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The∞-topos Diff∞ of differentiable stacks, and its (ordinary) subcategory Diff∞≤0

of 0-truncated objects, the differential spaces, contain smooth manifolds as a full sub-

category and have excellent formal properties: In both settings there is an intrinsic

notion of underlying homotopy type of any object, as well as an intrinsic notion of

what it means for an internal hom space to have the correct homotopy type. Ex-

tending and modernising work by Cisinski on (∞-)toposes and cofinality, we develop

a suite of tools for constructing model structures and variants thereof in Diff∞≤0 and

Diff∞ which may be used to compare more classical constructions in geometric to-

pology – for instance for computing underlying homotopy types – to the canonical

constructions provided here, and thus to compare these classical notions with each

other. Moreover, these tools are developed in a way so as to be highly customisable,

with a view towards future applications.

These model structures moreover allow Diff∞≤0 and Diff∞ to adopt a second role

as a model for the theory of homotopy types. In this latter capacity Diff∞≤0 may

be favourably contrasted with quasi-topological spaces: Like the category of quasi-

topological spaces, Diff∞≤0 is Cartesian closed and circumvents the construction of

complicated topologies, but, additionally, we show that filtered colimits are homo-

topy colimits, and closed manifolds are compact in the categorical sense. This makes

Diff∞≤0 a useful replacement for quasi-topological spaces in applications of the sheaf

theoretic h-principle.
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1 Introduction

1.1 Background

A central theme in geometric topology is the interplay between smooth manifolds

and their underlying homotopy types. One might try to extract a homotopy type

from a smooth manifold in several ways, for instance by using smooth simplices or

by considering its underlying topological space; fortunately, one can check that the

resulting homotopy types agree due to a smooth approximation argument. This in-

terplay is important for example in the classification of smooth manifolds, as many

of the invariants that one assigns to them only depend on their underlying homotopy

type, yet their construction often makes crucial use of the presence of a differential

structure, such as is the case for de Rham cohomology or the Euler characteristic via

the Poincaré-Hopf theorem.

Given two manifolds, a more refined question than whether or not they are diffeo-

morphic, would be to ask for the totality of ways in which they are diffeomorphic,

i.e., one might want to understand the space of diffeomorphisms of a given manifold,

or more generally even, one might want to construct a space of all maps from one

manifold to another. Constructing such a space is delicate, as is the extraction of a

suitable underlying homotopy type from it. If one wishes for the space of maps to

have a smooth structure, then it is well known that one must venture beyond the

realm of finite dimensional smooth manifolds: for example, for any two manifoldsM ,

N with M closed, the set of maps Mfd∞(M,N) may be equipped with the struc-
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ture of an infinite dimensional Fréchet manifold (see [GG73, Th. 1.11]). Again, one

might attempt to calculate the underlying homotopy type of the Fréchet manifold

Mfd∞(M,N) using smooth simplices or by considering its underlying topological

space, or even the topological space of continuous maps from M to N endowed with

the compact-open topology; once more, these homotopy types turn out to be equival-

ent, but the smooth approximation arguments involved are harder. Also, note that

the above shows that if X and Y denote the underlying homotopy types of M and

N respectively, then the underlying homotopy type of Mfd∞(M,N) is equivalent to

the homotopy type of maps S(X, Y ).

Such issues abound in the theory invariant sheaves (a.k.a. continuous or equivari-

ant sheaves), a popular framework for studying the sheaf theoretic h-principle (see

[Aya09], [RW11], [Dot14], [Kup19]). Let Emb∞n denote the topological category

whose objects are the n-dimensional smooth manifolds, and where Emb∞n (M,N) is

the set of smooth embeddings ofM in N , equipped with, equivalently, the underlying

topology of the Fréchet manifold Emb∞n (M,N) or the C∞-compact-open topology.

Recall that a sheaf F on Emb∞n valued in topological spaces is invariant if the map

Emb∞n (M,N)× F (M)→ F (N) is continuous.

Fixing a smooth manifold N , the following are examples of invariant sheaves:

1. The sheaf Imm( , N) sending each manifold M to the space of immersions of

M in N .

2. The sheaf Emb( , N) sending each manifold M to the space of embeddings of

M in N .
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3. The sheaf Conf of configuration spaces sending any manifold M to the space

of finite subsets of M , topologised in such a way that points may “disappear

off to infinity” when M is open (See [RW11, §3]).

An invariant sheaf F is microflexible ([RW11, Def. 5.1]) if for

(i) any polyhedron K,

(ii) any manifold M ,

(iii) compact subsets A ⊆ B ⊆M , and

(iv) subsets U ⊆ V ⊆M containing A and B, respectively,

the lifting problem
{0} ×K F (V )

[0, ε] [0, 1]×K F (U)

(1)

admits a solution for some 0 < ε < 1, possibly after passing to a smaller pair U ⊆ V

containing A and B, respectively. Of the above examples 1. and 3. are microflexible,

while 2. is not.

A microflexible sheaf F satisfies the h-principle on any open manifold M , i.e. the

scanning map (see [Fra11, Lect. 17])

scan : F (M)→ Γ
(
Fr(TM)×On F (Rn)→M

)
(2)

is a homotopy equivalence (see [Fra11, Lect. 20]); the study of Γ
(
Fr(TM) ×On

F (Rn) → M
)
is often easier than that of F (M). This result relies crucially on
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the ability to simultaneously view F as a sheaf on the underlying ordinary category

of Emb∞n , but also as a homotopy-type-valued presheaf on the∞-category obtained

by replacing the mapping spaces in Emb∞n with their underlying homotopy types;

the microflexibility condition helps mediate between these two aspects of F by ex-

hibiting the sheaf condition as homotopically meaningful.

1.1.1 Summary of issues

Summarising the above discussion:

1. There are numerous subtleties involved in extracting homotopy types from

spaces considered in geometric topology.

2. It is difficult to construct suitable topologies on these spaces.

3. Many of these spaces in fact often appear to admit a smooth structure.

Moreover, the statement of the microflexibility condition would be cleaner if we were

able to replace the morphism F (V )→ F (U) in (1) with

colim
V⊇B

F (V )→ colim
U⊇A

F (U), (3)

but the colimits in (3) are pathological in two ways:

4. They may not retain any of the homotopical information of the spaces F (U).

5. The canonical map

colim
U⊇A

Hom(P, F (U))→ Hom(P, colim
U⊇A

F (U))
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may not be an isomorphism for any suitably compact space P .

Gromov indeed formulates the microflexibility condition using (3) in [Gro86, §1.4.2],

but takes the colimit in a variant of quasi-topological spaces (introduced by Spanier;

[Spa63]) rather than topological space with the intent of ensuring that 5. holds (as

explained in [Gro86, §1.4.1]).

The construction of the scanning map in (2) involves carefully choosing and then

modifying an exponential function exp : TM → M (see [RW11, §6]). In order to

obtain a scanning map which works for any exponential function, Ayala constructs a

variant of the associated bundle (2) using the stalk colimδ>0 F
(
B̊n

δ(0)
)
rather than

F (Rn) (see [Aya09, p. 19]). Like Gromov, Ayala takes the colimit in a variant of

quasi-topological spaces. During a scenic drive through the outskirts of Bozeman,

Montana, Ayala explained to us that this was to ensure that the colimit is a homotopy

colimit (thus addressing 4.), and kindly invited us to think about the example below.

To our deep-seated consternation, we discovered that we had, in fact, been provided

with a counterexample to Ayala’s claim!

Example 1.1.1. For each δ > 0 the space Conf
(
B̊n
δ (0)

)
is weakly equivalent to

Sn. In Ayala’s variant of quasi-topological spaces the colimit is equivalent to the

Sierpinski space, which is contractible. In other variants of quasi-topological spaces

one still obtains a contractible two-point space. y

The issues with Gromov’s formulation of microflexibility are often fixed using

the formulation in (1). Using the more traditional scanning map (2), it might be

possible to recover the results in [Aya09], but at the cost of a considerable increase
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in technicality.

In the following section we introduce and discuss differentiable stacks and spaces.

These address issues 1.-5. mentioned above, as well as issues 6. & 7. which we come

across below. Moreover, replacing quasi-topological spaces with differentiable spaces

would allow for Gromov’s formulation of microflexibility and the sheaf theoretic h-

principle, and we believe that this would also make Ayala’s arguments work as written

in [Aya09].

Differentiable spaces have already been used as a replacement for (quasi-)topological

spaces to solve geometric topological problems in [GTMW09] and [Kup19].

1.2 Differentiable stacks and spaces

Let Cart∞ be the category consisting of the spaces Rn (0 ≤ n < ∞) and smooth

maps between them, then Diff∞ is the category of homotopy-type-valued sheaves

on Cart∞ w.r.t. the usual Grothendieck topology. Objects in Diff∞ are called dif-

ferentiable stacks , and objects in the 0-truncation Diff∞≤0 of Diff∞ are called

differentiable spaces . Observe that the restricted Yoneda embedding exhibits the

category of smooth manifolds as a full subcategory of Diff∞≤0.

Cisinski constructs a model structure on Diff∞≤0 ([Cis03, §6.1]) modelling the theory

of homotopy types, whose weak equivalences are maps inducing isomorphisms on

cohomology of locally constant sheaves, and whose cofibrations are monomorphisms.

Working with Diff∞≤0 tautologically addresses 3., and also addresses 2., as it is gen-

erally easier to define smooth maps into an object than to define a topology. It is

possible to deduce from Cisinski’s theory that filtered colimits are homotopy colim-
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its, thus addressing 4., but we will recover this statement using a simpler argument

in §1.2.1. The availability of continuous (in fact smooth) maps Emb∞n (M,N) ×

F (M) → F (N) often follows formally from some Cartesian closedness argument.

Our first contribution in this thesis addresses issue 5.

Theorem A. Closed manifolds are compact in the categorical sense in Diff∞≤0.

Unfortunately, we are unaware of any explicit characterisation of the fibrations in

Cisinski’s model structure, making it hard to compute homotopy limits. Moreover,

the works [GTMW09] and [Kup19], cited above, use the nerve construction determ-

ined by

A• : ∆ → Cart∞

∆n 7→
{

(x0, . . . , xn) ∈ Rn+1 x0 + · · ·+ xn = 1

}

to extract underlying homotopy types, and to define weak equivalences, called con-

cordance equivalences, which, a priori, are different from Cisinski’s weak equivalences,

raising new questions about issue 1., considered in §1.1.1. In [GTMW09] it is fur-

thermore shown that for any manifold M and any differentiable space F , viewed as

a sheaf on the category of manifolds, the canonical map

π0(F (M ×A•))→ π0SSet(M(A•), F (A•))

is a bijection, which echoes the discussion in §1.1 on extracting homotopy types of

mapping spaces.

Thus, there arise renewed questions about 1. of §1.1.1, as well as two more issues:
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6. Having extracted homotopy types from two differentiable stacks X and Y in

some suitable manner, how does one calculate their mapping space in terms of

smooth maps X → Y .

7. How does one calculate homotopy limits in Diff∞≤0 and Diff∞?

In our thesis we continue the development of Cisinski’s theory using ∞-categorical

tools, to address these remaining issues, and in order to provide a navigable theory

with a view towards applications in geometric topology and related fields.

