
From String structures to Spin structures on
loop spaces

April 27, 2016

From String structures to Spin structures on loop spaces



Some notations

We will always use bold type notations for smooth stacks.

For a given open cover U = {Uα} of a smooth manifold M and
every positive integer n, we will write Uαi1 ...αin

for the n-fold
intersection Uαi1

∩ Uαi2
∩ ... ∩ Uαin

.

We will denote the standard n-simplex with ∆n.
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Introduction

We want to prove that a String structure on a n-dimensional smooth
manifold X (n ≥ 3) induces a Spin structure on its loop space.
It is well known in the theoretical physics folklore that a String
structure on X is essentially the same thing as a Spin structure on
LX . Konrad Waldorf, in [13], gave a proof of this, showing also the
validity of the inverse implication, in the case of a compact and simply
connected manifold X .
We show how Waldorf’s result can easily be obtained in the more
general setting of smooth stacks. The crucial point in our proof is the
existence of a natural morphism of smooth stacks

BSpin→ B2(BU(1)conn)

refining the first fractional Pontryagin class.
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Classic results about oriented manifolds
Let X be a n-dimensional smooth manifold: to its tangent bundle TX
corresponds the classifying map

fTX : X → BO(n)

While π0(O(n)) = Z2, SO(n) is connected:
endowing X with an orientation structure means giving a lift

fTX : X → BSO(n).

Doing so, we ”kill” the first nonzero homotopy group of BO(n), that is
π1(BO(n)) = Z2.

A smooth manifold X can be endowed with an orientation
structure if and only if

(X
fTX→ BO(n)

w1→ K (Z2,1)) (1)

is homotopic to zero.
In (1), K (Z2, 1) denotes the first Eilenberg MacLane space of Z2 and w1 corresponds to the first universal
Stiefel-Whitney class in the bijection H1(BO(n), Z2) → [BO(n), K (Z2, 1)].
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Classic results about Spin manifolds
Let X be a n-dimensional oriented manifold: to its tangent bundle TX
corresponds the classifying map

fTX : X → BSO(n)

While π1(SO(n)) = Z2, Spin(n) is simply connected:
endowing X with a Spin structure means giving a lift

fTX : X → BSpin(n).

Doing so, we ”kill” the first nonzero homotopy group of BSO(n), that
is π2(BSO(n)) = Z2.

An oriented smooth manifold X can be endowed with a Spin
structure if and only if

(X
fTX→ BSO(n)

w2→ K (Z2,2)) (2)

is homotopic to zero.
In (2), K (Z2, 2) denotes the second Eilenberg MacLane space of Z2 and w2 corresponds to the second universal
Stiefel-Whitney class in the bijection H2(BSO(n), Z2) → [BSO(n), K (Z2, 2)].
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The first fractional Pontryagin map

The first nonzero homotopy group of Spin(n) is the third,
π3(Spin(n)) = Z. We get:

π4(BSpin(n)) = Z
H4(BSpin(n)) = Z (Hurewicz theorem)
H4(BSpin(n),Z) = Z (universal coefficient theorem)

The generator of H4(BSpin(n),Z) = Z is represented by a map (up to
homotopy)

BSpin(n)→ K (Z,4) (3)

called first fractional Pontryagin class and is denoted with the symbol
1
2 p1.
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The third lift of fTX , that is the String structure

We say, by definition, that a Spin manifold X is endowed with a String
structure if the map

X fTX→ BSpin(n)
1
2 p1→ K (Z,4) (4)

is homotopic to zero. In this case, the map fTX can be lifted to

fTX : X → BString(n),

where BString(n) is the homotopy fiber of 1
2 p1.
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A useful visualization of what described until now is showed by the
following diagram

BString(n)

BSpin(n) K (Z,4)

BSO(n) K (Z2,2)

X BO(n) K (Z2,1)

��

��

//
1
2 p1

��

//
w2

GG

String structure

CC

Spin structure

::

orientation structure

//
fTX //

w1
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A Spin structure on the loop space

Let X be a Spin manifold, LX its (free) loop space and LSpin(n) the
loop group of the Spin group.
Since Spin(n) is connected, the tangent bundle T (LX ) is naturally an
LSpin(n) bundle over LX (see [7]).
We now consider the universal central extension ([6])

1→ U(1)→ LS̃pin(n)→ LSpin(n)→ 1 (5)

induced by the canonical 2-cocycle valued in U(1) on LSpin(n) and
give the following natural

Definition
A Spin structure on LX is a lift of the structure group of the tangent
bundle T (LX ) from LSpin(n) to LS̃pin(n).
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Waldorf, in [13], shows the existence of a natural transgression map

{ String structures on X} → {Spin structures on LX}

which induces a bijection

{String structures on X}/∼ → {Spin structures on LX}/∼

if X is compact and simply connected.
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What is a smooth stack?

