be used to study the proper actions of these
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Chapter 1. Introduction

particular groups. The case of compact Lie groups and finite groups were

studied by Atiyah and Segal [5]. Discrete groups are dealt with in [28]. Al

most compact groups and matrix groups are studied in [34]. Proper actions

of pro-discrete groups are shown to be Bredon-compatible in [38]. The re

sults here provide a way to define twisted K-theory for such actions as well

as completion theorems.
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Chapter 2

Groupoids

2.1 Basic facts

In this section we review some basic facts about groupoids. All this material

can be found in [1] and [32].

Definition 2.1.1. A topological groupoid 9 consists of a space G0 of objects

and a space G1 of arrows, together with five continuous structure maps,

listed below.

• The source map s : G1 —* G0 assigns to each arrow g E G1 its source

s(g).

• The target map t : G1 —* G0 assigns to each arrow g E G1 its target

t(g). For two objects x, y Go, one writes g x —+ y to indicate that

g E G1 is an arrow with s(g) = x and t(g) = y.

• If g and h are arrows with s(h) t(g), one can form their composi

tion hg, with s(hg) = s(g) and t(hg) = t(h). The composition map

m: G1 X3,t G1 —p G1, defined by m(h,g) hg, is thus defined on the

fibered product

G1 x,t G1 = {(h,g) e G1 x G1 I s(h) = t(g)}

and is required to be associative.

• The unit map u : G0 —* G1 which is a two-sided unit for the composi

tion. This means that su(x) = x = tu(x), and that gzt(x) = g = u(y)g

forallx,yeGoandg:x—*y.
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Chapter 2. Groupoids

• An inverse map i : G1 —* G1, written i(g) = g’. Here, if g x
—

then g’ : y —* x is a two-sided inverse for the composition, which

means that g’g = u(x) and gg’ =

Definition 2.1.2. A Lie groupoid is a topological groupoid 9 for which

G0 and G1 are smooth manifolds, and such that the structure maps are

smooth. Furthermore, s and t are required to be submersions so that the

domain G1 x,t G1 of m is a smooth manifold.

Example 2.1.3. Suppose a Lie group K acts smoothly on a manifold M.

OnedefinesaLiegroupoidKNMby(K>M)o = Mand(KxM)1= KxM,

with s the projection and t the action. Composition is defined from the

multiplication in the group K. This groupoid is called the action groupoid.

Definition 2.1.4. Let 9 be a Lie groupoid. For a point x e Go, the set

of all arrows from x to itself is a Lie group, denoted by 9 and called the

isotropy group at x. The set ts (x) of targets of arrows out of x is called

the orbit of x. The quotient 191 of G0 consisting of all the orbits in 9 is

called the orbit space. Conversely, we call 9 a groupoid presentation of 191.

Definition 2.1.5. A Lie groupoid 9 is proper if (s, t) : C1 — G0 x G0 is

a proper map. Note that in a proper Lie groupoid, every isotropy group is

compact.

Definition 2.1.6. Let 9 and FC be Lie groupoids. A strict homomorphism

J-C —* 9 consists of two smooth maps g: H0 —> Go and : H1 — G1 that

commute with all the structure maps for the two groupoids.

Given a Lie groupoid 9, we can associate an important topological con

struction to it, namely its classifying space B9. Moreover, this construction

is well-behaved under Morita (weak) equivalence. For ri.> 1, let G be the

iterated fibered product

G = {(gi, ...,g,) I g E G1,s(g) = t(g+1),i = 1, ...,n — 1}

Together with the objects G0, these G have the structure of a sim

plicial manifold called the nerve of 9. Here we are really just thinking of

7



Chapter 2. Groupoids

9 as a category. Following the usual convention, we define face operators

d : G —k G_1 for i =O,...,n, given by

j’ (9,...,9n) ifiO

...,
g) = (ga,

...,
if i =

I otherwise

for 0 <i < n when n> 1. Similarly, we define do(g) s(g) and d1(g) t(g)

when n = 1.

For such a simplicial space, we can glue the disjoint union of the G x /M

as follows, where L is the topological n-simplex. Let ö : —+ z be the

linear embedding of L into as the i-th face. We define the classifying

space of 9 (the geometric realization of its nerve) as the identification space

B9 = JJ(G x )/(d(g),x) (g,ö(x))

This is usually called the fat realization of the nerve, meaning that we

have chosen to leave out identifications involving degeneracies. The two

definitions will produce homotopy equivalent spaces provided that the topo

logical category has sufficiently nice properties. Another nice property of the

fat realization is that if every G has the homotopy type of a CW-complex,

then the fat realization will also have the homotopy type of a CW-complex.

Definition 2.1.7. A smooth left Haar system for a Lie groupoid 9 is a

family {A’ a E Go}, where each A is a positive, regular Borel measure on

the manifold t’ (a) such that:

• If (V,’) is an open chart of G1 satisfying V t(V) x W, and if

Aw is the Lebesgue measure on Rk restricted to W, then for each

a e t(V), the measure o is equivalent to )w, and the map

(a,w) —* d(?o’i/.’a)/dA(w) belongs to C°°(t(V) xW) and is strictly

positive.

8



Chapter 2. Groupoids

• For any x C1 and f C°°(G1), we have

f f(xz)d)(z)
= f f(y)dt(x)(y)

t’ (s(x)) t’ (t(x))

Proposition 2.1.8. Every Lie groupoid admits a smooth left Haar system.

Proof. The proof can be found in [33j. LI

2.2 Equivalent groupoids

Definition 2.2.1. A strict homomorphism : 3-C —* 9 between Lie groupoids

is called an equivalence if:

• The map

t7rj : C1 H0 —+ Go

is a surjective submersion, where the fibered product of manifolds

G1 H0 is defined as {(g,y) I g e Gi,y e Ho,s(g) =

• The square

H1

(s,t) (s,t)

H0xH0 G0xG0

is a fibered product of manifolds.

The first condition implies that every object x e G0 can be connected

by an arrow g : (y) —* x to an object in the image of q5, that is, is

essentially surjective as a functor. The second condition implies that

induces a diffeomorphism

Hi(y,z) —‘G1Q(y),b(z))

9



Chapter 2. Groupoids

from the space of all arrows y — z in H1 to the space of all arrows

(y) —* (z) in C1. In particular / is full and faithful as a functor.

A strict homomorphism ql : J-C —* 9 induces continuous maps

—* and Bg B3-C —* B9. Moreover, if q is an equivalence,

is a homeomorphism and Bb is a homotopy equivalence. This follows

from the fact that an equivalence induces an equivalence of categories.

Definition 2.2.2. A local equivalence 3-C —* 9 is an equivalence with the

additional property that each go e G0 has a neighbourhood U admitting a

lift to Ho in the diagram

Io

G1

U

in which the square is a pullback square.

Definition 2.2.3. Two Lie groupoids 9 and 9’ are Morita equivalent if

there exists a third groupoid FC and two equivalences

9 — :3-f:
— 9’

Definition 2.2.4. Two Lie groupoids 9 and 9’ are weakly equivalent if

there exists a third groupoid 3C and two local equivalences

9 <— }( —9’

10



Chapter 2. Groupoids

2.3 Groupoid actions

Definition 2.3.1. Let 9 be a groupoid. A (right) 9-space is a manifold

E equipped with an action by 9. Such an action is given by two maps

E —* C0 (called the anchor map) and i : E xG0 G1 — E. The latter

map is defined on pairs (e,g) with Tr(e) = t(g) and written u(e,g) = e.g.

They must satisfy ir(e .g) = s(g), e u(7r(e)) = e and (e .g) h = e (gh).

Example 2.3.2. Let M be a 9-space. We can construct the action groupoid

3-C = 9 >i M which has space of objects M and morphisms M x00 G1. This

groupoid generalizes the earlier notion of action groupoid for a group action

and the structure maps are formally the same as in that case.

Definition 2.3.3. Let 9 be a groupoid and let X, Y be 9-spaces. A map

f : X —* Y is 9-equivariant if it commutes with the anchor maps and

satisfies f(x
.
g) = f(x) g whenever one of the sides is defined.

• G0 is a final object in the category of 9-spaces with the action given

by e g = s(g) and projection given by the identity.

• If X and Y are 9-spaces, the fibered product over C0,

X x Y = {(x,y) I r(x) = ir(y)} becomes a 9-space with coordinate-

wise action. In particular X x’,- C0 = X.

• Similarly, if X is a 9-space and Y is any other space, X x Y is a 9-space

with trivial action on the second factor. In fact, XxY = Xx(YxGo).

Let I denote the unit interval [0, 1]. Given a 9-space X with anchor map

lrx, we give X x I the structure of a 9-space with anchor map 7rxxJ(x, )) =

lrx(x) and action (x, A) g = (x
. g, A) when lrxxJ(x, A) = 7rx(x) t(g).

Definition 2.3.4. Let 9 be a groupoid and let f,g X —* Y be two 9-
equivariant maps between two 9-spaces X and Y. We say that f and g are

9-homotopic if there is a 9-map H X x I —* Y such that H(x, 0) = f(x)

and H(x, 1) = g(x) for all x e X. We call H a 9-homotopy between f and

g. This is an equivalence relation and we denote it by f g.

11



Chapter 2. Groupoids

Definition 2.3.5. We say two 9-spaces X and Y are 9-homotopy equivalent

if there are 9- maps f : X —÷ Y and g Y —> X such that fg ly and

gf g 1x•

2.4 Equivariant CW-complexes

Definition 2.4.1. An n-dimensional 9-cell is a space of the form D x U

where U is a 9-space such that 9 x U is weakly equivalent to an action

groupoid corresponding to a proper action of a compact Lie group C on a

finite G-CW-complex.

Definition 2.4.2. A 9-CW-complex X is a 9-space together with an 9-
invariant filtration

ø=X_1çX0çX1c...cxc...cuX=X
n>O

such that X is obtained from X1 for each n 0 by attaching equivariant

n-dimensional cells, that is, there exists a 9-pushout

II U x S1
“iEI q

iEI,

U.
II UxD

iEIr

iEI

and X carries the colimit topology with respect to this filtration.

Definition 2.4.3. A 9-CW-complex X is finite if it is made up out of a

finite number of cells. A 9-CW-complex X is finite-dimensional if there is

a positive integer N such that X = XN.

Definition 2.4.4. A 9-CW-pair (X, A) is a pair of 9-CW-complexes.

Definition 2.4.5. We say a groupoid 9 is finite if G0 is a finite 9-CW-

complex.

12



Chapter 2. Groupoids

2.5 Equivariant cohomology theories

Definition 2.5.1. Let S be a Lie group and R a commutative ring. A

proper S-cohomology theory H with values in R-modules is a collection of

covariant functors H from the category of proper S-CW-pairs to the cate

gory of R-modules indexed by n e Z together with natural transformations

ö(X, A) : H(A) —* H1(X, A) for n e Z such that the following axioms

are satisfied:

• S-homotopy equivariance. If fo, fi : (X, A) —* (Y, B) are S-homotopic

maps of proper S-CW-pairs, then H(f0)= H(f1) for n Z.

• Long exact sequence of a pair. Given a pair (X, A) of proper S-CW

complexes, there is a long exact sequence

H(X, A)
H(j)

H(X)
H(i)

H(A)

where i : A —÷ X and j : X —‘ (X, A) are the inclusions.

• Excision. Let (X, A) be a proper S-CW-pair and let f : A —* B be an

S-map. Equip (XUf B, B) with the induced structure of a S-CW-pair.

