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Introduction

Context. The topics investigated in this thesis belong to the branch of categorical logic. The main
logical language considered is the Martin-Léf Intuitionistic Type Theory[ML84], and the main cat-
egorical framework exploited is given by the elementary doctrines [MR13]. This work starts with
some considerations about setoids and their categorical descriptions.

Setoids are a concept of constructive mathematics, introduced by Bishop in [Bis67], which pro-
vide a constructive notion of set. In the seventies, Per Martin-Lof introduced the intuitionistic type
theory in order to give a foundation for constructive mathematics. This framework exploits the
notion of type and element of a type which is denoted with a : A. The main feature of intuitionistic
type theories, also called dependent type theories, is that types may depend on some parameters
of other types = : A - B(z). Following Bishops’s description of setoids as a collection of objects
with an equality relation, a setoid is given by a pair (X, R), where X is a type in the empty context
and z1,x2 : X F R(x1,x2) is a dependent type which is an equivalence relation.

There exist various type theories, depending on the rules and type constructors assumed. For
instance, some of the usual type constructs assumed are the type of the pairs of two types, also called
the x-type, and the function type — of functions between two types. A principal distinction is given
by extensional and intensional type theories which depends on the properties of the internal notion of
the equality of terms given by the identity type Id 4. This notion is referred to as propositional equality
and it differs from the judgmental equality which is an external syntactic relation. When two terms
are judgmentally equal they are also propositionally equal. If the converse holds, the identity type
is called extensional, otherwise it is called intensional. Initially, the known models could not separate
the two notions but, as shown in [HS98], intensional identity types conceal an higher structure
which has to be understood in terms of higher categorical structures.

Other properties of dependent type theories have been deeply studied by mathematicians, logi-
cians and also by computer scientists. Indeed, as advocated by Martin-Lof, dependent type theories
can be view as programming languages and nowadays there exist various computer formalizations
such as in [CC99; HKPMO02]. Reasoning about the computational properties of these systems con-
tributed to the general understanding of the theory and setoids played an important role in the
interplay between intensional and extensional constructs.

The extensional constructs are desirable features of the system that permit to reason much closer
to ordinary mathematics. Among the most important ones there are the functional extensionality
and the quotient types. The former is the property that two functions are equal if they have the same
values. The latter is the possibility to build a quotient of a type by an equivalence relation.

One possibility to obtain this constructs is to add suitable axioms, but this turns out to break
the good computational properties of the type theory. Since terms can be view as programs of
some specifications, it should always possible to decide if a program meets its specifications. This
property is called the decidability of type check. Moreover, a program which computes, for example,
a numerical result, should always be reduced to a numeral. This property is the existence of a
canonical form. Several attempts to add conservative quotient types such as in [ Alt99; Mai99] and
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[Hof95a] led to undecidable type theories or the introduction of non-canonical elements. Notably,
the extensional identity types break the decidability of type check and the functional extensionality
axiom also implies the introduction of non-canonical elements. A possible solution to recover the
extensional constructs inside the intensional type theory was found by Hofmann in [Hof95b | who
exploited the so called setoid model.

A different approach is to adopt a finer system, called the homotopy type theory (HoIT), which
supports the homotopical view of the intensional identity types anticipated in [HS98] and later
in [AW09]. Awodey and Warren provided the first "homotopical model" of intensional type theo-
ries exploiting structures of homotopical algebra. In this view, types are thought as spaces and the
identity types are thought as path spaces. Independently, Voevodsky was working at a practical uni-
valent foundation of mathematics based on the notion of equivalence rather than equality of objects.
His research culminated with the introduction of the remarkable univalent axiom and many higher
inductive types to the intensional type theory. Assuming a universe type Y whose elements are types,
the univalence axiom makes the identity type Id;/(A, B) coincide with the type of equivalences be-
tween A and B. This notion is interpreted as the notion of homotopy equivalence in the homotopical
models of HoI'T such as [KL21].

In this foundational approach, there is a clear stratification of mathematics which is given by
the syntactic notion of homotopy level of a type. For instance, the level of the logic is given by the
types called h-propositions that correspond to empty or contractible types. The level of set theory is
given by the types called h-sets, that are "discrete" types or types with trivial homotopical structure.
Mathematical constructs such as quotients are given by some higher inductive types. The main
reference for homotopy type theory is [Unil3].

A first categorical analysis of dependent type theory was provided by Seely in [See84]| who
considered the category whose objects are types in the empty context and whose functions are
terms of the function type. This category is denoted here with ML. For the extensional type theory,
the category ML turns out to be locally cartesian closed while, for the intensional type theory its
properties become less effective. Setoids and functions preserving relations form a category here
denoted as Std. The fact that setoids appear as a syntactic solution to take quotients of equivalence
relations has a category-theoretic counterpart given by the exact completion. As shown by Carboni
and Vitale [CV98], one can add well-behaved quotients to a category with weak finite limits in
a universal way. When a category with finite limits has "well-behaved" quotients, it is called exact
[Bar71]. A relevant example of this construction is given by the category Std which can be obtained
as the exact completion of the syntactic category ML. The properties of the category of setoids
has been deeply studied for instance in [Wil1l0] and [Hof95¢] and, in [MP00], the authors proved
that setoids form a ITW-pretopos. This notion, as discussed in [Ber06], is a suitable candidate for a
predicative analogous of the notion of topos.

A different categorical setting to describe logical systems is given by the theory of fibered cat-
egories which relies on the concept of Grothendieck fibration [Gro71]. There are several structures
which exploit this notion, and in the recent years many of them have been used to describe de-
pendent type theories, such as in [Car86], [Jac93] and [Dyb96]. These structures rely on suitable
functors of the form P : £ — ¢, or equivalently of the form P : ¥°? — Cat with values in the cat-
egory of small categories and functors. This approach emphasizes the level of the contexts, given
by the category ¢, and the levels of the formulae or types in a context given by the values of P on
the objects of €. The substitution of terms is given by the values of the functor P on the arrows of
¢ . An exhaustive account of fibered categories and logical systems can be found in [Jac99].

To this family belong the elementary doctrines introduced by Maietti and Rosolini in [ MR13].
The elementary doctrines are a weakened notion of Lawvere’s hyperdoctrines [ Law69; Law70], given
by a functor P : €°? — Pos from a category with strict finite products to the category of posets and
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order preserving functions.

Lawvere’s original remark is that the logical operations of first order logic, such as the existen-
tial and universal quantifications and the equality predicate, are expressed through suitable ad-
joint functors of the substitution functors. In this setting, many categorical semantics of first order
logic can be described using the elementary doctrines. The "standard interpretation” introduced
by Makkai and Reyes [MR77] can be described in terms of the elementary doctrine of subobjects.
The categorical Brouwer-Heyting-Kolmogorv (BHK) interpretation discussed in [ Pal04] can be de-
scribed in terms of the elementary doctrine of weak subobjects.

Moreover, the theory of elementary doctrines gives a fruitful description of the constructions
used to develop constructive mathematics in foundation based on the intensional type theory.

In this framework, it is possible to define the notion of well-behaved quotient of a P-equivalence
relation and a universal construction which freely adds quotients to a suitable elementary doctrine
[MR13; MR12; MR16; MR15]. The elementary quotient completion is, to some extent, a general-
ization of the exact completion. However, the elementary quotient completion does not necessary
provide an exact category but it takes into account a wider class of categories with suitable well-
behaved quotients.

Dependent type theories give rise to rich elementary doctrines and setoids are an instance of the
elementary quotient completion applied to such doctrines.

Outline and main results. Taking into account the above situation, in this thesis we pursue three
main objectives. The first one is to study a particular class of setoids, that we have called homotopy
setoids, and their categorical properties using the machinery of the elementary quotient completion.
The second one is to introduce a more general framework in which to develop a generalized notion
of quotient completion which has the exact completion and the elementary quotient completion
as particular instances. The third objective is to provide a categorical semantic of first order logic
suitable for a large class of categories. Below, we outline the content and the main contribution of
each chapter in more detail.

In the first part of Chapter 1, we recall the precise definition of setoids and the connection with
the theory of the exact completion. In the second part, we recall the main notions and results of the
theory of elementary doctrines together with the elementary quotient completion. In particular,
we recall the description of setoids in this framework. In order to support the notions of the first
chapter, at the end of the thesis we provide two appendices. The first one is about some results of
the elementary doctrines and the second is about the syntax of the type theory we have considered.

In Chapter 2, we define the homotopy setoids, taking into account ideas from homotopy type
theory. Working into an intuitionistic type theory plus the functional extensionality axiom, we
study those setoids (X, R) such that X is an h-set and R is an h-proposition. However, we made
no assumption of the univalence axiom and of any higher inductive types. This class of setoids is
motivated by the fact that h-sets and h-propositions are the homotopy levels needed to provide the
set-based mathematics.

Hence, the first goal of this thesis is to study the category of h-setoids, denoted with Std,, and
to prove that it has good categorical properties such as the category Std. In particular, since se-
toids form a locally cartesian closed pretopos, we ask if Stdy appears as a weaker notion of locally
cartesian closed pretopos. The main problem is that Stdy does not provide an exact category, but
it has well-behaved quotients with respect to a suitable elementary doctrine. Notably, it appears as
an instance of elementary quotient completion.

The strategy adopted is to study the properties that the quotient completion inherits from the
starting structure. For the theory of the exact completion there are several results in this direction.
In particular, in [CR00] and [Emm20] the authors give a characterization of those categories whose
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exact completion is locally cartesian closed. In [GV98], the authors give a characterization of those
categories whose exact completion is lextensive. In [Men00], there is a characterization of those
categories whose exact completion is a topos.

We follow these ideas and give a characterization of the elementary doctrines whose elementary
quotient completion gives rise to a lextensive locally cartesian closed category (Theorem 2.3.7 and
Theorem 2.5.6). A similar result about the local cartesian closure appeared recently in [MPR21]. We
dedicate a section to investigate the relationship between our result and the one in loc. cit.. Finally,
we prove that these results apply to the homotopy setoids which provide a non-trivial example of
a weaker notion of pretopos (Corollary 2.6.15).

In Chapter 3, we introduce the theory of the biased elementary doctrines (Definition 3.1.2) which
generalizes the theory of (strict) elementary doctrines. This new framework allow us to take into
account crucial examples of functors of the form P : €°? — InfSL which are not in the realm of
the elementary doctrines due to the lack of strict finite products in ¢, which only appear in a weak
form. In order to do that, we exploit the notion of proof-irrelevant elements, which takes inspiration
from an example arising from intuitionistic type theory.

For these structures we provide a procedure, called strictification, which associates a strict ele-
mentary doctrine to a weak one in a suitable way (Theorem 3.3.5). Moreover, we provide a corre-
sponding construction of quotient completion (Theorem 3.4.15). As particular instances, we obtain
the elementary quotient completion and the exact completion in its more general form. The last
section is dedicated to a generalization of the result about the local cartesian closure proved in the
previous chapter (Theorem 3.7.5).

Chapter 4 deals with a categorical semantic of first order logic. The semantic developed follows
the standard interpretation of intuitionistic first order logic of Makkai and Reyes and the categor-
ical BHK interpretation. Both the interpretations lie on categories with strict finite products and
respectively strict and weak pullbacks. We consider the case of weak finite products and, in case
they are strict, we obtain the BHK interpretation.

In order to do that, we develop the ideas of the proof-irrelevant elements of the previous chapter
internally to a category with weak finite products and weak pullbacks. For this interpretation, we
discuss some soundness and completeness results for various fragments of intuitionistic first order
logic (Theorem 4.5.8, Proposition 4.5.9 and Theorem 4.7.3).

We can summarize the main contributions of this thesis as follows:

e In Theorem 2.3.7 and in Theorem 2.5.6, we give a characterization of the elementary doctrines
whose elementary quotient completion respectively gives rise to locally cartesian closed and
extensive categories. In Corollary 2.6.15, we prove that the category homotopy setoids pro-
vides an example of relative I1-pretopos.

e In Definition 3.1.2 we introduce the more general framework of the biased elementary doc-
trines. In Theorem 3.3.5, we prove the properties of the strictification. In Theorem 3.3.5, we
prove the universal property of the corresponding quotient completion. In Theorem 3.7.5, we
generalize Theorem 2.3.7 to this framework.

e In Theorem 4.5.8, Proposition 4.5.9 and Theorem 4.7.3 we prove the completeness and the
soundness results of more general categorical BHK interpretation for fragments of first order
logic in categories with weak finite products and weak pullbacks.



Chapter 1

Preliminaries

In this chapter, we will recall the main notions of type theory and category theory that will be
preliminary for the developments of the next chapters. The chapter is divided in two parts.

In the first part, we will recall the concept of setoid introduced by Bishop in [Bis67] and its ex-
pression in dependent type theories such as the Martin-Lof intuitionistic type theory [ML84]. We
will recall the categorical constructions arising from these syntactic objects and how setoids are
related with the theory of the exact completion [CV98].

In the second part, we will deal with the elementary doctrines introduced by Maietti and Rosolini
in [MR13]. We will recall the main results about these structures and the construction of the elemen-
tary quotient completion. The elementary doctrines provide a useful categorical tool to treat logical
systems, in particular dependent type theories. The concepts introduced in the previous section
will be view from this perspective. The theory of elementary doctrines will be the main categorical
language used in this thesis.

1.1 Setoids and exact completion

Setoids are a concept of constructive mathematics, introduced by Bishop in [Bis67]. Intuitively, a
setoid consists of a tangible collection of elements and a procedure to show when two elements
are equal. Dependent Type theories, such as Martin-Lof intuitionistic type theory [ML84], give a
fruitful logical description of these objects as types equipped with a dependent type which is an
equivalence relation.
Setoids have been widely studied in logic, category theory and computer science and, in [Hof95b ],

Martin Hofmann used setoids to investigate relations between extensional and intensional type the-
ories. We recall that a type theory is called extensional if the reflection rule

z,y: X Fp:ldx(z,y)
=y

is derivable. Intuitively, the reflection rule implies that the "internal" notion of equality given by
identity type Id x coincides with the judgmental equality =, which is the "external" notion of equality.
Elements that are judgmentally equal are also internally equal. The converse does not hold as
shown in the work [HS98], which predicted the homotopical view of types later crystallized in the
homotopy type theory [Unil3]. Intuitively, the extensional constructs are those that breaks the good
computational properties of a type theory such as the decidability of type check. Setoids offer a system
definable in intensional type theories that can recover the extensional constructs, without loosing
the good computational properties of the theory.

1
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In this work, we mainly considered an intensional Martin-Lof intuitionistic type theory with the
usual type constructors and a universe, such as the one described in [NPS90] or in [Coq89]. We
will denote this theory as ML and refer to Appendix B for the rules and the notation adopted.

Notation. Given a type X in a context I' , we will call the type X inhabited if there exists a term
I' =7 : X. In this case will adopt the notation I - X true without specifying any inhabitant term.
If U denotes the universe type, we will refer to the elements of U as small types. A closed type is a
type in the empty context, in this case we will omit the symbol |-.

We now give a precise formulation of setoids in type theory. The definition only exploits the
II-type.

Definition 1.1.1. A setoid is a pair (X, R), such that X is a closed type and R is a dependent type of
the form z,y : X  R(z,y) satisfying reflexivity, symmetry and transitivity conditions, i.e.

[[B.2)  true, (1.1)
x: X
H R(z,y) = R(y,x) true, (1.2)
z,y: X
H R(z,y) X R(y,z) — R(x, z) true. (1.3)
z,y,z: X

Category theory provides an algebraic description of these syntactic objects and we now define
the category arising from small types and the category of setoids.
Given a type theory such as ML, we can consider the associated syntactic category ML whose

e objects are small closed types,

e arrows [t| : X — A are equivalence classes of terms z : X F t(x) : A up to functional
extensionality, i.e t and t' : X — A are in relation if

[[idaCt(z), ' (x))  true. (1.4)
: X

We will denote with ML the syntactic category arising from any dependent type theory with
enough type constructors. Every time we will consider this category we will specify the underlying
type theory. The category ML inherits properties from the type theory considered and we will
discuss them along the way. At the moment, we just provide the existence of limits in ML.

Lemma 1.1.2. The category ML has strict finite products and weak pullbacks.

Proof. If X and Y are two closed types, we can consider the product type X x Y and the projection
arrows |71 | : X XY — Xand [m] : X xY - Y. If |f]: Z - X and |g| : Z — Y are two arrows,
then the introduction rule of x-type provides a term

z:ZF (f(2),9(2) : X x Y.

The induced arrow will be denoted with |(f,g)] : Z — X x Y and it satisfies |m1][(f,9)] = | f]
and [m2][(f,9)] = |g|. This arrow is the unique with such property thanks to the elimination rule

of x-type.
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The identity types are used to build pullbacks. Indeed, given to arrows [t] : X — A and
|u] : Y — A the diagram

> lda(t(@),uly)) ——=Y

z: XY 15
ol J (15)
X ——— A
may fail to be a strict pullback, since proofs of the same identity need not be unique. O

A category with strict finite products and weak pullbacks will be often referred to as quasi left
exact (glex). Equivalently, qlex categories can be defined as categories with strict finite products and
weak equalizers, or as categories with weak finite limits. This is a consequence of the description of
limits in term of pullbacks or equalizers that can be found in [Bor94, Proposition 2.8.2]. When the
category has weak finite products instead of strict ones and weak pullbacks (or weak equalizers),
we will call it weakly left exact (wlex). As observed by Carboni and Vitale in [CV98], wlex categories
are precisely categories with weak finite limits.

Observation 1.1.3. In case of the extensional type theory, the reflection rule implies that the di-
agram in (1.5) is a strict pullback and the category ML is locally cartesian closed (lcc). This is
discussed in detail in [See84] where the author proved a correspondence between extensional type
theories and lcc categories thorough the construction of a syntactic category actually equivalent to
ML. This correspondence, was thought to provide a semantic of extensional type theories in lcc cat-
egories but, as discovered later, there are some coherence problems about substitutions. A possible
syntactic solution to this problem can be found in [Cur93]. A categorical solution is given by the
theory of fibrations as explained in [Hof95c¢].

Another example of strict pullbacks will be given in the next chapter working inside an inten-
sional type theory.

We now define the category of setoids Std whose
e objects are setoids (X, R) where X is a small closed type,

e arrows between two setoids (X, R) and (Y, S) are the equivalence classes of the terms x : X
t(z) : Y, such that ¢ preserves the relations, i.e.

I[ Rx.y) = S(t(x),ty))  true, (1.6)
z,y: X

given by the following equivalence relation: the term ¢ is in relation witha term z : X +#/(x) :
Y if
II B=.y) = S(t@).t' ()  true. (1.7)

z,y: X

We will denote with Std the category of setoids arising from a any dependent type theory with
enough type constructors. Every time we will consider this category we will specify the underlying
type theory. As for the category of types, different type theories give rise to different category of
setoids. The setoids of the type theory ML have been widely studied in the literature and we have
the following well-known fact.

Fact 1. The category Std of setoids is IIW -pretopos.
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Parts of the proof of the above fact can be found for instance in [MP00],[Wil10] and [Hof95c].
For a discussion about the differences between the setoids of intensional and extensional type the-
ories we refer to [Ber06].

We now recall the relations between setoids and the exact completion which rely on the concept
of quotient. One of the main extensional type constructor is the quotient type which builds quotients
of equivalence relations. Quotient type have been widely studied in the literature for example
in [Alt99], [Mai99] and [Hof95a], but all the attempts lead to the introduction of non-canonical
elements or to the undecidability of the type check. As we will clarify, setoids can recover the
quotient construction in place of the extensional quotient types. This process has a correspondent
construction in category theory which is the exact completion.

We now recall the definition of exact category and the construction of the exact completion.
Before this, the notion of pseudo-equivalence relation in a category is given by a pair of arrows

ri,re: R =Y

which satisfies suitable reflexivity, symmetry and transitivity conditions, see Definition A.0.2.
Definition 1.1.4. A category ¢ is called (Barr) exact when

1. it is left exact,

2. every effective equivalence relation (i.e. a kernel pair) has a coequalizer,

3. pullbacks of regular epimorphisms are regular epimorphisms

4. every equivalence relation is effective.
A category which satisfies only conditions 1-3 is called regular.

Starting from a category ¥ with weak finite limits, we can form the category ¢., (the exact
completion of €’) as follows.

Definition 1.1.5. Let ¢ be a category with (weak) finite limits. The category %, has objects given
by pseudo-equivalence relations. An arrow between two objects

Tl,T‘QiR—>X 81,8225—>Y

is given by an equivalence class of a pair (f, f) of arrows which makes the following diagram com-
mute component-wise

.

S
r2 slu@
Y.

f

T1

S m—-v

Two pairs (f, f ) and (g, §) are equivalent if there exists an arrow ¥ : X — S such that s;X = f and
soX = g. The arrow X is called a half-homotopy.

There are several exact completions depending on the assumptions of the category . In [CV98],
the authors discuss the exact completion of lex, wlex and regular categories. What we called exact
completion is the more general form, i.e. the exact completion over a wlex category also denoted
by Gerjwier- Every exact completion gives an exact category with a suitable universal property,
stated in terms of 2-categorical adjunctions, that can be found in detail in [CV98] and [Vit94]. We
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will recall them in Chapter 3 in order to give a more general formulation. Intuitively, the exact
completion adds well-behaved quotients to a category ¢ with weak limits. Setoids are built in a
similar way and, thanks to ¥-types, there is a correspondence between the type theoretic notion of
equivalence relation and the categorical notion of pseudo-equivalence relation in the category Std.

Remark 1.1.6. Given an equivalence relation z,y : X F R(x,y) we can consider the arrows

1,79 Z R(z,y) = X (1.8)
z,y: X

of the projections on the first two components and obtain a pseudo-equivalence relation. Vice versa,
given a pseudo-equivalence relation r1, 7 : R — X, we can consider the dependent type

vy X B ldx(ri(2), 2) x ldx (r2(2), y) (1.9)
z:R

and obtain witnesses of the fact that is a type theoretic equivalence relation. A similar correspon-
dence follows for the arrows that preserve the equivalence relations and half-homotopies between
pseudo-equivalence relations.

Hence, we can recall the following well-known fact.
Fact 2. The category Std of setoids is equivalent to the exact completion ML, of the syntactic category ML.

The exact completion €., inherits properties from the category ¢ . It happens that assuming a
weaker version of the desired property in 4 implies that the whole property holds in %,. In this
direction, we mention the following well-known results.

e In [CRO0O] and [Emm20] the authors characterize the categories ¢ such that the exact com-
pletion €., is (locally) cartesian closed.

e In [GV98] the authors characterize the categories ¢ such that the exact completion 4., is
extensive.

e In [Men00] the author characterizes the categories ¢ such that the exact completion %, is a
topos.

It follows that a possible approach to studying the categorical properties of setoids can be to
consider the properties of the category of types ML. Another approach can be to work directly in
the category of setoids, as done in [MP00; Wil1l0] and in [Mai07] for a different type theory.

In the next chapter, we will define a particular class of setoids. Firstly, we will study directly
the corresponding category of setoids. Secondly, we will adopt the point of view of the elementary
doctrines. Our goal is to prove that, in a suitable form, the above facts about setoids hold for the
particular class we have considered.

1.2 Elementary doctrines

The elementary doctrines were introduced by Maietti and Rosolini in [MR13]. They are a weaker
notion of Lawvere’s hyperdoctrines [Law69; Law70], which are suitable categorical structures to
deal with logical languages. In particular, the elementary doctrines give an abstract description of
constructions based on intensional type theory such as those introduced in the previous section.
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We now recall the main definitions and examples which can be found in detail in [MR13; MR12;
MR15; MR16].
The underlying categorical structure, which we will refer to simply as doctrine, is given by func-
tors of the form
P:%°° — Pos

from a category ¢ with strict finite products to the category Pos of partially-ordered sets (posets)
and order-preserving functions. Intuitively, one should think of the base category ¢ as the level of
the contexts and the fibers P(X) as the predicates in the context X € €.

A first refinement of the definition of doctrine is given by what is called a primary doctrine.
Intuitively, primary doctrines are those doctrines fruitful to set up many-sorted logic with binary
conjunctions and true constant. Before proceeding with the definition, we fix the notation InfSL to
indicate the category of inf-semilattices. The objects of InfSL are posets with finite meets and order
preserving functions which preserve finite meets.

Definition 1.2.1. Let ¢ be a category with strict finite products. A primary doctrine is a functor
P : €°P — Pos which takes value in the category InfSL of inf-semilattices, i.e.:

P1 P(A) has finite meets, for every object A € €,
P2 for every arrow f : A — B of €, the functor P; : P(B) — P(A) preserves finite meets.

The main logical example comes from first order theories. We now see how to organize these
languages in a primary doctrine.

Example 1.2.2. Given a first order theory 7 on a language £, we consider the category V built as
follows. Objects of V are lists of distinct variables Z := (z1,...,z,) and arrows are lists of substitu-
tions for variables [t/y] : £ — 3. The composition of arrows is given by simultaneous substitutions.
The functor LT : V? — InfSL sends a list of variables z to the Lindenbaum-Tarski algebra LT (Z)
defined as follows:

e objects are equivalence classes of well-formed formulae [¢] of £, with free variables z1, . .., z,
with respect to equiprovability ¢ -7 ¢/,

e arrows [¢| < [¢] are provable consequences ¢ 1 .

If [t/y] : # — yisanarrow o f V), the functor LT'([¢t/y]) : LT (y) — LT(z) sends the equivalence class
of a formula [ (7)] to the equivalence class | ([t/7])]. The functor is a primary doctrine because
the posets LT'(Z) have finite meets given by the logical conjunctions and the top element is given
by the true predicate.

Among the primary doctrines there are those which can deal with the equality predicate which
are called elementary. This can be achieved requiring the existence of an element 0x € P(X x X)
satisfying suitable conditions. Before providing the definition of elementary doctrine, we fix some
notations.

Notation. Let ¢ be a category with strict finite products and let X;,..., X,, be objects of €. If
Jg:A{L,...,k} = {1,...,n} is an assignment with 1 < k , then

<j(1),...,j(k)>:X1><~-><Xn—>Xj(1)X"-XXj(k)

will denote the map induced on the product X;(;) x - - - X X by projections p; ) : X1 x---x X;, —
Xj(—). If k = 1, the arrows (j(1)) will always be denoted with p;(;). If k¥ = 2 and n = 1, the arrow
(1,1) : X = X x X will always be denoted with Ax.
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Definition 1.2.3. Let ¢ be a category with strict finite products. A primary doctrine P : €7 — InfSL
is called elementary doctrine if, for every object X € €, there exists an element 0x € P(X x X) such
that:

E1 For every element a € P(X), the assignment

Fax (@) == Pp (@) Axxx 0x
is left adjoint of the functor Pa, : P(X x X) — P(X).

E2 For every object Y € ¢ and arrow e := (1,2,2) : X x Y — X x Y x Y, the assignment

Fe(a) := Py gy(a) Axxyxy P (dy)
for ain P(X x Y') is left adjoint to P, : P(X x Y xY) — P(X x Y).

If P : €°7 — InfSL is an elementary doctrine and X is an object of ¢, we will refer to P(X) as the
fiber of P on X and we will refer to dx as the fibered equality on X.

The above Definition is one of the equivalent formulation of elementary doctrines which makes
use of adjoint functors in the stile of Lawvere. However, in a moment we will recall a well-known
equivalent definition of elementary doctrines which highlights the core properties of the element
dx . Before proceeding, we first recall the crucial definition of descent data.

Definition 1.2.4. Let P : ¥°? — InfSL be a primary doctrine. If § € P(X x X), then Desg is the
sub-order of elements o € P(X) satisfying

Ppi (@) A B < Ppy(a), (1.10)

where p1, py are the projections X 2 xxxBXx.

For example, for every object X € ¢, the sub-poset Dess,, is given by the elements o« € P(X)
such that

Ppla Nox < Pma.

Using an informal internal language, the elements of Dess, correspond to those a(z) in context
x : X such that

a(x1) Nz =x z2 b axs)

in context 1, x9 : X.

We now recall an equivalent definition of elementary doctrine that is discussed in [MR12, Re-
mark 2.3]. Since we were not able to find a proof of the equivalence between Definition 1.2.3 and
the following Definition 1.2.5 we provided it in appendix Proposition A.0.3.

Definition 1.2.5. Let ¢ be a category with strict finite products. A primary doctrine P : €7 — InfSL
is called elementary if, for every object X € ¥, there exists an element 6x € P(X x X) such that:

I Tx <Pa,(6x)
I P(X) = Dess, .

IIT 6x Xy < dxxy, where oy X dy := P<1,3>(5X A P<274>5y.
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The first condition expresses the reflexivity of the equality predicate. The second expresses that
the descent data of the equality dx are the whole set of predicates in the context X. The last one
expresses a relation between the equality of the pairs and their components. In an informal internal
language, condition III becomes

r1=x T2 AYy1 =y Y2 F (1,01) =xxv (22,92).

The validity of this reasonable condition led to some considerations that have been developed in
Chapter 3.

We now mention the main examples of elementary doctrines.

Example 1.2.6. If € is a category with strict finite products and weak pullbacks, one can consider
the functor
Psuby : €°P — InfSL.

Given an object A € ¢, Psuby(A) is defined as the poset reflection of the comma category ¢ /A.
Two arrows f, f' € € /A satisfy f < f’ when there exists a map h making the following diagram
commute

X - 0 '¢

N

A,

[ and f’ are equivalent when f § /. The objects of the poset PSub (X)) are called weak subobjects
or variations in [Gra00]. In [Pal04], they are also called pre-subobjects. If g : B — A is an arrow of
¢, the functor P, sends an equivalence class | f| to the equivalence class represented by the chosen
weak pullback 7y ¢

Vg,a T2g,f X
T””l lf (1.11)
B T A.

The poset Psuby (A) is an inf-semilattices: the top element is given by the identity arrow [14] and
the meet of two arrows |f : X — A] and |g : B — A] is given by the equivalence class of the
common value of the two composites of the diagram in (1.11). The functor Psubg is an elementary
doctrine and the fibered equality is given by the diagonal arrow 64 := |A4].

Example 1.2.7. If ¢ is a category with strict finite products and strict pullbacks, one can consider
the elementary doctrine of subobjects

Suby : €°P — InfSL.

If A is an object of €, the category Suby (A) is the poset reflection of monomorphisms over A for
every object A € €. The action of Suby on arrows is similar to the action of Psubg.

The above examples encode two different notions of inner logic of a category. The elementary
doctrine of subobjects encodes the correspondence propositions as subobjects, introduced by Makkai
[MR77], for lex categories. The elementary doctrine of weak subobjects encodes the paradigm
propositions as objects discussed by Palmgren in [Pal04], for categories with strict finite products
and weak pullbacks. We will return on these aspects in Chapter 4 where we provide a more general
correspondence for categories with weak finite products and weak pullbacks.

We now discuss the example of main interest for our purposes, which comes from type theory.
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Example 1.2.8. As we have seen in the previous section, the intensional Martin-Lof intuitionistic
type theory gives rise to a syntactic category ML of closed types and terms up to functional exten-
sionality. We now introduce the functor

FML . ML — InfSL (1.12)

which sends a closed type A to FML(A) defined as the poset of equivalence classes of types de-
pending on A respect to equiprovability: x : A+ B(z) and x : A+ B/(z) are in the same equivalence
class if there exists a term of

[[(B(z) = B'(z)) x (B'(z) = B(x)). (1.13)

T:A

Thanks to the introduction and elimination rules of the II-type, the above condition is equivalent
to the existence of two terms

x: A p(r): B(x)F qlz,p(x)) : B'(x) x:A ¢ (x): B(x)Fp(x,d(x)): B'(x). (1.14)

Two equivalence classes are in relation |B| < |B'] if there exists a term = : A,p(z) : B(z) F
q : B'(x). The action of FML on the arrows is given by substitution. We will often, abusing the
notation, denote a type without brackets to indicate its equivalence class.

The functor FM% is a primary doctrine: the meets are given by the product type x and the top
element is given by the one-element type 1. Itis also an elementary doctrine and the fibered equality
is given by the identity types Idx. Condition I of Definition 1.2.5 follows from the canonical element
refl, : ldx (x, ), and conditions II and III of Definition 1.2.5 follow from the recursion principle of
the identity type. The elementary doctrine FM~ enjoys more properties and we will recall them
once we have introduced more expressive elementary doctrines.

Two dependent types  : A F B(z) and  : A - B'(x) that are equivalent as in (1.13) are
called logically equivalent. This notion is different from the homotopy equivalence that can be found
in [Unil3]. In homotopy type theory, this notion corresponds to the propositional equality through
the Voevodsky’s univalence axiom. However, if B and B’ are mere propositions, then the two notions
of equivalence coincide. Assuming the propositional truncation inductive type, it follows that B and
B’ are logically equivalent if and only if their propositional truncations are equivalent. We refer to
[Unil3] for further details.

The elementary doctrines form a 2-category denoted by ED. Objects of ED are elementary doc-
trines and 1-arrows from P to P’ are pairs (F, f) where F' : ¥ — %’ is a functor which preserves
finite products and f : P = P’ is a natural transformation such that, for every object A € ¢, the
functor f4 : P(A) — P/(F(A)) preserves all the structure.

@or
\
Fop fj{ InfSL
T
¢

In particular, f4 preserves finite meets and

faxa(84) = Plpr) Fpr) (OF(4))-
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A 2-arrow 0 : (F, f) — (G, g) is a natural transformation 6 : F' = G as in the following diagram

€
P
g°p
For [ <] Gor f< >g InfSL,
P/
¢'r

such that, for every object A € ¥ and every element o € P(A) it holds

fa(a) <Py, (ga(@)).

Set-like doctrines. We now recall a richer class of elementary doctrines. For these doctrines the
axiom of comprehension and an equality principle hold.

Definition 1.2.9. Let P : ¥°? — InfSL be an primary doctrine and let X be an object of ¥. A
comprehension of an element o € P(X) is an arrow {aff : C — X such that T¢ < Py,pa and which
satisfies the following universal property: for every arrow f : Y — X such that Ty < P¢(«), there
exists an arrow h : Y — C such that the following diagram commutes

C --h
1

The comprehension {«f} is called strict if the induced arrow h is unique. When h is not unique, the
comprehension {af is called weak. A comprehension {af : C' — X is called full if o« < f whenever
To < PyapB.

We will say that P has (full) (weak) comprehensions if, for every object X € ¥, each element
a € P(X) has a (full) (weak) comprehension.

Remark 1.2.10. Let P : €°? — InfSL be a primary doctrine with (weak) comprehensions. If o €
P(A) and f : B — Ais an arrow, then the following diagram

, APsal

X B
ol
X — A

where h is the arrow induced by the comprehension {af, is a (weak) pullback.

Definition 1.2.11. An elementary doctrine P : €°? — InfSL has comprehensive diagonals if for every
pair of arrows f,g: A — X such that T4 < P dx implies that f = g.

Equivalent definitions of comprehensive diagonals are discussed in [MR16, Lemma 2.9] and
reported here in Lemma A.0.5. In case of comprehensive diagonals and full comprehensions, it
follows that a comprehension is strict if and only if it is a monomorphism. This fact has been
observed in [MR13, Corollary 4.8] and reported here in Lemma A.0.6.

We now discuss the existence of comprehensions and comprehensive diagonals in the main
examples of elementary doctrine encountered.
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Example 1.2.12. Given a left exact category ¢, the elementary doctrine of subobjects Suby has strict
full comprehensions and comprehensive diagonals. A comprehension of an element |m : Y —
X' € Suby(X) is given by the representant m. Since m is a monomorphism an easy verification
shows that it is a strict comprehension. Fullness is obvious. Diagonals are comprehensive because,
if f,g : X — Y are two arrows such that 1x < Suby s ([Ay]), tf means that the arrow (f, g)
factors through the diagonal Ay, and hence f = g.

If ¢ is weakly left exact, the elementary doctrine of weak subobjects Psubg has full weak com-
prehension and comprehensive diagonals. It is proved as for the above example but considering
that we are not working with monomorphisms.

The elementary doctrine FM % arising from type theory has full weak comprehension and com-
prehensive diagonals. Indeed, if B(X) € FML(X) is a dependent type, then we can consider the
projection

7Y Bx) =X (1.15)
x: X

which provides a full weak comprehension of B(x). The diagonals are comprehensive because the
arrows of ML are defined as equivalence classes of terms up to functional extensionality.

The 2-full 2-subcategory of ED whose objects are elementary doctrines with full comprehensions
and comprehensive diagonals is denoted with EqD The 1-arrows of EqD are 1-arrows (F, f) of ED
such that F' preserves comprehensions.

3,V,= doctrines. We now recall the elementary doctrines that can express the existential and
universal quantification and the logical connective of implication. We start from the existential
quantification.

Definition 1.2.13. An elementary doctrine P : €°? — InfSL is called existential if, for every pair
of objects X, Xy € ¢ the functors Py, : P(X;) — P(X; x X»), for i = 1,2, have left adjoints
3y, : P(X7 x X3) — P(X;) which satisfy

o the Beck-Chevalley condition: for the pullback diagram

X xYy -2 vy

1 % lf
X1 X XQ T X2

the canonical arrow 3, 0 Py «f(—) < Py o3p,(—) is an isomorphism. The analogous condi-
tion holds for p;.

e the Frobenius reciprocity: for any projection p; : X7 x Xo—Xj, element o € P(X;), and 8 €
P(X1 x X»), the canonical arrow 3,,(Pp,a A 8) < o A 3,8 is an isomorphism.

Remark 1.2.14. If P : ¥°? — InfSL is an existential elementary doctrines then P has left adjoints to
all reindexings. If f : X — Y is an arrow of ¢ then the functor which sends an element o € P(X)
to

Elf(a) = ElPZ(Ppla/\ Pf><1y5Y) (1.16)

where p1, py are the projections of X x Y/, is left adjoint to the functor Py : P(Y) — P(X).
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Example 1.2.15. If ¢ is a left exact category which is also regular, then the elementary doctrine of
subobijects Suby is existential. This is a well-known result used to interpret regular logic in regular
categories. If f : Y — X is an arrow of €', then the left adjoint of Suby ; is given by the functor that
send an element [m] € Suby to

dplm] = [Im(f om)]

where Im(f o m) is the monomorphism given by the regular epi mono factorization of f o m.

If ¢ has strict products and weak pullbacks, then the elementary doctrine of weak subobjects
Psubg is existential. If f : Y — X is an arrow of ¢, then the left adjoint of Psuby ; is given by the
functor that send an element |m| € Psuby to

Jglm] == [fom].

The elementary doctrine ML arising from type theory is existential. The left adjoint to the
reindexing over an arrow |t] : X — Y is given by the functor which sends an element B(y) €
FML(Y) to the X-type

r: X F Y B(z) x ldy(t(z),y).
yY

We now define elementary doctrines which can express universal quantifications.

Definition 1.2.16. An elementary doctrine P : ¥°? — InfSL is called universal if for every pair
of objects X1, Xy € %, the functors P, : P(X) — P(X; x Xj), for i = 1,2, have right adjoints
Vp, : P(X1 x X2) — P(X;) which satisfy

o the Beck-Chevalley condition: for the pullback diagram

XixY —2 vy

Ly, %/ | lf

+

X1XXQT>X2

the canonical arrow Py oV, (=) < Vp, 0 P1 «f(—) is an isomorphism. The analogous condi-
tion holds for p;.

Example 1.2.17. The elementary doctrine FM7 is universal. If X and Y are closed types then the

right adjoint to the functor F2'~ is given by the functor which sends an element B(z,y) € FM(X x
Y') to the Il-type

r:XF HB(a:,y).
yY

Finally, we define elementary doctrine which can express the implication.
Definition 1.2.18. A primary doctrine P : €°? — InfSL is called implicational if for every object
X € ¥ and element o € P(X) the functor « A — : P(X) — P(X) has a right adjoint & = — :

P(X) — P(X). Moreover, for every arrow f : Y — X of ¢ and elements «, 8 € P(X), it is required
that Pf(Oé = ﬂ) = PfOé = Pfﬁ‘

In the following remark we observe some relations between universal and implicational doc-
trines.
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Remark 1.2.19. If P is an elementary doctrine implicational and universal, then for every f : X —
Y, the functor P has a right adjoint which sends o € P(X) to

Vf(a) = sz(Pfxly(Sy — Ppla) (1.17)

where p1, p2 are the projections of X x Y.