Remark 1.2.1. The category Diff∞≤0 contains the diffeological spaces (§5.2), as a full

subcategory. These are differentiable spaces which may be characterised as an under-

lying set together with extra structure. This makes working with them more similar

to working with manifolds or topological spaces. One may wonder whether the cat-

egory of diffeological spaces has the same good properties as Diff∞≤0. Unfortunately,

diffeological spaces suffer from many of the same defects as those of quasi-topological

spaces discussed in §1.1.1. This extension from sets with structure to sheaves is part

of a wider trend, as can be seen for instance with condensed/pyknotic sets and

spaces ([Sch19], [BH19]), another replacement for topological spaces and which are

the object of intense study. y

1.2.1 Moving Diff∞≤0 to Diff∞

Working in Diff∞ both simplifies and illuminates the theory.

Let X be an ∞-topos, and denote by π : X → S the unique geometric morphism

to the ∞-topos of homotopy types, then X is locally ∞-connected if the constant
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sheaf functor X← S : π∗ admits a left adjoint π! : X→ S ([Hoy18, Def. 3.2], [Lur17,

Prop. A.1.8]). In this case, π! : X→ S/π!1 admits a fully faithful right adjoint, exhib-

iting S/π!1 as a localisation of X ([Lur17, Prop. A.1.11]). For any object X in X the

homotopy type π!X is the shape of X ([Lur17, Rmk. A.1.10]). A morphism X → Y

in X is a shape equivalence if π!X → π!Y is an equivalence. Shapes offer a canon-

ical notion of underlying homotopy type to which other notions may be compared.

A careful reading of [Cis03, §5] reveals that the weak equivalences in Cisinski’s model

structure are precisely the shape equivalences (defined by restricting π! : Diff∞ → S

to Diff∞≤0). We prove that the inclusion X≤0 ↪→ X preserves filtered colimits and

pushouts along monomorphisms (see §3.3.2). As π! is a left adjoint, it commutes

with colimits, so that one recovers in Diff∞ the homotopy colimits made available

by Cisinski’s model structure.

The fact that the spaces Rn have contractible shape (see §1.2.3) may be used to

show that Diff∞ is locally ∞-connected, exhibiting S as a localisation of Diff∞.

The embedding Diff∞ ↪→ Hom((Cart∞)op, S) preserves shapes and detects shape

equivalences. The shape of any presheaf is given by its colimit, and the functor

A• : ∆→ Cart∞ is initial, so that concordance equivalences and shape equivalences

agree. Moreover, Cart∞ is a test category (Theorem 6.1.1) which implies the sur-

prising fact that the restriction of π! to a functor Diff∞≤0 → S is still a localisation.

We have made progress resolving issue 1., but we are still left with issues 6. and 7.
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1.2.2 Fibrations in Diff∞ and formally cofibrant differentiable stacks

The fact that Cart∞ is sifted ([Lur09, Def. 5.5.8.1]) implies that the shape functor

of Diff∞ preserves finite products (see [Lur09, Prop. 5.5.8.11]), so that for any two

differentiable stacks A,X there exists a comparison morphism

π!Diff∞(A,X)→ S(π!A, π!X). (4)

We say that A is formally cofibrant if (4) is an equivalence for all differentiable

stacks X. Not all differentiable stacks are formally cofibrant, as is the case, for ex-

ample, for the real line with two origins. The problems of characterising formally

cofibrant stacks and calculating homotopy pullbacks are closely related.

Functors such as A• : ∆ → Diff∞≤0 may be used to transfer model structures (in

this case from Hom(∆op, S) or Hom(∆op,Set) to Diff∞ or Diff∞≤0 respectively (see

Proposition 3.4.4). Ideally, one could use this method to construct model structures

which are Cartesian, and in which all objects are fibrant, so that cofibrant objects

are formally cofibrant. Faced with a similar problem of constructing a model struc-

ture on the category of diffeological spaces, Kihara constructs a new diffeology on

the standard simplices ([Kih19, § 1.2]) for which the horn inclusions admit a retract

([Kih19, § 8]). The inclusion ∆→ Diff∞ of these simplices into diffeological spaces

produces a model structure in which all objects are fibrant (see Proposition 6.2.3),

however, it is not Cartesian (see Proposition 6.2.7).

Fortunately, formally cofibrant stacks are closed under cell-attachment along bound-

ary inclusions of Kihara’s simplices, because for any differentiable stack X and any
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n ≥ 0 pullbacks along the maps X∆n → X∂∆n are homotopy pullbacks. To show this

we define a diagram → Pro(Diff∞) indexed by the cube category (see Definition

6.3.9) which produces a fibration structure (rather than a full model structure) in

which the mapsX∆n → X∂∆n are fibrations (see Theorem 6.3.19). Formal cofibrancy

is stable under R-homotopy equivalence, allowing us to recover the main theorem of

[BEBP19] (see Corollary 6.4.8).

Theorem B. Paracompact Hausdorff smooth manifolds are locally cofibrant.

These techniques serve as a paradigm of how it is possible to use the ambient

theory developed in our thesis to construct and mix various homotopical calculi

tailored to various applications.

1.2.3 Diff∞ as a fractured topos

Denote by Cart∞ét the subcategory of Cart∞ containing only the open embeddings,

then Diff∞ét is the ∞-topos of sheaves of homotopy types on Cart∞ét . Objects in

Diff∞ét are called étale differentiable stacks , and the objects of Diff∞≤0,ét are the

étale differentiable spaces . The inclusion Diff∞ét → Diff∞ forms the structure

of a fractured topos (see §4), and may be shown to be shape preserving. The shape

of Rn in Diff∞ét is the same as its shape in the category of sheaves on Rn, as a

topological space, which by [Lur17, Lms. A.2.2 & A.2.9] is contractible; a fact which

is used in §1.2.1.

The ∞-category Diff∞ admits an obvious continuous analogue Diff0. The forgetful

functor Diff∞ → Diff0 sends any smooth manifold to its underlying topological

manifold, yielding the following contribution to addressing issue 1.

11



Theorem C. The shape of any smooth manifold is equivalent to the shape of its

underlying topological manifold.

Repeating the process in §1.2.1 we then see that the shape of a topological man-

ifold is given by its total singular complex. Note, that our proof entirely avoids the

approximation of continuous maps by smooth ones.

1.2.4 A sample application

It is a commonly invoked fact that the quotient map of a topological principal bundle

is a homotopy quotient map. However, the only proof of this that we are aware of,

[May75, Thm. 7.6], is very technical and not well known.

Let E → B be a principal G-bundle, which without loss of generality may be assumed

to be ∆-generated ([Dug03]); such spaces form a full subcategory of Diff0
≤0. It is

then straightforward to prove that the quotient of E by G in Diff0 coincides with

B, so that the given quotient indeed has the correct shape (see Theorem 8.2.6).

1.3 Leitfaden and some remarks on the exposition

The following diagram indicates the logical dependencies of the different sections in

this thesis.

12



§2 Localisation and

homotopical algebra

§4 Fractured toposes
§3 Cofinality, shapes,

and test toposes

§5 Basic definitions
§7 Compact manifolds

are compact

§6 Homotopical algebra of

smooth stacks and spaces

§8 Change or regularity

and concreteness

One of the central themes of this thesis concerns the extraction of underlying

homotopy types of objects in a (∞-)topos, leading to notions of weak equivalences

in any (∞-)toposes. Section 2 lays the theoretical foundation for speaking about

localisation, which we rely on in the sequel. Given a geometric morphism X → Y

between (∞-)toposes we need a good understanding of cofinality in order to compare

underlying homotopy types in X and Y; this is the subject of §3. In §5 we introduce

13



the central characters in this thesis, the ∞-topos Diff∞ of differential stacks, and

its ordinary subcategory Diff∞≤0 of differentiable spaces. The ∞-topos Diff∞ may

be endowed with additional structure, turning it into a fractured ∞-topos ; fractured

∞-toposes are the subject of §4. Exhibiting Diff∞ as a fractured ∞-topos in §6.1

is the first step in showing that we may apply to Diff∞ the theory developed in

§2 & §3. In §6.3 we construct the squishy fibration structure, which we use in §6.4

to show that simplicial complexes built using Kihara’s simplices – discussed in §6.2

– and moreover smooth manifolds are formally cofibrant (see Definition 6.0.1). In

§7 we show that closed manifolds and special intervals are categorically compact.

This section is essentially independent from the other sections. One exception is of

course that §7 makes use of the definitions introduced in §6.1. The other is in the

construction (in a non-essential way; see Remark 6.3.22) in the proof of the existence

of the squishy fibration structure. Finally, in §8 we examine how the shape of a

differentiable stack is affected by either decreasing its regularity, i.e. turning it into a

continuous stack, or increasing its concreteness, by e.g. turning it into a diffeological

space, leading to the proof of Theorem C.

We also summarise some of the most important conventions adopted in this thesis.

For a detailed account of our conventions, see .

• Following the widely adopted precedent set by Lurie we will refer to quasi-

categories as ∞-categories.

• An ∞-category is however still, strictly speaking, a simplicial set, and thus we

will often speak of maps from a simplicial set to an ∞-category, etc.

14



• For any small category A we adopt the “French” tradition of denoting the

ordinary category of presheaves on a small category A by Â. So the category

of simplicial sets is then denoted by ∆̂.

15



Part I

Foundations

2 Localisation and homotopical algebra

Throughout this section (C,W ) denotes a relative ∞-category , i.e. an∞-category

C together with a subcategory containing all equivalences. It is then natural to study

the relationship between C and its localisation W−1C; in particular, one may ask

which limits in W−1C may be obtained via constructions in C.

Definition 2.0.1. Let K be a simplicial set, then a functor p : K� → C is called

a homotopy limit of p|K : K → C if the composition of K� → C → W−1C is a

limit of the composition of K
p|K−−→ C → W−1C. A functor K� → C is a homotopy

colimit if (K�)op → Cop is a homotopy limit. y

Beginning with the simplest case of a homotopy (co)limit we recall that the

localisation functor γ : C → W−1C is both initial and final (see Proposition 3.1.3),

so that if x0 is an initial or final object of C, then γ(x0) is an initial or final object

of W−1C. Thus, if C has final objects, then W−1C admits all limits iff it admits all

pullbacks. The theory that follows is well suited to studying this question.

Definition 2.0.2. A morphism x′ → x in C is sharp if for every morphism b → x

16



and every weak equivalence a ∼−→ b there exists a diagram

a′ b′ x′

a b x

in which all squares are pullbacks and such that a′ → b′ is a weak equivalence. y

Definition 2.0.3. An object x in C is called right proper if the natural functor

W−1
/x C/x → (W−1C)/x is an equivalence. The relative category (C,W ) is called right

proper if all objects in C are right proper. y

Remark 2.0.4. A model category is right proper in the usual sense iff its underlying

relative category is right proper. This may be seen by combining [Rez02, Prop. 2.7]

with [Cis19, Cor. 7.6.13]1. y

Proposition 2.0.5. Let f : x′ → x be a sharp morphism in C between right proper

objects, then any pullback along f : x′ → x is a homotopy pullback.

Proof. By the sharpness assumption the functor C/x′ ← C/x : f ∗ preserves weak

equivalences, so that [Cis19, Prop. 7.1.14] yields, canonically a commutative diagram

C/x′ C/x

W−1C/x′ W−1C/x

f!

f∗

f!

f∗

a
a

1Rezk’s proof of [Rez02, Prop. 2.7] can be interpreted verbatim in model ∞-categories, so that
the remark is in fact true for model ∞-categories.
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The pullback of any morphism y → x along f in C thus yields the pullback of y → x

along f in W−1C.

