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CHAPTER II.2

SUPER LIE ALGEBRAS, SUPERMANIPOLDS AND SUPERGROUPS

11.2.1 - The definition of superalgebras and the example of

N-extended super Poincars aleebra

We begin with the definition., A super Lie algebra is a vector
space A over the field of complex or real numbers which splits into

two subspaces & and U, called respectively the even and odd
subspace

A=Geuy (11.2.1

Besides the operations of a vector space (sum and muitiplication by z
scalar), in order to turn A into an algebra one must define a

further product operation which we shall call the Lie bracket and
denote by { , }.

an

The following are the defining properties of the Lie bracket:

i) IfX €6, Y ¢ 6 aré two elements of the even subspace then
their Lie brackét belongs to the same subspace and it is anti-

symmetric:

[x¥) e 6 [%,7} = - [v,x} (11.2.2)

Turthermore if X, ¥, Z ¢ G are three elements of the even subspace,

then the Jacobi identity is satisfied:

ix,[r,21) + fr, 02,300 + [z, [x¥} = 0 (11.2.3a)

i3) If X €6 and ¥ € U, the Lie bracket of these Iwo elements

lies in the odd subspace and it is antisymmetric:

[x¥} e v [x,¥} = ~ [v,x} (11.2.3b)

Furthermore if X, Y€ G and ¥ e U we demand that the following

identity be satisfied:

ix, [v,0 + [y, [v,0) + [yl =0 (11.2.4)

Eq. (I1.2.4) can also be rewritten as follows:

.2.5
[#,[r,¥3) - [v, 51 = [z, (11.2.5)

iii) If Y e U, e U are two elements of the odd subspace

then their Lie bracket is symmetric and lies in the even subspace:
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[¢,5) e 6 [¥,2} = [3,%} (I1.2.6)

Moreover if %, % , A € U are all odd the following is an identity:

[v,[Z,A3} + [A, [¥,21) + [5,[a¥} = 0 (11.2.7)

while if W, 5 €U are odd and X € & is even we have:

[x,[¥,2}} - [E,[5¥}) + e, [Exd =0 (11.2.8)

iv} Finally the Lie bracket is distributive with respect to the
vector space operations, namely if a, peC (or R) and A, B, C e A

then we have:

[0a + BB,C} = afa,cl + 8[B,Cl (11.2.9)

Let us discuss the meaning of these properties. Egqs. (II.2.2) and
(I1.2.3) are equivalent to stating that & is closed under the Lie
bracket, namely it is a subalgebra. Not only. On this subspace the
properties of our Lie bracket are the same as the properties of the
Lie bracket of an ordinary Lie algebra. Hence the even subspace G is
an ordinary Lie algebra. Let us now consider Eqs. (I1.2.3b) and
(II.2.4). They state that the odd subspace U is a carrier space for
a representation of the Lie algebra G, the Lie bracket [ , }
defining the action of 6 on ¥. Indeed Eq. (II.2.4), once rewritten
in the form (I1.2.5), is the statement that the action of elements of
G is consistent with the Lie bracket defined over G.

Eqs. (II.2.6} and (II.2.8) are really novel. They introduce

a3
a4
L5

a symmetric Lie bracket, that is an anticommutator, over the odd~
subspace U and they state that the anticommutator of two odd
elements is an even ore. Jfn other words the odd elements are the
square-roots of the ordinary Lie algebra .

We can now condense all the Egs. (I1.2.2 ~ I1.2.8) in a much
mere compact notation if we introduce the concept of grading. Let 22
be the set of integer numbers mod 2; representatives of the two
equivalence classes zre 0 and 1. To each element A e A We associate

a grading a which is an element of Z, :

Ya e A a=grad hel, (11.2.10)

a is 1 if A lies in the odd subspace, while it is zero if A lies in

the even subspace:

Ae U = &=L (mod2) {I1.2.11a)

il

4 e 6 = a=0 (ndl) (I1.2.11B)

Using this notation we can rewrite the defining properties of the Lie
bracket in the following way. First we note that, wutilizing the
distributive property (IF.2.9), the Lie bracket of twe arbitrary
elements of the superalgebra, which in general do not have a definite
grading since they are the sum of an even and an odd part, can be
decomposed into a sum of terms which are Lie brackets of elements
possessing a definite grading. Then if A, B, ¢ are elements of A

endowed with a definite grading, we can write:

(4,8} = (-)113%[3,a} (11.2.123)
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[, [B,c3 + (%5 1o 413 4 3°@*) e 1481 = 0
(11,2.12p)
which summarizes Eqs. {II.2.2 - 1I.2.8).

As it happens for ordinary Lie algebras, superalgebras are most
conveniently described in terms of a basis of the vector space A.
Let {Ty} be such a basis (A=l,...,d) where d=din A. Since A is the
direct sum of G and U, the basis {T4} can be chosen in such a way
that it is the union of a basis for & and a basis for U: in other
words the basis elements Ty have a definite grading. The super
algebra is completely specified if we give the Lie bracket of any two

basis elements, from now on referred to as generators:

. =+ p
[TA,TB} = Cop Tp (11.2.13)

In Eq. (I1.2.13) the summation convention on the index T is adepted
and CAéF are constants. They are the graded structure constants

of the superalgebra and satisfy the following properties, inherited
from eq.s (11.2.12):

«F I#ab ++

Cup = ()P F | (11.2.14a)
ool a(bte) o MaceL o blate) oo oL _

Cup Cpe *+ (2 Cap, Cos *+ () Cop G = 0 (II.2.14p)

Furthermore if we adopt the convention that the capital latin index A
is replaced by a iower case latin index when the grading is even and

by a lower case Greek index when the grading is odd we have:

=0l =
af = CGB 0 (I1.2.15)
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The only structure constants which can be different from zero are

A . 62 =G (11.2.16)
where:

i) C;QC are the structure comstants of the Lie algebra &

ii) C;éY are uxumatrices {u beinpg the dimension of P )
which satisfy the Lie algebra and gemerste ome of its
representations

iii) C&éa are the symmetric structure constants to whose

existence the existence of the entire superalgebra is due.