Moreover, as observed in [MR13, Lemma 4.9] it is possible to build implications from full weak
comprehensions. Let P : €°P — InfSL be a primary doctrine with full weak comprehensions and as-
sume that, for every object X € ¢ and a € P(X), the reindexing Py, over the weak comprehension
{al has right adjoint Vy,}. For every o’ € P(X) we can define the implication

a = o = V{I(X[}P{IQI}O/' <118)
The above definition satisfies the adjoint property of Definition 1.2.18.

Example 1.2.20. This is the case of the elementary doctrine 7"~ which is also implicational. The
implication is given by the arrow type: if X is a closed type then the implication of two dependent
type B(z), B'(x) € FML is given by the type

r: X+ B(x) = B'(z).

The adjoint condition is given by the Curring operation. Hence, Remark 1.2.19 implies that for every
arrow |t] : X — Y, the functor FM* has a right adjoint which sends an element B(z) € FME to
the II-type

y: Y J[(B(z) = ldy (f(2),y)). (1.19)
r: X

We have recalled the main notions about the elementary doctrines and we have seen that the
functor FML arising from type theory is a rich elementary doctrine. We can collect the properties
observed for FML in the following lemma which appears as [MR13, Proposition 7.2 and 7.2].

Proposition 1.2.21. The functor FML . MLP — InfSL of Example 1.2.8 is an existential, universal and
implicational elementary doctrine with full weak comprehensions and comprehensive diagonals. O

1.3 Elementary quotient completion

The language of the elementary doctrines provides a more general framework to define the notion
of equivalence relation and quotient. The classical notions of pseudo-equivalence relation and coequal-
izer of category theory are obtained as a particular instance considering the elementary doctrines
of subobjects and weak subobjects. Moreover, the exact completion of a category with strict finite
products and weak pullbacks, is a particular instance of a more general construction, namely the
elementary quotient completion. This construction has been introduced by Maietti and Rosolini in
[MR13] and it provides a procedure to add well-behaved quotients in a suitable universal way that
will be recalled in this section. This framework is particularly useful to treat the quotient construc-
tion in foundations of constructive mathematics based on intensional type theory.
We start recalling the notion of equivalence relation and quotient relative to suitable doctrine.

Definition 1.3.1. Let P : ¥°? — InfSL be an elementary doctrine. A P-equivalence relation on an
object X € ¢ is an element p € P(X x X) such that

ref) ox <p,
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sym) P10 <p,
trans) Pa2yp APursip < Puagp,

Where the arrows (2,1) : X x X—X x X and (1, 2), (2,3),(1,3) : X x X x X—X x X are induced
by the obvious projections.

Definition 1.3.2. Let P : €°? — InfSL be an elementary doctrine and let p be a P-equivalence relation
on X. A quotient of p is an arrow ¢ : X — C such that p < quqécl and, for every arrow g : A — Z
such that p < P,y 407, there exists a unique arrow h : C — Z such that g = hog.

A quotient is said stable when, for every arrow f : C — C’, there is a pullback diagram

AL o

f ’l lf

AT>C

in ¢ such that the arrow ¢’ : A’ — C" is a quotient of the P-equivalence relation P/, ¢/ p.

If f: A— Bisanarrow in ¢, the P-kernel of f is the P-equivalence relation P s(0R).

A quotient ¢ : A — B of the P-equivalence relation p is called effective if its P-kernel is p. The
quotient ¢ is of effective descent if the functor

Ps:P(B) — Des,
is an isomorphism.

We will denote by QD the 2-full 2-subcategory of EqD whose objects are elementary doctrines
of EqD with stable effective quotients of P-equivalence relations and of effective descent. The 1-
arrows of QD are 1-arrows (F, f) of ED such that F' preserves quotients and comprehensions.

We now recall the elementary quotient completion construction. Given an elementary doctrine
P : ¢°P — InfSL, we can consider the category ¢ whose

e objects are pairs (X, p), where X is an object of " and p is a P-equivalence relation on X,

e arrows between two objects (X, p) and (Y, o) are equivalence classes of the arrows f : X — Y
such that p < Py, ¢(0). Two arrows f, f’ are equivalent when p < P, ().

We now define the functor
P: %" = InfSL

which sends an object (X, p) € ¢ to P(X, p) := Des, and an arrow | f] to P| s := Py. The functor P
is called the elementary quotient completion of P.
There is an obvious 1-arrow
(J,j):P—=P

given by the functor J, which sends an object X € ¢ to (X,dx) € C and an arrow f : X — Y to
the arrow | f] : (X,dx) — (Y,0y). For every object X € ¥ the natural transformation j is defined
as jX = 1P(X)-

The elementary quotient completion is the construction which freely adds quotients to an ele-
mentary doctrine in the sense of the following theorem which appears as [MR13, Theorem 5.8].

"ff: A— Candg: B — D are arrows of €, then f x g denotes the unique arrow A x B — C x D induced by
fopr:AxB—Candgops: Ax B— D.
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Theorem 1.3.3 (Maietti and Rosolini). For every elementary doctrine P : €°P — InfSL in EqD, the
assignment P — P gives a left bi-adjoint to the forgetful 2-functor U : QD — EqD, i.e., pre-composition
with the 1-arrow (J, )

P

InfSL

<

<

.
\—/

Q0P

induces an equivalence of categories
o (J,5) : QD(P, X) = EqD(P, UX)
for every X in QD. O

If P is an elementary doctrine, then P is an elementary doctrine with quotients of all P-equivalence
relations. Given an object (X, p) € €, a P-eq relation p’ on (X, p) is nothing but a P-eq.relation on
X such that p < p’. A quotient of p’ is given by the arrow

[Lx] £ (X, p) = (X, ). (1.20)

Observation 1.3.4. As shown in [MR12] it is possible to split the elementary quotient completion
in different steps. Instead of starting from doctrines of EqD, it is possible to freely add comprehen-
sions, comprehensive diagonals and quotients separately. Every construction comes equipped with
a universal property in style of Theorem 1.3.3 between the right 2-categories. We refer to loc.cit. for
further details about these constructions.

We now discuss the relation between the exact completion discussed in Definition 1.1.5 and the
elementary quotient completion.

Example 1.3.5. When % is a category with finite strict products and weak pullbacks we can consider
the elementary doctrine of weak subobjects Psuby : € — InfSL of Example 1.2.6. As we observed,
this doctrine encodes the inner logic of weak subobjects. The notion of pseudo-equivalence relations
is nothing but the notion of equivalence relation in this logic. In particular, a pseudo-equivalence
relation on A is a pair of arrows

7’1,T2:R—>X

satisfying certain reflexive, symmetric and transitive conditions listed in Definition A.0.2. These
arrows induce an arrow

<’I”1,7"2> R X x X

and hence an element [(r1,72)] € Psuby (X x X) which is a Psubg-eq. relationon X. If ry, 79 : R —
X and s1, 52 : § = X are pseudo-equivalence relations and f, f is a half-homotopy between them,
then an easy proof shows that (rq,72) < Psubg ¢, ¢(s1, 52). This association define a functor

Cow — €
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which turns out to be an equivalence of categories. We observe that it is not an isomorphism because
in €., the objects are not considered up to the following equivalence relation. The pair r1, 72 : R —
X is equivalent to the pair 7}, : R* — AX if and only if there exist two arrows i : R — R’ and
h' : R" — R such that the following diagrams commute for i = 1,2

for i = 1,2. If two pairs are in relation as above, then | (r1,72)] = |(r],r5)]. A coequalizer of the
pseudo-equivalence relation r1,73 : R — A is a quotient of the Psuby-eq. relation [ (ry, r2)].

If P : €°? — InfSL is an elementary doctrine, then the elementary quotient completion provides
to add well-behaved quotients of P-equivalence relations. While, as we observed in the above ex-
ample, the exact completion provides to add well-behaved quotients of the Psuby-eq. relations (at
least when ¢ has strict product and weak pullbacks). These operations in general do not coincide
and, moreover, the category % is not necessarily exact. In the next chapter, we will work with a
concrete example of this fact. However, under suitable hypothesis we obtain that the elementary
quotient completion yields a regular category.

The following is an immediate corollary of [MR13, Proposition 4.15]

Proposition 1.3.6. If P : €°P — InfSL is an elementary doctrine with full weak comprehensions and
comprehensive diagonals, then the base category € of the elementary quotient completion P of P is a reqular
category. O

The elementary quotient completion P inherits some of the properties of P. We now list some
of the properties inherited by P that can be found in the mentioned literature.

Proposition 1.3.7. If P : €°P — InfSL is an elementary doctrine, then:
1. if P has (full) weak comprehensions, then P has (full) strict comprehensions,
2. if P is existential, then P is existential,
3. if P is universal, then P is universal,
4. if P is implicational, then P is implicational.

We now discuss the elementary quotient completion of the elementary doctrine FM’ arising
from type theory.

Example 1.3.8. The elementary quotient completion of the elementary doctrine FM% of Exam-
ple 1.2.8 is given by the functor
FML @ — InfSL

from the opposite of the category ¢ whose

e objects are pair (X, | R|) where X is a closed type and | R] is the equivalence class of a de-
pendent type
I1,x2 X+ R(xl,acg)

which is an equivalence relation,
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e arrows between two objects (X, | R]) and (Y, [ S]) are equivalence classes of arrows f : X — Y
such that f preserves the relations R and S as in (1.6) and (1.7).

It turns out that the category of setoids is equivalent to the base category of the elementary quotient
completion of FML j.e. -
Std = ML. (1.21)

Moreover, as observed by the authors of [MR13] the elementary doctrine F*L is equivalent to
the elementary doctrine of weak subobjects PSubpy, of the weakly left exact category of types ML.
This result follows from the existence of comprehensions and existential functors which define the
one-arrows

ML°P
F]\/IL
Tdwv 3()T<)T\L{]_I} InfSL. (122)
PSLIbML
ML°P

The comprehensions provide a natural transformation
{—1F:FME(X) — Psubpsr(X)

which sends the equivalence class of a dependent type = : X F B(x) to the equivalence class of the
arrow

T Z B(z) — X.
z: X
The ¥-type defines a natural transformation
3(_)—|—(_) : PSUbML(X) — FML(X)
which sends the equivalence class of an arrow f : Y — X to the dependent type

r: XF Z Idy (f(z),y)
yY

up to logical equivalence. The above arrows provide an isomorphism of posets.
As an application of Example 3.4.4 we obtain a proof of the Fact 2 and in particular

ML = Std = ML,,. (1.23)
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Chapter 2

Homotopy setoids

In this chapter, we study a particular class of setoids, which we will refer to as the homotopy se-
toids. Taking into account the homotopical perspective of the homotopy type theory (HoIT) , we
considered only "discrete" types equipped with an equivalence relation which only contains the
information of when two elements are related. In the HoI'T notation [Unil3], the former types are
called h-sets and the latter are called h-propositions. However, the type theory we have considered
does not assume the univalence axiom or higher inductive types typical of HoI'T but it is just the inten-
sional Martin-Lof intuitionistic type theory with the functional extensionality axiom (ML + F.E.).

We studied the categorical properties of the homotopy setoids which form a full subcategory
Std, of the category of setoids Std introduced in the previous chapter. Our goal is to prove that
Std, has good categorical properties as Std does. In particular, since Std is a [IW-pretopos, in this
chapter we ask if Stdy

e has well-behaved quotients,
e is (locally) cartesian closed,
e is extensive.

In order to address the first one, we observe that the main difference with the classical setoids is
that in the homotopy setoids not every equivalence relation has quotient, but only those related with
the h-propositions. Hence, Std is not the exact completion of a suitable category as it happens for
Std. For this reason, we adopted the categorical setting of the elementary doctrines introduced by
Maietti and Rosolini in [MR13], which allows us the possibility to consider quotients of equivalence
relations relative to a doctrine. If ML, denotes the category of the h-sets, we can consider the functor

FMLo MLEP — InfSL

which sends an h-set X to the poset of the h-propositions depending on X up to logical equivalence,
and acts on arrows as substitution. We prove that this functor is an elementary doctrine with several
properties and considering the elementary quotient completion

FMLo : MLy — InfSL

we obtain that Stdg = ML,. Hence, h-setoids are an instance of a more general form of quotient
completion and the quotients are well-behaved with respect to the doctrine F'* 1o,

Instead of working directly on Std,, we study the properties of the elementary quotient com-
pletion following the tradition started by Maietti, Rosolini. Hence, in Section 2.3 we will generalize
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to the context of the elementary quotient completion the result in [CR00] and [Emm20] about the
(local) cartesian closure of the exact completion. In Section 2.5, we will generalize the result in
[GV98] about the extensivity of the exact completion. In Section 2.6, we will apply these results to
FMLo and obtained that the homotopy setoids form a [I-pretopos relative to FMLo,

As we will discuss, this chapter has a non-trivial intersection with [MPR21]. In loc.cit. the au-
thors extend to the elementary quotient completion Menni’s characterization of the exact comple-
tions which are toposes [Men00] and give a different (but equivalent) proof of the result we ob-
tained for the (local) cartesian closure. The connection between our result and the one in [MPR21],
will be discussed in Section 2.4.

2.1 Definition and properties

In this section, we recall some notion of homotopy type theory and define the particular class of
setoids which will be studied in more detail along the chapter. In addition, we discuss the first
categorical properties of these setoids and the differences with the usual setoids introduced in Sec-
tion 1.1. For the homotopy type theoretical notions we refer to [Unil3] and [Rij18].

Before starting, we fix the type theory assumed for the rest of the chapter.

Remark 2.1.1. The type theory assumed is the intensional Martin-Lo6f intuitionistic type theory
with the functional extensionality axiom (ML + F.E.). All the notations and the type constructors
used can be found in Appendix B.

We now recall the definition of the homotopy type and briefly discuss the geometrical intuition of
types as topological spaces, typical of the homotopy type theory.

Definition 2.1.2. The homotopy type of a type X is defined inductively as follows:
- type2(X) := ) [[ldx(z,y)

z: X y: X
- type_1(X) == [] ldx(z,y)
z,y: X
- typeo(X) := [] type_1(ldx(z,y))
z,y: X
- typens2(X) = HXtYPenH('dX(%y))
T,y

If n > —2 is the first integer such that type,(X) is inhabited, then we will say that the homotopy
type of X is n.

By induction, we observe that if X has homotopy type equal to n, then the type;(X) is inhabited
for every j > n. If the homotopy type of X is equal to —2, then the type is called contractible.
The homotopical intuition is that the type X has an inhabitant  : X and every element of X
is propositional equal to z. If the type X has homotopy type equal to —1, then it is called an k-
proposition or mere proposition, using the notation in [Unil3]. The h-propositions were also called
mono types in [Mai98]. In this case, X can be only empty or contractible, which corresponds to the
truth values true and false. If X has homotopy type equal to 0, it is called an h-set. The homotopical
intuition is that X corresponds to the set of its connected components. For 1 < n types should
be thought as higher groupoids. This correspondence has been crystallized in [KL21] in which
the authors provide a model of the homotopy type theory in one of the possible formalization of
infinite-groupoids in higher category theory [Lur09].
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Example 2.1.3. The empty type 0 and the one element type 1 are h-propositions. The two elements
type 2 and the natural number type N are h-sets.

We mainly focused on h-sets equipped with an equivalence relation which is an h-proposition.
Definition 2.1.4. An homotopy setoid is a setoid (X, R) such that X is an h-setand R is an h-proposition.

We could define the homotopy setoids with respect to a general homotopy type 1, saying that
an n-setoid is a setoid (X, R) such that the type X has homotopy type equal to n and the type R
has homotopy type n-1. In this way, the homotopy setoids correspond to the 0-setoids. If we denote
with ML,, the full subcategories of ML of closed types with homotopy type n and with Std,, the
full subcategory of Std of n-setoids, then we have the following diagram of inclusions

MLy — ML, ML
(.,|d,)I (.,Id.)I (-,ld.)I
Stdo — Stdl Std

where the vertical arrows are given by functors which send a type X to the free setoids (X, Idx) and
an arrow ¢t : X — Y to the equivalence class [t] : (X, ldx) — (Y, Idy). The definition of homotopy
type ensures that this functor is well-defined for every degree n > 0.

Remark 2.1.5. The homotopy types preserve various type constructors. For instance, as discussed
in [Unil3, Example 3.1.5, 3.1.6, 3.6.1 and 3.6.2] if X and Y are h-sets (h-propositions), then the
product type X X Y is an h-set (h-proposition). If X and Y are h-sets, then the sum type X + Y is
an h-set. If X is any type and = : X - B(x) is an h-set (h-proposition), then the type

[[B(@)
z: X

is an h-set (h-proposition). For the h-sets, the functional extensionality axiom is needed in order
to obtain that dependent function type is an h-set. This is the main reason why we adopted this
axiom.

Moreover, if X is an h-set and z : X - B(z) is an h-set then the type

> Bl)
x: X

in an h-set; similar properties hold for every homotopy type of level n > 0.

However, not all type constructors preserve h-propositions. For instance, if X and Y are h-
propositions, the sum type X + Y is not necessarily an h-proposition; the one element type 1 is an
h-proposition, but the sum 1+1 is an h-set. A similar issue happens for the X-type. If X is a type
and P is an h-proposition, the type

> Pl)
r: X

is not necessarily a h-proposition.

For these reasons we recall two useful results in order to have h-propositions preserved for -
types and +-types. The following appears as [RS15, Lemma 2.2] but before we recall that, for a
type x : X F P(x), the type

at-most-one(X) := [[ P(z) = P(y) — ldx(z,y) (2.1)
z,y: X
expresses the property of P(z) to have at most one element for which it holds.
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Lemma 2.1.6 (Rijke-Spitters). If X is any type and x : X + P(x) is ah h-proposition such that the type
in (2.1) is inhabited, then the type

Y P(x)

x: X

is an h-proposition. O
The following result appears as [Unil3, Exercise 3.7].
Lemma 2.1.7. If X and Y are h-propositions and —(X x Y') true, then X + Y is an h-proposition. O

As we have seen in Section 1.1, the category of types ML has strict finite products and weak
pullbacks, hence all weak finite limits. For the subcategory of h-sets we obtain a stronger result.

Lemma 2.1.8. The category MLy is left exact.

Proof. Equivalently, we prove the existence of finite products and pullbacks. The existence of finite
products follows from Remark 2.1.5 and elimination rule of x-types. This is a consequence of the
fact that for h-sets, the identity type is an h-proposition and hence, given two arrows between h-sets
|t] : X — Aand |u] : Y — A the diagram

> lda(t(z),uly)) ——=Y

z: X,yY
l (2.2)
A.

o

X ——
has the strict universal property of pullbacks. O

We now discuss some categorical properties of the category Stdy. In order to do that, we will
review the steps of a direct proof of the fact that Std is an exact category and observe that most of
the results hold for the category Std.

Proposition 2.1.9. The category of Stdy is a reqular category.

Before providing a proof of the above proposition, we prove some preliminary results. We start
recalling how finite products and equalizers are constructed in the category of setoids. If (X, R)
and (Y, S) are setoids, the the product is given by

(X xY,RxS) (2.3)

where z: X XY x X XY F R(z1,23) X S(22,24) and z; := m;(2), for 1 < i < 4. A trivial verification
shows that the reduction rule implies the universal property of products.
Moreover, given two arrows | f1, |g] : (X, R) — (Y, .S) then the arrow

Z S(f ), R') = (X, R) (2.4)

where R/(z1, z2) :== R(nz1,m22) for z1, 23 : Z S(f(x),g(zx)), is the equalizer of | f] and |g].

The above argument can be repeated for the homotopy setoids.

Lemma 2.1.10. The category Stdy has finite products and equalizers.
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Proof. If (X, R) and (Y, S) are homotopy setoids, then Remark 2.1.5 implies that the setoids (X x
Y,R x S)and (> S(f(z),g(x)), R') are h-setoids. O
z: X

The above lemma implies that Std,, such as Std, has finite limits. For instance, a pullback of two
arrows | f|: (X,R) — (Z,T) and |¢g] : (Y,S) — (Z,T) is given by

(P,(RK S)") -2,

gl

Lg
(X, R) 5 (Z,T)

P =SS T(f (@), 9(v))

X yY

(Y, S)
: (2.5)

where

and
(R& S)*(Zl,ZQ) = R(?lel,?TlZQ) X 5(71'221,7T2.1‘2),

for z1, 22 : P and m; and 7y the canonical projections of P into X and Y respectively. If | f] = |g]
we obtain a kernel pair of | f]. If | f] : (X, R) — (Z,T) is an arrow of Std, then the kernel pair of
| f] is given by the following pair of arrows:

|71], [m2] : (P, (RX R)*) — (X, R) (2.6)

where P := > > T(f(x1), f(x2)). The quotient is obtained providing X with a suitable equiv-
x1: X x2: X

alence relation. If we define x1,z2 : X F R(z1,22) to be R(z1,22) := T(f(x1), f(x2)), then the
coequalizer of |7 ], |m2] is given by the arrow

[1x]: (X, R) = (X, R).

Indeed, if an arrow |g] : (X, R) — (Y,S) coequalizes |71], [m2] it implies that |g](z1) = |g](z2)
when T(f(z1), f(22)). Hence, g induces an arrow |g] : (X, R) — (Y, S) such that |g]|1x] = |g],
which is clearly unique.

In the following proposition we prove that kernel pairs have coequalizers also in Stdy.
Proposition 2.1.11. In Std, every kernel pair has coequalizer.

Proof. If | f] is an arrow of Stdy, then the kernel pair is still in Stdy. The construction of the co-
equalizer relies on R which is obviously an h-propostion if R is an h-proposition. O

We now prove that regular epimorphisms are pullback stable. In order to do that, we recall a
characterization of epimorphisms in the category Std due to Wilander in [Wil10]. There, the author
shows that an arrow | f] : (X, R) — (Y, 5) is an epimorphism if and only if it is a surjective arrow,
i.e. the following type is inhabited:

sur(f) =[] D S(f (). ). (27)
yY x: X

The left to right direction requires the assumption of a universe in the type theory; otherwise, there
is a model introduced by Smith in [Smi88] in which the statement does not holds. Instead, the fact
that every surjective arrow is an epimorphism holds without universes.



24 CHAPTER 2. HOMOTOPY SETOIDS

Among the various notions of epimorphism in a category, there is that of coequalizer. In Std
this notion coincides with that of surjectivity.
Indeed, a term of surj( f) implies the existence of a section s : Y — X of f, which clearly induces
an arrow
|s]: (Y, S) = (X, R).

The arrow |s] is the inverse of the unique arrow induced by the universal property of the coequal-
izer [1x] : (X, R) — (X, R). Hence, | f] is a coequalizer of its kernel pair.

Vice versa, if | f] is the coequalizer of two arrows |g], |h] : (Z,T) — (X, R), then we can con-
sider the setoid arrow

712 Q0D 8(f(2),9).8) = (Y. ), (28)
yY x: X
where S'(z1, z2) := S(n(z1), m(22)), for z1, 22 : > > S(f(x),y). Since the above arrow coequalizes

yY x: X
|g] and | h] it follows that there exists an arrow

.Y = S0 S(f (@), )

Y a:X

from which we can extract a term of surj(f).
The same correspondence bettween surjective arrows and coequalizers holds for the homotopy
setoids.

Lemma 2.1.12. Anarrow | f]: (X, R) — (Y, S) of Stdy is surjective if and only if it is a coequalizer.

Proof. If | f] is an arrow of Std, then the kernel pair and its coequalizer are in Stdy. The same holds
for the arrow in (2.8). Hence, the argument is valid in Std. O

The above result and the one in [Wil10] imply the following characterization of epimorphisms
in Std and Std.

Corollary 2.1.13. If [ f] : (X,R) — (Y,S) is an arrow of Std the following conditions are equivalent, if
| 1 is an arrow of Stdy, then the last two conditions are equivalent:

1. | f] is an epimorphism,
2. | f] is surjective,
3. | f] is an reqular epimorphism.

This characterization of the epimorphisms helps to understand their stability properties. In Std
the regular epimorphisms are stable under pullback. This is better seen if we reason about surjective
arrows. Indeed, if [ f] : (X,R) — (Z,T) is a surjection and |g]| : (Y,S) — (Z,T) is an arrow, the
description of pullbacks in (2.5) implies that the statement is equivalent to prove that the arrow

|m2] : (P, (RXRS)") — (V,5) (2.9)

is a surjection, where P := ) > T(f(z),9(y)) and
z: X yY

(R S)*(21,292) := R(mz1,m122) X S(me21, T2x2). (2.10)
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If s : surj(f) and for every z : Z the term s(z) := (s1(z),s2(2)) with s1(z) : X and s2(2) :
T(f(s1(2),2)) then
y: Y (s1(9(2)), y, 52(9(2)), refl(y)) : surj(ma).

The same argument holds for homotopy setoids.

Proposition 2.1.14. In Std reqular epimorphisms are stable under pullback.

Proof. If | f] and |g]| are arrows as above between homotopy setoids and | f] is surjective, then the
arrow in (2.9) is an arrow of homotopy setoids and it is a surjection. The statement follows from
Corollary 2.1.13. O

We can now collect the above results to prove Proposition 2.1.9.

Proof of Proposition 2.1.9. In Lemma 2.1.10 we have proved that Stdy has product and equalizers.
Proposition 2.1.11 implies that every kernel pair has coequalizer. Finally regular epimorphism are
pullback stable as shown in Proposition 2.1.14. O

We now discuss the properties of monomorphisms of Std and Stdy. As for surjectivity, the
injectivity of an arrow | f]: (X, R) — (Y, S) can be expressed through the type

inj(f H S(f x2)) — R(x1,x2). (2.11)
z1,r2: X

We now prove that monomorphisms and injective arrows coincide both in Std and Std,.

Proof. Assuming | f] : (X, R) — (Y, S) injective, if |g], |h] : (Z,T) — (X, R) are two arrows such
that | f]lg] = [f]]h], then we have a term of

I 7(z1,22) = S(£(9(21), F(h(22))))
21,22:74
that we can combine with a term of inj(f) in order to obtain a term of
H T'(z1,22) = R(g(z1), h(z2))
21,22:7

which state that |g] = |h]|. Vice versa, if | f| is a monomorphism, then we can use left cancellability
of | f] with the arrows obtained through the composition of the arrow

712 () S(Fa), f(22),(RER)") = (X x X, RHR)
x1,x2:X
with the projections |m;] : (X x X, RK R) — (X, R), fori = 1,2, where (R X R)* is defined as in
(2.5). Hence, we obtain |71 || 7] = |m2]|7]. Since
[71: (Y R(z1,22),(RRR)*) = (X x X, RKR)

z1,r2: X

is an equalizer of |7;| and |72 ], we obtain an arrow
> S(f(@), fwa)) = > R(xr,a2).
z1,22: X z1,x2: X

From this, we can extract a term of inj(f). O
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Remark 2.1.16. We have now completed the discussion about the epimorphisms and monomor-
phisms of Std and Stdy and we have proved some relations with the arrow for which there is a
witness of the surjectivity (2.7) and of the injectivity (2.11). If we consider the arrows of ML or
ML, and the types

surj(f) := [ D v (f(z),0)  inj(f) == [ My (f(a1), fz2)) = ldx (1, z2),

yY x: X x1,x2:X

then, since we are considering arrows up to function extensionality, a trivial verification shows that
if an arrow is an injection (surjection), then it is also a monomorphism (epimorphism). Vice versa,
the argument of the proof of Proposition 2.1.15 can be used to show that every monomorphism is
an injection in ML and MLy.

At this point we ask if all the equivalence relations in Std, are effective as it happens for the
pretopos Std. Unfortunately, the answer is negative due the homotopy restrictions on the types.
We now recall the proof of this fact for Std that can be found for instance in [MP0O0], in order to
underline the problems which occur in Stdy.

Proposition 2.1.17. In Std every equivalence relation is effective.

Proof. Let |r1], |r2] : (Y, S) — (X, R) be an equivalence relation on (X, R). Define the dependent
type
T1, 22 X F R(x1,9) ZR (r1(y), z1) X R(r2(y), z2). (2.12)

Since |r1], |r2] form an external equivalence relatlon, we can extract the terms witnessing that the
above type is an equivalence relation in the type theoretic sense. Moreover, using that 7], 2] are
jointly monomorphic, we can prove that (Y, .S) is isomorphic to the domain of the kernel pair of the
arrow

l1x]: (X,R) — (X, R).

O

Unfortunately, the above argument does not work in Stdy. Indeed, the relation in (2.12) is not
necessarily an h-proposition, and then not every equivalence relation in Stdy has a coequalizer.
This should not be surprising since, as we mentioned in Section 1.1, Std is equivalent to the exact
completion of the category ML and, as observed in Remark 1.1.6, in ML the internal and the external
notion of equivalence relation coincide. For MLy this correspondence occurs with some restrictions.

Remark 2.1.18. If X is an h-set and =,y : X F R(x,y) is an equivalence relation which is an h-
proposition, then we can consider the arrows between h-sets

T, o Z R(z,y) —» X (2.13)
z,y: X

given by the projections on the first two components and obtain a pseudo-equivalence relation.
Since R(z,y) is an h-proposition, it has at most one inhabitant and, hence, 7, m are a jointly
monomorphic pair.

Vice versa, given a jointly monomorphic pseudo-equivalence relation 1,72 : R — X, we can
consider the dependent type

zy: X B ldx(ri(2), ) x ldx (ra2(2), y) (2.14)
z:R
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and obtain witnesses of the fact that is a type theoretic equivalence relation on X. The type

ldx (r1(2),z) x ldx(r2(2),y)

has at most one element with respect to z. Indeed, for every z, 2’ : R if the type in (2.14) is inhab-
ited, it follows from the fact that r;7, are jointly monomorphic that Idz(z, 2’) is inhabited. Hence,
Lemma 2.1.6 implies that (2.14) is an h-proposition.

Intuitively, in Stdy only some quotients have been added, namely those of the equivalence rela-
tions which come from an h-propositions. These equivalence relation are those that arise in practice
when formalizing set-based mathematics such as the usual algebraic structures. In the next section,
we will make this discussion precise setting the study of homotopy setoids in the categorical setting
of the elementary doctrines.

Remark 2.1.19. Another possibility could be to add the propositional truncation higher inductive
type to the type theory we have considered so far. The propositional truncation of a type, also called
squash type in [Men90] or bracket type [ AB04], is an h-proposition with a suitable recursion principle.
Adding this type constructor, we could consider the truncation of the type in (2.12). In this way,
the category Stdy becomes exact; we refer to [Unil3] for further details about the propositional
truncation.

2.2 Homotopy setoids as elementary quotient completion

In this section, we arrange h-sets and h-propositions in a suitable elementary doctrine and prove
that the homotopy setoids are obtained applying the elementary quotient completion to it. We
observe the first properties of this doctrine and recover the results of the previous section in this
framework. The comparison between setoids and homotopy setoids becomes, in this section, a
comparison between the new structure and the elementary doctrine F! arising from the type
theory.

We recall from Example 1.2.8 that the functor

FML . ML — InfSL

which sends a closed type X to the poset of dependent type x : X - B(x) up to logical equivalence,
and acts on arrows as substitution of terms, is an elementary doctrine. The identity type Idx €
FML(X x X) plays the role of the fibered equality.

Remark 2.2.1. Since we are now working with the type theory ML plus the functional extensional-
ity axiom, we will denote the corresponding elementary doctrine of 1.2.8 with FM~" . However, the
elementary doctrines FML" and FML are very similar and Proposition 1.2.21 holds also for FML"
The main difference will be discussed in 2.6.8.

We now define suitable elementary doctrines for every homotopy type. For every subcategory
ML,, € ML, for n > 0, we define the functor

FMLn . ML — InfSL (2.15)

which sends a type X of homotopy type n to the poset of the dependent types of homotopy type
n-1. The action on the arrows is given by substitution on a(ny) representative. The definition
of homotopy type implies that the identity type of X has homotopy type n-1 and hence Idx €
FMIn(X x X) provides the fibered equality. With the notation adopted, the elementary doctrine
of homotopy setoids is FM%0. As discussed in Proposition 1.2.21 F1 is a rich elementary doctrine
and we want to prove similar results of Lo,
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Proposition 2.2.2. The functor FMLo . MLJP — InfSL is an elementary doctrine with full strict com-
prehensions and comprehensive diagonals. Moreover, if m : X — Y is a monomorphism, then the functor
FMLo hgs g left adjoint.

Proof. Remark 2.1.5 implies that h-propositions are preserved by the x constructor. Moreover, 1
is an h-proposition and it is obviously terminal. Hence, h-propositions up to logical equivalence
form an inf-semilattice.

The equivalence class of the identity type Idx provides the elementarity of FM%0 Ifx : X - B(z)
is an h-proposition depending on the h-set X, then the equivalence class of the projection

S ZB(:U) —- X (2.16)
z: X

provides a full strict comprehension of B. Indeed, given an arrow f : ¥ — X, the equation
FJ{” L(B) = Ty in the language of the type theory becomes the existence of a term y : Y I #(y) :

B(f(y)). If we denote with Z := > B(x), we can consider the arrow
z: X

Yy =27

which sends a term y : Y to the pair (f(y),¢(f(y))) : > B(z). Obviously, m; o f' = f. We now
z: X

prove that the comprehension 7 is strict because it is a rrionomorphism. Equivalently, as discussed
in Remark 2.1.16, we can prove that it is an injection, which means that the type

inj(m1) := H ldx (71(21), m1(22)) = ldz(21, 22)

21,29: 74

is inhabited. This follows from the description of the identity type of Z which can be found in
[Unil3, Theorem 2.7.2] where it is proved that there is a logical equivalence of the types

IdZ(Zlv 22) = IdB T 22 (p*(WQZl)aﬂ—QZ?)
(m222)

P1|dX(7T12177T122)

where p* is the transport operator, see [Unil3, Lemma 2.3.1] for a detailed definition. However,
since B is an h-proposition we can extract a witness of Id g(r,,)(p* (7221), m222) and hence of inj(71).

The comprehensions are trivially full. In order to prove that FMLo ; pMLo(y) — pMLo(X) has
a left adjoint, we observe that given an h-proposition x : X F B(z) and an injectionm : X — Y,
the type

B(z) x Idy (m(x),y)

is true for at most one x in the sense of (2.1) and, hence, Lemma 2.1.6 implies that the type

y: Y F Y B(x) x ldy(m(z),y) (2.17)
X

is an h-proposition. The correspondence which sends a type B(z) € FMLo(X) to the type in (2.17)
trivially defines a left adjoint of F}/%0. Finally, diagonals are comprehensive because the arrows of
ML and ML, are defined up to functional extensionality. O
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The equivalence observed in Example 1.3.8, between the elementary doctrine F% and the el-
ementary doctrine of weak subobjects PSubyy, of the weakly left exact category of types ML, con-
tinues to holds for the elementary doctrine £ L,

ML°P
FMLT
Tdwv 3()—\7()1\\[{]_[} InfSL. (218)
PSLIbML
ML°P

Using Proposition 2.2.2, we can prove that the elementary doctrine of h-sets F %0 is equivalent to
another elementary doctrine we encountered in the first chapter, namely the elementary doctrine
Submr, of subobjects of the left exact category MLy, see Example 1.2.7.

ML
FMLg
Tdy 3<—>T<—>H{J—I} InfSL (2.19)
SUbMLO
ML

Proposition 2.2.3. The elementary doctrine F*Lo is isomorphic to the elementary doctrine Subpr, of sub-
objects of MLy.

Proof. The functors are well-defined thanks to Proposition 2.2.2. For an h-set X € MLy, we have
two functors between the posets
ﬂ — l} : FMLO(X) <:> SUbMLO : 3(,)7—(,)

If x : X F B(x) is an h-proposition, and Z : Z B(z) is the domain of the comprehension
m : Z — X, then we want to prove that B(z) is loglcal equivalent to
x: XF Zldx(m(z),x)
z:Z

which is obvious. Vice versa, if m : Y »— X is a monomorphism, then the left adjoint 3,, Ty is
given by the fibers

fiby, (z) := ZldX(m(y)vx)

yY

and the strict comprehension is given by
S Zfibm(a}) —- X
z: X

The arrow h : Y — E fib,, (x), which sends a term y : Y to h(y) := (m(y),y, refl(m(y))) and the
arrow my : Z fiby, (z ) —> Y are such that mmy = m and m1h = m. Hence, m and 7 are in the same

equivalence class O
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A FMLo_eq. relation on an h-set X is exactly the equivalence class of an equivalence relation
z1,x2 : X F R(z1,z2), which is h-proposition, up to logical equivalence. This observation and
the above proposition recover the correspondence already observed in Remark 2.1.18 between the
internal and external notion of equivalence relation in MLy.

Applying the elementary quotient completion to F*Z0 we obtain the elementary doctrine

FMLo : MLy — InfSL
and, by construction, we obtain the equivalence
Std, = ML,. (2.20)

We recall that, since elementary quotient completion of the elementary doctrine of weak subobjects
of a weakly left exact category is equivalent to the exact completion, we obtain for the setoids the
equivalences

Std = ML = ML,,. (2.21)

Applying Proposition 1.3.6, which state the regularity of the base category of suitable doctrines, to

FMLo, we recover the regularity of the category of h-setoids already proved in Proposition 2.1.9.

Remark 2.2.4. The equivalence in eq. (2.20) can be considered as a solution to the problem of
understanding if Std, has well-behaved quotients. Thanks to 1.3.3, we obtain that ML has stable

effective quotients of FMLo-equivalence relations and of effective descent.

We can now pursue the study of the categorical properties of h-setoids but, instead of working
directly on the category Stdy, we will study them as the elementary quotient completion of F*%0. In
the next sections, we will provide the conditions on an elementary doctrine P which are equivalent
to the (local) cartesian closure and to the extensivity of the base category of P. Doing so, the results
obtained will be usable for all the setoids built over the type theories that can be resembled in
suitable elementary doctrines.

2.3 (Locally) cartesian closed elementary quotient completion

In this section, we give the conditions on a suitable elementary doctrine P such that the base cate-
gory of P is (locally) cartesian closed. In order to do that, we will take advantages from the results
obtained by Carboni and Rosolini [CR00| and Emmenegger [Emm?20] about the (local) cartesian
closure of the exact completion. A similar result about the local cartesian closure of the elementary
quotient completion can be found in [MPR21], in the next section we will discuss the differences
between our result and the one in loc. cit..

We first recall the weak notion of cartesian closure in case of categories with strict finite products.

Definition 2.3.1. Let P : ¥ — InfSL be an elementary doctrine. The base category % is said
weakly cartesian closed if for every pair of objects X,Y € ¢ there exists an object YX and an arrow
e: YX x X — Y satisfying the following weak universal property: for every arrow f : Z x X =Y
there exists an arrow h : Z — Y X such thateo (h x 1x) = f. The arrow e is usually called a weak
evaluation.

In case of the elementary doctrine of weak subobjects PSubg, the above definition coincides with
the notion of weak exponential given in [CR00].

We now provide the first result about the cartesian closure of the elementary quotient comple-
tion.
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Theorem 2.3.2. Let P : €°P — InfSL be a universal elementary doctrine with full weak comprehensions.
The category € is weakly cartesian closed if and only if € is cartesian closed.

Proof. The cartesian closure of % trivially implies the weak cartesian closure of €. Vice versa, we
first prove the statement for two objects of the form (X, dx) and (Y, o). Since ¢ is weakly cartesian
closed, there exists an object Y ¥ and a weak evaluation arrow

ex :Y¥ x X Y.
We define the following element of P(Y X x YX)

60).( = V<1,2>P<173,273> PeXXeX (O') (222)

where (1,3,2,3) : YX x YX x X = Y¥* x X x YX x X is the arrow induced by the obvious
projections. Since o is a P-eq. relation, it is straightforward to prove that also X is P-eq. relation.
We now prove that the object of ¢

(Y™, &)

is a strict exponential of (X, dx) and (Y, ¢). In order to do that, we first prove that the weak evalu-
ation arrow ey induces an arrow

lex] : (YX, eX) % (X,6x) = (Y, 0)

g

which means that
65.( g 6X S PQXXEXO-‘

The above inequality is obtained through the following computation

ex W ox = V(19 P 1,323 Pey xey (0) B dx
= P<173>v<172>P<1,372,3>P€Y><€Y(U) A P<2,4>5X
< P32yP1,32,3) Peyxey (0) AP24y0x

where (1,3,2) : YX x X x YX x X - YX x YX x X. The inequality
P1,32)P 1,323 Pey xey (0) AP24y0x < Peyxexo
is an immediate consequence of elementarity, indeed it holds the adjunction
P32 (=) APpaydx A Pr 323 (—).
The arrow |ex | shares the required universal property: if
Lf1:(2,Q) x (X,6x) = (Y, 0)

is an arrow in €, then ex implies the existence of an arrow h : Z — Y ¥ such that ex(h x 1x) = f.
We now prove that h induces an arrow

[h]:(Z,0) = (Y¥, )

o
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such that [ex|([h] X 1(x,s5)) = Lf]. In order to do that, we prove the inequality { < Ppxxey as
follows:

Phxhgc);( = Phxhv(1,2>P(1,3,2,3> Pey xey (0)
= V(1,2)Phxchx1x P(1,3,2,3) Pey xey (7) (B-C)
= V(1,2)P(1,3.2,3)Phx1x xhx1x Pey xey (0)
=Va2P323)Prxro
> Vi12)Pa323(Rix
> (. (P2 7 Va.2)

The arrow |h] such that [ex]([h] X 1(x5,)) = Lf] is unique. Indeed, if |h'] is a different arrow
such that [ex]([A'] X 1(x,5)) = Lf], proceeding as in the above computation we obtain that

X
¢ < Phxwes

and then |h] = |A/].

