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Moreover in D=4 we write the explicit form of the duality relation on

Yab

Eabcdled = 2175 Yy (11.7.40)

and we conclude the chapter with another useful formula valid in

every dimension:

g
! Tapa Yo e = el N (11.7.41)

In (I1.7.41) the coefficient En(q) is determined by the recurrence

relation:

(n} _ _(n}_{(n)

=P - @ne-grl, (13.7.422)
(n)

i =1 (11.7.42b)
(m)

Il =D-In (II.7.42¢c)
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CHAPTER II.8

BB

FIERZ IDENTITIES AND GROUP THEORY

11.8.1 - Introduction

This chapter is very technical but nonetheless very important for

all what follows. It deals with a very specific problem which arises
in the development of both globally and lecally supersymmetric field

theories.
As we saw in Chapter II.6, in order to comstruct the action of a

supersymmetric field-theory model we have, in general, to solve exterior

form equations on superspace which arise either as Bianchi identities
or as field equations associated to a Lagrangian which is itself an
extericr form.

A complete cotangent frame on SUpEISpAce is provided by the
vielbein V? and the gravitine 1-form $A which is a spin 1/2 repre-
sentation of the Lorentz group SC(1,D-1) and has, morecver, an index A
enumerating the supersymmetries (A=1,2,...,8}.

Henceforth an arbitrary p-form w(P) on superspace can be ex-

panded as follows



o

a Ao A
vl Pyt ..A‘*’qaq)

~ . A

(1.3.1)

and our extericr-form equations are implemented by requiring that the

coefficient of each independent monomial

a,..8 Ao . A Q 3 a  Aua A o
1 1 1
L L R S SN SUUIN AL I )

vani i .
anishes independently a2 A0y A0
The relevant point is that D is a tensor

product of irreducible representations of 50(1,d-1) and SO(N) which is

antisymmetric fn:

{aj = a,o ..o al (11.8.3)

and symmetric in

{o A o a0 e Aot (I1.8.4)

o ag...8 A0 AR ]
This implies that we can decompose & into irreduci-
bie representations via a Clebsch-Gordan series and that only certain
representations occur, the others being ruled out by Egs. (1I1.8.3-4).
This decomposition, with explicitly calculated coefficients, provides
a systematic way to perform the calculations we shall be confronted
with., On one side, the absence of certain irreducible representatiens
in the decomposition of the spimor temsor-preducts is the origin of all
the "miraculous” Fierz identities one needs to derive supersymmetric
theories; on the other side, using the procedure of projecting every

ag...a A0 Anan

form equation on the irreducible components of 0 ! nr

one is sure to deal with a set of independent equations and is free
#

from the danger of overcounting.

oy

ek

In principle one should consider tensor products of wA.s with
arbitrary number of them but in practice the number of fermions is
limited to a maximum of 4. Indeed every supersymmetric Lagrangian for
scaling reasons is at most quartic in the gravitino 1-forms. Hence we
shall be mainly interested in the decomposition of the product of 2¢.s
(which is rather simple) of 3.5 (which is the highest needed in the
analysis of Bianchi identities, these latter being 3-forms) and occa-

sionally of 4.s.

I1.8.2 = The structure of forms on N-extended D=4 superspace

As we saw in Chapter I1.3, rigid anti de Sitter and Minkowski
superspaces are the homogereous supermanifolds (I1.3.29-30) possessing
four bosonic coordinates xu, associated to the transliations, and 4N
fermionic coordinates e“a, associated to the N-supersymmetries. The
soft version of these manifolds have the same mumber of coordinates.

The cotangent space to superspace has 4+ 4N dimensions and it is
spanned by v¢ and wA, as we already remarked. To illustrate the
method let us begin with the three-forms and let us call D{3} the
linear space spanned by them.

The dimension of D(3) can be easily computed. Let us denote by
zA= (xg, GAg) the superspace coordinates. The most general 3-foum

9(3) can be written as:

a3 - szf\gr)ldzﬂ . dzt . el (IT.8.5)

where the superspace wedge product obeys the standard commutation rule:

at k= (M (11.8.6)



838

Instead of the coordinate differentials dzA = (dxu, deAa} we Ccan use

the intrinsic basis (Va, tilaA), and this is what we shall do systema-
tically, Hence we find:

(3) . A(3a b ¢ {3 a b oA
Q ...szabcv VAV +Qab(aAJV AV AP+
(3

* T (ah) (8B)

vE o, BB L otY

ah BB vC
(o) (8B) (yO) ¥~V ~ ¥

(I1.8.7)
Since the V® anticommute among themselves and with the waA while

the latzer commute with each other we easily compute the dimension of

the monomials appearing in the expansion (I1.8.7). We get:

din(v® . V° V%) = 4 (11.8.8a)
din(v® . v0 . ofB) - i‘-zi SaN = 24N (I1.8.8b)
dim(v® . g™, Py - 4-5&2‘11—} = BN(N+ 1) (11.8.8¢)
aimeg™ . g8, 97C Eueams e ) (11.8.84)

Hence the space of 3-forms in N-extended d=4 superspace has the
following dimension:

din D(3) = (32N°+ 8N+ 4) & (32N%+ 24N+76)-N§ (11.8.9)

Bosonic Fermionic

For the first intevesting cases we have Table I7.8.1. The basic idea
of our technique is to write a basis of 3-forms which is composed of
irreducible representations of the H=5G(1,3) & OV group. Explicitly
we want a decomposition of the following type:

T
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(3 {32 b ¢ (3 ,2 b _oA
8 s gy s el vy
s 0 e xU@), o(3):() (12.8.20)
a| (1) (i)
TABLE 11.8.1
DIMENSIONS OF 3-FORMS IN D=4 N-EXTENDED SUPERSPACE
. oA BB YC

N din D(3) aim ™ @m0 ™oL 06
1 44+ 44 4 10 20
2 148+ 168 8 36 120
3 316+ 436 12 78 364
4 548+ 912 16 136 816
5 844 + 1660 20 210 1540
6 1204+ 2744 2 300 2600
7 1600+ 4228 2 406 4060
8§ 21165 6176 32 528 6160

where Xi are the 2-form irreducible representations appearing in the

B
decomposition of zifaAn 1515

GA

BB 0A,BB (i) 11.8.11
AL X { )

and g1 are the 3-form irreducible representations appearing in the

) B yC
decomposition of waAA\UB Allf" ,

ah BB YC _ L0A,BB,¥C _(i) (11.8.12)
P A E fgy =
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Since H is a direct product and the fermionic wedge product is symme-

tric, we use the following procedure. First we classify all the S0(1,3)
representations appearing in the tensor product of two or three spin 1/2
representations and all the G(N) representations occurring in the tensor
product of two or three O(N) vectors.

