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abe .
i i iati which
we gain a new equation of motiom, namely the variation 6A+

yields

F =0 (T11.7.106)

after projecting on six vielbeins. Devising a suitable supersymmetry

i abe rme which previously
transformation for A"~ onme can cancel the F_ te P

did not cancel and in this way the action #' = &+ b becomes

supersymmetric.
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CHAPTER 1II.8

D=1 SUPERCRAVITY

IIE.8.1 - Introduction

Since the beginning of Supergravity it was realized that its
framework naturally leads to the idea of a multidimensionsl space~time
with D=4+n dimensions. This is so because the Lagrangiarn can be
constructed only in certain dimensions and has specific properties
depending on D: in particular various arguments, already advocated
in Part 13, iadicate that only Ds1l is allowed. Therefore the D=1]
case is of specizl interest since, in suck a field theory, the number
of space~time dimensions is not a "fitted" parameter, rather it has an
intrinsic justification (it is the maximum one allowed by local super-
symmetry}. On the other hand higher space-time dimensions is mot a
new idea. Since the classical work of Kaluza-Klein it iz known that

gravity on & higher dimensional manifold HD which splits into

Th. Raluza, Sitzungsber. Prens. &kad. Wis. Berlin, KI (1921} 966
0. Klein, Z. Phys. 37 (1926} 895,
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MD=M4® Mn {where M;; is Minkowski or de Sitter space and Mn is
some compact "internal" manifold of dimension n) leads to an "effec-

tive" theory in 4~dimensions containing:

i} gravity

ii)  the Yang-Mills fieids of &, ¢ being the symmetry group of the
internal space Mn

iii} extra scalar fields determined by the properties of Mn'

What is remarkable and mew about D=}l supergravity is that the
splitting M!lﬂMAGB% occurs spontaneously through the existence of
special solutions where M, is anti de Sitter space and M, is any

7-dimensional Einstein space.

Spontaneous compactification of the D=1l theory is the subject of
Part V; here we just mentioned it in order to stress the special import~
ance of the D=1! supergravity theory, whose detailed study is presented

in this Chapter.

The field content of the D=!1 supersymmetry algebra is given by
the "spin 2" vielbein field Vau, the "spin 3/2" Majorana gravitine
field wu and by the "spin 1" antisymmetric tensor field Auvp' The
on-shell bosonic and fermionic degrees of these fields match exactly.

Indeed using formula (TIT.5.12) with D=11 we have

a D(D-3)

Vy 8 TR (I111.8.1)
. -2 _ :

Awp T 84 (111.8.2)

6o 2[9!2]-’?%3 =128 . (111.8.3)

The presence of the antisymmetric 3-tensor Auvp in the multiplet
means that the corresponding D=1l gauge theory must be based om a F.D,A.
rather than on a Lie Algebra. Actually the need of enlarging the rheo-
nomy framework from Lie Algebras to F.D.A.'s was first vealized in the

context of the present theory.

111.8.2 - Pree differential algebra of D=1] supergravity

We apély the iterative procedure explained ir Chapter II1.6 to
the comstruction of the relevant P/D.A, The (super)-Lie algebra we

start with is of course the super Poincaré algebra in D=ll.
In D=11, as in any dimension, the super Poincaré algebra (that is
the minimal grading of Eqs. (I.3.177) with just one odd spinorial gene-

rator Qa) is obtained by adjoining to (I.3.177) the anticommutator

=i 1? (I11.8.8)
{0 0 = 20 9 7,
The corresponding Maurer~Cartan equations read as follows:

ab 80 e b, (111.8.52)

R = dw W, Y
Rzavi-L15, % =0 (I11.8.5b)

£ 5 V.

(I11.8.5¢)

p = Zyp=20.

(see Eqs. (I11.3.5)),

a,b,c,... TUR

They look exactly the same as in the Gsp{4/1) case,
the only difference being that now the Latin indices

from 0 to 10 end ¢ is a 32 dimensional Majorana spinor. We use the

a
same notations utilized throughout the book: we Just recall that o

is the §0(1,10) spin comnection 1-form {dual to the Lorentz generator

D.) and V® and +®  are the left invariant 1-forms dual to D
" ~{nvariant vector fields corresponding

and

B respectively, i.e. to nen left
o

a
to the transiation and to the supersymmetry generators. PV® and P
denote the covariant Loventsz derivatives, namély:
2. g - o (111.8.6)
gv° = av W . Vb
1 ab (I11.8.7)
@l}i“d‘{!‘zw I'a_b{il.

r,r are the usual 1-index and 2~index y-matrices in D=il whose
&

ab i
definitions and properties are given im Chapter IL.7.

TN S e e —

oy
‘é}‘j
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We stress that we cannot start from the anti de Sitter versiom of

the above super-Lie algebra {iI1.8.6) since, as discusgsed in the iantro~

i jven by Vo , ¢ aad
duction, the supersymmetry algebra representatlon g ¥ N

A exists only for the Poincaré supergroup and not for its anti de
wp

gitrer extension, which in the present case would be Osp(32/1).

Using now (III.8.6) as a starting point we follow the iterative

construction of the F.D.A. explained in the previous chapter. According

to Theorem 2 of Sect. IIL.6.3 we investigate the Chevalley cohomelogy
classes of the super Lie algebra (IT1.8.6). Considering the trivial

representation B{G) in which V(“WO} coincides with the normal d,

one finds that in this representation there is a cohomology class of
order four, namely:
Q0 0) = ‘E'Jz I S A (111.8.8)
Indeed:
daad(m’ia . %%y SV T @(IEE L%y SV, V) =
- %@ oy G Ty =0 (111.8.9)

where we used Egs. (I1I.8.5b) and the Fierz identity

¥ ¥ 111.8.10)
Lty G0 (

The existence of &

whose origin has been explained in Sect. {II.8.7).

non-trivial element of the cohomology clase of order 4 enables us to

extend the super Lie algebra (1I1.8.5) to a F.D.A. by introducing 2

J-form A fulfilliag the following equation:

ah - oV, 4,w) = 0 . (111.8.11)

Equations (111.8.5) and Eqs. (I11.8.8,11) together realize the follow-
ing F.D.A.: 2

A

- {®)
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dw oW . v ¢ {I11.8.123)

gva_%;; CIPp=0 (IT1.8.12b)

Gy =0 (¥11.8.12¢)

-0 % v v -0 (IIE.8.12d)
7 ¥ - ~Ya Yy ’ +

Since the multiplet of fields appearing in (IT1.8.12) is the same as
the physical multiplet, we can base our construction of D=1l super~
gravity.on this F.D.4. By gauging the F.D.A. we obtain the definition.

of the "curvatures", according to the procedure explained in Sect.
*
11.6.4

ab ab ac b

R = dw™ -w . mc (IXT1.8.13a)
R? = gv? - % v . T (111.8.13b)
o= By (1I1.8.13¢)
RB=aa-+3 0% v v 8.13
AL RS AT (1I1.8.13d)

and by differentiation we find the “generalized Bianchi identities":

ar®® = o  (IIL8.142)
R+ R v, - i v.r% =0 ' {IT1.8. 14b)
Gp + . By =0 (111.8.14c)

According te our conventlons we denote in the same way the fields
satisfying (III.8.12) (left~invariant forms) and those appearing in

(II1.8.13) (soft forms = non left~invariant).
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LR U A S EE USSR ey (I11.8.14d)

111.8.3 = Extended F.D,A. and the introduction of a 6-form

At this point we could stop in our study of the F.D.A, since
Eqs, (III.8.13~14) should give the right algebraic starting point for
the comstruction of the theory. This is the case at least if we want

to base our approach on the action principie as we will see later om.

Actually it is in any case valuable and instructive to imvestigate
vwhether another ireration in the procedure of Sect. III.6.3 could vield a
further extension of the F.D.A. (I11.8.12) and, if so, what is its

physical meaning.
Starting from (II1.8.12) one can check that the 7-form:

a]...as

y.7 I SO S
al as

@ (vs'#smsA) =

B fre

15 « ab
+2$.1‘ ’i’"va"vh*"‘ (I11.8.15)

is an element of the Chevalley cohomology class of the F.D.A. (ITI.8.12).
Indeed:

a .8,
N TRy AL = .
dg' = 3 v . T ¥ . Va} atrroa Va4 - rm¢
- "
15Ty Va . Pm¢ ~ A
15 a b oz %
PV LTl VLV Ty VLV (TIL86)

This expression is easily seen to be identically zero if one uses the

FPierz identities:

(111.8.17a)

T Ly =0 (1I1.8. 17b)
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which easily follow from Table (II.8.XI).