For the general case, consider two objects (X, p) and (Y, o) in €. The equivalence relation e
not enough to build a strict exponential of (X, p) and (Y, o), but we can use it as follows.

Let {p}} : R — X x X be a weak full comprehension of p € P(X x X). We fix the notation
ri := p; o {p|} for the post-composition with the projections p;, for i = 1, 2. The universal property
of the weak evaluation arrow implies the existence of two arrows

X

o is

Yy yX 5 vR

such that the the following diagram commutes for 7 = 1,2
1 i
YXx R X, yX o x
YT"i XlRl lex (223)

YEXR ———— V.
R

Given a weak full comprehension ¢ : C' — Y of the element Py ’Yr2>E§, we prove that the object

(07 PCXCEg()

is a strict exponential of the objects (X, p) and (Y, o).
Firstly, we observe that since ¢2\ is a P-equivalence relation, so it is P.x.c4 . Secondly, we provide
an evaluation arrow of the form

(C,Pexeey ) x (X, p) = (Y, 0).
In order to do that, we consider the arrow ex (¢ x 1x) : C' x X — Y and prove that
chcgi( Xp< PeX(cxlx)XeX(cxlx)U' (224)

The description of comprehensions in the elementary quotient completion, see Lemma A.0.14, im-
plies that the arrow
le] : (C,Pexees ) = (Y¥,€7)

is a full strict comprehension of Py ’Y'r2>€§ € Des.x, and that the arrow
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LB = (R Popxqppdxxx Moxxx) = (X x X, 0xxx)

is a full strict comprehension of p € Des;s, . .. Hence, ?? implies that the arrow

(Lo poseex) X 1] Liep oy ex) X [72])

where |7;] := [pi] o [{p[}]| are given by the post-composition of |{p[}| with the projections
[pi] + (X x X,6xxx) — (X, dx),is a strict comprehension of ¢ p,. .x) X p. The inequality (2.24)
is equivalent to

O(CPerec) B8P < P(lelxi s, x (1] x1(x.5400) PlexTxLex10(V,0)

and, by fullness of comprehensions, it is equivalent to prove that

T < Ppsn @b P ¥ (L x.g) PleaTx Lea10(V,0)

Since quotients are effective we can prove the above inequality in
P((C,Pexcey ) x (R, 6R)),
i.e. reindexing through the quotient arrow
1% q:(C,Pexcey) X (R,06R) = (C,Pexcen ) X (R, Pyppxqppx xx B xxx)

where q : (R,0r) — (R, Py, xqppdxxx B dxxx) is the obvious quotient arrow. The statement now
follows from the commutativity of the following diagram for i = 1, 2

(€, PexecX) x (R, 05) —21% (0, Puyee) x (X, 0x)

lc] x 1l ch] x1

(VX eX) x (R, 65) —29 4 (v X Xy 5 (X, 6x)

x| lleﬂ

(YE B) x (R, 0R)

ler]
We now prove that the evaluation arrow just found
lex(ex 1x)] = (C.Pexees ) X (X, p) = (Y, 0)

has the required strict universal property. If | f] : (Z,() x (X, p) = (Y, 0) is an arrow, the weak
evaluation ex implies the existence of an arrow h : Z — Y X such that ex(h x 1x) = f. Applying
the Beck-Chevalley conditions we obtain that

R
PrxnPyrixyraes = =V0u2)Pu323)PloxrxizxnPrxso

and, since ( X p < Py, so, it follows that

PrxhPyrixyraell

=V1,2P1,3,2,3)P1yxrix1,xr Prxfo

> Vi1,2)P1,323)P1yxrix1,xrm (B p

> Va2)Pa2¢ (P2 Va2)
> C.
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Hence, applying P ,, we obtain
T< PhP<YT17YT2)5f

and the universal property of weak comprehensions implies the existence of an arrow g : Z — C
such that ¢ o ¢ = h. The arrow g induces an arrow

91 (Z,Q) = (C,Pexeey)

such that | f] = [ex(cx1x)](lg] x 1(x,))- An easy verification shows that the arrow | g| with such
properties is unique.
O

Remark 2.3.3. A result similar to Theorem 2.3.2 is [MR13, Proposition 6.7]. The results are very
similar but the authors assumes implications in place of fullness of comprehensions.

Before proceeding with the local cartesian closure of the elementary quotient completion we
make some observations.

If P : € — InfSL is an elementary doctrine with weak comprehension and comprehensive
diagonals, we can build weak pullbacks through weak comprehensions. Indeed, given two arrows
z: X—Aand y: Y—Ain € the following diagram is a weak pullback for x and y

,,,,,,,,ﬂ’jﬂ? ,,,,,,, s 'Y
A
| D2
b X xY y (2.25)
L /
X A

where v := P,y,d04 and {7} := pi{~}}, for i = 1,2. Vice versa given a weak pullback of the arrows
x and y

C i Y
S \<7T177T2> /
AN p2
T X xY Y (2.26)
et
X A

the arrow (m, m2) is a weak comprehension of . A proof of this correspondence can be found in
Lemma A.0.7 and Lemma A.0.8. In light of this, we obtain that any slice category ¢'/A has weak
binary products given by the common value of the two composites of (2.25) and, without loss of
generality, we can assume that a weak product of the objects  : X — A,y :Y — A of ¥/A is built
through the weak comprehension of v := P,,d4. Similarly, if z,y and z : Z — A are three arrows
of € then a weak limit of z, y, z is given by a weak comprehension of

Y 1= Paxyxz(P1,2)04 A P2 364)

v

9 {ﬁ} Sk

T
AN
Y

Sl A

X A
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where {v[}; := pi{v[}, and the p; are the projections of the product X x Y x Z fori =1,2,3.

The existence of weak finite products in the slices %'/ A is related to the existence of strict pull-
backs in the slices €' /(A, d4) of the elementary quotient completion. Indeed, if the diagram 2.26 is
a weak pullback and p € P(X x X) and 0 € P(Y x Y) are P-eq. relations on X and Y such that
p < Pyxzdsand o < Pyy,d4 the the following diagram is a strict pullback

[72]
(C, P pxgrp (PR o)) —— (Y,

Y, o)
| luﬂ (2.27)

X,p) ———— (4,64).
Actually, strict finite products exist in every slice (not only for the slices over objects of the form
(A,04)) and this is an immediate consequence of the construction of comprehensions in %, see
Lemma A.0.14.
We now provide a preliminary definition before that of extensional exponentials.

Definition 2.3.4. Let P : ¥°? — InfSL be an elementary doctrine with weak comprehensions and
comprehensive diagonals. Given three objects z : X—A,y: Y—=Aandz: Z -+ A€ ¥/Aand a
weak product w of x and y as in (2.25), an arrow h : w — z preserves projections with respect to a
P-eq. relation 0 € P(Z x Z), such that 0 < P,y,d4, if

P(7T1,7r2>><<771,7r2> (5X X 5Y) < Phxh(a)7
where v := Py, 04.

We now translate the notion of extensional exponential introduced by Emmenegger in [Emm20]
in the language of the elementary doctrines.

Definition 2.3.5. Let P : €°? — InfSL be an elementary doctrine with weak comprehensions and
comprehensive diagonals. If A € €, the slice ¥’ /A has an extensional exponential of z : X — A and
y : Y — A with respect to a P-eq. relation 0 € P(Y x Y), if there exist an object y* and an arrow
e : u — y from a weak product y* Z w3 z such that

(i) The evaluation e preserves projections w.r.t. o.

ii) For every object z : Z — A and arrow f : v/ — y from a weak product z & « 53 z that
y obj Yy P
preserves projections w.r.t. o, there exist two arrows [, m making the following diagram com-

mute:
z +—
VAN
y\;H 4 ——
A e
Yy

The slice ¢’/ A has P-extensional exponentials if for every pair of objects maps =,y € ¢ /A and P-eq.
relation o € P(Y x Y') there exists an extensional exponential of z and y with respect to o.

Remark 2.3.6. In case of the elementary doctrine of weak subobjects PSuby, the above definition
coincides with the one given by Emmenegger in [Emm?20] for categories with strict finite products
and weak pullbacks.
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We now state the main theorem of the section.

Theorem 2.3.7. Let P : €°P — InfSL be an existential and universal elementary doctrine with weak full
comprehensions and comprehensive diagonals. The following are equivalent:

(i) Everyslice ¢ /A has P-extensional exponentials and P has right adjoints to weak pullback projections,
(ii) € is locally cartesian closed.

Before proving Theorem 2.3.7 we make some considerations. In order to prove that (i) implies
(i4) we have to prove that the slices of ¢ are cartesian closed. Unfortunately, we are not able to apply
Theorem 2.3.2 for several reasons that will be discussed in detail in Remark 2.6.14. For instance,
there is no possibility to consider an elementary doctrine over the slices of ¢ whose elementary
quotient completion are the slices of . This happens because the above assumptions only imply
the existence of weak finite products in ¢’/A, as we observed in (2.25). Hence, in order to prove
the statement, we adapt the methods used in the proof of Theorem 2.3.2 for the slices of the form
C/(A64).

The first step consists in providing a strict exponential of two objects of the form |z] : (X,dx) —
(A,04) and |y] : (Y,0) = (A,d4). Following the proof of Theorem 2.3.2, where a strict exponen-
tial of two objects (X,dx) and (Y, o) was obtained through a weak exponential YX and the P-eq.
relation

557( = v<1,2>P<1,3,2,3)P€y Xey (o), (2.28)

we adapt this construction using an extensional exponential y*, of two object x, y of the slice ¢'/A,
and a suitable equivalence relation in style of (2.28). The second step is to use comprehensions to
build a strict exponential of two objects of the form (X, p) — (A4,64) and (Y,0) — (A,d4).

In order to explicit this construction for the slice €/(A,d4), we first fix some notations. Let
z:X — Aandy : Y — A two objects of ¢ /A such that o < P,y,04 and let y* : E — A be an
extensional exponential of z and y w.r.t. o. We consider the following weak pullbacks

ABLLEN e y by ¢ b, g
b | l= wn| v ok |
X —— A Y —— A E — A

obtained as in (2.25) through the comprehensions {{x[} : W — X x X, {¢}} : V - Y x Y and
{A} : G = E X Eof x := Pyyxz0a, t := Pyxyda and v := Pyeyyed4. We will denote by w : W — A,
v:V — Aand g : G — Arespectively the common value of the two composites in the left, central
and right above diagram. Moreover, we consider the weak pullback

U {ule X K {xl2

b | = b
U

ETA

-

—
IS

N

u

obtained through the comprehensions {{uf} : U = E x X and {&[} : K — U x U of pt := Pyeyx,0a
and  := Pyx,04, where v : U — A is the common value of the two composites of the left diagram
and k : K — Ais that of the right diagram. Now, given a weak product of *, y* and «
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obtained through the weak comprehension {7} : T' = E x E x X of 7 := Pyexyexa(P12y04 A
P(2,3)0 4), we will denote by t : T — A the common value of the three composites of the above
diagram. If u<—z—u is a weak product, then we will denote by

(1,3,2,3)4 : t > k (1,24:t—>g
the two arrows induced by the obvious projections and by
exaqe:k—v

the arrow induced by the weak evaluation e : ©u — y. As observed in Remark 1.2.14 and Re-
mark 1.2.19, the functors P, have left and right adjoints. Hence, we can define the element of
P(E x E)

€0 = V1,204 P1.3,23) 4 PexacP o (2.29)

which provides the corresponding of the P-eq. relation in (2.28) for the extensional exponential y*.
At this point, it only remains to prove that the object [y*] : (Y,e%) — (A, d4) is a strict exponential
of [z] : (X,dx) = (A,d4) and |y] : (Y,0) = (A,d4).

However, thanks to Remark 1.2.19 we can use implications to give an handier description of €.
Indeed, in appendix in Lemma A.0.19 we give the proof of the equality of the terms

el = V<173>((P<274>5X A P<172>u A P<374>u) = vﬂ,u[}Q Pexeo) Ay

(2.30)
= V<173>V{]M[}2(P{]u[}2(P<274>(5X A P<1,2>M A P<3,4>,u) = PeXea) A7y.

Where (1,3) : E x X x E x X — E x E is the arrow induced by the obvious projections and
Qul? == {ul} x {u}. The proof of this fact uses the Beck-Chevalley condition for particular diagrams.
This properties will be used in the rest of the chapter and, when they occur, we have referred to
various results that are proved in the appendix.

We are now ready to prove one of the implications of Theorem 2.3.7. The proof follows the ideas
developed in the proof of [Emm?20, Theorem 3.6].

Proof of Theorem 2.3.7. (i) = (it) Using the notation developed in the above discussion, we first
prove that the slices of the form %'/(A, d4) are cartesian closed.

Consider two objects of €' /(A,54) of the form [x] : (X,p) — (A,d4) and |y] : (Y,0) — (A,54)
(hence we are assuming that p < y and o < v) and an extensional exponential y* : £ — A of =
and y w.r.t 0. We define the element of P(E x E)

e =13 ((Payp APuay APEayi) = ViupxfupPexeo) (2.31)

and consider a weak comprehension {Pae5} : C — E of Pa 5. If we denote bX c the object of
% | A given by the composition y” o {{Pa ,£5[}, then we can prove that the object of €' /(A4,d4)

11 =[] : (Cw) — (A,6) (2.32)
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is a strict exponential of |z] and |y], where w denotes for short Pyp Ayl bx{Pa et} o Indeed, the
weak pullbacks
S ALLEN {n' 2 X {ul2

U——X
{v'h l lﬂf {]Nﬂ’ll x
C —— A E T A
where i/ := P¢yx;04, induce an arrow h : U’ — U which makes the obvious diagram commute.

If ' : U' — A denotes the common value of the two composites of the left diagram above, then a
trivial computation shows that ' induces an object

LUFI : (U/, P{[NII}X{]”II}(W X p)) — (A,(SA)
of €/(A,54). The evaluation arrow
']+ W] x 2] = y]

is given by the compositione’ :=eoh : U’ = Y.
Now consider an object | 2] : (Z,() — (A,54) of €/(A,54) and an arrow

LT 2] x L] = Lyl (2.33)

The weak evaluation arrow e induces two arrows [ : z — y* and m : n — u, where n is the common
value of the two composites of the following weak pullback

N e x
{ll’l}ll lﬂﬁ
Z —— A

with v := P,,,04, such that the proper diagram commutes. We now prove that T < P;Pa e} in
order to obtain an arrow I’ : Z — C such that [ = {Pa 5[} o I":

PzPAE€§
= PAZ PleV<L3>((P<274>p A P<1,2>,u VAN P<374>M) = vﬂ#l}xﬂﬂl}Pexeo-) (def of €g)
= PAZV<173>((P<274>/) VAN P(l,Q)ﬂ A P<3,4>,u) = v{]u|}><{]u|}Pm><mPe><eU) (def of ,m+ B-C)

since f = eom and, by assumption, the arrow in (2.33) implies Py, 4,4 ((Xp) < Py« yo, we obtain
that

Pa, Va3 (Payp APaay APEayi) = Viupxqup PmxmPexeo)

> Pas V3 (Prayp APa2 i APEay ) = Viupx qup Py (CB )

> Pa, Vs (Peayp APayn APEyp) = ((Xp)) Py 4Y))
> Pa,Va3Pa3C (@A (=) da=(-))
>Pa,C

> T.

A similar computation implies that the arrow I’ : Z — C induces an arrow

11"+ (Z,¢) = (Cw)
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and, hence, we obtain an arrow of € /(A,d4) of the form
17+ [2] = Le]
such that [e'[([I"] x 1|57) = | f]- Indeed, the arrow
LT % 1)+ (N Pupgup (CBp)) = (U, Pypup gy (w B p)))

is represented by an arrow m’ : N — U’ such that {¢/[m’ = (I’ x 1x){v} and the following
computation implies that [e'[([I'] x 1|37) = ¢’ om/] = | f]:

Permix 10 = Prm/xmPexeo (f=eom,e =eoh)
> Phomt scmP g Vupx g Pexeo Py V()
= Prupscfup PixiVgup < fup Pexeo (def. of I')
= Piupx up Viuh x fup PmxmPexeo (B-C)
> P o Vb < o Pt < o (C X ) (f =eom)

> Prupxqup(C X p).

The arrow |I'] such that |e’]([I"] x 1|57) = |f] is unique. Indeed, if 1] : |2] — |c] is an arrow such
that [¢'](|]] x 11;7) = Lf1, and the product |1 x 1|4 is represented by an arrow 72 : N — U’ such
that {1/} = (I x 1x){v}, then the following computation shows that ¢ < P jw:

Plew = PlxlAP{]PAEfgﬂ’X{]PAEEgﬂ’gg

= Pugpa,eopil713) (Paydx APuayw APEa1) = ViupgupPexea) A7)

> V1,3 ((P2aydx APV APEayY) = Viupx qup PmxhinPexe) A (B-C)

=V1,3)(P2ay0x AP ayw AP ayv) = ViupxqupPermx o) A C

2 V1,3 ((Pay0x APaov APE ) = Vs up Prpx o (X p)) AC

>( (an(=)da=(-))
__ This ends the proof of the cartesian closure of % /(A,d4), now we consider a slice of the form
C/(A ) If |z]: (Xp) = (A, o) and |y] : (Y,0) — (A, a) are two objects, then we provide a strict

exponential through the exponential of the reindexings |z*| and |y*] of the arrows |z] and |y]|
over the quotient arrow ¢ := [14] : (4,04) — (4, )

(X*,p") —2= (X, p) (Y*,0*) —— (Y,0)
2] 5 ] G
(A, 5A) T> (A7 a) (A, 5A) T> (A7a)'

By Lemma A.0.14, the right diagram denotes compactly the diagram

* vy la]
(Y ’ P{]WyD’X{I’Yy[}éA X U) - (Y> 0)
) v /
vy bl (AxY,04Xo0) L]
(Aa 614) (A7 Oé)
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where {y,[} : Y* — A x Y is a weak comprehension of v, := Py, xya. The pullback of [z] and ¢ is
obtained similarly . Hence, we can consider the exponential

Ly 1 = (] (O, w*) — (A,04)

where

P * e,
{JPAE*EZ*I}X{]PAE*EZ-*H g
and

*

€ = V0,3 (Prgdxs APua " APEay 7)) = Vi pPerxer P, 1 x 47,1104 B O) A

The relation €2, on E* expresses that two functions in E* are related when they have the same
evaluation in (Y*, 0*). This means that the evaluations have the same A components and o-related
Y components. In order to provide the exponential of |z] and |y|, we consider those functions
which have A components that are a-related and Y components that are o related:

&= Yus) ((Pradx- APa2i" APEHIT) = Yy pguepPerxe Pl Nx Ly n @ B o) A7 (234)

If we denote with & := P ¢ then we obtain the following commutative diagram

[N S NN

(0% w) 2 (0 @)
ly*T Lml lLyW L]
(A,04) —— (A, )

q

where |y][®! := |¢*]. Thanks to the pasting law of the pullbacks, the product [¢*] x [*] in @ /(A4, §)
is isomorphlc to the product |y]1*! x |2] in @/(A, a). The commutativity of the above diagram and
the description of pullbacks implies that, up to isomorphism, we are in the following situation

U 1 HJ [2]
(N, Popxqupw” MW p) —— (N, Pppuqupo X p) — (X

. P)
o] | ]| lm

(C*vw*) (0*7(':)) W (Aa a)

RYeRY
where {v]} : N — C* x X is a weak comprehension of v := P, a. The evaluation arrow
"] Ly 1T x (2] = (]
is represented by an arrow
LT+ (N, Pupsqup@ B p) — (Y, 07).

The evaluation arrow
le] = (1T x [2] = y]
is given by e := {y,}2 o €*.
O

Before providing the proof of the other implication of Theorem 2.3.7 we give the following def-
inition.
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Definition 2.3.8. Let P : ¥°? — InfSL be an elementary doctrine with weak comprehensions and

comprehensive diagonals. If A ¢ ¥ and X % Aand Y % A are two objects of /A and ¢ €
P(Y x Y)is a P-eq. relation, then two arrows f, g : + — y are called o-related if

6X S Pfxgo-.

Proof of Theorem 2.3.7. (ii) = (i) Letx : X — Aandy : Y — A be two objects of /A and let
o € P(Y xY) be aP-eq. relation on Y such that 0 < Py,d4. We consider a strict exponential
ly®] : (E,e) = (A, d4) of |y] and |z] and the evaluation arrow

Le]: 1T x [2] = (4]

which is represented by an arrow e : u — y, from a weak product y*<u—x given by

{ubs X

xT

d

{ub2

%

&

— A

y
where p := Pyz ;0 4. The arrow e has the following property: for every arrow z : Z — A and arrow
f :v — y from a weak product z &~ v 3 z which preserves projections w.r.t. o, there exist two
arrows ! : z — y® and m : v — u such that eom and f are o-related. Hence, if {o} : K - Y xY isa
weak comprehension of o and U := dom(u) and V' := dom(v), then there exists an arrow j making
the following diagram commute

Ky ey

%J)

We now consider a weak pullback of {{o]}; and e

i
T
I

V.

K -Z25U

ml le (2.35)
Y

K ——
{ol

and observe that this induces a weak pullback of y* and x:

K {uoms X
{lul}lﬁzl ll“
E 7> A.

Thearrow ¢’ := {offom; : K’ — Y provides the desired evaluation arrow. Indeed, the weak pullback
2.35 induces an arrow m’ : V — K’ such that mom’ = j and mym’ = m. Hence, we obtain that
m'e’ = f. O

Remark 2.3.9. In case of the elementary doctrine of weak subobjects Psuby, we obtain [Emm?20,
Theorem 3.6], for categories with strict products and weak pullbacks. Actually, as we will discuss
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in the next section, we could use instead of extensional exponentials the notion of weak exponential
(Definition 2.4.2) adapted for the slices of 4 and obtain [CR00, Theorem 3.3]. As pointed out by
Emmenegger, the notions of weak and extensional exponential coincide under some circumstances,
for instance, when the category % is left exact. In the next section, we will prove that since the base
categories of the elementary doctrines have strict finite products by definition, then there is an
equivalence of these exponentials and of a third one introduced in [MPR21] in order to prove a
result equivalent to Theorem 2.3.7.

2.4 Relations to the work of Maietti, Pasquali and Rosolini.

As already mentioned, a result similar to Theorem 2.3.7 was already claimed by Maietti, Pasquali
and Rosolini in [MPR17] and it recently appeared in [MPR21]. In this section, we discuss the
differences between the two statements and prove that they are equivalent. In order to do that we
discuss the different notions of weak exponential that appeared in [CR00], [Emm?20] and [MPR21].

The following definition of exponentials is introduced in [MPR21] and we will refer to as a very
weak kind of exponentials.

Definition 2.4.1. Let ¢ be a category with weak pullbacks and let A be an object of €. A very weak
exponential of the objects x : X — Aandy : Y — A of ¥/A is an object y* : E — A with an arrow
e : u — y from a weak product y*«+—u—=z such that

e Forevery z : Z — A and arrow f : v — y from a weak product z<—v—z, there exist two
arrows [, m making the following diagram commute:

"\

— T

~

Z &
I I
I I
I I
<3 I

xT

y 2
f le
y.

¢ is said slice-wise weakly cartesian closed if, for every A € € and x,y € €'/ A, there exists a very weak
exponential of z and y.

We referred to the above exponentials as "very weak" in order to distinguish them from the weak
exponentials introduced in [CR00]. We now recall the former notion in the case of the slices of a
category with weak pullbacks.

Definition 2.4.2. Let ¢ be a category with weak pullbacks and let A be an object of €. A weak
exponential of the objects x : X — Aandy : Y — A of ¢ /A is an object y* : E — A with an arrow

e : u — y from a weak product y”* & w3 1z such that

e ¢ equalizes any pair of arrows which 7y, 75 jointly equalizes, i.e. for every vy, vy : v — u such
that myv1 = myvs then ev; = evs.

e Foreveryz:Z — Aand arrow f : v — y from a weak product z £- v ™3  which equalizes all
pair of arrows which 7y, 72 jointly equalizes, there exist two arrows [, m making the following
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v \
u——

f
Y.

diagram commute:

z
!

l

~

—~

xT

Y

The above exponentials, which can be seen as formulated for the elementary doctrine PSuby
of weak subobjects, can be trivially defined for every elementary doctrine P with weak compre-
hensions and comprehensive diagonals. Actually, as already observed by Emmenegger, the weak
and very weak exponentials are particular instances of the extensional exponentials and they are
obtained as follows.

Observation 2.4.3. Let P : ¥°? — InfSL be an elementary doctrine with weak comprehensions and
comprehensive diagonals and let A be an objectof . If x : X — Aandy : Y — A are objects of
% /A, then an arrow y* : E — A is said

o a weak exponential of x and y if it is an extensional exponential of =,y w.r.t. o := dy.
o a very weak exponential of x and y if it is an extensional exponential of z,y w.r.t. o := Ty xy.

The following result appears as [MPR21, Theorem 7.14] and uses the very weak exponentials to
give an equivalent condition to the local cartesian closure of a suitable doctrine.

Theorem 2.4.4 (Maietti, Pasquali and Rosolini). Let P : €°? — InfSL be an existential and universal
elementary doctrine with weak full comprehensions and comprehensive diagonals. The following are equiva-
lent:

(i) € is slice-wise weakly cartesian closed
(ii) € is locally cartesian closed.

In general, the three notions of exponentials discussed are not equivalent, in the sense that the
existence of one of them implies the existence of the others. This was pointed out by Emmenegger
in [Emm20], who discovered an invalid argument in the proof of [CR00, Theorem 3.3] and fixed
it by the use of extensional exponentials. However, there are cases in which the three exponentials
are equivalent. For instance, if the slices 4'/A have strict products, then every arrow preserves
projection with respect to any P-eq. relation and hence the three notions coincide. Below, we prove
that the common hypothesis of Theorem 2.3.7 and Theorem 2.4.4 implies the equivalence of all the
notions of exponential introduced. Before doing that, we provide a useful technical lemma.

Lemma 2.4.5. Let P : €°P — InfSL be an implicational and universal elementary doctrine with full com-

prehensions and comprehensive diagonals. If A € € and X 5 A, W 5 Aand B L Aare objects in € /A,

ﬂﬁl

foramap f :u— b, from a weak pullback w u "8 4 we have the following equivalent conditions:

(i) f preserves projections w.r.t. o € P(B x B),
(i) Tw <PawYopxiob: (PeopxgorP2aydx = Prxo),

where p := Py ;04.
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Proof.

Tw < PayYiop xfob (Popxqpp P2.40x = Prxso)

ow < Vb xfobs (Ploxdoh Pr2,ay0x = Prxso)

Paobixioh 0w < PiobxqotP2ayox = Prxpo

P o xqoh (P(1,3)0w A Pogydx) < Pyxgo

P{]p[}X{]pl}((SW &5}() < PfoO'.
]

Proposition 2.4.6. Let P : €°P — InfSL be an existential universal elementary doctrine with full compre-
hensions and comprehensive diagonals. If P is implicational then, for every A € €, the slice € /A has weak
or very weak exponentials if and only if it has extensional exponentials.

Proof. We only need to show that existence of very weak exponentials imply the existence of exten-
sional exponentials. The case with weak exponentials is proved similarly.

Given two objectsz : X — Aand y : Y —A of €/A. Let y* : E — Abe a very weak exponential
of z and y, and let e : © — y be an evaluation map, where u is a weak product with projections

y* {IfL—Ih n {[ﬂQ xand p = Pyry,04. If 0 € P(Y x Y) is a P-eq. relation on Y, consider the object

= Vb (Plapxgup P<1,3>0x = Pexeo),

inP(E x E). If {Pa,pl : C — E is a weak comprehension of Pa ¢ and ¢ b W2 4 s @ weak

pullback of ¢ := y*{Pa ¢ and x, with i/ = P.«;d4, then the weak universal property of u induces
an arrow h which makes the following diagram commute

{12

\\\ h {],uﬂ»/
o

U X

xT

{v'h U S Y
{ub l /
C - l A
{]PAE% E %

We now prove that the arrow ¢’ := e o h preserves projections w.r.t. o, using Lemma 2.4.5:

PacY i (Plupxquwi Pe,a0x = Poxeo)

= PacYupyscgupr (PrxiPgup < gup Pre.4y0x = PrxnPexeo)

= PacY gy Proxca (P gy a4 0x = Pexeo)

> PacPipaobxdPayob Viub o dub (Plupxqup P24 0x = Pexeo)
= PipagetPasy

> Te.

We now prove that ¢’ has the weak universal property of extensional exponential from the weak
universal property of the very weak exponential e. Indeed, given z : Z—A € %/A and an arrow
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[ v = y, from a weak product z<v—z, that preserves projections w.r.t. o, then e implies the
existence of two arrows [, m making the following diagram commute

«3/
<

|

<
<T LL----c

=

where v := P,,,04. We obtain the following derivation

PiPape = PiPag < gups (Pupxgub P2,4)0x = Pexeo)
= PazPra¥yupxqub: (Pup < 4up P24y 0x = Pexeo)
= Pa,Viup i mem(P{],uﬂx{]u[}P@A)(sX = Pexeo) (Lemma A.0.16)
2 Pa,Viup o PmxmPexeo
= Pa, Vg squp Prxso
> Pa, Va3V x oy Piup < jrpdz B ox
>Tg.

hence, the comprehension {|Pa [} implies existence of amap " : Z — C such that {Pa, o[}’ =
I. If m" : v — « is an arrow induced by !’ and 1,, then ¢’ o m’ and f are o-related. Finally, an
extensional exponential of = and y with respect to ¢ is obtained in the same way of the proof of
Theorem 2.3.7 (ii) = (i). O

The above proposition implies that our Theorem 2.3.7 is equivalent to Theorem 2.4.4.

2.5 Extensive elementary quotient completion

In this section we give equivalent conditions to the extensivity of the base category € of the ele-
mentary quotient completion of a suitable elementary doctrine P : €7 — InfSL. In particular, we
generalize, in the case of categories with strict finite products and weak pullbacks, the well-known
result [GV98, Proposition 2.1], which states the extensivity of the exact completion. We mention
that this section has a non-trivial intersection with [MPR21, §7.2]. Indeed, in loc.cit. the authors
provide conditions on P such that % has disjoint and distributive coproducts. In addition, we estab-
lish the conditions which provides the universality of coproducts in €. Before starting we fix some
notations.

Notation. In this section we will denote with X +Y the coproduct of two objects X and Y and with
ix : X - X+Yandiy : Y = X +Y the canonical injections. The initial object will be denoted
by 0.If f: X — Aand g : Y — A are two arrows, then [f,g] : X +Y — A will denote the unique
arrow such that [f,glix = fand [f,gliy =¢. lf f: X - Aand g : Y — B are two arrows, then
f+9: X+Y — A+ B will denote the unique arrow such that (f+¢g)ix = iaf and (f+g¢)iy = ipg.

We now recall an equivalent formulation of extensivity for left exact categories. For a detailed
discussion about the equivalent definitions of extensive categories we refer to [CLW93].
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Definition 2.5.1. A left exact category % with finite coproducts is called lextensive if
(i) Sums are disjoint:
I.a) Coprojections of sums X XX +Y &£V are monomorphisms,
Lb) If 0 is an initial object, then the following is a pullback

0 —Y

L

X X x4v.

(ii) Sums are universal: If the first two diagrams are pullbacks, then also the third one is a pullback

Pik —+X Pr——5Y Px+P —— X+Y
[ &
X+Y X+Y

A— B, A—— B, A . B

We now recall the notion of weak extensivity which was introduced in [GV98]. The idea is to
give a weak version of some of the above conditions. In order to do that, the authors observed that
condition II of the above definition is equivalent to the following conditions:

- Distributivity of coproducts: given three objects X,Y and Z the arrow
[lx Xiy,lx Xiz] : (X xY)+ (X xZ) > X x (Y +2)
is an isomorphism. For the rest of the section we will denote the above arrow with e,

- if the first two diagrams are equalizers, then also the third one is an equalizer
Ex — X =X Z, Ey —Y X Z, Ex+Ey — X+Y =X Z

We recall that the distributivity of coproducts implies the following important properties:
- initial objects are strict , i.e. every arrow into an initial object is an isomorphism,

- for every pair of objects X, Y the injections i,y into the coproduct X + Y are monomor-
phisms,

- for every object X, the projection ps : X x 0 — 0 is an isomoprhism
a proof of these facts can be found in [ CLW93, Propositions 3.2, 3.3. and 3.4].
Definition 2.5.2. A weakly left exact category with sums ¢ is called weakly lextensive if
1. Sums are disjoint,

2. Initials are strict,
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3. For each choice of weak products X x Y and X x Z, thesum (X x Y) + (X x Z), with the
obvious projections, is a weak product of X and (Y + Z).

4. For each choice of weak equalizers Fx — X —X Z, Ey — Y —X Z, then
Ex +Ey — X+Y —< Z isaweak equalizer,

In [GV98, Proposition 2.1] the authors proved that a weakly left exact category ¢ is weakly
lexextensive if and only if the exact completion %, is lextensive. We will follow this idea and first
we will formulate the notion of weakly lextensivity in the language of doctrines.

In order to do that, we observe that assuming distributive coproducts in a category ¢ with strict
product and weak pullbacks implies that, for every object X € ¥, the poset PSuby (X) has finite
joins and, for every arrow f of ¢, the functor PSuby ( f) preserves them. Hence, we will consider
doctrines which have sums both at the level of the contexts and at the level of the logic.

From now on, we will say that an elementary doctrine P : €°? — InfSL has finite joins meaning
that P(X) has finite joins and that P; preserves them, for every object X € ¢ and arrow f in €.

Definition 2.5.3. Let P : €7 — InfSL be an existential elementary doctrine with full weak com-
prehensions, comprehensive diagonals and finite joins. The category ¢ is called P-weakly extensive
if

1. ¢ has disjoint coproducts,
2. ¢ has finite coproducts and they are distributive,
3. Iff: X = A,g9:Y = Aand a € P(A), then {|P;(a)} +{Py()[ is a comprehension of P(; ja.

Observation 2.5.4. As already observed, distributive coproducts imply that the injections of a co-
product are always monomorphisms. Hence, in the above definition the assumption of monomor-
phic injections is always verified.

Condition Lb of Definition 2.5.1 stated in the internal logic of P becomes

Pixxiy0x+y = Lxxy- (2.36)

Now, if the domain of {_L x xy [} is initial then the conditions (2.36) and Lb are equivalent. In case
of strict initials, condition Lb implies that the domain of { L x xy [} is initial.

Condition 3 of Definition 2.5.3 corresponds to the weak notion of universality of sums with
respect to the internal logic of P.

We now discuss useful properties of disjoint and distributive coproducts.

Remark 2.5.5. We observe that if P : ¥°? — InfSL is an elementary doctrine and ¢ has distributive
finite coproducts , then if 0 € € is the initial object it follows that

8o = Toxo. (2.37)

This is a consequence of the fact that, for every X € ¥, the projection p» : X x 0 — 0is an
isomorphism. Indeed, since 6y = I, To, applying first 3,, and then P,, we obtain

Pp.3p200 = Toxo

and the term on the left is equal to g because p; is an isomorphism.
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Moreover, if coproducts are also disjoint and the domain of {_Lx .y} is the initial object, then
for every a € P(X) and 8 € P(Y') we have

Elixa AN E]iy,B =lxtv. (238)

Intuitively, an element of X +Y can not be an element of both X and Y. Formally, from the pullback

0 Ov Y
\MXXY[} /
Ox X xY iy
X - X+Y

and the Frobenius condition we obtain that

HiXOé A\ HZYB = EIiX (a VAN PZXELLY/B)
= Ips Ly b PILxuy } P B (Lemma A.0.4)

sz(Pplﬂ/\ J—X><Y)
= Lxxy-

A similar computation and the fact that X x 0 = 0 imply that for every p € P(X x X) and o €
P(Y xY) then

Pixxiy(pHo) = Lxyy. (2.39)
We now formulate the main result of the section.

Theorem 2.5.6. If P : €7 — InfSL is an existential elementary doctrine with full weak comprehensions,
comprehensive diagonals and finite joins, then € is P-weakly extensive if and only if € is extensive.

Before providing a proof of Theorem 2.5.6 we define suitable equivalence relations on the co-
product of two objects.

Lemma 2.5.7. Let P : €°P — InfSL be an existential elementary doctrine with full weak comprehensions,
comprehensive diagonals and finite joins. Assuming that € has finite coproducts, if X,Y are two objects of
€, and p is a P-eq. relation on X and o is a P-eq. relation on'Y, then

pEO = TigxixpV iy xiy0
is a P-eq. relation on X +Y. Moreover, 6x B éy = dxv.
Proof. By fullness of comprehensions, the reflexivity of p H o is equivalent to
Tx1y <Pay,,(pBo).
The Beck-Chevalley condition implies that the right term is equal to 3;,, T x vV 3;, Ty. Since
Tx <Piy3iy Tx <Piy(Bix Tx V3, Ty)

and the same holds for iy, denoting with & := {3;, Tx V3;, Ty} : K — X +Y we have two arrows
f:X = K,g:Y = Ksuchthatix = ho fand iy = kogand then 1x,y = k[f, g]. The inequality
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follows by fullness of comprehension and {T x4y [} = 1xv.
The symmetry of p B o easily follows from the Beck-Chevalley condition. For the transitivity, we
observe that
Pi1,2) Fixxixp) A P23y (Jixxixp)
where (1,2),(2,3) : (X+Y)x (X +Y)x(X+Y) = (X+Y) x (X +Y) are the obvious projections,
is equal to
Jixxixxix (P1,200 AN P2.3)p)
where (1,2)(2,3) : X x X x X — X x X are the obvious projections. This is obtained applying twice
the Frobenius condition and observing that, since ix is a monomorphism, the following diagram
is a pullback
X x X x X XD (v Ly« X x X

-

1x><1x><ixl

XXX x(X+Y)

J/lx+y Xix X1x

(X +Y)3

ix Xix X1 X+Y
The transitivity of 3, xi, p follows from the transitivity of p and from the distributivity of meets
and joins.
The last part of the statement follows observing that by adjunctions we have that
Jixxix0x < dx4y

and the same holds for 3;, xi, v dy. O

Proof of Theorem 2.5.6. If € is extensive, then Lemma 2.5.7 implies that restricting to the objects of
the form (X, dx) it follows that ¢ has distributive coproducts. Moreover, since % is extensive the
initial object is strict, and it provides a strict initial object of ¥". Coproducts are disjoint in ¢ because
they are disjoint in ¢ and initials are strict. Condition 4 of Definition 2.5.3 follows through the
description of comprehensions in €.

Vice versa, if (X, p) and (Y, o) are objects of €, then by Lemma 2.5.7 we can consider the object

(X+Y,pHo)

of €. It is a coproduct since, given two arrows | f] : (X,p) — (Z,¢) and |g] : (Y,0) — (Z,¢), the
coproduct X + Y implies the existence of an arrow [f,g] : X +Y — Z which makes the obvious
diagram commute. This arrow induces an arrow

LLfgll: (X +Y,pBo) = (Z,0)

because J;y xixp < Py g1x[1,9)C if and only if p < Piy i Py g1x[f,9/¢, which is true by the definition
of | f]. The same holds for 3, i, 0. This arrow is unique in the sense that if there exists an arrow
|h] : (X +Y,pBo) — (Z,¢) such that |h||ix]| = [ f] and [h][iv] = |g] then

P < PhixxC 0 < PhiyxgC.
Since f = [f,glix and g = [f, g]iy, by adjunctions we obtain
JixxixP < Pux(r,glC  Jiyxiy OPrx[£,9)C

and hence |h] = [[f, g]]. Distributivity of coproducts in ¥ means that given three objects (X, p),
(Y,0) and (Z, ¢) then the canonical arrow

le] - (X X Y) + (X x 2), (pRo) B (pX()) = (X x (Y + Z),p K (0 B())



50 CHAPTER 2. HOMOTOPY SETOIDS

is an isomorphism. In order to prove that, it is enough to show the equality

(pRo)B(pN() = Pexe((pX (0 BQ)).