Before proceeding to the classification of the superalgebras we want
to show that the concept is not empty. To this effect we introd?ce a?
example which is of the highest relevance, namely the super Poincare
algebra. As the word suggests, this is a superalgebra A whefe thi
ordinary subalgebra & is the familiar Lie algebra of the Po?nca?e
group. This latter is ten dimensional and its natural. basis 1is
provided by the 4 translation generators P, plus the six Lorentz

generators M,,=-Mp,, the index a running from O to 3:

2, 3 (11.2.17)
a=0,1, 2,
Utilizing the Minkowskian metric
1, 0 0 ¢
_ 0, -1,0, 0
ab -
N 2’ ;’ i (I1.2.18)
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to rise and lower the indices we can write the Poincaré Lie algebra

in the following way:

{Mab’Mcé] = li(ﬂbci‘»{ad + NagMhe ™ Mpatlae nachd) (11.2.19a)

(P2 ] =0 (II.2.19b)

[Mab’?c] = = 5Py = Nepls) (12.2.19¢)

This algebra is not semisimple and it is obtained as the semidirect

product of the simple Lorentz algebra 50(1,3) with its 4-dimensional

vector representation. To extend it to a superalgebra we need one of
its representations: we choose the 4-dimensional spimor representa-
tion.

Following a standard procedure we introduce the four gamma

matrices Y, satisfying the Clifford algebra:

Havph = 2 (11.2.20)
and we define the matrices (see Chapter:II.7 for further details on
the conventions)

.1 _1
S, = - [r,m) = Ve (Ir.2.21)

which satisfy the Lorentz algebra in the form (II.2.1%a):

5

(8.p5ca] = %0eSag ¥ MagShe ™ MpaSac " MacSha) (1222

{(11.2.22)

(4]
-
-~

An element of the carrier space for the spinor representation
(11.2.21) is a 4-component spinor. Hence we introduce new generators,
called Qa {0 = 1,2,3,4) which transform as barred spiners under the

Lorentz algebra

- . ~ ...1.:. -
[08] = 008,008 = 7 & Yapdeg (11.2.23)

and we declare that the action of the translation P, on aa is null

(.8, =0 (I1.2.24)

In this way Qa carries a representation of the full Poincaré algebra
and the structure constants C;éY have been identified. (4 runs on

the Poincaré adjoint: A = a,{ab).)

C(a.b)éu = "zl; (Yab>ae (1I.2.25a)
Cg =0 (11,2.255)

It remains to be checked whether we can construct the structure
constants C&éh . To this effect we first recall that the Poincaré
Lie algebra (I1.2.19) is constructed over the field of real numbers

and the generators P, M, are antihermitean

o . p Y (11.2.26)

To extend it consistently, we must impose suitable reality conditions
also on the extra spinorial generators Qa' Ye do this by requiring
Q. (the spinor of which ﬁa is the Dirac conjugate) to be a Majorana

o
spinor. Hence we write:
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0=¢3 ;o qs Y@ (11.2.27)

where C is the charge conjugation matrix (see Chapter II.7 again).
Equation (II.2.27) can be rewritten as follows

§ = qf = = of (11.2.28
Gy = Q000 pg = QCeq = €'C )
The generators $,y, not only satisfy the Lorentsz algebra but

fulfill the extra property of transforming Majorana spinors into
Hajorana spinors. Indeed we have:

— ) P
(7 @ =2 Y:bYO = QYoYaVo =

ol =0l g w T 11.2.29
ey, = Uyl = (r,0'c ( )

which follows from the two identities:

Fooo . -l LT 11.2.30
Yofap¥o ™~ Yap 5 EYyt Vab ( )

This is essential for equation {II.2.23) to be consistent.

We close the superalgebra by writing the anticommutator of twa

spinorial generators:

3.0} = a I7.2.31
{q,,qp} = 1(0v ) o8Pa ( )

ee
In this way the structure constants Cag are identified:
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(11,2.32a)
sea 8y simd
Ga£ = 1(CY )GB i(cy )B&
ssab ,. (EI.Z.32b)
CGS =0
The fulfilment of the Jacobi identities (1r.2.7) and (1r.2.8) is
easily checked. We have
8,10, + [6,,18,,8 1] +
[ i B’QY g QY ¢ (11.2.33)

+ [8,,8,,05)] = 0

3,0 ith O . Similarly we
since {Q,Q} =P and ?a commutes with Qa (Bg. (I1.2.264)) i

get:

[p,. 18,8,1] - [Q,, @2, 1] + @ [2uG 1} = 0 (11.2.34)

i i 0. Finally we should have
since P, commutes with Py and Qg v

9.0 g q 8 i (11.2.35)
[, (@8] = 8,0 [1,,08)7 + 0, [0
To check the validity of (I1.2.35) we just substitute Eqs. (11.2.23)
and {31.2.31). We get
i [ _ 2
) (o )GB(Hcan nc§Pa) '
(11.2.36)

c T
101 T g 2 + 1O (S )

. s ; 4
which is fulfilled if the following matrix identity helds

N T S G
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| LT e T c
-3 <CYaabm"CYb6am)“'Sab(cY )T LYy (11.2.37)

Multiplying by ¢} and using Eqs. (II.2.30) plus the definition of

the matrix C:

c~fac‘1 = oyt (I1.2.38)

we find that equation (IE.2.37) is the same as

H
-5 08y,

1
o™ YoSaw) ” (Sl =7 [ Yapd (11.2.39)

which is obviously true.

This check shows that when we decided that § was a barred spinor
and we wrote the action of 8,3 on the right rather than on the left
of § we did not make an arbitrary choice but we just made the only
one consistent with eguation (17.2.31}. If we wanted we could use
Q instead of § but then Eq. (II.2.31) would be replaced by:

{0, Qg} = 10v, 0 yeP, (11.2.40)

The reason why we chose to work with ﬁa rather than qm is related to
the privileged role we want to give to the dual formulation of
the superalgebra, In Chapter II.3 we shall rewrite the super
Poincaré algebra in terms of forms and the Qx generatoi will be
identified with the dual tangent vector to a l-form $®  which s an

unbatred Majorana spinor:

&, _ 0
¥ (Qg) = 56 (11.2.41)

Since from our point of view the fundamental object is ¢ rather than
6, we choose the first to be umbarred.

The superalgebra we have discussed is the N=l Poincaré super
algebra in 4-dimensions. We call it N=1 because it contains only one
spinorial generator and we say that it is 4-dimensional because the
vector indices a,b run from 0 to 3 while the spinor indices span the
4-dimensional spinor space. The generalization to other dimensions is
not automatic as it is for the pure Poincar8 algebra: indeed in
order to proceed one must make sure that in the chosen dimension D

the following properties hold true:

1) A charge conjugation matrix defined by Eq, (II.2.38) exists
1i) Majorana spinors, defined by Eq. (II.2.27) exist
iii) The matrix Cy® is symmetric.

This does not happen in all dimenmsions. In those dimensions where it
happens we have N=1 extensions of the Poincaré group; in the others
superextensions may still exist but they are more complicated: in any
case, as we shall see, in every dimension D4 the algebraic
structure underlying supergravity theories is wider and more
complicated than the one presented here. Hence the only dimension
where the simple N=l extension of the Poincaréd group leads to
interesting physical theories is precisely D=4 and this is the reason
ﬁhy we chose it.