: : ing a
Therefore we can enlarge the previous F.D.A. by introducing

¢-form B fulfilling the equation below:

B i++ 8
@Arl thv weee W ¥

a8 -
4 g

P free

A= 0 (111.8.18}

~12—5—Eanrabwhvanvbh
If we add Eq. (I11.8.18) to Eqs. (I11.8.12) we obtain a new enlerged
¥.D.A. Using Table I1.8.XI and the theorems of Sect. I111.6.3 it may

be easily checked that no further extension is possible. Therefore we
are led to the conclusion that the F.D.A. given by the Eqs. (11L.8.12) @
(1I1.8.18) is the maximal F.D.A. extending the D=1 Poincaré Supergroup.

n : i B we have
Introducing the curvature %% associated to the field

. i e
to supplement Eqs. (III.8.13) and (I11.8.14) with the following n

equations:
ﬁ® a8 1.]'4') T v val vaS_
z " 8yl
LER a b (111.8.192)
- Ve ¥ LA
3 v Tab¢ .
a a
N 1 5
aR®- iy, T PV N
EY
i 5 \
a a 5

- (B .

+1 2 v.T, a PR CLVT L WY
2 1t X
2

- ab 1_5_"' Rﬂ,.v Av

-15¢9.T7 pAA,VaAVbirzq:.rabﬁzh
b)

L - (I11.8.19

- 159 .7 zp,AARahvb-o

: hysical
One may wonder whether the new field B can be given 3 PHY

ymmerry algebra

interpretation despite the fact that the D=11 supexs
can enter the

does not contain it. The answer is that the field B oot
. ab ¢ 2 1ndependen
theory if, like the spin comnection w it is not an imgep

field.

o

—

R Tt

-

D



the space-time components of

In particular, calling Bul...uﬁ

the 6-form B and F Z3 B .
N T iy)

is velated to the curl of Auvg by a

its curl, it is attrac-

vive to assume that ¥
Mpeeety
duality relatiom:

(11£.8,20)
F = 3 B
By fu, “2"'“7]

In the following we shall see that this is indeed the case and that the
formulation of the theory using the ¥.D.4. (111.8.6) @ (I1I.8.8) @

(I11.8.16) allows us to gain more insight into the geometrical struc-

ture of D=11 supergravity.

111.8.4 - The gauging of F.D.A. revisited

In Sect. ITI.6.5 we discussed the gauging of an F.D.A. in a way

quite analogous to the gauging of an ordinary Lie (super)-algebra,

introducing the soft p-forms ﬂA(p) ané detining the extended notion

of curvatures Ré(p+]) as the deviation from gero of the 1.h.s. of the

rigid F.D.A.

4 physical theory is then constructed by regarding the soft forms

Alp) cal variables (the "Yang-Mills potentials"), requiring

1
that the flat space {

as dynami
RA(PH) 20} be & solution, and imposing the

principle of rheonomy.

This procedure, for which several applications have been discussed

(see Sects, II1.6.5-7 and Chapter 111.7), is evidently the natural

extension of what one does in gauging a Lie algebra, but it is too

naive for the following reasom: if we introduce a new set of forms

{5A(p)}, defined in the following way:

) pA2) (111.8.21)

aletl) | APt (I17.8.22)

we see that we can reinterpret the definition of the curvatures

(II1.6.47) plus the Bianchi identity (III.6.48) as 2 single F.D.A. for
[y,

a larger set of rigid forms It fellows that the congept of

free differential algebra is already large enough to accommodate both

the rigid fields and the curvatures znd that the definition of these

latter as deviation from gzero of the Maurer—Cartan equations is
ambiguous. A distinction between potentials and curvatures is on the
other hand vital for any application to physics and we need a consistent
one. Fortunately it is provided in an intrinsic fashion by Sullivan's
structural Theorem | of Sect, TIII.6.3. In fact from the decomposition
(I11.6.12) we see that every F.D.A. has a unique minimal algebra M.

It is this latter which plays the same role as the (rigid) Lie algebra
in the gauging of groups and which describes the symmetry of the vacuum.
Indeed the second structural theorem by Sullivan, in the game section,
shows that M always contains an ordinary Lie sub-algebra (or super
algebra), LcM, all the other generators of M being essentially
determined by the Chevalley cohomology of the Lie algebra L. It
follows that the generators of & which do not sit in M, and which

therefore we call the contractible generators, are to be identified with

the curvatures,

Hence we propese the following identification between mathematical

and physical concepts.

Mathematics Physics

Contractible algebra C + Bianchi identities

Contractible generators - Curvatures

Minimal algebra M +~ Symmetry of vacuum {rigid algebra)
Minimal generators ~ Yang-Mills potentials gauging vacuum
symmet ry

The practical outcome of this discussion is that we always have to

‘start from 2 minimal algebra but, at the moment of gauging, we do not

have to call curvature the deviation from zerc of the minimal algebra
equations, Rather, we have to be more subtle and allow the appearznce

of contractible generators wherever they can be introduced.
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Let us exemplify these ideas with the gauging of the D=1]! F.D.A.
given by Eqs. (I11.8.13) @ (III.8.1%a). In the previous sectiom the
curvatures {Rab, Ra, e, R°, Rﬁ}, were introduced according to the old
point of view, namely as the deviation from zero of the 1.h.s. of the
minimal F.D.A. (II1.8.12) @ (III.8,18). Fellowing our new ideas, the

curvatures, namely the contractible generators, can also appear multi-

plied by minimal generators if this is allowed by the symmetries of
the minimal algebra. In our example there are two symmetries which we
need to respect; one is S0(1,10) Lorentz invariance, the other is the
global scale invariance of Eqs. (I11.8.13,14,19) under the following
replacements:

+ H v > wy? ; s wI/2w

A+ wh i BB, (1I1.8.23)
a: Py RD: RQ}

will have the same scaling weights as their corresponding minimal genera-

This implies that the comtractible generators {Rab, R

tors and can be placed in the algebra only where their scaling weight
allows them to stay. Taking this into account we find that the most
geperal "decontraction of the minimal algebra" is given by the same
equations (IIL.8.13), but as far as (IT1.8.19a) is concerned we may

have the more general equation

R a a
B=a-25.1 _p. v ...V
2 &,~a
175
-._1.5_— ab - [=3 :AQM [a}
7 R S T v.o- Vb A~k L AER ~aR" LA

{111.8.24)

. . ab
where @& is a free parameter. The contractible generatoxrs R s Ra,

p, k7 ang Ra, on the other hand, satisfy the contrectible algebra
equations obtained by d-differentiation of Eqs. (IT1.8,13) and

(I11.8.24). These latter would be named Bianchi identities according

to the old point of view. We write them symbolically as follows:

8N
éRab+.-=G 3 dR® + ,,. =0 H dp + =0
drY + =0 : ¥+ .. =0 (I11.8.25)

their complete expression being given below in Egs. {111,8.32{~]) after
determination of the parametey «. According to the new point of view
the new F.D.A. is nicely separated into two sets, corresponding to the
splitting into 2 minimal algebra (fgs, {111.8.5,8,16)) and & contracti-
ble algebra or Bianchi identities (Fqs, (I11.8.25}). The whole differ-
ence between the old and the new point of view is the freedom in the
choice of ¢. In the old picture we automatically set o= 0 (Eq.
(TII1.8.16)); now we want a better criterion to fix this number and
thersfore to choose among the infimity of F.D.A. which correspond to
the seme minimal model. This criterion is provided by the following
observation: besides 80(1,10) and scale invariance (IT1.8.23) the
minimal algebra does also possess a third symmetTy property expressed

by the invariance of Eqgs. (311.8.5,8,18) under the following "gauge

transformation”

.8.26
A b+ dg® (111 )

15 b

= a b 11I.8.27)
BB+ dp® 4+ - - VTV ¢

where wB is any 2-form and ¢® is any S5~form, We would like to
promote this gauge invariance of the minimel algebra to an invariance
of the decontracted algebra (I1I1.8,13) @ (I11.8.24). In order to
obtain it we modify Eq. (III.B.27) in the only possible way which is
consistent with the scaling weights (1II.8,23) and which reduces to

(I11.8.27) when all the contractible generators (curvatures) are set

equal to zerc; namely:

- a b [u] a
B+B+dws+-’~3w”.¢krab¢“v Ve LR
’ - (111.8.28)

