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Introduction.

In [Regge, 1961], T. Regge associated to a piecewise flat
manifold, Xn, a measure, R(Xn), supported on the
(n− 2)-skeleton.

He proposed that it should play the role of R(Mn), scalar
curvature times the volume measure for smooth riemannian
manifolds Mn.

Physicists who then discussed “Regge calculus”, seemed to
take for granted: If a sequence Xn

i converges to Mn in a
suitable sense, then in a suitable sense, R(Xn

i )→ R(Mn).

For n > 2, this was first precisely formulated and rigorously
proved by Cheeger-Muller-Schrader; see [CMS, 1984].
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Piecewise flat spaces.

Though had in mind applications to general relativity, here
we only consider the Euclidean case.

Definition. A piecewise flat space, Xn, is a triangulated
n-manifold, perhaps with nonempty boundary, and a length
metric space whose restriction to each n-simplex σn is
isometric to the convex hull of a collection of n+ 1 points
in general position in Rn.

If we fix the combinatorial structure, we can regard the
metric as a function of the squares of the edge lengths.

However, our curvature invariants are independent of the
triangulation and depend only on the metric structure.
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Regge’s scalar curvature measure R(Xn).

Consider an interior (n− 2)-simplex σn−2 ⊂ int(Xn).

Denote by |σn−2| the area measure of σn−2 and define the
normal “angle defect” by

Pχ(C⊥(σn−2)) := 1− θ(σn−2)

2π
.

Here, θ(σn−2) denotes the sum over all σn ⊃ σn−2, of the
corresponding dihedral angles and C⊥(σn−2) denotes the
normal cone.

Define the Regge scalar curvature measure by:

R(Xn) :=
∑

σn−2⊂int(Xn)

Pχ(C⊥(σn−2)) · |σn−2| .
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Boundary curvature H(Xn).

There is also a mean curvature measure supported on ∂Xn:

H(Xn) :=
∑

σn−2⊂∂Xn

Pχ(C⊥(σn−2)) · |σn−2| ,

where

Pχ(C⊥(σn−2)) := 1− θ(σn−2)

π
.

H(Xn) is the analog of H(Mn), the mean curvature of the
∂Mn times the riemannian volume of ∂Mn.
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Formal properties.

Note: R(Xn), H(Xn), are independent of the triangulation.

They depend only on the metric and share the behavior of
R(Mn), H(Mn), under scaling and products.

For n = 2, a version of the Gauss-Bonnet theorem holds.
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Lipschitz-Killing curvature measures.

Actually, a more general convergence theorem for so-called
Lipschitz-Killing curvature measures Ri and their
associated boundary measures H i was given in [CMS, 1984].

Here, i is a nonnegative integer; Ri ≡ 0 for i odd or i > n.

In terms of an orthonormal frame field, Ri(Mn) is a certain
invariant polynomial of degree i/2 in the components of the
curvature tensor, multiplied by the riemannian measure.

The expressions for H i(Mn) also involve components of the
second fundamental form; they need not vanish if i is odd.
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Particular cases.

• R0(Mn), the riemannian volume.

• R2(Mn) := R(Mn), scalar curvature times riemannian
volume.

• R2m(M2m), the Chern-Gauss-Bonnet integrand times
riemannian volume.

• H0, the riemannian volume of ∂Mn.

• H(Mn) := H2(Mn), the mean curvature times the
riemannian volume of ∂Mn.

• Hn(Mn), the boundary Chern-Gauss-Bonnet integrand,
times riemannian volume of ∂Mn.
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Role of Lipschitz Killing curvatures.

Apart from Chern-Gauss-Bonnet, Lipschitz-Killing
curvatures arise in other contexts including:

• Weyl’s formula for the volume of tubes.

• Kinematic formulas.

• Asymptotic expansions for traces of heat kernels.
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Axiomatic characterization.

The proof of the convergence theorem in [CMS, 1984] made
essential use of Gilkey’s characterization of Ri(Mn) among
polynomials of degree i/2 in curvature:

• Invariance under change of orthonormal basis.

• Vanishing for isometric products M2i+1 × Rn−2i+1,

• Value for S2 × · · · × S2 × Rn−2i.

Gilkey’s corresponding characterization for H i(Mn) was
also used for the convergence theorem for the boundary
curvatures; see [Gilkey, 1974, 1975].
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Lipschitz-Killing curvatures; piecewise flat case.

In the piecewise flat case, define:

Ri(Xn) :=
∑

σn−i⊂int(Xn)

Pχ(C⊥(σn−i)) · |σn−i| .