For instance, the distibutivity of meets and joins implies that the part of the equation which concerns
p and o is obtained as follows:

PeXe(P<1,3>p AN P(274>E|iy><iy0—) = P6><6<P<1,3)p A EllX Xty X1x Xty P<2,4>O- (B-C)
= PexeT1x xiy x1x xiy (P1yxiy x1x xiy P(1,3y2 A Praayo)  (Frobenius)
== Elixxyxixxy<P<l,3>p /\ P<274>0-)‘

In order to prove that coproducts are disjoint, we observe that the initial object of € is (0,4),
where 0 is the initial object of 4. Hence, Remark 2.5.5 and the description of pullbacks in ¢ (see
Lemma A.0.7) imply that the following diagram is a pullback

(0, 50) e (

Y, o)
| Jliv
(X.p) — (X +Y.pB0),

lix

The injections are obviously monomorphisms and it remains only to prove condition II of Defi-
nition 2.5.1. Given three arrows | f], |¢g] and | 2] as below and the following pullbacks

(PX: Plyxpxfuxpa®p)) —— (X, p) (B, Playpxgnpa®o) —— (Y, 0)
| thw | 1]
(A,0) ————— (B.5) (4,0) ———— (B,5)
where vy := Py 8 and vy := Py and Px := dom({vx|}) and Py := dom({vy]}), we want

to prove that the sum of the above diagrams

(Px + Py, Ppoxpx b @ B 9) B Py gy pa M o)) —— (X, p) + (Y 0)
| luguhn (2.40)
(A, a) (B,B)

LA
is a pullback of the arrows | f] and [|g], | 2]], which is given, up to isomorphism, by the diagram

(PX+Y,P{]7|}><ﬂy[}OZ& (pEEU)) — (X—{—Y,,OEE‘O‘)

l lnguhu

(A.) N (B,6)

where v := Py, 18 and Px 1y := dom({~[}). But, since e o f x [g,h] = [f x g, f x h] if we denote
with 7' := P4 £x5) 3, then we obtain that

{7l =eo{y'}

which is, by condition 3 of Definition 2.5.3, equal to e o ({vx[} + {yv]}). Hence, the diagram (2.40)
is a pullback of | f] and [| ¢], | R]]. O
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Remark 2.5.8. In case of the elementary doctrine Psuby of a category with strict finite products
an weak pullbacks, we obtain the characterization of Gran and Vitale in [GV98, Proposition 2.1].
Indeed, as already observed, in case of strict products, distributivity of coproducts implies strict
of initials and that injections are monomorphisms. Hence, Definition 2.5.2 and Definition 2.5.3
coincide.

2.6 Std, is a "relative" II-pretopos

We end this chapter introducing a doctrinal version of pretopos in order to emphasize the struc-
tures which appear when taking the elementary quotient completions of the doctrines of types.
The results of the previous sections imply that the elementary quotient completions of suitable
elementary doctrines are instances of this definition. We prove that those results apply to the ele-
mentary doctrine F0 of h-sets and h-prop. Hence, we obtain that the homotopy setoids provide
a non-trivial example of a locally cartesian closed relative pretopos.

We first recall that a pretopos is a category which is both exact and extensive. A II-pretopos is
a locally cartesian closed pretopos. We refer to [Joh02; FS90] for further details about pretoposes.
The structures we have considered are similar to pretopos but the behavior of quotients is regulated
by a suitable elementary doctrine and not necessarily by the elementary doctrine of subobjects.

Definition 2.6.1. A relative pretopos is an elementary doctrine P : €7 — InfSL in QD such that € is
an extensive category. In this case, ¢ is said to be a pretopos relative to P.

Obviously, every pretopos ¢ is a pretopos relative to Subs and Theorem 2.3.7 and Theorem 2.5.6
imply the following corollary.

Corollary 2.6.2. Let P : €°P — InfSL an existential universal and implicational elementary doctrine with
full weak comprehensions and comprehensive diagonals. If ¢ has distributive finite coproducts, P has finite
joins and every slice € | A has P-extensional exponentials, then € is a II-pretopos relative to P.

Remark 2.6.3. As already mentioned, the above result generalizes various properties of the exact
completion to the case of the elementary quotient completion. However, there exists a different no-
tion of quotient completion which has not been mentioned yet. In [BM18], the authors introduce
the path categories, a categorical framework to deal with homotopy theory, and a construction called
homotopy exact completion which adds quotients of homotopy equivalence relations. If € is a path cat-
egory, the homotopy exact completion Hex (%) of € turns out to be an exact category and, among
the various results, the authors prove two results about the local cartesian closure and the lexten-
sivity of Hex(%). In order to do that, the authors define the notions of weak homotopy exponential
and homotopy extensivity taking into account the homotopical structure of the path categories.

The author is not aware of the precise relation between the homotopy exact completion and the
elementary quotient completion. However, it is plausible that former is an instance of the latter. In
fact, a future investigation would be to study if the structure of a path category % gives rise to an
elementary doctrine which associates to every objects X € ¢ the poset reflection of the fibrations
over X. Achieved that, it would become an exercise to verify that the results obtained in [BM18]
are particular instances of Corollary 2.6.2.

The category of setoids can be obtained as an instance of the homotopy exact completion. How-
ever, since this construction leads to an exact category, the homotopy setoids cannot be obtained in
this way. One possibility could be to obtain the category of homotopy setoids as a variation of the
homotopy exact completion, in which one considers only particular equivalence relations such that
the underlying fibrations have somehow “contractible” fibers.
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We now come back to homotopy setoids and prove that they are a relative II-pretopos. In order
to do that, we first prove that the elementary doctrine F*o satisfies hypothesis of Theorem 2.3.7
and Theorem 2.5.6.

Extensivity of Std. It is well known that the syntactic category arising from a type theory with
sum types has coproducts. A discussion about that can be found for example in [EP20]. We now
briefly recall the main points and conclude that Theorem 2.5.6 applies to the elementary doctrine
FM Lo .

The coproduct of two closed types X and Y is given by the sum type X +Y and the initial object
is given by the empty type 0. In particular, if X and Y are h-sets, then the sum is an h-set and the
same holds for every homotopy type, see [Unil3]. In §2.12 of loc.cit., there is an explicit description
of the identity types of the elements of X + Y which is:

|dx+y(in|(X1), inl(x2)) = |dx(:131,:1,‘2)
ldx -y (inr(y1),inr(y2)) = ldx (y1, y2) (2.41)
ldx+y (inl(x),inr(y)) =0

The first two conditions imply that in ML, and hence in MLy, the injections

ix = |[inl]: X - X+Y

242
iy = |inr] : Y - X 4+Y (242)

are monomorphisms. The last condition of (2.41) and the fact that 0 is an h-set imply that coprod-
ucts are disjoint both in ML and ML,. The distributivity of coproducts corresponds to proving that
the arrow represented by the term

|nd+(1X X iy, lx X iz) : (X X Y) + (X X Z) — X X (Y+ Z) (243)
induced by the induction principle of coproducts
(A=-C)—»(A—=C)—= (A+B—0C)

is an isomorphism. Using again the recursion principle with A := Y, B = Zand C := X —
(X xY)+ (X x Z) we obtain

Ind (ixxy,ixxz) : (Y +2Z) = (X = (X x V) + (X x Z)) (2.44)

such that
Ind—i—(-iXxY,.iXxZ)(xu-iYy) = -iXxY(xvy) (2.45)
Indy (ixxy,ixxz)(x,izz2) = ixxz(T, 2).

An easy verification show that the terms in (2.43) and in (2.44) induces inverse arrows in ML and
ML,. It remains to prove condition 3 of Definition 2.5.3 which corresponds to the fact that given
two arrows | f]: X — Aand |g| : Y — A and a dependent type a : A P(a), then the arrow

Ind (f(mx),9(my)) : Y P(f(x))+ > Plg(y) — A (2.46)
z: X yY

is a comprehension of the dependent type

z: X +Y F P(indy(f,9)(2)).
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This follows from the equivalence between the types

> Plrec(f.9)(2)) > P(f@)+ > Plygly)
z: X yY

22 X+Y
which is a more general form of distributivity of sums and products.

Remark 2.6.4. We underline the fact that the results and definitions of this section hold also for
elementary doctrines not necessarily with all finite joins. Indeed, we actually used the joins only in
case of the coproduct X + Y of two objects X,Y € ¢. In particular, we exploited the P-eq. relation
p B o on X + Y built from two P-equivalence relations p € P(X x X) and ¢ € P(Y x Y) and
we needed the distributivity of H and X and the Frobenius recirocity. In the following lemma, we
prove that this holds for elementary doctrine F*Lo of h-sets and h-props, which does not have all
finite joins as observed in Remark 2.1.5.

Lemma 2.6.5. If X and Y are two types and x1,x2 : X - Rand y1,y2 : Y = S are dependent types, then
the type

RHES = Z R(xl,mg) X |dx+y(zl,ix(a}1)) X |dx+y(22,’ix($2)) +

x1,x2:X

+ ) SWry2) x Mdxpy (21,dy (1)) x Mgy (22, iy (32))
y1,y2:X

which depends on z1, z9 : X +Y, is an h-proposition.

Proof. The argument follows from Lemma 2.1.7. Indeed, due to the description of the identity type
of the sum X + Y, the two components of the above sum can not be simultaneously inhabited.
U

FML+ FMLO

Hence, the categories ML and ML are respectively and
same holds for FML, Theorem 2.5.6 implies the following result.

-weakly extensive. The

Corollary 2.6.6. The categories ML and ML are extensive.

A discussion about coproducts in Std can be found in [Wil10]. The author shows that, in order
to have disjoint coproducts, it is necessary to assume a universe in the type theory. The argument
relies on the Smith’s model of Martin-Lof intuitionistic type theory without universes [Smi88]. For a
discussion about extensivity of setoids arising from a different type theory, we refer to [Mai09].

Local cartesian closure of Stdg. We now prove that M 20 satisfies the hypothesis of Theorem 2.3.2
and Theorem 2.3.7. The following result was already observed for the elementary doctrine FML in
[MR13, Proposition 7.3].

Proposition 2.6.7. The elementary doctrine FM Lo is implicational, universal and MLy is weakly cartesian
closed.

Proof. The implication is given by the arrow type: if X is an h-set, and A(z) and B(z) are h-
propositions, then
x:XF A(z) = B(x)

is a particular form of dependent product type and by Remark 2.1.5 it is an h-proposition. The
adjunction property of the implication is trivially verified by Currying and A-abstraction.
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We now prove that f10 has right adjoint to all reindexings. Given an arrow f : X — Y and an
h-proposition = : X - B(x), define the type

y: Y [J(dy(f(z),9) = B(x)) (2:47)
r: X

which is an h-proposition because of Remark 2.1.5. Again the adjunction property follows from
A-abstraction. The Beck-Chevalley condition on pullback diagrams

=3 Y ldz(f(2).9(y)) —

Y

. X yY
| l

T
7

X
f

is given, for every z : X  B(z), by the logical equivalence of the types

Hldy mo(v),y) — B(m(v)) Hle ) = B(x)

given by the arrow
h(v,p) — h(z,q) = h(x,y,p, refl,).

A weak exponential of the h-sets X and Y is given by the arrow type X — Y which is an h-set
because we have assumed the functional extensionality axiom. The term

fX=>Ya: XEXe.f(z):Y

provides an evaluation e, which is actually strict because we have assumed the functional exten-
sionality axiom.
O

Remark 2.6.8. The main difference between the syntactic category ML arising from ML and the
one arising from ML+ F.E. is that the former has only weak exponentials while the latter has strict
exponentials due to the functional extensionality axiom.

Proposition 2.6.9. The elementary doctrine FMLo has right adjoints to weak pullback projections and the
slices of ML¢ have "M o-extensional exponentials.

Proof. The first part follows from Proposition 2.6.7. For the second part, consider an h-set A and two
arrows f: X — Aand g : Y — A. If S is an equivalence relation on Y which is an h-proposition,
we build the extensional exponential of f and g with respect to S by steps. First we consider the
dependent type

a: AR lda(f(x),a) = > lda(g(y), a) (2.48)
z: X yY
and denote it with Fu ng(a), which is an h-set. Second we consider the type

Z Z H H H (Ida(z1, 22) — S(mi(m(x1,p1)), m1(m(z1,p1))), (2.49)

a:A m: Funf(a) 1,22: X p1:lda (f (22),a)p2:1da(f(z2),a)
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and denote it with 1. Intuitively, we collected the arrows between the fibers fib;(a) and fiby(a)
such that equal objects of fib(a) are sent to objects of fib,(a) which have S-related Y-components.
Remark 2.1.5 implies that the type W is an h-set and we now prove that the projection

m W= A

is an extensional exponential of  and y with respect to S. Recall that a weak product of 7 and f is
given by the common value of the common value of the two composites

Vi= 3 da(f(2),m(w) —= X
w:W,x: X
lf (2.50)

o

w A.

™

in fact, as we observed in 2.2 the above diagram is a strict pullback. The evaluationarrowe : V — Y
is given by the term
(w,z,p) : V Fm(me(w)(z,p) : Y

and obviously goe = f omy. The evaluation preserves projections w.r.t. S. Indeed, if ((a, m,t), x, p)
and ((a’,m/,t"), 2’, p') are terms of V such that p; : Idy ((a, m,t), (a’,m’,t’)) and po : Idx (x, 2"), then
we can transport along the A-component of p{' : Id4(a,a’) the function m : Fung(a) to obtain a
function of p{!”"(m) : Fu ng(a’ ) which is defined as follows

A _
pi (m)(a’,p") == m(',p pit)

where p/ -pl_l denotes the concatenation of p’ with the inverse path of p;. Through p; we obtain a

term of ldFunt (a7) (pt(m),m’). Hence, since m(z’,p'+p; ') and m(x, p) have S-related Y'-components,

we obtain that m/(z/, p’) and m(z, p) have S-related Y-components. The evaluation is strict because
we assumed the functional extensionality axiom. O

Remark 2.6.10. We observe that a slight modification of the extensional exponential type (2.49) of
twoobjectsz : X — Aandy : Y — A withrespect to an eq. relation S on Y. Indeed, as observed in
Observation 2.4.3 substituting Idy to S in (2.49) we obtain a weak exponential of x and y. Similarly,
substituting 1 to S in (2.49) we obtain a very weak exponential of x and y. A very weak exponential
of x and y is given by the arrow

m: > (D Mda(f(x),a) = > lda(g(y),a)) — A (2.51)
yY

a:A X

Applying Theorem 2.3.2 we obtain that Stdy is cartesian closed. For the local cartesian closure
we need to do some observations.

Remark 2.6.11. As we have proved in Proposition 2.2.2, FMLo ig not existential, but it has left ad-
joint to the reindexings over monomorphisms. Hence, even if we proved Proposition 2.6.7 and
Proposition 2.6.9, we can not apply Theorem 2.3.7 to FM%0 | However, a deeper look at the proof
of Theorem 2.3.7 shows that we only used left adjoints of reindexings of comprehensions and of
product of comprehensions, and the Beck-Chevalley condition on the weak pullback diagrams. For
FMLo the comprehensions are monomorphisms and the Beck-Chevalley condition of the left ad-
joints for weak pullback diagrams follows from the Beck-Chevalley condition of the right adjoints,
see Lemma A.0.17. Hence, applying Theorem 2.3.7 we obtain the following result.
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Theorem 2.6.12. The category Std, is locally cartesian closed. O

Observation 2.6.13. We now observe that the elementary doctrine F 0 of h-sets is in the class of
the elementary doctrines for which we could give a more direct proof of Theorem 2.3.7.

Indeed, in case of elementary doctrines P : P — InfSL with strict full comprehensions and
left adjoint to reindexings of monomorphisms it is possible to build the slice doctrines of P. We now
provide the main ideas of the construction without the details. The argument will be treated in
depth in the next chapter.

Given an object A € ¢ we can define the functor

P/a: /A% — InfSL (2.52)

which sends an object # : X — A of /A to the poset P/, := P(A), and an arrow % : z — y from
rtoy:Y — AtoP,4(h) := Pj. Since ¢’ /A has strict products, that can be built through the strict
comprehensions, the functor P /A inherits the elementary structure from P. If x x 4 « denotes the
common value of the two composites of the pullback

XxsX 25X

X ——— A

the fibered equality of x is given by the reindexing d, := Pz, r,)0x € P/4(x X 4 x). In this case, it is
a trivial computation to prove that J, satisfies the axioms of Definition 1.2.5. A P, 4-eq. relation on
x corresponds to an element P(X x 4 X)) which satisfies reflexivity, symmetry and transitivity con-
ditions. The left adjoints to the reindexings over monomorphisms give a correspondence between
P, 4-eq.relations and P-eq.-relations. Indeed, it happens that r is a P 4-eq. relation ox z if and only
if 3 r is a P-eq. relation on X and

T1,72)

(SX S E|< r S PxxzéA- (253)

T1,72)

This correspondence gives a practical description of the elementary quotient completion of P4 in
terms of the elementary quotient completion of P i.e.:

Tm = 5/(A,5A)~ (2.54)

Hence, it is possible to prove Theorem 2.3.7 just applying Theorem 2.3.2 and Remark 2.3.9 to the
slice doctrines of P and provide explicitly the exponentials of the slices of the form P4 ).

Remark 2.6.14. The above discussion was is of the main motivation that led us to the investiga-
tions of the next chapter. Indeed, we remark that the above construction relies on the fact that the
base category ¢ of the elementary doctrines P : ¥°? — InfSL considered have strict pullbacks.
Hence, the slices of ¢ have strict finite product and the slice functors are still in the realm of the
doctrines. However, in lots of cases, such as FML, the slices of the base category have only weak
finite products.

Another important aspect is that in the proof of Theorem 2.3.7, we actually repeated the argu-
ments of Theorem 2.3.2, assuming a different notion of exponential, for the slice categories. Lot of
work has been done just because we could not consider the functor that P induces on the slices as
an elementary doctrine, because they lack of strict finite products.

Moreover, the results obtained for the local cartesian closure and the extensivity of the elemen-
tary quotient completion obtain the results about the exact completion, only in the case of categories
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with strict finite products and weak pullbacks. However, [GV98, Proposition 2.1],[ CR00, Theorem
3.3] and [Emm?20, Theorem 3.6] are stated for categories in which also finite products are weak.
A similar observation can be done for the exact completion which is a particular instance of the
elementary quotient completion only for categories with strict products and weak pullbacks.

In the next chapter, we will provide a more general framework which takes into account these
considerations.

We conclude this chapter observing that Remark 2.2.4, Theorem 2.6.12 and Corollary 2.6.6 imply
the following result.

FML+

Corollary 2.6.15. The categories ML and ML are pretopos relative to and FMLo respectively.

Hence, we obtained that the homotopy setoids form a non-trivial example of relative II-pretopos.
Another non-trivial example of relative pretopos could be obtained for setoids arising from the
minimal type theory (mTT) introduced by Maietti and Sambin, see [MS05] and [Mai07].

Concluding remarks and further developments. The above result about the homotopy-setoids,
canbe also interpreted as follows. We mentioned that in [RS15] the authors considered the category
of h-sets of the homotopy type theory. Assuming the univalence axiom and various higher inductive
types, it is possible to obtain, internally to that type theory, a category which resembles the category
Set of sets and functions, which is a well-knows topos. In [RS15, Theorem 2.2] the authors prove
that the h-sets form a IIWW-pretopos and, assuming also the resizing rule, it becomes a topos. Hence,
h-sets provides the corresponding notion of "set" in that type theoretic framework. What we did
actually is to detect the corresponding category of sets in a weaker type theory that does not have the
sophisticated type constructors of the homotopy type theory. But, it will be part of future research
to consider W-types in our context.

The formalization of setoids in proof assistants has been deeply investigated in [ BCP03]. One fu-
ture development will be to implement in a proof assistant, based on Agda [CC99] or Coq [HKPMO02],
the homotopy setoids through one of the notion of category internal to the type theory, such as the
E-categories and H-categories introduced in [Pall8] or the pre-categories introduced in [AKS15];

Other future developments will be to investigate the connections between the elementary quo-
tient completion and the homotopy exact completion of [BM18], and the possibility to obtain the
homotopy setoids of a variation of the latter completion as discussed in Remark 2.6.3.
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Chapter 3

Biased doctrines

The aim of this chapter is to generalize the notion of elementary doctrine and of elementary quo-
tient completion, for functors where the base category may have just weak finite products. In Re-
mark 2.6.14, we underlined the main reasons which motivates this generalization. In particular,
we obtain a more general framework in which the corresponding elementary quotient completion
recover the exact completion of a category with weak finite products and weak pullbacks.

In the first part, we will introduce the notion of biased elementary doctrine which is a suitable
controvariant functor, from a category with weak finite products into the category of posets. The
elementary doctrines are a particular instance of the new framework and many other examples
which were not in the realm of the elementary doctrines, due to the lack of strict products in the
base categories, will be discussed. In Section 3.2, we will provide the main definitions and we will
discuss the following motivational examples:

o the functor Psuby : €°P — InfSL for a weakly left exact category €,

o the slice doctrine P4 : (¢'/A)°P — InfSL of a biased elementary doctrine P : 4”7 — InfSL and
object A € €.

In Section 3.2 we will discuss the fundamental notion of proof-irrelevant elements and in Section 3.3
we will provide a construction which associates a strict elementary doctrine to a biased elementary
doctrine in a universal way. In Section 3.4 we provide the corresponding quotient completion,
which generalize both the elementary quotient completion and the exact completion of a weakly
left exact category as provided in [CV98].

The second part of the chapter will be focused on the generalizations of the theorems obtained
in Sections 2.3 and 2.6 for the strict elementary doctrines. In Section 3.5, we will define biased
elementary doctrines which can deal with implication and existential and universal quantifications.
In Section 3.6 we will provide some results about the exact completion of the slice doctrines of a
biased elementary doctrine, which will be useful in Section 3.7.

Before starting, we fix some notations about weak finite products.

Notation. If % is a category with weak finite products and X1, ..., X,, are objects of €, then we can
obtain a weak product of those objects in different not isomorphic ways. Indeed, if we have

e a weak product p; : W — X;, for i = 1,...m, of the objects X1,..., X,.
e aweak productp; : V — X;, fori = m+1,...,n, of the objects X,,11,...,X,.

We can obtain a weak product of the objects X1, ..., X,, € € through a binary weak product W &
U 2 V. Moreover, given an assignment j : {1,...,k} — {7,...,n} with 1 <k, and a weak product

59
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Z of the objects X, for ¢ =1,..., k, we will abuse the notation and denote with (j(1),...,5(k)) :
U — Z the arrow induced by the composition of the projections pj() o p1, if j(t) < m, and pj;) o p2,
if m 41 < (1)

3.1 Biased elementary doctrines

The underlying categorical structure of this section will be controvariant functors from categories
with weak finite products to the category of posets. We will refer to such functors as biased doctrines.
In this section we provide a definition of primarity and elementarity for biased doctrines and discuss
some examples which naturally fit the new context.

The modular correspondence between the categorical structures and logic is especially beneficial
here: the conditions in Definition 1.2.1 are mutually independent and we can rewrite them when
¢ has just weak finite products as follows.

Definition 3.1.1. Let ¢ be a category with weak finite products. A biased primary doctrine is a functor
P : €°P — Pos which takes value in the category InfSL of inf-semilattices, i.e.:

P1 for every object X € ¢, P(X) has finite meets
P2 for every arrow f : X — Y in ¢, the map Py : P(Y) — P(X) preserves finite meets.

Contrary to the definition of biased primary doctrine, the conditions in Definition 1.2.3, which
characterize the elementary structure, are interdependent and the (strict) products in the base cate-
gory ¢ played a key role in it. Since two weak products of the same objects need not be isomorphic,
we have to devise a way so that fibered equalities, which shall now become biased fibered equalities,
interact appropriately. As we expect, an elementary doctrine shall satisfy also the following Defi-
nition 3.1.2, but we will discuss in detail the relationship in the section.

Definition 3.1.2. Let ¢ be a category with weak finite products. A biased elementary doctrine is a
biased primary doctrine P : €°? — InfSL, such that, for every object X € ¢ and for each choice of

weak product X &£ W % X there exists an element 6% € P(W) satisfying:
wl For every arrow Z 4, W,withpiod=pgod,itis Tz < Pd(dg(v).
wll P(X) = Dessw = {a € P(X)| Pp,a NS < Pp,al.

wlll If f : Y — X is an arrow of ¢, then for every choice of weak product Y £~ V' » ¥ and for
every arrow g : V' — W such that p; o g = f o p;, we have

8y < P,oY.

(1,3)
wIV For every choice of weak product W 2 U B W and arrows U %; W,
2,4

w
5X = @e‘gP(l,s)(5¥(V)/\P<2,4>(5¥(V)'

Observation 3.1.3. As expected, every elementary doctrine is actually a biased elementary doctrine.
Indeed, for every object X € ¢ and weak product X & W 2 X, there exists a unique map
(p1,p2) : W — X x X into the strict product X x X. The biased fibered equalities are given by
the reindexings 6 := P, ,,,(0x) € P(W). The element 6} satisfies the conditions of the above
definition because § x satisfies the conditions in Definition 1.2.5.
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We now consider functors that are not in the realm of elementary doctrines since the base cat-
egories have only weak finite products. However, we can prove that they are examples of biased
elementary doctrines.

Example 3.1.4 (Slice doctrine). Let P : €°? — InfSL be an elementary doctrine with weak com-
prehensions and comprehensive diagonals in the sense of Definition 1.2.5. Since weak pullbacks
in ¢ can be obtained through comprehensions, see A.0.7, it follows that the slices ¢’ /A have weak
products for every object A € €. The functor

P/ (€/A) — InfSL

is defined on an object (f : X — A) € ¥ /A as P,4(f) := P(X) and on an arrow h : f — g of ¢'/A
as P, 4(h) := Pp. We will refer to the functor P, as the slice doctrine over A. We can now prove that
the slice doctrine P4 : (¢'/A)°” — InfSL is a biased elementary doctrine for all object A € €.
Indeed, let = : X — A be an object of ¥ /A and consider a weak product of z - w % z given by
the common value of the composites of the following weak pullback diagram

Xxa X 25 X

m| lx

X ——— A

The elementary structure is obtained setting d;’ := P, r,ydx € P/4(w)(:= P(X x4 X)). Conditions
wI and wlI of Definition 3.1.2 trivially follow from conditions I and II of Definition 1.2.5. We now
prove that condition wlIl holds. Lety : Y — A be an object of ¥/Aand letv : Y x4 Y — A a weak
product of v and v. Given two arrows as in the following commutative diagrams

y — 1 . x Yx, VY — 9 X x4 X
E\x /4{ \\\a ////
A

such that m; 0o g = f o m;, for i = 1, 2, then we obtain condition wilII as follows

(P/A) 0y = PgPir) m)0x
- P<7F1,7r2>Pf><f5X
> Pry im0y
=4,
We now prove condition wIV. Letu : U — Abeaweak productof wandwandleth : U — X x X x
X x X be the unique arrow induced on the strict product X x X x X x X. If (1,3) /4, (2,4) 4 : u = w

are arrows induced by the composition 7y o 71, 72 0 71 and 7y o 2, T © o, then we obtain condition
wlV as follows

(Pra)m0z A (Pra)asy, 100 N (Pra)ay, .00

= Pr(P2y0x AP 3)sx AP2aysy) (III)
< PrP 3435

= (P/a)m,05 -
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Example 3.1.5 (Weak subobjects). For a given category ¢ with weak finite limits, the functor of
weak subobjects Psuby of Example 1.2.6 is actually a biased elementary doctrine. Indeed, if X is an
object of € and X & W ®2 X is a weak product, the element 6% is given by the equivalence class,
in the poset reflection of /W, of the right dashed arrow of the following weak limit:

D

w
- ~
g AN 6X

-
-,

K’ N
X w
1xl >< lm
X X.
p
Observe that 4} is an equalizer of the arrows W :1§ X .
p2

We now compare Definition 1.2.5 and Definition 3.1.2. Condition wl of Definition 3.1.2 is a more
general formulation of condition I of Definition 1.2.5. Condition wlI of Definition 3.1.2 is the same
of II of Definition 1.2.5, i.e., for all elements a € P(X) it follows that

Ppa ASY < Ppa.

Moreover, it is straightforward to prove that conditions wilIl and wIV of Definition 3.1.2 are satis-
fied for strict elementary doctrines. We now ask if condition III of Definition 1.2.5 holds for biased
elementary doctrines. Actually, we know that for the strict elementary doctrines we have the equal-
ity of the elements

Oxxy = o0x My,

(see Proposition A.0.3). For the biased elementary doctrines, the above identity does not hold in
general, as we will discuss in Example 3.2.5. However, in the following lemma, we prove that the
inequality dx xy < dx X dy holds for biased elementary doctrines.

Lemma 3.1.6. If P : €°P — InfSL is a biased elementary doctrine, then the following conditions hold

i) For every pair of objects X,Y € €, if X & Z 23 Y is a weak product, then for each choice of weak

products X 2 W R X, v 2V B Y, and 2 2 U B Zand arrows U UDN W, U e, v,

it follows that
8% < Pr130x APpady.

it) IfW and W' are weak products of X and X, then for any arrow h : W' — W such that p; = p;oh, for
i = 1,2, the fibered equalities 6% € P(W)and 6% € P(W"') are related by the following inequality

s¥' < PL(sY).

Proof. They follow from condition wiIII. O

For any object X € %, Definition 3.1.2 requires the verification of certain conditions for every
choice of weak product of X and itself. We now obtain a description of biased elementary doctrines
which only depends on a choice of weak products. In order to do that, we discuss some fundamen-
tal properties of the fibered equalities §x. Before we define a particular class of elements in the
fibers of the weak products.
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Definition 3.1.7. Let P : €°? — InfSL be a biased primary doctrine and let X7, ..., X, be objects
of €. Let W be a weak product of X1, ..., X,, with projections p; : W — X;, fori =1,...,n, and

B € P(IW), we say that the reindexing P;(3) of 5 along an arrow T’ X W is determined by projections

if, for every arrow T’ Y W such that pjot=p;ot' fori=1,...,n,
P(B8) = Pu(B).

An element 5 € P(W) is reindexed by projections if, for every object T and arrow T' 4 W, the
reindexing of 3 along t is determined by projections.

The importance of the above definition is that, in case of weak products, two arrows ¢,t' : T—W
that have the same projections are not necessarily equal. However, the functors P, and P, have the
same values on the elements of P(1/) that are reindexed by projections. The fibered equalities 5%
of Definition 3.1.2 have enough properties to be reindexed by projections. Actually, less is needed,
as it is shown in the following lemma.

Lemma 3.1.8. Let P : €°P — InfSL be a biased primary doctrine and let X be an object of €. Assume that

X & W B X is a weak product and 6% is an element of P(W) satisfying condition wl of Definition 3.1.1
and the condition

(1.3)
wlIV’ There exist a weak product W & U 23 W and two arrows U %; W such that
2,4

w
ox € @espu,:a)(5)V¥)/\P<2,4>(5§/)'

Then 5% is reindexed by projections.

t
Proof. Let T tjlg W' be two arrows such that p; ot = p; o ty, for i = 1,2. The weak univer-
2

sal property of U implies the existence of an arrow (t1,t2) : T' — U such that p;(t1,t2) = t;,

for i = 1,2. Hence, P;,(0%) = Pt1.42)Pp; (6%), for i = 1,2 and, by condition w1, it follows that

Pty P1,3) (0%) = Tr = Py 1,)P 2.4y (0% ). We obtain the inequality Py, 6% < P;,6¥ as follows:

Ptl(%/([/) = P(tl,t2>Pp1 (5}/([/)
= P(tl,t2>Pp1 (5)1/}/) AN Tr

= Pt,15) (Ppi0X AP13)0% APoyy0Y) (wl)
< P(tl,t2>sz(5g<V) = Ptg(fs)vg) (wIV)
=P, (0X).

The opposite inequality is obtained similarly considering an arrow (ts, t1). O

Corollary 3.1.9. Let P : €°P — InfSL be a biased elementary doctrine and let X be an object of €. If W
and W' are two weak products of X and itself and h : W — W' is an arrow satisfying p';h = p; fori = 1,2,
then Ppo¥W' = o¥.

We say that a category % has a choice of weak products if there exists a functor w : € x € — €2,
where A is the category with three objects and the non trivial span

o <——— o — @

)

such that:
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o the value w(X,Y) is a weak product of the objects X,Y € ¢,

e the arrow w(f,g) : w(X,Y) — w(A, B) satisfies p1 o w(f,g) = f op1 and pa o w(f, g) = g o pa,
for every pair of arrows f: X - Aandg:Y — Bof @.

We will use the usual notation X - X x Y 23 Y for the choice of weak product w(X,Y) and f x g
for the choice of weak product of arrows w( f, ). In the following Theorem, we prove that a choice
of weak products provides an easier description of the biased elementary doctrines.

Theorem 3.1.10. If P : €°P — InfSL is a functor such that € has a choice of weak products and such that
for every object X € € there exists an element §x € P(X x X) satisfying:

i) for every arrow Z 4y X x X such that prod=mpyod, then Tz <Py(dx),
iit) P(X) = Dess,,
iii) If f:Y — X isanarrow of €, then 6y < Py, dx,

: 1
iv) 0x € @“P<1,3>(5X)/\P<2,4>(5x)’

then the functor P : €°P — InfSL is a biased elementary doctrine

Proof. For each choice of weak product X & W 2 X, the weak universal property of weak prod-
ucts induces an arrow h : W — X x X such that p; o h = p;, for i = 1,2. Even if h is not unique,
Lemma 3.1.8 implies that we can uniquely reindex §x along such arrow and define ¥ := P;dx,
which trivially satisfies conditions wl and wII of Definition 3.1.2.

We now prove WIII of Definition 3.1.2. Let W be a weak product of X and X, and let V be a weak
productof Y and Y. So therearearrowsh : W — X x X and k : V — Y xY such that p;oh = p; and
piok=p;,fori=1,2.Letf:Y — X and g: W — V be two arrows of ¥ such that p, o g = f o p;,
for i = 1,2. We obtain that 6} < P,6¥ as follows

oy = Pidy
< PrPrxsix (iii)
= P,Prox (Lemma 3.1.8)
= Pgé)vg.

We now prove condition wIV of Definition 3.1.2. Let W 2 U % W be a weak product and let
(1,3)

U ﬁ; W, be two arrows induced by the projections p; o p1,p1 o p2 and p2 o py,p2 © p2. The
2.4)

weak universal property of weak products induces arrows b : W — X x X and k : U — (X x
X) x (X x X) satisfying p, o h = p; and pjo k = hop; for i = 1,2. We obtain the relation

'The arrow (X x X) x (X x X) 19 X % X denotes the choiche p1 X p1. Similarly, the arrow (2, 4) denotes the choice

P2 X p2.
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w
6X S fDeSPu’B)/(ag[(/)

AP (5. (8%) @S follows:
Pp, 0% A P<1,3>'5)M</ N P<2,4)/5)V¥ (3.1)
= Pp1 Préx A P<173>/Ph(sx A P<274>/Ph(5X
= PkPp,0x A PEP13y0x APKP 2 4y0x (Lemma 3.1.8)
= Pk(Pp15X N P<1’3>5X N P<2,4>5x)
< PiPpydx (iv)
= Pp,Prox
= Pp2(5¥g.
O

3.2 Proof-irrelevant elements

In this section, we will detect elements in the fibers of a biased elementary doctrines P : €7 — InfSL
that are suitable in the following sense. If W is a weak product of the objects X1,...,X,, € ¥ and
fi + A — X, are arrows of ¢, for i = 1,...,n, then the weak universal property of the weak
products induces a not necessarily unique arrow (fi, ..., f,) : A — W, which makes the obvious
diagram commute. Hence, the reindexings of the elements of P(WW) along such arrows are not
uniquely determined. We shall define the sub-poset of P(W) of proof-irrelevant elements and we
will prove that they are reindexed by projections. Proof-irrelevant elements take their name from
the slices of the elementary doctrine F** of dependent types, as we will discuss in Example 3.2.5.
Moreover, we will prove that proof-irrelevant elements only depends, up to isomorphism, on the
objects X1,..., X, € €.

Lemma 3.2.1. Let P : €°P — InfSL be a biased elementary doctrine and let X, ..., X,, be objects of €. If
W is a weak product of X1, ..., X, with projections p; : W — X;, for i =1, ..., n, then the sub-poset

C
DES 1 iy BL APy 012y S PV

does not depend on the choice of weak products X; & W; B X, W & U B W and arrows (i,n + i) :
U—=W,fori=1,...,n.

Proof. Let Des C P(W) be the sub-poset defined through a different

(P i1y Ox VAP 5y (S50))
choice of weak binary products X; ! w/ P2 X, fori=1,...,n, W 22 U’ %3 W and arrows
(i,n+1) : U — W/, fori=1,...,n. We prove the equality

Des = Des

w- Wn w! /
(P(1,n41) (O3 )N AP 20y (35 11)) (P ity (G DIAAP (0 (35 7))
as follows. The weak universal property of weak products induces arrows

E:U — U,

hi . WZ‘/—>VI/Z',
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such that p;jk = p’j and pjh; = p’j fori =1,...,nand j = 1,2. We obtain the inclusion ” C ” as
follows. If P, v A P<17n+1>(5}/}/11) ARERW\ P<n,2n>(5%) < Pp,a, then

!

w! W,
Pplloé A P(l,n+1>’6X11 FANRIREIVAN P(n,Zn)’(;Xn

n

= PypPp A P<1,n+1>/Phi5}§? ARERRA P<n,zn>Phn5)v}/: (Corollary 3.1.9)
= PP, AP0 A AP a0 ") (Lemma 3.1.8)
< PiPpa

= Py, a.

The opposite inclusion D follows similarly considering arrows k' : U — U’ and h : W; — W/ such
that p’;k" = p;, p';h; = pjfori=1,...,n,j=1,2. O

The above lemma allows us to give the following definition.

Definition 3.2.2. Let P : ¥°? — InfSL be a biased elementary doctrine and let X1, ..., X,, be objects
of €. For every weak product W of the objects X, ..., X, , we will refer to the sub-poset

Plrrg (W) = Des(p o 631 AP iy (507))

of P(WW) as the sub-poset of proof-irrelevant elements (or strict predicates) of the weak product .

Observation 3.2.3. We observe that, if P is a strict elementary doctrine and X, ..., X,, are objects
of ¢, then the proof-irrelevant elements of a strict product X; x --- x X,, coincide with the fiber
P(X1 x -+ x Xp).

We now prove that the proof-irrelevant elements are reindexed by projections.

Proposition 3.2.4. Let P : €°P — InfSL be a biased elementary doctrine and let X1, ..., X, be objects of
€. For every weak product W of the objects X1, ..., Xy, the proof-irrelevant elements of W are reindexed
by projections.

t
Proof. Let T t:;; W' be two arrows satisfying p;ot; = p;joty, fori =1,...,nandlet (t,t2) : T — U

be an arrow induced by the weak universal property of a weak binary product W & U/ 23 W, such
that p;(t1,t2) = t; fori = 1,2. If Py ,a A P<17n+1>6§-/11 ARERIAN P<n’2n>5}2l < Pp,a, then we obtain
P, o < Py, as follows:
Pna = P(t17t2>PP10‘

= P<t17t2>Pp1a AT

_ Wi W

= P(tl,t2>(PP1a A P(l,n+1)5X1 JARERA P(n,2n>5Xn )
< P<t1,t2>PP2a

= PtQCM.
Similarly, the opposite inequality P;,ac < P¢, a is obtained considering an arrow (2, t1). O

Proof-irrelevant elements take their name from the following example.