TABLE 1I,8.1I
REPRESENTATION OF $O(1,3)

Representation Dimension Corresponding tensor, spinor or spiner
type tensor
[Lll 6 X®=~%a(mnuwm.tmmw]
[1,0}(+) 4 Xa(+} {vector}
[I,U](“) 4 Xa(—J (axial vector)
{G,ﬂ](+) 1 x() (scalar}
[G,ﬂ]('J 1 ) (pseudoscalar)
- - b - . .
[3/2,3/2] 8 BBy ¥ Egp=0 (irred. spinor-
~-tensor)
[3/2;1/2}{+) 12 Ea(+); ya Ea{é) =0 {irred. spinor-vector)
[3/2,172] ¢ 12 Ea(“); V3 Ea(') =0 (irred. spinor-axial
vector)
{1/2,1/2](+) 4 5(*) (Majorana spinor)
{1/2,1/2](“) 4 z0) (Majorana pseudospinor)
{ﬁmA is at the same time am SO(1,3) spinor and am O(N} vector). Then

we consider all products of these S0(1,3) and O(N) representations which
are completely symmetric in the exchange {cA«B8B+yC). (This procedure

is also used for the coupling of spin and isospin in Nuclear Physics.)

We begin by tabulating the relevani representations of the proper
Lorentz group S0{1,3) with their dimersions.

In Table II.8.II the numbers on the extreme left are the eigen-
values of the Casimir operators of $0(1,3) whose rank is 2 and the plus
and minus superscripts refer to the parity eigenvalues, The dimensions
can be calculated using standard formulae in group-theory.

They can be also obtained by more elementary means. For instance,

ab has dimension § because it is a spimor=-tensor (&% 6=24) satisfying

(4x4=16) conditions (1’ T, =0).
Table 1I.8,I1 exhausts the list of relevant representations because

of the following decomposition rules:

(172,1/2) 0 [172,172] = [1,1) @ (1,0) PV @ [1,6] @ [0,0] WV 0 [0,0]”

o’ . ’

symmetric antisymmetric
(11.8,13a)
[172,172] o [1,1} = [3/2,3/2] ® [3/2,3/2] @ [1/2,1/2] (I1.8.130)
[172,1/2] @ [3,0] = [3/2,1/2) e [1/2,1/2] {11.8.13¢)
[1/2,1/2] @ [0,0] = [1/2,1/2] {1I.8.13d)

Equations (I1.8.12) say that any 4x4 matrix can be expanded in a com-
plete Dirac basis. Indeed, if we have the wedge product wA ~ @B

where ¢A and wa are Majorana spinor 1-forms:

b= = ey’ (11.8.14)

By @B is a matrix in spinor space and can be expanded as follows:

(+} (-} (-} (+}) .
. = 1 a g .4 i ab
gty = 7 (T Xga+ g Xgat Yoy, Xpa v Xgad + 7 ¥ppkpy

(11.8.15)
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vhere Bgs. (11.8.13c) and (II.8.13d) correspoad to the familiar decom-
position of a spincr-vecter (or a spinor-tensor) into a traceless part
plus a trace. Let us, for instance, consider a spiner-vector Ea' We
can write:

= 6(12) 5(4} (I1.8.16)
where
S A A h (11.8.17)
is the irreducibie {3/2,&/2] part satisfying:
Yaggﬂ) = 0 (11.8.18)
TABLE II.8,I1I
BOSGNIC 2-FORMS
Seﬁ?esen- Current Symmetry Reality
ation
ab_- i _ ab.¥_ ,ab |
[1.1] 57V 5 Ya¥s  Xap™ gy SO (Xgp) =Xy 1n
) (¢ _ {+) (+) [*) (+)
[1,0](+J X%A””A"Ya% Xap=+ ng sy, (x } =- xaB im.
-} . {-J -] (-) {- )
[1,0]{') XgBm wAn'Ysyawg XAB“ - ng antisym. {X )?- X g Teal
RO I G B S ¢
[0,0] Xap= Uy~ Uy Xup= - Xpy amtisym. (X,)'= X, veal
) (- .5 (-) i -] ) )4 ) -
lo,0] g =Pyl Xyg=~ Xy Wtisym.  Xp=- X, in.
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and
g{‘” Sy E 2 (11.8.19)
is the [1/2,1/2] part.
Similarly giver z spinor-tensor Eab we can write:
. 8 me L, (4 11.8.20
Sab " Bap - Yo' Eb]m 1z Yab® ( )
where
£ g s V¥ %570 * ~1- TV Y e (11.8.21a)
(1 _ .m 1 anmn 11.8.21b)
I LA (
g(4) = yYE (11.8.21¢c}
mn

are the irreducible representations [3/2,3/2], [3/2,1/2] and
[1/2,1/2], respectively. From this point on we shall define the
irreducible representations assuming BEqs. (I1.8.16) and (I1.8.20} as
the standard expansion of any spinor-vector or spinor-tensor.

Coming now to the relevant representations of the group 0N},
since $aA is an O(N) vector, they are those contained in the tensor
product of two or three vectors.

In general we have:

D®D=|:D$B®' (11.8.22a)

E}@D@D"[ [ T]ef o[ ]e (11.8.22b)




TABLE 1I.8.1V t.. = tMM {11.8.24b)
0{N) REPRESENTATIONS 1 :
t" 2 (tAE tBA} (EI8.24C}
E} E}:] M A rank 3 O(N) tensor will, on the other hand, be decompesed in the
tpe i L= following way:
N(NZ+38) /6 b ey b8t o+t

ABC ~ “TaTR[C {aB*C} A
Dimension | 1| N |N@P-3M2)/6 | N1 /2 | NG-a)/3 | -3 | NQWD/2-1 A[B[C] E
Nel 1j1t 0 0 0 0 0 I
N=2 1]2 0 1 2 2 2 +t ry B|+ t s €‘+ (traces Ofw } (11.8.25)
N=3 113 1 3 5 7 5 f.:_ _E.
N=4 114 4 6 16 16 9
N=5 113 10 10 35 30 14
N=6 116 10810 15 64 L] 20
N=7 117 35 21 105 77 27
N=8 118 56 28 160 112 35

where we have used the standard Young tableaux notation and each of them

is meant to represent the corresponding O(N} irreducible {traceless)

tensor. The dimensionality of these representations is given by standard

formulas.” Our findings are shown in Table II.8.IV. In general given a
rank 2 O(N) tensor, like the bosonic 2-forms of Table IL.8.LII, we shall
write its decomposition into irreducible components according to the

following conventions:

t.. + 1t (11.8.2%)

where

[

6t (11.8.24a)

1
" =5 (g * tpad - Castvu

——— . '
* See for instance M. Hamermesh, Group Theory (Addison-Wesley, Reading,
1962).

I1.8.3 - Fierz deccmpositions in the N=1 D=4 superspace

Once every preduct of By has been decomposed both with respect
to §0(1,3) and O(N), the standard Fierz identities correspond to the
exclusion of all representations which are not fully symmetric and to
the determination of the decomposition coefficients. We begin by con-
sidering the N=1 example explicitly.