Structures similar to the one in the following condition were first considered in

the 1-categorical setting by [And78].

Definition 2.0.6. Assume that C admits a final object, then a fibration structure

on C consists of a subcategory F ⊆ C, such that W and F satisfy the following

conditions:

(a) F contains all equivalences in C.

(b) W satisfies the 2-out-of-3 property.

The morphisms in W , F , and F ∩W are called weak equivalences, fibrations, and

trivial fibrations respectively. An object x for which some (and therefore any) morph-

ism to a final object of C is a fibration is called fibrant. Furthermore:

(c) In any diagram
x′

y x

f

such that x, x′, y are fibrant, and such that f is either a fibration, or trivial

fibration, the pullback exists and is again a fibration of trivial fibration, re-

spectively.

(d) Any morphism x → y where y is fibrant admits a factorisation x → x′ → y

such that x′ → x′ is a weak equivalence, and x′ → y is a fibration.
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An ∞-category equipped with a fibration structure is called a fibration cat-

egory . y

Proposition 2.0.7 ([Cis19, Thm. 7.5.18 & Cor. 7.6.13]). In a fibration category any

fibrant object is right proper, and any fibration between fibrant objects is sharp.

Remark 2.0.8. The above result requires a lot of bootstrapping (from the point of

view presented here). In particular, the proof requires the fact (established by inde-

pendent means) that pullbacks along fibrations between fibrant objects are homotopy

pullbacks. y

Remark 2.0.9. Often, one of the most important consequences of the existence of

a fibration structure is the fact that the localisation is finitely complete ([Cis19,

Th. 7.5.18]). In this work the homotopy category will always be S, so this aspect is

not relevant here. y

In a fibration category the map from any fibrant object to the terminal object is

sharp, and thus finite products of fibrant objects are homotopy products.

Proposition 2.0.10 ([Cis19, Prop. 7.7.4]). If arbitrary products preserve fibrant ob-

jects and trivial fibrations between fibrant products, then arbitrary products of fibrant

objects are homotopy products.

Example 2.0.11. The classes of weak equivalences and fibrations of any ∞-model

category (see [MG14]) form a fibration structure, which moreover satisfies the con-

dition of Proposition 2.0.10 if it admits all limits. y

A model structure may be viewed as a fibration structure together with the dual

notion of cofibration structure stitched together in a compatible way, or, conversely,
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a fibration structure may be viewed as “half” a model structure. In the relative

∞-categories considered in this thesis homotopy colimits can be constructed more

efficiently by means other than cofibration structures (see §3.3.2). Dually, calculating

homotopy limits is hard, which is why we concentrate on identifying sharp maps,

using fibration structures. This does not mean that we can dispense with model

structures altogether. All (trivial) fibrations considered in this thesis are obtained as

morphisms satisfying the right lifting property against sets of (trivial) cofibrations;

these latter morphisms will also be used to construct what we call formally cofibrant

objects (see §6.4), which have similar good formal properties as those enjoyed by

cofibrant objects in a model ∞-category.

Remark 2.0.12. Model categories and ∞-categories are frequently viewed as provid-

ing competing foundations for homotopy theory (see [MO78400]). In reality, the ax-

ioms for model categories can be interpreted without difficulty for all ∞-categories,

not just ordinary categories, and model structures constitute tools for studying local-

isation. Any∞-category may be obtained as the localisation of an ordinary category

(see [Cis19, Prop. 7.3.15], [BK12]), and any presentable ∞-category may be ob-

tained as the localisation of a combinatorial simplicial model category (see [Lur09,

Prop. A.3.7.6] & [Lur17, Thm. 1.3.4.20] & [Cis19, Thm. 7.5.18]). Before the work

of Joyal, Simpson, Toén, Rezk, Lurie and many others it was simply not practical

to present a given ∞-category in any other way than as a relative ordinary category

(or a simplicially enriched category). Thus, nowadays, one has a choice of whether

one wishes to work in a given ∞-category C, or whether one wishes to view C as

the localisation of some other (∞-)category D. The optimal choice of D does not
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necessarily have to be an ordinary category; Mazel-Gee developed the theory model

∞-categories precisely in order to generalise the Goerss-Hopkins obstruction theorem

(see [MG16]), and as we show in discussing differentiable stacks in our thesis. y
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3 Cofinality, shapes, and test toposes

Every locally ∞-connected ∞-topos X (see Definition 3.3.4) comes equipped with a

canonical functor π! : X→ S, assigning to each object in X its shape, which provides

a canonical notion of underlying homotopy type or fundamental ∞-groupoid, (see

Definition 3.3.1). In this section we establish the necessary background in order to

determine when π!|X≤n : X≤n → Sπ!1X
is a localisation (§3.3), and how to construct

interesting homotopical calculi on X when this is the case (§3.4). The key example

where this is possible is that of a test topos (see Definition 3.3.27), due to Cisinski.

A test topos is a topos E which is locally contractible (see Definition 3.3.16), and in

which there is an ample supply of monomorphisms. The construction of homotopical

calculi on test toposes is achieved by comparing them to presheaf categories on test

categories, which are introduced in §3.2. The theory of test categories as well as the

comparison rely heavily on notions of cofinality, which we study in §3.1.

The first two subsections of §3 make heavy use of the correspondence between (left)

right fibrations and (co)presheaves, which we now briefly recall. For any small sim-

plicial set A there exist two model structures on ∆̂/A, the covariant and contrav-

ariant model structures , which model, respectively, the theory of left and right

fibrations over A (see [Cis19, Thms. 4.1.5 & 4.4.14]), uniquely determined by having

as fibrant objects, respectively, the left fibrations and the right fibrations. The weak

equivalences are called covariant and contravariant equivalences , respectively.

If A = ∆0, then the two model structure coincide with the Kan-Quillen model struc-

ture, and a left or right fibration over the point is precisely a Kan complex. In this
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case we refer to the weak equivalences as homotopical equivalences .

For any map u : A→ B between small simplicial sets we obtain the upper adjunction

in the following diagram

∆̂/A ∆̂/B

Hom(Aop, S) Hom(Bop, S)

u!

u∗

u!

u∗

a
a

where u! is given by composing with u and u∗ is given by pullback; taking derived

functors we obtain the lower adjunction together with (specified) natural transforma-

tions, compatible with the adjunction data making the whole diagram commute (see

[Cis19, Thm. 7.5.30]) up to homotopy. The lower left adjoint is given by Kan ex-

tension, and the lower right adjoint is given by precomposition. Consider a presheaf

X : Aop → S, and denote by A/X its associated right fibration2, then u!X may be

obtained by taking a fibrant replacement of the composition A/X → A → B, and

then choosing a presheaf Bop → S which classifies the resulting right fibration.

In the co(ntra)variant model structure over a point, the fibrant replacement may be

given by the Ex∞-functor. Let X be a simplicial set, then X → Ex∞X exhibits the

localisation of X by all its 1-simplices. (Observe that the Ex∞ itself is the colimit of

the functors Exn, which adjoin longer and longer zigzags of 1-simplices to X.) We

shall denote any fibrant replacement of a simplicial set X in the Kan-Quillen model

structure by X'. For u : A → ∆0 the Kan extension along u coincides with the
2Thanks to the functorial Yoneda lemma ([Cis19, Th. 5.8.13]) the right fibration A/X can,

of course, literally be taken to be the pullback of Hom(Aop, S)/X along the Yoneda embedding
h : A ↪→ Hom(Aop, S).
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colimit functor. Thus for any map X → A, the colimit of the presheaf corresponding

to X is just X'. In particular, one sees that the colimit of the constant presheaf on

A with values in 1 produces the homotopy type A'.

3.1 Cofinality

Cofinality plays a fundamental role in category theory and appears in many different

guises. Final functors were first introduced as functors which interact well with

colimits in [SGA4I, §1.8.1] and this is the aspect which is most well known. In this

subsection we give some equivalent characterisations of final functors, before moving

on to test categories and test toposes in the following two subsections.

Proposition 3.1.1. Let A→ B be a morphism of simplicial sets, then the following

are equivalent;

(I) For any ∞-category C and any morphism f : B → C, the colimit of f exists iff

the colimit of f ◦ u exists, in which case the canonical morphism colim f ◦ u→

colimu is an equivalence.

(II) For any functor f : B → S the canonical morphism colim f ◦u→ colimu is an

equivalence3.

(III) For any left fibration X → B the induced map A ×B X → X is a weak equi-

valence in the Kan-Quillen model structure.

(IV) For any simplex b ∈ B0 the induced map Ab/ → Bb/ is a weak equivalence in

the Kan-Quillen model structure.
3Here S is constructed using a universe w.r.t. which A and B are small.
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Definition 3.1.2. A map A→ B of simplicial sets satisfying equivalent conditions

of Proposition 3.1.1 is called final , and initial if Aop → Bop is final. y

One of the main advantages of characterisation (IV) of finality is that when A and

B are both ordinary categories, then this characterisation involves only categories,

despite being an ∞-categorical notion.

We used the following example in the preceding section.

Proposition 3.1.3. Any localisation is both final and initial.

Proof. Let (C,W ) be a relative∞-category, and denote by γ : C → L its localisation.

As Lop is the localisation of Cop it is enough to show that C → L is initial. By

the universal property of localisations the map γ∗ : Hom(L, S)→ Hom(C, S) is fully

faithful so that for any functor f : L→ S the counit map γ!γ
∗f → f is an equivalence.

I.e., f is the left Kan extension of γ∗f , so that they have the same colimit.

Let A be a small simplicial set, and denote by e the constant presheaf on A with

value 1, then the colimit functor colim : Hom(Aop, S)→ S factors as

Hom(Aop, S) ' Hom(Aop, S)/e → S/ colim e ' S/A' → S.

The functor colim : Hom(Aop, S) → S/A' admits a fully faithful right adjoint (see

Proposition 3.3.7), which can be shown to be given by the inclusion Hom(Aop
' , S) ↪→

Hom(Aop, S). Presheaves in the essential image of this inclusion are the locally

constant presheaves . A map of presheaves X → Y such that colimX → colimY
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is an equivalence is called a locally constant weak equivalence . The next two

sections are concerned with the study of variants of the localisation of Hom(Aop, S)

along locally constant weak equivalences.

3.2 Test categories

The main ideas discussed in this subsection are essentially all due to Grothendieck,

and were first outlined in [Gro83]. A systematic account of Grothendieck’s theory

is given by Maltsiniotis in [Mal05]. The theory of test categories, and in particular

its model categorical aspects, are further developed in [Cis06]. The theory of test

toposes is developed in [Cis03].

Given a small simplicial set A, we have shown how Hom(Aop, S) models the ∞-

category S/A' in the sense that there is a localisation functor Hom(Aop, S) → S/A' .

In the special case A = ∆ something rather remarkable happens. The restriction

of Hom(∆op, S) → S/∆'
∼−→ S to ∆̂ → S is still a localisation. As the construction

of the model category of simplicial sets is quite involved, one might expect this

phenomenon to be particular to ∆, but it turns out to be surprisingly common.

The starting point for understanding the above phenomenon is the following fact,

discussed in the beginning of §3: The classifying space of an ∞-category is nothing

but the homotopy type obtained by inverting all its arrows. The classifying space

construction is furthermore left adjoint of the inclusion of homotopy types into ∞-

categories. Again, surprisingly, and paralleling the situation for Hom(∆op, S), the

restriction of the classifying space functor to ordinary categories exhibits S as a

localisation of C, and since C is a localisation of Cat, the ∞-category S is likewise a
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localisation of Cat.

