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Main idea

Objective: Application of the dualities of supergravity to the study of graphene-like 2D
materials in condensed matter.

The gauge/gravity correspondence relates a strongly coupled gauge theory to a weakly
coupled classical gravity theory in one dimension higher.

3+1-dim. Supergravity Electronic properties
on an anti-de holography of a 2+1-dim. Layer of
Sitter spacetime graphene

Top-down approach: Large amout of supersymmetry makes model more predictive

/

Relation of the electronic properties of graphene to deformations of the lattice geometry

Relevance of supersymmetry in low-energy physics ———— Interdisciplinary approach
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Graphene and the Dirac equation

The graphene honeycomb lattice

Graphene is a two-dimensional layer of carbon atoms (one single Ilayer of
graphite).

The carbon atoms in graphene form a honeycomb lattice with a hexagonal

structure, due to the spZorbital hybridiza‘V

Bipartite lattice composed by two triangular sublattices (sites A and sites B).
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Belonging to site A or B defines an additional

spin-like quantum number: Pseudospin.




The graphene Dirac cone

The Electron Band Structure of graphene

Dirac "Cones™

Dirac Point

At the Dirac points (for a range of 1eV) the spectrum (relation between the
energy E, and the momentum k) is linear:

Ec= tHc|K

Electrons in graphene obey the same type of equations as

relativistic Dirac massless particles| with

Light speed ¢c— v = 106 ?=¥CO Fermi velocity



“Analogue” relativity in condensed matter

Relativistic energy: Ex = i\/(hc|k|)2+(mc2)2

Semiconductors E

bare mass effective mass

If m finite m —

Interaction of the electrons with the lattice atoms s Mr<m.
In graphene m=0.
Graphene
Light speed Fermi velocity
Massless case: Ex= hlk|ve — V c  VE

Ex= —h|k|ve—



Geometry in analogue gravity

Lattice disclination Space Curvature

Missing angle: hexagon substituted Carbon nanocones

by another polygon, e.g. a pentagon
Lattice dislocation

Glide and shuffle dislocations in graphene,
obtained from subsequent disclinations

v
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Generalized AVZ Model for Graphene

[L. Andrianopoli, BLC, R. D’Auria, M. Trigiante, Unconventional Supersymmetry at the boundary

of AdS, Supergravity, JHEP04(2018)007, arXiv:1801.08081;
L. Andrianopoli, B.L. Cerchiai, R. D'Auria, A. Gallerati, R. Noris, M. Trigiante, J. Zanelli, N-

Extended D=4 Supergravity, Unconventional SUSY and Graphene, JHEP01(2020)084, arXiv:
1910.03508]

In the AVZ model [P.D. Alvarez, M. Valenzuela, J. Zanelli, JHEP 1204 (2012) 058,
arXiv:1109.3944] the fermionic gauge field wA is a composite field, and the
propagating fermion YA originates from the radial component of the gravitino
through the Ansatz: (A=1,..,N, N number of supersymmetries; i=0,1,2)

Propagating fermion
pseudoparticle in graphene)

‘.,UA = | VieiXA- «—
|

gamma matrices and Vielbein
describing the Geometry

Supergravity
Gravitino




Massive Dirac Equation in the AVZ model

The AVZ model can be obtained at the D=2+1 AdS; boundary from a supergravity on a
(curved) AdS, spacetime in D=3+1 through a suitably defined ultraspinning limit.

From the Maurer-Cartan equations of the supersymmetry algebra

Massive Dirac equation\A Py=

3ir
5 X

3 .
/ass m=—_1 <«—— torsion

Killing spinor equation for the boundary supersymmetry

\

D covariant derivative

Solutions of the Dirac equation correspond to supersymmetries of the system.

|

Electronic properties of the pseudoparticles, such as e.g. optical conductivity, are

determined by supersymmetry.