Remaining in D=4 we could ask what happens if, instead of one
spinorial generator aa we introduced severzl, labeled by an

additional index A which runs from I to Ni

62 (h=1, 2,00, (11.2.42)

In this case we would still set
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A _ 1A
LR IES XA (11.2.43a)

=A
2,51 =0 (I1.2.43b)
but we could replace Eq. (II.2.31) by:
sA =By . a 43 4B 4B
{o,,Qg} = 1(cy I S CagBiay * H(OVg) a2y (11.2.44)

where Z(+)AB= -Z(+)BA and Z(,)AB= —Z(_)BA are new even generators

having the property of commuting with everything else:

AB CD Y _ rAB CDq _ rAB CDq _
Zey2en] = Bayr) « G20 -

= - [,AB _ AR =0
- [ (+)’Pa} = {z("!-)’Mab] = [Z{+)'Qﬁi}

= [z p) = 2] - [0 = 0 arzas)
For this reason they are called central charges. From the algebraic
point of view they are optional; we can either introduce Zy or Z. or
beth or none of the two: the algebra closes in any case. When we
shall consider the multipiets, namely the representations of the
above algebras we shall see thaf the massless representation
beginning at spin 2 (the supergravity multiplet) is consistent only
if we include the spin 1 gauge field of 2 (+)AB but not of Z(_)AB:
hence the algebra which leads to a supergravity theory is selected.
This will be further clarified when the algebra (II.2.44) will be
obtained as Inonu Wigner contraction of a simple algebra.

Eqs, (II.2.43)} and (II.2.44), together with Egqs. (11.2.19)
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define the N-extended Poincaré superalgebras.

11.2.2 - Classification of the simple superalpebrss whose lie

algebra is reductive

Ir this subsection we give the list of all the possible superalgebras

vwhich have the following property:

a) A is simple in the semse that it contains no non trivial ideals

4.
b) The ordinary suhalgebra 6 c A is redustive in the sense that

(11.2.46)
6=G,86,

where 6] is a semisimpie Lie algebra and Gy is an abelian one. In

other words G is the tensor product of some simple factors times a
certain number of U(1) factors.

For the reader's convenience we recall that an ideal ¥
subalgebra with the further property that the Lie bracket of any
element X € A with any element Ze¢J is still an element of J.

In full analogy with the treatment of ordinary Lie algebras the
¥ numbers:

is a

algebras classified here are taken over the field of comple
it is then our privilege to choose a real form for them by intreducing
suitable reality conditions. The classification theorem is due to
Scheunert, Nahm and Rittenberg: its proof being quite technical and
complicated we restrict ourseives to enunciating the thesis: the

interested reader is referred to the original article.

Theoren: The simple superalgebras whose Lie algebra is veductive are

the following ones:

e e e,
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A) The infinite series of orthosymplectic algebras Osp{2Zp/N). { 6 B
Qe &> A=D=0 2= Q=

B} The infinite series of superunitary algebras SU{m/N). c o (I1.2.49b)
The Lie bracket ecan now be introduced, consistently with the grading
(11.2.49) and with all the axioms (II.2.2-II.2.9) of a superalgebra,

C)} The infinite series of P(n) and Q(n) algebras.
B) The three exceptional algebras D{Z,l,a}, G(3) and F(4). by means of the fellowing recipe:

Let us describe these algebras one by one emphasizing once more that

they are classified as complex algebras although in case a) and ) : if 0,0, 6: [Ql'QZ} = {QI,QZ] (II.2.50a)
their pame is taken from the name of their most important real form. A
The basic idea for the construction is that of considering
complex matrices in dimension : i 0€6,0Q,¢ U [QI’QZ} = [QI’QZ] (II.2.50p)
d=m+W (11.2.47) if %,%EU:[%&£={%&£ {11.2.50¢)
where m and N are two integer numbers. Any d x d matrix can be writ- where [ , 1, { , |} denote, respectively, the ordinary commutator
ten in block form as follows and anticommutator of matrices:
= - : ir.2.51
Q= [2},0,] = 0,2, - 0,9 ( a)
(11.2.48)
. II1.2.51b
{Q),8,} = )0, + 0,9, (11.2.51b)

where A is m xm, D is N x N, and B and C are m x ¥ and N x m respec-

tively, The space of d x d matrices is a d2-dimensional vector space Bqs. (II.2.50} can be summarized by stating that the Lie bracket of

which can be split, according to (II.2.1}, into an even and odd sub- any two matrices Q) and Qy of type (IT.2.48) is 4 new matrix 0y of

space by defining: the same type:

[leqz} = Q3 =

0 ]0D (I1.2.4%a) (1r.2.52)
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wheres

Ay = [Al,Az} + B,C, + B,C (11.2.53a)
Dy = [Dl,nz} * CyB, + B, - (11.2.53b)
By = 4By ~ ByD)- - A8, + B,D, (11.2.53¢)
€3 = DCy = Cyh) - DyC) + €A, (11.2.53d)

The superalgebra obtained in this way is called the general graded
Lie algebra GL{m/N): it is not simple. The simple algebras Osp{2p/N),
SU(n/N), P(n), Q(n) are obtained as subalgebras of GL{m/N) by

imposing further conditions on the block matrices Q.

A) The orthosymplectic algebras Osp(2p/N)

An element of O0sp{2p/N), which exists only when m=2p is even, is
a matrix ¢ ¢ GL (m=2p/N) characterized by the following conditions:

T

A Bigpy * Hgpyh = 0 (I1.2.54a)
' Q.. +Q,. D=0

a )] {11.2.54b)
C=f,. B Q

(0 2p) (I1.2.54¢)
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vhere the two matrices 9(29) and Q) have the following properties:

2

. T (II1.2.55a)
Yo =~V 5 e T Y

I1.2.55b
% = Sn ( )
From (II.2.35a) we see that since Q(pp) is antisymetric the matrices
A span a symplectic subalgebra Sp(2p,C) of 0sp(2p/N). On the other
hand Q¢yy, being sysmetric, is an orthogonal metric and the submatri-
ces D span an orthogonal subalgebra O(N,C) of 0sp(2p/N).
The ordinary Lie subalgebra of 0sp(2p/N) is therefore

G = Sp(2p) & O(I) (11.2.56)

which explains the name chosen for the superalgebra.