Cat C Q S
( )'

a

This fact has been known in essence since [Ill72, Cor. 3.3.1] (specifically, the fact

that the category of elements of a simplicial set encodes the same homotopy type

as the simplicial set itself is shown in [Ill72, Th. 3.3.ii]. Illusie attributes the ideas

presented in [Ill72, §3.3] to Quillen; see also [Qui73]). The relative category Cat can

be shown to be right proper, by exhibiting a right proper model structure on Cat

by right transferring the Kan-Quillen model structure (which is right proper) along

the functor Ex2 ◦ N : Cat → ∆̂ (see [Tho80]). Thus for any small category A the

category Cat/A is a model for S/A' .

It is then natural to try to identify ordinary categories other than A for which Â

canonically models S/A' . Local test categories are precisely such categories, and

their characterisations make it feasable to find examples thereof. In a first instance

we will focus on the special case when A' = ∗. In this case the the colimit functor

colim : Hom(Aop, S) → S factors as Hom(Aop, S)
∫
−→ Q

( )'−−−→ S, which restricts to

Â
∫
−→ Cat

( )'−−−→ S. Thus a map X → Y of set-valued presheaves on any small

ordinary category A is a locally constant weak equivalence iff the map A/X → A/Y

induces an equivalence on classifying spaces. The functor

∫
: Â → Cat

X 7→ A/X
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admits a right adjoint NA : C 7→ (a 7→ Hom(A/a, C)). The functor
∫

models the

left adjoint of the adjunction colim : Hom(Aop, S) S⊥ . One may then ask

whether this adjunction lifts to a homotopically meaningful adjunction on the level

of small categories.

Definition 3.2.1. A small category A is called

1. a weak test category if A' ' 1, and if NA sends homotopical equivalences

to locally constant equivalences;

2. a local test category if A/a is a weak test category for every object a in A;

3. a test category , if A is a local test category, and its classifying space is

contractible;

4. a strict test category if it is test category, and if it is sifted4.

y

Lemma 3.2.2. Let A be a small category, then for any small category C and any

object c in C the canonical functor
∫
NAC/c →

(∫
NAC

)
/c

is an equivalence.

Proposition 3.2.3 ([Mal05, Prop. 1.3.9]). Let A be a small ordinary category, then

the following are equivalent:

(I) A is a weak test category.

(II) The counit
∫
NAC → C is a homotopical equivalence for all ordinary small

categories C.
4An ∞-category is sifted if its diagonal map is initial.
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(III) The counit
∫
NAC → C is a homotopical equivalence for all ordinary small

categories C such that C' ' 1.

(IV) The counit
∫
NAC → C is a homotopical equivalence for all ordinary small

categories C containing a final object.

(V) The counit
∫
NAC → C is initial for all ordinary small categories C.

Proof. The implications (V) =⇒ (II) =⇒ (III) =⇒ (IV) are clear. The preceding

lemma establishes (IV) =⇒ (V). We will prove (I) =⇒ (III) and (II) =⇒ (I),

which completes the proof.

(I) =⇒ (III): Let C be category such that C → 1 is a homotopical equivalence,

then
∫
NAC →

∫
NA1 = A is a weak equivalence.

(II) =⇒ (I): Choosing C = 1 shows that A' ' 1. Let C → C ′ be a homotopical

equivalence, then, considering the commutative diagram

∫
NAC C

∫
NAC

′ C ′

we see that
∫
NAC →

∫
NAC

′ is a homotopical equivalence by the 2-out-of-3 prop-

erty, which precisely says that NAC → NAC
′ is a weak equivalence.

Definition 3.2.4. A map of presheaves X → Y on A is called locally aspherical if

A/X → A/Y is initial. A presheaf X on A is called locally aspherical if X → 1 is

locally aspherical. y

The observation that NA/a = NA|A/a yields the following corollary:
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Corollary 3.2.5 ([Mal05, Prop. 1.5.3]). Let A be a small ordinary category, then

the following are equivalent:

(I) A is a local test category.

(II) The map NAC → NAC
′ is locally aspherical for any homotopical equivalence

C → C ′.

(III) NAC is locally aspherical for any small category C such that C' ' 1.

(IV) NAC is locally aspherical for any small category C admitting a final object

Corollary 3.2.6. A local test category A, such that A' ' 1, is a weak test category.

Corollary 3.2.7. Any strict test category A is a weak test category.

Proof. Because A is sifted, A' ' 1, as colim : Hom(Aop, S) preserves final objects.

We are not aware of any local test categories identified directly using the above

criteria. To obtain criteria that can be checked in practice we introduce a piece of

extra structure with which we may try to endow a given category (see Corollary

3.2.11).

Definition 3.2.8. Let M be an ordinary category, admitting a final object 1, then

an object I in M with two morphisms 1 ⇒ I is called an interval in M . If M
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admits an initial object 0, and the square

0 1

1 I

is a pullback, then I is separating interval . y

Example 3.2.9. Let E be an ordinary topos, then the subobject classifier Ω in E

canonically has the structure of a separating interval. The first morphism 1 → Ω is

given by the universal monomorphism, and the second morphism 1 → Ω classifies

the subobject 0→ 1. y

Theorem 3.2.10 ([Mal05, Th. 1.5.6]). Let A be a small category, then the following

are equivalent:

(I) A is a local test category.

(II) The subobject classifier of Â is locally acyclic.

(III) The category Â admits a locally acyclic separating interval.

Corollary 3.2.11. Let A be a small category admitting finite products and a repres-

entable separating interval on Â, then A is a local test category.

Theorem 3.2.12 ([Cis06, Cor. 4.4.20]). If A is a local test category, then the com-

position of the functors
∫

: Â→ Cat/A → SA' is a localisation of Â along the locally

constant weak equivalences.
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Definition 3.2.13. Let A be a small category, then a trivial fibration is a morph-

ism in Â which has the right lifting property w.r.t. all monomorphisms in Â. y

Theorem 3.2.14 ([Mal05, Th. 1.5.6]). Let A be a small ordinary category, then the

following are equivalent:

(I) A is a local test category.

(II) Any trivial fibration in Â is a locally constant weak equivalence.

(III) The category Â admits a (cofibrantly generated) model structure in which the

weak equivalences are the locally constant weak equivalences, and the cofibra-

tions are the monomorphisms.

Idea of proof. The theorem is proved via the implications (I) ⇐⇒ (II) ⇐⇒ (III),

which we now sketch:

(II) =⇒ (I): The map Ω → 1 is a trivial fibration, and it is closed by pullback, so

that we may apply Proposition 3.2.10.

(I) =⇒ (II): Every trivial fibration is a Ω-homotopy equivalence (see [Cis06, Lm. 1.3.5]).

(III) =⇒ (II): Obvious.

(II) =⇒ (III): The Kan-Quillen model structure on ∆̂ is the Cisinski model struc-

ture generated by the interval ∆1 and the empty generating set. This can be used to

show that the class of homotopical equivalences on Cat is the class of weak equival-

ences uniquely characterised by satisfying certain closure properties (i.e. it is a basic

localiser), generated by the empty set, which in turn can be used to show that the

weak equivalences in Â are generated by the empty set in an appropriate way. This
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generation by a small set (in our case, the empty set), may be used to generate a

model structure using a variant Smith’s theorem; see [Cis06, Th. 1.4.3].

Let u : A → B be functor between small ∞-categories, such that pulling back

along u preserves locally constant weak equivalences. As u! automatically preserves

locally constant weak equivalences, we then obtain an adjunction

u! : Hom(Aop, S) Hom(Bop, S) : u∗⊥

in which both constituent functors preserve weak equivalences. Unfortunately, even

if both A and B are local test categories, then it is no longer true that u! : Â → B̂

preserves locally constant weak equivalences. The following proposition provides a

compatibility condition to fix this defect.

Proposition 3.2.15. Let u : A → B be a functor between local test categories

such that pulling back along u preserves locally constant weak equivalences, then, if

u! : Â → B̂ preserves monomorphisms, it is the left half of a Quillen adjunction,

and thus preserves locally constant weak equivalences. The adjunction is a Quillen

equivalence iff u : A→ B is initial.

3.3 Test toposes

In the previous subsection we saw how for any test category A the category of

presheaves Â comes equipped with a canonical model structure exhibiting Â as a

model for S/A' (see Theorem 3.2.12). A test topos is an ordinary topos E which

admits a canonical model structure, and whose homotopy ∞-category is equivalent
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to S/π!1E , where π!1E is the shape of E (see Definition 3.3.1); the topos Â is an example

of a test topos.

We proceed somewhat analogously to the previous subsection: There, for any small

∞-category A, we obtained a localisation colim : Hom(Aop, S) → S/A' . A similar

localisation exists for any locally ∞-connected ∞-toposes, as disucssed in §3.3.1. We

take a brief detour in §3.3.2 investigating which colimits preserve 0-truncatedness in

an ∞-topos. Then in §3.3.3 we investigate toposic analogues of initial functors, in

order to set up the theory of test toposes.

3.3.1 Shape theory

Here we briefly recall how any object in a topos admits a canonical underlying (pro-

)homotopy type.

Definition 3.3.1. Let X be an ∞-topos, and denote by π : X → S the unique

geometric morphisms to S, then the shape of X is the pro-left adjoint of π∗, i.e. the

functor π∗π∗ : S→ S. y

Let f : X → Y be a geometric morphism, then the unit idX → f∗f
∗ induces a

natural transformation (πY)∗(πY)∗ → (πX)∗(πX)∗ = (πY)∗f∗f
∗(πY)∗, i.e. a morphism

from (πX)∗(πX)∗ to (πY)∗(πY)∗ in Pro(S).

Definition 3.3.2. geometric morphism f : X → Y is a shape equivalence if it

induces a natural isomorphism (πY)∗(πY)∗ → (πX)∗(πX)∗. A morphism X → Y in X

is a shape equivalence if the geometric morphism X/X → X/Y is a shape equivalence.

y

34



Definition 3.3.3. An ∞-topos X is called ∞-connected if equivalently:

(I) the inverse image functor π∗ of the unique geometric morphism π : X → S is

fully faithful;

(II) π∗π∗ = idS.

An ordinary topos is called ∞-connected if its associated ∞-topos is ∞-connected.

y

Definition 3.3.4. An∞-topos X is called locally ∞-connected if the inverse image

functor π∗ of the unique geometric morphism π : X → S admits a left adjoint π!.

An ordinary topos E is called locally ∞-connected if its associated topos is locally

∞-connected. y

Remark 3.3.5. For locally ∞-connected ∞-topos X, the functor π! : X→ S general-

ises the notion of the connected component functor of a locally connected ordinary

topos (see [Ler79, Prop. 1.5]), which goes back to ideas first sketched in [SGA4I]. y

Proposition 3.3.6. Let X be a locally ∞-connected ∞-topos, then for any object X

in X the homotopy type π!X coincides with the shape of the topos X/X . Moreover,

for any morphism X → Y in X, the geometric morphism X/X → X/Y is a shape

equivalence iff π!X → π!Y is an equivalence of homotopy types.

Let X be a locally ∞-connected topos, then the functor π! : X → S factors as

X→ S/π!1 → S; I denote the first factor by ψ!.