Example 3.2.5. Consider the elementary doctrine FMZ : ML — InfSL of Example 1.2.8 and a
closed type A. If | f] : X — Ais an object of ML/A, then a choice of weak product of | f] and | f]
is given by the equivalence class of the common value of the two composites of the following weak
pullback diagram
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W= 3 Ida(f(z1), f(z2)) —— X

x1,x2:X

ml /
X - A

The slice doctrine FM%, , sends the weak product |w] to FML ,,(|w]) := FML(W), which is given
/ p / g
by the equivalence classes of the dependent types on W:

w: W F B(w).
The fibered equality 4| f) is given by:
(w1, 2, p) : W F ldx (21, 22).

Similarly, if g := f o w1, a weak product of |g] and |g¢] is given by the common value of the two
composites of the following weak pullback

U:= Z.Wldw(g(wl%g(wﬂ) — V[
w A.

g

The fibered equality |, is an element of FM%,(h) := FME(U) given by:
(’UJl,wQ,p) U+ IdW(lUl,’UJQ),

and we will refer to J| ) as proof-relevant equality on W. On the other hand, if w := (71, 22,q) : W
and w’ := (2, 5,q") : W, then the element §| y1 X §| s) corresponds to the dependent type

(waw,7p) U F |C|X(33'1, ‘T/l) A |dx($2,l’,2),
which does not depend on the proof terms

q:lda(f(z1), f(z2)), ¢ :lda(faa, fos).

Hence, we will refer to 6| ;1 X §| 1 as the proof-irrelevant equality on W.

Similarly, we can describe proof-irrelevant elements of the objects f; : X; — A, fori=1,...,n,
of ML/A as follows. If | g] : W — A is a weak product of fi, ..., f, then proof-irrelevant elements
over fi,..., fn are types w : W = B(w) such that, if w, w : W and the type

ldx (w11, wa1) A+ Aldx (w1, w2p)
is inhabited, then B(w) is inhabited if and only if B(wy) is inhabited.

The following example gives an explicit description of proof-irrelevant elements of the biased
elementary doctrine of weak subobjects Psuby of weakly left exact category 4. We omit the proofs,
that will be provided in detail in the next chapter.

Example 3.2.6. Let ¢ be a category with weak finite limits and let X1, ..., X,, be objects of . If W
is a weak product of X1, ..., X, then the proof-irrelevant elements of W are described as follows.
Let ¢'/(X1,..., Xn) be the category of cones over Xj, ..., X, and let ¢/(X;, ..., Xy),, be its poset

reflection. The assignment which takes the equivalence class of a cone R *% X;, fori = 1,...,n,
over Xi,...,X,, into the equivalence class of the right dashed arrow of the following weak limit
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W "
R Tn P1 W
Tll >< lpn

X3 Xn.
provides a bijection between ¢ /(X1 ..., X»),, and the proof-irrelevant elements of W. The above
correspondence can be used to interpret (a fragment of) intuitionistic logic in categories with weak
limits. In [Pal04], the author presents how standard interpretation of categorical logic, see [MR77],
relates with the categorical BHK-interpretation in categories with strict products and weak limits.

In the next chapter, we will extend the latter interpretation to wlex categories and provide the details
of the above bijection.

We end this section proving that different weak products of the same objects yield isomorphic
sub-posets of proof-irrelevant elements.

Proposition 3.2.7. Let P : €°P — InfSL be a biased elementary doctrine and let X1, ..., X,, be objects of
€. The sub-poset of proof-irrelevant elements of W' is defined up to isomorphism for every choice of weak
product W of the objects X1, ..., X,.

Proof. Let W’ be a different weak product of the objects X1, ..., X,, with projections p’;, : W/ — X,
fori=1,...,n,and let

Des w! g P(W/)

(Prms 1y Ox VAP oy (35))

be the sub-poset of proof-irrelevant elements over W/, defined through different weak products
weuBw, x, 2 W/ P2 X;, fori=1,...,n, and arrows (ti,n+1d) U - W/ fori=1,...,n.
The weak universal property of weak products induces arrows

h:-W —W

and
LW —-=w

such that p;h = p/; and p’;l = p;, fori = 1,...,n. We prove that the functors P}, restricts to an
isomorphism with inverse P; between the sub-orders

e
~ " PDes

w Wn, w! /
(Pitnry (B DA AP G20y (O31)) = T (P y s (B3 DDA AP 5001 (837))

Ph : Des : Pl~

The weak universal property of weak products induces arrows
E:U —-U

and
hz‘ : Wi/ — Wi
such that pjk = hp'; and p;jh; = p'; fori = 1,...,n, j = 1,2. We first prove that if

a € Des
(Pt 1y B DIAAP (1 0 (SH))
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then Pra € Des wy .. as follows:

/
(1,n+1>/(5X11)/\"'/\P<n,2n>/(6Xn

w! w!
PP’l Pra A P(l,n+1>’6X11 VANCEIIVAN P(n,2n>/5X:

= PiPp 0 AP (1 i1y PRy 0 Ao AP o0y P 6" (Corollary 3.1.9)
= Pi(Ppr 0 AP )0t A AP 208 ™) ( Lemma 3.1.8)
< PiPp,a

= Py, Pra.

A similar computation shows that P; restricts to the sub-posets of proof-irrelevant elements. The
bijection follows from proposition 3.2.4 since p;(h o l) = p; o Id and p’;(l o h) = p/; o Id for i =
1,...,n. L]

From Lemma 3.2.1, Proposition 3.2.4, and Proposition 3.2.7, given n objects X, ..., X,, € €, we
can consider the the limit of the diagram of isomorphisms given by the restrictions of reindexing
among the various presentations of proof irrelevant elements of the weak products of X;,..., X,
and denote it by P*[ X7, ..., X,,]. We will refer to P*[X1, ..., X,,] as proof-irrelevant elements (or strict
predicated) of X1, ..., X,. In the next section, we will prove that the assignment P* is actually func-
torial and it is a strict elementary doctrine, which we will call the strictification of P.

3.3 Strictification

In this section, we will provide a construction which relates biased elementary doctrines and the
strict ones. Using the properties of proof-irrelevant elements, we will associate to each biased el-
ementary doctrine a functor which turns out to be a strict elementary doctrine. Hence, we will
obtain a characterization of the biased elementary doctrines in terms of the strict elementary doc-
trines. In order to do that, we will need the universal construction which freely adds strict products
to a category.

Notation. For every n € N, we will denote by [n] the set {1,...,n}. If j : [m] — [n] is an assignment
and the cardinality of the codomain is clear from the context, then we will often denote j by its

values (j(1),...,7(m)).

The product completion (Famgi, (4°P))°P of an arbitrary category % can be found in [BC95]. We
now recall a presentation of the construction which better fits our context.

Definition 3.3.1. Let ¢ be a category. The finite product completion of ¢ is the category ¢; defined
as follows:

objects of ¢ are finite lists [ X1, ..., X}, of objects of .

arrows of ¢, are pair (f, f) : [X1,...,Xn] = [Y1,...,Yn]such that f : [m] — [n] is an assignment and
f=1f1,-.., fm] is a list of arrows f; : X fiy = Y of €, for i € [m]. The composition of two

arrows (f, ) : [X1,..., Xp] = [Y1,..., Y] and (9,9) : [Yi, ..., Y] = [Z1,. .., Zi] is given by
(9.9)0 (£, /)= (g% f.50f)

where g * f = [g1 0 fy(1), -+ -5 9k © Fom)l-
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There is an obvious functor S : ¥ — %, which sends an object X € ¥ to the list [X]| € €, and
an arrow f of € to the arrow (f, (1)) : [X] — [Y] of €;. We will denote with Cat the 2-category
of small categories, and with CART the 2-category of categories with strict finite products and
functors preserving them. It is well known that the above construction gives a left bi-adjoint to the
forgetful functor U : CART — Cat.

Proposition 3.3.2. For every small category €, the pre-composition with S : € — €, induces an essential
equivalence of categories
— 0.8 : CART(¥;,D) = Cat(¢,D)

for every category D with strict products. O

Observation 3.3.3. We observe that the above adjunction restricts between the 2-category CART
and the full 2-subcategory WCART of Cat of categories with weak finite products and functors.
We also remark that the the obvious functor S : ¢ — €, does not preserve the weak finite products
of €, neither it turns weak products into strict ones.

Notation. If ¢ is a category and f : X — Y is an arrow of %, then we will denote by [f] the arrow
(f,(1)) : [X] = [Y] of €. Similarly, if [f] : [X] — [Y] and [g] : [X] — [Z] are arrows of €, we will
adopt the notation ([f], [¢]) : [X] — [Y, Z] to denote the unique arrow of %; induced by the arrow
[f], [¢g] on the product [Y, Z] of €. Finally, if [f] : [X] — [Y] and [g] : [Z] — [W] are arrows of %,
then we will denote by [f] x [¢] : [X, Z] — [Z, W] to denote the arrow ([f, g], (1,2)) of E.

In the following proposition, we prove that a biased elementary doctrine P : €°? — InfSL in-
duces a functor P* : €°F — InfSL.

Proposition 3.3.4. If P : €°P — InfSL is a biased elementary doctrine, then we can define a functor
Ps: ;" — InfSL.

Proof. The functor P* is defined on a list [ X, ..., X,,] as the isomorphism class of the sub-orders
of proof-irrelevant elements of weak products of X7, ..., X,,. In particular, P°[X| denotes nothing
but the poset P(X). We now prove that the assignment is functorial.

Let (f, f) X, .., X)) = [Yh, ..., Y] be an arrow of € and let W be a weak product of X1, ..., X,
and V a weak product of Y7,...,Y,,. Hence, we obtain an arrow g : W — V such that p; o g =

fio iy for i € [m]. We now prove that if a is a proof-irrelevant element of V, then P,(a) is a
proof-irrelevant element of W. Indeed, given some weak products W PUBWandv & 238V,
the arrow g induces an arrow h : U — Z such that p; o h = g o p;, for i = 1, 2. Given weak products
X, 2w, B X,and Y; 2 V; BB Y}, and arrows (t,i+n) : U — Wyand (j,j +m) : Z — Vj, for
i € [n] and j € [m], then assuming P, a A P<1,n+1>5¥i Ao A P<n72n>6¥: < Pp,a we obtain

Po Py AP (1 1y05t At AP o 0" Definition 3.1.2-ii)
1% Vin
< PpPpa A P(l,erl)Pf(l)(SYi VANRERIVAN P<m72m> P];(m)(sym Lemma 3.1.8
= Pp(Pp,a A P(l,n+1>5¥11 ARRRNA P(n,2n)6¥2)
§ Pth2a
= Py, Py
Hence, P*(f, f ) sends the isomorphism class of a proof-irrelevant element o of X7, ..., X, to the
isomorphism class of the proof-irrelevant element P,(«) of Y7, ..., Y},. The assignment is well de-

fined thanks to Proposition 3.2.4. O
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We now prove that the functor P is actually a strict elementary doctrine.

Theorem 3.3.5. Let € be a category with weak products. If P : €°P — InfSLis a biased elementary doctrine,
then P* is a strict elementary doctrine. Vice versa, for every strict elementary doctrine R : €7 — InfSL, the
pre-composition Ro S : €°P — InfSL is a biased elementary doctrine.

Proof. Assuming that P : €°? — InfSL is a biased elementary doctrine, we prove that P* : €, —
InfSL is a strict elementary doctrine as follows. For every object [X,..., X,] € %, we define the
fibered equality d|x, . x,] as the isomorphism class of the proof-irrelevant equality P<1,n+1>5§(vf A
A P<n72n>5%, which is in P°[Xy,..., X, X1,..., X,]. In particular, §;x is the isomorphism
class of the fibered equalities 5}/}/. Now we prove that Jx, . x,] satisfies conditions LII and III
of Definition 1.2.5. Indeed, the diagonal Ay, . x,is given by the arrow (1, (1,...,n,1,...,n)),
where 15 = [lx,,...,1x,,1x,,...,1x,] and PSA[X1 X,] is equal to the isomorphism

class of P(l,..‘,n,l,...,n)(P<1,n+1)6)vz'/11 Ao A P<n72n>5)v([-/:). By Lemma 3.1.6 and condition wl we obtain
Tixy,Xn] < PSA[X1 AAAAA x,L]d[le---v x,,]- Condition II, follows by definition of P*. Finally, condition III
is obtained as follows. The element 0|y, . x,] X d}y, . y,,] is given by the isomorphism class of the
element

P<1,3>(P<1,n+1>5§<vf ARERNA P(n,Zn)(s)V}/:) A P<2,4>(P(1,n+1>5¥11 AREENA P(n,2n)5¥:)'

By Lemma 3.1.8, the above element is equal to

%% Wi Vi Vi
P(l,n—i—m—‘rl)(sxll A P(n,2n+m)5Xn A P<1+n,2n+m+1)5yll A P<m+n72n+2m)5yn .

Hence, we obtain the equalities

01X 1, Xn] BOVL Vil = OX1 e X Vi Yin] = O] B RO, B Oy - - By -

Now consider a strict elementary doctrine R : €;” — InfSL and the composition P := Ro S. The
fact that P is a biased elementary doctrine follows setting 6% := R({p,].(p,)0[x]- O

Definition 3.3.6. If P : € — InfSL is a biased elementary doctrine, then the strict elementary
doctrine P* : €7 — InfSL is called the strictification of P.

Observation 3.3.7. It is not obvious how to collect biased elementary doctrines in a 2-category. If
P: %P — InfSL to P’ : '’ — InfSL are biased elementary doctrines and (F, f) is a pair where
F : % — ¢ is a functor and, for every object X € ¢, the functors fx : P(X) — P/(F(X)) preserve
the structure on the fibers, then we obtain the biased elementary doctrine P’ o F' : €°P — InfSL. If
W is a weak product of the objects X1,..., X, € €, then the proof-irrelevant elements of P’ o F
over IV are not necessarily in relation with the proof-irrelevant elements of P’ over a weak product
V of the objects F'(X}),...,F(X,) € ¢'. The assumption that F preserves weak products would
fix this issue, but it is too restrictive. For instance the functor S : 4 — %, does not preserve weak
products. The definition of a 2-category of biased elementary doctrines is still under investigation.

We end this section observing that the notion of full, weak comprehension for biased elementary
doctrines is the same of Definition 1.2.9. Comprehensive diagonals are defined as follows.

Definition 3.3.8. A biased elementary doctrine P : €°? — InfSL has comprehensive diagonals if, for
every pair of arrows f, g : A — X of ¢’ such that T4 < P?m [g})(s[X]’ then f = g.
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3.4 Quotient completion

In this section, we will define P-equivalence relations and the relative notion of quotient for biased
elementary doctrines. We will provide the corresponding quotient completion and we will obtain
the exact completion of a weakly left exact category as an instance. Finally, we will discuss the
universal property of this construction which is slightly different from the universal property of
strict elementary doctrines stated in Theorem 1.3.3.

Definitions and construction. In order to define P-equivalence relations of a biased elementary
doctrine P : €7 — InfSL we will use proof-irrelevant elements. Indeed, since proof-irrelevant
elements are reindexed by projections, they are suitable to define P-equivalence relations in the

style of Definition 1.3.1. Given an object X € ¢ and a weak product X & W % X, a proof-
irrelevant element p € P(WW) of W is a P-equivalence relation if it satisfies

ref) 6% <p,
sym) P 1y(p) < p,
trans) P;2y(p) APp3y(p) < Prus(p),

for some (and thus all) weak product p; : K — X for i = 1,2,3, and arrows (1, 2), (2, 3),(1,3) :
K—W, (2,1) : W—>W.
We can synthesize the above conditions working with the strictification P* of P as follows.

Definition 3.4.1. Let P : ¥°? — InfSL be a biased elementary doctrine. A P-equivalence relation on
an object X € ¢ is an element p € P°[.X, X| which is a P*-equivalence relation on [X]| € €.

The following example makes explicit the use of the strictification to define P-equivalence rela-
tions for the biased elementary doctrine of weak subobjects.

Example 3.4.2. Let ¢ be a category with weak limits and let X be an object of ¢". In Example 3.2.6

we discussed that, for every weak product X 2w B X, there is a bijection which sends an
equivalence class [r1,72 : R — X],, of a pair 11,72 : R — X to the the equivalence class, in the
poset reflection of ¢’ /W, of the right dashed arrow of the following weak limit:

i’ T
R w
o| <
X X.
In the next chapter, we will prove that the element |p] is a proof-irrelevant element of W and that

there is a bijection
(¢/(X,X))po = Psub, [ X, X].

It is straightforward to prove that, if 71,73 : R — X is a pseudo-equivalence relation on X, then |p]|
is a Psubg-equivalence relation on X.

The definition of quotient of a P-equivalence relation can be stated as follows.
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Definition 3.4.3. Let P : ¥°? — InfSL be a biased elementary doctrine and let p be a P-equivalence
relation on A. A quotient of p is an arrow ¢ : A — C'in € such that p < Pfq} «[d] (dj¢cp) and, for every

arrow g : A — Z such that p < P‘fg}x[g}(d[ 7)), there exists a unique arrow h : C' — Z such that
g=hog.

Example 3.4.4. Let € be a category with finite weak limits and let X be an object of ¢. The bi-
jection of Example 3.4.2 and a straightforward computation show that an arrow ¢ : A — C'is the

coequalizer of a pseudo-equivalence relation ri,7; : R — X if and only if it is the quotient of the
correspondent Psub-equivalence relation |p| € PsubZ [X, X].

The biased elementary quotient completion is obtained similarly to the strict case.
If P : €°P — InfSL is a biased elementary doctrine, we consider the category 4 whose

objects are pairs (X, p) where A is an object of ¢ and p is a P-equivalence relation on X,

arrows | f] : (X, p) = (Y, o) are equivalence classes of arrows f : X — Y suchthatp < Pf FIxLf] (o).
Two arrows f, f" are equivalent when p < Pf F1x11] (o).

The assignment P which sends an object (X, p) € € to P(X, p) := Des, and an arrow | f] : (X, p) =
(Y, o) to P51 := P is a well defined functor as it is shown in the following lemma.

Lemma 3.4.5. If P : €°P — InfSL is a biased elementary doctrine, then:

(i) If (X, p) and (Y, o) are two objects of € and f : X — Y is an arrow of € such that p < P
then P restricts to a map

S
%17
P : Desy — Des,.

(i) If f,g: X — Y are arrows of € such that p < Pfﬂx[g}a and 8 € Des,, then

P(B) = Py(B)-

Proof. In order to prove (i), let X & W 2 X and ¥ & vV B ¥ be weak products such that
p€PW), peP(V)andletg : W — V be an arrow such that p;, o g = f o p; fori = 1,2, and
p < Pyo.If B € Des,, then we obtain Py € Des, as follows:

Pp1Pf/8 ANp< Pp1Pf/3 A Pgyo
=Py(Pp,BN0)
S Pg PP2 5
= Pp,PyB.
To obtain condition (ii), we recall that condition wl of Definition 3.1.2 implies that T x = Pa , p for

every diagonal Ax : X — W. Now we consider an arrow i : W — V such that p; o h = f o p; and
p2 o h = g o p2. Hence, we first obtain that Py < P,$3, as follows:

Pfﬂ =PaPrPpBA Tx
= PAX(PhPmB A p) (Tx = PAXP)
< PAXPh(Pplﬁ/\U)
< PayPrPp,f
= P,p.

The opposite inequality follows from the symmetry condition of P-equivalence relations. ]
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Observation 3.4.6. We observe that if P : €°? — InfSL is a biased elementary doctrine and ¢ has a
choice of weak products, then we can describe P-equivalence relations, quotients and the quotient
completion without using P*. The objects of ¢ are pair (X, p) where X € ¢ and p € P(X x X)
is a proof-irrelevant element satisfying condition of reflexivity, symmetry and transitivity as in
Definition 1.3.1. An arrow [ f] : (X,p) — (Y,0) of €; is the equivalence classes of an arrow f :
X — Y of € such that p < Py, (o). Two arrows f, f’ are equivalent when p < Py, /(o).

As expected, the quotient completion of a biased elementary doctrine yields a strict elementary
doctrine with quotients. The following theorem has been proved in Maietti and Rosolini for the
strict elementary doctrines in [MR13, Lemma 5.3, 5.4 and 5.5].

Theorem 3.4.7. Let P : €°P — InfSL be a biased elementary doctrine with weak full comprehensions and
comprehensive diagonals, then P : € — InfSL is a strict elementary doctrine in QD.

Proof. Given two objects (X, p), (Y, o) € €, the strict products are given up to isomorphism by
(W,pRo),

where W is a weak product of the objects X,Y € ¢. B
Conditions I, I and III of Definition 1.2.5 are proved as in Theorem 3.3.5. An P-equivalence relation
pon (X, p) is a P-equivalence relation on X such that p < u. Hence, the quotient is given by

L1X~| : (X7p) - (X7N),

and it is an effective quotient of effective descent. If o € P(X,p), and {a} : C — X is a weak
comprehension of o € P(X), then the strict comprehension of « is given by

el (C,p) = (X, p)

where p/ := Pliabx [{ah1 P The diagonals are comprehensive by construction. We now prove that
quotients are stable. In order to do that, we use the description of pullbacks through compre-
hensions of elementary doctrines with weak comprehensions and comprehensive diagonals, see
Lemma A.0.7. Let A be a P-eq. relation on the object (Y, o) and consider its quotient [1y] : (Y, o) —
(Y, N). If [ f]: (X, p) = (Y, A) is an arrow, then the diagram

( 7 \_772]

C,v) (

L] (W,oXp

A

X, p)

Lf1

(Y,0) (Y, \)

[1y]

where Y & W 2 X is a weak product, ¢ := {Ipzp1,p2>Pf1y]X[f])‘[} and v := P[SC]XM Pzphm

pullback diagram. We now prove that the element (X, p) is isomorphic to the element (C, w) where

w = Pl g Plorpn A B P If h denotes an arrow of the form X — W induced by the arrows f and

1x, such that p1h = f and poh = 1x, then since

>U®pisa

Tx < Pl imA = PrPloy ooy Pliy s
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there exists an arrow g : X — C such that co g = h. Since

7 < Pl Plpron A B2 = Pl Plaxa Pl

la]x[d] A p = Pl g

P1,P2) P1,P2)

the arrow ¢ induces an arrow
Lg] : (X, p) = (C,w).
This arrow is the inverse of [m2] : (C,w) — (X, p). O

Observation 3.4.8. If P : €7 — InfSL is an elementary doctrine, the elementary quotient comple-
tion and the biased one yield isomorphic elementary doctrines.

Observation 3.4.9. Example 3.4.2 and Example 3.4.4 imply that the exact completion of a weak lex
category is a particular case of biased elementary quotient completion, in the sense that there is an
equivalence of the two categories € = 6 /yjeq-

Universal property. We now discuss the universal property of the biased elementary quotient
completion which is different from the universal property stated in Theorem 1.3.3. This should not
be surprising since a similar issue occurs in the universal property of the exact completion of weakly
left exact categories. Indeed, as observed by Carboni and Vitale in [CV98], the exact completion
construction

'€ — %,

of weakly lex categories does not provide the unit of a biadjunction between the 2-category of exact
categories and exact functors, denoted by EX, and any definable 2-category of weakly lex categories,
denoted by WLEX. However, the authors consider a special class of functors called left coverings and
provide a universal property of the exact completion in the sense of the following Theorem. We
refer to [Vit94] for further details.

Definition 3.4.10. Let F' : ¥ — A be a functor from a weakly left exact category ¢ to an exact
category A. The functor F' is called left covering if, for all functors £ : D — € defined on a finite
category D and for all weak limits

wlimL = (rp : L — LD)pep,
the canonical factorization p : FL — L is a regular epimorphism, where
limFL = (7p : L — F(LD))pep.
The next result appears as [CV98, Theorem 29].

Theorem 3.4.11. (Carboniand Vitale). Let € be a weakly left exact category and let A be an exact category.
The exact completion I" induces an equivalence between the category of left covering functors from ¢ to A,
and the category of exact functors from 6., to A. The same holds for the regular completion, with respect to
any regular category A. O

Taking advantages from the above result, we now define in the context of the biased elementary
doctrines the analogous of left covering functors.From condition wlII of Definition 3.1.2 we obtain
a canonical 1-arrow

(J,j):P—=P

where the functor J is defined on objects X € ¢ as J(X) := (X, [x]) and on an arrow f : X — Y
as J(f) = [f]: (X,01x)) — (Y,dy))- The functors jx are just the identities of P(.X'). When P has
weak comprehensions we can observe the following facts:
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e if I is a weak product of the objects X, Y, € ¢, then the unige arrow into the strict product
(W, 6w)) —— (W, d1x] X dpy))

is a quotient of the P-equivalence relation & (x] X oy over (W, o).

o If {af : X — Aisaweak comprehension of an element o € P(A), then J({«[}) factors through
the comprehension of j(«) via a P-quotient

R {af
(X, P5014) —— (A, 64))

/(M*)

where h is the product of {af} and {af}, i.e. h = ({{«a, af}}, (1,2)).

The above observations and the relation between weak limits and weak comprehensions, (see
Lemma A.0.7), lead to the following definition of left covering functors for biased elementary doc-
trine as follows.

Definition 3.4.12. Let P : ¥€°? — InfSL be a biased elementary doctrine with weak full com-
prehensions and comprehensive diagonals and let R : D — InfSL be an object of QD. A pair
(F, f) : P — Ris called left covering when

1. The functor F' sends a weak product W of the objects X,Y € ¥ to the object F/(W) € D such
that the unique arrow

(F(p1), F(p2)) : F(W) = F(X) x F(Y)
is a quotient of an R-equivalence relation.

2. For every object X € ¥, the functors fx : P(X) — RF(X) preserve all the structure. In

particular, the functor fx preserves finite meets and for a weak product X & W 2 X we
have

fw (6% ) = Rir(py),F(pa)) (OF(x))-
Moreover, we require that the restriction of the functor fy
fw : Pler(W) — RF (W)
takes value in Desy,, where kx is the R-kernel of (F'(p1), F(p2)), i.e.

R{F(p1),F(p2)) % (F(p1),F (p2)) OF (X) x F(X) -

3. if {af : X — Ais a weak comprehension of the element & € P(A), then the arrow F({al) :
F(X) — F(A) factors through { f(«)[} via a quotient of an R-equivalence relation.

Observation 3.4.13. Since R has stable quotients of effective descent, the arrow (F'(p1), F'(p2)) of
condition 1 is the quotient of its R-kernel

R (P (p1),F(p2)) x (F(p1),F (p2)) OF (X) x F(Y)-

If p € P°[X, X]isa P-eq. relation, then fyp € Desy,, . Hence, thanks to condition 1 and effectiveness
of quotients, we will abuse the notation and write fiyp € R(F(X) x F(X)).
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Observation 3.4.14. From Proposition A.0.9 we know that (weak) equalizers can be built through
(weak) comprehensions. Hence, Proposition 27 of [CV98] implies that the functor F of a left cov-
ering 1-arrow (F, f) is a left covering functor. Moreover, Lemma 21 of loc. cit. implies that F
preserves monomorphic families of arrows. However, the composition of left covering functors is
not necessary left covering, as shown by a counterexample in §3.2 of loc. cit.. For this reason, biased
elementary doctrines and left covering 1-arrows do not form a 2-category.

We will denote by Lco(P, R) the category of left covering 1-arrows from P to R. In the following
theorem we prove the universal property of the biased elementary quotient completion in style of
Theorem 3.4.11.

Theorem 3.4.15. Let P be a biased elementary doctrine with full weak comprehensions and comprehensive
diagonals, and let R be an elementary doctrine in QD. The pre-composition with the 1-arrow (J, j) induces
an equivalence between the following categories

Lco(P, R).

Proof. We first prove that the functor (—) o (J,j) is essentially surjective. Given a 1-arrow (F, f)
of Leo(P, R) we can define a 1-arrow (F, f) : P — R as follows. The functor F sends a projective
object (X, d[x7) to the image of F, i.e. F(X,éx)) = F(X). On the objects of the form (X, p), the
image F'(X, p) is defined to be the codomain of the quotient of the R-equivalence relation fyy p, for
a weak product W of X and X. Similarly, if | g] : (A,04) — (B, dp) is an arrow between projectives,
then we define F(|g]) := F(g). If |g] : (A, p) — (B, o) then we define F(|g]) as the unique arrow
induced by the quotients, which makes the following diagram commute

F(A,p) 29 F(B, o).
The functors f_y : P(—) — R(F(—)) are defined as the functors f on the projectives (X, dy)). On
the elements (X, p), it is a trivial verification to prove that the functor fx restricts to a functor

JF(XVP) = fx : Desp — Des fyyp.

We now prove that (F, f) sends strict comprehensions to strict comprehensions. Indeed, as in the
proof of Theorem 3.4.7, a strict comprehension of & € P(X, p) is given by

{al]:(Cp) = (X,p)

where p' := Pj p and h is the product of {af and {af,ie. h = ({{a, alt},(1,2)). Since R has strict
comprehensions, it follows that a comprehension {fx (@)} : D — F(X,p) of f(x,p) (@) is monic.
Hence, by Lemma A.0.6, it follows that D and F(C,p’) are quotients of the same R-equivalence
relation

Rpgapxriapfwp = fve,

where V is a weak product of C and C. Hence, we have proved that (F, f) € QD(P, R). We now
prove that the functor (—)o(J, j) is fully faithful. Indeed if (F) f) and (G, g) are 1-arrows of Lco(P, R)
and 0 : (F, f) = (G, g) is a 2-arrow, then it can be extended to a 2-arrow 6 : (F,f) = (G,g). The

arrows 04 5,) on the projectives are defined as 64. On the objects of the form 64 ,) the arrow is
defined as the unique arrow induced by quotients, which makes the following diagram commute
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O]

Remark 3.4.16. We could define the quotient completion of a biased elementary doctrine P : €7 —
InfSL in a different way. Indeed, we can add quotients applying first the strictification and then the
elementary quotient completion obtaining the elementary doctrine Ps. However, this construction
does not have the universal property discussed. For instance, completing with quotient we would
obtain more projectives than the objects of .

3.5 Doctrines with =, 4,V

We will now start the second part of the chapter, which is devoted to provide a general formulation
of the theorems of Section 2.3 in the context of biased elementary doctrines. In this section, we will
define doctrines that can express the connective of implication and the existential and universal
quantification. The definitions will be very similar to the strict case but, as usual, we will pay
particular attention to what happens when we restrict to proof-irrelevant elements.

We start with the definition of biased elementary doctrine with implications.

Definition 3.5.1. A biased primary doctrine P : €°? — InfSL is called implicational if for every object
X € % and element a € P(X) the functor aA— : P(X) — P(X) hasarightadjointa = — : P(X) —
P(X). Moreover, for every arrow f : Y — X of ¢ and elements «, 5 € P(X), it holds the equality
Pf(Oé = 5) = Pfa = Pfﬂ.

Observation 3.5.2. If P : €°? — InfSL is an implicational biased elementary doctrine, then a trivial
computation shows that the implication of proof-irrelevant element is proof-irrelevant. Hence, P is
implicational if and only if the strictification P* is implicational.

We now consider biased elementary doctrines that can express existential and universal quan-
tifications. The definition is given, as usual, requiring left and right adjoints to reindexing functors
but, because of weak products, we shall consider a weak version of the Beck-Chevalley and Frobe-
nius conditions.

Definition 3.5.3. A biased elementary doctrine P : €°? — InfSL is called existential if for every pair

of objects X, Xy € ¢ and weak product X; 2w B X, the functors Pp, : P(X) — P(W), for
i = 1,2, have left adjoints 3,, : P(W) — P(X;) which satisfy

o the weak Beck-Chevalley condition: for any commutative diagram of this form

P2
v 2

Y
¥ |s

P1 WT>X2

12

X17
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where X3 2 v Ry is a weak product, the canonical arrow 3y, o Pprae < Py o 3y, is an
isomorphism, for all proof-irrelevant o« € P(W).

o the weak Frobenius reciprocity: for any projection p; : W—Xj;, elementa € P(X;), and 5 € P(W)
proof-irrelevant, the canonical arrow 3, (Pp,a A B) < a A 3p, 5 is an isomorphism.

Definition 3.5.4. A biased elementary doctrine P : €°°? — InfSL is called universal if for every pair

of objects X, Xy € ¢ and weak product X; 2w B2 X, the functors Pp, : P(X) — P(W), for
i = 1,2, have right adjoints V,,, : P(W) — P(X;) which satisfy

o the "weak"Beck-Chevalley condition: for any commutative diagram of this form

Vv -2 .y

b

pP1 WTXQ

2

le

where X, P2y Ry s a weak product, the canonical arrow Py o V,,a0 <V, © P’fa is an
isomorphism, for all proof-irrelevant o € P(W).

When P : €°? — InfSL is an existential (universal) biased elementary doctrine, the adjoint
functors 3, (V,) behave particularly well on proof-irrelevant elements. At first, we observe that if
X1, X5 are two objects of ¢ then we can define left (right) adjoint functors 3,, : P*[ X7, X3] — P*[X]]

to the functors P}, : P°[X;] — P*[X1, X5]. Indeed, let X PP KB yand X 2 K23 Y be to weak
products and o € P*[X,Y]. If h : K’ — K and #/ : K — K’ are arrows such that p; o b’ = p/;
and p’; o h = p;, for i = 1,2, then Proposition 3.2.7 implies that P}, is an isomorphism on proof-
irrelevant elements with inverse P, and then P, = 3, and Py, = 3;,. Hence, if « € P(K) and
o := Pra € P(K') we obtain
Jpa =3y o

Similarly, we can consider three (or more) objects X,Y, Z € ¥ and a weak product given by a
weak product K 2 U B Z of a weak product X 2 K B vy and Z. Hence, we have a left (right)
adjoint to the functor Py, : P(K) — P(U). In the following lemma we prove that the adjunctions

restrict to proof-irrelevant elements providing a left (right) adjoint to the functor P, as in the
following diagram

E

————— >

P[Z,X,Y] = PSX,Y]
[
=
P(U) L P(K)

Pp,
Lemma 3.5.5. If P : €°P — InfSL is an existential (universal) biased elementary doctrine, and X1, ..., Xy,
Y1,...,Y,, are objects of €, then we obtain the following adjunctions on proof-irrelevant elements

P PiXy,.... X, , 7 7T PXy,.. X Y, Y] s 3
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s s —7 ps .
< PS PSIX1, e Xl L PX0 e, X, Yis e, Vi) £V, ) .
Proof. Let W be a weak product of the objects X; € ¢, for 1 < [ < n, let V be a weak product
of the objects Y; € ¢ for 1 < j < m, and let W 2 K P2V be a weak product of W and V. If
a € P(K ) is proof-irrelevant, then we prove that 3,, « is proof-irrelevant. Indeed, if X; &£ W, 2 X;
and Y; &£ V; B v are weak products and K & Q 8 K and

V,
Ppla/\/\Peré /\/\P]mﬂ 5, < Ppa
=1 7j=1

in P(Q) for some arrows (I,n+1) : Q —> VVZ and (j,m + j) : Q@ — V; induced by the weak universal
property of the weak products. If W & U7 ® W is a weak product we consider a commutative
diagram of the form

r — U T — U

ihl P1 ihz P2
P2 I} — W P2 I} — W

|» |-

V, V,

and we obtain that P, 3, a A /\ P ln+l>6 < Pp,3p, @, for some arrows ([, n +1) : U — W, induced

by the weak universal property of the weak products, as follows:

n n
Ppi3pia A /\P<l7n+l>6?{/ll = Jp, Pra A /\P<l,n+l)5§[(/ll (B-C)
=1 =1

= Elpl (Pthé A Pp1 /\P(l,n—s—l)(s?(/ll) (FI'Ob)
=1

since 7' is a weak product of W, W and V, we can consider and arrow (1,3,2,3) : T — @ induced
by the weak universal property of weak products and we obtain

n
Wi
Fp1 (Pha A Pps /\P<I,N+l)6Xll)
=1

n m
Wi Vj
= 30:P3.2.3) (Po.@ A APunynydx) A AP Gmtsoy)
=1 j=1
S E|p1P<1,37273> Pp2Ck = le Ph2Oé = Pp25|p1a. (B'C)

We now consider another tern W’ & K’ %3 V' of weak products and a (not necessarily commuta-
tive) diagram of arrows
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such that pjopioh =p’jop’;and pjopgoh =p';op’yand pog=p'forl <l <nand1<j<m,
then we want to prove that
PgIp 0 = Jpr Prov.

In order to do that, we consider two arrows b’ : K — K’ and ¢’ : W — W’ such that p’; o p’; o b/ =
proprand p’jop’y0h/ =pjopzand p’og’ = p;for 1 <l <nand1 < j < m. By Proposition 3.2.7,
the functors Pj, and Pj, are inverse functors on proof-irrelevant elements and the same holds for
the functors P, and P,. Hence, the above equality follows from the following relations on proof-
irrelevant elements
Py3po, = 3¢ 3p; A Pp Py = PPy = 3y T = 35 Pi.

Hence, we obtain a left adjoint 3, to the reindexing P;, . A similar argument proves the statement
for the right adjoint V), of the reindexing P} . O

As a corollary of the above lemma, we obtain the following characterization of the existential
(universal) biased elementary doctrines in terms of their strictifications.

Corollary 3.5.6. A biased elementary doctrine P : €°P — InfSL is existential (universal) if and only if the
strictification P is an existential (universal) elementary doctrine. O

The above results allow us to work directly with the strictifications of the existential (universal)
biased elementary doctrines, which makes handier the description of proof-irrelevant elements.

When P : €°P — InfSL is a biased elementary doctrine, and g : Y — W is an arrow into a weak
product of the objects X;,..., X, € €, then we will denote with g; the composition in %; of the
arrows

9] {[P1]s--s[Pnl)

[Y] (W] (X1, .., X

where ([p1], ..., [pn]) is the unique arrow induced by the arrows [p;] : [W] — [X;], for 1 <i < n.

Remark 3.5.7. If P : €°? — InfSL is an existential biased elementary doctrine and f : ¥ — X
is an arrow of ¢, then the functor P : P(X) — P(Y’) has a left adjoint 3; which coincides with
the functor 3 : P*[Y] — P[X]. An easy verification shows that the functor 3; sends an element
aeP(Y)to

Fp(@) :=Fp, (P10 APp @), (3.2)

where f' : K — W is an arrow from weak products Y’ 2 K% Xand X 2 W B X, such that
piof = foprandpyo f' = pa.

In particular, if g : Y — W is an arrow into a weak product W of the objects X; € ¢, for
1 < i < n, then we can consider the functor 3,4, : P*[Y] — P*[X7, ..., X,], which sends an element
a € P(Y) into the equivalence class of the element

3y(@) 1= Fp, (Py (5§{V; X-.. X 52?;) APy ) (3.3)

of P(W), where X; 2w B X, Y 2 KB wWandw 2 U B W are weak products and
¢ : K — U is an arrow such that p; o ¢’ = gopj and ps 0 ¢’ = po.

A similar remark holds also for the universal quantification.

Remark 3.5.8. If P : ¥°? — InfSL is an implicational and universal biased elementary doctrine
and f : Y — X is an arrow of ¢, then the functor P; : P(X) — P(Y’) has a left adjoint 3; which
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coincides with the functor V; : P°(Y) — P*(X). An easy verification shows that the functor v/
sends an element o € P(Y') to

Vp(a) = Vo, (P oY = Ppy(a)) (34)

where [’ : K — W is an arrow between weak products Y 2 K2 xand X 2 W B X, such that
piof = foprandpao f' = pa.

Similarly, if g : Y — W is an arrow into a weak product W of the objects X; € ¢, for 1 <1i <mn,
then we can consider the functor ¥, : P*(Y) — P*[Xy,..., X,,], which sends an element o € P(Y)
into the equivalence class of the element

Vg(a) 1= Vp,(Py (0 B -+ - R GY") APy, 0) (3.5)

of P(W), where X, 2w R X, Y E2E KRB WwWandWwW 2 U B W are weak products and
¢ : K — U is an arrow such that p; o ¢ = gopj and p2 o ¢’ = po.

3.6 Slice doctrines and quotient completion

In this section, we will provide some results which relate suitable existential (universal) biased
elementary doctrine and their slices. These results will be useful in the next section in order to
prove the local cartesian closure of the quotient completion.

The first lemma we prove is a version of Lemma A.0.7 for biased elementary doctrines.

Lemma 3.6.1. If P : €°P — InfSL is a biased elementary doctrine with weak comprehensions and compre-
hensive diagonals, then the category € has weak finite limits.