H i(Xn) :=
∑

σn−i⊂∂Xn

Pχ(C⊥(σn−i)) · |σn−i| .

The generalized defect angles Pχ(C⊥(σn−i)) involve certain
products of dihedral angles.

Pχ(C⊥(σn−i)) is the Chern-Gauss-Bonnet measure for the
normal cone to σn−i, where dimC⊥(σn−i) = i.
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Role in the piecewise flat case.

The piecewise flat Lipschitz-Killing curvatures, Ri(Xn),
H i(Xn), have the same scaling behavior and behavior
under products as their counterparts in the smooth case.

As in the smooth case, they had previously arisen in
connection with volumes of tubes, kinematic formulas and
heat kernel asymptotics.

As indicated, there is a piecewise flat Chern-Gauss-Bonnet
formula

χ(Xn) = Rn(Xn) +Hn(Xn) .

Rn(Xn), Hn(Xn), are supported on the 0-skelton of Xn.
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Regge’s Lemma.

Given a 1-parameter family of flat metrics σnt on the
n-simplex, let θ(σn−2t ) denote the associated family of
dihedral angles for some (n− 2)-face σn−2t ⊂ σnt .

Regge observed the following remarkable variational
formula, actually a limiting case of a formula of Schläfli:( ∑

σn−2⊂∂σn

θ(σn−2) · |σn−2|

)′
=
∑
σn−2

θ(σn−2) · |σn−2|′ .

That is, the terms involving the derivatives of the dihedral
angles cancel one another; their sum vanishes.
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Generalized Regge Lemma.

Thus, for a 1-parameter family of piecewise flat metrics Xn
t ,

on a triangulated manifold with boundary:

(
R2(Xn

t ) +H2(Xn
t )
)′

=
∑
σn−2

Pχ(C⊥(σn−2)) · |σn−2|′ .

More generally, [CMS, 1984], for all Lipschitz-Killing
curvatures:

(R(Xn
t ) +H(Xn

t ))′ =
∑

σn−2i⊂Xn

Pχ(C⊥(σn−2i)) · |σn−2i|′ .

Note, this is consistent with Chern-Gauss-Bonnet formula:

(R(Xn
t ) +H(Xn

t ))′ = χ(Xn
t )′ = 0 .
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The piecewise flat approximation scheme.

Let Mn be equipped with a sufficiently fine, Θ-fat, smooth
triangulation, Tη, whose edges are geodesic segments of
length ∼ η.

Here, Θ-fat means that for each i-simplex, σi,

|σi| ≥ Θ · ηi .

For Θ = Θ(n) > 0 sufficiently small, such Tη exist for all
sufficiently small η > 0.

Moreover, there is a piecewise flat space Xn
η with same

combinatorial structure and the same edge lengths as Tη.

Below, we denote an i-simplex of Xn
η by σiη.
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Main theorem; [CMS, 1984].

Let |R|, |∇R| denote respectively, the norm of the
curvature tensor of Mn and of its covariant derivative.

Let Un ⊂Mn be a submanifold with smooth boundary.

Let Br(∂U
n) denote the r-tubular neighborhood of ∂Un.

Ri(Un) :=

∫
Un

Ri ,

Ri
η(U

n) :=
∑

σn−i⊂U

Pχ(C⊥(σn−i)) · |σn−i| .

Theorem. There exists c = c(|R|, |∇R|,Θ) such that

|Ri(Un)−Ri
η(U

n)| ≤ c ·
(
Vol(Un) · η1/2 + Vol(Bη1/2(∂Un))

)
.
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Issue 1. Dihedral angles not quite well defined.

The case n = 2 is elementary, but n > 2 is not.

1) As we did for n = 2, start by expressing (modulo a
negligible error) the “angle defects” which enter into
Pχ(C⊥(σn−i)) in terms of differences in dihedral angles for
corresponding pairs σj ⊂ σk and σjη ⊂ σkη .

Note that for any pair σjη ⊂ σkη ⊂Mn, and any vertex
σ0
η ⊂ σjη, the corresponding dihedral angle depends only on

the 1-skeleton of Tη.

But the values obtained from different choices of σ0
η ⊂ σjη

differ by a nonnegligible amount.

This must be appropriately taken into account.
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Issue 2: Boundedness of Ri
η(U

n) as η → 0.

2) For i > 2, it is not even clear that Ri
η(U) remains

bounded as η → 0.

Ri
η(U

n) is a sum of ∼ η−n contributions, one for each each
vertex of Tη which is contained in Un.

If each contribution were O(ηn), boundedness would follow.