N

T

—

e e
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Next we require that the contractible generators, that is the curvatures

Rab, Ra, P, &Y, R®, be invariant under the transformations (IIL.8,26)
o

5
and (I11.8.28). For R>, R, p, R

P we ohtain

thig iz trivially true while for

@ 335 . 1 ~ oR® . 6A = 0, (II1.8.29
8= asm - 2L TPy v L R ( )

Using Eqs. (I17.8.26) and (717.8.28) one finds:
) o T a2 b
§R° = (B-15)¢ ¥ . TP - vV

a b

SRCRE DTN WU M

DGRV S (L1I.8.30)
Therefore R° is gauge invariant if and only if

{111.8.31)

We conclude that there is a unique decontraction of the minimal F.D.A.
which preserves all of its synmetries, given by the following set of

equations:

ab _ 480 a  cb (III.8.32a)

R% = av? - o™, v, —-%6 LTy = 2yR - %fv r¥y (I11.8.32b)

R - (ITL.8.326)
owdp =g Tob 24
N v (113.8.32d)
R = dA 3 LT . Va Yy
a a
- ] 5
@ 1 V _
R®=dp-23.T N .
2 a1 .::15
L 2y a-158° 8.32¢)
-2 v v . A-15RY.A (T1L.8.
20 LT b

28% = 0 (IIL.8.32¢)
@Ra+Rab,\vb-i$nI‘ap=0 (II1.8.32g)
Go+ir 4 8P =0 (IT1.8.321)
(0t 7 Tap? - -8
a - a = a b _ .
@O -G Top VLV YTy R V=0 (IIL8.320)
& a
dR@-wﬁra apnvlﬂ..ovSw
1703
a a a
N VLRIV LY
2 a8

@ P oisR®,R%=0. (IT1.8.32j)

< a
lS\{JAI‘abﬂJ,\R AV
From the physical point of view Ege. (IIL.8.32a-e) can be taken as the
definitions of the curvatures, while Eqs. (ITI,8,32f-j) may be reinter-
preted as the Bianchi identities. The latter are obtained from the

former by d-differentiation.

We observe that the gauging given in the previous section, namely
Egs. (III.8.13,1%a), is not correct if we are to preserve the symmetries
of the minimal algebra incleding Eqs. {IIY.8,26) and (ILI.8.27). Eqs.
(II1.8.19a) and (EIL.8.18b) have to be replaced by the new equations

" (111.8.32e) and {1iI1.8.32j).

Having fixed the F.D.A. we now proceed to the comstruction of the
physical theory, i.e. of the action, of the supersymmetry transformations

and of the space-time field equations.

111.8.5 = Constructing the theory from Bisnchi identities

In this section we implement the principle of rheonomy directly on
the Bianchi identities {Egs. (II1.8.32f-1)} to obtain in the most direct
way the rheonomic parametrization of the curvatures (III.8.32a-e) and
the equations of motion of the physical fields on the !l1-dimensional

space~time. The method has beer explained in detail in Sect. III1.3,12
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and has already been applied to the comstruction of the De&, N=1 and

N=2 theories and, in part, to the construction of D=6, N=I supergravity.

Qur problem consists in finding the mest general pavametrization
of the curvatures (III,8.32a-e) which respects:

i) the principle of rheonomy

ii) the symmetries of the F,D.4. (II1.8.32) namely:
a) 501,10} gavge invariance;
b} the gauge invariance of the fields A and B expressed by
Eqs, (IIT1.8.26) and (1I1.8.27);

¢} the rigiéd scale invariance under the substitution
(1311.8.23).

Moreover we will assume the kinematical comstraint:

R =20 {I11.8.33)

already discussed in Sect. I11.3.12: the same remarks apply also here.
(We observe that in the D=5 and D=6 thecries {Chapters IIi.S and III.7)
the space~time components of the torsion R?bc were not zero because of
the existence of a 3-index field to which RTbc could be equated. In
the present case, however, there is no such space time field so that
Ra!bc must be zero. In particular this exciudes the possibility of
obtaining a strongly geometrical theory by means of the "torsien

wmechanism" which works in the D=5 and D=6 theories.)

The most general parametrization of the curvatures fulfilling the

sbove listed requirements is given by the following ansatz:

R =0 (111.8.34)
a a
RV =F v .y (II1.8.35)
Adivea8
13
® a{ a7
R®=¢ v LV (111.8,36)
d,44.8
1%y
_ a b a
p=pg VLV ARy, (111.8.37)
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R R U oS- L LTI (111.8.38)
. mn - ¢ .

7 : , ab .
where, as usual H , K , Are mat¥ices in spinor space and 8@ is a
a® "a

¢
spinoy tensor, their explicit form being given below. Let us briefly
juétify the ansatz. The way to arrive at Eqs. (I1I.B.34-38) is,

besides rheonomy, a seale argument, Indeed frow the scaling behaviour

%] = "] (111.8.3%a)
(2% = [w] (I11.8.39b)
[o] = I+ (11.8.35¢)
(87 [v'] (111. 8.394)
(%] = [v"] (I11.8.3%)

which follows from (III.8.23) we find that the space-time fields, ox

inner components, scale as follows:

[Fa:_ _34] =[] . (1I1.8.402)
{Galmaj =[] (I11.8.40b)
o) = %] (111.8.400)
JEN R (111.8,40d)
RE = '] (111.8.40¢)

Therefore taking into account rheonomy and 80(1,10)~covariance we see

that:

a) In terms of the space-time fields (III.8.40) it is impossible

. ~-1/2
to assign to p 3 Y~y component scaling as Dﬂ ].

ST AT T
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t) RY and B canpot have rheonomic outer components except

possibly for a constant component of Y in the YYVV sector of the
type ’

° §ali a P (1I1.8.41)
£ oa N UL AR A .

Ry © 2%~ Ta?

However this parametrization of e would be equivalent to a renormali-~

zation of the coefficient of V. ré ¢ “ a N Vb in the definition of

RY, Eq. {III.8,32d), Hence we can set a=0,

Therefore the only outer components which ought to be determined
in terms of the inmer components (III. 8,40} are the bosonic quantities
B and K ab appearing in (ITI.8.37- -38) and the spinor quantity & b
a:pearing in (I11.8.38). OSince from (111.8.40)

() =[] - [+7] (I11.8.42a)

-3/2
(0] = I & (I11.8.42b)

. ab . _
we see that the bosonic components K and Ha can be given a now

zerc value in terms of F and G while the spinor

. ayeeedy ay...8y
component a? e can be expressed in terms of £ b

Our ansatz (TTI.8,34-38) is then completely justified.

The next step is to implement the Bianchi identities (I1I.8.32f-j)
on the general parametrization (I11.8.34~38). According to the general
&iseussion given in Sect. IIL.3.12 in this way we obtain both the space-
time field equations and the supeTsymmetry transformations for the
physical fields. Indeed once the parametrization of the curvatures is
determined, the Lie derivative in the outer directions is also dater-
mined; moveover the figld equations of Fai"'ad’ Gal...a7’ Pab and
Rab will follow as differential consfraints imposed on the physical

fields by compatibility of the vheonomic parametrization with the

Bisnchi identities. )

The quickest way to determine the ocuter components is to leook
first at the YYVVV content of the Bianchi identity (I1I1.8.32i); since
R?= ¢, (T3X.8.321) reduces to

b
-5 . v . v, = 0. (111.8.43)

a
Using the parametrizations (ITZ.8.35) and (II1.8.37) we see that at the
PPVVY level Eg. (III.8.43) bacomes:

: - 1
' -
2 Fa S| LSRN AP -V LV

- T Hoy v v .v7i=0, (III.8.44)

Since Ha is a matrix in spinor space it can be expanded in the

complete set of 32 %32 I'-matrices: I‘a, Fab’ rabc’ rabcdf' Taking

into account that we must cancel the first term on the 1.h.s. of
(III.8.44) one can avold to write down the most gemeral expression for

Hs the proper ansatz is

bbby bo...b

Ha = g Fab bb r +h rab]...bh F . (11I.8.45)

In fact T B can contain the l-index matrix I only if H
a8, a a
containg the odd matrices ?a, ?abc’ rabcdf; however we camnof con-
struet a Lorentz vector from I and F .
a a,v4.8
1 4
Introducing (II1.8.45) inte the second term of (III.8.44) and

taking into account that

vab=9. rabc¢ =y “.Fabcd$ = 0 (111.8.46)
sinece C, Crabc and Cradef are antisymmetric matrices, one easily
finds:

- a]azb,bzb3 2, a,

{a+8b) Fablb2b3$ - pvV LV ¥V T=0 (TII.8.47)
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_ a a a a
(21 ~ba) Fa aliiﬂfltf;avznv:;nvl’:o {I1I.8,48)
TRILA
that is,
i \ _ i
R (II1.8.49)

At this point we can utilize the result just obtained in order to

analyze the 2¢ -6V content of the Bianchi identity (II1.8.32j). One

finds:
7, -8 v i
2193 ”alfi,.r .V . err A VO
H 7
. 1 ﬁ raI' .as ablbzb3
39 - (F bbb,
17273
ab;...bA
-~ F T W..v .V ..V -
b)...b& a a ag
b b
_ - a b I 4
]5!11,.1"ab{i},.Fb “bV,.V SV e WV T mQ
1 4
(I1I.8.50)
where we used Eqa. (LI1.8.37,45,49) and the relation
a_ir-
@V =E¢Araw (F11.8.51)

which follows from (TII.8.32b) at RA=0.