Then, the canonical map (F, f) : (X, A) —* (X Uf B, B) induces an

isomorphism

H(F,f) : Hg(X,A) - H(XUfB,B)

• Disjoint union axiom. Let {X i I} be a family of proper S-CW

complexes. Denote by j : X —b HiEI X the canonical inclusion.

Then the map

fl H(ji) : H (II x) II H (Xi)
IEI IEI iEI

is an isomorphism.

Definition 2.5.2. Fix a groupoid 9 and a commutative ring R. A 9-
cohomology theory H with values in R-modules is a collection of covari

13



Chapter 2. Groupoids

ant functors H from the category of 9-CW-pairs to the category of R

modules indexed by integers n E Z together with natural transformations

o(X, A) : H(A) —* Hr1(X, A) for n E Z such that the following axioms

are satisfied:

• 9-homotopy equivariance. If fo, fi : (X, A) —* (Y, B) are 9-homotopic

maps of 9-CW-pairs, then H(fo) = H(f1) for n E Z.

• Long exact sequence of a pair. Given a pair (X, A) of 9-CW-complexes,

there is a long exact sequence

H”(j) H’(i)
H(X,A) H(X)

where i : A —* X and j : X —* (X, A) are the inclusions.

• Excision. Let (X, A) be a 9-CW-pair and let f : A —* B be a 9-
map. Equip (X Uf B, B) with the induced structure of a 9-CW-pair.

Then, the canonical map (F, f) : (X, A) —+ (X Uf B, B) induces an

isomorphism

H(F,f) : H(X,A) H(XUfB,B)

• Disjoint union axiom. Let {X i E I} be a family of 9-CW-complexes.

Denote by j : X —* JJ1X the canonical inclusion. Then the map

flH(j) : H(flX) flH(X)
iEI iI iEI

is an isomorphism.

Let C be the category whose objects are pairs (X, F) where X is a

proper S-CW-complex and P is an S-projective bundle on X. A morphism

14



Chapter 2. Groupoids

(X, P) —* (Y, Q) is a diagram

F

where F is a map of S-proj ective bundles and f is an S-map.

Definition 2.5.3. Let S be a Lie group and R a commutative ring. A

proper S-cohomology theory H on the category of proper S-spaces with

S-projective bundles with values in R-modules is a collection of covari

ant functors H, n E Z, from the category C to the category of R

modules that take (X, F) to H(X) together with boundary homomor

phisms d : PIAH(A) ‘H1(X) for ii Z for any pushout diagram

A

where PA = (i2)*(F2)and such that the following axioms are satisfied:

• 5-homotopy equivariance. If fo and fi are S-homotopic maps X — Y

of S-CW-complexes and P is a 5-projective bundle on Y, then we

have a commutative diagram for all n E Z.

H(Y)
H(f0)

x2

15



Chapter 2. Groupoids

• Mayer-Vietoris sequence. For any pushout square of proper S-CW

complexes

A

and any S-projective bundle P on X, let Pk = j(P) for k = 1,2 and

PA = (12)* (F2). Then there is a natural exact sequence

d’
—f ‘H(X) 12 P1H_n(X)P2H—n(X) 1,2 PAH(A) —>

where j = Pn(j) and i = PkHfl(ik) for k = 1,2.

• Disjoint union axiom. Let {X i E I} be a family of proper S

CW-complexes and P an S-projective bundle on X. Denote by

ji: X.j —* fl1X the canonical inclusion. Then the map

flH(j) : Hic’1iIP1(JJX) flPnK

iEI iEI iEI

is an isomorphism.

Let C9 be the category whose objects are pairs (X, F) where X is a 9-
CW-complex and P is a 9-projective bundle on X. A morphism

(X, F) —* (Y, Q) is a diagram

F

where F is a map of 9-proj ective bundles and f is a 9-map.

j2x2

16



Chapter 2. Groupoids

Definition 2.5.4. Fix a groupoid 9 and a commutative ring R. A 9-
cohomology theory H on the category of 9-spaces with 9-projective bun

dles with values in R-modules is a collection of covariant functors

n e Z, from the category C9 to the category of R-modules that take (X, P)

to F’H(X) indexed by ii e Z together with boundary homomorphisms

d : PIAH9n(A) for n E Z for any pushout diagram

A

where PA = (j2)*(F2) and such that the following axioms are satisfied:

• 9-homotopy equivariance. If fo and f1 are 9-homotopic maps X —* Y

of 9-OW-complexes and P is a 9-projective bundle on Y, then we have

a commutative diagram for all n E Z.

H(f0)
“H(Y) fo()H(x)

f1*
()H(X)

• Mayer-Vietoris sequence. For any pushout square of 9-OW-complexes

A .X1

x2 32

x2

jl

and any 9-projective bundle P on X, let Pk = j(P) for k = 1,2 and

17



Chapter 2. Groupoids

PA = (i2)*(P2). Then there is a natural exact sequence

d’ ‘H(X) PH(X )$P2H_n(X2) 2 PAH(A)

where j = H(jk) and i = PkHn(ik) for k = 1,2.

• Disjoint union axiom. Let {X I i e I} be a family of 9-CW-complexes

and P a 9-projective bundle on X. Denote by j : X —* HEI X

the canonical inclusion. Then the map

llH(j) . HiEIPIH9n(llxi) fli(X)
iEI jI iEI

is an isomorphism.

2.6 Fiber bundles

Definition 2.6.1. Let X be a 9-space. A 9-fiber bundle on X is a fiber

bundle ir : P —* X for which P is a 9-space and r is a 9-map.

Proposition 2.6.2. Suppose that F: 9 —* J-f is a local equivalence. Then

the pullback functor

{J-C — Fiber bundles on Ho} —* {9 — Fiber bundles on Go}

is an equivalence of categories

Proof. Suppose that P is a 9-fiber bundle over G0. Since F is an equivalence

of categories, the functor F* has a left adjoint F, given by

FP(x) = lim P
G0—*x

where G0 —* x are the elements of G0 equipped with a morphism

Fy — x. Since F is an equivalence of groupoids, there is a unique map

between any two objects of G0 —* x, and so FP(x) is isomorphic to P, for

any y E G0 — x. For each x E H0, choose a neighbourhood x e U C H0, a

18
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map t: U — C0 and a family of morphisms U —* H1 connecting F o t to the

inclusion U — H0. We topologize

U FP
xEH0

by requiring that the canonical map

t*P 4 F*PIu

be a homeomorphism. This gives FP the structure of a fiber bundle over

H0. Naturality provides FP with the additional structure required to make

it an J{-fiber bundle. One easily checks that the pair (F, F*) is an adjoint

equivalence of the category of J-C-fiber bundles over H0 with the category of

9-fiber bundles over G0.

Proposition 2.6.3. Suppose that F : 9 —f 3f is a local equivalence.

Then the pullback functor induces a homeomorphism from the space of 3-C-

equivariant sections of an 3-C-fiber bundle on H0 to the space of 9-equivariant

sections of the pullback 9-fiber bundle on Go.

Proof. Assume we have a local equivalence 9 — 3-C. Given a section v of

a fibre bundle P —# H0, we can consider the section F*(v) G —* F*(P)

defined by F*(v)(x) = (x,v(F(x))). And on the other hand, given a section

w of a fibre bundle Q —* Go, we can consider the section F(w) : H0 —* F(Q)

defined by F(t)(x) = (x,w(y)) where y e C0 is such that there is h e H1

that satisfies F(y) = s(h) and t(h) = x. E

Definition 2.6.4. Let P be a 9-space and T = P/9. Note that T is not

a 9-space. We say that P —> T is a principal 9-bundle if it admits local

sections and if the map G1 xG0 P — P XT P induced by the action and

projection maps is a homeomorphism.

Definition 2.6.5. A principal 9-bundle E —* B is universal if every prin
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cipal 9-bundle P —* X over a paracompact base admits a 9-bundle map

P

X

unique up to homotopy.

For any group G we can construct the universal C-space EG in the

sense of Milnor [31] or Milgram [301. We have analogous constructions for a

groupoid.

The first construction is the analogue to the universal space of Milgram

and it is also described in [20]. Given the groupoid 9, construct the transla

tion groupoid = 9 G1, which has G1 as its space of objects and only one

arrow between two elements if they have the same source or none otherwise,

i.e., the space of arrows is G1 x3 G1. The nerve of this category is given by:

N9k=G1x5G1x8kt.1x3G1

There is a natural action of 9 on N9k with ir given by the source map and

(fi, ..., fk+1) . Ii = (f1h, ..., fk+lh). With this action we have N9k/9 Gk,

so N/9 N9 and therefore B9/9 B9. It is clear that B9 Go and 9
acts freely on B9.

The second construction imitates Milnor’s universal G-space. We con

struct the 9-spaces:

ETh9 = G1*5 .. *3G1 = {)jgj I s(gi) = ...

=

= 1}

with the 9-action given by the anchor map 7r(>1)jgj) = s(gi),

action map (D1 )jgj) . g = ).‘jgjg and the subspace topology from

G1* .‘. *G1.
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Now define E9 to be the direct limit of the sequence of 9-spaces ETh9.

Note 9 acts freely on E’9 for all n and thus on E9. It can be checked that

E9/9=B9.

Both E9 and B9 define universal 9-principal bundles. Therefore E9/9

and B9/9 = B9 are homotopy equivalent. From this point on we will use

E9 as our universal 9-space and identify E9/9 with B9.

Definition 2.6.6. Given a 9-space X, we define the Borel construction

X = (X x7, E9)/9.

In the case of group actions, this construction is also known in the liter

ature as the homotopy orbit space.

Remark 2.6.7. Let 9 = G x M, where G is a topological group and M is

a G-space. Then, we have E9 = M x EH and B9 = MH.

Remark 2.6.8. Let M be a 9-space. Consider the groupoid X = 9 xi M.

In this case, E3-C = M x7, E9 and B3-C = M9.

2.7 Vector bundles

Definition 2.7.1. A complex vector bundle over an orbifold groupoid 9 is a

9-space E for which r : E —* G0 is a complex vector bundle, and the action

of 9 on E is fibrewise linear. Namely, any arrow g x
—

y induces a linear

isomorphism g’ : E —÷ E. In particular, E is a linear representation of

the stabilizer 9.

We will only consider complex vector bundles, so will omit the word

complex from now on.

Definition 2.7.2. Let 9 be a groupoid. A 9-vector bundle on a 9-space X

is a vector bundle p: E —* X such that E is a 9-space with fibrewise linear

action and p is a 9-equivariant map.
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Definition 2.7.3. Let X be a 9-space and V —* X a 9-vector bundle. We

say V is extendable if there is a 9-vector bundle W — G0 such that V is

a direct summand of lr*W.

• Direct sum of 9-extendable vector bundles induces an operation on

the set of isomorphism classes of 9-extendable vector bundles on

making this set a monoid. We can also tensor 9-extendable vector

bundles.

• The pullback of a 9-extendable vector bundle by a 9-equivariant map

is a 9-extendable vector bundle.

• All 9-vector bundles on C0 are extendable. Note that 9-extendable

vector bundles on G0 are equivalent to orbifold vector bundles on 9.

Example 2.7.4. Let 9 = H x M. Then, a 9-space is a H-space X with a

H-equivariant map to M. In this case, 9-equivariant vector bundles on X

correspond to H-vector bundles on X.

Example 2.7.5. Let M be a 9-space. Consider the groupoid 7C = 9 > M.

An 3{-space is a 9-space X with a 9-equivariant map to M. As in the

previous example, 3-C-equivariant vector bundles on X are just 9-equivariant

vector bundles on X.

Proposition 2.7.6. All 9-vector bundles on a free 9-space X are extend-

able.