Proposition 3.3.7 ([Lur17, Prop. A.1.11]). Let X be a locally ∞-connected topos,

then the functor ψ! : X→ S/π!1 admits a fully faithful right adjoint.
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3.3.2 Homotopy theory of 0-truncated objects in an ∞-topos

Let X be a fixed ∞-topos. Throughout this section we will discuss the homotopy

theory of 0-truncated objects in X.

Lemma 3.3.8. Consider a pushout square in X

X X ′

Y Y ′

for which the objects X,X ′, Y are 0-truncated, and in which the top horizontal map

(and thus the bottom horizontal map) is a monomorphism, then Y ′ is 0-truncated.

Proof. This is easily checked by hand in the Kan-Quillen model, so that it is true in S.

In a presheaf topos a morphism is a monomorphism and a square is a pushout iff it is

so pointwise. Left exact reflections preserve both monomorphisms and pullbacks.

Lemma 3.3.9. The inclusion X≤0 ↪→ X commutes with filtered colimits.

Proof. Similar to the last proof.

It would be nice to have proofs of these two facts using descent arguments, similar

to the one employed e.g. in [ABFJ20, Prop. 2.26].

Lemma 3.3.10. A retract of any 0-truncated object in X is again 0-truncated.

Proof. Retracts are limits; it is enough to show this on the level of homotopy categor-

ies, in which case this is elementary, but it is also true on the level of ∞-categories,

which is somewhat more involved to prove (see [Lur09, §4.4.5]).
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Definition 3.3.11 ([Cis03, Def. 3.3.10]). Let E be an ordinary topos and K, a small

category, then a functor p : K → E is relatively flat if the functor K → E/ colim p is

flat. y

With notation as in the preceding definition, note that p : K → E is relatively

flat iff the Yoneda extension K̂ → E preserves pullbacks. The following proposition

is due to Cisinski. We provide a modern (and simpler) proof.

Proposition 3.3.12 ([Cis03, Th. 3.3.9]). If X is 1-localic, then the inclusion X≤0 ↪→

X commutes with colimits of relatively flat functors.

Proof. Let K be a small ordinary category, and p : K → τ≤0X, a relatively flat func-

tor, then by assumption we obtain a geometric morphism K̂ (τ≤0X)/ colim p⊥ .

Observe that (τ≤0X)/ colim p = τ≤0(X/ colim p) by [Lur09, Lm. 5.5.6.14], so that by [?] the

inclusion from

ordinary toposes into hypercomplete 1-localic toposes yields a geometric morphism

Hom(Kop, S) X/ colim p⊥ . The left adjoint preserve the final object, but this is

equivalent to saying that the colimit of K → X/ colim p is the final object, which is the

identity morphism colim p→ colim p.

Example 3.3.13. If X is 1-localic, then p : Λ2
0 → X≤0 is relatively flat iff p carries

both legs of Λ2
0 to monomorphisms, so that we recover a special case of Lemma 3.3.8.

y

Example 3.3.14. If X is 1-localic topos, then p : N → X≤0 is relatively flat iff p

carries all morphisms in N to monomorphisms, so that we recover a special case of

Lemma 3.3.9. y
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Proposition 3.3.15. Let E be an ordinary topos, K, a small ordinary category, and

p : K → E, a relatively flat functor, then for any X ∈ K̂ the functor K/X → E is

relatively flat.

Proof. The colimit of K/X → E is given by p!X. As K̂ → E preserves pullbacks,

K̂/X → E/p!X preserves all finite limits.

3.3.3 Test toposes

We saw in Proposition 3.3.7 that for any locally ∞-connected topos X the category

S/π!1 is a localisation of X; in particular, the ∞-category S/A' = S/π!(1Â) is a loc-

alisation of hom(Aop, S) for any small ∞-category A. In §3.2 we saw that when A

is a local test category, then the restricted functor Â → S/A' is still a localisation.

Similarly, we may ask when the restricted functor X≤0 → S/π!1 is still a localisation.

To get a good theory, we will need to make two additional assumptions on X. The

first assumptions is that X is 1-localic and hypercomplete. The second assumption

is explained in the following definition:

Definition 3.3.16. An n-topos is locally contractible if it is generated by a set of

objects of contractible shape. y

Example 3.3.17. Any presheaf topos is locally contractible. y

Proposition 3.3.18. Any locally contractible n-topos (1 ≤ n ≤ ∞) is locally ∞-

connected.

Remark 3.3.19. The converse is true for n = ∞. We are unaware whether or not

this is the case for n <∞. y
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As in the theory of test categories, we need a good notion of initial functors. This

will moreover help us reduce the study of locally contractible 1-toposes to the study

of test categories.

For the rest of this subsection we fix two n-toposes X and Y. Let f : X → Y be a

geometric morphism, and Y , an object of Y , then write X/Y := X/f∗Y . The morphism

Y/Y → X/Y

Y ′ → Y 7→ f ∗Y ′ → f ∗Y

admits a right adjoint given by

X/Y → Y/Y

X → f ∗Y 7→ Y ×f∗f∗Y f∗X,

forming a geometric morphism f/Y : X/Y → Y/Y .

Definition 3.3.20. A geometric morphism f : X → Y is called a local shape

equivalence if equivalently:

(I) f/Y : X/Y → Y/Y is a shape equivalence for every Y ∈ Y.

(II) X(f ∗Y, (πX)∗K) = Y(Y, (πY)∗K) for every Y ∈ Y and K ∈ S.

y

Example 3.3.21. A functor A→ B between small ∞-categories is initial iff the in-

duced geometric morphism Hom(Aop, S) Hom(Bop, S)⊥ is a local shape equi-

valence. y
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Proposition 3.3.22. If X and Y are locally contractible, then a geometric morphism

f : X→ Y is a local shape equivalence iff f ∗ preserves contractible objects.

Proof. If f is a shape equivalence then, by assumption, for any object Y in Y of

contractible shape, f ∗Y must also be of contractible shape. Conversely, any object

Y in Y may be written as a colimit colimα Yα of contractible objects, then for any

homotopy type we have

X(f ∗Y, (πX)∗K) = X(f ∗ colimα Yα, (πX)∗K)

= X(colimα f
∗Yα, (πX)∗K)

= limαX(f ∗Yα, (πX)∗K)

= limα Y(Yα, (πY)∗K)

= Y(colimα Yα, (πY)∗K)

= Y(Y, (πY)∗K).

Proposition 3.3.23 ([Cis03, Prop.4.1.24]). Let a : X ↪→ Y be a geometric embedding

which is also a local shape equivalence. If Y is locally contractible, then so is X.

Proof. If U ⊆ Y0 is a subset generating Y under colimits, then a∗U generates X

under colimits, and consists of contractible objects by the assumption that a is a

local shape equivalence.

Proposition 3.3.24 ([Cis03, Prop.4.1.25]). A topos X is locally contractible iff there

exists a small category C and an aspherical geometric embedding X ↪→ hom(Cop, S).
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Proof. The “if statement” is clear from the preceding proposition. Conversely, let C

be a subcategory of X spanned by a set of contractible objects generating X under

colimits, then the geometric embedding X ↪→ hom(Cop, S) is aspherical, because

representable objects in any presheaf topos are contractible.

Proposition 3.3.25. Let a : X ↪→ Y be a geometric embedding which is also a local

shape equivalence, then (πX)! = (πY)! ◦ a∗.

Proof. For every X ∈ X we have

(πY)! ◦ a∗X = Y(a∗X, (πY)∗( ))

= X(a∗a∗X, (πX)∗( ))

= X(X, (πX)∗( ))

= (πX)!X.

We are now able to state the following generalisation of Theorem 3.2.14.

Theorem 3.3.26 ([Cis03, Th. 4.2.8]). Let E be a locally contractible ordinary topos,

then the following are equivalent:

(I) For any object X in E the projection map X ×ΩE → X is a shape equivalence.

(II) Any trivial fibration is a shape equivalence;

(III) There exists a local test category C and an aspherical geometric embedding

E ↪→ Ĉ.
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(IV) There exists a (necessarily unique as well as cofibrantly generated) model struc-

ture on E in which the weak equivalences are the shape equivalences, and in

which the cofibrations are the monomorphisms.

Definition 3.3.27. An ordinary topos satisfying the equivalent conditions of The-

orem 3.3.26 is called a local test topos . A local test topos with trivial shape is a

test topos . A test topos, whose shape functor commutes with finite products, is a

strict test topos . On any topos, the model structure given by Theorem 3.3.26 is

referred to as the canonical model structure . y

3.4 Homotopy theory in test toposes

Throughout this subsection X denotes a hypercomplete 1-localic∞-topos, such that

X≤0 is a local test topos. As we saw in §3.3.1 we obtain a localisation functor X →

S/π!1X , and, as this functor is a left adjoint, all colimits are homotopy colimits. The

results in §3.3.2 inform us how to construct homotopy colimits in X≤0. In contrast,

it is not a priori clear how to construct homotopy limits in X. Theorem 3.2.14

furnishes a model structure on X≤0, but this model structure is, in general, not that

helpful: The homotopy colimits that it makes available for common diagram shapes,

are seen in §3.3.2 to be those which commute with the inclusion X≤0 ↪→ X, and, in

general, the model structure is not useful for calculating homotopy limits because it

offers no explicit description of the fibrations. In lucky cases, such as for presheaves

on ∆ or , (trivial) fibrations may be characterised via explicit sets of generating

(trivial) cofibrations, so that it is possible to perform concrete calculations involving
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homotopy limits. This still leaves the question of calculating homotopy limits in the

∞-topos of homotopy-type-valued presheaves on a nice local test category A. Luckily,

it turns out that the canonical model structure on Â admits a canonical extension

to Hom(Aop, S) with the same generating (trivial) cofibrations as for Â, and whose

weak equivalences are the shape equivalences. The goal of this subsection is to

develop tools in order to transfer the model structure from Â (resp. Hom(Aop, S))

to X≤0 (resp. X) while keeping the shape equivalences as weak equivalences; if Â

has explicit generating (trivial) cofibrations, then these produce explicit generating

(trivial) cofibrations in X≤0 and X.5 Typically, this will increase the number of

fibrant objects in X≤0 and X.

We begin by extending the canonical model structure from Â to Hom(Aop, S). For

this we need to understand how to construct cofibrantly generated model structure

on presentable ∞-categories.

Proposition 3.4.1 ([MG14, Th. 3.11]). Let M be a presentable ∞-category, let

W ⊆M be a subcategory, which is closed under retracts, and satisfies the 2-out-of-3

property. Suppose that I and J are sets of homotopy classes of maps. such that

(a) �(J�) ⊆ �(I�) ∩W

(b) I� ⊆ J� ∩W

(c) and either

5It would be possible to develop these tools in a more general setting, where Â is allowed to be
any local test topos. However, we are not aware of any local test toposes with explicit generating
(trivial) cofibrations for the canonical model structure, which aren’t presheaf toposes, which is why
we restrict ourselves to the slightly simpler setting described here.
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(c1) �(I�) ∩W ⊆ �(J�), or

(c1) J� ∩W ⊆ I�,

then the I and J define a cofibrantly generated model structure (see [MG14, Def. 3.8])

on M whose weak equivalences are W .

We can now extend the canonical model structure. The following proposition

generalises [MG14, Th. 4.4].

Proposition 3.4.2. Let A be a local test category, then there exists a (necessarily

unique) cofibrantly generated model structure on Hom(Aop, S) whose weak equival-

ences are the shape equivalences, and whose trivial fibrations are characterised by

having the right lifting property against monomorphisms in Â.

