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cybernetic systems
are ‘parametrized systems’: plants coupled to a controller.

f

U
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(U ,⊗,1)

(C,�)

Cont : U ! Set

Para(�Cont) =
{
P : U ,U : Cont(P ), A� P

f
! B

}
symmetric monoidal bicategory of

controlled plant processes

(plants coupled to a controller)

Example: U = C = Lens(Set) and Cont
(
X
S

)
= {selection functions SX ! 2X}.

 Para(�Cont) = open games

U = C = Smooth and Cont(X) = {linear maps T ∗X ! TX}
 Para(�Cont) = open gradient-based learners

4



(U ,⊗,1)

(C,�)

Cont : U ! Set

Para(�Cont) =
{
P : U ,U : Cont(P ), A� P

f
! B

}
symmetric monoidal bicategory of

controlled plant processes

(plants coupled to a controller)

Example: U = C = Lens(Set) and Cont
(
X
S

)
= {selection functions SX ! 2X}.

 Para(�Cont) = open games

U = C = Smooth and Cont(X) = {linear maps T ∗X ! TX}
 Para(�Cont) = open gradient-based learners

4



(U ,⊗,1)

(C,�)

Cont : U ! Set

Para(�Cont) =
{
P : U ,U : Cont(P ), A� P

f
! B

}
symmetric monoidal bicategory of

controlled plant processes

(plants coupled to a controller)

Example: U = C = Lens(Set) and Cont
(
X
S

)
= {selection functions SX ! 2X}.

 Para(�Cont) = open games

U = C = Smooth and Cont(X) = {linear maps T ∗X ! TX}
 Para(�Cont) = open gradient-based learners

4



(U ,⊗,1)

(C,�)

Cont : U ! Set

Para(�Cont) =
{
P : U ,U : Cont(P ), A� P

f
! B

}
symmetric monoidal bicategory of

controlled plant processes

(plants coupled to a controller)

Example: U = C = Lens(Set) and Cont
(
X
S

)
= {selection functions SX ! 2X}.

 Para(�Cont) = open games

U = C = Smooth and Cont(X) = {linear maps T ∗X ! TX}
 Para(�Cont) = open gradient-based learners

4



Motivation

What about behaviour?

e.g.

• Solutions concepts in game theory

• Trajectories/equilibria of learning agents

• Flows of controlled ODEs

• . . .

We want tools to treat compositionally behaviour as well as specification!
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In Categorical Systems Theory (myers˙double˙2021; myers˙categorical˙2022) behaviour is

handled compositionally using an extra dimension representing morphisms between

processes and systems.

· ·

· ·

• •
Ultimately, this trick allows to define functorial (often corepresentable)

notions of behaviour!
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.

Can we do the same for cybernetic systems?

(U ,⊗,1)

(C,�)

Cont : U ! Set

(U,⊗,1) symmetric monoidal

double category of

control processes

(C, ???) symmetric monoidal ??? of

plant processes

Cont : U> uni. lax
−−−−! Cat symmetric monoidal

doubly indexed category of

control systems

...and of course, a Para construction!
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Results

In this talk, I will describe:

• a generalised Para,

• a new notion of action (fibred actions) suitable for the needs of categorical cybernetics,

• the new construction at work in K = ProTh = SymMonDblCatv to construct theories of

controlled open dynamical systems Para(Arena),

• some behaviours we can represents in this way,

• (bonus content) a comparison of Para(Arena) with Org (shapiro˙dynamic˙2022)
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Generalising Para



Generalising Para

The ‘type signature’ of the Para construction is that of a functor

Para : PsAct −! Bicat
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Generalising Para

For better results, we can replace bicategories with double categories:

ParaCat : PsAct(Cat) −! PsCat(Cat)

C × U

C
� 7−!