Proof. It suffices to prove that vector bundles on X/9 pull back to extend

able 9-vector bundles. The anchor map ri : X —* G0 induces a map

1r2 : X/9 — 191. These maps fit into a commutative diagram:

X
7tl

P1

X/9 191
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Given a vector bundle V on X/9, there is a vector bundle W on 9 such

that irW = V A for some vector bundle A on X/9. Consider W’ = pW.

We have

= irpW =prW =p(VA) =pVEPpA

2.8 Hubert bundles

Definition 2.8.1. Let 9 be a Lie groupoid and X a 9-space. A 9-Hubert

bundle on X is a 9-space E with an equivariant map p : E —f X which is

also a locally trivial Hubert bundle with a continuous linear 9-action.

Definition 2.8.2. A universal 9-Hilbert bundle on X is a 9-Hilbert bundle

E such that for each Hilbert bundle V on X there exists a 9-equivariant

unitary embedding V c E.

Definition 2.8.3. A locally universal 9-Hilbert bundle on X is a 9-Hilbert

bundle E such that there is a 9-equivariant countable open cover {U} of X

such that Eu. is a universal 9-Hilbert bundle on U.

Definition 2.8.4. A local quotient groupoid is a groupoid 9 such that G0

admits a 9-equivariant countable open cover {U} with the property that

9 xi U is weakly equivalent to an action groupoid corresponding to the

proper action of a compact Lie group G on a finite G-CW-complex.

Corollary 2.8.5. A finite Lie groupoid is a local quotient groupoid.

Proposition 2.8.6. If 9 is a local quotient groupoid, then there exists a

locally universal 9-Hubert bundle on G0 that is unique up to unitary equiv

alence.

Proof. See [17] LI

Corollary 2.8.7. If 9 is a finite Lie groupoid, then there exists a locally

universal 9-Hilbert bundle on G0 that is unique up to unitary equivalence.

We denote it by U(9).
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Definition 2.8.8. Let 9 be a Lie groupoid with a locally universal 9-Hubert

bundle U(9) on G0 and X a 9-space. A 9-stable Hilbert bundle on X is a

9-Hilbert bundle E —* X such that E ir(U(9)) E. In the case when

X = Go we call E a stable representation of 9.

Proposition 2.8.9. Suppose that F: 9 —* 3C is a local equivalence. Then

the pullback functor induces an equivalence of categories, namely, from the

category of locally universal 3-C-Hilbert bundles on H0 to the category of lo

cally universal 9-Hubert bundles on G0.

Proof. See [17] LI

Corollary 2.8.10. Suppose that F: 9 —* Jf is a local equivalence. Then

the pullback functor

{Stable representations of J-C} —* {Stable representations of 9}

is an equivalence of categories.

Definition 2.8.11. Let 9 be a Lie groupoid and X a 9-space. A 9-
projective bundle on X is a 9-space P with a 9-equivariant map p: P — X

such that there exists an equivariant open covering {U} of X for which

= U.j x,- P(E) for some 9-Hilbert bundle E on G0. Moreover, we shall

call P a 9-stable projective bundle if P P ® ir*lP(U(9)) for some locally

universal 9-Hilbert bundle U(9) on G0.
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Equivariant K-theory

3.1 Extendable K-theory

Definition 3.1.1. Let X be a 9-space.

Vectg(X) = {isomorphism classes of extendable 9-vector bundles on X}

K9(X) = K(Vectg(X))

where K(A) is the Grothendieck group of a monoid A. We call K9(X) the

extendable 9-equivariant K-theory of X.

Remark 3.1.2. If 9 = G >i M, then Kg(M) = KG(M).

Remark 3.1.3. Let M be a 9-space and 3-C = 9 > M, then K(M) does

not necessarily coincide with Kg(M), as we will see later on.

We can now define the extendable K-groups as in [28]:

KTh(X) = Ker[Kg(X x STh) Kg(X)]

K(X, A) = Ker[K(X UA X) K(X)]

where i : X — X x S is the inclusion given by fixing a point in S and

32 : X —* X UA X is one of the maps from X to the pushout. We equip

X x sn with a 9-action by taking as the anchor map the composition of the

projection onto the first coordinate and the anchor map for X. Then let

the groupoid act trivially on the sphere. The anchor map for X UA X is the

unique map to G0 making the pushout diagram commutative. The action

is induced by the action of 9 on X.
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The following lemma follows easily from the definitions:

Lemma 3.1.4. Let (X, A) be a 9-pair. Suppose that X = H1X,, the

disjoint union of open 9-invariant s’ubspaces X and set A = An X. Then

there is a natural isomorphism

KTh(X,A) — fJK(x,A)
jEl

From now on 9 will be a Lie groupoid.

Corollary 3.1.5. If fo, f : (X,A) —* (Y,B) are 9-homotopic 9-maps

between 9-pairs, then

f = f :KTh(Y,B) — K(X,A)

for all n> 0.

Proof It follows from the existence of a Haar system. E

3.2 The Mayer-Vietoris sequence

Lemma 3.2.1. Let : (X1,Xo) —* (X,X2) be a map of 9-spaces, set

= Ixo, and assume that X X2 U0 X1. Let p : —* X1 and

P2 : E2 —* X2 be 9-extendable vector bundles, let : —* E2 be a

strong map covering o, and set E = E2 U E1. Then p = P1 Up : E —b X

is a 9-extendable vector bundle over X.

Proof We have to show that p : E —* X is locally trivial. Since E1 is locally

trivial, so is EIx_x2 Ex1_x0. So it remains to find a neighbourhood of

X2 over which E is locally trivial. Choose a closed neighbourhood W1 of X0

in X1 for which there is a strong deformation retraction r : W1 —p X0. By the

homotopy invariance for nonequivariant vector bundles over paracompact

spaces, r is covered by a strong map of vector bundles : E1 wi —*

which extends i1. Set W = X2 U0 W1. Then extends, via the pushout, to

a strong map of vector bundles EIw —. E2 which extends 2 and hence Elw

is locally trivial.
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Lemma 3.2.2. Let : X —* Y be a 9-equivariant map and let E’ —> X

be a 9-extendable vector bundle. Then, there is a 9-extendable vector bundle

E —* Y such that E’ is a summand of q*E.

Proof. Consider ir : Y — G0. Now, 1rq: X —* G0. Since E’ is extendable,

there is a 9-vector bundle V on G0 such that E’ is a direct summand of
()*V Let E = 7r*V. E is a 9-vector bundle on Y and it is the pullback

of an extendable 9-vector bundle, hence it is extendable. And we have that

E’ is a direct summand of (7r)*V = *E E

Lemma 3.2.3. Let

A

x2 32

be a pushout square of 9-spaces. Then there is a natural exact sequence,

infinite to the left

dZ’ K(X) K(X1) K(X) -? K(A)

—÷ K’(A) K(X) --? K(X1) K(X2)-? K(A) (3.1)

Proof. We first show that the sequence

Kg(X) 3132 Kg(X1)eK9(X2)
12 Kg(A) (3.2)

is exact; and hence the long sequence in the statement of the theorem is exact

atKTh(X1)K(X2)for all n. Clearly the composite is zero. So fix an ele

ment cr2) E Ker(i—i). By the previous lemma, we can add an element

of the form ([jE’}, [jE’j) for some 9-vector bundle E’ —* X, and arrange

that a1 = [E1] and a2 = [E2] for some pair of 9-vector bundles Ek —* Xk.
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Then iE1 and iE2 are stably isomorphic, and after adding the restrictions

of another bundle over X, we can arrange that iE1 iE2. Lemma 3.2.1

now applies to show that there is a 9-vector bundle E over X such that

jE Ej fork = 1,2, and hence that (ai,c2)= ([E1J, [E2]) e Im(j ej).

Assume now that A is a retract of X1. We claim that in this case,

Ker[K9(X) K9(X2)] Ker[K9(Xi) K(A)] (3.3)

is an isomorphism. It is surjective by the exactness of (3.2). So fix an

element [E] — [E’] e Ker(j e j). To simplify the notation, we write

EIxi = jE, EIA = ijE, . . . Let Pi : X1 —* A be a retraction, and let

p X —* X2 be its extension to X. By the previous lemma, we can ar

range that EIxk E’Ixk for k = 1,2. Applying the same lemma to the

retraction p : X —* X2, we obtain a 9-vector bundle F’ —> X2 such that

E’ is a sumniand of p*F/. Stabilizing again, we can assume that E’ p*F!

and hence that F’ E’1x2 and E’x1 p(F’tA) p(E’IA). Fix isomor

phisms bk EIxk —* E’ IXk covering the identity on X. The automorphism

(‘cbIA) o (1IAY’ of E’IA pulls back, under P1, to an automorphism q5 of

E’Ixj. By replacing b1 by o we can arrange that hA = “1)2 IA. Then

i U “1)2 is an isomorphism from E to E’, and this proves the exactness.

Now for each ii 1,

K(A) = Ker[K9(A x STh) —* Kg(A)]

Ker{K9(XUAxpt (A X Sn))
i*

Kg(X)]

Ker[K9((Xi x D) UAxsn-1 (X2 x D)) Kg(X)]

the last step since (X1 x pt U A x D) is a strong deformation retract of Xj. x

D. Denote Y = (X1 x D”) UAxs,--1 (X2 x D”) and define

K(A) —* K(X) to be the homomorphism which makes the
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following diagram commute:

o K(A) Kg(Y)
(_,pt)*

K9(X) 0

d incl* Id

o K’(X) K9(X x S1) (_,pt): K9(X) 0

We have already shown that the long sequence (3.1) is exact at

K(X1) K(X2)for all n. Denote Z = (X1 x D) H(X2 x D) and

W = (X1 X D) UAxpt (X2 x D). To see exactness at K+l(X) and

KTh(A) for any n 1, apply the exactness of (3.3) to the following split

inclusion of pushout squares:

x1 fix2 — x fix2 (X1 fiX2) x S Z

______

I

_______

I
X X X x S1

x x x

The upper pair of squares induces a split surjection of exact sequence

whose kernel yields the exactness of (3.1) at K+(X). And since

Ker[K9(W) -* Kg(X)1

Ker[K9(Z) —* K9(X1fix2)] K(X1) KTh(X2)

by (3.3), the lower pair of squares induces a split surjection of exact se

quences whose kernel yields the exactness of (3.1) at (A). E

Lemma 3.2.4. Let q : (x,A) — (Y,B) be a map of finite 9-CW-pairs
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such that Y B UIA X. Then

K(Y,B) —* K(X,A)

is an isomorphism for all n 0.

Proof. The square

x

X UA X — Y UB

is a pushout, and X is a retract of X UA X. So its Mayer-Vietoris sequence

splits into short exact sequences

0—> KTh(Y UB Y) —* K(X UA X) K(Y) —> K(X) —*0

and so K(Y, B) KTh(X, A).

Lemma 3.2.5. Let (X, A) be a finite 9-CW-pair. Then the following se

quence, extending infinitely far to the left, is natural and exact:

K(X,A) K(X) K’(X,A)

L K(X,A) K(X) K(A)

Proof. This follows immediately from the Mayer-Vietoris sequence for the

square

A

X Z1XX
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3.3 The Bott periodicity

We now consider products on K(X) and on K(X, A). We follow [28].