Recalling Table I1.8.1, we see that, in this case, wa,\wg has
10 components. FLooking at Table II1.8.II, on the other hand, we realize
that

10 = dia[1,1] + din[1,0]77 = 6 4 4 (11.8.26)

which are precisely the representations occuring in the symmetric pro-
duct decomposition. In the N=1 case no contribution from the antisym-
metric [1,&}('), [0,9}(+) and [0,0](—) representations is allowed.
Equation (I11.8.15} therefore reduces to



¥ (11.8.27)

Going now to the wa»\ws,‘wy sector we read from Table II1.8.1 that it
kas Z0 components; moreover, from Table II.8.I1 it is evident that the
only way to obtain 20 is by setting

20= 8+ 12 (11.8.28)

This means that the only representaticns being completely symmetric in
u, B,y are [3/2,3/2] and {3/2,1/2]. This is the origin of all Fierz
identities,

The explicit construction is the following. If we have the wedge
product of three Y.s (Y~ ¢ .Y} we can start by decomposing twe of thenm
according to (I1.8.27).

In this way we end up with the following spinor-vector and spinor-

tensor:
9, =9 . D oa Y, ¥ (11.8.28a)
by =3V A b Ty ¥ (11.8.29b)
Because of the previous discussion we can set
6, = a2l (11.8.302)
b = BT - Y, S‘Ejm (I1.8.305)
where =18 ig an irreducible [3/2,1/2] representation (satisfying
¢ E£I2Ja= 6) and Eig} is an irreducible [3/2,3/2] representation

L‘{B) - 0} B

(satisfying Yy By We compute the coefficient by applying

Eq. (I1,8.27) once again in the definition of Ba. We get

547
babaviysaslt? =%¢Afbn¥aw+%Yb¢M}MYa§)‘l’
(11.8.31)
and hence
- . = (12
Vabavgea 52(112} e 2% b Lugh -2155 ) (11.8.32)

TABLE II.8.V

IRREDUCIBLE BASIS OF N=1, d=4 SUPERSPACE

+)

= 1 i ab

Yabegy, Xy, X
=)

R I R

-] - (8 -, (12)
LR % Yap V=0~ Ky = By 7 1{[a'"i)]

With Eq. (11.8.32) we have completed the constructien of an irreducible
basis for N=1 D=4 superspace.
The results are summarized in Table II.&.V.

11.8.4 - The N=2, D=4 case

. oA BB
We tonsider now the N=2 superspace. In this case ¥ . ™ has

dimension 36 and waA ~ $8B ~ wYC has dimension 120 {see Table II.B.I).

ST e e

N



Locking at Table II.8.II1 and at Eq. {II.8.15) we easily obtain the L {+) ()
i - = 1 = 4
representation content of i gbBB. ;i = {1,0]7 e o 4x
) s -3, : ab .
-1 5 _ X =[1,1] @ = 6x2 = 12
wnwﬂ- (TX, «y X-+YY X)E 12 BN ’ D:I
. .{Ya((;)a 1 {;}a 5y
! . - 2 - [1,1] e » = 6x1 = 6 (1I.8.35)
22
i ab 1 ,ab
+~ZYab(X+§x.. 85 (11.8.33)
The possible representations gppearing in the decomposition of
lbaA BBA%IJYC are now obtained by looking at the product of w
where we have used the standard decomposition (II.8.24), the symmetry ‘. which is [1/2,1/2] D times each of the X we have so far mtrcduced.
properties given in Table 11.8.1I% and the fact that, in the 0{2) case, Let us define:
we can write
B iy ay® 11.8.36
Le ot t, = et (11.8.34) fac Ty Tt T (a1.8.36
t_= =g, t, H v =€ .8,
[A] 2 AB: : 7] »
+
= 2 b Y (I1.8.36b)

Sapc = Va ~ Vg~ T Y

Indeed we have:

.8.36
ABC zifAAl,bBAvytpC (11.8.36¢)

(+
X.

(0,0

c = iJJA ~ QJBQJC (11.8.36d}

Starting from the top we find:
4% 1 = 4

(i).= ®B = Ix3 = 1 (;ch fﬁAA waﬂyﬂﬂc (11.8,36e)
ab

) o = (2,12l o [Ty e (il e[ e 110w -
%2 = 1,0 {+}@ = 4x2 - 8
. [D - {luz,172) o [13] e { [ J e ([ ] Je®}-=

14

< {[3/2,52) » [3/2,12) ) o [372,1/2] ) & [172,1/2]) +
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e [}

o{[[I]e

(11.8.37)

At this point we recall that the representations [3/2,3/2] and
[3/2,1/2}(+) are fully symmetric in (o +— 8§ <> y) s0 that they

can be patched together only with [ij::[:] and [:]
being the trace of the former).

(the latter

In this way we have singied out four elements of the irreducibie

basis, namely

S - [s72.32)0] | | ]= ax2

= 16 (11.8.38a)
[Alz[c]
Eib - [3/213/2} ® D = 8x2= 16 {1I.8.38m)
st = 2206 T 1] = 12x2- 2 (11.8.35¢)
) (+)
2 = [3/2,1/1] o ] = 12%2 = 24 (11.8.38d)
80

On the other hand the representations [3/2,1/2]('}, [1/2,1/2] SO
{1/2,1/2] () are not fully symmetric in spinor space and therefore

can be patched together only with the

|

representation of 0(2).

This latter, however, for N=2 is equivalent to D since the anti-

sympetric pair AB can be rveplaced by an €,, tensor. Hence the re-

AB
remaining elements ¢f the irreducible basis are:

(-)
5;‘ = {3/2,1/2]{‘}® ! = 12%x2 = 24 (11.8.39a)

T
3

Indeed 40+ 80= 120,
list of representations contained in ¥ A ¥

172,12 e

(172,121 &

oA

= 4%x2 = B
2w 4%X2 = §
— 40

g8 1‘J‘YC .

551

(I.8,39)

(11.8.39¢)

and therefore (II1.8.38) and (II.8.39} exhaust the
All the f's intro-

duced in Eqs. (I1,8.36) can be expanded in the basis provided by the
S's. The coefficients are obtained via 2 lengthy but straightforward
This will be omitted; the result is shown in Table I1.8.1IV.

algebra.

TABLE 1I.8.VI

IRREDUCIBLE BASIS FOR N=2, d=4 SUPERSPACE

. - (=)
%“%:%Emmﬁpyﬁﬁ*ﬁﬁxg
1 a ("')a 1 (+)a
3 X + = X&E,0)
+ ! ¥ ( AB
i abyab L 3%, )
0 T
. 1
U~ ¥y Ve ® 5 Bae
] ;O
tiiAMPBAYS‘l'C: -EEBC “A
{-) ) )
. i " 1.8,5% | ;=
1I’A*‘f’a”‘sYa‘*“(: = Essc{ By g YO0 5 20}
. () 3., W
by By a YU = : “ 71 8 Boyt 3 EaeY

1 SRR S
SRR BRI

(+)

-

5 (;)a
“cy

R

PN

N

o~ e
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TABLE I.8.VI {cont'd}

b 1 fa (]

gy ay®y, = -1 B S 3 oe,,Em - LyE
2 TAT B o - A[E[c] {ABC} " 2 m
[+ (-)
3 b i 5 (a2 b]
+ I8 E ) T T Sy T

i ab, . .
AN SR Y

Note: All spinors and spinor-temsors are Mzjorana.

11.8.5 - The N=3, D=4 case

With the same techniques we can obtain the decomposition into

irreducible representations of the 3y-sector of N=3 superspace. This

decomposition i$ utilized in deriving the results of Chapter IV.7.