The off-diagonal matrices B and C which are related to each
other by Eq. (I1.2.34} are acted on by the symplectic and orthogonal
algebra transforming respectively in the defining representations of
$p(2p) and O(N), Of particular interest to us will be the algebras
0sp(4/N) with 1 € ¥ £ 8, 1In this case one exploits the Lie alpebra

isomorphism

11.2.57)
Sp(4,0) ~ 0(5,0) (

and  imposing suitable reality conditions one obtains a treal

superalgebra Osp(4/N) whose Lie algebra is 50(2,3) x S0(N).

80(2,3) is the group of motions of anti de Sitter sp
b and the

ace (the

anti de Sitter group) containing the Lorentz generators My

non commuting anti de Sitter translations Py the off-diagonal
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generators transform as vectors under S0(N)} and as spinors under
$0(2,3) playing a role analogue to the role of the supersymmetry
generators in the N-extended Poincaré superalgebra. Actually, as we
shall see, by an Inonii-Wigner contraction which sends the cosmolog-
jeal comstant to zero the Lie algebra Osp(4/N) reduces to the
N-extended Poincaré superalgebra, the central charges Z(+)AB being

the limit of the O0(N) generators.

B) The superunitary algebras §U(p,q/N}

As we already mentioned the algebras we define here are complex
algebras: hence we are allowed to use, for their definition, enly
those properties which do not distinguish betweer real and complex
numbers. Such 2 property in the case of the SU(m/N) family is the

following

Tra=TrD (11.2.58)

which is conserveé by the ILle bracket produwet (ZI.2.52) and
{I1.2.53). The elements of CL{m/N} satisfying {II.2.58) span a simple

superalgebra whose Lie zlgebra is immediately seen to be:

G = 5L(m,C) ® SL{K,C) ® GL({L,0) (II.2.39)

In wview of this the wmost appropriate name for this complex
superalgebra would be SL(m/N); the name superunitary SU(p,q/N)
originates from the possibility of imposing the following reality

conditions

H o AKL =-a (11.2.60a)
{m) i

g

1 +

Hon DHeyy = - D (I1.2.60b)

m'_f_ +
By Blgp == € (I1.2.60¢)

vhere E(m) and H(N) are hermitean

to .t
Hay =By 5 Hy = By (I1.2.61)

and we admit p positive and g negative eigenvalues for H{y) while we
choose all positive eigenvalues for Hryy.

Conditions (II.2.60) are preserved by the Lie bracket (II.2.52-
17.2.53) and imply that A and D span a U{p,q)} (pie=m) and U(N} Lie
algebra respectively. Condition (I1.2.58) then tells us that the full

Lie algebra of our real superalgebra is

G = SU{p,q) @ SU() ® U(1) (11.2.62)

This property of the real form (IF.2.60) justifies the name SU(p,q/N)
given to the whole family of complex algebras.
Of special interest to us will be the case m=4.

Utilizing the isomorphism:

50{2,2) ~ 50(2,4) ' (11.2.63)

we can reinterpret the Lie algebra sector 8U(2,2) x SU(N) x U(1) of
SU(2,2/¥)} as the anti de Sitter algebra in five space time dimensions

times an internal symmetry SU(N) x U(1): the off-diagonal generators

.transforming as spinors under S0(2,4) will be the supersymmetry
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generators., Hence SU(2,2/N) is the superaigebra of 5-dimensional
supergravity. We mention that SU(2,2/N) can also be ipterpreted as N-
extended superconformal algebra in D=4 and it is the basis of
conformal  supergravity: Thowever since this theory and its
applications are out of the scope and of the philasophy of this book
we will not discuss this point further.

Before leaving the 5U(p,q/N) algebras we note that if pig=m=N
then condition (II.2.58) does not define a simple algebra. Indeed in

this case the matrices of the type

(II.2.64)

span an abelian ideal Z(yy of SL(N/N). To obtain a simple algebra we
take the quotient

SL(N/N)/’Z(N) = TrA=0 (11.2.65%)

and we obtain a superalgebra whose Lie algebra is

G = SL(¥,C} ® SL(¥,C) (11.2.66)

with the GL(1,C) factor omitted. Correspondingly the zeal forms
SU(p,q/p+¢) have, as Lie alpebra

6 = 5U(p,q) @ 5U{p+q) {II.2.67)

with the U{1)-factor omitted.

KEY

C) The superalgebras P{n} and Q(n})

The superalgebras P(n) afe defined for men23 as the set of

matrices (11,2.48) fulfilling the conditions:
A"+D=20 Tr A=0 (I11.2.68a)

B =38 H c"=-¢ (11.2.68b)

while the Q{n) algebra are defined, under the same restrictions on

e and n by
A=D : Tr A =0 (I1.2.69a)
B=¢C ; Tr B = 0 (I1.2.69Db)
In beth cases the Lie algebra is
(II.Z.?G)

6 = SL{x,C}

No physical application of these algebras has been found so far.

D) The exceptional superalgebras D(2,1,a), 6(3), F(4)

These exceptional superalgebras have so far found no interesting

applications and, therefore will be described very briefly.
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i) b{(2,1,9): The Lie algebra is

&= $L{2,C) @& $L{2,c) ® SL(Z,0) (I1.2.71)

and the odd-generators, which are 8, transform as the tensor product
of the fundamental 2-dimensional representations of the three
81.(2,C). Since in the anticommutator of two odd-generators there is
a number o which can be arbitrarily chosen, H{2,1, ¢) is actually a

one-parameter family of 17-dimensional simple'superalgebras.

11) 6{3): This is a superalgebra whose Lie algebra is

G= SL{2,0) ® G, (11.2.72)

The 34 odd generators transform in the 2 of SL{2,C) and in the 7 of
Gy. Altogether the superalgebra has 3+14+14=31 generators.

iii) ¥F(4): The superalgebra is

6 = 3L(2,0) @ 50(7,0) (1r.2.73)

The 16 odd generators transform in the 2 of SL(Z,C} and in the 8&-
spinorial representation of 80(7,C).

The superalgebra is therefore 40-dimensional.
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11.2.3 - Grassmann algebras

In order to exponentiate our superalgebras and obtain the
corresponding supergroups it is convenient to intreduce the concept
of Grassmann algebra whose elements will be the parameters of the
SUPErEroups.,

A Grassmann algebra Gh, is an extension of the field of complex
sumbers defined through the following censtruction.

Let

Tfi i=1,2, 3,...,n (II-2-711)

be n-objects, called penerators of the Grassman algebra, which

satisfy the following anticommutation relatiens:

- z_ (II.2.75)
Hiﬂj Kjﬂi — L 4}

and let us consider all the possible monomials T Ty
1 k
The nuwber Nk of different k-monomials is

N o= (1)
koot k (11.2.76)
and the total nusber of monomials is
o m
N L= %y = 2
monomials szﬂ s (11.2.77)

The Grassman algebra GA, generated by {mw} is the 2P-dimensional

complex vector space spanned by all the linear combinations of the

2" _monomials L TR Note that we have included the k=0 mono-
1 k
mial which is by definition the complex number I.