Tensor products of 9-extendable vector bundles makes K9(X) into a com

mutative ring, and all induced maps f* K9(Y) —* K9(X) are ring homo

morphisms. For each n, m 0,

K9m(X) Ker[Km(X x S) —*Km(X)] =

= Ker[K9(X x S x Stm) —* Kg(X x S) Kg(X x Stm)]

where the first isomorphism follows from the usual Mayer-Vietoris sequences,

hence

K9(X x 5fl) ® K9(X Sm) mu1top)
K9(X n 5)

restricts to a homomorphism

K(X) ®Km(X) —Km(X)

By applying the above definition with n = 0 or m = 0, the multiplica

tive identity for K9(X) is seen to be an identity for K(X). Associativity of

the graded product is clear and graded commutativity follows upon showing

that composition with a degree —1 map 5fl Stm induces multiplication

by —1 onKTh(X). This product makes K(X) into a graded ring. Clearly,

K(Y) —* K(X) is a ring homomorphism for any 9-map f X —p Y.

This makes K(X) into a K(Go)-algebra, since C0 is a final object in the

category of 9-spaces.

We will now construct a Bott homomorphism. Recall that we have

K(S2) = Ker[K(52)—* K(pt)] Z, and is generated by the Bott element

B e K(S2), the element [52 x C] — [H] E k(S2), where H is the canonical

complex line bundle over = CP1. For any 9-space X, there is an obvious
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pairing

KTh(X) ® k(S) Ker[K(X x S2) K(X)]

induced by (external) tensor product of bundles. Evaluation at the Bott

element now defines a homomorphism

b = b(X) : K(X) —*

which by construction is natural in X. And this extends to a homomorphism

b = b(X, A) : K(X, A) —K2(X,A)

defined for any 9-pair (X, A) and all n 0.

Definition 3.3.1. A groupoid 9 is Bredon-compatible if given any 9-cell

U, all 9-vector bundles on U are extendable.

Note that if U is a 9-cell and 9 is Bredon-compatible, then

Ku(U) = K(U).

Example 3.3.2. An example of a Bredon-compatible groupoid is

9 = G >i M, where G is a compact Lie group and M is a finite G-CW

complex. A 9-cell U is a finite G-space with an equivariant map to M and

9-vector bundles on U are just G-vector bundles. By [40], for any G-vector

bundle A on U, there is another G-vector bundle B such that A B is a

trivial bundle, that is, the pullback of a G-vector bundle V over a point.

Consider the unique map from M to a point. The pullback of V over this

map is a G-vector bundle on M. If we pull it back to U we recover A B

and therefore 9 is Bredon-compatible.

Corollary 3.3.3. If 9 is Bredon-compatible and U is a 9-cell, then

K(U) K(M) for some compact Lie group G and a finite G-CW-complex

M.

Theorem 3.3.4. If 9 is Bredon-compatible, the Bott homomorphism

b = b(X,A) K(X,A) —>K2(X,A)
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is a natural isomorphism for any finite 9-CW-pair (X, A) and all n 0.

Proof. Assume first that X = Y U (U x Dm) where U x Dm is a 9-cell.

Assume inductively that b(Y) is an isomorphism. Since K(U x S”—1)

is isomorphic to K(M x Sm_l) and K(U x Dm) K(M x Dm),

the Bott homomorphisms b(U x Sm_l) and b(U x Dm) are isomorphisms by

the equivariant Bott periodicity theorem for actions of compact Lie groups.

The Bott map is natural and compatible with the boundary operators in the

Mayer-Vietoris sequence for Y, X, U x sm_i and U x D and so b(X) is

an isomorphism by the 5-lemma. The proof that b(X, A) is an isomorphism

follows immediately from the definitions of the relative groups. LI

Based on the Bott isomorphism we just proved, we can now redefine for

all n E Z

K(x, A) — f K°9(X, A) if ri is even

K’(X, A) if n is odd

For any finite 9-CW-pair (X,A), define the boundary operator

K(A) —p K1(X,A) to be 6 : K’(A) —f K°9(X,A) if n is odd,

and to be the composite

K(A) -L K2(A) LK1(X,A)

if n is even.

We can collect all the information we have so far about 9-equivariant

K-theory in the following theorem:

Theorem 3.3.5. If 9 is a Bredon-compatible Lie groupoid, the groups

K(X, A) define a 7Z/2-graded multiplicative cohomology theory on the cat

egory of finite 9-CW-pairs.

Note that for a general Lie groupoid 9, K(—) is a multiplicative coho

mology theory on the category of 9-spaces, but it is not clear whether we

have Bott periodicity.
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3.4 Equivariant representable K-theory

Let H be a stable representation of 9. Consider the associated bundle

of Fredhoim operators Fred(H) on G0, and the subbundle Fred’(H) of

operators A for which the action g — gAg1 is continuous. See [16] for

more details on the correct topology for this space.

Definition 3.4.1. We say that a 9-equivariant map f : X —* Fred’ (H) is

extendable if there is another 9-equivariant map g : X —> Fred’ (H) such

that gf = vlrx for some section v of Fred’(H) — Go, where 7rx : X —> C0

is the anchor map.

Definition 3.4.2. We say that a homotopy H : X x I —, Fred’(H) of

9-equivariant maps is extendable if each FI is an extendable 9-equivariant

map X —, Fred’ (H).

Definition 3.4.3. Let X be a 9-space, H a stable representation of 9 and

n 0. Define the 9-equivariant representable K-theory groups of X to be

RK(X) = [X, ?7Fred’(H)]t

where this notation denotes the extendable homotopy classes of extendable

9-maps. For 9-pairs (X,A), define

RK(X, A) = Ker[RK(X UA X) -- RK(X)]

where j2 : X —* X UA X is one of the maps from X to the pushout.

We could have defined the representable K-groups as in [28]:

RK(X) = Ker[RK9(X x S) —--* RK9(X)]

where RK9(X) = [X, Fred’(H)]t and i : X —f X x S is the inclusion

given by fixing a point in 5Th• Both definitions are clearly equivalent.

We will now prove this defines a cohomology theory on the category of
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9-spaces. Since the definition is given by homotopy classes of maps, the

next corollary follows from the definition.

Corollary 3.4.4. If fo, fi : (X, A) —* (Y, B) are 9-homotopic 9-maps

between 9-pairs, then

f = f : RKTh(Y, B) —* RK(X, A)

for all n 0.

The following lemma follows easily from the definitions:

Lemma 3.4.5. Let (X, A) be a 9-pair. Suppose that X
= II X,, the disjoint

iEI
union of open 9-invariant subspaces X and set A = An X. Then there is

a natural isomorphism

RKTh(X, A)
— HRKTh(X,A)

iEI

Lemma 3.4.6. Let q : X —* Y be a 9-equivariant map, H be a stable

representation of 9 and let s : X —* Fred’(H) be a 9-extendable map.

Then, there is a 9-extendable map t : Y —* Fred’ (H) such that s’s = tq’i

for some 9-extendable map s’ : X —* Fred’ (H).

Proof. Since s is extendable, there is a 9-extendable map s’ : X —* Fred’ (H)

such that s’s = v = ‘Irx = v7ryb for some section v : —f Fred’(H).

Choose t = vlry. This is a 9-extendable map for it is the pullback of a

9-extendable map and we have s”s = tb.

Lemma 3.4.7. Let

A hi
x2
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be a pushout square of 9-spaces, H a stable representation of 9 and i1 a cofi

bration. Let 5k : Xk —* Fred’ (H) be 9-extendable maps for k = 1,2 such

that s1i1 and s2i2 are 9-extendable homotopic maps from A to Fred’(H).

Then, there is a 9-extendable map t : X —* Fred’(H) such that tjk is

9-extendable homotopic to 5k for k = 1,2.

Proof. Let F : A x I —* Fred’(H) be a 9-extendable homotopy with

F0 = s1i1 and F1 = s2i2. There is v2 : G0 —* Fred’ (H) such that

= vir2 for some S’2 : X2 —* Fred’ (H). By the previous lemma,

there is a 9-extendable homotopy F : C0 x I — Fred’(H) such that

F’F = F o (irA x id) for some F’ : A x I —* Fred’ (H). We can also make

it satisfy F1’ = s’2i2 by multiplying by a convenient constant homotopy for

C0.

Now, since A x I X1 x I is a 9-equivariant cofibration, there are

C, G’ : X1 x I —‘ Fred’(H) that extend F and F’ respectively. Therefore

G’G must be an extension of Fo (irA x id) to X1 x I. In fact, by the previous

lemma, we can choose G and G’ so that G’G = F(ir1 x id). Therefore C is

a 9-extendable homotopy.

Let C0 = s and C1 = . The extendable 9-homotopy classes of these

two maps are equal, and s1i1 = G1i1 = F1 = s2i2. So we can easily extend

this to a map t : X —* Fred’ (H) such that tj1 = . and tj2 = 2• Therefore

tj is 9-extendable homotopic to 8k for k = 1, 2. In fact, it is given by:

t(x) = f s(x) if x =j1(x1)

52(X2) if x = j2(x2)

We only need to prove that t is extendable. Let ii’ = G, s’i = F. We

have s11i1 = C’1i1 = F1’ = s’2i2. Consider

t’(x) — f s1’(x1) if x =j1(x1)

1 52(X2) if x = j2(x2)
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Let F1 = v1. Then we have = v1r1. Now consider the map:

v(x) = f vi(7r1(xi)) if x =r1(xj)

1. V(7t(X)) if x = 1r2(X2)

This map is well defined. If lrl(xl) = 7r2(x2), then x = iia and x2 = i2a,

and vi(lri(xi)) = vJ7rAa = Fl7rAa = F1’lrAa = Fiir2(x2)= v2(7r2(x2)). It is

a routine check that t’t = vrx, thus t is extendable Li

Lemma 3.4.8. Let

il
A

j1

be a pushout square of 9-spaces and i1 a cofibration. Then there is a natural

exact sequence, infinite to the left

dZ41 RK”(X) RK(X1) RKTh(X2)—? RKTh(A)

— RK’(A) —* RK(X) 2? RK(X1) RK(X) —? RK(A)

Proof. It is a consequence of the two previous lemmas, the results in [8] and

the proof of lemma 3.8 in [28]. LI

For any stable representation H of 9 there is a 9-map

iFred’(H) —* +2Fred’(H), which therefore induces a Bott map

b(X) : RK(X) —* RK2(X). By the definition of the relative groups,

we also have Bott maps b(X, A) : RK(X, A) —* RK2(X,A). We will

prove that these maps are isomorphisms for finite 9-CW-complexes.

Lemma 3.4.9. Suppose that F : 9 —* 3f is a local equivalence. Then we

have an isomorphism:

F* : RK(H0)—* RK(Go)

32x2
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Proof RK(H0)= [H0,l’Fred’(H)]t

= Extendable i-C-homotopy classes of extendable sections of Fred’(H)

Extendable 9-homotopy classes of extendable sections of F*(lnFred(H))

= Extendable 9-homotopy classes of extendable sections of 1ViFred’(F*H)

= [Go, crFredI(F*H)]t

=RK(Go) U

Corollary 3.4.10. If 9 and J-C are weakly equivalent, we have an isomor

phism RK(H0) RK(Go)

Corollary 3.4.11. If 9 is a Bredon-compatible finite Lie groupoid and U

is a 9-cell, then RK(U) K(M) for some compact Lie group G and a

finite G-CW-complex M.

Proof Since U is a G-cell, we know that 9 x U is weakly equivalent to G x M

for some compact Lie group C and a finite G-CW-complex M. Therefore,

by the previous corollary:

RKu(U) RKM(M)

Let H be a locally universal representation of 9. We want to see that

7r(H) = U x H is a locally universal 9 i U-Hilbert bundle. Notice that

if U is a 9-cell, so is any open 9-subspace of U. Therefore it is enough to

prove the previous assertion with universal Hilbert bundles. So assume H

is a universal 9-Hilbert bundle.