Reducing the products of I-matrices, and using the identities

(I11.8.46), one finds three equations corresponding-to the separate
a8
vanishing of the coefficients of the currents § . T ! 2:}:,
a,...4
- 1 5 -
y.T ¢ amd § . T

The first two equations are idemtically satisfied while for the
coefficient of E R Pa¢ one finds that it is zero only if the fields

G and F

a8 are dual to each other, namely if:

f:

b....b
=L € ¥ !

G - 4
draeedy B4 Bye.edy bl"'ba

(111.8.52)
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Equation (I11.8.32) is an (algebraic) constraint between the space-time
components of R® and 2% it tells us that the field B is actually
vedundant in the description of fhe physical propagation on the D=1]

space-time M This is exactly what we expected according to the

1
discussion of the previous section.

Introducing Eq. (EII.8.52) into the space~time projection of the
same Biamchi (III.8.323) (BV-projectien) one easily finds the further
constraint:

B3 8,8, 1 bl"'bé Cpeeety )
2 ¥ +—F ¥ €y =
- g6 l"‘bh c,...caalaza3
(111.8.53)
This constraint, being differential rather than slgebraic, is a true
propagation equation for the 3-form 4 on space-time. We call it the

"Maxwell equation” for A We notice the presence of the charac—

1%,
teristic non-limear term F F which is not present in D=4 supergravi-
ties. An analogous term is present in D=3, see Table III.5.VI. It is
a simple exercise to verify that the use of the equations {III.8.13,14)
defining the smaller (gauged) F.D.A. without the 6-form B give the
propagation equation (II1.8.33) only as a spinorial derivative® of the
fermionic equation. Thus the use of the extended algebra containing the

é-form B allows a more direct derivatrion of ITI,8.53.

To complete the solution of the Bianchi identities we still have
s : b ab .
to determine the tensorial styuctures o? o K and to retrieve the
space time eguations of Vau and ¢u. The procedure is quite similar

to that used in the D=4 cases, sc we just sketch it.

From the ¥V projection of (II11.8,32g) we get:

=ab N P a b [
v V- v vV = . I11.8.54
g ¥ B " iw.T D.! ~ 0 ( )

This equation is exactly anslogous to {1¥7.3.216) (the only difference
being that the spinor space is 12-gimensional), so that it has exactly

the same solution:

[PO———

By spinorial derivative we mean the 1-9 component of the exterior
differential d.

R N

TN e e

e s e

o

—

D T

o~
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o - - T ) (171.8.55)
9ab‘c = 107, Pye Ty Pac ™ e Qab}

Considering now the YV projection of the torsion-Bianchi (III.8.32g),

using the explicit form of H_, one easily finds:

_ a 1%

ab L r Y F +
l]; " 4 4} ~ Vh 3 (Eij -~ 8.13.28.3b

a ...aab b

iy o] F y LV =0 (111.8.56)
8 - .

that is, after simple I'~algebra:

- by
R R RCE R

aba,...a

1= 1'% =0 (111.8.57)

3.7 ¢ F )

+ F ¥ ageeedy

and therefore
aba, ...2
ab ab o VA g ) (111.8.58)
K = rm an 24 ai...aé

Thus the rheoncmic parametrization of the curvatures 1§ complately

determined. To prove the consistency of our solutlon one must also

cheek all the outer projections of the Bianchi identities. In so doing

finds that some of them simply reproduce the previous results,
e 5t it ™ and BT, satisfy
while the other ones are satisfied only if o an od

the space-time differential constraints that we can identify as the

: a ] s
space-time field equations of V i and wu, namely one finds:

1 ac]c2c3
am a mn e 3 -
- g R = 3 F
R b 2 b wm bcfczc3
PR
TP M (111.8,59)
g b cl...c&

abe - (I1I.8.59b)
P, =0
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The derivation of these equations from the analysis of Bianmchi identi-
ties follows the same pattern as in the case of D=4 ¥=1 supergravity
which was illustrated in Sect. I11.3,12 {see Eqs. III.3.220 and follow-

ing). Indeed also in the present case Eq. (I11.8.59b) is derived from
the pyV sector of the gravitino-Bianchi (IIT1.8.32h}; one finds:

. B.b.b
. - a b -1 17273
L D S T L (3 I Lab bb
1723
i
- < T L )+
24 aby...b, b bbb,
L R A (IT1.8.60a)
4 ab’ * e * o
La a2 being defined by
3
a¥ =9 ¥ vl " (III.8.60h)
Ay [E a]...aé] ay..-a,

%ie see that the only new feature with respect to Eq. (IIL.3.220) is the

presence of L , the gpinor derivative of F . This how~
Byeaedy apeeeg,
ever can be immediately computed from the 4V =1y vector of the Biamchi

Eq. (III1.8.32i); one finds:

Inserting in (III.8.60s) one obtains after some I-matrixz zlgebra Eq.
(II1.8.50b). We leave as an exercise to derive (TIL.8.5%a) by a super-
symmetry transformation of Eq. (IIT.8,59b). A quicker way to derive

them i of course from the variational principle once we have constructed

the Lagrangian. We turn our attention to this problem.

T11.8,4 - The action of D=1l supergravity

In the previous section we showed that the on—shell D=11 super-

gravity theory is completely determined by the D=11 F.D.A. supplemented



882

with the requirement of rheonomy, As far as mest of the applicatiens
of D=Il supergravity are cencerned, in particular the search of com-
pactifying solutions, which will be the main object of the next part,
this is enough. It is however important for way purposes, including
the study of the quantum properties of the theory, to have an action
from which the previously deteimined parametrization of the curvatures

and space-time propagation equations zre derived as superspace varia-

tional equations.

We proceed by applying the building rules of Sects. 1I1,3,9 and
IIT.6.4. Assuming that no O-form is present we comsider the most
general "strongly geometyical" Lagrangian according to the general
formula (II1.3.348). We have:

o f mert v @ 8% vy, (3I1.8.61)
i1/32 A AB
MI!C R

The "adjoint" index AZ(ab, a, @, o, @} runs over the set of indices
labeliing the curvatures (III.8.32a-32e); 4, v, and v are poly-
nomials in the minimal generators of the F.D.A., namely {mab, Va, 'R
A, B}, whose form-degree iz 11, 9 and 7 respectively. They sit in the
scalar, coadjoint and coadjoint & coadjoint representation respectively.
(What is meant by adjoint and coadjeint in the context of a F.D.A. has
been explained in Sect. 1I1.6.4). Tinally the integration is performed
over an 1l-dimensional hypersurface floating in the superspace R“/32
whose cotangent basis is spanmed by the set {V®, y). We assume
factorization of the variables associated to the wab, A, and B-
directions, This we can do since the F.D.A. is invariant under the
combined gauge invariance S0(l,10) & the gauge invariance {$11.8,26,27).
According to the buildiag rule B}, this invariance has to be preserved
in the construction of the action. (It was indeed preserved in the

analysis of the Bianchi identities of previous section).