From Table II.8.1 we see that the dimension of the N=3 3P-sector is

364. The irreducible basis is found to be the following

(+)

EA=[1/2,1/2](+]®D - 4x3 = 12

s by Vel = 4xs -1

(+)

foTE [1/2,1/2}“)@L | - 4xs = 20
AlB
c

< SN

e 1 = [1/2,1/2]V ® = 4x5 = 20
c

(11.8.40a)

(TI.8.40b}

{I1.8.40¢)

(I1.8.404)

n
E-

[1/2,172] © v 4x1

£2 = [32,172) ) e [] 12%3

¥
L
1

12x3

36 (11

#

22 o ray2,12] e [

12%5

ch - [32,172]0) e ‘

2 = (sl s (L1

b = [/2,1/2] o [T1] = sx7=56  (n

[als[c]

Eib = {3/2,3/2] @ [:] = 8x3= 24 (1I.

364

snd the coefficients of the decomposition are displayed in Table
I1.8.VII.

TABLE II.8.VIX

THE IRREDUCIBLE BASIS FOR N=3, D=4 SUPERSPACE

(iI.

36 (11.

€0 (II.

i2x7 = 84 {iI.

8.40¢)

8.40f)

.8.40g)

8.40h)

8§.401)

8.404)

8.40k)

_ (+) )
: oo &
otgo¥e = S Tt AT ”S(Amg M
E o)
C
- (-} {-)
5. 5a o . (BO) 7
byodp e = <2 * 1 ETRTa) +15EAM§ N
E1 R
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TABLE I1I.8.VII (cont'd)

] i (+) ()
by o by - vy, = 52 s gWABCH 1 oalts
4]z ]c] AR B]
(+) -
+ L5, () )
: ) - ErYCE + E
Alc] AlB] (a]c] )
H c] 8]
(), (8. 1 5 o
7 {CMJ) <56+ 0
5 (=) {-}
v iy { ~a . 58 . D (AC) = .(AB} (_}
AlB] Alc] P i * Scan? _a
L) .3
{-)
- AYSY v ; o d + 33 abC -8 =
B ¢ty S YsYa"
] 5]
P L (;} 52 ()
4 BlA YR A
€ £
im0 5.8 ,(0) ()
d(AM) 7t _Y v EAM% M
~ab

P, alya
A Yabw{: ' G{AB ¢ -
E {AB..C}
=§)] -

" Y[aib} j Y[as
Al Alc]
) (-3¢} (-313]
- Ay '\{[ :b} + wb} ] -
§(A0) | §(AB),

" AT Eb]( @ * o)
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TABLE 11.8.VII (cont'd)

(-)

—

1 {(.'i) ¥ -
-y <4 +on - ¥ *
6 ab" T T AlB] § Yt F g ¢
B C 1B
) . W
+ " . - {AC) (AB)
o nn ) - 2 YO * Sian? B
)
1 (AC) . . (AB)
7 YsVab M(G(BM) § (o)

11.8.6 - The N=2,D=5 case

As we discussed in Chapter 11.7 Majorana spinors do not exist in

five dimensions. Rather we can introduce 2 doublet of pseudo-Majorana

spinor 1-forms wA which transform as 4-component 80(1,4) ~v Sp(4)

spinors and obey the conjugation rule:

RN, S
(¥ = ClY) " = £45 ¥ (11.8.41)

The rigid D=5 N=2 superspace can be identified with the homogeneous

space:

(11.8.42;

oM = SUTZ, 7753 /50(1,4) @ u(l)

which has five bosomic coordinates %* and eight fermionic ones ©

(Pseudo-Majorana), Its cotangent space is spanned by v® and wA'
oh BB ¢YC

he D=4, N=2 case $GA,,wBB has 36 components and ¥ Y
We must arrange these latter into irreducible repre-

As

in t
120 components.

e

P

e Sy

—~
- - TN T

P T e SN
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sentations of H=80(1,4)®0{2) rather than into irreducible represen-
tations of H=S50(1,3) e 0(2}.

To do this we list the relevant SO(1,4) representations. Our task
is simplified by the local isomorphism SO(1,4}~Usp{2,2) which is the
spiner representation of the Lorentz group.

Usp(2,2) has rank 2 and we can characterize each of its represen-
tations by two numbers directly related to the symmetry of the spinor

indices.

TABLE II.8.VIEI

YRREDUCIBLE REPRESENTATIONS OF USP(2,2)® 50(1,4)

Rep. type Dimension Corresponding spinor, tensor, spinor-tensor

[0,0] 1 scalar Xa’bcag (charge conjug. mat.)
1,0] 4 spinor ¥
I af_ . ,fo . :
[2,(}} 10 symmetric bispinor A7 =+ AT v antisymmetric
tensor Xab
antisymmetric (traceless) bispinor
(1,1} 5 PN ABQ(AGBC(!S: 0) ~ vector X*= FQBS’R&B
[2,1] 16 Irreducibie spinor-vecter g {’aEa= ¢
[3,0] 20 Irreducible spinor temsor Eab =~ Eba; I"J."':'ab =0
We now decompose the product
z T T
Yy~ Wy = gty A Vel = gy 2 90IC (I1.8.43)

whore ( is the charge conjugation matrix. We want the fully symmetric
part of the tenser product

557
([1,0] 0 [Ty (0o ]) -
= (o] e oy e ([ Je[ ) =
(12,018 [0,0) o [1,th e ([ []e B ® )

(11.8.44)

[0,0] and [t,1] are antisymmetric in spinor indices and can be patched
together only with the antisymmetric €(2) representation. Hence two
elements of the irreducible basis for the tI:Aa,\\sz space are given by:

%= wA,\éh = 5AB¢§‘:$A = [0,0]e {E} =1 (I1.8.45a)

= TP e, i CI%, = [1,1]ef =5x1=5 (IL.B.45)
A A AB"R A

The representaticn [2,0] is symmetric and can be coupled only with

E[] or with its trace "a''. Hence the third element of the
B

%i)Adn wB irreducibie basis is given by:

gb - i .ab T-1p8b, =
Ko g 2Py - e fck 1y < 2ojo ([T e @

0% (2+1)

I
u

30 {II.8.46)

1e5830=36 is then the dimension this superspace sector. The decom-

position coefficients follow from standard I-matrix algebra. We obtain:

= i ab 1 @
wA»¢B=EF + =48 (r"’xa+ﬂ>()

11.8.47
ab a8 ¥ g OaB ( )



558

The representations appearing in the lIJAaA leﬁ A wCY sector are now
easily identified by considering the product of the highest representa-

. ab . o
tion XBC with pr . We have

Py ‘I’B“’%’ Fab‘*"c i ‘PA“XEE‘
= ({1,0] e DM 206 ([ [ ]e o)
([0 e [z0h e [[ e ([ | |o e
(ol e 21} o (e o [T 1] s t]'“[}’

(11.8.48)

Hl

Since [3,0} is symmetric it can be coupled only with D:[] and
its trace D . Therefore the irreducible basis contains the follow-

ing two elements:

i (F z0 = 0); [3,0] & D:Ij = 20%7 = 40

[a]efc] * [a]3[c]

{II.8,493)

:"‘b , (1,2 “ab = 0); [3,0] @ D = 20%2 = 40 (11.8.49b}

The representations [2,1] and [1,0] are not fully symmetric and there-
fore can couple only with

. ]

4
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The remaining elements of the irreducible basis are then:
P i
22 et -0, & = 16x2 = 32 I1.8.50a
gy (05 = 0); (2,1} ® ( )
By s (1,0} & J = 4%2=8 (I1.8.50b)
and we have
40 + 40 + 32 + 8 = 120 {11.8.51)

as expected.