Now let V be a 9 x U-vector bundle on U. This a 9-vector bundle

on U, and since 9 is Bredon-compatible, there is a 9-vector bundle W

on G0 such that ir(W) = V V’ for some other 9-vector bundle V’ on

U. Since H is universal, there is a unitary 9-embedding W —* H and so
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ir(W) ‘—* ‘4(H) = U x H. Since V is a direct summand of ir(W), we
have a unitary 9 x U-embedding V U x H.

Thus, if E is a locally universal Hubert representation of C, then E x M

is a locally universal G i M-Hilbert bundle.

RKu(U) = [U,QFred’(U x H)] =

= [U, U x VFred’(H)ju =

= (9 > U)-extendable sections of U x7,- rFred’(H) over U =

= 9-extendable sections of U x- QFred’(H) over U =

= [U, c2”Fred’(H)]t= RK(U)

RK3M(M) = [M,2ThFred’(M x E)]M =

= [M,M x Fred’(E)jM =

= (C x M)-extendable sections of M x Fred’(E) over M =

= (G x M)-sections of M x iFred’(E) over M =

= [Mj2Fred’(E)]G = K(M)

Therefore, RKTh(U) K(M) LI

Theorem 3.4.12. If 9 is a Bredon-compatible finite Lie groupoid, the Bott

homomorphism

b = b(X,A) : RKTh(X,A) —p RK’2(X,A)
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is a natural isomorphism for any finite 9-CW-pair (X, A) and all n 0.

Proof. Assume first that X = Y u (U x Dm) where U x Dm is a 9-cell.

Assume inductively that b(Y) is an isomorphism. Since RKTh(U>< S—1) is

isomorphic to RK(M x Sm_i) and RK(U x Dm) RK(M x Dm),

the Bott homomorphisms b(U x Sm_l) and b(U x Dm) are isomorphisms by

the equivariant Bott periodicity theorem for actions of compact Lie groups.

The Bott map is natural and compatible with the boundary operators in the

Mayer-Vietoris sequence for Y, X, U x Sm—i and U x D and so b(X) is

an isomorphism by the 5-lemma. The proof that b(X, A) is an isomorphism

follows immediately from the definitions of the relative groups.

Based on the Bott isomorphism we just proved, we can now redefine for

all n E Z

RK(X, A) =
RK°9(X, A) if n is even

1.. RK’(X,A) ifnisodd

For any finite 9-CW-pair (X,A), define the boundary operator

RK(A) —* RK’(X,A) to be 6 : K’(A) —* K°9(X,A) if n is

odd, and to be the composite

RK(A) -L RK2(A) RK’(X, A)

if n is even.

We can collect all the information we have about 9-equivariant repre

sentable K-theory in the following theorem:

Theorem 3.4.13. If 9 is a Bredon-compatible finite Lie groupoid, the groups

RK(X, A) define a 7/72-graded multiplicative cohomology theory on the cat

egory of finite 9-CW-pairs.

Note that for a general finite Lie groupoid 9, RK(—) is a multiplicative

cohomology theory on the category of 9-spaces, but it is not clear whether

we have Bott periodicity.
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Corollary 3.4.14. Let 9 be a Bredon-compatible finite Lie groupoid and U

a 9-cell. Then K(U) RK(U)

Proof. If U is a 9-cell, then 9 U is weakly equivalent to G >i M for

some compact Lie group G and a finite G-CW-complex M. By corollary

3.3.3, we also have K(U) K(M). By corollary 3.4.11, we also have

RK(U)_KtJ(M).

Theorem 3.4.15. Let 9 be a Bredon-compatible finite Lie groupoid and X

a finite 9-CW-complex. Then K(X) RK(X)

Proof. Assume first that X = Y U, (U x Dm) where U x Dm is a 9-cell.

Assume inductively that we have an isomorphism K(Y) --* RK(Y). We

know that K(U x S—1) is isomorphic to RK(U x Sm_l) and

K(U x Dm) RK(U x Dm) by the previous corollary. In fact, since

these last two isomorphisms follow from choosing a weak equivalence from

the same 9-cell to the action of a compact Lie group on a finite equivariant

CW-complex, these isomorphisms are natural with respect to the Mayer

Vietoris sequences for RK and K. Let us denote the corresponding groups

by RA = RK(Y)eRK(U x Dm), ATh = K(Y) K(U x Dm),

RBTh = RK(U x Sm-l) and B = K(U x S”-1) , then:

A’’ B’

RA1— RB’ — RK(X) — RA - RB

and so the result follows by the 5-lemma. LI

In other words, we have just proved that the cohomology theory K(—)

is representable by extendable maps.

Corollary 3.4.16. Let 9 be a Bredon-compatible finite Lie groupoid, X a

— K(X) A B

I
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finite 9-CW-complex and H a stable representation of 9, then:

K(X) = f [X,Fred’(H)]t if n is even

[X, f2Fred’(H)]t if n is odd

We would like to make two observations:

1. Note that all constructions and results in this sections remain true if

we relax the condition of 9 being finite to 9 having a locally universal

Hilbert representation U(9).

2. This cohomology theory should not be confused with the 9-equivariant

representable K-theory defined in [16]. In their paper, they define

9-equivariant representable K-theory of X as the KK-groups asso

ciated to Co(X) and show that this is actually representable (by all

9-equivariant continuous maps) by a corresponding Fredholm bundle.

Note that in our case only a special class of maps are considered to have

a correspondence with extendable vector bundles, but the Fredholm

bundles in both cases are equivalent.
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Twisted equivariant

K-theory

4.1 Twisted extendable K-theory

Let X be a 9-space and P —* X a 9-projective bundle on X. We can then

construct the bundle End(P) on X whose fibre at x is the vector space

End(H) of endomorphisms of a Hubert space H such that P = lP(H).

Similarly, we can replace End(H) by Fred(H), the space of Fredhoim

operators from JI to H, and define in this way a bundle Fred(P) — X.

Now consider the subbundle Fred’(P) of Fredholm operators A such that

g —* gAg’ is continuous for all g E G1 for which the expression makes

sense.

Definition 4.1.1. We say that a 9-equivariant section s of Fred’ (F) —‘ X

is extendable if there is another 9-equivariant section t such that ts = vrrx

for some section v of Fred’(P) — Go.

Definition 4.1.2. We say that a homotopy H X x I — Fred’ (F) of 9-
equivariant sections is extendable if each H is an extendable 9-equivariant

section of Fred’(P) —* X.

Definition 4.1.3. Let P be a 9-stable projective bundle and X a 9-space.

We define the 9-equivariant twisted extendable K-theory of X with twist

ing P to be the group of extendable homotopy classes of extendable 9-
equivariant sections of Fred’(P) and we denote it by F’K9(X)

In order to define the rest of the twisted extendable K-groups, we need to

introduce the fibrewise iterated loop-space 12Fred’(P), which is a 9-bundle

on X whose fibre at x is rFred’(H).
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Definition 4.1.4. The extendable homotopy classes of sections of this bun

dle will be denoted by K(X).

The groups K(X) are functorially associated to the pair (X, F) and

so an isomorphism P — P’ of 9-stable projective bundles on X induces an

isomorphism K(X) —* ‘‘K(X) for all n 0

Corollary 4.1.5. If 9 is a Bredon-compatible finite Lie groupoid and P

is a trivial 9-stable projective bundle on a finite 9-CW-complex X, then

K(X) K(X).

Proof. It follows from the representability of 9-equivariant K-theory, that

is, corollary 3.4.16. E

Corollary 4.1.6. Let P be a 9-stable projective bundle on Y. If the maps

Jo, fi X —f Y are 9-homotopic 9-maps between 9-spaces, then f(P) is

isomorphic to f (P) and we have a commutative diagram:

for all n 0.

Lemma 4.1.7. Let

A

i2 ji

x2
32

be a pushout square of 9-spaces and P a 9-stable projective bundle on X.

Let Pk = j(P) for k = 1,2 and PA = (i2)*(P2). Then there is a natural

f (P) (X)
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exact sequence, infinite to the left

d’
K(X) ‘K(X,) P-n(X ) PAK(A)

PA K’ (A) —* K(X) J2 ‘K(X,) PAO)

Proof. The proof is essentially the same as that of lemma 3.4.8. E

If we use a mod 2 graded version Fred(°) (1) of the bundle of Fredhoim

operators associated to a projective bundle P, as in [6], we have a multipli

cation:

‘K°9(X) 0 F”K9(X) ‘K°9(X)

coming from the map (A, A’) —* A 0 1 + 1 0 A’ defined on the spaces of

degree 1 self-adjoint Fredhoim operators. This extends the multiplication

in untwisted 9-equivariant K-theory and makes “K(X) into a K(X)

module.

Just like in the case of representable K-theory, for any 9-stable Hilbert

bundle there is a 9-map Fred’ (H) — 12Fred’ (H). Therefore, for any

9-stable projective bundle P on X there is a Bott map:

b(X,P) : PK9_n(X) .S
P-n-2

We do not know if this map is an isomorphism in general. Now we will

prove that b(X, F) is an isomorphism when X is a finite 9-CW-complex

using a similar argument to the one used for untwisted 9-equivariant K-

theory.

Proposition 4.1.8. Let F : 9 —k 3C be a local equivalence, and P a

stable projective bundle on H0. Then F induces an isomorphism

K(H0)—* F*(P)K*(Go)

Proof. First of all, F*(P) is a 9-stable projective bundle by corollary 2.8.10

and proposition 2.6.2. Since these groups are defined using sections, the

result follows from proposition 2.6.3.
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Corollary 4.1.9. If 9 and J-C are weakly equivalent and P is a Jf -stable

projective bundle on H0, then ‘K(Ho) F*(P)K(GO)

Corollary 4.1.10. If 9 is a Bredon-compatible finite Lie groupoid, U is a

9-cell and P is a 9-stable projective bundle on U, then K(U) QK(M)

for some compact Lie group G, some finite G-CW-complex M and some

0-stable projective bundle Q on M.

Proof. Since U is a G-cell, we know that 9 U is weakly equivalent to 0 > M

for some compact Lie group G and a finite G-CW-complex M. Therefore,

by the previous corollary:

for some G >i M-stable projective bundle Q on M. In the proof of corol

lary 3.4.11, we saw that if H is a locally universal representation of 9, then

U xH is a locally universal 9 i U-Hilbert bundle. And also that if E is a lo

cally universal Hilbert representation of 0, then E x M is a locally universal

G x1 M-Hilbert bundle. It follows that if P is a 9 x U-stable projective bundle

on U, then P is a 9-stable projective bundle on U. Similarly, if Q is a G M

stable projective bundle on M, then Q is a 0-stable projective bundle on M.

Ku(U) =

= (9 U)-extendable sections of fl’Fred’(P) over U =

= 9-extendable sections of c2’Fred’(P) over U =

= PK*(U)

QKM(M) =

= (0 x M)-extendable sections of 2Fred’(Q) over M =
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= G-sections of fFred’(Q) over M =

= QK,(M)

Therefore,1’K(U) QK,(M)

Theorem 4.1.11. If 9 is a Bredon-compatible finite Lie groupoid, the Bott

homomorphism

b = b(X,P) : F’K(X)

is an isomorphism for any finite 9-CW-complex X, all 9-stable projective

bundles on X and all n 0.

Proof. Assume that X = Y U, (U x Dm) where U x Dm is a 9-cell. Let

P be a 9-stable projective bundle. Assume inductively that b(Y, I) is

an isomorphism. Since PI(UxDm)Kn(U x Dm) QK(M x Dm) and
PRUxSm_l)K9_n(U x S1) QI(MXSm_l)KG_n(M < S—1), the Bott homo

morphisms b(U x Sm_i,PI(UXSm_1)) and b(U x Dm,PI(UXDm)) are isomor

phisms by the Bott periodicity theorem in twisted equivariant K-theory for

actions of compact Lie groups [6]. The Bott map is natural and compati

ble with the boundary operators in the Mayer-Vietoris sequence for Y, X,

U x 3m—i and U x Dm and so b(X, P) is an isomorphism by the 5-lemma.