In principle one expects having to add to & a pisce containing

an extra O-form field F
ay...a,
kinetic temm for the propagation of the physical Aa field (in

1%2%3

in order to be able to write the
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analogy to what has been done, for exampie, in D=4, W=2 supergravity to
generate the kinetic term of the.ﬂaxwell l-form A}, For the moment,
however, we restrict ourselves té the consideration of the strongly ge?*
metrical Lagrapgian without any addition of extra terms. The reason is
the following: in primciple it might be possible to generate the kinetic
term for the 3-form A using only the strongly geometrical Lagrangian
(111.8.61) in analogy to what happens in D=5 and D=6, Indeed, among the
possible terms contained in R# ,R? “Vyp Ve might write

L 8.62
2 R° . (111.8.62)

The term (III.8.62) is gauge invariant under the 50(1,10) gauge trans-
formations and under the gauge transformations (111.8.26,27). ¥urthex-
more it scales as {wg], the scale power of the Einstein term. Since,
as we know from the analysis of the previous gection, the space-time

components of k% and 2% are dual to each other (see Eg. (111,8.52}}),

the term (III.8.62) gives rise to the kinetic temm

aj40-8,
const X Fa a 3
-

(111.8.63)

imi . (111.8.52).
once the field Ga has been eliminated by use of Eq. (

1'%

Unfortunately this beautiful mechanism does not work since, as it
will be shown in the following, the field B and its curvature enter the
Lagrangian (I1I.8.6!) only through a total derivative. Therefore th?
é-form B does not contribute to the egquations of motion and the duality

relation (IIL,8.52) cannot be retrieved from the variational principle.
Ve begin by determining the linear part of the Lagrangian

(I1I.8.61). We can write:

. ab é
5f(11near) = A+ RA - Yy EAERT A Vo *RO.Y, *

RS SIS SN (111.8.64)

N~

N

Fan N

i

. R U N

e

o
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o
of Eq. (IIL.8.32¢) contains the curvature R, the

{II1.8.64) can also be rewritten as!

Since the l.h.s.

tast two temms of Eq.

o 5 +r% v (11I.8.65)

where

v = (111.8.66)
Vg = Ve T i5 Vg A
and where R° has been defined in Eg. {(II[.B.19a).

From the scaling properties of the curvatures (I1I.8.39) and from
the fact that the Einstein term

‘1 9 (111.8.67)
R V5 . e .V E&cr‘&g

scales as Dﬂg]

ey
<
[
p—
i}
e
F
o]
s
-
—
<>
=]
i
i
—
<
[}
ot
n
—
E
(=23
—

o] = (1 ; [l = ] (T11.8.68)

Taking inte accownt (1II.8.68) and the sa(1,10) gauge invariance, the

proper ansatz oY the polynomials &y Vy is given by:

B N T T 211
PR A P A Sk I P aa%”a”-r
a.a a.,4
L T v . A (I11.8.69a)
T ~P LT L n .8.
" ’ 3 2
Cl C.9
] LI (11I.8.69b)

we see that the polynomials vA must scale as follows:
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L.r14C c i
v sty 3.0l 0y v vt +
a ia [}
1l
- a - C§ ca
+ﬁzwﬂrwAvansnﬁﬂhrac]mc&wﬂv R Y
(ITL.8.6%¢c)
C (o]
B I 8 a2 b
“‘htrcl...cg*’“v RN AR SN A A
Ci CS
+ib,T P LT L (111.8.694)
Clc.-CS
S_o=ilky LT " v eS
o E$ * ta...a. " Ao
s
- a b
13 XN ST S (111.8.6%)
vom kb . Ty VLW (TI1.8.69¢)
® 37 " Tabt - : )

Actually there are more possible &-y structures which could enter the
general expression for 4A; it is easy to verify that using the 4~y
identities gives in Table IT.8.XI ail of rhem may be reduced to those
introduced in Eq. (ITI.8.69a).

spplying the same criteria of correct {wg} scaling and 8G(1,10)
gauge invariance to the quadratic part of Fq. {I11.8.61) we easily see

thet just two terms are allowed:

FRR? R0 R% L a+vr? B . (111.8.70)
Actuzlly there are some redundancies in the ansatz. (I11.8.69)., Indeed,
some of the o far undetermined coefficients appearing in (ITI.8.69) can
be set equal to zerc by adding to the Lagrangian a total derivative. We
proceed as in the 5-dimensional case {see Sect. 111.5.3, Eqs. {(II1.5.51-
54)), Let us consider the possible Lorentz invariant i0-forms whose

scaling weight is Iwg]: there are just two of them, namely:

¢§ =1i¢.T .V, V. .4 {1I11.8.7ia)
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- ab
S =¥ ATV LV, LY LB (I11.8.71%)
By differentiating the linear combination %9, tagb, we obtain:
dad. + e = 2 35
a1¢l (x2¢2)_——21 a]\pnl‘ai“.af)p,\v o oser o ¥ LAt
- a a a
$Siaf . T I S R I
4,...8
i 5
- a a
i R §LT gL, LV -
Byeeed
1 5
b,b
1 - 172 -
- — a.)e
112 "2 1 ESERRL b] bl'ﬂJ - T Vot
b.b a a
,\I'341i1,.Vl,....,\V7*
. - a b
2 w b T ULV B
- a b
+ 2 oy . rabw AR LV LB+
cg o a ,
+ oy R™ . ¢ . Pabw SV LV + ()51 o +
15 - - 8 &
e ) VLT L %L T LY . VLA
P 8,2, a2,
(111.8.72)

where we have used the definition (III.8.32a-e}, the relation r®

8%~ 15 R® , & and the Fiers identities
& ..., &, 8 a
- 1 4 - - ( - 2,1
v.rT babaru=3%.10 "y §.r20
(111.8.73a)
- am -
LTy L, Tm$ & 0 (IY1.8.73b)

]-.n‘:l.5 aﬁa?
b,b b,b
= = > 2 = 34
56 EB] gy b]-..54¢ ST LTy (111.8.73¢)

which are simple consequences of the relations given in Table II.8.%I.
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By adding the total derivative (I1I1.8.72) to the Lagrangian

(IT1.8.61) and using the arbitrariness of o, and o, we can cancel

1
any two of the terms in the lineSr part of the Lagrangian whose coeffi-

cients are &, b, kl’ kz, k3, by, h3, 82, 33. We make the (arbitrary}

choice:

= 9 (I11.8.74)

in the ansatz {II1.8.69).

Next we implement the building rule B, namely the gauge invariace

of the action under the transformation (III.8.26,27).

To achieve this it is comvenient to have the linear part of the
A®
Lagrangian (I11.8.64) written in terms of 2% rather than of R
since the former is gauge inveriant while the latter is not. Perform-

ing the variation (I111.8.26,27) one finds:

- = i
s = J{§b$ TR S T A S
418y 3%

o = 2
+ k2 R™ ¥ . rab¢ PO A A

? R®4+1ihop IR
Fy R L RTH LB . rcl...cs$ S
- a b‘

3]
+ 15 k3 .y . ?ab$ SV

a b s, 15 o - a b
= LT AR A
+hy T ¥ . VLV {de + 5 ¢ - ] ab$

(11I.8.75)

[}}
o

+ i5 ¢n N RD)}

After partial integration of dy” and d¢@ one finds that &4 is

zero if
= = (I11.8.76a)
hz h3 0
= = 15 (I1I,8.76b)
&b Yy 13 k3

o

e e

RSN T

AN

T

TN T . e o~ —— o

-



The "vacuum condition" (building rule D) is sufficient to fix the

coefficients of the linear part of the Lagrangian so far undetermined.