Proof. We will prove that ¢ has weak equalizers and observe that weak finite products and weak
equalizers imply the existence of weak finite limits, see [CV98, Proposition 1]. Let f,g : X — Y
be two arrows of ¢ and let h : X — V be an arrow into a weak product Y’ 2 v 2y such that
pioh = fandpsoh = g. If p := P, then we have a comprehension {p|} : C — X, which is
trivially a weak equalizer of f and g. O

The above lemma implies that if P : ¥°? — InfSL is a biased elementary doctrine with weak
comprehensions and comprehensive diagonals, then the category 4" has weak pullbacks. Hence,
the slice categories of ¢ have weak finite products that can be described as follows. If f : X; — Y
and g : X9 — Y are arrows of ¥ and p := Pf 1 [g]é v}, then a weak pullback of f and g is obtained
as in the following commutative diagram

C i X
{pl
P2
1 W g
o
X 7 Y,

where {p|} is a weak comprehension of the element P{ VS P(WW). Hence, a trivial compu-

[p1],[p2]
tation shows that the slice doctrine of Example 3.1.4 can be defined in the same way for biased

elementary doctrines.
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We now prove some technical lemmas for the existential and universal biased elementary doc-
trines, which will be useful to derive properties about the quantifiers of their slices. Our goal is to
prove that if P is a suitable existential (universal) biased elementary, then the slice doctrines P4
are existential (universal).

Lemma 3.6.2. Let P : €°P — InfSL be an existential biased elementary doctrine with full comprehensions.
If X is an object of € and o € P(X), then

FjapPlapy = A7,
for every v € P(X) and weak comprehension {aft : C — X.

Corollary 3.6.3. Let P : €°P — InfSL be an existential biased elementary doctrine with full comprehensions.
For every object X € € and p € P*[X, X, if {p} : C — W is a weak comprehension ofP5 pePW),

([p1],[p2])
then

b P, v = PN
for every v € P*[X, X].

Proof. Since {pl, := (p1,p2) © {pl}, the statement follows from Lemma 3.6.2 observing that 3

is left adjoint to the fully-faithful functor Ploipy - P (X, X] — P(W).

P1,P2)

Lemma 3.6.4. Let P : €°P — InfSL be an existential biased elementary doctrine. For every arrow (f, f) :
[X]ie[n} — [Y}je[m} of €, then

(i) P(ff .9 ﬂ B, for every B € Q)estff)X(ff)g[ Ve’

Moreover, if P is also universal and implicational

pPs Desps
(i) (ff B B, for every 5 € P(ff>x(ff>5”

elm’
Proof. Consider the following commutative diagram

P2

[X]z'e[n] X [X]z'e[ ] — [X]z‘e[n]

|1 <D |
[(Xlierm < [Y ]je[m] — Yjem)

ifg: W —Vis anarrowmtoaweakproductY 2 vV B ysuchthatpjog= fop; fori =1,2, and
h: K — V isan arrow such thatp; o h = fopiand poo h = 1y o po

(i) The left adjoint implies that 3 #.hHP f ) B < f. The opposite inequality is obtained as follows:

P 200.08 = Pls 13 P ey lscton A Por) (Remark 3.5.7)
— S ]
B EIpZPl dictn < f)(P(f Hx1ix liem ]5[Yj]je[m] APy, B3) (B-C)
= 32 (Pl (. Wilsetoms Pplﬂ)

< 3p2 PZQIB S 5-
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(ii) Therightadjointimplies that P V(s B < B. The opposite inequality is obtained as follows:

(£.)
Pl B =Pl e (P, Prlixics, 81¥,)com = P ) (Remark 3.5.8)
= e Pi[xi]ie[n]X(f,f)(PEf,f)m[Xi]ie[n] O¥lseim = Pri) (B-C)
= sz(Péf,f)x(f,f)‘s[ije[m] = Pi[xi]ie[n]x(f,f)P;I’B>
=Yoo (Ps 1yxr. ) Wilietm = Ppi )

> f
where the last inequality follows because 5 < V,,, (Pz £, f)é[Yj]je[m] = P;, B)ifand only if Py 3 <
)6 Yl;em = PpiB), which holds by the definition of implication and by the assumptions

S
(Pl s f
on 3. O

The following corollary relates P-equivalence relations and P, 4-equivalence relations through
the existential quantifier.

Corollary 3.6.5. Let P : €°P — InfSL be an existential biased elementary doctrine with full weak compre-
hensions and comprehensive diagonals and let X % A be an object of € /A and x & w 3 x be a weak

product of x and x. Considering the element p := Pl (2 014), we obtain the following conditions:

i) if o is a P-equivalence relation on X such that o < p, then Pl o)y @ 8@ P A-equivalence relation

15|72

on z and Desy = (Des4)ps o
([r1],lw2])

it) ifrisa P s-equivalence relation on x, then 3|, (r,))7 i a P-equivalence relation on X and (Des ;5 )r =
Des3 gy

Proof. We first provide the statements considering a weak product z &* w ™3 z obtained through

a weak comprehension of p as shown in the left diagram below. On the right, we observe the

corresponding situation in ¢

¢ = X [C] &; [X]

{el / .~ [2]

p2 \\\
™1 W x [{Ipl}]l NG lepz
/ N
P1

X A. W] ([p1]s[p2])

x

i) The first part of the statement is a trivial computation and, just applying the functor Plop.s We
obtain the inclusion Des, C (Des, A)p;J ). Vice versa, if a € (Des/ A)PS{]  or it holds that
Plis Plrs

Pl A Plop, @ < Py
Hence, applying 3y, , we obtain
Hﬂpﬂspipl}s(lea A CT) < Hﬂﬁl}s Pfﬂpl}s P;2a < P;2a.

The statement follows from Corollary 3.6.3, observing that o < p.
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i) We now prove reflexivity and symmetry of 3y, r. Reflexivity follows from reflexivity of r,
i.e. §j7] < r and observing that Jj,) := Pl dx]- Hence, applying 3;,) we obtain

o, Py O1x1 < Fgpp, 7

The statement follows from Corollary 3.6.3, observing that dx] < p.

In order to obtain the symmetry of 3y, r we first observe that, by i), thenr € Q)e.sP;J b 4o, S X

Hence, considering the following commutative diagram

€] 2 [x, x]

(2,1)/Al l{2,1)

€) > 1X.X]

the symmetry of r implies that Plo 1Al < r. We can apply Lemma 3.6.4 to obtain

Pf<271)/,4} Pfﬂpl}sa{lpl}sr = Pipﬂsaﬂpﬂsr

and since Pl }Pj]pﬂs = P%pﬂstz71> the above inequality holds if and only if

L) /A
F00b, Py Plzy 3ob.™ < Fgop,

The statement follows from Corollary 3.6.3 observing that 3y, r < p. Transitivity is proved simi-
larly.

We now observe that the statement is true for every other weak limit v’ of x and z, with v’ :
C" — A. Indeed, there exist a commutative diagram

[C]

[h}l \<[7r/:1]v[7rl2]>
C X, X
[C] W (X, X]

such that m; o h = =}, for ¢ = 1,2. Since the functor P}, is an isomorphism between the proof-

irrelevant elements of w and w’, if ' := Pj,r then we obtain

P 3o, ” = 3w frra)) -

O]

We can now prove that the slices of suitable existential (universal) biased elementary doctrines
are existential (universal).

Proposition 3.6.6. Let P be an existential biased elementary doctrine with full comprehensions and compre-
hensive diagonals. For every object A € €, the slice doctrine P 4 is existential. Moreover, if P is universal
and, for every arrow f .Y — X, the functors Py have right adjoints V¢, then P, 4 is universal.
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Proof. In order to prove the weak Beck-Chevalley condition it is enough to consider weak products
in the slice €;/A as in the following commutative diagram

Ifx;: X; » A fori=1,2and y : Y — A are objects of €, /A4, it is enough to prove the statement
for weak products w : C — A of 1 and 22 and v : D — A, of z; and y, which are obtained
through weak comprehensions. Hence, if p := Pl x 2] 014) and o := P

[z1]x[y] d14), then we are in
the following situation

D {ol Vv p2 Yy
ol b
C Y me o
lm
X1

where { p[} is a weak comprehension of P ou),(po)) A0 {o[} is a weak comprehension of P*([p1], [p2])o.

If o € P/a(w)(:= P(C)) is a proof-irrelevant element, then we can prove that Py3r,a < 3r,P ja as
follows:

PfEﬂ-QOé = szlp25|ﬂp[}a

= E|p2 Pf'El{]p]}a (B-C for P)

= I, o} Pop P Igpp (Lemma 3.6.2)

= FnaP P op oy

= I, P . (Lemma 3.6.4)
The statement for the right adjoint is proved similarly. O

Example 3.6.7. The main example of existential and universal biased elementary doctrine is given
by the slice doctrines F}'X. As observed in Example 1.2.15 and Example 1.2.17, the elementary
doctrine FMZ has left and right adjoint to all reindexings. Hence, the Beck-Chevalley conditions
follow from Proposition 3.6.6. However, they could be obtained also through the description of the
descent data of the slices given in Corollary 3.6.5 and from Lemma A.0.16.

For categories with weak finite limits, it is straightforward to prove that the exact completion of
a slice is equivalent to the slice of the exact completion. We end this section providing the corre-
sponding result for suitable biased elementary doctrines.

Proposition 3.6.8. If P : €°P — InfSL is a existential biased elementary doctrine with weak full compre-
hensions and comprehensive diagonals, then for every object A € €

Pra = Pas.y:-
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Proof. Thanks to Lemma 3.6.4, we can define a 1-arrow (M, m) : m —-P J(Ad(a) of QD as follows.

The functor M sends an object (z, ) of ¥/A, with z : X — A, to the object

Ll‘—| : (Xv EI{]p[}ST) - (A> 5[A])
of 4/(A,d4)), where p := wa}x[x}ém]. An arrow f : (z,7) — (y,s), wherey : Y — A, is sent to
LT (X Fgpp 1) = (Y, Fgop 8), with o = P, 1xy014)- The natural transformation m is given by the
identity.

Using again Lemma 3.6.4, we can define an inverse (IV, n) to (M, m) as follows. The functor N
sends an object 7] : (X, \) — (A, d[4)) of €/(A, J4)) to the object

(@, Pypp,7)

where p = Pfx]x[x]é[A}. An arrow [f] : |z] — [y], with [y] : (Y,0) — (4,d]4) is sent to the
arrow f. The natural transformation n is given by the identity.
Lemma 3.6.2 and Lemma 3.6.4 imply that the 1-arrows (M, m) and (NN, n) are inverse. O]

The above proposition provides a precise formulation of the method mentioned in Observa-
tion 2.6.13.

3.7 Local cartesian closure

In this section, we retrace the steps of Section 2.3, in which we proved the local cartesian closure of
the elementary quotient completion, in the more general context of the biased elementary doctrines.
Thanks to the results obtained in the previous section, we can provide the local cartesian closure
working on the cartesian closure of the slice doctrines. As an instance, we obtain the result of
Carboni-Rosolini [CR00] and Emmenegger [Emm20] about the local cartesian closure of the exact
completion of a weakly left exact category in their general form. This is a slight improvement with
respect to the elementary quotient completion, which could only obtain the exact completion of a
category with strict products and weak pullbacks as an instance.

As already done in Section 2.3 for the strict elementary doctrines, we now reformulate the ideas
developed by Emmenegger in [Emm?20] in the language of the biased elementary doctrines.

Definition 3.7.1. Let P : €°? — InfSL be a biased elementary doctrine and let X, Y and Z be objects

of €. If X & K P Y is a weak product, then an arrow f : K — Z preserves projections with respect
to a P-equivalence relation o € P*[Z, Z] if

O] B0y < Py (0)-

We observe that, by Lemma 3.4.5, the above definition can be equivalently reformulated requir-
ing that in % the arrow [h] : [K] — [Z] can be lifted as in the following diagram

(K]
(Plapzd X‘
[X,Y] -5 [Z].

Definition 3.7.2. Let P : €°? — InfSL be a biased elementary doctrine. If X, Y are objects of ¢" and
o € P°[Y,Y] is a P-eq. relation on Y, an extensional exponential of X and Y with respect to o is an

object E with an arrow e : U — Y, from a weak product &/ PuBx , such that:
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e the map e preserves projections w.r.t. o,

e for every objects Z € ¢ and arrow f : U’ — Y, from a weak product Z & U’ % X, there
exist arrows [, m making the following diagram commute:

/

Y

%

o
AL

NS

me-- N

NS

We will say that € has P-extensional exponentials if, for every pair of objects X, Y € % and P-
equivalence relation o € P*[Y, Y], then there exists an extensional exponential of X and o.

Definition 3.7.3. Let P : ¥°? — InfSL be a biased elementary doctrine. If X and Y are objects of ¢
and o € P*[Y,Y] is a P-equivalence relation on Y, then two arrows f, g : X — Y are called o-related
if

O] < Plpxig

We now prove the corresponding Theorem 2.3.2 for the biased elementary doctrines. In light of
the observations done by Emmenegger [Emm20] and since we are now working with weak finite
products, we require the existence of P-extensional exponentials instead of weak exponentials.

Theorem 3.7.4. Let P : €'°P — InfSL be a universal biased elementary doctrine with full weak comprehen-
sions. € is cartesian closed if and only if € has P-extensional exponentials.

Proof. For the "only if" part, given two objects X,Y € ¥ and a P-eq. relation o on Y, then we can
consider the exponential of the objects (X, dx]) and (Y, o). This exponential induces an object and
an arrow which provide almost a P-extensional exponentials, but the universal property holds up
to o-relation. In order to obtain a P-extensional exponentials of  and y w.r.t. ¢ we repeat the proof
of Theorem 2.3.7 (ii) = (i).

The proof of the "if" part is the same of the proof of Theorem 2.3.2, considering weak finite
product instead of strict ones and extensional exponentials instead of the weak exponentials. We
only recall the main steps.

Given two objects of the form (X, §x]) and (Y, o), we can consider an extensional exponential
Y X of X, Y with respect to o and a weak evaluation arrow e : U — Y from a weak product U of X
and Y. We now consider the P-equivalence relation on YX given by

& ="z P32, Plex (9 (3.6)
Then we obtain that the object (Y, £X) and the arrow
le] = (V¥,5) x (X, 0px)) = (Y 0)

provide a strict exponential of (X, §(x]) and (Y o). For the general case, given two objects (X, J(x1)

and (Y, o) we consider a weak product of X & W 3 X and consider the representant of p in P(WW),
Le. pw = Py p2>( p), where (p1, p2) is the unique arrow W — [X, X]. Hence, we can consider a

comprehension {pw [} : R — W and consider the arrows r; := p; o {pw [}, for i = 1,2. If Y* denotes
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the extensional exponential of X and Y w.r.t. o and Y denotes the extensional exponential of R
and Y w.r.t. o, the evaluation arrows ex and eg induces two arrows

vy yX 5 vHR

such that the obvious diagrams commute. If ¢ : C — Y~ is a weak comprehension of the element
Py yr2p ek, then the strict exponential is given by the object

(C,Pigxigea)
with the evaluation arrow
lea(e x 1x)] : (C, Pl gea) X (X, p) = (Y, 0).
O

In case we restrict to the biased elementary doctrine Psuby of weak subobjects of a wlex category
%€, then we obtain [ Theorem 2.14,[Emm?20]].

We can now use the above theorem and the results obtained in the previous section for the slices
of existential and universal biased elementary doctrines to prove the main theorem about the local
cartesian closure of the quotient completion.

Theorem 3.7.5. Let P : €°P — InfSL be a universal and existential biased elementary doctrine with full weak
comprehensions and comprehensive diagonals. If P has right adjoints to all reindexings, then the following
are equivalent:

i) For every object A € €, the slice € /A has P, 4-extensional exponentials,
y o] / P

(ii) € is locally cartesian closed.

Proof. The implication (i) = (i) follows as in the proof of Theorem 2.3.7. For the implication
(i) = (ii) we first observe that the cartesian closure of the slices of the form % /(A, dj4)) follows
applying first Theorem 3.7.4 to the slice doctrine P 4 and then applying Proposition 3.6.8 to P 4. The
proof of the general case follows the construction provided in Theorem 2.3.7 for constructing an
exponential of two objects in slice categories of the form €/(A4, o). O

In case we restrict to the biased elementary doctrine Psuby of weak subobjects of a wlex category
¢, then we obtain [Emm?20, Theorem 3.6].

Concluding remarks and further developments. In this chapter, we have provided a more gen-
eral framework which generalizes both the elementary quotient completion of Maietti and Rosolini
and the exact completion of a wlex category provided by Carboni and Vitale in [CV98]. At the end
we have generalized the theorems about the (local) cartesian closure of the exact completion pro-
vided in [CRO0] and [Emm?20] also for categories with weak finite products and weak pullbacks.
One future development will be to generalize Theorem 2.5.6 for the biased elementary doctrines
and obtain [GV98, Proposition 2.1] also for categories with weak finite products. Moreover, as
observed by Maietti and Rosolini in [MR13], the doctrines correspond to particular Grothendieck
fibrations, namely the faithful fibrations. Similarly, the primary and the elementary doctrines corre-
sponds to suitable faithful fibrations, see [EPR22]. A future development would be to understand
which notion of fibration corresponds to the biased elementary doctrines.
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Chapter 4

A weaker categorical BHK interpretation

The aim of this chapter is to take a little step forward in categorical semantic of mathematical logic.
The interpretation of a (fragment of) many-sorted first-order logical language £(5), in a category
¢ with strict products, requires an assignment of categorical entities to logical symbols. A sort S
in interpreted as an object M(S) € ¢ and a multi-variable term t(x1,...,z,) : Z, with z; : S;, for
1 < i < n, is inductively interpreted as an arrow M(t) : M(S1) x -+ x M(S,) = M(Z) of .
Relation symbols have a double interpretation.

The standard interpretation, introduced by Makkai and Reyes in [MR77], assigns to each relation

symbol R C S x - - - xS, the equivalence class of a monomorphism M (R) with codomain M (S}) x

- X M(Sy,). The interpretation is extended inductively to a each formula ¢ with FV(y) C z =
(x1,...,x,) which is interpreted as a monomorphism with codomain M(S) x --- x M(S,). This
process is also called propositions as subobjects interpretation. In order to interpret regular logic, ¢
is required to be at least regular.

Alternatively, a relation symbol R C S x --- x S, can be interpreted as the equivalence class of
an arrow M (R) with codomain M(S;) x - - - x M(S,,), which is not necessarily a monomorphism,
see [Pal04]. This interpretation is called propositions-as-objects or the categorical Brouwer-Heyting-
Kolmogorov interpretation and expresses categorically the Curry-Howard paradigm "proposition as
types". This interpretation is suitable for a larger class of categories, i.e. categories with strict finite
products and weak pullbacks (qlex). Actually, the standard interpretation exploits the functor
Subg : €°P — Pos of subobjects, while the BHK interpretation uses the functor Psuby : €°? — Pos
of weak subobjects that we encountered in the previous chapters.

From a categorical perspective a more natural definition is that of a weakly left exact category
(wlex) in which also products are weak. Hence, we ask if it possible to interpret intuitionistic
logic in wlex categories. In this chapter, we will give a positive answer to this question and we
will provide a sound and complete construction for various fragments of first order logic. Our
interpretation is suitable for a larger class of categories such as the slice categories of qlex categories
and, in case the finite products are strict, it coincides with the BHK interpretation. For these reasons,
sometimes we will refer to this interpretation as the weak BHK interpretation.

Our interpretation relies on the idea of proof-irrelevant elements developed in Chapter 3. In
particular, we will implicitly study the biased elementary doctrine of weak subobjects PSubg of a
wlex category. However, we will intentionally leave the language of biased elementary doctrines
as far as possible, but it will be clear where the results obtained could be restated using the tools
developed in the previous chapters. Most of the results have already been obtained in a more
general form, but we think that a direct proof in the case of the biased elementary doctrine of weak
subobjects PSub is of big interest. Our main example of weak BHK interpretation is provided in

91
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the slices of the syntactic category ML of an intensional type theory, which are wlex.

4.1 Syntax

In this section we recall the syntax and the categorical semantic of logical theories. In particular,
we recall the standard interpretation of a fragment of intuitionistic logic in left exact categories and
the BHK interpretation in quasi left exact categories as developed in [MR77; But98; Pal04].

We first recall the syntactic notions of a logical language. A (typed) signature S consists of a set
of sort symbols {51, S2, ...}, a set of sorted constants symbols {c;, c2,. ..}, a set of finitary sorted
function symbols {f, g, h,...} and a set of relation symbols {R, P, ... }.We will adopt the usual
notations for these symbols:

c: S, f:S81x--x8S,— 8, RCSyx---x8,.

In order to consider logical languages with equality predicate, we assume a special binary relation
symbol ~g for each sort S.

A (fragment of) first order language £(.5), over a signature S, consists of a list of countable
variables x,vy, ... for each sort X (denoted by z : X), and a set of terms and formulae defined
inductively. The set of terms is defined through the following clauses:

(T1) each constant of sort S is a term of sort S,
(T2) each variable of sort S is a term of sort S,

(T3) ifty : Sq,....tn : Sparetermsand f : Sy x---x.S, — Yisafunction symbol, then f(¢i,...,t,)
is a term of type Y.

Te set of formulae is obtained inductively through a subset of the following clauses depending on
the fragment of the logic under consideration:

(F1) if R € Sy x --- x S, is a relation symbol and ¢; : S1,...,t, : S, are terms, then R(t1,...,t,)
is a formula,

(F2) if t; and ty are terms of the same sort S, then ¢; ~g t is a formula,
(F3) the "truth" predicate T is a formula,

(F4) if p and 1 are folrmulae then ¢ A v is a formula,

(F5) if pisa formula and x : S a variable, then Jzy is a formula,

(F6) the "false" predicate L is a formula,

(F7) if ¢ and v are formulae then ¢ V % is a formula,

(F8) if v and 1 are formulae then ¢ = 1) is a formula,

(F9) if ¢ is a formula and z : S a variable, then Vz ¢ is a formula,

(F10) if ¢ is a formula then —¢ is a formula.
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The formulae obtained through clauses (F1-F4) are called Horn formulae. The formulae obtained
through clauses (F1-F5) are called Regular formulae and those obtained through clauses (F1-F7) are
called Coherent formulae. The set of first order formulae is obtained using all the clauses (F1-F10).

Given the formulae ¢4, . .., ¢,, theset 'V (¢1, ..., ¢, ) denotes the set of free variables of 1, . . . , .
Similarly, F'V (t1,...,t,) denotes the set of free variables of the terms 1, ..., t,. A theory T in the lan-
guage L£(5) is a set of sequents of the form

9017---7(Pnl_i¢7

where F'V (¢1,...,¢n,¢) C T = (21,...,Zm). Sequences of formulae are denoted by capital Greek
letters I', A, etc. Special axioms concern the equality predicate:

(E1) If z : S then:
F. x~g .

(E2) If z,y : S then:
T =Sy I_ac,y Yy=s .

(E3) If z,y,2 : S then:

TRSY, YRs 2 gy, x g 2.
(E4) If f: 51 x --- x S, = Y is a function symbol then:
T1 RS, Yl Tm RS, Ym Fzg [T, 2m) =y fY1, -0 Ym)-
(E5) If R C Sy x --- x Sy is a relation symbol then:
T1RS, Yy T Sy, Y, R(T1, - 2m) Fag R(Y1, -+ Ym)-

A deduction system is a theory equipped with rules and axioms of inference. The following rules
are called structural and are often assumed for most of deduction systems.

(S1) (Assumption) For1 <i <n:
P15, Pn Fz @i

(52) (Weakening) For any v with F'V (¢) C z:
e
F? w F:E ¥
(S3) (Cut)

F?‘/D?A'—f@/) F>A|_:ESO
| AN )

(S4) (Substitution) If ¢ = (¢1,. .., ) is a list of terms of the same sorts of Z and FV (¢ C w)

'z
L(t/z) Fao ¢(t/2)
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The last set of rules is given by the logical rules, which concern the logical connectives and the
existential and universal quantification.

(L1) (Conjunction)
Phzypr Tz o

PhzpiApa
R S Y e
(L2) (Existential quantification)
e(b/y) Fz ¥ R Jyetz ¢
(3D T (y & FV(¢¥)) (3-E) oFay ¥ (y & FV(¥))

(L3) (Disjunction)
r }_j ©1 I }_j ©2

'z o1V 2 L1z L2 g1

R SV (V-E) T Fs o
(L4) (Absurdity)
Mz L
'z
(L5) (Implication)
R Liobz e m Lo = 9 'z ¢
(=7 =7 (=E) TFs 0
(L6) (Universal quantification)
Ihzy e I'Fz Vyp _
1) —— V-E) —————— (FV(b) C

Regqular logic with equality is given by the clauses (T1-T3), (F1-F5), (E1-E5), (S1-54) and (L1-
L2). Coherent logic is given by (T1-T3), (F1-F7), (E1-E5), (S51-S4) and (L1-L4). First order logic is
given using all the above clauses and rules.

4.2 Standard interpretation

In this section we recall the standard interpretation of categorical logic in regular categories, as
developed in [MR77]. We shall sometimes adopt the notation of the more recent notes [But98]. In
order to interpret a language £(5) in a left exact category ¢ we fix some categorical notation.

Remark 4.2.1. In the rest of these notes, we will always assume that a left exact category comes
equipped with a choice of limits such as products, pullbacks, equalizers and terminal objects. Sim-
ilarly, when ¢ is a category with weak pullbacks and strict products, we will assume a choice of
strict products and of weak pullbacks. Finally, a weakly lex category will be equipped with a choice
of weak limits.

The idea behind the standard interpretation is similar to the set valued interpretation of first or-
der logic. The paradigm propositions as subsets becomes, in the language of category theory, proposi-
tions as subobjects. If ¢ is a category and X is an object of ¢, then a subobjects is the equivalence class
of a monomorphism m : M — X up to the following equivalence relation: the monomorphisms
m and m’ : M’ — X are equivalent if there exist two arrows h : M — M’ and k : M" — M such
that m’ o h = m and m o h = m/. The substitution of terms into formulae is interpreted through the
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pullbacks. This interpretation can be fruitfully described using the functor in Example 1.2.7 which
we recall here. If ¢ is a left exact category, then the functor of subobjects

Subg : €°P — Pos
sends

- an object X € € to the poset Suby (X) of subobjects over X with the following partial equiv-
alence relation: |m : M — X| < [n: N — X]| if there exists an arrow h which makes the
following diagram commute

-anarrow f : Y — X of ¢ to the functor Suby(f) : Suby(X) — Suby(Y) which sends a
monomorphism m : M — X to the left vertical arrow of the following pullback:

P—— M
g

()| Im
Y T> X.

The functor Sub¢ (f) will be denoted as f*, and its action on a monomorphism m will be denoted

by f*(m).

Observation 4.2.2. As already mentioned inExample 1.2.7, when ¥ is a left exact category, and X
is an object of ¢, then the poset Suby (X) has finite meets. Given two subobjects m : A — X and
n : B — X, the meet m A n is given by the equivalence class of the common value of the composite
of following pullback

Every arrow h : Y — X of ¢ induces a meet-preserving functor h* : Suby (X) — Subgy (Y).

In order to interpret connectives and quantifiers, we may require additional structure on the
category in which we would interpret the logical language. In order to interpret regular formulae,
we recall one of the equivalent definition of regular category and refer to [Bar71] or to the first
chapter of [But98].

Definition 4.2.3. A left exact category % is said reqular if
e any arrow of ¢ factorizes as a regular epimorphism followed by a monomorphism,
o these factorizations are pullback-stable.

Regular categories form a category REG whose arrows are regular functors, i.e. fuctors preserv-
ing finite limits and coequalizers of kernel pairs. The following result is well-known, and a proof
can be found in [Joh02].
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Lemma 4.2.4. Let € be a reqular category. If f : Y — X is an arrow of €, then the functor f* has a left
adjoint
bji

Subcg(Y) L Subcg(X),
f*

given by fi(m) = Im(f om). O

If ¢ is a regular category, the standard interpretation M in ¢ of the signature of a language
L(S) is defined as follows:

- each sort S is interpreted as an object M(S) € ¥,
- each constant symbol ¢ : S is interpreted as an arrow M(c) : 1 — M(S),

- each function symbol f : Sy x --- x S, = Y is interpreted as an arrow M(f) : M(S7) x --- x
M(Sy,) = M(Y),

- each relation symbol R C S x --- x S, is interpreted as an object M(R) € Suby (M (S1) %
- x M(S,)). The equality symbol ~¢ is interpreted as the diagonal M (S) 25 M (S) x M(S).

For a list of variables Z = (x1,...,x,), of sorts z1 : Si,..., 2, : Sy, we will denote by M(S) the
product M(S7) x - -+ x M(Sy).

The interpretation extends inductively on terms and formulae taking in account the set of free
variables occurring. A term or a formula can be considered with extra ‘"dummy’ variables. For
example, a variable z; of sort S}, is a term with free variables occurring in the set Z = (z1,..., %),
where z; : S; for 1 <1i < n. The interpretation of a term ¢ of sort S, with FV(t) C z = (z1,...,zy),

where z; : S; for 1 < i < n,is an arrow Mz(t) : M(S) — M(S) defined inductively as follows:

(T1) a constant symbol ¢ : S is interpreted as the map Mz(c) : M(S) — M(S) factoring through
M(c): 1 — M(S),

(T2) avariable z; : S; is interpreted as the projection Mz := p; : M(S) = M(S;),

(T3) if Mz(t;) are the interpretations of the terms ¢; : S;, for 1 <1i < n,and M(f) : M(zZ) - M(Y)
is the interpretation of the function symbol f : S1 x --- x S, = Y, then the term f(¢1,...,t,)
is interpreted as the composition Mz(f(t1,...,t,)) := M(f) o (M(t1),..., M(tn)).

A formula ¢, in which occur the terms t1 : Z3,...,t, : Z,, such that FV (t1,...,t,) C FV(p) C
T = (x1,...,2m), where z1 : S1,..., &y : Sy, is interpreted inductively as follows:

(F1) If R C Zyx---xZyisarelationsymboland t; : Z,...,t, : Z, areterms, then Mz(R(t1,...,t,)) :=
Mz (t)* M(R), where Mz (t) := (Mz(t1), ..., Mz(tn)),

(F2) if t1,t9 are terms of the same sort Z, then t; ~g t5 is interpreted as the equalizer of the arrows

_ Maz(t)
M(S) — =X M(Z) ,

Ma(t2)
(F3) Mz(T) = 1p5)

(F4) if p and v are formulae with F'V (p,1) C z, then ¢ A is interpreted as the common value of
the composite of following pullback
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— M(p)

[ e

M) i M(S),

(F5) if ¢ is a formula with FV (¢) C (y,z1,...,x,) with y : Z, then Mz3yp := m(My z¢), where
7 is the projection M(Z) x M(Z) — M(Z).

We now briefly recall that the above interpretation is sound and complete. The following result
appears as [But98, Lemma 4.1].

Theorem 4.2.5 (Soundness of the standard interpretation). Let T be a regular theory and M an inter-
pretation in a reqular category €. If = (x1,...,xy,) are variable of sort x; : S;, for 1 < i < n,and a
sequent o bz 1) is derivable, then Mz(p) < Mz(1h) in Suby (M(S)). O

The standard interpretation is also complete. The proof follows from the construction of the
syntactic category ¢'(T) defined as follows. The category ¢ (T) has

objects are equivalence classes of provably equivalent formulae in context, i.e. pairs {Z : X, ¢}, where
Z:Xisacontextzy : Xi,...,2, : X, and pisa formula z C FV (p).

arrows from (7 : X, ¢) to (§ : Y, 1)) are equivalence classes of formulae ~ in the context : 7 : X, : Y
which are functional in the following sense:

- Y(Z,9) Fag »(@) A Y(Y),
= () Fay F97(2,9),
= (@ 91),7(2,92) Fagig 1 =y Yo
Given two arrows {7} : {7 : X, ¢} = {g: Y, v} and {x} : {5 : V,¢} — {Z: Z,p}, the
composition is given by the equivalence class of the formula
Fy(v(@,9) A x(9,2))-
If T is a regular theory, then it can be proved that C(T) is a regular category. Moreover, one can
define a canonical interpretation ¢/ into C(T) as follows
— UX):={x: X,z =z}, forasort X
— U(c) :=={x: X,z = ¢}, for a constant symbol ¢ : X
— U(f) ={z,y: X,Y, f(Z) =y}, for a function symbol f : X — Y
— U(R) :={z : X, R(z)}, seen as a subobject of U (X), for a relation symbol R C X; x - -+ x X,,.

Since provability and satisfiability coincide in the canonical interpretation, the standard interpreta-
tion is also complete. We refer to §6 of [But98] or to §8 of [MR77] for further details. In particular,
it follows that the models of T in a regular category % are equivalent to regular functors from C(T)
to ¢

Mod(T,¢) =2 REG(C(T),?).

A proof of the following result appears in [ But98, Proposition 6.4].

Proposition 4.2.6 (Completeness of the standard interpretation). The canonical interpretation U in the
regular category C(T) is a complete model of T. In particular, the syntactic calculus given above is complete
with respect to interpretations in (small) regular categories. O
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4.3 BHK interpretation

In this section we recall the categorical Brouwer-Heyting-Kolmogorov interpretation following [Pal04].
This interpretation is suitable for a larger class of categories, as it is shown below. Before starting,
we fix some notations.

We now recall the notations of the functor introduced in Example 1.2.6.

Notation. If ¢ is a category and X is an object of ¢, we will denote by (¢ /X),, the poset reflec-
tion of the slice category ¢’/ X, whose objects are equivalence classes of arrows with respect to the
following equivalence relation: two arrows f : A — X and g : B — X of ¢ are equivalent when
there exist two arrows h, k making the following diagrams commute

,,,,,,,,,,,,,,, s B [ |

\/ \/

The equivalence class of an arrow f will be denoted by | f]. We will write | f] < |g] if and only if
there exists an arrow h such that f = g o h.

If € is a category with strict products and weak pullbacks (qlex) the subobjects can be collected
in a controvariant functor
Psuby : €°P — Pos

which sends

- an object X € ¥ to the poset Psuby (X) := (€ /X)po,

- anarrow f : Y — X of € to the functor Psubg (f) : Psubg(X) — Psuby(Y') which sends an
equivalence class |g : B — X| to the equivalence class of the left vertical arrow of a weak
pullback:

—— B

g

L

T>X.

The functor Psuby (f) will be denoted as f*, and its action on | g| will be denoted by f*|g]. In order
to interpret regular formulae, recall that the definition of weak pullback along f : Y — X ensures
that the functor f* has a left adjoint

Psuby (Y) m Psube (X),
f*

givenby fil—] = [fo .
Observation 4.3.1. As already observed, the functor Psuby : €°P? — Pos takes value in infimum

semilattices. Indeed, given | f], [g] € Psuby(X), the meet | f] A |g] is given by the equivalence
class of the common value of the composite of the following weak pullback

P——B

Ll

AT>X.
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Every arrow h : Y — X of ¢ induces a meet-preserving functor »* : Psubs (X) — Psubs (Y).

The interpretation of a language £(S) in a glex category ¢ works as the interpretation in lex
categories, but replacing the functor Suby by Psuby. In particular, terms are interpreted as in the
previous section and a relation symbol R C S x - -- x S, is interpreted as an object

M(R) € Psuby (M(S1) x -+ x M(Sy)).

Formulae are interpreted as the equivalence classes of the arrows involved in the standard inter-
pretation of (F1-F5).
The categorical BHK interpretation is sound as it is shown in [Pal04, Theorem 3.3].

Theorem 4.3.2 (Soundness of the BHK interpretation). Let T be a reqular theory and M an interpre-
tation in a quasi left exact category €. If & = (x1, ..., xy) are variables of sort x; : S;, for 1 <i <n,anda
sequent o bz ) is derivable in T, then Mz(p) < Mz(v)) in Psubgy (M(S)). O

We end this section mentioning the connection between the two interpretations. Actually, the
standard interpretation of regular logic in a regular category is obtained applying the image functor
to the BHK interpretation. Recall that for a regular category ¢ the regular-epi/mono factorization
induces a left adjoint to the inclusion functor Ux : Suby (X) — Psubg (X)

Ux
Suby(X) T Psuby (X)),

Im

for every object X € €. The following result appears as [Pal04, Theorem 4.3].

Theorem 4.3.3. Let ¢ be a regular category. Suppose that M is an interpretation where all relation symbols
are interpreted as subobjects. Denote by M the BHK interpretation function and let M be the standard
interpretation function. Then for reqular formulae ¢ with F'V () C Z:

O

The above theorem implies that the BHK interpretation is actually complete. Indeed, there is a
canonical BHK interpretation ¢/’ in the syntactic category C(T), which coincides with the canonical
interpretation ¢/ in C(T), on function and sort symbols and is defined as the compositions Ux o U
on the relation symbols. Hence, by the completeness theorem of the standard interpretation we
obtain the following result.

Proposition 4.3.4 (Completeness of the BHK interpretation). The canonical BHK interpretation U’
in the regular category C(T) is a complete model of T. In particular, the syntactic calculus given above is
complete with respect to the BHK interpretations in (small) quasi left exact categories. O

Proof. It is enough to observe that if Uz (¢) < U'z(1) in Psube(r) (U'(S)), then Im o U'z(p) < Im o

U'z(1) in Subg(ry(U(S)) and apply Theorem 4.3.3. O

4.4 Interpretation in wlex categories

In this section, we provide an interpretation of a language £(5) in a weakly left exact category €. As
usual, the interpretation of a sort symbol S is given by an object M(.S) € ¢, but the interpretation of
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terms and formulae requires more accuracy. This is due to weak products and to the weak universal
property of weak products. As we have seen in the previous section, strict products seem necessary
to treat multi-variable terms and formulae. But now, for a function symbol

f:Slx---xSn—>S

the weak products M(S1) x --- x M(S,,) are not unique up to isomorphism and the domain of
a possible interpretation M ( f) would depend on a choice of the weak product. Similarly, a naive
interpretation of a predicate symbol

RC Sy %+ x Sh,

given by an equivalence class M(R) of some arrows over a weak product M(S7) x --- x M(S,),
would depend on the choice of the weak product and not only on the interpretations M (S;) of
the sorts S;, for 1 < ¢ < n. The same happens for substitution of terms. Assuming that we have
interpreted the terms ¢; : S1,..., ¢, : S, as arrows Mz (t;) with codomain M(S;), for 1 <i < n,and
a predicate symbol R C S} x --- x S,, as an arrow with codomain a weak product M(S7) x --- X
M(S,,), then there exists a not-unique arrow (Mgz(t1), ..., Mz(t,)) induced by the weak universal
property of the weak products suitable to interpret R(t1,...,t,) as

(Maz(t1), ..., Mz(ty))" M(R).

A naive interpretation could be to assume a choice of weak finite products and arrows induced
by their weak universal property and proceed as for the BHK interpretation. Unfortunately, this
process leads to problems interpreting the axioms of equality and substitution. In order to give an
interpretation which is somehow well-behaved with respect to the possible choices of weak prod-
ucts and their universal property and validates all the axioms of regular logic, we will introduce in
the next sections particular classes of arrows and subobjects.

Before starting we recall that a category is weakly left exact category if and only if it has weak
finite products and weak equalizers or weak pullbacks. Obviously, lex and qglex categories are wlex
and the slices of qlex categories are wlex, as it happens for the slices of the syntactic category ML
arising from intensional type theory.

Notation. For the rest of the section, ¥’ will denote a wlex category. If X1, ..., X,, are objects of &,
we will adopt the usual notation X x - - - x X, to denote a choice of weak products of the objects and
we will denote with p; : X x --- x X, = X; the projections for 1 <i < n. Similarly,if f: X = Y}
and g : X — Y5 are two arrows of %, then we will denote with (f,g) : X — Y7 x Y5 a choice of an
arrow induced by the weak universal property of the weak products, such that p; o (f,g) = f and

p2o(f,9) =g

Terms. As usual, the interpretation of terms of a language £(.5) will be given by arrows of €. In
order to treat multi-variable terms, we would interpret a term t(x, ..., x,) : S with free variables
x1:851,...,%y : Sy, as an arrow

M(E) s M(S1) % -+ x M(S,) — M(S),

from a weak product M(S;) x --- x M(S,,) of the objects M(S;) € €, for 1 < i < n, which is
well-behaved with respect to the choice of a weak product in the following sense: if

(M(S1) x -+ x M(Sp))
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is a different weak product with projections p/, : (M(S1) x --- x M(S,,)) — M(S;), for1 <i <mn,
then the interpretation M (¢) must induce a unique arrow M(¢t)" : (M(S1) x - -+ x M(Sy,)) — M(S)
such that for every arrow h : (M(S7) X --- x M(S,,)) — M(S1) x - - x M(S,,) with p} o h = p;, for
1 <i < n the following diagram commutes

(M(S7) x -+ x M(Sp))
hl M(t)!