The Generalized AVZ Model at the boundary of AdS, Supergravity

ADS, vacuum of pure N-extended D=4 supergravity «— symmetry: Osp(N|4)

Suitable ultraspinning limit in the
. broken to
Feffermann-Graham parametrization:

AdS; slicing of AdS, (black string)

v

symmetry OSp(p|2) x Osp(q|2);

Achucarro-Townsend Chern-Simons supergravity on conformal
«— p+g=N

locally AdS; boundary located at radial infinity (r - o)

AVZ Ansatz

v

AVZ model for propagating spin % particle, instrumental in describing the
electronic properties of graphene-like 2D materials at the Dirac points




(Asymptotically) AdS, pure N-extended D=4 Supergravity

Connection: A = %wﬂg Lag+ %ACD Tep + @ﬁ ¢,
50(2,3) generators: Lgg (A, B=0,...,4); connection: wAB
SO(N) generators: Tap (A,B=1,...,N); connection: AAB
Majorana supersymmetry generators: Q9 (a =1, ..., 4); gravitino: P2

The simplest action for this super-connection is a Yang-Mills theory for the smallest superalgebra that extends
the AdS, symmetry and yields a spin-1/2 field minimally coupled to Einstein gravity and the Maxwell field [P. D.
Alvarez, P. Pais, and J. Zanelli, Phys. Lett. B735 (2014) 314-321, arXiv:1306.1247].

Symmetry: Osp(N|4)

In turn, this is shown to correspond to the boundary theory of a Chern-Simons theory for a super-connection in
D=5 [Y. M. P. Gomes, J. A. Helayel-Neto, Phys. Lett. B777 (2018) 275-280, arXiv:1711.0322].



Covariant decomposition w.r.t. the spatial boundary

Maurer Cartan Equations: dA+ANA =0

Rewrite in a form which is covariant with respect to the Lorentz group at the spatial boundary SO(1; 2):
S0(2,3) © SO(1,1) x SO(1,2)

Accordingly, split the indices:

A=(0,1,2,3,4) = (a,4), a=0,1,2,3 —*> a=(0,i), i=1,2 and 3 radial component

so that the SO(1,1) grading of the fields becomes manifest:

Ef_F = i% (Vi == €w3i) . where V4 = £w%* is the D = 4 Vielbein:

3 wl.'3 — % (Ei +'Ei ), ¢ cosmological constant
vt =E.-EL,

Decompose the gravitini in their chiral components with respect to SO(1,1), represented by I'3:

vAr=wd fwd o Pud = 4wl



Ultraspinning limit to the locally AdS; boundary at r — oo
[R. Emparan, G. T. Horowitz, R. C. Myers, JHEP 0001 (2000) 021, hep-th/99121335]

1 2

e =3 () o0 -

I"

: E.(r,x) = —; (5) E'(x)+0

with x = (x*), u = 0, 1, 2 boundary coordinates.

r A 4 4 0 l
‘Pf,u(r,x) dxt = \/2:5 (lﬁ ()(X)) + O (;) . ‘I’éﬂ(r,x) dxt = \/; (nAB¢B(x)) + O (;) .

Bulk supesymmetry algebra broken at the boundary through
OSp(N14) —> OSp(p|2)x OSp(q]2), p+g=N

1oxp  Opxg )

the symmetric metric n48 = (O 1
qxp  -qxq

dw' + /\wkf—lE’/\E ——( A YU )
Maurer-Cartan Equations k vonYInABY
at the boundary ) dE’+a) ANEJ — L (w /\ywA) =0,
dACD+A1(\7/I/\AMD+?¢ 1Byp=0,
d¢A+%(l)i‘j /\)/l'jgbA+2L£Ei/\yl'77ABlﬂB+AAB/\lﬁB =0.




Achucarro-Townsend D = 3 Theory
[A. Achucarro, P. K. Townsend, Phys. Lett. B 229 (1989) 383]

With the definitions:
Torsionful connection: Qii) = W+ ET (W' := %eij kw k) s
+ =W, Yo=Y,
As = (A%1h1y | A= (A%b2) | (A%1h2 = A%2P1 = () for consistency) ,
Covariant Derivatives: D|[Q4, A4 |Yy = (dzﬁal + %Qi A Y@l + A1 A lﬁbl) ,
D[Q_, A_y_ = (dwaz +5QL A yip92 + A9202 A %2) :

b

the Maurer-Cartan equations at the boundary can be recovered from the topological Achucarro-
Townsend supergravity in D=2+1:
Gibbons-Hawking term

Chern-Simons Chern-Simons
Lagrangian for OSp(p|2) Lagrangian for OSp(q|2) (total derivative)
Y/

N | A
d(Qyp ANQT),

L= 13(+> - L - 3
Lioy= 4 (QuiaQl - de @A QLA Q)+ Tr(As ndAs+ 340 A AL A AL) =

Ji A Z)[Q‘*" A"']'?l/

c‘hll\.)