For i > 2, this is certainly not obvious since, by local
riemannian geometry, each contribution can be expressed in
terms of “face angle defects”, and these are only O(η2).

The required estimate, O(ηn), obtained via the generalized
Regge lemma, is a sort of “miraculous cancellation”.
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Issue 3: invariance of the curvature polynomial.

3) The resulting expression for Ri
η(U

n) looks like a riemann
sum approximating the integral over Un of a polynomial
expression in curvature of degree i/2.

A priori, this polynomial appears to depend on the choice
of triangulation Tη.

So it is not at all obvious that it is equal in the limit as
η → 0, to the integral of the invariant polynomial in
curvature corresponding to Ri(Mn)?

That this turns out to hold, reflects an averaging effect
which remains a bit mysterious.
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The key point: invariance.

It suffices to show that as η → 0, modulo a negligible error,
Gilkey’s conditions characterizing Ri(Mn) hold for the
polynomial in curvature described on the previous slide.

The nonroutine point is invariance under orthogonal
change of basis.

Because of the piecewise flat Chern-Gauss-Bonnet formula,
the simplest case is that of Rn(Mn).

We will describe the proof in this case; required
modifications in the general case are essentially technical.
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Triangulations restricted to B√η(p).

It suffices to consider Un = B√η(p), a geodesically convex
metric ball.

In particular, the exponential map expp : B√η(0)→ B√η(p)
is a diffeomorphism.

Denote by Tη(B√η(p)), the subcomplex consisting of those
n-simplices of Tη which are contained in B√η(p).

It is a combinatorial ball.
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Lemma on independence of triangulation.

Let Rn(Tη(B√η(p))) denote the degree n/2 polynomial in
the curvature tensor at p, obtained from the subcomplex of
Xn
η corresponding to Tη(B√η(p)).

It is a sum of ∼ η−n/2 monomials of degree n in
components of the curvature tensor at p, one for each
interior vertex of Tη(B√η(p)).

Each such monomial has size ∼ ηn/2.

Lemma. Up to an error of size ≤ c
√
η, the polynomial

Rn(Tη((B√η(p))) is independent of the triangulation Tη.
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Independence implies invariance of R(B√η(p)).

Corollary. limη→0R
n(Tη((B√η(p))) is invariant.

Proof. Since Tη has geodesic edges, it’s 1-skeleton Σ1
η is

determined by its 0-skeleton Σ0
η.

Let O(Mn
p ) denote the orthogonal group of the tangent

space and α ∈ O(Mn
p ).

Then
Σ0
η → expp ◦ α ◦ exp−1p (Σ0

η) .

induces an action of O(Mn
p ) on {Σ1

η}, and hence on the
associated curvature polynomials Rn(Tη(B√η(p))).

Thus, the independence lemma implies the corollary.
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The extension lemma.

The independence lemma is a consequence of the following
extension lemma whose proof, via a general position
argument, we omit.

Let the triangulations T1,η, T2,η satisfy our conditions.

Lemma. There exist extensions of T1,η(B√η(p)),

T2,η(B√η(p)), to triangulations, T̃1,η, T̃2,η, satisfying our
conditions, such that:

The triangulations, T̃1,η(B√η+4η(p)), T̃2,η(B√η+4η(p)),

agree in a neighborhood of their common boundary.

Jeff Cheeger
CURVATURE OF PIECEWISE FLAT SPACES
24 / 26



Proof of independence.

Since T̃i,η(B√η+4η(p)), i = 1, 2, are combinatorial balls,

χ(T̃1,η(B√η+4η(p))) = χ(T̃1,η(B√η+4η(p))) = 1 .

By the piecewise flat Chern-Gauss-Bonnet formula, for
i = 1, 2,

Rn(T̃i,η(B√η+4η(p))) +Hn(T̃i,η(B√η+4η(p))) = 1 .

By the lemma on extending triangulations,

Rn(T̃i,η(B√η+4η(p))) = Rn(T̃i,η(B√η(p))) +O(
√
η) .

Hn(T̃1,η(B√η+4η(p))) = Hn(T̃2,η(B√η+4η(p))) .

These imply the independence lemma.
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The Einstein-Schrader tensor.

A piecewise flat metric on a given triangulated manifold is
specified by the squares of the edge lengths i.e. by a
1-cochain, with positive coefficients.

Via the Hilbert action principle and Regge’s lemma,
Schrader defined a Einstein tensor for piecewise flat spaces.

It can be viewed as a 1-cochain with real coefficients.

An appropriate classical limit theorem can be formulated.

It seems likely that it can be proved by an extension of the
methods of [CMS, 1984].
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