A A′

B B′

(P ,f)

�

(P ′,f ′)
�

k

h

α


where

(P , f) : A� P ! B in C
α : P ! P ′ in U

and (α� h) # f ′ = f # k
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Generalising Para

Now it’s easy to see how to move beyond Cat: we’re looking for a functor

ParaK : PsAct(K) −! PsCat(K)

where K is a suitably complete (TBD) 2-category

How do we actually define this functor in generality?
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Constructing Para

For starters, ParaCat(�)1 is a comma category:

ParaCat(�)1 =


A A′

B B′
(P ,f)

�

(P ′,f ′)

�

k

h

α

 =


A� P A′ � P ′

B B′
k

α�h

f f ′

 = �/C

so we can easily reproduce that in a K with comma objects.

What about the rest of the pseudocategory structure on ParaK(�)?
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Constructing Para

If K has Cat-powers & pullbacks, we have:

�/C

C × U C

C
�

≡

�/C

C × U C#

C
� dom

y

comma squares ≡ #-power + pullback

12



Constructing Para

Moreover this...

�/C

C × U C#

C
� dom

y
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Constructing Para

Moreover this... comes from a composition of spans!

�/C

C × U C#

C C C
� dom

y

πC cod

13



Constructing Para
�/C

C × U C#

C C C
� dom

y

πC cod

These spans encode some relevant structure:

• both spans are pseudomonads in Span(K), in particular the pseudomonad structure on

C πC C × U �
! C coincides with the U-pseudoaction on C,

• the resulting composite C  �/C ! C is the underlying graph of Para(�):

C �/C C

A (P ,A� P
f
! B) B

Since PsCat(K) ∼= PsMnd(Span(K)) (at least on objects), we get the full pseudocategory

structure Para(�) if we can show C  �/C ! C is a pseudomonad too.

14
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Constructing Para

Such a pseudomonad structure corresponds to a composition law for parametric

morphisms, which we know:

(P , A� P
f
! B)#(Q, B �Q

g
! C) = (PQ, A� (PQ)

δA! (A� P )�Q
f�P
! B �Q

g
! C)

f g

P Q

A C

=

f

g

15



Constructing Para

Abstractly, such a pseudomonad structure on C  �/C ! C is obtained from a pseudodistributive

law1 between C πC C × U �! C and C dom
 C# cod

! C.

C/πC �/C

(P , A
f
! B) (P , A� P f�P

−−−! B � P )

dist

In fact a pseudomonad C p
 E �! C distributes over C dom

 C# cod
! C as soon as p is a fibration in K:

C/p �/C

(P : EB , A
f
! B) (f∗P : EA, A� (f∗P )

f�P
! B � P )

(f∗P : EA, A
f
! B)

dist

�#Ef

1(gambino˙formal˙2021)
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Fibred actions

Hence our generalised Para construction naturally consumes fibred actions:

Definition

Let K be a 2-cosmos.2 We call fSpan∼=(K) the tricategory of K-spans whose left leg

is a cloven fibration. Two-cells are cartesian triangles on the left and

pseudocommutative triangles on the right:

E

C C

F

fib

fib

cart.
∼

Definition

A fibred action is a pseudomonad in fSpan∼=(K).
2See (bourke˙cosmoi˙2023), for our purposes: admitting Cat-powers and (strict) pullbacks and equipped with a

pullback-stable class of isofbrations

17



Fibred actions

A fibred action is an action whose actor (E) depends on the actee (C):

E

C C

p � ! � : (A : C)× EA −! C

Example

C
dom
� C# cod

! C it’s the chief example: morphisms act on their domains by sending them

to their codomains:

A� (A
P
! B) = B, A� (A

1A== A) = A,

(A� (A
P
! B))� (A

Q
! C) = A� (A

P
! B # A Q

! C)

18



Fibred actions

A fibred action is an action whose actor (E) depends on the actee (C):

E

C C

p � ! � : (A : C)× EA −! C

Example

Assume (C,×, 1) is a cartesian pseudomonoid in K, then we can form the ‘simple fibred

action’ C
fst
� S(C) ×

! C.