The actual decomposition coefficients can be calculated with a
somewhat lengthy but straightforward algebra. They are given in Table
I1.8.1V.

TABLE 11.8.IX

IRREDUCIBELE BASIS OF N=2, D=5 SUPERSPACE

_i ab ﬁx@
bprdp =y Talma = 8, T X"+ 1)

Y Yy = BC"’A“X®= - ”15 Ssc%a
'#’AA‘EJBAF%C = % 53(:%“}(61 = 2 BC(EA 5 3 :A)
Ly ndyn I = X502 ia St
- 6BC~§b * 36CAE§b
G Lplogt] SR

[acb] 1 nabg
QGBC3 A "zor Y

R

ST e

P

B T T N P

P

Ea

P

o



For paedagogical purposes we just give a sketch of the derivation of ?a!pA"‘LM" P § = ¢ “@M"QJM (11.8.59)
this Table.
Since _ The fourth equation of Table IT.8,IX is move complicated,
1 Setting
wg.\wA:EaBAwMAwM (11.8.52) s g
0 = 5081 (11.8.60)
the second equation of Table II.8.IX is just a definition
- gABC  boABC I
a ab (I1.8.61)
Zo= i Aty (11.8.53)
A= Uyt - .
ghC - ?aeisc (11.8.62)

Considering now the third equation of the same Table, since

and using the Fierz rearrangement formula given by the first equation

5 op8, 1o 2 a ' of Table I1.8.1X we can easily prove
wAA F wB =7 SABwM"F ¢M (11.8.54) Yy p
: ABC 1 ,CBA 31 ABC -
we can set : = .=
3 ea 2 ea 6 w wM" T ‘JJM
- 1 a . .
Y, AUy AT, = =8 8 (11.8.55) _LgABL G o o LB C s a
.A B c® 7 “pca 3 ) ry wM l"rl,bM 2 $ TV Ayt Uy (I1.8.63)
where ;
Now from the representation analysis dome in the text we know that
L GabABC wust contain only the representations
3 . B T2 .8.56 :
SA wAAwMAI‘ Vg (1I1.8.56) 1
o zab = G (11.8.64)
15 a spimor-vector. In general it can be decomposed as: - B *OTA OTAT TA e
(s, , @ . s
ei - eAa t g rd 8, (11.8.57) Hence we can write a decomposition of the type:
By definition we set BABC e B GAB».C 858(:" 5CASB
ab = “ab M
a (EG)B (
BV =1 B 11.8.58)
A AB =B A
+ (a8 T[a...b] * bé; T[ b} + cl"[a..b]a )+

then, ia order to obtain the third equation of Table II.8.1X we just

have to prove BA(‘D #-iZ,, which is ifideed true since
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AB i .ab.C BC

+ {a'é % ™5 + b'$

[&Te]c]
“ab
this representation appears only once.

The coefficient in front of

SabA are now fixed by the fact that

§BCABC _

Bab

0
and the requirement that

AB.C
“ab

B

8B
g {ud ab)

A BC -
+ B:abG * yGCA:

) (I1.8.65)

is just z definition because

The coefficients in front of

(I1.8.66}

(11.8.67)

be fully symmetric in (5,A,C). Indeed the representation [3,0} is
symietric in (o< 8<—y) and hence must be also symsetric in (8,4,0).

At this point two of the coefficients

(¢,8,y) are determined. The

ab

remaining one is absorbed in the definition of EA which appears
novhere else. The remaining coefficients are determined by Eq. (II.8.66)
and by comparison with {11.8.63). In fact from (II.8.63) we get

and the remaining 6AB, 6CA, 6BC

(II.8.68)

terms of ech appear to be given

in terms of wC“@M"ra$M and wC"@M"wM’ which is precisely what

we need,

The resuit we have been discussing will be utilized in Chapter

II1.5 where D=5 supergravity is explicitly constructed.

st e e s e e e
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11.8.7 - Systematics of Fierz identities in eleven dimensions

The theory of supergravity fh eleven dimensions occupies a
special and privileged position among all the other supergravities.
It is the maximally extended theory, it has a simple and beautiful
structure and it spontaneously compactifies to 4-dimensions, giving
tise to N=8 supergravity and to several other interssting models.
Because of this it will be discussed over and over in this book.
Chapter II1.7 is dewoted to its explicit construction and the whole
of Part Five deals with the spontaneous compactifications of this
theory,

As a necessary technical preparation for its development, in
this section we undertake the decomposition into irreducible components
of the 2, 3 and 4 sectors of the D=1l superspace.

In D=11 we have at most N=1 supersymmetry which is asscciated to
a Majorana 32-compenent spincr 1-form wa‘ All decompositions are
therefore decompositions of temsor products of 50(%,10) irreducible
representations, SO(1,10) being the Lorentz group in eleven dimensions.

We start by giving the dimensionality of the SO(3,10} represeata-
tions appearing in the symmetric product of two, three and four gravi-
tine l-forms ¥ (¥ is a spin 1/2 Majorana l-form;.

The eleven-dimensional Lorentz group SO{1,10} has, like 50(1,9},
rank 5 and therefore its irreducible representations are labeled by 5
integer of half-integer numbers.

In the integer case we are dealing with a bosonic representation
and the 5-numbers Al, Az, 13, Ad’ A labeling it can be identified
with the number of boxes in each row of a Young tabieau. In this way

the representation (1}2(9)3 corresponds, for instance, to the tableau

2,..3
EE} , namely to an antisymmetric tensor Talaz' Analogously (2)7(0}

corresponds to the tableau :;23 that is to the tensor Talaz while
adat

(15} is a skew-symmetric 5-index temsor 4" Tal... a”

P

B

e N

e

e

B



In the half-integer case the representation is of the Fermi type.
The corresponding object is a spinor tensor having in its vectorial
indices the symmetiy of the Young tableau Al— 1/2, }\2- 1/2, ?\3- 1/2,
A4-I/2, As- /2. Moregver, it is irreducible in the sense that what-
ever trace can be obtained by contracting it with T-matrices is zero.