We can express it either in the form (IT1.3.158):
SA A

= =)
+ v 9 (at R

{111.8.77}

. A_ .20 B what amounts to
the set of the uA's being ¥ sl . Vb A Y, or,

the same thing, by writing down the equations of motion and keeping

only the terms of Oth-order in the curvatures. Using the former pre-

scription we must first campute the covariant derivative of the coad~

(I11.6.52). The easiest way to

joiat multiplet vy aceording to E4. N ‘
g 2r® in (1I1.6.52); indeed

arrive at its esplicit form is to use

from:

A

1.8.78
(R ) (i1 )

y = A& v

"“A A

s s i ting the coefficients
using the Bianchi identities (131.8.32£-§) and equating

: : i finds:
of the curvatures in both sides, one easily

[ (I11.8,792)
- vy ¥ r.n
™o @Uab + Via n b} ) ab
- Vb g -
va@va tpﬂl‘abti:,‘ ~ Y,
b b
i 4
5= v e AT v -
- T ¥ o ~ @
2 Ly abl"'bl;
- b {IT1.8.79b)
- oL ALY
15 ¢ . E‘ab!b - ® .
a a,
1 2
= 9 -1 & - P l}J - v - v P N
n=@n-10¢ .V, 8,3, o
A,eeedd
i 5 v Vo=
-4 Vo oA ree oa “
1T Yo a ay [:]
a ¢ ALV (111.8.7%c)
v LV . RV
15 ?ab¢ n
_ y (111.8.794)
Vv® = dvm ]
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i5 - a 5
Vva = dv Tap R rab;p LV LY e (I11.8.79¢}

] @
Substituting in the last formulae the expiicit form of the multiplet
Va given by Eqs. (III.B.69) {after the terms in bz, h}’ 52, 53 have
been deieted according to Egs. (II1.8.74) and (1£I.8.75a)) ome easily
arrives at the following set of equations for the existence of the

solution RA ={;

$_ oy =0 @=0):
ah ab
S
¢ c [
i - | 2 9
I Eabc...cw“rlp"v . A
(%
A,4448 a a
vieg. T Sy v vl v e 4
1 a a
A
P 4 g
= ) =
+ !;hlzh - Fab i”al“_asv U AP ¢ {III.8,80}
ﬂ‘;+Vua—o &4 =0)
&V
&, 4448, & a
|- R S 6 1
= -z8¥.T NN U U N al]+
& a, & a a
- Fpds L R 7 1
+383 .1 padar ey vy oy,
a a
- 5, - L 4
k. . T v . Fiy.T [/ LY
3 c}c2 2 ‘s-z.al...a4
< Ch
- b )
AR I A B TR
" B.E 35
SRR TN S T AP A
13
A vl vty
AT - TV -
a.a. b9} a a
f7ac awﬁrlzwﬁmr“%vsa R A
aay---25p
I
sash .0 WL §LT v LU v A=0 (LIL8.BY
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Biwm=0 @-p:
&
a,a - a.4 a a
S T S T .
E.aead
T
a.a a.a
T I O S T
a a
] 4
a . &, a
=i T T.r e v? . v 8,
a iy
AL
- A,s4s8 a a
RIS I I LR L IR L -
& A, .4.48
17003y
a a
. ] s a2 b
1k3 Pa] .a5$ A~ Y. ?ab$ ¥V . =V PO A A
- al 35
- 15k, I .9 T LV, SV LA
3 2,2, asaa
b b
SR TN A R A
1% g +Pg
a a,
NI S A T\ A L (111.8.82)
2 ab
Liw =0 @-o0;
5a
da.a a.a
= bP.PiLF.rdhy vy -
a a
| 4
8, - - .m % &
LN S D T o TN AL
preay
i - ! 2
+ - (k, = 15 T - . T ¥V n . =
2(2 Y 2, zw ] "*3344) v 0
(111.8.83)
§h ) A
S =0 (&0
BRI T = T (1I1.8.84)
3% " Tapt + e - " e

By separately setting to zero the different independent structures
appearing in Eqs. (II11.8.80-84) one finds several conditions on the

coefficients a, b, hi’ Bg, kl’ kz, k3. The actual computation is

881

: i operties
somewhat cumbersome since we must use several times the basic p¥Yop

i i ] s icular
of the |1-dimensional T-matrices given in Chapter 1I.7; of partlc

use is the T-matrices product exﬁansion formula, Bq. {11.7.37), the

dualization formela

m(m=1)

. =11
-ijml T {m+n=1
...a b....b ( IR
i i (I11.8.85)

and the symmetyy properties of the I-matrices (see Table 11.7.1113),

a ...a5

ab’ r! and their dual give rise Co non=

implying that only R ¢
(),

vanishing 2¢~currents v . T
Moreover, except for (IIZ.8.80}, the above eguations iavolve 3y

and 49 products which in general may have linear dependences &mMCnNE
themselves (Fierz identities). Therefore we also need to make repeated
use of the formulas given in Table I1.8.VI in order to annihilate only
the ccefficients of the independent 3y~ or 4y-structures. Let us now
sketch the derivation of the resulting relations for each of the equa-
tions (I1I.8.80-84}.

i $.T.T ¥
From (I11.8.80), after reduction of the structure $ T 5 ay..-ag :

one finds two independent structures:

5 ;Clw ch ch (11I.8.86a)
£ . - n e oa
abc]...c9

Cyeaal < [

V 6 i . (1I1.8.86b)

VoYL g.r !t CyLv L e, cH(
Setting their coefficients equal to zero one obtainst
{111.8.87a)

h] = 2

! {I1I.8.87b)
By = 16/5¢ LI

in terms
In Eq. (II1.8,81) it is worth to express all the awnizggggures in te
. 330 (462)
of the irreducible basis Xi ) s Xf and Xf ot

ered . 5
i 4 ] 5 g

and sys-

tematically use the 4y relations given in Table 11.8.XI.

By

-

—

e e

A e e

. i~ e

S T T TN ey - e

Eaa
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Oze finds that the irreducible structures entering Fq. (IT1.8.81) | =7 Y{ E(320) -7 5(32) sl 5(32) ]
ay.0, aB] 2,...ag 1t a...a
are
L(320) & -{32)
. c e =77 S - T E . (111.8.90
xii3g)c l . v 2 N v 3 . A (111.8.883) [az"‘a7 as] ” 32...38 }
17273
af["'flG ! (In passing from the second to the third line we made use of the
K(339} V. . V. E (111.8.86b) irreducibility constraint r® 5320 = 0},
fs---fz" fs flG &
; Adnalogously the 3~y structure with the Blmcoefficient can be
X{éez) vfl v° v {LTI.8.88c) decomposed as follows
f]...f5 |
£ ... f i ™ .8 . T y=r2 220 o0 +
1 13 : ~re cae B
X§429o; Uy aeeen ¥yt (1I1.8.88d) - apeeedg gyeeedg alaa)a,
]... 5 6 ]I
a
saef oy (1608 5 a .
[al 2,8, "aaas 9 Telapegy
and, correspendingly one finds the following relations:
a -{(320) 1 .4
' +4 8 T }E - = (T +
ek - 15k, =0 (T11.8.89a) la) "aja38,” e 7.8y
2 3
+5 5?3 Lo, 92 {I11.8.91)
a-15g Ly v By =0 (111.8.89b) 1 %2
61 s Lom2d

5
- (A = 0
5 k3 +5 k] + 6 n BI

4 5

2 3600

)

k
1 3600

o .

37

In Eq. {II1.8.82), (the graviting figld equation at zerc curvature) one

sust analogously use the irreducible basis of the J-structures given

by the E's 3y-forms of the Table 71.8.%1.

coefficient hi can be reduced in the following way:

a

1 a
2.8y oy ¥

L

il

H

':a] 'y i
a5 o) ' T

a
I

For example, the terms with

@2 =

i

Notice that after multiplication by the vielbein factor in the same
(II7.8.8%¢c)

r 2 % 4 .
s term, V .V . ... .V €, a the contribution from the
gy
(171.8.89d) irrep 4224 disappears. Indeed
2 ...a
r? 5242241 S AT 2 T
R T S 3 a1
. 2 54228) St
CIRTRE M TTTL IR PR
C,evaC, bl
et Ty )
1 6
A,se0d Couual, b vs.b
e prst 12 gD 1TSS
5(32)) . [reedy BT ey
X Vb . . Vs YED (TIT.8.92})
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since the antisymmetrized 5-indexed S~symbol forces the contraction of
a with a; {i=1,...,5) thus giving zerc by the irreducibility of the
ap-.-ag

The term with the k[~coefficient can be decomposed by analogous
manipulations as in Eq. (111.8.91) and we again find that the irrep

4224 does not contribute,

The remaining structures in (I11.8.82) are all computable using

the formula
o (1408}
r ¥ .0 LT p=T G -
{CJ"'Ca a]az] [cl...cn 3,8,
2 (3200 | (32
e g +—T g 111.8.93
g cl...cn[a! 32} il C]”'ca 3132 ( }

which immediately follows from Table 71.8.XI.