A smooth stack S is the formalization of the naive idea of a sheaf of
groupoids defined over the site of smooth manifolds.
That is, for every smooth manifold M, we have a groupoid S(M) and
this association is such that:

1 a morphism f : M → N induces a pullback morphism
f ∗ : S(N)→ S(M);

2 if U = {Uα} is an open cover of M, the groupoid S(M) is
completely reconstructed from the groupoids S(Uα), from the
restriction maps S(Uα)→ S(Uαβ) and from the compatibility
conditions between these on Uαβγ (one says that the descent
data are effective).
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Three examples:

1 For every smooth manifold N we have the smooth stack
N : M 7→ C∞(M,N) (this is a set, and so a groupoid with only
identities as morphisms).

2 For every Lie group G we have the smooth stack
BG : M 7→ {principal G-bundles over M}.

3 For every Lie group G we have the smooth stack
BGconn : M 7→ {principal G-bundles with connection over M}.
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More generally one can consider smooth higher stacks. The definition
is the same but now S(M) is a higher groupoid (a simplicial set with
some good properties). Since simplices of higher dimensions are
involved in a higher stack, the descent data involve not only double
(as for sheaves) and triple (as for ordinary stacks) intersections of the
open sets in the given open cover, but also higher intersections.

For instance the 2-stack B2U(1) of U(1)-bundle gerbes involves the
quadruple intersections Uαβγδ in its definition in terms of local data.
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Refining 1
2p1 to a morphism of smooth stacks

BSpin is the classifying space for principal Spin-bundles. We
can refine it and consider BSpin which is the stack of principal
Spin bundles. Note that BSpin = |BSpin|.
K (Z,4) can be refined: this leads to B3(U(1)), the stack of
3-U(1) bundles.
1
2 p1 : BSpin→ K (Z,4) can be refined to a morphism of stacks
1
2 p1 : BSpin→ B3(U(1)) (see [14]).
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A rereading of the pullback defining BString

We previously defined BString(n) as the homotopic fiber of
BSpin(n)→ K (Z,4). The above smooth refinement permits us to
define the stack BString by means of

BString ∗

BSpin B3(U(1))

//

�� ��

//
1
2 p1

(6)
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A rereading of the central extension (5)

The central extension of the loop Spin group considerd above
induces the evident commutative diagram

BU(1) BLS̃pin

∗ BLSpin

//

�� ��

//

Refining the canonical 2-cocycle valued in U(1) on LSpin gives
a morphism of stacks

BLSpin→ B2U(1)
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A rereading of the central extension (5)

The existence of the central extension (5) and its relation with
this cocycle is encoded in the commutative diagram

BU(1) BLS̃pin ∗

∗ BLSpin B2U(1)

//

�� ��

//

��

// //

(7)
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The lift of 1
2p1: structure of the proof

A very crucial point for the remainder of our work is the following

Theorem

The first fractional Pontryagin class can be lifted to a map

BSpin
1
2 p1→ B2(BU(1)conn).

This lift is realized in two steps:

1 the differential refinement of 1
2 p1, inducing a morphism

BSpinconn

1
2 p1→ B3U(1)conn (see [14])

2 the passage of the previous map to the quotient by the action of
Ω1(−; so).

From String structures to Spin structures on loop spaces



How locally BSpinconn → B3U(1)conn looks like

Given a smooth manifold X with a good open cover U = {Uα}, the
generic object of BSpinconn(X ), that is a Spin-principal bundle with
connection on X , consists in the following collection of local data:

1 smooth functions gαβ : Uαβ → Spin

2 local 1-forms Aα ∈ Ω1(Uα, so)

satisfying the cocycle condition

gαβgβγgγα = 1

on the triple intersections Uαβγ and the compatibility condition

Aβ = g−1
αβAαgαβ + g−1

αβdgαβ

on the double intersections Uαβ .
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How locally BSpinconn → B3U(1)conn looks like
We produce the extension of this data given by:

a smooth family of based paths in Spin

ĝαβ : Uαβ ×∆1 → Spin

with ĝαβ(0) = e and ĝαβ(1) = gαβ together with a 1-form

Âαβ = ĝ−1
αβAαĝαβ + ĝ−1

αβdĝαβ ∈ Ω1(Uαβ ×∆1, so)

with Âαβ(0) = Aα and Âαβ(1) = Aβ on double intersections;

a smooth family of based 2-simplices in Spin

ĝαβγ : Uαβγ ×∆2 → Spin

together with a 1-form

Âαβγ = ĝ−1
αβγAαĝαβγ + ĝ−1

αβγdĝαβγ ∈ Ω1(Uαβγ ×∆2, so)

satisfying suitable conditions on Uαβγ × ∂∆2 on triple
intersections ;
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How locally BSpinconn → B3U(1)conn looks like

a smooth family of based 3-simplices in Spin

ĝαβγδ : Uαβγδ ×∆3 → Spin

together with a 1-form

Âαβγδ = ĝ−1
αβγδAαĝαβγδ + ĝ−1

αβγδdĝαβγδ ∈ Ω1(Uαβγδ ×∆3, so)

satisfying suitable conditions on Uαβγδ × ∂∆3 on quadruple
intersections.