Furthermore, if I and J are generating cofibrations and trivial cofibrations, respect-

ively, of the canonical model structure on Â, then these generate the model structure

on Hom(Aop, S).

Proof. Let I and J be generating cofibrations and trivial cofibrations, respectively, of

the canonical model structure on Â. By Lemmas 3.3.8-3.3.10, �(I�) (constructed in

Hom(Aop, S)) coincide with the monomorphisms, so that applying Proposition 3.4.1

to W together with I, J will prove both statements in the proposition. We will now

verify (a), and (b), (c2).

Proof of (a): By Lemmas 3.3.8-3.3.10 all colimits involved in constructing the morph-

isms in �(J�) are homotopy colimits. As all morphisms in J are weak equivalences,

the morphisms in �(J�) must be weak equivalences.

Proof of (b): The inclusion I� ⊆ J� is clear as J ⊆ �(I�), so we need to show
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I� ⊆ W . So, let X → Y be a morphism in I�.

First, we show that it is enough to prove the statement in the case when Y is rep-

resentable. For all objects a in A, and all maps a→ Y the morphisms a×Y X → X

are in I�. If these morphisms are in W , then X → Y is in W by faithful descent, as

the morphism can be written as a colimit indexed by A/Y → A.

So, assume that Y is representable. As a morphism in A/Y is a monomorphism iff it

is a monomorphism in A, we may furthermore assume that A has a final object, and

that Y is such a final object.

As the shape of the presheaf represented by the final object in A is contractible,

it is enough to show that that the shape of X is contractible. Now, the shape of

X is given by (A/X)' ' Ex∞A/X , so that any map Sk → π!X (k ≥ 0) may be

represented by a map Sdn ∂∆k → A/X for some n ≥ 0. If n ≥ 1, then Sdn is a finite

poset, and therefore a finite direct category. We will show that for any finite direct

category I and any functor I → A/Y we obtain a factorisation

I' (A/X)'

∗

(5)

Consider the diagram f : I → A, and take a Reedy cofibrant replacement f̃ ∼−→ f in

Â (see [Cis19, Prop. 7.4.19]), then by an inductive application of [Cis19, Cor. 7.4.4]

and Lemmas 3.3.8 & 3.3.9 we see that the colimit of f̃ is 0-truncated. The map

I' → (A/X)' corresponds to the map π! colim f̃ → π!X. Consider a factorisation

colim f̃ → c→ 1 in Â, where colim f̃ → c is a monomorphism, and c→ 1 is a trivial
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fibration, and thus a weak equivalence. By our assumption on X, we obtain a lift

colim f̃ X

c

Taking the shape of this diagram yields the desired lift in (5).

Proof of (c2): The proof of this fact for A = ∆ is given in [MG14, Prop. 7.9], and

may be interpreted verbatim in our setting.

Next, we recall the following theorem on transferring cofibrantly generated model

structures.

Proposition 3.4.3. Let M be a cofibrantly generated model ∞-category with gen-

erating cofibrations I and generating trivial cofibrations J , let N be a presentable

∞-category, and consider an adjunction f : M N : u⊥ . If the functor u takes

relative fJ-cell complexes to weak equivalences, then

(1) the ∞-category N admits a cofibrantly generated model structure whose weak

equivalences are those morphisms carried to weak equivalences by u, and with

generating cofibrations and trivial cofibrations given by fI and fJ respectively,

and

(2) the adjunction f : M N : u⊥ is a Quillen adjunction.

Sketch of proof. By [DAGX, Prop. 1.4.7], any morphism in N factors into a relat-

ive fI-complex (fJ-complex) followed by a morphism with the right lifting prop-
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erty w.r.t. fI (fJ). The rest of the proof now proceeds as in the proof or [Hir03,

Th. 11.3.2].

Proposition 3.4.4. Let A be a local test category, and, u : A → X≤0 be a functor.

If

(a) the objects {ua}a∈A0 generate X≤0 (and thus X),

(b) the objects {ua}a∈A0 have contractible shape,

(c) for each object a in A the presheaf u∗u a has contractible shape, and

(d) the functor u! : Â→ X≤0 preserves monomorphisms,

then for any sets I and J of, respectively, generating cofibrations and generating

trivial cofibrations for the canonical model structure on Â, there exist cofibrantly

generated model structures on X≤0 and X such that

(1) the weak equivalences are precisely the shape equivalences,

(2) the sets u!I and u!J are generating sets for the cofibrations and trivial cofibra-

tions, respectively, and

(3) the adjunctions u! : Â X≤0 : u∗⊥ and u! : Hom(Aop, S) X : u∗⊥

are Quillen equivalences.

If moreover

(e) the inclusions uk2 ↪→ ud admit retracts for all morphisms k2 ↪→ d in J ,

then
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(4) all objects in the resulting model structures on X≤0 and X are fibrant.

Proof. Denote by C the full subcategory of X≤0 spanned by the image of u, then

the adjunction u! : Â X≤0 : u∗⊥ factors as Â Ĉ X≤0.

a a By (a)

and (b) the adjunction Ĉ X≤0⊥ is an aspherical embedding, and thus a local

shape equivalence, in which both adjoints preserve shape equivalences by Proposition

3.3.25. Condition (c) says precisely that A → C is initial. Thus, a map in X≤0 is a

shape equivalence iff its image under u∗ is. This, together with (d) and Lemmas 3.3.8

& 3.3.9 show that the condition in Proposition 3.4.3 is satisfied, which establishes the

existence of the model structure as well as (1) & (2). Property (3) follows from the

observation that u! : Â X≤0 : u∗⊥ is a Quillen equivalence w.r.t. the canonical

model structures.

Property (4) is obvious.

3.4.1 Some tools for applying Proposition 3.4.4

If in Proposition 3.4.4 we take A to be one of the test categories ∆, mentioned

above, then it is very easy to verify (d).

Proposition 3.4.5. Let E be an ordinary topos, then a cocontinuous functor ∆̂→ E

preserves monomorphisms iff the inclusion ∆{0} t ∆{1} ↪→ ∆1 is sent to a mono-

morphism.

Sketch of proof. The proof of [Cis06, Lm. 2.1.10] remains true mutatis mutandis for

toposes.

Proposition 3.4.6. Let E be an ordinary topos, then a cocontinuous functor ̂ → E
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preserves monomorphisms iff the inclusions (δ0
i , δ

1
i ) : n−1 t n−1 ↪→ n are sent to

monomorphisms for all n ≥ i ≥ 1.

Sketch of proof. The proof of [Cis06, Lm. 8.4.21] remains true mutatis mutandis for

toposes.

In all instances where we apply Proposition 3.4.4, we will check (c) using Pro-

position 3.4.7, when A = ∆, and, Proposition 3.4.8, when A = .

Proposition 3.4.7. Let (A, I) and (B, J) be pairs consisting of small ordinary cat-

egories admitting finite limits together with an interval, and assume that every object

in B is J-contractible. Let u : A → B be a functor carrying I to J (including the

inclusions of the final object, which u must then preserve), then u is initial.

Proof. The functor u is initial iff for every object b in B the presheaf u∗b has a

contractible colimit in S. Let J × b → b be an J-contraction of b, then the unit

morphisms produce a diagram

u∗b ∼= e× u∗b u∗u!e× u∗b ∼= u∗(e× b)

I × u∗b u∗u!I × u∗b ∼= u∗(J × b) u∗b,

u∗b ∼= e× u∗b u∗u!e× u∗b ∼= u∗(e× b)

id

0

showing that u∗b is I-contractible.

Proposition 3.4.8. Let (B, J) be a pair consisting of a small ordinary categoriy

admitting finite limits together with an interval, and assume that every object in B
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is J-contractible. Let u : → B be a monoidal functor carrying 1 to J (including

the inclusions of the final object, which u must then preserve), then u is initial.

Proof. The functor u is initial iff for every object b in B the presheaf u∗b has a con-

tractible colimit in S. For any two cubical sets X1, X2 there are canonical morphisms

X1 ⊗X2 → Xi (i = 1, 2). To see this, note that for the for any k1, k2 ∈ N we have

projection maps (in Set) k1 ⊗ k2 ∼= {0, 1}k1 × {0, 1}k2 → {0, 1}ki for i = 1, 2; the

canonical morphisms X1 ⊗ X2 → Xi (i = 1, 2) are then obtained by extending by

colimits. This yields a natural morphism X1 ⊗X2 → X1 ×X2. Let J × b→ b be an

J-contraction of b, then the unit morphisms produce a diagram

u∗b ∼= e⊗ u∗b e× u∗b u∗u!e× u∗b ∼= u∗(e× b)

1 ⊗ u∗b 1 × u∗b u∗u!
1 × u∗b ∼= u∗(J × b) u∗b,

u∗b ∼= e⊗ u∗b e× u∗b u∗u!e× u∗b ∼= u∗(e× b)

id

0

showing that u∗b is 1-contractible.
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4 Fractured toposes

4.1 Basic definitions

Definition 4.1.1. A fractured ∞-topos is a triple adjunction

Xcorp : : X
j∗

j!
j∗

between ∞-toposes Xcorp and X satisfying properties (a) - (c) below:

(a) The topos X is generated by the objects in the image of j!.

(b) For every objectX in Xcorp the functors (j!)/X , (j∗)/X in the induced adjunction

X
corp
/X : : X/X

are fully faithful, and (j!)/X preserves finite limits, i.e., (j∗)/X ` (j!)/X is a

geometric morphism.

The objects in Xcorp are called corporeal objects . A morphism U → X in X is

called admissible if for every pullback diagram

U ′ U

X ′ X

in which X ′ is in Xcorp, the morphism U ′ → X ′ is in Xcorp. Finally, we require:
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(c) For every pullback diagram

∐
Uα U

∐
Xα X

f

g

∐
fα

in which g :
∐
Xα → X is an effective epimorphism and each morphism fα is

admissible, the morphism f : U → X is admissible.

y

Convention 4.1.2. We will typically refer to a fractured ∞-topos by its leftmost

adjoint, which we always denote by j!. So with notation as in Definition 4.1.1, we

would write j! : Xcorp � X. y

We will show that the main character in this thesis, the ∞-topos Diff∞ of dif-

ferentiable stacks (see Definition 5.1.2), admits the structure of a fractured ∞-topos

by exhibiting it as the ∞-topos of sheaves on the fractured analogue of a site. This

notion relies on the following definition.

Definition 4.1.3 ([Lur18, Def. 20.2.1.1]). Let G be an ∞-category, then an ad-

missibility structure on G is a subcategory Gad, whose morphisms are referred to

as admissible morphisms, such that:

(a) Every equivalence in G is an admissible morphism.

(b) For any admissible morphism u→ x, and any morphism x′ → x there exists a
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pullback square
u′ u

x′ x,

in which u′ → x′ is admissible.

(c) For any commutative triangle

x y

z

f

gh

in which g : y → z is admissible, the morphism f : x → y is admissible iff

h : x→ z is.