For instance the irrep (3/2}(1/2)* is a spinor tensor with the
symmetry _(1)(0)4 in its Bose indices, namely Ea' The irreducibility
means Fa53= 0. Analogously (3/2)2{2/3)3 is a spinor teasor with
Bose indices of the type [1)2(033, namely 53132 (skew symmetric}.
The irreducibility condition is Pa22a132= 0
The use of numerology provides an easy tool to work out the repre-

sentations appearing in each symmetrié'product. We find

‘4 e
TABLE 1I.8.X {2’ o (1/2}5}5ym -t e mAnte )
DIMENSION OF SO(1,10) IRREPS APPEARING IN THE SYMMETRIC PRODUCTS
5
OF 2,3,4 IRREPS (1/2) (32 33/2= 528+ 11+ 55 + 462) (11.8.692)
Bose irreps Fermi irreps {(1/2)5 o (1/2}5 o (I/ZJS} . {1/2)5 N {3/2)(1/2}4 R
Type Dimension Type Dimension sym
e 720w/ 0 (379)°

©° 1 a/2)° 3

(1)(9)‘ 11 (3/2)[1/2}4 320 ((32x33% 34) /(3% 2) = 52+ 320 + 1408 + 4224) ; (II.8.69b)

RO 55 2y 408

(1)3(0)?2 165 (e e a2®s w2)®) - ©% e 1)¥m?

4o 330 . ; ] . .

(1)5 462 (3/2}5 4224 & {1} (D) ® (1) ] (2}{0) & (23[1)(0) @ fz)(l)

4
. WO & s 20% e @?m3e @°

31081 )] 429

2)2(03 1144

2y 4290 ((32%33% 34% 35) /(4 x 3% 2} = 1+ 165 + 330 + 462+ 65

(2213 17160 +429 + 4290 + 1144 + 17160 + 32604) (I1.8.69¢)

(2)% 32604

These decompositions are made explicit ia the following'way. Let ¢
be the Majorana gravitine 1-form and P= wTFG= 7C be its bar conju-

gate. Then we can write the Fierz decompositions given in Table

I1.8.XI, vhore =(32) (320) -(1408) (4224)
' Ta ’ “3132 * ”al...as

the irreducible representations (1/2)°, (3/2)(1/2)%, (3722w,

are, respectively,

(3/2)° listed in Table IT.8.X. Similarly, x(), x(69), x(169)
x(330) ((462) (429) L(1144) L(4290)  (17160) bare 12
81---84" "apea’ Tegag T Cagdy  Thybg? Tap.ag U TOREE
33 33&4 aa bin
tively, the bosonic irreducible representations (0)5, (2}(0)4,
o, ot 5 3 02003 4 2.3
(17037, (17)(0), ()7, @07, @70, &1, @°(1)°, aiso

listed in Table II,8.X. Moreover, we have

j462) {462}

ay...ag ai"'aébl"'bsxbl"‘bs (11.8.70)
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TABLE 11.8.X1 (cont'd}

566
TABLE 11,8.XI
EXPLICIT FIERZ DECOMPOSITION OF D=11 SUPERSPACE
P 5 7y 1 - 348 1 . #y...8
Ya= = (TP T - =T, §aT L 1%
32 @ 2 a132¢ Yo+ - Tal...aswﬁ r )
Paba Ly = 553203 + Lp (32
11 a
¥ o ptldesy 2 =(320) 1 _(32
wnﬁf/\?alazﬁ’ -aiaz - -g-I'{a % +ﬁ1‘aa$ )
172 152
Yool y= 4228 £ (1408)
al...as ai...as alaza3 3435}
3 =(320) 1 (32)
+ =T = L 3
R PR e A

i (4200) . L(17160) 180 2637 . (167)
..v-um—e - —
300 b1...bsai...as[asxbl...bs ¥ Xal...ag 21 § alazxa3a4a5
ay agay

a
- i 1200 5[ 6 §(462) ]
[31 az...as

AT Uaba I CLI (1}
volae? TR T

a 1%
VAT Gapar = xi429 y(265)
3132 33 a1a2 313233
ag
- 1144)  (330) 4 (65 &8
BT adaT. b= xt . X g, x(83) 2 172, (1)
412y 38y P ajayag, 9 faya,] T "‘334X
azdy (ag 24
BaT YabaT = 3 (462) 4 (4230)
3.8 ac al...aébl...bs bI“’bS 8j...8g
g
L1s 5 4 (330)
7 [ By Bs)
BaT Pafal =g (330)
al...a5 a637 56 al...a7b1...b4xb1...b4

The decomposition of Table II.8.XI is a substitute for all Fierz iden-
tities which correspond to the appearance of the same irreps in several

different products of fermionic currents.

II.8.8 - Irreducible representations of S0{1,9) and the irreducible

basis of the D=10 superspace

Supergravity and super Yang-Mills theory in ten space dimensions
are as important as D=11 supergravity. Indeed ten are the critical
dimensions of superstring theory and the matter coupled supergravity in
D=10 is the Field theoretic limit of this mon local theory. Superstring
generated supergravities are treated in Part 8ix; D=10 super Yang-Mills
will be presented in Chapter IL.9. Here we study the irreducible
representations of the 10-dimensional Lorentz group 50(1,9) and the
decomposition into &n irreducible basis of the D=10 superspace.

In ten dimensions we have Majorana Weyl spinors. We shall deal

with fermionic Majorana O-forms which are respectively Weyl end anti-

Weyl.
cT=2 ;5 cmex (11.8.71a)

% (25 Tyh = A (L1.8.71b)
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1 _ (11.8.71c)

The spinor A (called the gaugino) will turn out to be the supersymne-
tric partner of the Yang-Mills field A= Andx§J and because of that
carries, in general, an index Tumning in the adjoint representaticn of
some internal symmetry group . ¥ which has the opposite chirality
and which we name the gravitello sits i the graviten multiplet: it is
part of the pure supergravity theory and accordingly it carries no
internal symmetry index,

The S0{1,9) gamma matrices:

{Fa,Fb} =y (a=0,1,...,9) (11.8.72)

are 32x32 a3 the ll-dimensional ones. The charge conjugation matrix

is antisymmetric

L ; ¢ - e (I1.8.73a)
cr ¢l ot (11.8.73h)
&
and rll is "symmetric' in the C-sense:
-1 4T T, 1I.8.74)
Cry ¢ _-qlég (CTy)" = Cryy {

This is what allows the definition of Majorana-Weyl spimors. In parti-
. a

cular the [=10 superspace has 10 bosonic coordinates {x } and 16

fermionic coordinates {9“} corresponding te the independent components

of a Majorana-Weyl spinor 8:

% (Fe1,08 =8 (11.8.75}

U
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It follows that the cotangent space to superspace is spanned by the
zenhbein V® and gravitino 1-form wa which is also Majorana-Weyl:

- 1
c® v 5 taere-y (15.8.76)
Setting
8y...3 [a, a 3 }
iz (11.8.77)
we £ind
ay:..8 S ay...8
er el Ly e 1T (11.8.78)
where
Sn = 0 n=3,4,7,8 (I1.8.79a)
8, = 1 t=1,2,5,6,5,10 {I1.8.79b)
2,...8
As usual (see Chapter II.7) if Sn= 0, we say that T is anti-
symmetric, while if Snm 1, we say that it is symmetric.
In general we have
b b
177710
r,.T = cost(n) € r™ (11.8.80)
it al...an al“‘anbn+1"‘b10

where <cost(r) is a number depending on n. Formula (II.8.80) implies
that, if we consider the bilinear forams

A (11.8.81a)