An element a £ GA, of the Grassmann algebra is therefore written

as follows

o= +a _ﬁ,i+ i j l _} k
ETOT AT F oy (11.2.78)

where 2z, qy, ¥jjs ®34k» --- are complex numbers, In particular if
Aj = Ay T g T e 0 a is an ordinary complex number. Note
moreover that uil cr is by definition an antisymmetric tensor.
Gh, is an algebra because the product of the generators
induces, canonically, a preduct operation of the elements of GA,.

Explicitly we have

(1, (2 (3
¢ e e (11.2.79)

where

RONN SV

(II.2.80a)
3y . (0 (0, 2 (1)
ay 2 4 2ty {11.2.80b)
3 (1 (D) (2 (1} (13 (2 2
aij N aj - ai aé + oz agj) + z( )ué;) (I1.2.80c)
NON
(k) = rrrrereeeseaeas ves (II.2.804)
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The product operation in GA(,) is associative and distributive but it
is mnot commutative. Every even menomial (k=2p) commutes with any
other monomial, odd or even (k=fp or k=2p+l). This sugpests that

every element of GA(,) should be split into an even and an odd part:

R CY (-3 s o) (-3 .2,
a=aq + 4 = GA(n) = GA{m) ) GA(ﬂ) (I1.2.81)

where the even part is a linear combination of the even monomials and
the odd part a linear combination of the odd ones. This operation

{+]

induces a Zzwgrading of the Grassmann algebra. Indeed if GA(n) and

GA('} are the even and odd subspaces of GAn the following properties

(n}

are easily checked

+}, ., (1) {+) (11.2.82a)
GA L) "Chry) © GAL) a

() ..} -) (I1.2.82b)
GAZ L BAy € GALLY

+) (II.2.82c)

).eal™)
GAL) € GAely

{~
GA(n)

Furthermore while an even element ot ¢ cAT commutes with any
element o € Gh(,y the product of two odd elements «”, B € GAg;% is

anticommutative:

" e (11.2.83)

Defining the grading a of an element a & GA(y) to be zero if it is

even and to be one if it is odd we can write

.

P

T T ATy

it

AN AN T

P

N P,

P e N e T

PN



of = (w)abﬁa {I11.2.83) Gragsmann algebra. If o e GA{2P3 is given by (I1.2.78) we have:
Equation {1I.2,83) makes it clear that if we decide that the parameters
i i
multiplying odd elements of a given superalgebra are odd elements of o = a* 4 ag(ﬂl}* * a?j(ﬂj)*(“ AR (11.2.86)

a Grassmann algebra while those multiplying the even elements of the
superalgebra are even elements of the same Grassmann algebra then all
signs will be automatically taken care of and all factors (_)ab will
disappear. However before showing how this happens we want to digscuss
some more properties of the Grassmann algebras: in particular we want
to define complex conjugation. Let n=2p and let us label the

generators w; in the following way

ﬁa (0=13,2,...,0) T (a=ptk,...,2p) (11.2.84)

We define a mapping * which acts on the generators m in the following

way:
) =7 (11.2.85a)
m "=, (I1.2.85b)
(rriwj)* = (¥ (11.2.85¢)
(am* = a*tn” (11.2.854)

where a* is the complex conjugate of the complex number a.

The mapping * extends canonically to all the elements of the

The operation *, which is called the complex conjugation in the even
Grassmann algebra GA(ZP)’ has the following formsl properties:

. (e {11.2.87a)
Yae GA(Zp) : (@) a
Vay,a € Ghoyy o (0g0p)" = 030] (11.2.87b)
YaeC, Vae B py (an)” = a"a” (11.2.87¢)

Fq.s (I1.2.87) could also be regarded as the defining axioms.
Given the complex conjugation, the notions of reality and of norn

are defined in the same way as for complex numbers

o= real = at =0 (I1.2.88a)

o2 = ok (II.2.88b)
It is important, however, to keep in mind that [laf|% is an element

of the Grassmann algebra and it is not positive definite. For

instance the norm of an imaginary odd element is zlways zero

6 =-0 , ae GAE;;) = fa]?=0 (11.2.89)
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Let now GA(py) be a Grassmann algebra with n generators: an analytic

function mapping GA(E) into itself:

; (11.2.90)
f GA{n) + GA{n)
can be defined via a power series expansion:
o
Vo e Ga o, 1 fa) = méo £ (0% € Gy (11.2.91)

where £, are the coefficients of a series with finite convergence
radius. If a is an even element the series (II1.2.91) may extend to
infinity {we say may because ua, although even, may be nilpotent
(o™ =0 for some 0K m <=)); however if a is odd the series neces-
sarily stops after the first element since o2=0,

A function of several variables mapping the temsor product
GA(ny ® «v. % GA(n) into GA(p) can also be defined via a power se-
ries. In this case if the arguments of the function are odd the se-
ries does not stop at the first term but it degenerates into a poly-

nomiai of finite degree equal to the number of arguments of the
funetion.

£I.2.4 - Supermanifolds

Equipped with the notion of Grassmann algebras one can introduce
the concept of supermanifold. Without entering the endless
discussions and subtleties which this concept has stirred in the
mathematical and physical-mathematical literature ome can take the

simple minded point of view that a supermanifold is a smooth space
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vhose points are labeled by two sets of coordinates: the bosenic and
the fermionic ones.

The bosonic coordinates are even elements of a Grassmann algebra
while the fermionic coordinates are odd elements of the same algebra
GA., which, to avoid pitfalls, should be chosen to have an infinite
number of generators m;. Since the concept of function on a
Grassmans algebra is well-defined, we can introduce charts, atlases
and transition functions: in a word the whole machinery of d¢ifferen-
tial geometry.

Therefore by #P% e shall denote a supermanifcld with p
bosonic dimensions and q-fermionic ones. The coordinates of a point

pE A4P/9 4111 be denoted by:

.2,92
p=s {x%,6% (1% )

oo
where x* (a=1,2,...,p) are bosonic and g {a=1,...,9) are

fermionic. s o
The functions of several variables which map A into GAg @

11.2.93)
VLAY (

o
are called the superfields. Utilizing the nilpctency Ofu 0" the
superfield @ (x, ©) can be written as a polynomial in @7, whose

i i 1y
coefficients are functions of the besonic coordinates only

o, &
1,72
B(x,8) = ¢ () + 9, (00" + 000,99 0

o 12

1 q 2.9
$ate, 00 .0 (11 )
Loty

a bookkeeping device for a

nsor structures. {(We

As one sees, a superfield is just

collection of ordinary fields with different te

N e, P

e s
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emphasize that all the g o {x) are completely entisymmetric in
their indices because of the anticommutativity of the O.s). In
supersymmetric theories where the fermionic coordinates & are
spinors, the fields in the collection have different spins, bosons
and fermions necessarily coexisting in the same superfield.