M(S7) x - x M(Sy) M(S).

—
M(t)

In order to do that, we now introduce a special class of arrows, which have been previously defined
in [Emm?20].

Definition 4.4.1. Let X;...X,,Y be objects of ¥. An arrow f : X; x --- x X,, — Y is called
determined by projections (dbp) if, for every z, 2’ : T — X; x --- x X,,, such that p; o z = p; o 2/, for
1<i<mn,then fox= foux'.

Example 4.4.2. If ¢ is a weak lex category the following are examples of arrows determined by
projections:

- ifg: Xy x --- x X;, = Y is dbp, then the post composition f o g with any arrow f : Y — Z is
dbp,

- every projection p; : X; x --- x X;, = X; is dbp.

At present, we don’t know conditions on the wlex category ¢ which ensure the existence of arrows
determined by projections.

Remark 4.4.3. When n = 1, a natural choice of (weak) 1-product of an object X € ¥ is given by X
and the identity 1x. In this case, every arrow out of X is determined by projections. If n = 0, the
0-product is a weak terminal object 1 with no projections, and an arrow f : 1 — A is determined
by projections if and only if, for every pair of arrows g,h: X — 1, fog= foh.

We now provide a useful property of arrows determined by projections in order to obtain an
interpretation of constant and function symbols.

Lemma 4.4.4. Let Xi,...,X,,Y beobjects of € and let f : X1 x --- x X;, = Y be an arrow determined
by projections. If (X1 x --- x X,,) is a different weak product, then the arrow f induces a unique arrow
(X x -+ x X)) — Y which is determined by projections.

Proof. By the weak universal property of the weak products, there exists a not necessarily unique
arrow
he(Xyx--xX,) =Xy x--xX,

such that pjoh =pl, forl1 <i<n. Ifh : (X; x---x X,) — X; x --- x X, is a different arrow
such that p; o b’ = pl, for 1 < i < n, since f is determined by projection, we obtain

foh=fokh.

Hence, we can define a unique arrow f’ := f o h from the weak product (X; x --- x X,,)’. A trivial
verification shows that also f’ is determined by projections. ]

We will now define an interpretation in which constant and function symbols are interpreted
through arrows determined by projections.
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- A constant symbol ¢ : S is interpreted as an arrow M(c) : 1 — M(S) determined by projec-
tions, where 1 is a weak terminal object.

- A function symbol f : S; x --- x S;, = S is interpreted as an arrow M(f) : M(S1) x --- x
M(S,) = M(Y') determined by projection.

Remark 4.4.5. The interpretation of constant and function symbols as arrows determined by pro-
jections is well-behaved with respect to the choice of weak product in the following sense. Once
we have fixed the interpretations through a choice of weak products, then it spreads for different
weak products, as shown below.

- If a constant symbol ¢ : S is interpreted through an arrow M(c) : 1 — M(S) determined by
projections, from a weak terminal object 1, then we can consider a different weak terminal
object 1’ and, through Remark 4.4.3 and Lemma 4.4.4, obtain a unique arrow M(c)’ : 1’ —
M(S).

- Ifafunctionsymbol f : Sy x---x.S, — Sisinterpreted through an arrow M(f) : M(S1)x---x
M(S,) = M(Y) determined by projection, then we can consider a different weak product
(M(S1) x -+ x M(S,)) and, applying Lemma 4.4.4, obtain a unique arrow

M(f) s (M(S1) x - X M(Sn))" = M(Y).

We can now interpret terms in a context z = (z1,...,x,), with z; : S; for 1 < i < n, as follows.

As in the previous section, we will denote a weak product M(S;) x - -+ x M(S,,) by M(S).

(T1) The interpretation Mz(c) : M(S) — M(S) is given by the composition M(c) o u, where
u : M(S) — 11is an arrow into the weak terminal object 1 induced by the weak universal

property of 1.

(T2) A variable z; : S, is interpreted as the projection Mz (z;) := p; : M(S) — M(S;), which is
determined by projections.

(T3) If Myz(t;) are the interpretations of the terms ¢; : Z;, fori = 1,...,m, and M(f) : M(Z) —
M(S) is the interpretation of the function symbol f : Z; x --- x Z,, — S, then the term
f(t1,...,ty) is interpreted as the composition

Mz (f(t1, .. tm)) = M(f) o (IM(t1), ..., M(tm)),
where (M(t1), ..., M(ty)) is an arrow induced by the weak universal property of the weak

product M(S). The composition is well defined because another arrow (M(t;), ..., M(ty,))’
induced by the weak universal property of the weak product verifies

pio (M(t1),...,M(tn)) = pio (M(t1),..., M(tn))

for every projection p; : M(S) = M(Z;),fori=1,...,m.
Remark 4.4.6. We underline the fact that the interpretations of (T1) and (T3) is well behaved with

respect to all the possible arrows induced by the weak universal property of weak products. Indeed:

- if M(c) : 1 — M(S) is the interpretation of a constant symbol ¢ : S and u, v’ : M(S) — 1
are two arrows induced by the weak universal property of the weak terminal objects, then
Remark 4.4.3 and the fact that M (c) is determined by projections imply that

M(c)ou= M(c)ou.
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- If Mz(t;) are the interpretations of the terms ¢; : Z;, for 1 < i < m, and (M(t1),..., M(ty,))’
is a different arrow induced by the weak universal property of the weak product then

bio <M(t1)7 s M(tm)>/ =Dpi©° <M(t1)a s 7M(tm)>

for every projection p; : M(S) — M(Z;), for 1 < i < m. Since the interpretation M(f) :
M(Z) — M(S) of the function symbol f : Z; x - -+ x Z,, — S is determined by projections,
it holds that

M(f) o (M(tr), ..., M(tm)) = M(f) o (M(t1), ..., M(tm))"

Relations. As for the BHK interpretation, we will interpret a relation symbol R C 51 x --- x .Sy,
as an equivalence class of arrows with codomain a weak product M(S7) x --- x M(S,,), i.e. as an
element

M(R) € Psubg (M(S7) x -+ x M(Sy)).

In this section we will provide the explicit construction, which is motivated by the analogies with
the interpretations in categories with strict products. In the next section, we will justify the con-
struction introducing the notion of proof-irrelevant elements.

We first recall some categorical notations that we have mentioned in Example 3.2.6.

Notation. Given a category ¢ and objects X, ..., X,, € ¢, we will denote by ¢ /(X1,...,X,,) the
category of cones over Xy, ..., X, whose

objects are lists (fi,..., fy) of arrows f; : A — X; of ¢, for 1 < i < n, with a common domain 4,

arrows h: (fi,...,fn) = (91,--.,9n) between two cones with domains A and B arearrowsh : A — B
of ¥ suchthatg;oh = f;, forl1 <i <n.

The poset (¢/(X1,...,Xn))po is the category whose objects are equivalence classes of cones
given by the following equivalence relation: (fi,..., f,) and (g1, ..., g») are equivalent when there
exist two arrows h : A — B and k : B — A making commutative the following diagrams compo-
nentwise

———————————— » B Aok
f{ N l n f{ N l n
We will denote the equivalence class of a cone (f1,..., fn) as [( f1, ..., fn)], and we will write
[(fi,---s fn)] < |(g1,-..,9n)] if and only if there exists an arrow h : A — B such that g; o h = f;,
for 1 < i < n. Moreover, we will denote with (¢'/(Xi,...,X,));m. the poset whose objects are
equivalence classes of jointly monic cones over X, ..., X, up to isomorphism.

Observation 4.4.7. Now we want to highlight the advantages of working with categories with strict
products. If ¢ is a category with strict products and X3, ..., X,, are objects of ¢, the strict universal
property of strict products induces a functor which sends a cone to a unique arrow over the strict
product X; x --- x X,,. The inverse functor is given by the post-composition with the projections
pi: X1 x - x X, = X;, for 1 <¢ < n. Hence, we obtain the following isomorphisms:

%/(XlaaXn) %%/(Xl Xoees XXTL)’
(%/(Xl, e aXn))jm = Subcg(Xl X e X Xn),
(€/(X1, ..., Xn))po = Psube (X7 x -+ x Xy,).
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These bijections explicit the fact that the standard and the BHK interpretation of a relation symbol
R C Sy x -+ xS, is completely determined respectively by a cone or an equivalence class of cones
over M(S;), for 1 < i < n. However, when % is a category with weak products and weak pullbacks
and X; x --- x X,, is a weak product of the objects X;,...,X,, € €, then the above bijections do
not necessarily hold. In particular, the weak universal property of the weak products does not
provide an obvious functor which sends a cone over X1, ..., X,, to an arrow over a weak product
X1 X -+ x Xj,. In the next section, in Theorem 4.5.3, we will extend the above bijections for wlex
categories restricting to suitable sub-poset of Psubg (X7 x -+ x X,,).

From the above observation, we suggest to consider the slogan propositions as cones. Taking this
insight of relations, we define an interpretation of the relation symbols in wlex categories following
three steps.

We first consider a relation symbol R C S; x --- x S, and the interpretations M(S;) € ¢
of the sorts, for 1 < i < n. Secondly, we choose a cone (r1,...,r,) with r; : R — M(S;), for
1 <4 < n. Finally, we choose a weak product M(S;) x --- x M(S,,) and we associate an element
of PSuby (M(S1) X -+ - x M(Sp)).

Equality symbols. Given a sort S, the interpretation of the the equality relation symbol ~g is
given first considering the cone

1 M(S) 1
My X(S)
M(S) M(S).

Now we consider the following weak limit and define M (~g) as the equivalence class, in the poset
reflection of €'/(M(S) x M(S)), of the right dashed arrow

D\
//// \\\\\65
o Ty
M(S) s o M(S) x M(S) (4.1)
1M<S)l >< lpz
M(S) M(S).

Observe that dg is an equalizer of the arrows

M(S) x M(S) ijQ M(S),

and, when M(S) x M(S) is a strict product, we obtain the unique diagonal Ag.
The weak universal property of weak limits implies that the above interpretation of the equality
relation symbol satisfies the following property for different choices of weak products.

Lemma 4.4.8. Given a sort symbol S and a different weak product M(S) il (M(S) x M(S)) 2 M(S),
if |05 is the interpretation of the equality relation symbol ~g over (M(S) x M(S))’ obtained as in (4.1),
then for every arrow h : (M(S) x M(S)) — M(S) x M(S) such that p; o h = pl, for i = 1,2 it follows
that

h*ds] = [05].
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Observation 4.4.9. Since we have interpreted the equality relation symbols ~g as the equivalence
classes of certain weak equalizers, it is not difficult to show that axioms (E1)-(E4) are satisfied.

Relation symbols. A relation symbol R C S; x --- x S, is first interpreted as a cone (ry,...,7y)
over the objects M(S1),..., M(Sy):

MS) e M),

The interpretation M(R) is given by the equivalence class of the right dashed arrow of the fol-
lowing weak limit:

M(S1)

We observe that when M(S7) x
unique arrow induced by rq, ..., r, on M(S1) X - - - x M(S,,). The weak universal property of weak
limits trivially implies that the above interpretation of a predicate symbol satisfies the following
property for different choices of weak products.

R/
T // \\‘\\\\\p
o Ty
R . M(S1) x -+ x M(Sy) (4.2)
Iy
r Pn
- X M(Sy,) is a strict product, then the arrow p is equivalent to the

Lemma 4.4.10. Using the above notation, if (M(S1) x - -+ x M(S,,))" is another weak product with pro-
jections pl; : (M(S1) x -+ x M(Sy)) — M(S;), for 1 < i < n, and M(R)' is the interpretation of
R over (M(S1) X -+ x M(S,,)) built as in 4.2, then for every arrow h : (M(S1) X -+ x M(S,)) —
M(S1) x -+ x M(Sy,), such that p} o h = p;, it follows that

h* M(R) = M(R)'.

4.5 Proof-irrelevant elements

In this section we will give a correspondence between cones and arrows in style of Observation 4.4.7
for weakly lex categories. Given a weak product X x - - - x X, of the objects X1,..., X,, € ¢, we can
send a cone over Xj, ..., X, to the equivalence class of the weak limit in (4.2). This construction
provides a functor

M:C/(X1,..., Xn)po = Psubg (X1 x -+ x X,,).

An easy verification shows that the post-composition with the projections p; : X; x --- x X, —
X, for 1 < ¢ < n, does not necessarily provide an inverse to the above functor but only a left
inverse. We will define the sub-poset of proof-irrelevant elements of Psubs (X7 X --- x X,,) such
that the corestriction of the above functor is an isomorphism. This correspondence implies that the
interpretation of relation symbols as proof-irrelevant elements validates axiom (E5) of the equality
predicate.

Before starting we fix some notations.
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Notation. If ¢ is a category with weak products, then we can obtain a weak product of the objects
X1,...,.X, €% as

X ><---><Xm<p—1(X1 X oo X X)) X (Xt x---xXn)piXmH X - X X,
If i < mand m < j < n, then, abusing the notation, we will denote by
(,7) - (X1 x - X Xpp) X (Xppg1 X oo x Xp) = X x X

a choice of an arrow induced by the composition of the projections p; op; and p; op, where p; : X1 x
><Xm—>Xiandpj:Xm+1 X---XXn—>Xj.

When ¢ is wlex and X1, ..., X,, are objects of ¢, we can consider the equivalence classes |dx;, |
of the arrows obtained as in (4.1), considering weak products X; x X;, for1 < i < n. If X :=
X1 x .-+ x X, then we will refer to the element

(I,n+1)*|6x, ] A+ A(n,2n)*[0x, ] € Psubg (X x X). (4.3)

as the proof-irrelevant equality or the componentwise equality of X x- - -x X,,. Instead, the equivalence
class [0 ] € Psuby (X x X) obtained as in (4.1), for a weak product X x X, will be called proof-
relevant equality of Xy x --- x X,,. This terminology has already been motivated in Example 3.2.5,
but it will be discussed again in Section 4.6.

We recall the definition of descent data given in Definition 1.2.4. If X € ¢ and 3 € Psubg (X x X),
the sub-order of the descent data of 3 is given by

Desp := {a € Psuby (X) | pi(a) A B < pa* ()} (44)

By definition, it follows that the sub-orders of descent data are closed by finite meets and if 3’ < 8
then
Desg C Desg:.

We now recall that the proof-irrelevant elements of a weak product X x - - - x X, are the sub-order
of PSub(X; x --- x X,,) given by the descent data of the proof-irrelevant equality of X; x - -- x X,.
The sub-poset of proof-irrelevant elements of X; x --- x X, is denoted as

Plrre (Xq X -+ x Xp).

Remark 4.5.1. Observe that the assignment Plrr, is not functorial. Indeed, given three objects
XY, Z € ¢,if W := X xY is a weak product of X and Y/, then a weak product W x Z of W
and Z is also a weak product of X, Y and Z. In this situation, by definition the proof-irrelevant
elements of the binary product (W x Z) are also proof-irrelevant elements of (W x Z) seen as
a ternary product of X,Y and Z, but the converse does not necessarily holds. As we have seen
in Chapter 3, in order to set proof-irrelevant elements functorially we need the framework of the
biased elementary doctrines.

In the following proposition we show that the functor M takes value in the sub-poset of proof-
irrelevant elements.

Proposition 4.5.2. For every weak product X := X x - - - X X,, of the objects X1, ..., X,, € €, the functor
M:(€/X1,..., Xn)po = Psubg (X1 x -+ x Xp),

takes value in Plrry (X1 X -+ x X3).
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Proof. Consider the following weak pullback diagrams for 1 < ¢ < n:

<in+i>* 5X _
Pippi —2 " X0 X

d; <t,n+i>
D — X; x X;

5x,

and then consider the weak limit of the following diagram

H
hl //’/’ \\\\\ hn
" \\s
P(l n+1) n ,2n)
(1,n+1)* m An) *0x,,
X x X.

We denote by h the common Value of the composite of the weak limit above which corresponds to

the proof-irrelevant equality /\ (t,n +14)*0x,. If [p] := M|(r1,...,m)] for a cone (ry,...,r,) and
=1

the reindexings pp, fori =1, 2 are given by the following weak pullbacks

*

R, 2P, X

pél

Rl

X

L

then the conjunction ¢ := pjp A h is obtained as the common value of the composite of the following
weak pullback

C —*—H

do

Rl ﬁ X X X
p1p
The statement is equivalent to prove that |c¢] < |p5p] in Psuby (X x X). But, since
piocopy=rioropi ol

for 1 < i < n, then there exists an arrow k : C — R’ such that p o k = ps o c¢. Hence, there exists an
arrow s : C — Ry such that pjpos = cand sop, = k. O

In the following theorem we extend Observation 4.4.7 proving that, when %’ is a wlex category,
cones are in bijections with proof-irrelevant elements.

Theorem 4.5.3. For every weak product X := Xy x --- x X,, of the objects X1, ..., X,, € €, the functor
M and the post-composition with the projections provide a bijection

(€) X1, Xn)po = Plrr(X).
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Proof. If (r1,...,7y) is a cone over X7, ..., X, with domain an object R € €, then M(ry,...,ry) :
R’ — X isaproof-irrelevant element. Using the notation of the diagram in (4.2), we have M(r1, ..., 1) =
|p] and an arrow 7’ : R — R/ such thatror’ = 1gand por’ = (ry,...,r,) for an arrow (rq,...,m,)
induced by the weak universal property of the weak products. Hence, the arrows r, 7’ show that
(riy...,rn) ~ (P1op,...,pnop).
Viceversa, ifo : S — X x---x X, is a proof-irrelevant element then we obtain the cone (071, ..., 0y,),
where 0; :=p;oo,forl <i<n.If [¢] := M|(01,...,0,)] then obviously (o1,...,0,) < 5.

In order to obtain & < ¢, we observe that 0; 0 s = p; 0 g;, for 1 < i < n, implies the existence
of arrows ¢; : S — D; such that (0 0 5,5) o (i,n + i) = J; o ¢;, for some arrows (o 0 5,5), (i,n + 1)
induced by the weak universal property of the weak products. Hence, from the weak pullbacks

<i,n+i>*6xi — —
Ppei —N g X

di <7L,n+i>

X;

we obtain arrows u; : S — P; ;4 such that d;ou; = ¢; and (i,n+1i)*dx, ou; = (00s,5),for1 <i < n.
Hence, using the notation of proof of Proposition 4.5.2, we obtain an arrow [ : S — H, such that
hiol =w;, for 1 <i <n. Now from the week pullbacks

A .
S; —— X x X
g

for i = 1,2, we obtain an arrow n : S — S; such that pj on = s and pjo on = (0 0 s,5). This arrow
implies the existence on an arrow j such that 2’ o j = nand t o j = I. Hence, we are in the situation
of the following diagram

/

|
5’1*>X'><)_(<p3—052
|

X+——8

since o is proof-irrelevant, there exists an arrow v : C' — Sy such that p5o o v = h o t. Hence, using
the arrow v o j we obtain that 7 < o. ]

The proof of the above theorem and the proof Proposition 4.5.2 do not depend on the choice of
the weak products X x X and X; x X; and arrows (i,n +14) : X x X — X; x X;, for1 <i < n.
This justifies the notation Plrr(X) adopted for proof-irrelevant elements, which makes explicit only
the weak product X considered. Moreover, the correspondence with cones implies that proof-
irrelevant elements of different weak products of the same objects are actually isomorphic. We

collect this observations in the following corollary.
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Corollary 4.5.4. Using the notation of 22, if X & (X x X)' B8 X is another weak product and (i,i +n)’ :
(X x X) — (X; x X;) are arrows induced by the weak universal property of different weak products
(X; x X;), for 1 < i <mn,then

(i) The following sub-orders of Psuby (X)) are equal
Des (1,n+1)* |53, 1A An,2n)* [6x,,1 = DESQUnt1y=(8y Tn-A(n2m) |5, 1-

(ii) If (X1 x --- x X,,)" is a different weak product of the objects X1, ..., X,, € €, then

Plrr(X) = Plrr(X7 x -+ x X,,)".

O]

We observe that the notion of proof-irrelevant elements is trivial for strict products. Indeed, if
X = X; x -+ x X, is a strict product then we have the following relation between proof-relevant
and irrelevant equalities

gl = (Ln+ L ox, 1A An,2n)"[0x, ] = [Ax] (4.5)
where A : X — X x X is the unique diagonal arrow of X. The above relation implies that
Plrr(X) = Psuby (X).

On the contrary, in case of weak products, we only have Des| 5 1 = Psuby(X) and
x] = (Ln+1)"[0x ] A A, 20)" [0, . (4.6)

The intuition behind the above relation is that, in case of weak products, the equality of two
objects of a weak product implies but is not the same of the equality of the components of the
objects. In Section 4.6 we will provide an explicit example of this difference.

Remark 4.5.5. Hence, we have interpreted relation symbols as proof-irrelevant elements. This con-
struction validate axiom (E5) of equality predicate. Indeed, if o € Plrrg(M(S1) x - -+ x M(Sy,)) is
the interpretation of a relation symbol R C S; x - -- x S, then the inequality

pi(@) A(Ln+1)" 85,1 A Aln, 2n)" 65, ] < p2” (@)
is just the interpretation of the axiom (E5) for the relation R

T1 =S Y1,---5,%Tn =S, ynaR(xla .- '7xn) }_:f R(ylv s 7yn)

Folmulae Before interpreting formulae, we provide a useful description of arrows determined by
projections using the internal logic of the functor of weak subobjects.

Proposition 4.5.6. If X == X1 x - x X,, is a weak product of the objects X1, ..., X, € €, then an arrow
[+ X =Y is determined by projections if and only if

<1,TL + 1>*5X1 A A (n, 27L>*(5Xn < (f X f)*(5Y (47)

in Psubg (X x X), for every weak product X x X.
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Proof. Using the notation of the proof of Proposition 4.5.2, we observe that the arrows pjoh, paoh :
H — X aresuch that p;opioh = pjopsoh, for 1 < i < n. Hence, if f is dbp, then we obtain
fopioh = fopyohand the arrow (f x f)ohinduces anarrow s : H — Dy such thatdyos = (f x f)oh.
The inequality in 4.7 follows from the weak pullback diagram

S
HmDy
Q 5Yl J(SY

XXX*>Y><Y

Vice versa, let g,k : Z — X be two arrows such that p; o g = p; o k, for i = 1,...,n and assume
that there exists an arrow s’ : H — P making h < (f x f)*dy. By a trivial computation, we obtain
an arrow z : Z — H such that (g, k) = ho z. Hence, go f = k o f follows from (f x f) o (h, k) =
dy Ouosoz. O

We now provide some important properties of proof-irrelevant elements, which will be useful
to interpret formulae.

Proposition 4.5.7. If X := X; x -+ x X,, is a weak product of the objects X1,..., X, € € and o €
Plrr(Xq x -+ x X},), then

(i) IfY1 x---xYy, isaweak product of the objects Y1, ..., Y, € €andh : Y1 x-- - xYy, — Xy x---xX,
is determined by projections, then

h*a € Plrr(Yy x -+ X Yy).

(i) If Yy x --- x Yy, is a weak product of the objects Y1,..., Yy, € € and f; : Y1 x --- x Y,,, = X;, for
1 <'i < n, are arrows determined by projections, then for every arrow (fi,..., fn) : Y1 X - x Yy, —
X1 x - x X,
(fi, s o) €Plrr(Y1 x -+ - X Ypp,).

(i) If f1, fo : Z — X1 x --- x Xy, are arrows such that p; o fi = p; o fa, for 1 < i < n, then
fia= fia.

(iv) If X xY is a weak product of X with an object Y € €, then the functor ps, resctricts to proof-irrelevant
elements
p2; : Plrr(X x Y) — Plrr(X).

Moreover, po, satisfies the following Beck-Chevalley condition: for any weak product X x Z and com-
mutative diagram of the form

where p1 f = p1,then for all a € Plrr(X x Z) the canonical inequality

pofra < fpaa

is an equality. The same holds for p,.
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Proof. (i) If ais such that pja A (1,n+1)*0x, A--- A (n,2n)*0x, < p5athen, applying (h x h)* and
Equation (4.6) and Proposition 4.5.6, we obtain pih*a A (1, m+ 1) 0y, A--- A (m,2m)*dy,, < p3h*a.
(ii) follows from a similar computation.

(iii) Let (f1, f2) : Z — X x X be an arrow induced by the weak universal property of the weak

products. An easy computation implies that (f1, f2)( A (i,n + i)*0x,) = Tz and, hence, we have

=1

the equality fia = (f1, fa)pia A (f1, f2) (A (i,n + )*dx,). Since « is proof-irrelevant, we obtain

i=1

fia < f5a. The opposite inequality is obtained similarly considering an arrow (fa, f1).

(iv) The first part of the statement is obtained as follows. Let a € Plrr(X x Y), Theorem 4.5.3
implies that @« = a* where a* is the equivalence class of the right dashed arrow of the following
weak limit

)%

/// A
A XxY (4.8)
Qn+41

o >< [prss

X Y.

We now consider pjja : A — X and prove the statement showing that p;,a = 3, where 3 is the
equivalence class of the right dashed arrow of the following weak limit

A/
v’ Sy
A X
Qn
{ o<k
X, X,
The inequality p;a < fis trivial. In order to show the converse, we consider the arrows (5,41 :
apyi1ohand (B, Bry1) : AY — X x Y. The arrows h, (3, 8,41 and the universal property of the weak
limit in 4.8 implies that (3, 8,41 < a. Hence, we obtain 8 = p; o (8, Bn+1 < o = o. We now prove

the second part of the statement.
The element f*py o can be obtained through the composition of two weak pullbacks as follows

frp2a
A Z, p P2 Y
a Nf/php/2>%

X xY

»
s

X)
N+——m—
~

&3 p2

Instead, the element @ := f*« is given by the weak pullback

A% XxY

| Jan

AT>X><Z.
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By Theorem 4.5.3, a is the same equivalence class of the arrow a* obtained through the following
weak limit

I )

A X xZ
p2oa
o] T
X Z.

Hence, we can obtain an arrow h : A — A* such that o* o h = f(f’pl,p'2> o z. The arrow h can
be used to obtain an arrow k : A — A such that @ o k = (p1f',p'5) o x. Similarly, & is the same
equivalence class of the arrow a* obtained through the following weak limit

\
’

N

e

N

Nl
_ XxY
p2oc
>< |7
Y.
Hence, we obtain the inequality (p; f’,p's) o # < @. The post-composition with the projection po
implies the statement f*po a0 < po,f*au. O

p1ocx

%

S

We now provide the interpretation of conditions (F1)-(F5). We will denote a weak product
M(S1) x -+ x M(S,,) by M(S). Given a context Z = (21, ...,2Zm), withx; : S; fori =1,...,m, a
formula ¢, in which occur the terms ¢ : Z1,...,t, : Z,, such that FV (¢1,...,t,) C FV(p) Cz =

(x1,...,%m), is interpreted inductively as follows:
(F1) If R C Z;y x --- X Zj is a relation symbol, then the formula R(t1,...,t,) is interpreted as

where Mz (t) := (Mz(t1), ..., Mz(t,)) is an arrow induced by the weak universal property
of weak products.

(F2) If t1,ty are terms of the same sort Z, then t; ~g t; is interpreted as the equivalence class of a
weak equalizer of the arrows

_ Maz(tr)
M(S) —= M(2).
Mz (t2)

(F3) Mz(T) = [1pms)]-

(F4) If ¢ and ¢ are formulae with F'V (p,v) C z, then ¢ A1) is interpreted as the equivalence class
of the common value of the composite of the following weak pullback
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(F5) If ¢ is a formula with 'V (¢) C (y,z1,...,2z,) withy : S, then MzJyyp := m(My z¢4), where
7 is the projection M(S) x M(S) — M(S).

We can now collect all the above results in the following theorem.

Theorem 4.5.8 (Soundness of the weak BHK interpretation). Let T be a regular theory and M an
interpretation in a weakly left exact category €. If & = (x1, ..., xy,) are variable of sort x; : S;, for1 < i <mn,

and a sequent o b5 1 is derivable, then Mz () < Mz (1) in Plrr(M(S)) for every weak product M(S) of
the objects M(S;), for 1 < i < n.

Proof. The proof is the same of Theorem 4.2.5 and Theorem 4.3.2. We just mention that, in order
to soundly interpret the substitution law (54) for existential formulae, we have proved a Beck-
Chevalley condition in item (iv) of Proposition 4.5.7. Similarly, from items (i-iii) of Proposition 4.5.7
it follows that proof-irrelevant elements remain proof-irrelevant after suitable reindexings. Hence,
the interpretation validates axiom (E5) of equality predicates. O

We end this section observing that the weak BHK interpretation is also complete. Indeed, the
syntactic category C(T) is wlex and the weak BHK interpretation coincides with the BHK inter-
pretation in qlex categories. This happens because, in case of strict finite products, every arrow
f Xy x---xX, = Y is determined by projections. Moreover, as observed in eq. (4.5), proof-
relevant and proof-irrelevant equalities coincide and the elements of Psuby (X7 x -+ x X,) are all
proof-irrelevant. Hence, we obtain the following completeness result.

Proposition 4.5.9 (Completeness of the BHK interpretation). There is a canonical weak BHK inter-
pretation in the reqular category C(T) which coincides with the canonical BHK interpretation U'. This is a
complete model of T. In particular, the syntactic calculus given above is complete with respect to interpreta-
tions in (small) weakly left exact categories. O

4.6 An example from type theory

In this section we give an explicit example of the weak BHK-interpretation in a weakly lex category.
In order to do that, we first consider the main example of BHK-interpretation in categories with
strict products and weak pullbacks. Our main example of weak BHK interpretation is derived
from it.

Consider the syntactic category ML arising from intensional Martin-Lof intuitionistic type the-
ory, introduced in Chapter 1. The objects of ML are closed types and the arrows are equivalence
classes |t] : A — Bof terms z : A F t(x) : B up to functional extensionality. In Lemma 1.1.2 we
proved that ML is quasi left exact and a weak pullback of two arrows |¢] : X — Aand |u] : Y — A
is given by the following commutative diagram

> lda(t(z) uly) —

Y

e XyY
. k
A.

X—>

The BHK interpretation in the category ML recovers the Curry-Howard correspondence: propo-
sition as types. Indeed, assuming the notation of Example 1.2.8, if A is a closed type then define
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FML(A) as the poset of equivalence classes of types depending on A respect to equiprovability:
z:AF B(z)and z : A+ B'(x) are in the same equivalence class if there exists a term of

H(B(a:) — B'(z)) A (B'(z) — B(z)), (4.9)

x:A

and |B] < |B'] if there exists a term = : A,p : B ¢ : B'. The X-type provides the following
correspondence between weak subobjects and dependent types.

Lemma 4.6.1. If A is a closed type then Psubpr (A) = FML(A).

Proof. The correspondence sends a weak subobject | f : X — A] to the equivalence class of the
dependent type a : A - Z Ida(f(x),a). Vice versa, every dependent type a : A I B(a) is sent to

the equivalence class of the projection 7 : ZB( ) = A. A trivial computation shows that these

correspondences are inverse. O

The above correspondence was already observed in Example 1.3.8 where we recalled the equiv-
alence the elementary doctrine FML and Psubpyr. Hence, a relation symbol R C §; x --- x Sy, and
more in general a formula ¢ such that F'V (¢) C Z = (x1, ..., xy), is interpreted as the equivalence
class of a dependent type expression

Iy - M(Sl), eyt M(Sn) + M(R)

and the logical connectives and quantifiers are interpreted as in the Curry-Howard correspondence,
which is summarized at the end of Appendix B.

Our motivational example to interpret intuitionistic logic in wlex categories is given by the slices
ML/ A of the category ML over a type A € ML. As we mentioned, since ML is quasi left exact, it
follows that the slices ML/A are weakly left exact and the weak products are given by the weak
pullbacks of ML. If f : X — A is an object of ML/A, then

Psubnp a(f) = Psubmi(X), (4.10)

which is in turn equal to FM%(X). Hence, in ML/A a sort S is interpreted as an arrow s : X — A
and the terms and the formulae are interpreted as follows.

Equality symbols. If s: X — A is the interpretation of a sort .S, we consider a weak pullback of
s with itself. A canonical choice is given by the following diagram

D:= Y Ida(szy,sms) —— X
r1,x2: X (4 11)
gl | |
X A.

S

Since the equalizers in the slices of a category are computed as the equalizers in that category, the
equality relation symbol ~g is interpreted as the equivalence class | 7] of the weak equalizer

Sldy (m1d, mad) —*— D — X.
d:D 2
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Then Lemma 4.6.1 implies that the equality relation symbol ~g corresponds to the dependent type
(x1,22,p) : D Fldx(z1,22). (4.12)

Similarly, if s; : X; — A are the interpretations of the sorts S;, for 1 < i < n, a canonical choice of
weak product is the arrow 5 :=s; om; : W — A, for 1 < i < n, whose domain is given by

W = Z |dA(81(ZL‘1), SQ(SUQ)) X X |dA(Sn—1(1'n71)a Sn(fvn)) (4~13)
21:X1,.0yTn: Xn

As above, a canonical choice of weak product of 5 with itself is given by the following diagram

D:= Y lda(5z,5y) —— W

z,y: W
ml §

W A

We can now show the main difference between the proof-relevant and the proof-irrelevant (or
component-wise) equalities. The former is given by the equalizer of the projections 7 and 7.
Hence, it corresponds to the dependent type

(z,y,p) : D F ldw(,y). (4.14)

Instead, the component-wise equality is given by the conjunction

(x7y7p) D+ IdX1(x17y1) X X Ian(:cn,yn), (415)

where we denoted for short x; := mz : X; and y; := my : X, for 1 < i < n. We called the above
dependent type the proof-irrelevant or component-wise equality of W since two elements z,y : W
are equal if their components z;,y; : X;, for 1 < i < n are equal; independently on the proof terms

Tpt : lda(s1(21), 82(22)) X - X 1dA(Sp—1(Tn-1), sn(xn))

Yna1 1 1da(s1(y1),s2(y2)) X -+ x Ida(Sn—1(¥n—-1) 5n(yn))- (4.16)

Obviously, if the type in (4.14) is inhabited, then also the type in (4.15) is inhabited. The converse
does not necessarily hold.

Formulae. The interpretation of a relation symbol R C S; x --- x §,, and more in general of a
formula ¢ such that FV(y) C z = (z1,...,x,) with z; : S;, is provided by elements which we
called proof-irrelevant for the current example.

Indeed, if s; : X; — A are the interpretations of the sorts S;, for 1 < ¢ < n, and W is the domain
of the canonical choice of the weak product of s1, ..., s, as in (4.13), then the interpretation of R is
given by a dependent type expression

x: Wk M(R)(x),
which is proof-irrelevant in the following sense. By definition, M(R) is proof-irrelevant if

pi(a) A{Ln+1)" |05, [ A== An, 2n)" |05, | < p27(@)
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and since the proof-irrelevant equality of two elements =,y : W is interpreted as the conjunc-
tion Idx, (z1,91) X -+ X ldx,, (zn,yn) as in (4.15), we obtain that M(R) is proof-irrelevant if when
M(R)(x) is inhabited it follows that M (R)(y) is inhabited for every element y : W with the same
components (i.e. such that the types ldx, (z;, y;), for 1 < i < n, are inhabited) independently on the
proof terms x4 1, yn+1 of (4.16).

In case of relation symbol R C S x S it is worthwhile to see how it works the correspondence in
(4.2). Given an interpretation s : X — A of S and a weak product of s with itself as in (4.11), we
first interpret R as cone r1,72 : R — X and then we take the following weak limit

> > ldx(r1z, mid) X ldx (rez, mad)
d:D z:R

|

From the correspondence of Lemma 4.6.1, it follows that the predicate R is interpreted as the de-
pendent type
(z,y,p) : DE > ldx(r1z,2) x ldx(raz,y)
z:R
which clearly does not depend on the proof-term p.

Terms. We conclude this section describing the interpretation of a term ¢ : Sy x --- S, = Sy41 as
an arrow determined by projections. As above, let s; : X; — A be the interpretations of the sorts 5;,
for1 < i < n+1,andlet W be the domain of the canonical choice of the weak product of s1, . . ., s, as
in (4.13). The term ¢t is interpreted as an arrow M(t) : W — X,,41 such that s; o m; = M(¢) o sp41,
for 1 < i < n + 1, which is determined by projections in the following sense. Proposition 4.5.6
implies M(t) is dbp if and only if

(Ln+1)"0g, A+ A (n,2n)*0g, < (M(t) x M(t))*0s

n+1

hence, by (4.12) and (4.15), the above inequality means that if two elements x, y : W have the same
components ldx, (z;,y;), for 1 <i < n, then they have the same image through M(t), i.e. the type

(z,y,p) : D ldx, ., (M) (x), M(t)(y))

is inhabited. Hence, M(t) is determined by projections in the sense that the value M (t)(z), of an
element = : W, is determined only by the projections z; = 7;(z), for 1 < i < n, independently on
the proof term x,, 11 : lda(s1(z1), s2(z2)) X - -+ X lda(sp—1(zn-1), sn(xn)).

As observed by Palmgren in [Pal04], the category ML is suitable to BHK interpret not only
regular logic but also coherent and first order logic. This is due to the fact that in ML we can
interpret the disjunction with the sum types, and the universal quantification with the II-type. As
we will see in the next section, any slice ML/A is suitable for a weak BHK interpretation of first
order logic.

4.7 Richer logics

In this section we recall the BHK intepretation of coherent logic in general qlex categories as devel-
oped in [Pal04] and extend it to wlex categories.



4.7. RICHER LOGICS 117

Coherent logic. For a glex category %, in order to interpret the disjunction of formulae, it is re-
quired ¢ to have finite coproducts, i.e. binary coproducts and an initial object 0. The unique arrow
from 0 to an object X € ¢ will be denoted by 0,.. If [f : X — Z] and |g : Y — Z] are elements of
PSuby (Z) then we define

LAV Ll = L[f, g1,

where [f, ¢] is the unique map induced by the universal property of X + Y. Moreover, coproducts
must satisfy the weak stability condition: if h : V' — Z is an arrow of ¢ and | f], |g| € PSuby(2),
then

(@) h*(LFTV Lg]) = h*LFTV h*(Lg]),
(i) h*[0.] = [Ov].

From (i) it easily follows that disjunction and conjunction are distributive over each other.
Coherent formulae are interpreted as in Section 4.3 and through the assignments: given the
variables T := (x1,...,x,) of sortz; : S;, for1 <i <mn

(F6) The false predicate L in the context 7 is interpreted as

(F7) if p and ¢ are formulae such that F'V (p, 1) C 7, are interpreted as Mz (), Mz (1)) € Psuby (M(S)),
then the formula ¢ V 1 is interpreted as

Mz(p V) = Maz(p) vV Mz(¥).

The above conditions 7,7 makes the interpretation satisfy rules (L3) and (L4). Hence, Theo-
rem 4.3.2, about soundness of the BHK interpretation, can be restated for coherent logic in glex
categories with weakly stables coproducts. Since the syntactic category C(T) of a coherent theory
T is a coherent category (see [Joh02, §D]) and Theorem 4.3.3 holds also for coherent formulae (see
[Pal04, Lemma 5.3]), it follows that Proposition 4.3.4 about completeness extends to coherent logic.

First order logic. In order to interpret first order logic in a qlex category %, we must add to the
above assumptions the following condition:

- For every object X € % and element & € PSuby(X) there exists a functor o = (—) :
PSuby (X)) — PSuby (X) which is right adjoint to the functor a A (—), i.e.

aNB <y B< (@) (4.17)

- for every pair of objects X,Y € ¥ there exists an order preserving functor p;, : PSubs (X x
Y') — PSub¢(X) which is right adjoint to the reindexing p;*, i.e.

pr¥(a) < B +— a < p1,(B) (4.18)

for all & € Psuby(X) and 5 € Psuby (X x Y). The same is assumed for the projection ps :
XxY =Y.