Based on the Bott isomorphism we just proved, we can now redefine for

all n Z

K(X) = f ‘K(X) if n is even
P() if n is odd

We can collect all the information we have so far about twisted 9-
equivariant K-theory in the following theorem:

Theorem 4.1.12. If 9 is a Bredon-compatible finite Lie groupoid, the groups

K(X) define a Z/2-graded cohomology theory on the category of finite
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9-CW-complexes with 9-stable projective bundles, which is a module over

untwisted 9-equivariant K-theory.

Note that for a general Lie groupoid 9, K(—) is a cohomology theory on

the category of 9-spaces, but it is not clear whether we have Bott periodicity.

All constructions and results in this section are true if we relax the

condition of 9 finite to 9 admitting a locally universal 9-representation.

4.2 The orbit category

Recall from section 2.4 that a 9-cell is a 9-space U for which the groupoid

9 x U is weakly equivalent to the action of a compact Lie group G on a finite

G-CW-complex.

The orbit category Og is a topological category with discrete object space

formed by the 9-cells. The morphisms are the 9-maps, with a topology such

that the evaluation maps Hom9(U, V) x U —p V are continuous for all 9-
cells U, V. By an09-space we shall mean a continuous contravariant functor

from 09 to the category of topological spaces.

Definition 4.2.1. Let X be a 9-space. The fixed point set system of X,

written X, is an Og-space defined by X(U) = Map9(U,X) and given

e U —* V, X()(f) = fG. We also denote X’ = Mapg(U,X).

Definition 4.2.2. A CW-09-space is an09-space T such that each space

T(U) is a CW-complex and each structure map T(U) —+ T(V) is cellular.

Theorem 4.2.3. There is a functor C : 09-spaces —* 9-spaces and a

natural transformation : 4C —* Id such that for each09-space T and

each U, : (CT)U —* T(U) is a homotopy equivalence, in fact a strong

deformation retraction.

Proof. We first construct the 9-space CT. Let OT denote the topological

category whose objects are triples (U, s, y) where U is a 9-cell,
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s E J(U) U and y E T(U). Let us consider the nerve of this cate

gory as a topological simplicial space. This is the bar complex B(T, Og, J),

where J: Og —* Top is the covariant functor which forgets the 9-action.

Then B(T,0g,J) consist of (n + 2)-tuples (y,fl,f2,. .
. ,f,s) where

the f.j : U — U_1 are composable arrows in 09, s E J(U) U, and

y E T(U0). The boundary maps are given by:

o(y,f1,f2,. . .,f,s) = (f(y),f2,f3,.. .,f,s)

8m(y,fl,f2,...,fn,s) = (y,fl,f2,...,fn_1,(fn)*(s))

8i(y,fl,f2,... ,f,s) = (y,fl,f2,.. ,fi—1,fifi+1,fi+2,. .. ,f,S)

Degeneracies are the insertion of identity maps in the appropriate spots.

The groupoid 9 acts simplicially on B (T, Og, J) and consequently the geo

metric realization B(T, 09, J) is a 9-space. We define CT = B(T, 09, J).

We now require the homotopy equivalence : (CT)U —f T(U) for each

9-cell U, natural in U. We have:

(CT)U = B(T,09,J)U = B(T,09,Hom9(U,—))

The second equality follows from the fact that 9 acts on the last coordi

nate only. Now it is a general property of the bar construction that for any

topological category C, contravariant functor F: C — Top and object A of

C, there is a natural map

B(F,C,Homc(A,—)) —k F(A)

which is a strong deformation retraction. This map is induced by a simplicial

map

i :B(F,C,Homc(A,—)) —*F(A)

where F(A) is the simplicial space all of whose components are F(A) and
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all whose face and degeneracy maps are the identity. In our case, is given

by the formula:

n(y,f1,f2,...,fn,f)=(f1o...ofnof)*(y)

Now f is an element of Horn09 (U, tJ). The proof that is a strong de

formation retraction is a standard simplicial argument contained in chapter

12 of [29]. E

4.3 The classification of projective bundles

Now we follow [6] closely. Let us write Pic9(X) for the group of isomorphism

classes of complex 9-line bundles on X (or equivalently, of principal S1-

bundles on X with 9-action), and Projg(X) for the group of isomorphism

classes of 9-stable projective bundles. Applying the Borel construction to

line bundles and projective bundles gives us homomorphisms:

Picg(X) —* Pic(Xg) H(X; Z)

Proj9(X) —* Proj(X) H(X; Z)

which we shall show are bijective.

Definition 4.3.1. A topological abelian 9-module is a 9-space such that

each of the fibres of its anchor map is a topological abelian group and the

action is linear.

Example 4.3.2. Given any topological abelian group B, G0 x B is a 9-
module with the anchor map given by projection on the first coordinate.

When there is no danger of confusion we will denote it by B.

Let us introduce groups H(X; A) defined for any abelian 9-module A.

These are the hypercohomology groups of a simplicial space x whose real

ization is the space X9. Whenever a Lie groupoid 9 acts on a space X we

can define the action groupoid whose space of objects is X and space of

morphisms is G1 x’,- X. Let x be the nerve of this groupoid regarded as a
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simplicial space, that is, = G x ,- X, where G is the space of composable

p-tuples of arrows in 9.

For any simplicial space with an action of a Lie groupoid 9 and any topo

logical abelian 9-module A we can define the hypercohomology IHI*(x; sh(A))

with coefficients in the sheaf of continuous equivariant A-valued functions.

It is the cohomology of a double complex C, where, for each p 0, the

cochain complex C calculates H*(p; sh(A)).

Definition 4.3.3. H(X;A) = IHI*(x;sh(A))

These groups are the abutment of a spectral sequence with

E’ = H(G x7 X; sh(A)).

Lemma 4.3.4. If 9 is a Bredon-compatible Lie groupoid and X is a finite

9-CW-complex, Hr’(X;Z) H(X;S’) for anyp>0.

Proof. If we compare the spectral sequences for the 9-CW-structure of X

with respect to the cohomology theories and H(—;S’), we

notice that we have an isomorphism in each cell by the similar result in

[6]. U

Proposition 4.3.5. Let 9 be a Bredon-compatible finite Lie groupoid and

X a 9-space. Then we have:

1. H(Go; Z) Hom(9, Go x S’)

2. H(Go; Z) Ext(9, G0 x S’), the group of equivalence classes of cen

tral extensions 1 —* G0 x S1 —, FC —* 9 — 1.

3. H(X;Z) Picg(X)

. H(X; Z) Projg(X)

Proof. 1. We have E = H(G0;sh(G0x S1)) H(pt;sh(Sl)) = 0

when X = G0 and in the previous lemma we have seen that
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E = Hc.c.(9; S1) is the cohomology of 9 defined by continuous Eilenberg

Maclane cochains. So

H(Go;Z) = H(Go;S1) H(9;Si) Hom(9,Go x S1)

2. In this case the spectral sequence gives us an exact sequence

O—*E° —*H(Go;S1)--*E” —

that is,

0 —* H(9;Si) —* H(Go;S’) —> Pic(9) H(9;Si)

for E11’ = H’(9;sh(Go x S’)) = Pic(9), and E1 is the subgroup

of primitive elements, that is, of circle bundles J-C on 9 such that
m*3f pr ® prC, where prl,pr2, m : G1 xG0 G1 —* are the

obvious maps. Equivalently, Pic(9)prjm consists of circle bundles H

on 9 equipped with bundle maps i7i: H1 x G0 H1 —‘ H1 covering the

multiplication in 9. It is easy to see that the composite

Ext(9,Go x S’) —p H(Go;Go x S’) —‘ Pic(9)

takes an extension to its class as a circle bundle. On the other hand

(9; 31) is just the group of equivalence classes of extensions

x 1
— 3C —* 9 which as circle bundles admit a continuous section,

so its image in Ext (9, Go x S’) is precisely the kernel of this composite.

It remains only to show that the image of Ext(9, G0 x S1) in Pic(9),,.jm

is the kernel of Pic(9)prim —* H3(9;S1). This map associates to a

bundle J{ with a bundle map ñi as above precisely the obstruction to

changing ni by a bundle map G1 xG0 G1 — S’ to make it an asso

ciative product on i-C.
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3. The spectral sequence gives

0—> E° - H(X;S’) —* —*

Now E?1 = Pic(X), and E20’ is the subgroup of circle bundles S —* X

which admit a bundle map ñi G1 xG0 S —* S covering the 9-action

on X. As before, ñi can be made into a 9-action on S if and only if an

obstruction in (9; Map(X, Go x 5’)) vanishes. Finally, the kernel

of Picg(X) —* Pic(X) is the group of 9-actions on X x 5’, and this

is just E° = H’(9; Map(X, G0 x 5’)).

4. First we shall prove that the map Projg(X) —* H(X; Z) is injective.

Consider the filtration

Projg(X) Proj’ Proj°

Here Proj(’) consists of the stable projective bundles which are trivial

when the 9-action is forgotten, that is, those that can be described

by cocycles c : C, xG0 X —* PU(C) that satisfy the condition

Q(g2,glx)c(g,,x) = (g2g,,x).

Proj(°) consists of those projective bundles for which c lifts to

a map C, x00 X —* U(J-C) satisfying the equality

c(g2,g,x)cx(g,,x) = c(g2,g,,x)a(g2g,,x) for some c: G2 xX —->5’

We shall compare the filtration of Projg(X) with the filtration

H(X;S’) D H’1 D

defined by the spectral sequence. By definition H(’) is the kernel of

H(X; 5,) —> E,°2 = H2(X; sh(Si)) = Proj(X), and the composite

Proj9 —-> H(X; S,) —* Proj(X) is clearly the map which forgets the

9-action. Thus Projg(X)/Proj(’) maps injectively to H(X, S’)/H(’)

Now let us consider the map Proj(’) —> H(’). The subgroup H(°) is
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the kernel of H(’) —* E’, while Er” = Pic(Gi xG0 X). We readily

check that an element of Proj(’) defined by the cocycle o maps to the

element of Pic(Gi xG0 X) which is the pullback of the circle bundle

U(ff) — PU(FC), and can conclude that c maps to zero in E’ if and

only if it defines an element of P’roj(°). Thus Proj(’)/Proj(°) injects

into H(’)/H(°). Finally, assigning to an element c of Proj(°) the class

in E° = H(9;Map(X,Go x S’)) of the cocycle c, we see that if

this class vanishes, then the projective bundle comes from a 9-Hilbert

bundle, which is necessarily trivial, as we have already explained. So

Proj(°) injects into H°).

Now we will construct a universal 9-space C(P) with a natural 9-stable

projective bundle on it and show that the composite map

[X,C(P)]g —, Proj9(X) —* H(X;Z)

is an isomorphism.

Let U be a 9-CW-cell and consider the spaces

P(U)
= JJ BPU(H)U

HEExt(U,S’)

where we represent an element of Ext(U, .9’) by a Hilbert bundle H

with a stable projective representation of 9 U inducing the extension.

Note that even though there may be different choices of H, they all

determine the same class in Hu(U; Z), and so this space P(U) is

well-defined.