Objects of S(C) are pairs
(
A
B

)
of objects in C and morphisms are maps

S(C)
((

A
B

)
,
(
C
D

))
= C(A,C)× C(A×B,D)

The action behaves like the self-action C × C ×
! C but maps between scalars are different!

18



Fibred actions: a crucial generalization!

This is crucial, e.g. to make trajectories of controlled ODEs corepresentable.

19



Recap

When K is a 2-cosmos (suitably complete 2-category), we have a functor:

ParaK : PsMnd(fSpan∼=(K)) −! PsMnd(fSpan∼=(K))

which (on carriers) is:

ParaK

 E

C C

p �

 :=
�/C

C C
dom cod

To avoid coherence hell for the pseudodistributive law, one has to toil away a bit more: this leads, for instance,

to replace PsMnd with a (conjectural) Kleisli completion for a certain kind of enriched

bicategories (garner˙enriched˙2016). This is a very cool story categorical story, and yields another extra bit of

generality!

DJM sketched it in his CT2023 talk.

20
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The process theory Arena(q)

To each fibration q : B ! C corresponds a double category Arena(q) (myers˙double˙2021) so defined:

(
A−

A+

) (
C−

C+

)

(
B−

B+

) (
D−

D+

)
h

h[

k[

k

f gf] g]

(
A−

A+

)
, . . . ,

(
D−

D+

)
are bundles (objects in B)(

h[

g

)
,
(
k[

k

)
are charts (maps in B)(

f]

f

)
,
(
g]

g

)
are lenses (maps in B∨)

the square exists if both squares (int. and ext.) commute

Note: when q is symmetric monoidal (resp. cartesian monoidal), so is Arena(q).
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f

)
,
(
g]

g

)
are lenses (maps in B∨)

the square exists if both squares (int. and ext.) commute

Note: when q is symmetric monoidal (resp. cartesian monoidal), so is Arena(q).

Example

Let q = cod : Set# ! Set, then objects of Arena(cod) are (equivalent to) polynomials, the maps are

still known as lenses and charts; and the double category we obtain is cartesian monoidal.
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The process theory Arena(q)

To each fibration q : B ! C corresponds a double category Arena(q) (myers˙double˙2021) so defined:
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f
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,
(
g]

g

)
are lenses (maps in B∨)

the square exists if both squares (int. and ext.) commute

Note: when q is symmetric monoidal (resp. cartesian monoidal), so is Arena(q).

Example

Let q = subm : Smooth

�

! Smooth, then objects of Arena(q) are submersions of smooth

manifolds, the maps are lenses and charts; and the double category we obtain is cartesian monoidal.
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The process theory Arena

Let’s consider q cartesian monoidal, so that Arena is cartesian monoidal too and we can define the

simple fibred action for it:

S(Arena)

Arena Arena

fst ×

We claim

• ProTh (= SymMonDblCatv) is a 2-cosmos (see (bourke˙cosmoi˙2023)),

• S(Arena)
fst
! Arena is a fibration in ProTh (see (cruttwell˙double˙2022)),

• the above span admits a pseudomonad structure in fSpan∼=(ProTh), i.e. it’s a fibred action.

Thus we can define ParaProTh and apply it to Arena
fst
� S(Arena)

×
! Arena.
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The cybernetic process theory Para(Arena)

Para(Arena) := ParaProTh(Arena
fst
� S(Arena)

×
! Arena) is a pseudocategory object in

SymMonDblCatv, hence a symmetric monoidal triple category:

24



The cybernetic process theory Para(Arena)

Para(Arena) := ParaProTh(Arena
fst
� S(Arena)

×
! Arena) is a pseudocategory object in

SymMonDblCatv, hence a symmetric monoidal triple category:

0-cells

(
A−

A+

)
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Example: fixpoints of games

When constructed suitably (i.e. as described in capucci˙diegetic˙2023), an open game is a basic 2-cell

in Para(Arena) and maps from the trivial basic 2-cell fix correspond to Nash equilibria:

· ·

1 1

· ·

(
SX

X

) (
RY

Y

)