A category ¢ which satisfies the above conditions is said to have implications and universals.
The interpretation of the first order logic formulae is the same of Section 4.3 plus the following
assignments: given the variables = := (x1,...,z,) of sortz; : S;, for1 <i <n
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(F8) if pand ¢ are formulae such that F'V (p, 1) C 7, are interpreted as Mz (), Mz (1)) € Psuby(M(S)),
then the formula ¢ = % is interpreted as

Ma(p) = Mz(¥) € Psuby (M(S)),

(F9) if y : S and ¢ is a formula such that FV(¢) C Z,y which is interpreted as an element
M () € PSuby (M(S) x M(S)), then Vyep is interpreted as

P«May () € PSubey (M(S)),

where p : (M(S) x M(S)) — M(S) is the obvious projection,

(F10) if ¢ is a formula, the negation —¢ is interpreted through the identification ~¢ = (¢ = 1).

The existence of left adjoints fi 4 f* which satisfy the Beck-Chevalley condition easily implies
that the above adjunctions satisfy the following properties.

Proposition 4.7.1. If € is a quasi left exact category with implications and universal, then:

(i) Foreveryarrow f:Y — X and elements o, B € PSubg (X)
ffla=8)=f"a)= f(B) (4.19)

(ii) the right adjoints V), satisfy the Beck-Chevalley condition: given a weak pullback diagram of the form

such that py f = p1, then for every oo € PSuby (X)), the canonical inequality

[ pa.(a) < p2, fH(a) (4.20)
is an equality. The same holds for ¥, .
O

The above properties are crucial to satisfy the substitution rule in case of formulae with V and
— . The logical rules (L5) and (L6) follow from conditions (4.17) and(4.18). Hence, the sound-
ness result Theorem 4.3.2 can be restated for first order logic in qlex categories with weakly stable
coproducts and right adjoint to all reindexings f*.

In case of wlex categories, the above constructions can be trivially restated. Indeed, the def-
initions of weakly stable coproducts do not depend on the weakness of products as well as the
assumption of having right adjoint to all the reindexings and conjunctions. Proposition 4.7.1 holds
also for wlex categories and the only properties that must be verified are the preservation of proof-
irrelevant elements through the disjunction, implication and universal quantification.

Proposition 4.7.2. Let ¢ be a weakly left exact category, if X := Xy x -+ x X,, is a weak product of the
objects X1,..., X, € € then:

(i) Ifa, B € Plrrg(X), then oV 3 € Plrrg(X)
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(ii) if o, B € Plrrg(X), then o = B € Plrrg(X)

(iii) If X x Y is a weak product of X with an object Y € € and a € Plrrg(X xY'), then py,«v € Plrrg(X),
where p1 : X xY — X is the obvious projection.

Proof. (i) follows from the weak stability of coproducts and from the distributivity of disjunction
over conjunction. (ii) follows from Proposition 4.7.1-i, (4.17) and from the symmetry of dx,, for
1 <4 < n. (iii) follows from Proposition 4.7.1-ii and (4.18). O

The above proposition implies that the weak BHK interpretation can be extended to the formulae
with V, = and V. Proposition 4.7.1 for wlex categories implies that the interpretation satisfies the
logical rules (L5) and (L6). Hence, we can collect all the above results and obtain the following
generalization of Theorem 4.5.8.

Theorem 4.7.3 (Soundness of the weak BHK interpretation for FOL). Let T be a first order theory
and M an interpretation in a weakly left exact category € with weakly stable coproducts and implications
and universal. If & = (x1,...,xy,) are variable of sort x; : S;, for 1 < ¢ < n, and a sequent ¢ bz 1 is
derivable, then Mz (p) < Mz (1) in Plrr(M(S)) for every weak product M(S) of the objects M(S;), for
1<i<n. 0

Unfortunately, we cannot generalize easily Proposition 4.5.9. Indeed, it is well known that the
syntactic category C(T), of a first order theory T, is a Heyting category, but this does not implies the
existence of the adjunctions in (4.17) and (4.18). A formulation of a completeness result in style of
Proposition 4.5.9 is still under investigation both for the BHK interpretation and for the weak BHK
interpretation.

Example 4.7.4. As already observed in [Pal04], the category ML is suitable for a BHK interpreta-
tion of first order logic. We actually have proved it in different parts of this thesis. In Section 2.6
we have seen that ML has weakly stable coproducts given by the sum types and in Example 1.2.20
we have seen that ML has all right adjoints to reindexings. Hence, in ML we can interpret disjunc-
tions, implications and universal quantifications. Similarly, it follows that any slice category ML/A
is suitable for a weak BHK interpretation of first order logic. Indeed, ML/A has weakly stable co-
products because ML has them, and, as follows from Example 3.6.7, ML/ A is suitable to interpret
implication and universal quantifications.

Concluding remarks and further developments. We presented a generalization of the BHK in-
terpretation in categories with weak pullbacks and weak products. In order to interpret disjunction,
we assumed weakly stable coproducts, which are strict. It is still open the question if it is possible to
consider weak coproducts with a notion of weak stability and it will be part of future investigations.
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Appendix A

Categorical results

We begin this chapter recalling some definitions from [CV98].

Definition A.0.1. A category % is called

- Left exact (lex), if it has (strict) finite products and pullbacks. Equivalently, if it has al finite

limits.

- Quasi left exact (glex), if it has (strict) finite products and weak pullbacks.

- Weakly left exact (wlex), if it has weak finite products and weak pullbacks. Equivalently, if it

has weak finite limits, see [CV98, Proposition 1].

Definition A.0.2. Let ¢ be a category, a pseudo-equivalence relation on an object Y € ¢ is a pair of

parallel arrows 71,72 : X — Y thatis

- reflexive, if there exists an arrow rx : Y — X such that

rirx = ly =rorx,

- symmetric, if there exists an arrow sx : X — X such that

1Sz = T2 28y = T1,

- transitive, if there exists a weak pullback

p-"yx
lgl \LTQ
X — Y
and an arrow tx : P — X such that
rily = ritx rolo = rotx.

121
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Elementary doctrines. We now recall various results about the elementary doctrines. Some of
them are reported with the corresponding reference, others are proved. We start with a proof of
the equivalence of the definitions of elementary doctrine mentioned in [MR12, Remark 2.3] that
we have discussed in Section 1.2 .

Proposition A.0.3. Definition 1.2.3 and Definition 1.2.5 are equivalent.

Before providing a proof, we recall that in Definition 1.2.3, a functor P : ¢°? — InfSL is an
elementary doctrine if for every object X € @, there exists an element dx € P(X x X) such that:

E1 For every element a € P(X), the assignment
Fax (@) == Pp, (@) Axxx dx
is left adjoint of the functor Pa,, : P(X x X) — P(X).

E2 For every object Y € ¥ and arrow e := (1,2,2) : X x Y — X x Y x Y, the assignment

Je(@) == P9y (a) Axxyxy Pag)(dy)
for ain P(X x Y') is left adjoint to P, : P(X x Y xY) = P(X x Y)).

In Definition 1.2.5, a functor P : ¥°? — InfSL is an elementary doctrine if for every object X € ¥,
there exists an element 6x € P(X x X) such that:

I Tx < PAX(5X)-
II P(X) = Dess,, .
IIT 6x Xy < dxxy, where 0x X dy := P<173>(5X A P<274>5y.

Proof. We first prove that Definition 1.2.3 implies Definition 1.2.5.
Conditions I and Il are obvious. Applying the isomorphism Py 3 5 4), we obtain that IIl is equiv-
alent to

P12)0x AP 34y <Pr3aadxxy
in P(X x X xY xY). This inequality is equal to

Pi,23Pa20x AP 4ydy <Prsandxxy.
The left term is equal to 31 5 3 3)P(1,2)0x and, by E2, the statement is equivalent to
Pi2)0x <P233Pr3240xxy =P3230xxy
in P(X x X xY). Applying the isomorphism P35 1, the statement is equivalent to
Pi2,3y0x <Ppi13ndxxy.
The left term is equal to 3(; 5 2) Ty xx and, by E2, the statement is equivalent to
Tyxx <Pi210xxy

which is true by condition I.
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We now prove that Definition 1.2.5 implies Definition 1.2.3. We first obtain condition E1 as
follows. The part of the adjunction

daya < B = a<PafB

for every a € P(X) and 8 € P(X x X), trivially follows applying Pa, to the left inequality. The
inverse implication follows observing that by II we have

Pu2yBANdxxx <P
in P(X x X x X x X). Applying P(; 5 ; 3) to the above inequality and III and I we obtain

Pu2yBAPR3ox <Pugp
in P(X x X x X). Applying P(; ; 9y we obtain that

PaunBAdx <8
in P(X x X). Hence, the statement follows since o < Pa , .
We now prove condition E2 in a similar way. The part of the adjunction
Jupgaa < B = a<Puy9p
for every a € P(X x Y)and 8 € P(X x Y x Y), trivially follows applying P; 5. The inverse
implication follows observing that by II we have
Pi23)B N dxxyxy < Pase8
iNnP(X xY xY x X xY xY). Applying P(; 531 2,4y and and III and I we obtain

Pi2,3)B8 APEaydy < Puogh
inP(X xY xY xY)and applying P(; 5 5 3y we obtain

Pi22)8APr3zdy <
in P(X x Y xY). Hence, the statement follows since o« < Py 22/3. O

Lemma A.0.4. Let P : €°P — InfSL be an elementary doctrine with full weak comprehension. Assuming
that for every X € € and a € P(X), the reindexings Py, over the comprehensions {af : C — X have left
adjoints, then for every 3 € P(X)

El{la[}Pﬂaﬂﬂ =B Aa. (A1)

Proof. (<) The adjuction property implies that 34, Py, 8 < Band that 3y, P} 8 < aisequivalent
to Py 8 < Pyqp, which is obvious since Py = Te.

(>) Let {a A B} : D — X be the comprehension of a A 5. Since v A 8 < « we have that there
exists an arrow h : D — C such that {af} o h = {a A S[}. By fullness of comprehensions, we can
equivalently prove that

Tp < Piang)3qapPiaps
which follows from the following computation:

Pgansh3gatPlap® = PrPiap3gapPiap (Fgap 7 Pap)
> PpPyoy B

= Pjangy 8
— Th.
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The following appear as [MR16, Lemma 2.9] and relates different notion of comprehensive di-
agonals.

Lemma A.0.5. Let P : €°P — InfSL be an elementary doctrine, the following are equivalent:
o cvery diagonal arrow Ax : X — X x X is a comprehension.
o Forevery Ain €, Ay is a comprehension of § 4.

e For every pair of arrows f,g : X — Ain €, then f = g if and only if

Tx < Prg(04).

The following appear as [MR13, Lemma 4.8]

Lemma A.0.6. (4.8 of [MR13]). Let P : €°P — InfSL be an elementary doctrine with full comprehensions
and comprehensive diagonals. An arrow f : A — B of € is a monomorphism if and only if

04 =Psysop.

We now prove that the base category of suitable elementary doctrines have pullbacks.

Lemma A.0.7. If P : €°P — InfSL is an elementary doctrine with weak (strict) comprehensions and
comprehensive diagonals then € has weak (strict) pullbacks.

Proof. Given two arrows f : X — Aand g : Y — A, we can consider a comprehension of the
element v := P, ;64 and the following diagram

C ,,,,,,,,:{I:yl,}g ,,,,,,, s Y
| D2

{7k XxY g
| V
X A

where {v[}; := p; o {y]} for i = 1,2. The diagram commutes thanks to comprehensive diagonals.
Indeed,

Pl 1), (a1782)) 04
= PypPrxgoa
=Py

and hence f{v[}1 = g{v}2- Ifu1 : U - X and uy : U — Y are two arrow such that fu; = gus
then Ty < Py, u,)7 and there exists an arrow h : U — C such that {y}h = (u1,uz). If the
comprehensions are strict there exists a unique h with such property. O
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Hence, the slices 4’/ A have weak finite products and it is always possible to assume that the
domain of a weak product is the domain of a comprehension. In particular, if P has strict compre-
hensions, then ¢’ /A has strict finite products for all A € 7.

Lemma A.0.8. Let P be an elementary doctrine with full weak (strict) comprehensions and comprehensive
diagonals. Then for every weak pullback diagram
o vy
g (A.2)

3
— '

>

— A
f
the arrow (p1,p2) : P — X x Y is a full weak (strict) comprehension of v := Py 40 A.

The following appear as [MR13, Proposition 4.6]

Proposition A.0.9. Let P : €°P — InfSL be an elementary doctrine with weak (strict) comprehensions and
comprehensive diagonals. For every pair f,g : X — A of arrows of €, the weak (strict) comprehension of
P (1,904 is a weak (strict) equalizer of f and g.

Proof. The argument is the same of Lemma A.0.7 for the comprehension of P< 7.9) dA. O

Corollary A.0.10. If P : €°? — InfSL is an elementary doctrine with full weak comprehensions and
comprehensive diagonals, then for every weak pullback diagram as in (A.2) it follows that

El(71’1,71'2>P<7'l'17ﬂ’2>/8 =pBA PfXg(SA

for every B € P(X xY).
Proof. 1t follows from Lemma A.0.8 and Lemma A.0.4. O

Corollary A.0.11. Let P be an elementary doctrine with full weak comprehensions and comprehensive diag-
onals. If P has right adjoints to all reindexings, then for every weak pullback diagram as in (A.2) it follows
that the functor Py 464 x (=) : P(X x Y) = P(X x Y') has a right adjoint given by

PfXg(SA - (_) = v<7T1,7|’2)P<7r1,71'2>(_)’
Proof. It follows from Remark 1.2.19 and Lemma A.0.8. O

Lemma A.0.12. Let P : €°P — InfSL be an existential elementary doctrine with full weak comprehensions
and comprehensive diagonals. Then for every weak pullback diagram

s
*2>Y

g

3
bt

— A

the left adjoints satisfy the Beck-Chevalley condition.
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Proof. If a € P(X), then the statement is obtained as follows:

PgIyar = Pg3p, (Pp,a APsxi1,04) (Remark 1.2.14)
= Ip2Praxg(Ppia APfx1,64) (B-C)
=3, (Ppia APfygda)
= Fpy i1, m2) Py o) P @ (Corollary A.0.10)
= 35,Pr .

O

Lemma A.0.13. Let P : €°P — InfSL be an universal and implicational elementary doctrine with full weak
comprehensions and comprehensive diagonals. Then for every weak pullback diagram

P2y

al s

XT>A

the right adjoints satisfy the Beck-Chevalley condition.

Proof. If a € P(X), then the statement is obtained as follows:

PoVia = PyVp,(Prx1,04 = Py a) (Remark 1.2.19)
= Vp,P14xg(Prx1,04 = Pp,a) (B-C)
:sz(PfXg(SA — Ppla)
= Vo V(rr1,72) P (1 0) Ppn @ (Corollary A.0.11)
=Vr,Pra.

OJ

We now want prove that the Beck-Chevalley condition holds on diagrams which are not weak
pullbacks restricting on suitable elements. Before that, we recall the description of comprehensions
and pullbacks of the elementary quotient completion of a suitable elementary doctrine.

Lemma A.0.14. (5.3 of [MR13]) If P : €°? — InfSL is an elementary doctrine with (full) weak com-
prehensions, then the elementary quotient completion P has (full) strict comprehensions and comprehensive
diagonals. In particular, if p is a P-eq. relation on the object X € ¢ and c : C — X is a weak comprehension
of a € Des,,, then

el + (CsPexep) = (X, p)
is a strict comprehension of o € P(X, p).

Corollary A.0.15. Let P : €°P — InfSL be an elementary doctrine with (full) weak comprehensions, and
let P be the its elementary quotient completion. If | f1: (X, p) — (Y,0) and |g] : (Z,¢) — (Y, 0) are two
arrows of €, then the following diagram

(Ca I:)c><cp X /J) 77777777777777777777 4 (Zv :LL)
1 Lel /
i \ o
[l (X x Z,pXRp) L]
I
(X, p) (Y,0)
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where ¢ := {|P ¢y« 401}, is a strict pullback.
Proof. 1t follows from Lemma A.0.7 and Lemma A.0.14. O

Lemma A.0.16. Let P : €°P — InfSL be an elementary doctrine with full weak comprehensions and com-
prehensive diagonals. Assume that P is existential and that in the following commutative diagram the right
and the outer diagrams are weak pullbacks

T2
!
7 2 3 Y
T
x Myx .4
f/

then, for every o € P(X')
P7r1 E|h1 Q= Eth P7r’1 o

and for every 3 € DESP () oy x 1 m9) 05 x

Phy3r B = 3n,Prs B.
Similarly, if P is universal and implicational, then for every o € P(X')
Pr Vh & = Vi, Prrox
and for every 3 € DESP (1 2y (1 79) OX XY

P Vi B = VP 5.

Proof. Since P has comprehensive diagonals, in ¢ the right and the outer diagrams below are pull-

backs.
[m2]

(Z/>P(ﬂﬁ,ﬂé)X(ﬂ’I,ﬂé)(SX’XY) 77“;27]7> (Zv P<7r1,7r2>><(7r1,7r2>6X><Y) W (Yv 5Y)

wﬂl bm thw

(X7, Gxr) —mmmmmmm L v (X, 6x) —T 4 (4,5)

L1
Since ¥ is regular (Proposition 1.3.6) the pasting law of pullbacks implies that also the left diagram
is a pullback. Hence, the statements follow from Lemmas A.0.12 and A.0.13. ]

Lemma A.0.17. Let P : €°P — InfSL be primary doctrine. Assume that P has left and right adjoints to all
reindexings. For every commutative diagram of the form

Z
dl
X

the left adjoints satisfies the Beck-Chevalley condition if and only if the right adjoints do.

.

:LT"<

—
!
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Proof. Suppose that the Beck-Chevalley condition holds for the left adjoints. We want to prove that
for every a € P(X)

PVia =VpPya.
The inequality < holds for every commutative diagram thanks to the adjunction P(_) 4 V). In

order to prove the opposite inequality, we observe the following equivalences which follow from
the adjoint conditions

ViPga < PyVia
4V Pya <Vyia
P;3,¥pPya < a.
By assumptions, the last inequality is equal to 3,/P VP, a. The statement follows from the ad-

junction conditions. The inverse statement is proved similarly. ]

Lemma A.0.18. Let P : €°P — InfSL be an elementary doctrine with full weak comprehensions and com-
prehensive diagonals and let f : X — Y be an arrow of €. If P is existential then

Pidra = a, (A3)
for every o € Desp ., s, If P is existential and universal then

PiVia =« (A4)
for every o € Desp, .5, -

Proof. A proof of this fact can be obtained applying the elementary quotient completion to P and
observing that the diagram

(X, Psxpdy) === (X,Pyysiy)

|- [

is a pullback diagram in ¢ since | f] is a monomorphism. Hence the statement follows applying
Lemma A.0.12. We now give a direct proof of the statements.
By adjunction, a < Py3;a. The opposite inequality is obtained as follows:

Pr3p(a) = Prap, (Ppa APrxiy sy ) (Remark 1.2.14)
= E|1172P1)<><f(|:)pla A Pfxlyéy) (B-C)
= E|p2(Pp104 A Pfxf(Sy)
< Elm Pp2a (a S Q)e.gpfxf(;y)
< a.

We now prove the second part of the statement. By adjunction, P;Vfa < a. The oppoite inequality
is obtained as follows:

PrVra =PVp,(Prxidy = Ppa) (Remark 1.2.19)
= VpoP1yxf (Pyxix 0y = Pp,a) (B-C)
= sz(Pfoéy — Ppla)

2 Vp, Ppycx (a € Desp, 6y )
> «.

O
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We now prove the equivalence of the elements in (2.30).

Lemma A.0.19. Let P : €°P — InfSL be an existential, universal and implicational elementary doctrine
with full weak comprehensions and comprehensive diagonals. Let x : X — Aandy : Y — A two arrows
such that o < Py, 04 and let y* : E — A be an extensional exponential of x and y w.r.t. . We consider
the following weak pullbacks

ey p e,y el
ﬂxw f’ wll Lu Mll lyx
X —— A Y — A *> A

with comprehensions {x[} : W — X x X, {c}} : V =Y xYand {\} : G — E X Eof x 1= Pzxz04,
L= Pyxydaand v := Pyuyys64. Wewill denoteby w : W — A, v:V — Aand g : G — A respectively
the common value of the two composites in the left, central and right above diagram. Moreover, we consider
the weak pullback

U {ule X K {xl2 U
ﬂul}{ l“ Mll u
E T A U-—— A

obtained through the comprehensions {uf} : U — E x X and {s[} : K — U x U of p := Pyexs0a
and k = Pyxyda, where u : U — A is the common value of the two composites of the left diagram and
k: K — Ais that of the right diagram. Now, given a weak product of y*, y* and x

T
I,y I

PN

e

y v
FE
A
obtained through the weak comprehension {7} : T — E x E x X of 7 := Pyayyexa(P12)04 AP23)04),

we will denote by t : T' — A the common value of the three composites of the above diagram. If u<—z—uw is a
weak product, then we will denote by

E X

(1,3,2,3)4:t > k (1,2)4:t—g
the two arrows induced by the obvious projections and by
exape:k—wv
the arrow induced by the weak evaluation e : uw — y. The following elements are equal:

€o = IV 1.24P 13234 PexacPpo
= v(l,S}((P(2,4>5X A P(1,2>,U A P<374),M) = Vﬂﬂp PeXeU) ANy (A5)
= Y013 V{2 (Pup2 (Pa.ayox APuayu APaay1) = Pexeo) Ay.
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Proof. Since e is a weak evaluation, it preserves projection w.r.t. o. This implies that

Pexeo € Q)eSP({]HDQX{]MI}Q)éExXxEXX‘

Hence, Lemma A.0.18 implies that

€0 = V(1,204 P1,3,2,3) 4 Pap Prup2 Viup2 Pexeo
= 3{]"/[}v<172)AP{]TDP(I,B,Z,?))V{[M[}Q PeXeU

= TP Y (12 PErt P 15,23 Vg2 Pexeo (Lemma A.0.18)
= Vi V(1,2) 4 P P(1,3,2.3) Vgup2 Pexed Ay (Lemma A.0.4)
= V1,3 V1,323 V4 Pirh P (13,23 Vqup2Pexeo Ay
=V1,3Y(1,3.23) (T = P1323)Vup2Pexeo) Ay (Remark 1.2.19)
=V13V(1,323P1323 PusyT = Vup2Pexeo) Ay ((1,3,2,3)(1,3,4) = 1pxpxx)
= V1,3 (Pay0x = (P3aT = Viup2Pexea)) Ay (Remark 1.2.19)
= V(1,3 (Pr2,4y0x AP134T) = Ygup2Pexed) Ay

The last formula is trivially equal to

V(1,3 (P2,4)0x AP oyt AP agyp) = Vyup2Pexeo) Ay =
V<1,3>Vﬂu[}2(P{]u|}2(P(2,4>5X A P<1’2>,u A P<374>M) = Pexeo') N7y



Appendix B

Type theory

In this chapter, we recall the basic constructs of the Martin-L&f intuitionistic type theory. We fix the
notation used in the previous chapters and define precisely the type theory assumed in this work.

Per Martin-Lof introduced the intuitionistic type theory (also known as dependent type theory)
as a logical framework to do constructive mathematics. Mathematical objects are always of a spec-
ified nature, which is expressed in type theory with the notion of element of certain type. We have
four type of judgment which are

x: X | X type ] r=y:X | X =Y type.

The first expression is read as "z is a term of type X" and resembles the usual inclusion relation
€ of set theory. The declaration of a type is given by the notation X type. However, we will often
omit the word type. The above equality symbols are often referred to as the judgmental equality. This
notion can be considered as "external” to the type theory, in opposition with the "internal" notion
of equality given by the identity types discussed below.

The main feature of intuitionistic type theory is the possibility to have type depending on other
types as in the expression

x:XF B(x) type

which means that B is a type depending on the elements of the type X. Dependent types allow us
the possibility to work with usual mathematical objects which are somehow indexed on elements
of another type. For instance, in N is the set of the natural numbers, we can consider for every n € N
the set of the divisors of n

n : N+ Div(n).

Dependent types make a clear distinction between the Martin-L&f intuitionistic type theory and
the simple type theory introduced in [WR97] and later in [Chu40] where dependencies where not
allowed. For every type, we assume to have a suitable list of variables of that type. A general context
is an expression of the form

Di=x1: X1, 20 Xo(z1) ooy s Xp(21, -+, Tp—1)

where z; are variables of type X; and every type X; depends on the types X1,...,X;_1. Every
judgment can appear in a suitable context which plays the role of the assumptions made in order
to have that judgment; in this case we write

r=T.

If the context in empty we would omit the symbol .
We now introduce the rules of the type theory which consist of expressions of the form

131
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H ... H,
C
where Hy, ..., H, arejudgments called hypothesis and C'is ajudgment called conclusion. A deriva-

tion is a tree of rules. The rules can be of two kind. We now list those rules which are called structural
rules and concern the calculus and not the logic of the system.

Rules for the judgmental equality. These rules ensure that judgmental equality of terms or types
is an equivalence relation.

TFz: X T'Fex=2:X FFx=2:X F'Fa2'=2":X
I'Fe=2:X T'Fa'=2:X Tte=2":X
I'X type X=X type '-X =X type I'-X' =X" type
X=X type X' =X type X =X" type

Rules for substitution. These rules govern the substitution of terms into other terms that may
appear also in a dependent type. Given a context

De: X, Ai=x1: X1,...,2,: Xo, T : X,Zpa1: Xnats - oo Tnam © Xnam

and ajudgment I,z : X, A - G, then if we have a term I' - ¢ : X we can substitute ¢ in place of the
occurrences of x and obtain a judgment G[t/x] in context I', A[t/z]

PFt:X  TDao:X,AFG
I, Aft/z] F Gt /]

For instance, in case of the judgment which declares a type
Dox: X,AF B(z1, ..oy Tny Ty Tt 1y e+, Tnm)  type
we obtain the rule

'Ht: X Iz: X,A+-B type
I Alt/z] F Blt/x] type

where
Alt/x] i =xpi1: Xnt1(z1, ooy xn, T t(X1, .oy 20)), - -
cosTpgm t Xnam (@1, oo Ty 81, oo T0)y Tty - -+ s Trbm—1)
and
Bt/x] := B(x1, ..y T, t(T1, -+ o, Tp), Ty - - Tnbm)-

Moreover, we require that the substitution of judgmentally equal terms in terms or types gives
judgmentally equal terms or types

'Ft=¢t:X I'z: X,A+b:B
T, Alt/z] F b(t) = b(t') : B[t/a]

Tht=¢:X T,z:X,AFB type
I, Alt/x] - B[t/z] = B[t'/x] type
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Weakening rule. This rule implies that we can expand the context of a judgment G with new
variables

'Fa: X I'AEFG
z: X,A+G

For instance, if A is a closed type, then A is also a type in any context I' - A.

Variable rule. This rule asserts that for any type X in the context I', the variable term = : X is a
term in the context I', z : X

I'-X type
I'e: XFax: X

As a consequence, this rule implies that in the syntactic categories considered in Chapters 1
and 3, there is an identity arrow for each closed type.

These four rules are the structural rules of the type theory. We now proceed with the logical
rules which concern the formation of particular types. For every type, we specify

o the formation rule: which tells how to form the type,

o the introduction rule: which tells how to introduce new terms of the type,

o the elimination rule: which tells how to use terms of the type,

o the computation rules: which tells how the introduction and elimination rules interact.

II-type. Given a type X and a dependent type x : X F B(x) we can build the type of functions
[[ B(z), from X to B. Intuitively, the elements of this new type are choice functions f which for
z: X

an element z : X pick an element f(x) : B(z). In set theory this type corresponds to the indexed
set families.

I'EX type Ix: X F B(x) type

I1-f ti
(II-formation) I [ Bz) type
z: X

Iz : X Fb(x): B(x)

IT-introducti
(I-introduction) = o " B ()
x: X

T-f:[[Bx) Tra:X
z: X

(II-elimination) 't f(a) : Bla/z]

Fz: XFbx): B FFa:X
I'F (Az.b(z))(a) = b(a) : Bla/x]

(IT-computation)

(B-rule)

L'+ f:J[B(z)

z: X

F'EXe.f(z)=f: l_)[(B(ac)

(II-computation) (n-rule)



134 APPENDIX B. TYPE THEORY

Moreover, the above rules must preserve the judgmental equality in the following way:

X=X type I'yz: X F B(z)=B(x) type

I+ I;I(B(x) = 1;[(/3’(:1:) type

and when 2’ : X is a fresh variable:

Iz: XF B(xz) type
'k J[B(z) = ]] B(z') type
r: X x/: X

Iz: X Fbx)=0(x): B(x)

I'FAx.b(z) = Azt (2) : ]_)[(B(x)

THf=f:[[Blx) Tra:X
z: X

I't f(a) = f'(a) : Bla/x]

—-type. When z : X - B is a type which does not depend on X, i.e. there are no occurrences of
z in B, the II-type [] B(x) is denoted with
x: X

X — B.

Intuitively, this is the type of the functions between X and a fixed codomain B.
We now recall that some types can be described in an equivalent formulation as inductive types.
This means that we specify

o the constructors of the type, that may be more than one or anyone,

o the induction principle: which explicates how to build a dependent type over the inductive
type,

o the computation rules.

In order to do that, we use the II-type. The two formulations are equivalent, and for the following
type formers, we will recall both the formulations.

Y-type. Given a type X and a dependent type = : X + B(x) we can form the type of the pairs
(x,b(x)) where b(x) : B(x) in the following way.

I'EX type Ix: X F B(x) type
' > B(z) type
z: X

(> -formation)

Mz : X Fbx): B(x) NFa:X

(> -introduction) Tk (a,b(a): 3. B
z: X
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I'Ht: S B(x) I'Ht: Y B(x)
z: X x: X

'k mo(t) : Blmi(t)/x] ' mo(t) : Blmi(t)/x]

(> -elimination)

Iz : X Fb(x): B(x) F'Fa:X

I'm(a,bla) =a:X prrule

(> -computation)

x: X Fbx): Bz NFa:X

T ma(a. b(a)) = bla) : Blaja] © T

r
(>--computation) —

Sometimes, we shall denote the first projection simply with =. The above rules must preserve
the judgmental equality as in the II-type. Equivalently, we can introduce the ) -type through the

constructor
(=) : [[B@) = > BE)).
z: X z: X
The induction principle asserts for every dependent type p : > B(z) F C(p) the existence of a term
z: X

nds: [] ] ¢xo)— [[ <o)
)

: Xy:B(z p:,z}:( B(x)

which satisfies the computation rule

Inds:(f, (z,v)) = f(z,v).

x-type. When z : X - B is a type which does not depend on X, i.e. there are no occurrences of =
in B, the X-type ) B(x) is denoted with
z: X

X x B.

Intuitively, this is the type of the pairs of elements of X and B. In set theory, this corresponds to the
product of two sets. Using the induction principle of the x-type we obtain the Currying operator

cr: (X = (Y = 2) = (X xY) = 2).

Th X abstraction provides also an inverse operator. Intuitively, this is a typical construction in type
theory which expresses multi-variable functions as functions of functions and vice versa.

+-type. Given two types X and Y in a common context, we can build the sum type X + Y. Intu-
itively, this type is the disjoint union of the types X and Y.

' X type 'Y type
'-X+Y type

(+-formation)

l'Fz: X '-X+Y type
F'Finl(z) : X +Y

(4-introduction)

I'ty:Y 'FX+Y type
Pkinr(y): X+Y

(+-introduction)
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(+-el.)

z: X+YFEC(2) type Iz: X Ed(x): C(inl(x)) Iyy:YEe(y): C(inr(y))
Iz: X+Y+tEIndi(z,d,e): C(z)

Fz: X+YHEC(2) type Iyz: X Fd(x): C(inl(x)) Fy:YEe(y): C(inr(y))

(+-comp.) T,z : X F Indy (inl(z), d, e) = d(z) : C(inl(z))

Fz: X+YEC(2) type Iyz: X Fd(x): C(inl(x)) Ly:YEe(y): C(inr(y))

(+-comp.) Iy : Y Findy(inr(y),d,e) = e(y) : C(inr(y))

The above rules must preserve the judgmental equality. Equivalently, we can introduce the +-
type X + Y of two types X and Y through the constructors

inl: X - X+4+Y
inr:Y - X+Y.

The induction principle asserts for every dependent type z : X +Y F C(z) the existence of a

term
Ind, : [JC(inl(x)) = [[Clinr(y)) = ] C(2)
z: X yY

z: X+Y

which satisfies the computation rules

Indi(d,e,inl(x)) = d(x)
Indy(d,e,inr(y)) = e(y).

Empty type. This is the type without elements, which plays the role of the false predicate in the
type system. This type corresponds to the empty set in set theory and will be denoted with 0.

0-f tion) ——
(0-formation) 0 type

'a:0 Mz: XFC(x) type
Iz: X Frola): Cx)

(0-elimination)

The empty type has no introduction or computation rule. The elimination rule implies that
from a term of the type 0 we can obtain a term of any type. This rule resembles the ex falso quodlibet
priciple. Equivalently, we can formulate the following induction principle for every dependent type

z:0F C(x)
Ind : HC’(ac)
z:0

Unit type. This type plays the role of the true predicate and it has just a canonical inhabitant. In
set theory, it corresponds to the one element set.

(1-formation) T pe

(1-introduction) 1
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Fa:1 z:1FC(z) type C'Eb:C(x)
'tk ri(a,b): C(a)

(1-elimination)

oy D21 C(z) type  THb:C(x)
1- tat
(1-computation) TEri(x,0) =b:C(x)

Equivalently, we can introduce the type 1 through the constructor
* 1 1.

The induction principle asserts that for every dependent type = : 1+ C(x) there exists a term of the
type
Ind; : C(x) = [[C()
z:1

which satisfies the computation rule
Ind1(p, z) = p.

Two elements type. This is the type with two canonical elements, also called the Booleans type. It
plays the role of the type of the two truth values true and false. In set theory, it corresponds to the
set with two elements.

(2-formation)

2 type
(2-introduction) 0,2 3
(2ely L2 Tow:2-Cl@) tpe THb:C0) Trb:C(y)
' T+ ra(a, b, by) : C(a)
(}mmp)Tw=2FC®)twe Thby:C02) Thbi:C(la)
I 73(02,b0,b1) = bo : C(02)
(mep)Fw=2FC@)twe Thby:C02) Thbi:C(la)

'+ 7’2(12, bo, bl) = bl N C(lg)
Equivalently, we can introduce the type 2 through the constructors
02 12 12 2 2.

The induction principle asserts that for every dependent type = : 2 = C(x) there exists a term of the
type

Indg : C(02) — (C(13) — HC(J«"))
x:2

which satisfies the computation rules

Inda(po, p1,02) = po
Ind2(po, p1,12) = p1.

Similarly, it is possible to define the type with arbitrary n elements. However, we stop at the case
two and proceed with the type of the natural numbers.
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Natural numbers type.

( N'formatlon) W

z: N
On:N succ(x) : N

(N-introduction)

(N-el) a:N z:NFC(x) type b:C(0N) z:Nyy:C(z) Fe(z,y) : C(succ(z))
' x:Nyjy:C(z) Fry(a,be(x,y)): Cla)
x:NFC(x) type b:C(0n) z:Nyjy:C(z)F e(z,y) : C(succ(x))
(N-comp.) x:Njy:C(z)Fry(On,b,e(z,y)) =b: C(0n)
(N-comp.) a:N z:NFC(x) type b:C(0n) z:Nyy:C(z) F e(z,y) : C(succ(z))

x:Nyy: C(z) F ry(succ(a), b, e(x,y)) = e(a,rn(a,b,e(x,y))) : C(succ(a))

Equivalently, we can introduce the type N through the constructors

Oy : N succ : N — N.

The induction principle asserts that for every dependent type = : N - C'(z) there exists a term
of the type

Indy : C(0n) = (J[C(2) = C(suce(n))) = [[C())
z:N z:N
which satisfies the computation rules

Ind N (po, s, On) = On
Indn (po, ps, succ(x)) = ps(z, Indy (po, ps, x)).

Identity type. This is the type of the system which internalizes the equality predicate.

I'EX type 'Fa:X 'Eb: X
I'ldx(a,b) type

(ld-form.)

I'X type 'a:X

ld-intro.
(Id-intro. ) = Tax (. a)

(ld-elimination)

Me: Xy: X,p:ldx(z,y) - C(z,y,p) type Iz X Fd(x): Cz,x,refl(x))
Doz X,y: X,p:ldx(z,y) - J(d(2),p) : C(z,y,p)

(Id-computation)

Doz: X,y: X,p:ldx(z,y) F C(z,y,p) type Dyz: X Fd(x): Clx,z,refl(x))
Dz : X EJ(d(x),refl(x)) = d(x) : C(x, x, refl(x))
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Equivalently, we can present the identity type of a type X through the constructor
refl, : ldx (z, x)

for every term = : X. The induction principle also called path-induction asserts that for any term
a : X and dependent type = : X, p : ldx(a,z) F C(x,p) there is a term of the type

pathind, : C(a,refl,) — H H C(z,p)
z: Xp:ldx (a,x)

which satisfies the computation rule
pathind, (p, a, refl,) = p.

The identity type we presented is called intensional and it is the one we considered for the results
obtained in this thesis. The identity type is called extensional if the following rule is assumed

z,y: XFop:ldx(z,vy)
T=y

(Reflection rule)

Universe. An element of this type is itself a type. The need of assuming a universe are several
and as shown by Smith in [Smi88], a universe is necessary in order to have a type theory in which
the Peano’s fourth axiom holds. There are two principal formulations, one a la Tarski and one a la
Russell. We start from the first one which assumes the existence of a dependent type 7 over the
universe.

(Z/{'formatlon) m
z:U
T(xz) type

(U-introduction)

The types of the universe U/ are called small types and if 7 () is a type, a dependent small type
on it is a term of

T(z) = U.
We now require that the small types are closed under the type constructors introduced so far.

o (Closure for II-type) There exists a function

0: [[(T@) »u)y~u
x:U
such that

T(M(x,0)) = ] T0w)).

y:T ()

o (Closure for X-type) There exists a function

S [T @) —»u) - u

z:U

such that

T(S(@,0) = Y Tbw)).

y:T ()
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o (Closure for +-type) There exists a function
F:U—= U—U)
such that )
T(+(x,y) =T(@) + T(y)-
e (Closure for 0,1,2 and N) There exist terms 0,, 1,, 2, and N,, of U such that
T0,) =0 T(1,)=1 T(2,)=2 T(Ny) =N.

o (Closure for identity type) There exists a function

HT )= U)

such that for every x1, x5 : 7 (z) it holds
T (z,z1,22)) = ld7(2) (21, 22).

The description a la Russell of the universe type is more informal and we simply write

. . X:U
(U-introduction) X type

without assuming the dependent type 7 and the superscript ~ in the type constructor preservation.
This notation could be unclear but it is more practical. When it does not create confusion we shall
adopt this notation for the small types.

Remark B.0.1. The type theory ML introduced in Chapter 1 is given by the rules we have listed
up to here.

Functional extensionality. This axiom assumes that, for every type X and dependent type z :
X F B(x) and for any pair of elements f, g : [[ B(x), there exists a function
x: X

funext : [ [Id( (f(2), g(x)) — ' 11 52) (> 9)-

x: X
Intuitively, the axiom expresses the property that to functions which have the same values are equal.
The opposite is always true thanks to an application of path induction.

Transport. This operation is a useful tool to connect elements of a dependent type. Given a type
z: X F B(z) and an element b(z) : B(X), we can transport this element into the fibers B(y) of the
element y such that there is a path p : Idx («, y). This is obtained through the path induction which
defines a term of

g: [ lx(z,9) = (B(z) = B(y)).

z,y: X
We will usually denote trz(p, b(x)) with p*(b) : B(y).
One may wonder if, for f : H B(z)and p : Idx(x,y), the two values f(x) and f(y) are provably

equal. Indeed they are. In order to do that, one first transports f(x) : B(x) along p, then compares
that term with f(y) in B(y) as path induction induces a term of

adpy(p) : ldp(y,) (p* f(2), f(y))
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Curry-Howard correspondence. We end this chapter summarizing the correspondence between
the logical objects and the type and set theoretic objects. The first two columns summarize the
Curry-Howard correspondence between logic and type theory.

Logic Type theory Set theory
X formula X type X set
B formula in context I' - B type {B,}er family of sets
a proof of X t: X reX
1 0 0
T 1 {x}
XANY X XY type X xY
XVY X +Y type XUy
X =Y X — Y type yX
(3x : X)B(x) Z%B(x) (UBa)aca
(Va s X)B(a) [1BG) (11 B.)
z:A acA
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