Finally, we define an object of B3U(1)conn(X ) by means of the
following collection:

(cs(Aα),

∫
∆1

cs(Âαβ),

∫
∆2

cs(Âαβγ),

∫
∆3

cs(Âαβγδ) modZ)

where cs(A) is the Chern-Simons 3-form obtained by evaluating a
so-valued 1-form A in the Chern-Simons element cs.
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The passage to the quotient by the action of Ω1(−; so):

By composing the differential refinement of 1
2 p1 with the forgetful

morphism B3U(1)conn → B2(BU(1)conn) we get the morphism

BSpinconn → B2(BU(1)conn)

locally defined by:

(Aα,gαβ) 7→ (0,0,
∫

∆2
cs(Âαβγ),

∫
∆3

cs(Âαβγδ) modZ).

To conclude the proof, we only need to verify this map is independent,
up to homotopy, on the connection data {Aα}.
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The main result

We now derive the sequence of commutative diagrams at the end of
which, we get our result. The starting point is

BString ∗

BSpin B3(U(1))

//

�� ��

//
1
2 p1

(8)
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The main result

Thanks to the previous theorem, the bottom map of the commutative
diagram (8) factors and we have

BString ∗

BSpin B2(BU(1)conn) B3U(1)

//

��

//

��

// //

(9)
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The main result

which induces

BString B2Ω1 ∗

BSpin B2(BU(1)conn) B3U(1)

//

�� ��

//

��

// //

(10)
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The main result

Now forget the rightmost part of the diagram

BString B2Ω1

BSpin B2(BU(1)conn)

//

�� ��

//

(11)

From String structures to Spin structures on loop spaces



The main result

and apply the free loop space functor L, i.e., the internal hom [S1,−]

[S1,BString] [S1,B2Ω1]

[S1,BSpin] [S1,B2(BU(1)conn)]

//

�� ��

//

(12)
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The main result

Since L = [S1,−] commutes with B (this is the stacky refinement of
the classical result that forming the classifying space B commutes
with forming the loop space L, see [15]), all the nodes of (12) can be
rewritten to give the following diagram:

BLString B2[S1,Ω1]

BLSpin B2[S1, (BU(1)conn)]

//

�� ��

//

(13)
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The main result

The holonomy morphism [S1,BU(1)conn]
hol→ U(1) induces the evident

morphism B2[S1,BU(1)conn]→ B2U(1), which permits us to write

BLString B2[S1,Ω1] B2R

BLSpin B2[S1,BU(1)conn] B2U(1)

//

�� ��

//

∫
S1

��

// //
hol

(14)
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The main result

Let us keep only the outer diagram of (14)

BLString B2R

BLSpin B2U(1)

//

�� ��

//

(15)

and denote with BLS̃pinZ the pullback of

BLSpin→ B2U(1)← B2R.

For the universal property of homotopy pullbacks, exists a canonical
morphism BLString → BLS̃pinZ:
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The main result

BLString

BLS̃pinZ B2R

BLSpin B2U(1)

��

//

�� ��

//

(16)

Since the bottom horizontal map here is the stacky refinement of the
canonical 2-cocycle valued in U(1) on LSpin. . .
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The main result

. . . we can extend (16) to

BLString BLS̃pin ∗

BLS̃pinZ B2R

BLSpin B2U(1)

��

//

�� ��

//

�� ��

//

(17)
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The main result

The crucial point of (17) is the cospan

BLString → BLS̃pinZ ← BLS̃pin.

Its right arrow becomes an isomorphism

|BLS̃pin| ∼→ |BLS̃pinZ|

at the level of topological realizations (since the Lie group R is
contractible). Therefore there is a canonical map

BLString f→ BLS̃pin.
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The main result

To read it at the level of String structures on a given manifold X ,
notice that, by definition, for a String manifold X , there is a
distinguished map

X → BString.

Taking the free loop spaces gives a map

LX → LBString ' BLString.

Finally, after a composition with f , we get the map

LX → BLS̃pin.
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