Introducing all the decompositions thus found into Eq. (ITI,8,82),
after considersble I-matrix algebra and tensor calculus one finds that

the independent structures to be annihilated are

a 3
r si‘iﬂg) A A (111.8.94a)
818y 848,
3 a
Lo 5§320} vl vy . (111.8.94b)
18283 3
a v a
S S R R A (I11.8.%4c)
e,
a a
I %ﬁ“),vtnu.hv7 (111. 8. 944)
Bprovdy Ay
a a
ra a 55320) LV ! woere AV 7 {II1.8,9%4e)
178 4y
a a
r AL R (111.8.948)
al-..37

The coefficients of the first three structures turn out to be

proportional] therefore we get the single equation
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4b - k2 ~ 15 k3 =0, (111.8.95)

Setting to zerc the coefficientsiof (I11.8.94d,e,f) one respectively

finds:
2.5 k, + 6117 8, + TM4t.ba = 0 (121.8.96a)
—ah -2k +2x, s808 - a=0 (IT1.8.96b)
i g1 g3 ! 3
= 0. (311.8.96c)

-~ 112 bl - kl + 7 kB - 120 B] + 672 a =

Equations (IIL.B.95,96} exhaust the content of Eg. (111.8.82).

As far as the Bq. (II1.8.83) is concerned it is sufficient to

.use the fourth 49-Fierz identity of Table II.8.XI to reduce all the

a z
330 1 4, . .
terms to the single structure Xii"?aa V. ... .V 3 one immediately
chtains:
k2 - 15{k1 + k3) +2b=0. (IT1.8.97)

. - - a, _ .
Finally Bq. (EI1.8.84) is trivial since ¥ . rab$ Y LT =0 is an
immediate yield of the second 4¢y-relation of Table II.8.XIL.

Equations (II1.8.87), (ITI.8.89), (1131.8.95,%6), (I11.8.97) and
the two relations previcusly found from gauge invariapce namely
(11I.8.75a,b), constitute altogether a system of 12 linear equations
for the & unknowns a, b, BZ’ h], k], kz, k3’ 1 Far from being over-
determined, the resuiting system is in fact undetermined, Actually one
easily finds that ome can solve the system by expressing 7 of the
mimowns in texms of the remaining one. Choosing k3 £k as the free
parameter the soiution is:

Lot S be-1s (14-5
3“4(1 28k) 3 "

51 = 7/30 5 h! =2
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1
k=,.84+k M k2=““840{"‘5—6'k)

- 840 + 30k . (I11.8.98)

¥y

By substitution of (III.8.98), (111.8.74), and (III.8.75a) into the

ansatz (IT1.8.69) and using the relatien (111.8,24) one obtains the

following explicit form of the action (II1.8.61):

A (k,Y} = Jif(k,v) (II1.8.99a)

a,a a a
H A 3 11
L) =gk TV eV F

7 . o8 r . BV .. Vs *
+-561R ,\Va,\‘pﬂ b]”'bil

@ - a Vb+
kR Alliarab‘l’nv ~

v i ~ 8OR" . ¥ . ral___as¢ A "

. (30k - B4O)R” . ¥ . T . ¥

+25'A§‘ ¢ .V W ser & ¥V +

no.e :
s G0k - 84OR"LR7 A+ Y R LR . (11I.8.99b)

i
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The Lagrangian #{k,y) contains still two undetermined parameters, k
and vy,

II1.8.7 ~ The completion of the action and the equations of motion

Now we show that the action (III.8.99) actuaily does not depend
on the parameters v, k.

Indeed, let us consider the equations of motion of mab and B

derived frem (I1I1.8.99). We easily get:

, . ab s
Torsion equation: (8w -variation)

a &
E 2 ves ’ = 0 (III.8.100)

£
ab IRRELN

B-field equation:

b

- a b - a _
(=2 Ty o VLW - Ty BT V) =0

(IT1.8.101)

Taking the 9-V projection of (II1.8.100) and with the same kind of
manipulations as those utilized to obtain (I.4.29) from (I.4.28) one

finds: Rianw 0. Since the V¢ and ¥ component are obviously zero we

get:

R =90. (I11.8.102)

Inserting (I1I,8.102) into (IIX.8.101) one finds that if y+# 2k then
Eq. (I11.8,101}, projected onto the YVVVV sector, implies:

F[ab gcé] =0 . (111.8.103)

Together with the space-time gravitino equation Fabc p, =0 which is

be
derived below, Eq. (III.8.103) implies



= 0 (111.8.104)

vhich would mean a trivial theory.

Hence we are forced to set:

v =2k (I11.8.105)

At this point collecting all the k~dependent terms of the Lagrangian
{I11.8.99) one finds that they sum up to an exact form. Indeed,

considering the exact form: 2k d(A4 , dB) one obtains:

Zk d(A . dB) = 2k dA . dB =
_ g, 1= a b e 1=
2k (R ML SRR R TP AN A BN +2¢Aral_.35wn
& a
i 5 15 - a b o
YT LY +2¢ﬁrab¢i,vﬂv,a+1saﬂtx}

(I1I.8.106)

where the definitions (III.8.32d,e) have been used.

Expanding the wedge product of the quantities between brackets
one reproduces exactly all the k-dependent terms of the Lagrangian
(II1.8.99). Hence the value of k22y is unessential and we can put
k=0,

This in turn jmplies that the field B which appears through its
curvature R° only in the tetal derivative (II1.8.106) drops out of
our Lagrangian. We therefore arrive at the conclusion that the duality
relation between the space~time components of R® and RD, that we
found from the Bianchi identities, Eq. (III.8.52), cannot be retrieved
from the variational principle. Hemce our hope to reconstruct z kinetic
term for the fields A by means of the temm R® N r7 (see discussion
following Eq. (II1.8.62})), must be abandoned. On the other hand the
Lagrangian (111.8.99) with 2k=vy =0 is now lacking the kinetic temm
for the A field and is thevefore bound, as it stands, to describe a
trivial theory. This may be easily ascertained by considering the A

equation. After 68A variation of the action (I¥1.8.99) (with k=y=0)

8499

one easily finds that the only term which survives the projection o

8V is
- 2520 R® , B° (I17.8.107)

since all the other terms contain at least one ¢~field. Hence the 8V-

projection of the A-equation gives

8....4, 5....b, coeC

32 B L (IT1.8. 108)

ayeedy 1"'bA
which, instead of being the propagation equation for A, is an alge-

f s . o
braic constraint implying Ra a =],
Jeeedy

We have thus to resort to the explicit addition of a kinetic actien
for A by introducing a O-form.

In complete analogy with the procedurs adopted for N=2, D=4 super-
gravity and in the matter coupled gravity theories, we introduce the

following action:

& = Jf(m,n} (I11.8.109a)

Y(m,n) =.&”g (y=k=0)+¥ (mn,n) (3I1.8,109b)

where fb is given by (II1.8.99b) and ¥'{(m,n) is given by:

¥ (mmn)=m? ROV v nV e,

(II1.8,110)

a...a .
¥ ! 4 being & 4-index skew-symmetric C-form and m, m two numerical
parameters, Equation (II1.8.110) corresponds to the lst-order formula-

tion of the Maxwell Lagramgian for A.
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Next we show that, provided m and = take specific values, the

Lagrangian (I31.8.109) is ron-trivial and describes e rhecnomic theory.

The equations of motion of the action (IIT,8.99) @ (II1.8.109) are

the following ones:
: . PP -
Torsicn equation {variastion in w )

C
e RD vy .. v’e0. (IT1.8.111)
abcl...c9 ~ ~ -

First Maxwell equation {Fa a variation):

a, a
5 it
me? v L.y e +
apeee8y
c ¢
! f £ 0, (IIL.8.112)
tn Fa ..2 Vo Eci"'cll
1 &
Second Maxwell equation (variation in A):
a a
. l s
681G . T, p .V LV
| I
- a b a a i]
- y¥ . RY - 2520 R° LR+
2520 § . Fab¢ P
) CINRRL .
+ n@r SV SV, e
8.3, 5 1 ) )
[ |
= ¥ VooV, € =9
¥ 2 m Fa‘ ..e.;lJ ° ?asw - a 4,
(111.8.113)
Gravitino equation (variation in P
a a & 35 o]
4T P AN LSS SN 2 AT A
R poreds
Ciasal
1 i
a b =
L' €
n rabw SR Fc[. €y c5 cH

i« (II1.8.114)

o

Einstein equation (variation in Vr):

a,a a a
A L
SRR
bi...b
7 - 1"
+<- iR .P LT YoV ..V e +
15 ¢ Ny byerubg b by,
B,...b,.r
a - 17%1g
+—=iR .V ¢ .7 g,V P .V, £ +
a bl...b5 b6 blG
b,...b
7 - 10n
+Liv . y.T vV, . A -
i5 T b;' b5 b6 bll
b,...b
7, - 1Py
-kiy.T .V S O A -
s b]...b5¢ r Rh6 b, by,
a .2,
L I L R SR TR
a a
1 4
[+ [
+*16p .7, b FoovTs
ety
a a C [
+1mE, _F 4v*“..,v”}ec C Lt
Beerty %10
ad. . +..8, .
+Ta ¥ Vo e n T BB ! 10
1" % % 10
. Eiva08
~-m ¥ P .7 ¥ v PV e Ve ! L
al...a4 Y 5 al]
(111.8.115)

(Ta deriving the previcus equations one may teke advantage of the fact
that all the terms of G-order in the eurvatures can be omitted since

the "vacuum condition" assures that they must sum up to zero).