(d) Admissible morphisms are closed under retracts.

y

Example 4.1.4. The admissible morphisms in a fractured topos form an admissib-

ility structure. Under mild conditions the structure of a fractured ∞-topos may be

recovered from its associated admissibility structure (see [Lur18, Rmk. 20.3.4.6]). y

Definition 4.1.5 ([Lur18, Def. 20.6.2.1]). A geometric site is a triple (G,Gad, τ)

consisting of

(i) a small ∞-category G,

(ii) an admissibility structure Gad on G, and

(iii) a Grothendieck topology τ on G,
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such that every covering sieve in τ contains a covering sieve generated by admissible

morphisms. y

Lemma 4.1.6 ([Lur18, Props. 20.6.1.1 & 20.6.1.3]). Let (G,Gad, τ) be a geometric

site, then there exists a Grothendieck topology on Gad in which a sieve R in Gad is a

covering sieve iff the sieve generated by R in G is a covering sieve. Any sheaf on G

restricts to a sheaf on Gad.

Theorem 4.1.7 ([Lur18, Th. 20.6.3.4]). Let (G,Gad, τ) be a geometric site, and

denote by X the ∞-topos of sheaves on G, and, by Xcorp the ∞-topos of sheaves on

Gad, then the restriction functor Xcorp ← X : j∗ admits both a left and a right joint,

and the resulting triple adjunction is a fractured ∞-topos.

Example 4.1.8. We briefly present two examples of geometric sites. For A any

commutative ring, Aff fp
A denote the category of finitely presented affine schemes.

1. Consider the triple (Aff fp
A ,Aff fp,Zar

A , τZar), where Aff fp,Zar
A consists of the Zariski

open embeddings, and τZar is the Zariski topology, then the corporeal objects are

higher versions of locally finitely presentable schemes; in fact, the 0-truncated

objects are precisely locally finitely presentable schemes (see [Car20, Ex. 6.2.1]).

Moreover, the ∞-topos of sheaves on Aff fp
A is the classifying ∞-topos for local

A-algebras. For any ∞-topos X specifying a geometric morphism X → LA is

equivalent to endowing X with the structure of a locally ringed topos.

2. Consider the triple (Aff fp
A ,Aff fp,ét

A , τét), where Aff fp,ét
A are the étale morphisms,

and τét is the étale topology, and the corporeal objects are higher versions of

Deligne-Mumford stacks.
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y

Remark 4.1.9. In the same way that not every∞-topos is the category of sheaves on

a site, not every fractured ∞-topos is given as in the preceding theorem. However,

it is true that every fractured ∞-topos may be realised as the localisation of a

fractured presheaf ∞-topos, and that this presheaf ∞-topos may be obtained as in

the preceding theorem with τ = ∅. See [Lur18, Th. 20.5.3.4]. y

4.2 Fractured toposes and local contractibility

Endowing an ∞-topos with the structure of a fractured ∞-topos is useful for cal-

culating the shape of the resulting corporeal objects. We learnt these ideas from

[Cis03, §6.1], which relies on a more specialised notion of fractured topos.

Proposition 4.2.1. Consider a geometric morphism f : X→ Y of n-toposes.

(1) If the inverse image functor X ← Y : f ∗ is fully faithful, then f : X → Y is

locally aspherical, so, in particular, is a shape equivalence.

(2) If f∗ : X→ Y moreover admits a right adjoint f !, then the resulting geometric

morphism f∗ : X� Y : f ! is a shape equivalence.

Proof. For every Y in Y we have X (f ∗Y, π∗Y( )) = X (f ∗Y, f ∗π∗X( )) = Y (Y, π∗X( )),

which establishes (1). For (2) we simply note that f ! a f∗ and f∗ a f ∗ give rise to the

maps

Π∞(X) → Π∞(Y) → Π∞(X), which compose to the identity. As the first map is

an equivalence, so is the second.
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Corollary 4.2.2. Let j! : Xcorp � X be a fractured topos, then for any corporeal

object X the toposes Xcorp
/X and X/X have the same shape.

Thus, the cohomology of a geometric object such as a scheme with coefficients in

a locally constant sheaf is the same when computed in its big or small topos. For us,

the technology provides a way of showing that a topos is locally contractible.

Corollary 4.2.3. Let j! : Xcorp ↪→ X be a hypercomplete 1-localic topos. If Xcorp is

locally contractible, then so is X.
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Part II

Smooth Stacks and Spaces

5 Basic definitions

5.1 Smooth stacks and spaces

Throughout this subsection we fix some 0 ≤ r ≤ ∞.

Notation 5.1.1.

1. Mfdr denotes the category of r-differentiable manifolds and r-differentiable

maps.

2. OMfdr denotes the full subcategory of Mfdr spanned by open subsets of Rn

(0 ≤ n <∞).

3. Cartr denotes the full subcategory of Mfdr spanned by the spaces of Rn

(0 ≤ n <∞).

On each of these small categories we denote by τ the Grothendieck topology in which

a sieve on a space M is a covering sieve iff it contains a subset {Uα →M} consisting

of jointly surjective open embeddings.

1. Mfdrét denotes the category of r-differentiable manifolds and r-differentiable

open embeddings.
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2. OMfdrét denotes the full subcategory of Mfdrét spanned by open subsets of Rn

(0 ≤ n <∞).

3. Cartrét denotes the full subcategory of Mfdrét spanned by the spaces for Rn

(0 ≤ n <∞).

On each of these small subcategories we denote restriction of τ by τét. y

Definition 5.1.2. An S-valued sheaf on Cartr is an r-differentiable stack , and

the category thereof is denoted by Diff r; ∞- and 0-differentiable stacks are called

differentiable and continuous stacks , respectively. An object of Diff r
≤0 is then

an r-differentiable space , and, again for r = ∞ and r = 0 respectively, a differ-

entiable space and continuous space .

Similarly, an S-valued sheaf on Cartrét is an étale r-differentiable stack , and

the category thereof is denoted by Diff r
ét; étale ∞- and 0-differentiable stacks are

called étale differentiable and étale continuous stacks , respectively. An object

of Diff r
ét,≤0 := (Diff r

ét)≤0 is then an étale r-differentiable space , and, again for

r =∞ and r = 0 respectively, a étale differentiable space and étale continuous

space . y

Observe that the restricted Yoneda embedding exhibits Mfdr and OMfdr as

full subcategories of Diff r, containing Cartr, and also Mfdrét and OMfdrét, as full

subcategories of Diff r
ét containing Cartrét. Thus, Diff r may also be characterised

as the ∞-category of sheaves on either Mfdr or OMfdr, and Diff r
ét may also be

characterised as the ∞-category of sheaves on either Mfdrét or OMfdrét.

Lemma 5.1.3. The triple (OMfdr,OMfdrét, τ) is a geometric site.
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Proof. Axioms (a) - (c) are clear. To prove (d), consider the diagram

V ′ U ′ V ′

V U V,

(6)

where U ↪→ U ′ is an open subset inclusion. Axiom (d) follows from (b), after proving

the following claim:

Claim: The leftmost square in (6) is a pullback.

First, as monomorphisms have the left cancelling property, the map V → V ′ is a

monomorphism. Let y′ ∈ V ′ ∩ U , then y′ coincides with its image under U → V ,

which shows that the leftmost square induces a pullback on underlying sets. Next,

consider a commutative square

V ′ U ′

W U,

then the canonical map of sets W → V is smooth, as it may be written as the

composition of W → U → V .

Theorem 5.1.4. The ∞-category Diff r is a fractured topos, whose ∞-topos of cor-

poreal objects is given by Diff r
ét.

Vista 5.1.5. The ∞-topos Diff r is the classifying topos of Cr-rings. Let M be

a manifold, then (Diff r
ét)/M is simply the ∞-topos of sheaves on the underlying

topological space of M . The r-differentiable structure, or equivalently, local Cr-ring

structure, on M is exhibited by the geometric morphism (Diff r
ét)/M → Diff r. There
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exists a geometric morphism Diff r → Ãff
fp

R and the composition of (Diff r
ét)/M →

Diff r → Ãff
fp

R exhibits M as being locally ringed in R-algebras, and the further

composition with the geometric morphism Ãff
fp

R → Ãff
fp

Z exhibits M as a locally

ringed space. y

5.2 Diffeological spaces

5.2.1 Concrete objects

Here we collect the necessary background on concrete objects to discuss diffeological

spaces. Throughout this subsection E denotes an ordinary topos.

Definition 5.2.1. The topos E is local if the right adjoint component π∗ of the

unique geometric morphism π : E→ Set admits a further right adjoint E← Set : π!,

which is fully faithful6. y

From now on we assume that E is local.

Definition 5.2.2. An object X in E is concrete if the canonical morphism X →

π!π∗X is a monomorphism. The subcategory of E spanned by concrete objects is

denoted by Econcr. y

Proposition 5.2.3. The inclusion Econcr ↪→ E admits a left adjoint.

Proof. Recall that in any topos the epimorphisms and the monomorphisms form an

orthogonal factorisation system. Let X be an object in E, then X → π!π∗X may be
6The right adjoint π! is, in fact, automatically fully faithful, as can be seen from [Joh02, Th. 3.6.1]

and the observation that any geometric morphism is indexed over Set.
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factored uniquely as X � X ′ ↪→ π!π∗X. Consider any map X → Y , where Y is a

diffeological space, then the lifting problem

X Y

X ′ π!π∗X π!π∗Y

admits a unique solution, exhibiting the universality of X → X ′.

Definition 5.2.4. The left adjoint of the inclusion Econcr ↪→ E (which exists by the

preceding proposition) is called the concretisation , and is denoted by Econcr ← E :

( )†. y

Proposition 5.2.5. The category Econcr is presentable.

Proof. The pair (π!, π∗) is a geometric embedding, so that Set is a κ-accessible

subcategory of E for some regular cardinal κ, i.e. π! : Set ↪→ E commutes with

κ-filtered colimits. We claim that Econcr ↪→ E likewise commutes with κ-filtered

colimits. Let A be a κ-filtered category, and consider a functor X : A → Econcr;

as filtered colimits, and a fortiori κ-filtered colimits preserve monomorphisms, the

canonical map colimX → colimπ!π∗X
∼=−→ π!π∗ colimX is a monomorphism, so that

colimX is concrete.

Example 5.2.6. The category of simplicial sets ∆̂ is local, with the functor π! being

exhibited by cosk0 : Set ↪→ ∆̂. The concrete objects are then those simplicial sets

X such that for any (n + 1)-tuple (x0, . . . , xn) ∈ X
(n+1)
0 there exists at most one

n-simplex with precisely these vertices. y
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5.2.2 Diffeological spaces

The topos Diff∞≤0 is local, with the functor Diff∞≤0 ←↩ Set : π! given by sending any

set X to the presheaf Rn 7→ Set(π∗R
n, X).

Definition 5.2.7. A diffeological space X is a concrete object in Diff∞≤0. A plot

of X is a smooth map Rn → X. The collection of all plots of X is called the

diffeology of X. y

Definition 5.2.8. Let X be a diffeological space, and Y ⊆ X a subset, then the

subspace diffeology on Y is the diffeology in which a map Rn → Y is a plot iff it

is a plot viewed as a map to X. y

Example 5.2.9. The standard simplex ∆n with the subspace diffeology inherited from

Rn+1 is denoted by ∆n
sub. y

Proposition 5.2.10 ([Wat12, Lm. 2.64]). Write Rn
+ :=

{
(x1, . . . , xn) ∈ Rn x1, . . . , xn ≥ 0

}
,

and endow this set with the subspace diffeology inherited from Rn. A map f : Rn
+ →

R is smooth iff it is the restriction of a smooth map U → R, where U is an open

neighbourhood of Rn
+ in Rn.