(11.8.81h)
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where A is a Majorana Weyl O-formand ¢ a Majorana Weyl 1-form,
a
1 . L. [ P
then 1 " is non-vanishing only when both T i and
TR 108y

a
11 are antisymmetric, while X is non-vanishing only

1.8y &1...4
when both T and rllr 1 Toare symmetric. A look at formu-
lae (I1.8.79) is sufficient to conclude that the only non-vanishing I-

current is
8,8, a2,
19293 717203
1 = A\ X (11.8.82)
while the only non-vanishing X-currents are
a_z a
=g . T (11.8.83a)
xal a : @ ) rai.. asw o1, Xb1 b5
51 & .asbi .b5
(11.8.83h)
. : 318283
This result is understood by recalling that I has

(10+9+83/(3+2) = 120 components, which is precisely the number of compo-
nents of the antisymmetric object AGAB: 162 15/2=120. On the other

hand X, has 10 components and the antiselfdual Xa o has 172
1°°°78
(20-9+8+7+6)/(5+4+3+2) = 126 companents which together make the 136 of

the symmetric object

dim ® . yf =

PEHEAY

l6x17 = 136 (I1.8.84)

On the other hand the dimension of the 3y-sector is easily calcu-
lated:

. o ]_ . .
din v* P LY = mjiéLE_lﬁ - 816 (11.8.85)
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Since the gravitino does not carry SO{N) indices the representations
relevant o our analysis are only those of the Lorentz group as in the
D=11 case of the previous section,’ '

50(1,9) has rank 5: hence its representations are labelled by 5
2 Az A As
tions li are all integer and stand for the number of boxes in the rows

nuzbers Az, A where Aizlki+1‘ Por bosonic representa-
of a Young tableau. The representation is therefore a tensor and {Al,
lz, A3, Ad, 151 give the symmetry of its indices. In the fermionic
case Ai are all half-integer and the Tepreseatation is a spinor-tenser
whose bosonic indices have the symmetxy [Aln 1/2, 12— 1/2, As— 1/2,
9\4- 1/2, }\5— 1/2}. The spinor-tensor alse fulfilis a convenient trace
condition, obtained by contraction with a F.matrix, which guarantees its
irreducibility. In both the bosonic and the fermionic case, li are
alse the eigenvalues of a complete set of Casimir operators.

We have computed the dimensionality of the relevant representa-
tions using standard formulae in group theory and our results are summa-
rized in Table 11.8.XII where, for writing convenience we have arranged
the indices as in a Young tableau rotated of 90°,

For instance, when we write a tensor of the following type:

its symmetry is that of the following tableau:

a3iby
by
ke
and it is traceless
T - 0 (11.8.86)
8.8 X
by X

Fan — - P e Ty . —~ —_— TN AT T e —
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The spinor-tensor E have, in their bosonic indices the same

CORERLN
by bm
properties as Ia o 3 Woreover, in order to be irreducible they
1°""%a
bl...bm

satisfy a trace condition with T-matrices:

{11.8.87)

Now we have to explain why the I'.matrix trace conditions do indeed con-
vert a spinor tensor into .an irreducible representation. This is simply
2 counting argument. On cne hand we have the dimension of the irreduci-
ble representation which was computed from group theory. On the other
hand we have a spinor temsor. If we do not impose any I'-trace conditien
it has 16X (dimension of the boson rep.} components, We just have to
show that the ['.trace condition subtracts the correct number of compo-
nents. To do that for the cases listed above we introduce the following
recurrence relations.

Let ea a be an antisymmetric tensor spimor. We write
1" n

a
8 =T "p (11.8.88)
g8 g 2.2 8
albl
Let Ha a be a teasor spinor with |, traceless symmetry
1003, .
b |
et
in bosonic indices.
We set
a n+1
rt (r 1) (11.8.89)

I = - — -9 b
:1"‘an~1an (n-1) :1"'an~1 21er8n1

B3

s e A

973

Eq. (II.8.89) is justified by the fact that after elimination of the
index & the remaining tensor is, as far as the bosonic indices are

concerned, the sum of the following two tableaux:

a1 |b a1
[}
8n-1
Fn-1 b (11.8.90)

The normalization factors in Eq. (II.8.89) are obviously arbitrary and
have been chosen in a particular way only for later convenience, Now
using Eq. (II.8,89} with a little algebra one can show the following
identity:

-1
t=1
i

- (-1 8
al. ..anwim

“ {n--l)Ba (II.8.91)‘

1 *ne1

Bqs. (11.8.88) and {1I.8.91) are the fundamental tools of cur counting

argument. Let us for instance consider the spinor tensor ©
a. 1
It has (126 +126) x 16 = 4032 components. The condition T SBa o " 0
1775

corresponds to 16 x210= 3360 constraints and indeed we find 4032 - 3360 =

...35

672, The same argument poes through for all the remaining I3/2,372,...,
1/2] representations,
Coming now to the [5/2,3/2,‘..,1/2,...} representations we start

by considering, for instance, the spinor tensor ﬁa e It has
1
m 4
2

16x 1728 = 27648 components. If we impose the condition T 4Ha =0,

1
b
it would seem from Eq. (!I.8.89) that we subtract a spinor tensor
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Ha o and a spinor tensor ea L abt namely 16x 945+ 16x 210

bl 3 1 3

components. Because of the identity {II.8.91) however, this overcouats
the constraints and we have to take 16 x120 of them (the compcnents of

8 ) back. We get
31%2%3

27648 - 16 x 945 - 16 x 210 + 16 % 120 = 11088 {I1.8.92)

which is the correct dimension of the representation IS/2,3/2,3/2,3/2,
1/2]. In the same way we can check all the remaining numbers of the
Table. Now that we have classified the irreducible representations,
every spinor tensor will be decomposed iato irreducible compoments.

What we just need are the Clebsch-Gordan coefficients which were ob-
tained via an iterative procedure starting from the recursion relations
(11.8.88) and (II.8.83). We omit the extremely long but straightforward
computations, The result is summarized in Table II.8.XIII.

Equipped with this lore we can now derive the irreducible basis of
the 2y and 3P-sectors.