As we have seen before, Eq. (II1.8.111) (coinciding with
(I11.8.100)) implies Eq. (III,8,102), namely R%=0.

Therefore the supertorsion vanishes on-shell just as in N=] and
N=2 4~dimensional supergravities. Equation (IIZ.8.102) can be solved

for the connection {nabik1 as a functional of V: and wu. Explicitly:
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{1711.8.133)

which coincides of course with Egq. (III,8.53).

Finally the 10-V projection of the graviting equation (I1I,8,114)

vields
a a
a b 1 8 _
4 Fa a Pap v.v .V, ~V =0
1 8
aba%...asp
=4 T g, € =0 (I11.8,134)
a...8, ab
! 8
Using the dualization formula (IT1.8.85) one finds
LI (111.8.135)
be .8,

In Table TI1.8.I we have collected the results of this section. We
notice that from the action point of view the theory can be thought of
as based on the restricted F.D.4. given by Eqs. (II1.8.5) e (II1.8.11)

without consideration of the successive extension by means of the field
B,

Indeed the construction of the Lagrangian starting from the
restricted F.D.A. would have been exactly the same, the only difference
being that the coefficients k, v appearing in (II1.8.99) would have
been set equal to zero from the beginning and that the gauge invarisnce
to be implemented would have been restricted to the transformation
(II1.8.26). Therefore we have inserted in Table (I1I.8.I) the restricted
F.D.A, as baslc starting point of the theory, At this point one may ask
why one prefers to comstruct the action starting from the more general
F.D.A. (III.8.32). The answer is the following. In this way we have
shown that the field B cannot enter the action so that there exists no
formulation of D=11 supergravity in terms only of the B-field. Moreover
the discussion of Sect. II1.8.4 has shown the naturalness of the general

F.D.A. (I11.8,32} for the formulation of the on-shell theory without the

action principle. Indeed it is more difficult to show how the propagation
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equation {I11.8.53) for the 3-form 4 can be retrieved in the restricted
framework of the algebra (II1.8.17) by merely working out the Biamchi
identiries (IT1.8.18), since one has to perform a supersymmetry trans-—
formation of the gravitino equation to deduce it. The conclusion is
that if we want to work out the classical theory from an action primci-
ple both the F.D.A's (111.8.13,14) and (IZI.8.32) work egually well,
the latter formulation is more suitable if we want to he able to deduce
in an easy way the curvature parametrizations and all the gquations of
motion by working out the constraints implied through the Bianchi iden~

tities by rheonomy, gauge invariamce and homogeneous scaling behaviour.

Actually nothing prevents us from writing down the action of the
theory by letting the 6-form B to appear in it it suffices to add the
total derivative (111.8.106) with a value of k different from zero.

For example if one chooses k=28 the Lagrangian {III.8.99b)

takes the following form:

a.a a a
=-=RT VT L LV e
iﬂ 9 alo--a”
c [+
- ! 8
+2p .7 LS ERENESTEN A
ci...ca
B,eved
7, .m 3.r V.V vos !l e
.‘..5.618 ,Vm,\ll’ a al. '35 A aﬁn 311
& = a yb .
+ 28R . ¥ . rab¢ A~V
a a
- 1 e
-5 iR L. 9. T LR
a -1
1 5
& o oy v aa] et +
-2F R™. » -
+5 R . R aji.e8, ag a1y
B b
» R o U AL ¢ 5 3 W &)
L R
165 a]...a4 b]"'bll

which is somewhat simpler than (III1.8.99) since it contains one term

less. Of course if we write the action in this form we are relying
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on the maximaily extended F.D.A. (IIL.8,32); this point of view is
interesting because it tells us that the dynamical equations of a
certain smaller multipiet of gauge fields are actually contaired iam

the Bianchi identities of a larger gauge algebra. This implies that:
i) The curl of some gauge field not appearing ir the Lagrangian
is dusl to the curl of the physical field appearing in the Lagrangisn.

i1) The Lagrangian can be written in the most elegant and econor
mical way using the curvatures of the full algebra, rather than the

subalgebra corresponding to the physical fields.

iii} The action is invariant under the full gauge algebra

although some gauge flelds appear only through total derivatives.

TABLE IIT.8.%

Summary of D=11 Supergravity

Free Differential Algebra and Bianchi identities

Rab wdwab -3¢ X mCb g R::tbm 0

g = @va»-;-i[.ﬂralp @Ra+Rab,.Vb-i$,?ap=0
= 1 gb

p= 2y Do+ T, R ¥=0

Rﬂr—dA-%%,.i‘ab\pﬂva,Vb dRﬂ“-@n?ableVaAVb+

+$Arabq;,ka,vb=0

909

TABLE III.8.1 continued

Geometric action

PP
11/32
Mok
where:
1 4% 4 1t ¢ ¢
¥ ===} v vite + 2 ! 8
n R . o . T |2 A 1
9 al...a§l c!"'cB
b,...b b b
7 a - | 5 6 1
[F -
301R ,\Va,\!l',? L.V, v ab...b
i 1%
a 2
. nl i 5 =
-1 8§y sV Y- 2 yb
e 840 Rnli’.i‘ablianv A
f o 3 a3 a a
I TS A TUEDPRL ALY
8,...4
i 11
a.a a,a
- lz -
—a0d.r " drd vy o v a-es02” 2% 4
.al aq "
a a a a
s28 ) bRTyd v
apeeed)
4008, C ¢
- 165 ¥ aFl byl v e
R PN
il
and R /32 T eleven dimensional superspace.
On-shell solution for the curvatures
R =0
a a
-k, vio vt
1oedy
;  b,bb b,b.bb
p=pbvaﬁvb+~1—(r’23f -1y P2y
g abbob, T ab bbb v

1727374
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TABLE TI11.B.I continued

On~ghell soluticn for the curvatures {cont'd)

ab  _ab =ab c , - m ab
¥ = R mvmﬂv‘%e RIS AR IR IS

ba,...a
S R
d —
24 v.r v Fa vead@
1 4
i1
ab . : A os
" //,S c-—l{Pa pbc-Fb pca-+rc pba) (from Bianchi identities)
62 =
N\
I
ab _,.] _abemn 2 mn b
8 c—1(~2~ T —5 T {a n }c+2 I‘e'h[“1 nn]c)g {from varia-
tional
ptinciple)
In g
(] <" 8 con shell}
Propagation equations
am 1 .a .m0 861090 3 b R
R¥® L3 g oiap w2 F plo 8
bm b
2 mn bclczc3 8 b Cyreety
abe
T pbcmo
w L L S o
ma]aza3 9% bl"'ba c]...cq a]a2a3

First order supersymmetry transformaticns

§ve=1 § re
bbb b bbb
. 17273 I 172°3%%
§g= e+ AP F -7 ¥ yevd
abb,by "8 b byb.b,
_- a b
4= 0, 4. V5.V
st Ly, 5 .
c mn 12 ¢ v Fal...a4

811

Historical Remarks and References for Part Three

gy

Supergravity was discovered in 1976 by Daniel Freedman, Sergio
Ferrara snd Peter van Nieuwenhuizen who used second order formalism

for the gravitatiomal field {32].

Very shortly after came the paper by Staniey Deser and Brumo
Zumino where supergravity was derived utilizing first order formalism
{20].

In both Refs. [32] and [20] the Noether coupliag method {also
named component approach) was used to derive the Lagranglam and the
transformation rules of N=1, D=4 supergravity. De Sitter supergravity

was first obtained in Ref. [37].

The construction of the other pure supergravity medels is the

yield of the years 1976-1980.

N=2 supergravity is due to S. Ferrara and P. van Nieuwenhulzen

[26] (see Chepter III.4).

The relation between the cosmological constant and the gauge
coupling constant, discussed at the end of Chapter I11.3.4, was given
first in Refs. [11] and [27]. The simple N=3 theory, not treated bete,
was obtained by Freedman and by Ferrara, Scherk and Zumino, see Refs.

[31,251.
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