In fact, P is an Og-space. Now, we can use theorem 4.2.3 to construct

the 9-space C(P). This space satisfies C(P)U P(U) for every 9-cell

U. Also, it carries a tautological 9-stable projective bundle, and so we

have a 9-map C(P) —* Map(E9, BPU(H)) into the space that repre
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sents the functor X —* H (X, Z). This map induces an isomorphism

[X,C(P)j9—* H(X,Z)

it is enough to check the cases X = U x Si, where U is a 9-cell.

In fact, since finite G-CW-complexes are built out of spaces of the

form G/H x S, where H is a closed subgroup of G, it is enough to

check this for the cases X = U x S, where 9 U is weakly equiv

alent to G xi G/H. But this reduces to proving the isomorphism

7r(P(U)) HS_i(B(9 i U),Z), which follows from the diagram:

ir(P(U)) —H3_z(B(9 U),Z)

(PH) H3(BH,Z)

where the map in the bottom row is an isomorphism by the results in

[6].

E
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The completion theorem

5.1 The completion map

Lemma 5.1.1. Let B9 =ETh9/9. Any product of n elements in K* (B”9, G0)

is zero.

Proof. Consider the subsets Uj = {Ajgj + ... + I # O} in ETh9 and let

= (1,79. These sets are open in B9. They are also homotopy equivalent

to G0:

u G1
h

[EA1gJ gj g gj = g

UjxI .Uj

([Ag], t) — {tAg + (1 — t)g]

These maps are 9-equivariant, so they define maps f : (I —*

h:Go—UandH:UxI-—-*U3.Wehavefh=lG0andHisa

homotopy between l. and hf. We can see G0 inside all the Uj’s.

56



Chapter 5. The completion theorem

If n = 2, consider the following commutative diagram:

K(B29,U1) ® K(B29,U2) K(B29,U1 U U) = 0

K(B29,U1)®K(B29,Go) K(B29,U1)

_____________

I
K(B29,Go)®K(B29,Go) K(B29,Go)

Similarly, consider the diagram:

K(B9, U1) ® K(BTh9, (12) ® ® K(B’9, U) — K(B”9, U1 U .. . U (J) = 0

K(B9, U1) ® K(B9, Go) ® ... 0 K(B9, G0) K(B”9, U1)

K(B9, Go) ® K(B9, Go) ® .. ® K(B9, Go) .- K(B79,G0)

E

Lemma 5.1.2. If 9 acts freely on X and G0 is a finite 9-OW-complex, then

K9(X) K(X/9).

Proof. Given x e X, there exists a sufficiently small neighbourhood Uir(x)

of ir(x) such that 9() acts on U,r(). Then acts on U =

9ir(x) is a compact Lie group and so there is a local slice for that action at
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x.

We have an augmentation map K(G0) K(Go) given by forgetting

the 9-action. Let Ig be the kernel of this map.

The composite homomorphism

K(G0)—* K(E9) K(B9) K*(Go)

is the augmentation map, whose kernel is Ig. Therefore, the map

K(Go) —* K(E’9) factors through K(G0)/I.

For any 9-space X, K(X) is a module over K(Go) and by naturality

the homomorphism K(X) — K(X XIT E9) factorizes through

K(X)/IK(X) —* K(X X7 E9)

Conjecture 5.1.3. Let 9 be a Lie groupoid and X a 9-space . Then we

have an isomorphism of pro-rings

{K(X)/IK(X)} {K*(X x E9/9)}

If a groupoid 9 satisfies this conjecture for X = G0 we will say that 9
satisfies the completion theorem.

5.2 The completion theorem

Lemma 5.2.1. Let 9 = G i X, where G is a compact Lie group and X is a

G-CW-complex such that K(X) is finite over R(G). Then 9 satisfies the

completion theorem.

Proof. Let 1x be the kernel of K(X) —* K*(X). We would like to prove

that there is an isomorphism {K(X)/Ifl {K(X x EG)}. By the

Atiyah-Segal completion theorem, we have an isomorphism

{K(X)/IK(X)} {K(X x EThG)}. So it suffices to prove that the
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IG-adic topology and the Ix-adic topology are the same in K(X). Since

K,(X) is a module over R(G), we have IGK(X) C

Let K be the kernel of o : K(X) —* K(X x ERG). As a corol

lary to the Atiyah-Segal completion theorem, we know that the sequence of

ideals {K} defines the IG-adic topology on K(X). In particular, there is

m e N such that Km C IGK(X). Note that K1 = 1x• Consider the com

position K,(X) —* K(X x EtmG) —* K(X x E’G) K*(X). Since

X x EG is the union of m open sets which are G-homotopy equivalent to

X x E’G = X x G, we have K(X xEmG,X x E1G)m = 0. Thus the first

map factors through I, thus I C Km. Hence I C IGK(X). LI

Lemma 5.2.2. If 9 and 3-C are locally eqztivalent, then 9 satisfies the com

pletion theorem if and only if H does.

Proof. If 9 and 3-C are locally equivalent by a local equivalence 3-C — 9, then

we have an isomorphism f : K(G0) --* K(Ho). The following diagram

is commutative:

K(Go) K(Ho)

K*(Go) K*(Ho)

Therefore have f(Ig) C I. Let g be the inverse of f, x e and

y = g(x). Since ,6(x) = 0, we have c(y) = 0. But since

c(y) = (n,a) Zek*(Go) = K*(Go) and so a(y) = (n,(a)). This

implies in particular n, = 0, that is, ag(I) C k*(G0).

Let m e N such that k*(G0)m = 0. Then, cg(I) c k*(Go)m = 0 and

so g(I) C 19. Thus I = fg(I) C f(19) and the topologies induced by

Ig and ‘3-C on K(Ho) are the same. Therefore we have an isomorphism of

pro-rings {K*(Go)/Ifl {K*(Ho)/Ij.
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The local equivalence also induces a homotopy equivalence between B9

and B3-C. If we consider the associated filtrations to each of these spaces,

{BTh9} and {BFC}, the homotopy equivalence must take B9 to some

Bi-C and BJ-C to some BTh+1c’9. Hence we have an isomorphism of pro-

rings {K*(Bfl9)} {K*(BJC)}. The lemma follows then by looking at the

diagram:

{K*(Go)/Ifl {K*(Ho)/I}

{K*(Bfl9)} {K*(BJ{)} E

From the previous lemma, we obtain the following theorem:

Theorem 5.2.3. If 9 and J-C are weakly equivalent, then 9 satisfies the

completion theorem if and only if J-f does.

In particular, we have this corollary:

Corollary 5.2.4. If 9 is Bredon-compatible and U is a 9-cell, K(U) is a

finitely generated abelian group and the groupoid 9 x U satisfies the comple

tion theorem.

This corollary tells us that the completion theorem is true for 9-cells.

Now we move on to prove this for finite 9-CW-complexes.

Let X be a finite 9-CW-complex and consider the spectral sequences for

the maps f : X —* X/9 and Ii : X x E9 —* X/9 in 9-equivariant K-theory:

= fJ K(f’U) K(X)

iEI

= fi K(h1U) == K(X9)
icIp

Now, since h1(U) = f’(U) x,- E9 there is a map of spectral sequences
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E —* E induced by the projectionsf1(U) x,,. E9 —* f’(U).

The following lemma will be useful in what follows.

Lemma 5.2.5. Fix any commutative Noetherian ring A, and any ideal I C

A. Then for any exact sequence —* M —* M” of finitely generated A-

modules, the sequence:

{M’/PM’} —> {M/PM} —> {M”/IThM”}

of pro-groups is exact.

Proof. See [28], section 4. U

The spectral sequence E is a spectral sequence of K(Go)-modu1es. From

this point we assume that 9 is finite. Note that this implies that K(Go) is

a Noetherian ring. All elements in these spectral sequences are finitely gen

erated over K(Go). By the previous lemma, the functor taking a

module M to the pro-group {M/IM} is exact and so we can form the

following spectral sequence of pro-rings:

= {JljK(L1U1)/IK(L’U)} =

jaip

Similarly consider the maps h : X x E9 —* X/9. They give us

another spectral sequence of pro-rings:

= {fl K(lç’U)} ,‘ {K(X x. E’9)}
jaIp

We have a map of spectral sequences çb : F —* F.

If 9 is Bredon-compatible, the groupoids 9 x f’(U) satisfy the comple

tion theorem for all i. Since we are taking quotient by the ideal 19 and not

by ‘9xf—’(u) , we need to check that both topologies coincide. We consider

the long exact sequence in equivariant and non-equivariant K-theory for the
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pair (Cu, V) where V is any f’(U) and Cv is the mapping cylinder of the

map 7t : V —> G0. Note that Cv is 9-homotopy equivalent to C0 and

VCC.

K9(Cu,U) K9(G0)— K9(U) K(Cu,U)

I I

_

I I
K(Cu,U) —‘ K(Go) K(U) —p- K’(Cu,U)

Let Iv I9)f-1(u.). It is clear that19K9(U) C 1v Now let m N

such that K(Cv,V)m = 0 and n e N such that Kg(Cv,V)” = 0. Then

im c19K9(V) and so the topologies coincide.

This proves is an isomorphism when restricted to any particular el

ement F’3 and therefore, it is an isomorphism of spectral sequences. In

particular, we have {K (X)/IK”(X)} {K7(X x E9)}

Theorem 5.2.6. Let 9 be a Bredon-compatible Lie finite groupoid and X a

finite 9-CW-complex. Then we have an isomorphism of pro-rings

{K(X)/IK(X)} {K*(X x,. E9/9)}

Corollary 5.2.7. Under the same circumstances, the homomorphism

K(X) —‘ K*(X9) induces an isomorphism of the 19-adic completion of

K(X) with K*(Xg).

5.3 The twisted completion theorem

For any 9-stable projective bundle P on a 9-space X, consider the 9-stable

projective bundle P ,,E9 on X x ,E9. The following diagram commutes:
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Px,ETh9

Xx,,.E’9

Therefore we have a map:

K(X) PXrE’9K*(X X7r E’9)

‘K(X) is a module over K(Go) and PxirE9K*(X x E9) is a mod

ule over K(E9). In fact we have a commutative diagram:

K(Go) ‘ K(E9)

I I
K(X) —. PXE’9K*(X x ETh9)

From the setup for untwisted K-theory in section 5.1, we know that the

last map factors through I and therefore, by naturality we have a map:

PXrE’9*( x7, E9)

We can also look at these maps as a map of pro-K(Go)-modules:

{‘K(X)/I’K(X)} {PXtE’29J(*()( x E’9)}

Taking limits we obtain a map of K(Go)-modules:

PXE9K*(X x E9)

Conjecture 5.3.1. Let 9 be a finite Lie groupoid, X a 9-space and P a 9-
stable projective bundle. Then we have an isomorphism of K(Go)-modules:

PXTrE9K*(X x E9)
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If a groupoid 9 satisfies this conjecture for X = G0 and all 9-stable pro

jective bundles on G0, we will say 9 satisfies the twisted completion theorem.

In what follows, we will use the following result from [261, stated here in

a simpler form which suffices for our purpose:

Theorem 5.3.2. Let X be a finite G-CW-complex, where C is a compact

Lie group. Then K(X) is finitely generated over R(G) and the projection

EG x X —* X induces an isomorphism:

PxEGK* (EG x X)

for any G-stable projective bundle P on X.

Lemma 5.3.3. Let 9 = G x X, where G is a compact Lie group and X is

a compact G-space such that K(X) is finite over R(G). Then 9 satisfies

the twisted completion theorem.

Proof. It follows from lemma 5.2.1 and the completion theorem for twisted

equivariant K-theory for actions of compact Lie groups, that is, theorem

5.3.2. LI

Lemma 5.3.4. If 9 and Jf are locally equivalent, then 9 satisfies the twisted

completion theorem if and only if FC does.