The generalized AVZ Ansatz

AVZ Ansatz:

» The spin 3/2 component of the gravitino is projected out, while the spin %2 component
yields a propagating fermion, suitable to describe pseudoparticles in graphene like
2D materials.

« The matrix y; plays the role of an intertwiner, allowing an identification of the
graphene worldvolume with the supergravity target space-time:

where e’ is a supersymmetry invariant dreibein on the graphene worldsheet.

« The torsion has a trace part 8 and an antisymmetric part 71 :

Dlwle' = A ei+T6ijkej/\>




The Nieh-Yan-Weyl symmetry

 The AVZ Ansatz features a local scale invariance, the Nieh-Yan-Weyl (NYW) symmetry [H. T.
Nieh and M. L. Yan, Annals Phys. 138 (1982) 237].

i i A_, 1 a4
el - Alx)et, x > 20X A(x) # 0.

* |tis the breaking of this conformal invariance that turns an originally topological Chern-
Simons theory into a system with a propagating spin-1/2 field.

« Under a NYW transformation, one can always set 8 = 0 locally.

 In alocal patch yx, are constants

\
« The quantities n4p )_(A)(B = Xa X+~ X-X-» XX = X+X++ X_x- play the role of topological index.

e

Difference ng-n, between the occupation numbers of graphene electrons in sites A and B



Some Properties of the model

There are no bosonic propagating degrees of freedom:

Number of bosons + Number of fermions Unconventional Supersymmetry

T
/'

Supersymmetry is implemented purely as a gauge symmetry (adjoint representation)

The propagating fermion satisfies a massive Dirac equation:

[ZD[Qi, Al x+ = =374 x4+ J

obtained as the Killing spinor equations of the boundary supersymmetry.

Mass is generated by the geometric properties of supergravity, such as torsion.



Quantum Theory of Chern-Simons Supergravity

[L. Andrianopoli, B.L. Cerchiai, P.A. Grassi, M. Trigiante, The Quantum Theory of Chern-Simons Supergravity, JHEP
1906 (2019) 036, arXiv:1903.04431].

The AVZ Ansatz corresponds to an (unconventional) gauge fixing (with vorticity) of supersymmetry in the
framework of the BRST quantization.
_

The supersymmetry parameter €, is proportional to the propagating fermion:

€a X (XX) Xa

The identification of the graphene worldvolume Lorentz group with the supergravity target space-time
symmetries defines a topological twist, along the lines of [Kapustin, Saulina, Nucl.Phys. B 823 (2009) 403]:

Chern-Simons theory on a SuperGroup with a gauge fixing of fermion gauge symmetries

~~

topologically twisted super-Chern-Simons theory coupled to SUSY matter fields.

This paves the way to the investigation of the embedding of the model in string theory [Gaiotto, Witten, JHEP
1006 (2010) 097] and its understanding within the rich web of dualities existing in 2+1 dimensions.



Application to Graphene and the K and K’ valleys

The reciprocal lattice of graphene s also a
e M D honeycomb lattice, rotated by an angle of /2,
b2 b, . . . . .

: featuring two inequivalent types of Dirac points: K
K T K
and K'.

The corresponding Dirac equations are mapped to each other by a

reflection symmetrD

eeeeeeeee

Around the K-point the
pseudospin direction is
opposite to the K'-point.

right-moving




Reflection symmetry for p=gq
OSp(pl|2)x0OSp(q|2) symmetry of the Achucarro-Townsend model:
The fermionic fields xa split into two sets, (xa1, Xa2), @a1=1,...,p;, a2=1,...,q.

In the special case p = g a manifest parity symmetry emerges in the model, under
which the fermions in the two sets are interchanged.

Correspondingly, for the torsion:
B+ = B-—=6, T++f/L =T17--F/¢ =T.
In the absence of global obstructions, it is possible to set 8 = 0.

The masses generated by the torsion in the two sectors are:

m4+ = %Ti — %7- T 3%,with T parity odd, f even.

The =+ sectors, being related by the reflection symmetry in one spatial axis, can be

naturally associated with the K, K valleys of graphene.



Comparison with microscopic models of graphene-like
2D materials

Adding more supersymmetry allows to describe the K and K’ valleys in the first Brillouin
zone of the reciprocal lattice, by identifying the sector + with the K valley and the sector —
with the K’ valley, respectively, in the case p=q.