The space of superfields, named c(#P/9) is acted on by
differential operators which are linear combinations of the

fundamental derivatives:

ga = 2 (I1.2.95a)
o

3; = 2. (II.2.95b)
3

&>
The acticn of 3, and gu is defined through the following formulae

38¢(x,®} = Baw(x) + Gawu(x)@a + ... ‘ (11.2.96a)
" B By
3a¢(x,9) w va(x} + Zﬂuﬁ(x)e + 3gaﬂy(x}9 el + ... (II.2.96b)

and the following formal properties are easily verified:

ar

a4
|

Q>

b3y = 0 (II.2.97a)

8,3g - 33, = 0
alg " g% = (I1.2.97b)

I

TE L33 . {11.2.97¢)
Bydg + g8, = 0

ER: - 4B 87 (11.2.974)
8,07°(x,0)) = 8.8 - 6730

The differential operators

t = fe0b, + e . (1.2.99)

where t2 and are respectively bosonic and fermionic superfields
span the tangent space to 4P/ 4 named  T( 4?9,

At each point p={x, ©} T(4P/49) is a graded vector space with
p-bosonic and q-fermionic dimensicns.

A graded vector space V{n/m} can be defined in the following
way. Let {33, EG} be a collection of n elements Za {a=1,...,0) and m
elements Eu (@=1,...,m) respectively called the bosonic and

fermionic fundamental vectors. An element V€ V¥ (n,m) is a linear

cembination
v=viE o+ V% (17,2.99)
a o]
where
W& et (11.2.100a)
o
e eal) (17.2.100p)
o
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In other words the v  components of a graded vector are even
elements of an infinitely generated Grassmann algebra GA,, while the
e compenents of the same vector are odd elements of GA,.

In complete analegy to ordirary vector space theory one can
introduce the notion of the dual space V(n/m). It suffices to

introduce a dual basis of linear functionals {e®, es%):

Vwe vinm ; (w,e,) & GA (I11.2.101a)
e =60 5 @ =0 (1.2.101b)
G =0 @ e = 6f (II.2.101¢)

and to define the elements of V*(n/m) as the linear combinations

vieviam) vt e ey + ey (I1.2.102)

It follows that:

Vvevinm , Vv'evin/m) :

%y _ o8 o

,w) = (v LA + oy wa) € GA_ (11.2.103)
Kotice that to aveid ordering problems we have written the
coefficients of the vectors on the left and the coefficients of the
dual vectors on the right.

As usual we can define differential I-forms on df?/q as
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elements of the dual vector space to T(Jfqu). The dual basis to the

1 1 a o
derivatives ga and ga is provided by the differentials dx and 40°.

i

Writing
A dxd) = (1I.2.104a)
(5a,axb) =82 Gy =0
T R . 3 adfy = 68 (11.2.104%)
(aa;d@ y=0 H (Basd ) a

one can define a l-form mE‘r*(aﬁplq) via the following equation

(11.2.105)
w = ax_(x,6) + ag% (x,6)

where Wy(x,0), wy(x,08) are respectively bosonic and fermionic

superfields. '

introduced as elements of t?e exterior
#4219,

product of p copies of the cotangent vector space 74P

is obtained if we set the following rules for the

p-forms can now be

Consistency

exterior product.

(II.2.1063)
a i’ = - PR

& a (11.2.106b)

a a dx

dx" - d@s = ~ 4@

(II.2.106c)
s, adf b . e

P e

o

L~

e
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and if we define

a a a

w® =y (x,@dx L adx D adx P
a,...8
1"
ay a, a
+u (x,)d0 " Adx ‘. ... . dx P+
U,8,...4
172 p
a o
tatu 4" ... .d0F (11.2.107)
Wyosalt
LR ¢
where again ug a .-+ g (%,0) are fermionic or bosonic super-

17 %l
fields depending on whether the number of Greek indices is odd or

even: in this way the usual grading of the exterior product of forms

is respected:

SO NN C PR S MC VIR (11.2.108)

Equation (II.2.106¢), however, suggests that (I%.2,108) can be
generalized. Indeed the above choice of the fermionic or bosonic

character of ey, is the right one for a bosonic p-form

<Oyl e edy
wlP), 1t 1s perfectly legitimate, however, to consider fermionic
p-forms: such are, for instance, the coordinate differentials de®
and, in general, all the p-forms cartrying free fermionic indices in
an odd number.

When the forms are fermionic they must commute with opposite
sign with respect to the bosonic forms of the same degree. Hence we
declare that each form & has two gradings: & grading a=0,1 which
tells you whether it is bosonic or fermionic and 2 grading p which is

its degree. Equation {II.2.108) is then replaced by

(p} (a) _ , yabbpy (q) {p}
@ ~ ) " - Wep) Bz (11.2.1G69)

o

This 15 as much as we need, for the moment, of supermanifolds: let us

turn to the exponentiation of superalgebras.

I1.2.5 - Superproups and graded matrices

We come back to the definition of the simple superalgebras
discussed in Section IT.2.2. The two classical infinite families
Osp(m/N) and SU(m/N}, which are the most relevant to our purposes,
are described in terms of ordinary matrices Q (see Eg. {11.2.48))
whose Lie bracket, however, is the unusual one defined by Eqs. (11.2.52)
and (II.2.53). This Lie bracket can be understood if we perform the
following construction. Consider GL{w/N), namely the algebra of
(mtN) % (mbN) complex matrices, which is closed under (11.2.52), and
let {t,, t,} bea basis of CL(m/N). (tg} (a=1,2,..., n*H¥?) isa

basis of the even subspace:

(IT.2.110}

while {tg} {a = 1,2,+..,2m¥} is a basis of the odd subspace:

(11.2.111)

Any matrix @ ¢ GL(m/N} can be written as

. 08 o (11.2.112}
Q"-.Qta‘l'qta
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where %, Q%e € are complex numbers and the Lie bracket of two

matrices Q; and Qy is, according to (11.2,52-53), the following one:

a B .a

[00) = eyl + (e - fed e, e,
o,
RN, (11.2.113)