Proof. Let P be a J-f-stable projective bundle on H0. Then, F*(P) is 9-
stable. If 9 and 2f are locally equivalent by a local equivalence F : J-f —* 9,
then we have an isomorphism f : F*PK(GO) —-* ‘K(Ho). The following

diagram is commutative:

K(G0) K(H0)

I
F*PK*(G)

- K(H0)
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By lemma 5.2.2, the topologies induced by 19 and Ij- are the same and

therefore we have an isomorphism of pro-rings:

{F*PK* (Go)/IF*PK(Go) } {K(H0)/I7K(H0)}

The local equivalence also induces a local equivalence between the groupoids

9 x E9 and J-C x E3-f and it takes ETh3-C to ETh9. Therefore we have a

homomorphism of pro-rings {F* (P xrE’K) K(E9) } {PxE K(E3-f) },
which is an isomorphism in the limit. It is also the case that
F*(P x EJ-C) = F*(P) x E9 and so we have a commutative diagram:

{F (Go)/Ir*PK(Go)}
-{K(H0)/IK(H0)}

{F*(P)XE’9K*(Eflg)} {PXrE’3CK*(Efl3{)}

The lemma follows then by looking at the diagram:

F* p z-* (f-I A = P T/* fizz- A

I
F*(P)xE9K*(E9) PXIE3-CK*(E) E

From the previous lemma, we obtain the following theorem:

Theorem 5.3.5. If 9 and 3-C are weakly equivalent, then 9 satisfies the

twisted completion theorem if and only if 3-f does.

Now from this theorem, lemma 5.3.3 and theorem 5.3.2, we obtain this

corollary:

Corollary 5.3.6. If 9 is a Bredon-compatible finite Lie groupoid, U is a

9-cell and P is a stable 9-projective bundle on U,1’K(U) is a finitely gen

erated abelian group and the groupoid 9 i U satisfies the completion theorem.

65



Chapter 5. The completion theorem

This corollary tells us that the twisted completion theorem is true for

9-cells. Now we move on to prove this for finite 9-CW-complexes.

Let X be a finite 9-CW-complex and P a 9-stable projective bundle on

X. Consider the spectral sequence for the maps f : X —* X/9 in twisted

9-equivariant K-theory with twisting given by the restrictions of F:

= fl
f*(P.)q(f_l

) Pjçp+qy

iEI

The spectral sequence E is a spectral sequence of K (Go)-modules. As

sume 9 is a finite groupoid so that K(Go) is a Noetherian ring. All elements

in these spectral sequences are finitely generated over K (Go). The functor

taking a K(Go)-module M to the K(Go)-module M is exact [28] and so

we can form the following spectral sequence of K(Go)-modules.

= fi Qiq(f-1u P+x

iEIp

where Q = f*(P). Similarly consider the map h : X x E9 — X/9. It

gives us another spectral sequence of K(Go)-modules:

= II QixE9jq(h_lu1)== 9K(X x7 E9)
iEIp

since h*(P)
= Q x E9. We have h’(U) = f’(U) x E9 so there is a

map of spectral sequences F —* F induced by the projections onto the first

coordinate f’(U) x E9 —* f’(U).

If 9 is Bredon-compatible, the groupoids 9 f (U1) satisfy the twisted

completion theorem for all i. From the previous section, we know that the

topologies determined by the groupoid 9 and 9 x U1 on K(fU1)are the

same and therefore they are the same on

This proves q is an isomorphism when restricted to any particular el
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ement and therefore, it is an isomorphism of spectral sequences. In

particular, we have PK-I-(X)1A PxE9KP+(X x E9)

Theorem 5.3.7. Let 9 be a Bredon-compatible finite Lie groupoid, X a

finite 9-CW-complex and P a 9-stable projective bundle on X. Then we

have an isomorphism of K(Go)-modules:

PXIE9n( x E9)
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Proper actions of Lie groups

Throughout this whole chapter S will be a Lie group, but not necessar

ily compact. To study proper actions of S, we can consider the groupoid

9 = S x ES, where ES is the universal space for proper actions of S as

defined in [27]. This space is a proper S-CW-complex such that ESG is

contractible for all compact Lie subgroups G of S. The existence of ES is

shown in [27]. It is also shown there that every proper S-CW-complex has

an S-map to S and this map is unique up to 5-homotopy. Some immediate

consequences follow:

• Proper S-CW-complexes are 9-CW-complexes.

• Extendable 9-bundles on a proper S-CW-complex X are extendable 5-

bundles for any S-map X —* S, since all of them are S-homotopic.

• E9 = ES x ES and this space is S-homotopy equivalent to ES, so

B9 is homotopy equivalent to BS.

• 9 is finite if and only if ES is a finite proper S-CW-complex.

• Extendable 9-sections on a proper S-CW-complex X are extendable 5-

sections for any S-map X —* ES, since all of them are 5-homotopic.

• If H is a locally universal S-Hilbert representation, then ES x H is a

locally universal 9-Hilbert bundle.

• Stable 9-projective bundles on X are stable 5-projective bimdles on

x.

By abuse of language, we say that proper actions of S are Bredon

compatible if the corresponding groupoid 9 = S ES is Bredon-compatible.
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For such actions, the following results follow from the corresponding results

for groupoids. We will denote K(X) = K(X) and K(X) =

Theorem 6.0.8. If S is a Lie group with Bredon-compatible proper actions,

the groups K(X, A) define a Z/2-graded multiplicative proper cohomology

theory on the category of finite S-CW-pairs.

Theorem 6.0.9. If S is a Lie group with Bredon-compatible proper ac

tions and a finite model for ES, the groups RK(X, A) define a 7Z/2-graded

multiplicative proper cohomology theory on the category of finite proper 5-

CW-pairs.

Corollary 6.0.10. Let S be a Lie group with Bredon-compatible proper

actions and a finite model for ES, X a finite S-CW-complex and H a stable

representation of 5, then:

— f [X,Fred’(H)]t if n is even

1 [X, 2Fred’(H)1t if n is odd

Theorem 6.0.11. IfS is a Lie group with Bredon-compatible proper actions

and a finite model for ES, the groups ‘K(X) define a 7/72-graded proper

cohomology theory on the category of finite proper S-CW-complexes with

S-stable projective bundles, which is a module over untwisted 5-equivariant

K-theory.

Theorem 6.0.12. Let S be a Lie group with Bredon-compatible proper ac

tions and a finite model for ES and X a finite S-CW-complex. Then we

have an isomorphism of pro-rings

{K(X)/IK(X)} {K*(X x, E”S/S)}

Theorem 6.0.13. Let S be a Lie group with Bredon-compatible proper ac

tions and a finite model for ES, X a finite S-CW-complex and P a S-stable

projective bundle on X. Then we have an isomorphism of K(ES)-modules:

PXrESKfl(X Xlr ES)
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All actions of finite groups and compact Lie groups are shown to be

Bredon-compatible in [40]. Equivariant K-theory for these actions was in

troduced in [40]. It is a well-known fact that for these actions are Bredon

compatible [40]. The completion theorem in untwisted K-theory was proven

in [5] and for twisted K-theory, it was recently proven in [26].

K-theory for proper actions of discrete groups was constructed in [28].

In this paper, actions of discrete groups are shown to be Bredon-compatible

and a completion theorem is proven under some conditions. Twisted K-

theory for proper actions of discrete groups for some particular twistings

was defined in [14], but no completion theorem existed up to date in the

literature.

In general, vector bundles may not be enough to construct an interest

ing equivariant cohomology theory for proper actions of second countable

locally compact groups [35], but they suffice for two important families, al

most compact groups and matrix groups [34].

Almost compact groups, that is, second countable locally compact groups

whose group of connected components are compact, always have a maximal

compact subgroup. Any space with a proper action of one of these groups

is the induction of a space with an action of that compact subgroup and

so the study of proper actions of almost compact groups are reduced to

studying compact Lie group actions. This is carried on in [34], and so these

action groupoids are Bredon-compatible and we have a completion theorem.

In fact, this is also proved in [34], by showing that the completion maps

are compatible with the reduction map to the maximal compact subgroup.

With different techniques it is proven that proper actions of matrix groups,

that is, closed subgroups of GL(n, R), are Bredon-compatible and so a com

pletion theorem follows. A particular instance of this case are proper actions

of abelian Lie groups. Using the associated groupoids, we now can define

twisted K-theory for actions of these groups and a completion theorem.
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Proper actions of totally disconnected groups that are projective limits

of discrete groups are shown to be Bredon-compatible in [38], where the cor

responding K-groups are introduced. Since that theory coincides with the

one constructed here, we now have a completion theorem for such actions.

The previous constructions give a way of defining twisted K-theory and the

corresponding results yield a completion theorem. One particular example

is given by the group SL2().

In general 9 need not be a Bredon-compatible groupoid. When 9 = S x

ES is a Bredon-compatible groupoid we must have Vectg(S/G) = Vect0(pt)

for a compact subgroup G of S. Let S be a Kac-Moody group and T its

maximal torus. Note that S is not a Lie group, but our constructions could

be generalized to the context of topological groupoids.

There is an S-map S/T —* S which is unique, up to homotopy. Given

an S-vector bundle V on ES, the pullback to S/T is given by a finite-

dimensional representation of T invariant under the Weyl group. This rep

resentation gives rise to a finite-dimensional representation of S. But this

representation must be trivial. In particular, extendable S-vector bundles

on S/T only come from trivial representations of T.

In order to deal with these groups, it is more convenient to use dom

inant K-theory, which was developed in [22]. Kac-Moody groups possess

an important class of representations called dominant representations. A

dominant representation of a Kac-Moody group in a Hilbert space is one

that decomposes into a sum of highest weight representations. Equivariant

K-theory for proper actions of Kac-Moody groups is defined as the repre

sentable equivariant cohomology theory modeled on the space of Fredholm

operators on a Hilbert space which is a maximal dominant representation

of the group. It is expected that twisted dominant K-theory can be defined

in the same way using a corresponding Fredholm bundle over a projective

bundle which is stable with respect to a suitable Hilbert space of dominant

representations.
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An example of a Kac-Moody group which is relevant to the work of Freed,

Hopkins and Teleman [17, 18, 19] is the group K(A) = T > LG ([22], section

8) associated to the loop group LG of a simply connected simple compact

Lie group G, where T is a circle acting by rotation of the loops. The clas

sifying spaces for proper actions of LG and K(A) are the same. Let us

call that space X(A), following the notation in [22]. The K(A)-equivariant

dominant K-theory of X (A) can be identified with the Verlinde algebra of

G, which is generated by projective representations of LG. The based loop

group flG does not have any nontrivial compact subgroups and X(A)/2G

is homeomorphic to G via the holonomy map [36]. This map carries the

action of LG on X(A) to the conjugation action of G on itself. Further

calculations in section 5 of [22] imply that the K(A)-equivariant dominant

K-theory of X(A) is isomorphic to the twisted G-equivariant K-theory of

C with the conjugation action.

The question arises whether it is possible to generalize this to general

ized Kac-Moody algebras, introduced by R. Borcherds in [7]. These alge

bras have the potential to define topological groups (Borcherds groups) by

amalgamation using the same tools as in [25], and also have highest weight

representations, which would give rise to the dominant representations of

the group. We could use these representations to construct an equivariant

cohomology theory for proper actions of these groups. A completion map is

also possible for dominant K-theory [23], although in this case the topology

could not induced by an ideal of the base ring in general. This would be

something worth studying in the case of Borcherds groups, to obtain some

knowledge about the homotopy type of their classifying spaces.
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