We have already pointed out that wﬁ,\ws has 136 components cor-
responding to the two curremts X7, x*1° % getined in Eqs. (I1.8.83).
The exact decomposition coefficients are very easily computed and are
given by:

1...35

babe s L X (11.8.93)

e
16 & 32050 -8

The wa,\wﬁ,\wy form, instead, has 816 components which are distributed

among the twe spinor-tensors:
Y (11.8.94a)

oAy (11.8.94b}

-TABLE II,8,XII

REPRESENTATIONS OF $0(1,9)
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Rep. type Dimension.  Corresponding tensor/spinor-tensor
[2,2,2,1,1] 6930 & 6930 T, self- or antiself-
17°%s dual in
bl...h3 8.8
[2,2,2,1,0] 10560 7 o
1%
by..oby
{2,2,2,0,0] 4125 Tal"'aS
byeraby
{2,2,1,1,1] 3696 © 3696 T self- or antiself-
175 dual in
blb2 al...as
(2,2,1,1,0] 5940 T, a
1%
byby
[2,2,1,0,0] 2970 T
" ayay8;
byby
[2,2,0,0,0] 770 T, a
1%2
Byby
[2,1,1,1,1] 1050 ® 1050 T, 2 Zem or antiselé-
- 1 ual in
b 3y...8;
[2,1,1,1,0] 1728 Tal ..34
b
[2=1»1=010] 945 E;llaza3
b
[ZIIJOFOJO] 520 aiﬁz
b

R T e e T
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g
TABLE II.8.XI1 {cont'd} g TABLE I1.8.XII (cont'd)
;
Rep. type Dimension Corresponding tensoz/spinor-tensor g Rep. type Dimension Corresponding tensor/spinor-temsor
[2,0,0,0,0] 54 T, _ . a
b LIRS 560 ST zgalaf 0
[1,1,1,1,1] 126 ® 126 T, . self- or antiself- :
| A dual in [.:1, 1011 _1_] 144 z .5 e
a4 it2t2% 272 "a’ " Ta
f1,1,1,1,0] 210 T, . . 1
1% G. 373 16 Z (Majorana Weyl spinor)
[1,1,1,0,0] 120
4130
[1,1,0,0,0] 45 T
8%
[1’0’0’0’0] 10 Ta TABLE I1.8.XIII
DECOMPOSITION COBFPICIENTS FOR FERMEONIC REP.
a,
5 3 3 3 3 = 5.
[T’?’T’?’_f] 5280 r’al...as; r :al...asﬂ}
b b
[5 3 3 1] 11088 . ra4_ 0 g = e(sz
Trpr o ey = H = =
2t 2ty 21...34 ;1'”&4 ea - 9;144) . _l_rae(lﬁ}
(3.1 5 5031 8800 B B =0 (560) ;0 44y 1, L(16)
272727242 “ay...a3. 0 Ta,...3, = S -
AR I R B = Bab 7 [a%) % L
a
[£,3,1 11 3696 5 ;r% =9 8 L gl1200) |1 e{sea} I RPN ¢ ORI g(16)
pEEEE e SRR ajayey - apmag T 7 [agengl T ss [agayagl T a0 2y
(1440) {1200} 1 [560}
511 1 1 % . Pl o ] = 6 - Ty 6 - =¥ g *
P TR 720 % r —g~ a8, 8z, [apaye] s [a,2, 252,
2 1. glidd) | 1 ¢ 6 (16)
&, 55 672 B 5T Saa =0 84 (243,25 3,0 " s040 8y--3y
1% 1%
{672) 5 (1440} 5 (1200)
a 9 =8 # 2T N -
Gt i gl 1440 CHRE 4Ea . "0 T R T IR LA
1% %
R a(560) , 1 o g(144) |
[i 3Ly 1200 - ) I,aﬁc . 12 [ai...a3 3435] 336 l8;...a, 4
2t 2zt Tag...35] Taja,a
1 3 17273
+ 1 r 9[16)

30240 %17 -%
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TABLE II.8.XIII {cont'd}

8 ac720) 1 r[ 5(144)

pog o [«
R U IR TR R
b b b
'.é% (Palazeél44} - a}9£;?4} %' b{ale{z¢4)J
A
O g 10
~§€F[ala;£§?3) ”‘b{affﬁﬁ %ﬂb[a (jﬁg’%
+ 5§H (Fal"‘ 39é144) + Fb alazﬁ(;?d) + nb{ r 28(§44))
o S -
Bl A o
LR R o asarh *
' % be 18{;200} P 125 (Fb[a1az izgji )
S RE ORRC)
- 1% {Fb[a ...asaéi?é} ) I‘al...ad‘eitl;]hlm} *
' nb[az %3 Ci44})

I

TABLE 11.8.XIII (cont'd)

579

{5280}
..as 4 {al gz...&s 12

_Is e(11088) _ 5 r 6[8800)

! a, a ]
B8y 2303

+ = T

8{3696}
12 {al...a

b b
5 (672} {672)
— (1.8 +Tr B
TR 8. .3 a a2...as]b)
205 g (1440) (1440)
(r b[a .a 6
%6 182

t

r
] * 28y 8., 8¢
(1440) 25 (1200)
Yo+ = (T 8
45 blaja, a;.. 2]
(1200) r 9{1200}

* F[a .y 8,8, I an[a} as]}

+

rib{a

8(560

+

Az 8485 84 %

W+

V- (0

5 (560
} 1344 bfa 8.

3n
bla; ayz 3 343

(144)
+ T a eb * 4nb[a I

o (144
2y

1820008 as]

3 (560},
216 (Fh[al... a,a i * r[a 2% ]b

3 aéas} 500 az...a4 as]

a }b *

B{144}
4 %

In principle, Ea

with the above numbers is by summing {672) and (144},

can coaclude

1
(560), (144) and (i6}.

we have, at most, 816 components.

contains the representations {672}, (1440),

g

a v = E£672)a : r{a a Eglfg)
A5 108 336 18g...3, 8
_ (14

&2y

Many of them, however, have to be zero because
Actually the only way to obtain 816

Therefore, we

(11.8.95a)

(11.8.95b)
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where o is a coefficient to be determined.
A further justification of (3.10) (Fierz identities) is the fol-
lowing, As we already know Y. (. Ta a ¥ is antiselfdual and there-

fore has 126 components. Hence Ea 1 a sis an antiselfdual spinor
1%
tensor which, therefore, has at most 16 x126=201%6 components. Consi-

dering the decomposition of the Table we see that:

4032 = 672 + 1440 + 1200 + 560 + 144 + 16

18

{672 + 1200 + 144) + (1440 + 560 + 186)

2016 + 2016 (11.8.96)

7

Hence we conclude that the most general antiselfdual spinor tensor
e(antidual)
a

{o-ede
{1440}, {S60) and (16)}. By explicit inversion of Table IT.8&.XIII we

is a superposition either of (672), (1200) and (144) or of

¢an show that, for an antiselfdual spinor tensor the components (1440),
{560) and {16) are zero so that the first is the correct expansion. It
is then sufficieat to note that the representations (672} = [3/2,3/2,
3/2,3/2,3/2) and (144) = [3/2,1/2,1/2,1/2,1/2] are certainly fully sym-
metric in {g¢<-->8<-->y)} because they correspond to the highest

spins in the products
[1/2,172,1/2,1/2,1/2] @ [1,1,1,1,1]

[1/2,1/2,1/2,1/2,1/2] ® {1,0,0,0,0]

Hence (672) and (144) are indeed the two irreducible components of
e P

The coefficient o of Eq. (II.8.95b) is easily computed using
Eq. {I1.8.93) once again in

a -
r Sw AV Fa Y= Lorr (11.8.97}

TABLE I1I.B.XIV

TRREDUCIBLE BASIS FOR N=l, D=1C SUPERSPACE

o0l

a 1733
b= 116 T X%+ 1732050 Fal...as X
. i _(14)
YA aT ey aX = /336 E
L(672)
GapaT Ye g oK - E .
ai...as al...as 3-1..-3-5
CUSSS T 55144}
Ty

The result is

1

CL='§§6—

Sur digscussion is summarized in Table II.8.XIV.

(11.8.98)