At this point notice that the right-hand side of Eg. (II.2.113)

would be the ordinary commutator of Ql and QZ

[0)-0,] = 0,0, - 0,0 (11.2.114)

if Qa(;) and Qa( ; }, instead of being complex numbers, were,
respectively, even and odd elements of a Crassmamn algebra GA . In
view of this, to every superalgebra and, in particular, to GL{m/N} we
assoclate a graded vector space spanned by the linear combinations of
the even generators with even elements of a GA, and of the odd
generators with odd elements of the same GA,. The ordinary commutator
of elements of the associated graded vector space provides, in view
of our previous ohservation, an isomorphic éealization of the super-
alpebra,

The advantage of this point of view is that we are now able to
define the supergroup corresponding to a given superalgebra as the

exponentiation of the associated graded vector space. Formally we can
write:

A=A = graded vector space where complex
numbers are replaced by elements

of the Grassmann algebra {II.2.115a)
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% = exp { A } = supergroup associated to A (1I1,2.115b)

In the case of GL{m/N)} our donstruction introduces the notion of a
graded matrix: an element of the associated graded vector space is.a
matrix whose entries are elements of the Grassmann algebra: even 1in
the diagonal blocks {A,D) odd in the off-diagonal ones {B,C). Such
objects are worth considering for their owm szke: indeed they can be
viewed as GA, -linear operators on graded vector spaces and the
supergroups Osp(n/N) and SU(m/N)} can be viewed as groups of graded
matrices. The product operation is the ordinary product of graded-
matrices.

Let

(11.2.116)

be a graded matrix. A,D are m x m and N z N matrices, with commuting

entries while L, Il are m x N and Nzm matrices, respectively, with

anticommuting entries. o e
The product @;Q, is defined as for ordinary matrices. We have:

(11.2.117a)
Q1Q2 -
11.2.1171)
£ D, = 1,5, + DD, (
Ay = Ahy o+ 5y 5 Dy =yl
.2.117
L= AL, +ID, %““ﬁz*%% (11.2.117¢)
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The operations of transposition, hermitean conjugation plus the

definition of supertrace and superdeterminant are given below:

A e PO U
T
Q" - ;o'
T T
) D U (I1.2.118a)
Str Q=1Tr A= Tr D (11.2.118b)
Sdet = (det A)(det D) (11.2.118¢)

where D'is defined by the following equations:

70
-1
Q Q- (I1.2.119a)
0T
atI
-1
Q= (II.2.119b)
oo

These definitions are designed in such a way that the following
properties valid for ordinary matrices hold true also for graded

matrices:
T T
(Q)Q)" = anl (I1.2.120a)

(Q1Q2)+ = QEQi {II.2.120b)

YT

Str{0Q,) = Str(QQ) (I£.2.120c)
Sdet(Q)Q,) = {SdetQ) (Sdetq,) (11.2.1204)
Sdet (expd} = exp(Str Q) (I1.2.120e)

The proof is a straightforward exercise and it is left to the reader:
we just point out that in checking Eq. (II.2.120b) one must utilize
£q. (I1.2.85) to evaluate the complex conjugate of the product of two
entries. In terms of graded matrices the supergroups Osp{m/N} and

SU(m/N) have a simple interpretation.

Let
2m) 0
8=
0 R{N) (1I1.2.121a)
S 0
fi =
0 Hem (II.2.121b)

be two graded matrices of even-type whose diagonal blocks are defined
in Bqs. (II.2.55) and {II.2.61} vespectively. -

§ is called an orthosymplectic metric while fi is named a
superhermitean cne. The reason is that they can be utilized to define
two guadratic forms on 2 graded vector space V(m/N) of which the

first is the generalization of a symplectic plus an orthogonal
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quadratic form while the second is the generalization of two
hermitear forms.

Given any two elements v, w ¢ V{n/m) we set

a = T3 = o B a,b
GV = v 0w = Vi o+ Qexyab (11.2.122a)

i =vTh, o & B a4 b
Hu,w) =V Hw = ‘(\J ) w H(m)as + (V) ﬁ(N)ab (11‘2'1221))
and we can define the complex orthosymplectic group Osp{m/N;C) as the
group of praded matrices ¢ which preserve the orthosymplectic
quadratic form Q:

00,00 = fev,w) (11.2.123)

Equation (I11.2.123) implies

»

T (11.2.124)
which can be assumed as the defining property of the orthosymplectic
graded matrices. Setting

0 = exp(h) (II.2.125)
and considering A infinitesimal we see that (I1.2.124} is equiva-

lent to

JURERSS (I1.2.126)
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This can be taken as the defining property of the complex

orthosymplectic algebra Osp(m/N;C). Condition (11.2.126), once

written in explicit block form,:coincides with Eqs. (II.2.54).
Similarly we can define the superunitary group SU(m/N) as the

group of graded matrices which, besides having superdeterminant

equal to 1

sdet® = 1 (11.2.127)

have the property of preserving the superhermitean quadratic form H:

H(@w, ¥w) = Bv,w) (I1.2.128)

Fquation {I1.2.128) implies

o - & (I1.2.129)
and setting

G exP(E) (11.2.130)
at the infinitesimal level we get:

argt--at (I1.2.131a)

str £ =0 (I1.2.131b)

the last equation following from Bg. (II.2.127).

p—

-

— P

e
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These conditions are the same as Eqs. (I1.2.58) and (I1.2.69).
The real form of the complex orthosymplectic group Qsp{4/N;C) which

is relevant to the construction of supergravity theories, henceforth
called Osp(4/N), is the intersection of Osp{4/N;C) with SU{2,2/N):

Osp(4/N) = Osp(4/N;C) n SU(2,2/) {11.2.132)

In other words an element A of the Osp{4/N} algebrz satisfies the

following two conditions
(11.2.133a)

(11.2.133b)

where ﬁ(h) has two positive and two negative eigenvalues,
Tt is to a more detailed study of this supergroup that the last

section of this chapter is devoted.

I1.2.6 - Osp{4/N) as the N-extended supersymmetry algebra

in anti de Sitter space

As we anticipated the simple superalgebra Osp(4/N)} plays a
special role in supergravity because it is the generalization to the
case of an anti de Sitter space of the N-extended super Poincard
algebra (IT.2.44). To obtain its explicit form we consider equations
(11.2.133) and we make the following choice for the matrices § and
Hi

o

i IRt s
i

{II1.2.134)

where C is the charge-conjugation matrix defined by Eq. (11.2.38), vy
is the gamma matrix in the time-direction and Q(N) is the unjt-
matrix in N-dimensions.