1

∆u

(Ω
Ω)

(R
N×Ω

Ω )

x̄

{ω̄}

ω̄

sel

Here u : Y ! RN is a payoff function, x̄ ∈ X an initial state and ω̄ ∈ Ω a strategy profile.
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in Para(Arena) and maps from the trivial basic 2-cell fix correspond to Nash equilibria:

1
(
SX

X

)
×
(

Ω
Ω

)
⇐⇒ ω̄ ∈ sel(λω . coplay(x̄, ω,∆u(play(x̄, ω))))︸ ︷︷ ︸

Nash equilibrium

1
(
RY

Y

)

x̄×ω̄

×{ω̄}

∆u

Here u : Y ! RN is a payoff function, x̄ ∈ X an initial state and ω̄ ∈ Ω a strategy profile.
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Example: trajectories of open controlled ODEs

Let
(
f]

f

)
:
(
TX
X

)
⊗
(
TU
U

)
�
(
I
O

)
be an open controlled ODE. Let clock be the ‘walking trajectory’

system,i.e. the uncontrolled ODE on R defined as dx
dt

= 1. Then maps from the latter into the first in

Arena(subm) correspond to solutions of the open controlled ODE:

· ·

(
TR
R

) (
1
R

)
· ·

(
TX
X

) (
I
O

)

1

1

i

o

(TU
U )

(TU
U )

ẋ

x

u̇

u
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be an open controlled ODE. Let clock be the ‘walking trajectory’

system,i.e. the uncontrolled ODE on R defined as dx
dt

= 1. Then maps from the latter into the first in

Arena(subm) correspond to solutions of the open controlled ODE:

(
TR
R

) (
TX
X

)
×
(
TU
U

)

⇐⇒
o(t) = f(x(t), u(t))

〈ẋ(t), u̇(t)〉 = f ](i(t), x(t), u(t))︸ ︷︷ ︸
trajectory of the open controlled ODE

(
1
R

) (
I
O

)

〈x,u〉

〈ẋ,u̇〉

i

fd
dt f]
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Bonus: Para(Arena) and Org

In (shapiro˙dynamic˙2022) they define a double category Org where

• objects are polynomial functors, i.e. functors of the form p =
∑
i:p(1) y

p[i]

• loose arrows (S, φ) : p −!• q are polynomial coalgebras, i.e. coalgebras of the form

S : Set, φ : S −! [p, q](S)

where [−,−] is the closed structure associated to the Hancock product,

• tight arrows h : p! r are morphisms of polynomial functors,

• squares are given by maps between the carriers of the coalgebras, plus a commutativity condition:

p r S T

:= [p, q](S) [r, s](T )

q s [p, s](S) [p, s](T )

α

(S,φ)

• (T,ψ)

•

β

φ ψ

f

[p,β](S) [α,s](T )

[p,s](f)

f
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Bonus: Para(Arena) and Org

Recalling that Poly ∼= Lens(codSet), and that polynomial coalgebras can equivalently be given as

parametric maps SyS ⊗ p! q, and that coalgebra maps between them are charts, we see that Org

embeds in Para(Arena) ‘diagonally’:

p q

p r

 ! p s

q s p s

r s

(SyS ,φ#β)

β

(SyS ,φ)

(TyT ,α#ψ)

α

β

(S,φ)

• (T,ψ)

•

(TyT ,ψ)

α

f

f

f

Hence Org distills the structure of Para(Arena) (or variants thereof) for the purposes of “dynamic

enrichment”. We converge on the same structure!

Question: is enrichment in Para(Arena) interesting? 28
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Conclusions

In this talk:

• We set to find a way to use ideas from CST (myers˙double˙2021) to treat behaviours in

categorical cybernetics á lá (capucci˙towards˙2022),

• We have seen how to generalize the Para construction to arbitrary 2-cosmoi,

• We have seen this naturally leads to the development of fibred actions, which turn out to be

crucial to get correct maps between open controlled dynamical systems.
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Thanks for your attention!

Questions?
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