Mechanisms for opening mass gaps in graphene-like 2D msterials include

1) Breaking sublattices equivalence generating a parity odd mass term M (Semenoff
model [G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)]), e€.g. by depositing a graphene
monolayer on a suitable substrate, for instance of boron nitride or silicon carbide.

2) Introducing a suitable periodic local magnetic flux (Haldane model [F. b. M. Haldane,
Phys. Rev. Lett. 61, 2015 (1988)]), inducing an Aharonov-Bohm phase, breaking time-

invariance.

In our model a Semenoff-type mass is identified with the parity odd trace part of the
torsion, while a Haldane-type mass with the antisymmetric part.




Final remarks

In the framework of holography, we have obtained a description of 2D
graphene-like materials in a suitable AdS; patch at the boundary of an
extended supergravity in one dimension higher with N supersymmetries.

This top-down approach is more predictive than the common bottom-up one,
because it is strongly constrained from the supersymmetry properties of the
gravity theory. |

Construction of explicit solutions of the Dirac equation and of their
properties.

The model features supersymmetry, and it can be viewed as a top-
down approach to understand the origin of the observed super-

symmetric phenomenology in graphene [S.-S. Lee, “Emergence of super-
symmetry at a critical point of a lattice model”’, Phys. Rev. B76 (2007) 075103, cond-
mat/0611658: M. Ezawa, “Supersymmetry and unconventional quantum Hall effect in
graphene”, Phys. Lett. A372 (2008) 924, cond-mat/0606084].



Outlook

We have ongoing discussions with the condensed matter groups, both
theoretical and experimental, at the Politecnico di Torino.

Holographic renormalization: In collaboration with O.Miskovi¢ and R.Olea, we
want to apply the holographic renormalization scheme to our AdS,/graphene
correspondence. In this framework the counterterms in the holographic
renormalization should sum up to topological invariants [Aros, Contreras, Olea,
Troncoso, Zanelli, Phys.Rev.Lett. 84 (2000) 1647-1650; Olea, JHEP 0506 (2005) 023].

Topological properties of the D = 2 + 1 theory: In collaboration
with R. Olea and J. Zanelli we are studying the topological properties
of the theory in D=2+1, particularly at the boundary of a 1+ 1
interface with the aim of characterizing boundary currents in the
presence of domain walls.



Outlook

Originating from a different (unconventional) gauge fixing, the AVZ
model should be a topologically non-trivial inequivalent corner of the
theory, defined on a curved AdS worldvolume, rather than ordinary

MinkowsKi.

Addition of spin: Study of the spin-orbit interaction and the quantum
spin Hall effect, first postulated in graphene in 2005 [C.L. Kane, E.J.
Mele, PRL 95 (22), 226081, arXiv:cond-mat/0411737], but more easily testable
in small gap semiconductors like Hg Te/Cd Te (mercury-, cadmium-
teIIuride) [M. Konig et al., Science Express Research Articles. 318 (5851): 766770,
arXiv:0710.0582 [cond-mat.mes-hall]] With very strong spin-orbit coupling.

The Haldane and Semenoff-type masses are identified with geometric
properties of the model.



Outlook

Role of the Fermi velocity: A graphene sheet is “relativistic” in the sense of the
Fermi velocity v playing the role of analogue speed of light. However, in our
top-down approach, the speed of light, as coming from the D=4 supergravity, is

naturally associated with the true speed of light c.
Two different possible interpretations:

1) The D = 4 supergravity is already analogue.

2) Postulate a more general relation between the geometry of the supergravity
space-time and the graphene worldsheet [Noris, Fatibene, arXiv:1910.04634 ]



« Different model for graphene like materials: In [A. lorio and P. Pais, Annals Phys. 398 (2018)
265-286, arXiv:1807.0876] a different model is constructed, starting from a
superalgebra of the form

A(1,1)=SU(2|1, 1),
whose bosonic subgroup contains SU(1,1) x SU(2).
The doublet labeling the léand K’ valleys is here naturally gauged by construction.

Can describe topological features of graphene such as grain boundatries.

In our construction we can reproduce a similar case by starting from
N=4 and choosing p=4, q=0, with supergroup

OSp(4/2) x SO(2,1) , containing SO(4) x SO(2,1)=SU(2) x SU(2) x SO(2,1).

* Application to more general Weyl semimetals, topologically non trivial materials in
higher dimensions?



Thank you!