The most general graded matrix A which satisfies Eqs.
(¥T.2.133) has the following form:

(11.2.135)
where e2P= -gD2 are the parameters of the Lorentz subalgebra and

2 may be interpreted as the parameters of the anti de Sitter
boosts. Indeed the 4x4 matrices

i
Y "5 E Y, (11.2.136)
generate the anti de Sitter group 80(2,3). Furthermore the
antisymmetric parameters ep= -£gy correspond to the generators of
S0(N} while the £y are Majorana spinors

EamC 8y (11.2.137)

which play the role of supersymmetry parameters.
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Writing A as a GA,-linear combination of matrices:

- (EabM AB

a . ¥
Ly T E Pa +ETT 4 QAg ) (I1.2.138)

we single out the definition of the generators of the superalgebra.
Calculating the commutator
[a0,] = 4y (11.2.139)

and reexpanding the result along the generators Maps Pa, Tpp and QA
we obtain the following commutation relations:

Mab’Mcd} = % (nbcMad-Fnadec'—nbdMacm'nacmbd) (I1.2.140a)
[P o] = -2, (I1.2.140)
Py 2,] = --;- (M Py = T P, (II.Z.E&(;c)
[ 08] = 7 i adeg (31.2.140d)
(Palgl = - 5 Qv g (11,2.140e)

¥
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oy & A .2.160f)
[74558c] =“§I @ eao ~ Seplay’ ar.z

F3

{0 Qp) = 1001 4545 — (Oap)ogartay

(11.2.140g)
- b Captan

- (1I.2.140n)
8nlic = 6 )

[0 2! “"2 Cpelap * Saptse ™ ACTED
In Egs. {II.2.140 a-b-c) we vecognize the anti de Sitter algebra
S0(2,3) of Eqs, (1.3.173): Eqs. (I1.2.140 d-e-f) tell us that the
supersymmetry generators Q. transform under 50(2,3) as a 4-di-
mensional spinor and under SO0{N) as a vector. Finally E?-
(I1.2.14Dg) shows that the Q.s are square raots of all the bosonic
generators: translations, lorentz rotations and SO(N} rotations.-

The relation between the Osp(4/N) algebra (I1.2.140) and the
super Poincaré algebra (I1.2.10), (I1.2.43), (II.2.44), (I1.2.45)
can be obtained through the following rescaling procedure which
amounts to an Inonii-Wigner contraction., Let us redefine our

generators in the following way:

(11.2.14l1a)
(Mab)old (Mab)new
()0l L (g ynew (11.2.141b)
AB 2g = 4B
(p )02 o L p ymev (11.2.14ic)
a 2% a

TN

ey



s

old _ 1

new I1.2.1414
= @ { )

@)
where B is a dimensionful parameter which we shall interpret as the
inverse radius of the anti de Sitter space: if 20, then equations
{I1.2.141) are simply a change of basis.

In the new basis the commutation relations (IT.2.140} become:

=1 - - I1.2.142a)
[Mab’Mcd] T2 (nbcMad4.nadec LY nbchd) (
= .88 (I1.2.142b)
[p.p,) = 8%,
(I1.2.142¢)

1
gﬂab’Pc] Ty UINE R

Br,pe8ag) = 7 TauYapdog (I1.2.1424)

(I1.2.142e)

[2,:0,0] = - 180,01,

ry 1 - - -
(2408 = 5 & Boulpy ~ Sl (11.2.1428)

g

5 CaﬁTAB

3 w3 (S _ ez ab
(@005} = 100V g8,y P, - 28(Cy ) 08, -
' (11.2.142g)

_E - -
[TygoTepl =5 Gpclap * Suolae = OaoTac = Saclyy  (T1-2.1420)

and are equivalent to the old ones. The limit &0, however is
singuiar and it gives rise to a new non semisimple algebra. We easily
see what happens. The translations P, become abelian and commute with
the spinorial charges Qu,; similarly the SO(N) generaters become
abelian central charges (they commute with everything else} and the
lorentz generator in the anticommutator of two Q.s drops out. The

result is exactly the N-extended super Poincaré algebra with the

identification:
AP o 4 tim T (I1.2.143a)
+ im Typ
g=+{
g (II.2.143b)

In this way we obtain an algebraic justification for discarding
the pseudoscalar central charges ZfB. Since the N-extended super
Poincaré group with scalar central charges (ZiB) is the Inonli-Wigner
contraction of Osp(4/N} we refer to it as the Osp(4/N) growp (or
algebra). For every 1 £ N 3 8 we shall have two thecries of super-
gravity depending on whether a certain parameter is zero or non zero.
In the first case the vacuum state is Minkowski space and the theory

can be regarded as the gauging of the Osp(4/N) algebra (Poincaré
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supergravity) in the second case the vacuum state is anti de Sitter
space and the theory can be viewed as the pauging of the non
contracted Osp(4/N} algebra (de Sitter supergravity). In the
Poincaré case the N{N-1}/2 vectors asscciated to the charges gz 4B
are abelian while in the anti de Sitter case they gauge the SO(N)
subgroup. The most intriguing feature of the extended theories (N>1)
is the rigid relation between the cosmological constant and the SO(N)

gauvge coupling constant:

B0 = & N (I1.2.144)
which is a direct consequence of the Osp(4/N) algebra {I1.2.142).

Eq. (II.2.144) implies that a realistic coupling constant
gso(N) ~ 1 yields a non-realistic curvature radius of the Universe
(R=10"33cm) and vice-versa: hence it is very embarassing. Unfortu-
nately it seems also very central to the whole business since it
reappears both in Kaluza-Klein theory where one tries to obtain the
gauge group from the extra dimensions and in the partial breaking of
supersymmetry in 4-dimensions where one tries to obtain an effective
N=]1 Lagrangian from a higher N Lagrangian. The only theory which is
free from this disease is N=1 supergravity based on either Osp{4/1)
or Osp(4/1).

Moreover this theory is the only one which admits chiral
fermions, For these two facts it is the natural candidate for a
description of particle phenomenology at low-energies and as such it
has many advantages (see Part Four}: it is unsatisfactory, however,
because it provides a too low degree of unification (it has too many
freedoms) and because it is aot finite nor remormalizable. The
central problem in the programme of superunification is therefore
"how to obtain N=1 supergravity as a low-energy approximation of a
more constrained theory". In this effort, higher supersymmetries,
higher dimensions and recently strings have all come into play. The

patient reader of this book will discover how and will see the
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advantages and disadvantages of each structure. He will realize that
at every stage a universal threat is waiting in ambush: anti de
Sitter space. ;

Such universality means only two things: either there is a
unique way out which selects Minkowski space and that is the truth
precisely because it is unique (this may be the compactification of
the heterotic string) or we are biased by a pseudo problem, anti de
Sitter space being acceptahle if suitably reinterpreted {see Part
Five}). In both cases, as a trap to avoid or as a path to follow the
properties of supersymmetry in anti de Sitter space are an essential
ingredient for the student of supergravity. More of it is going to

come in the next chapters,
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