Proof. Write s : Rn → Rn, (x1, . . . , xn) 7→ (x2
1, . . . , x

2
n), then by assumption f ◦ s :

Rn → R is smooth and is invariant under the action (Z∗)n×Rn → Rn,
(
(σ1, . . . , σn), (x1, . . . , xn)

)
7→

(σ1x1, . . . , σnxn) . By [Sch75] there exists a smooth map f̃ : Rn → R such that

f̃ ◦ s = f ◦ s. As s restricts to a bijection on the underlying sets of Rn
+ → Rn

+, the

maps f and f̃ agree on Rn
+, so that f is a restriction of f̃ .

62



Corollary 5.2.11. Let M be a smooth manifold with corners, and N a smooth

manifold without corners, then a map M → N is smooth iff there exists a manifold

M̃ without corners, and an open embedding M ⊆ M̃ and a smooth map M̃ → N

which restricts to M → N . In particular, a map ∆n
sub → N is smooth iff there exists

an open neighbourhood U of ∆n
sub in Rn+1 and a smooth map U → N which restricts

to ∆n
sub → N .

Let X be a differentiable stack, then no such characterisation of smooth maps

∆n
sub → X need exist when X is not a smooth manifold. One need only consider

the identity map ∆n
sub → ∆n

sub. Despite what the proof of Proposition 5.2.10 might

suggest, we are very doubtful that there exists a finite cover of ∆n
sub by affine spaces.

This makes it very hard to construct maps ∆n
sub → X even if one understands the

maps from Rn → X (n ≥ 0).

As a special case of Proposition 5.2.5 we obtain the following proposition.

Proposition 5.2.12. The category of diffeological spaces is presentable.

5.2.3 Colimits in Diff∞concr

The inclusion Diff r
concr ↪→ Diff∞ is closed under at least two types of colimits. To

show this we require the following two lemmas. Here D denotes one of the categories

Cartr,OMfdr,Mfdr.

Lemma 5.2.13. Let X be a concrete presheaf on D, then the sheafification of X is

a diffeological space.

This lemma has the following corollary.
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Lemma 5.2.14. Let A be a small category, and consider a diagram X : A →

Diff r
concr. The colimit of X in the category Hom(Dop, S) is an ordinary concrete

presheaf, then taking the colimit of X in Diff r yields an object in Diff r
concr.

Proposition 5.2.15. Consider a span of diffeological spaces

X Z

Y

in which both legs are monomorphisms, then the pushout in Diff∞ is again a dif-

feological space.

Proof. By Lemma 3.3.8 the pushout is truncated. If one considers the pushout in

Ĉartn, then it is easily seen that the resulting presheaf is concrete, so the result

follows from Lemma 5.2.14.

Proposition 5.2.16. Let α be an ordinal, then for any diagram p : α→ Diff∞concr in

which all the constituent morphisms are monomorphisms, then its colimit in Diff∞

is again a diffeological space.

Proof. Similar to the proof of the preceding lemma.

Example 5.2.17. Consider the unique cocontinuous functor ∆̂ → Diff∞≤0 carrying

∆n to ∆n
sub from Example 5.2.9 then this functor carries the simplicial sets ∂∆n

and Λn
k to diffeological spaces. These diffeological spaces are not equipped with the

subspace diffeology of ∆n
sub. Write Λ2

1 := u!Λ
2
1 and Λ2

1,sub for the 1-horn of ∆2 with the

subdiffeology. Any path passing through the corner of Λ2
1 must restrict to a constant
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functor which takes values in that corner for a positive amount of time. A retract of

Λ2
1 ↪→ ∆2 could then be composed with an injective path passing through the corner

of Λ2
1,sub, yielding a contradiction. y
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6 Homotopical algebra of smooth stacks and spaces

This is the main section in this thesis, in which we apply the theory built in the

previous sections in order to construct homotopical calculi on Diff∞≤0 and Diff∞. In

§6.1 we show that Diff∞≤0 is a strict test topos. By the strictness condition the shape

functor π! : Diff∞ → S commutes with finite products so that we obtain a canonical

map π!Diff(A,X)→ S(π!A, π!X).

Definition 6.0.1. A differentiable stack A is called formally cofibrant if for every

differentiable stack X the canonical map π!Diff∞(A,X) → S(π!A, π!X) is an equi-

valence. y

Ideally, we would construct a Cartesian model structure on Diff∞ in which the

weak equivalences are the shape equivalences, and in which all objects are fibrant;

in this case all cofibrant objects would be formally cofibrant. Unfortunately, we are

unaware whether such a model structure exists. Examining through the lens of §2 the

mechanism by which a (cofibrantly generated) Cartesian model structure produces

formally cofibrant objects we observe the following: Assume that we have already

shown that a given object A is a formally cofibrant differentiable stack, then if we

attach a “cell” S ↪→ D along a map f : S → A, then a natural way of showing that

A ∪f D is also cofibrant is to show that the pullback

Diff(A ∪f D,X) Diff(D,X)

Diff(A,X) Diff(S,X)
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is a homotopy pullback. Thus we would like to

1. show that Diff∞ is right proper (see Definition 2.0.3), and to

2. find morphisms S → D such that the morphism XD → XS is sharp for every

differentiable stack X.

Definition 6.0.2. A morphism S → D in Diff∞ is called a formal cofibration if

XD → XS is sharp for every differentiable stack X. y

In §6.2 we introduce an alternative diffeology on the standard simplices, due to

Kihara, which produces a model structure on Diff∞ in which all objects are fibrant,

thus taking care of the first point. While this model structure is not Cartesian its

cofibrations are nevertheless formal cofibrations. To show this we introduce in §6.3

yet another homotopical calculus on Diff r in the form of a fibration structure, the

squishy fibration structure. In this fibration structure Kihara’s cofibrations are formal

cofibrations. Any differentiable stack R-homotopy equivalent to a cofibrant object

in the Kihara model structure is formally cofibrant, so that many interesting objects

such as manifolds are formally cofibrant.

For the rest of this section we fix 0 ≤ r ≤ ∞.

6.1 Diff∞≤0 is a test topos

We will now apply the theory of the preceding sections of this thesis in order to show

that Diff r
≤0 is a strict test topos. By Corollaray 4.2.3 a first step is to show that the

topos
(
Diff r

ét,≤0

)
/Rd has contractible shape for all 0 ≤ d < ∞. As

(
Diff r

ét,≤0

)
/Rd is

the same for all 0 ≤ r ≤ ∞, it suffices to consider the case r = 0, and show that the
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underlying topological space of Rd has contractible shape. There are myriad ways of

achieving this: One could for example use that the shape of a CW complex is given

by its singular homotopy type (see [Lur09, §7.1]). Or one could show that

(1) R has constant shape, and that

(2) R-homotopy equivalences induces shape equivalences.

A modern proof of (1) is given in [Lur17, Lm. A.2.2], and a modern proof of (2),

in [Lur17, Lm. A.2.9]. More classically, one could show (1) by first noting that

locally constant sheaves of sets on R are constant; see [Sch14, Lm. 5.1.2]. This

shows π0π!R = ∗ and π1π!R = 1; the latter follows from the fact that for all locally

constant sheaves of groups G, the group H1(R;G) is in bijection with the equivalence

classes of locally constant G-torsors. Finally the higher cohomology groups vanish

because H i(R;M) = 0 for all i > 0 and all Abelian sheaves M on R by [Sch14,

Lm. 5.1.1] (i.e. R has cohomological dimension 1). To see (2) we simply apply the

classical theorem that homotopic maps pull back any given locally constant sheaf to

isomorphic sheaves; see [Sch14, Thm. 5.2.3].

For the rest of this subsection we fix 0 ≤ r ≤ ∞.

Proposition 6.1.1. The category Cartr is a strict test category.

Proof. By Corollary 3.2.11 it is enough to observe that R together with the inclusions

of {0} and {1} is a separating interval.

Theorem 6.1.2. The topos Diff r
≤0 is a strict test topos.

Proof. This follows from Corollaries 3.3.24 & 3.3.25, Theorem 3.3.26, Proposition

6.1.1, and the prefatory discussion of this subsection.
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Definition 6.1.3. Consider the cosimplicial object

A• : ∆ → Cartr

∆n 7→ An :=

{
(x0, . . . , xn) ∈ Rn+1 x0 + · · ·+ xn = 1

}
,

then the spaces An for n ≥ 0 are referred to as extended simplices . Moreover we

write
∂An := A•! ∂∆n, n ≥ 0

Λn
k := A•! Λn

k , n ≥ 1, n ≥ k ≥ 0.

AmorphismX → Y in Diff r is called a concordance equivalence if Diff r(A•, X)→

Diff r(A•, Y ) is a locally constant weak equivalence in Hom(∆op, S). y

Proposition 6.1.4. The concordance equivalences and the locally constant equival-

ences in Diff r agree. There exist cofibrantly generated model structures on Diff r

and Diff r
≤0 with the aforementioned weak equivalences and with generating cofibra-

tions and trivial cofibrations given, respectively, by {∂An ↪→ An}n≥0 and {Λn
k ↪→

An}n≥1, n≥k≥0.

Proof. We will verify properties (a) - (d) in Proposition 3.4.4. Property (a) is clear.

To verify property (b), we observe that Rn is R-contractible for all n ≥ 0. Property

(c) follows from the previous point and Proposition 3.4.7. Finally, property (d)

follows from Proposition 3.4.5.

The model structures on Diff r
≤0 and Diff r exhibited in Proposition 6.1.4 are both

referred to as the concordance model structure .

Recalling the notation from Example 5.2.9, a morphism X → Y in Diff r is called
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a classical singular equivalence if Diff r(∆•sub, X) → Diff r(∆•sub, Y ) is a locally

constant weak equivalence in Hom(∆op, S).

Proposition 6.1.5. The classical singular equivalences and the locally constant

equivalences in Diff r agree. There exist cofibrantly generated model structures on

Diff r and Diff r
≤0 with the aforementioned weak equivalences and with generating

cofibrations and trivial cofibrations given, respectively, by {∂∆n
sub ↪→ ∆n

sub}n≥0 and

{(Λsub)nk ↪→ ∆n
sub}n≥1, n≥k≥0.

Proof. We will verify properties (a) - (d) in Proposition 3.4.4. To show (a) we observe

that Rn may be obtained as the colimit of · · · ↪→ ∆n ↪→ ∆n ↪→ · · · , where each space

∆n maps concentrically into a strictly larger copy of itself. To verify property (b),

we observe that ∆n is R-contractible for all n ≥ 0. Property (c) follows from the

previous point and Proposition 3.4.7. Finally, property (d) follows from Proposition

3.4.5.

The model structures on Diff r
≤0 and Diff r exhibited in Proposition 6.1.5 are both

referred to as the naive simplicially generated model structure .

Proposition 6.1.6. Neither the concordance nor the naive simplicially generated

model structure is Cartesian.

Proof. With notation as in Example 5.2.17, Λ2
1 is not fibrant in the naive simplicially

generated model structure. If it were, then the lifting problem

Λ2
1 Λ2

1

∆2
sub 1

∼
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would admit a solution, contradicting the fact that Λ2
1 does not have the subspace

diffeology as explained in Example 5.2.17. An analogous argument using extended

simplices yields an object which is not fibrant in the concordance model structure.

Propositions do both (individually) have the following corollary:

Corollary 6.1.7. The shape functor π! : Diff r → S preserves finite products.

Proof. Apply Proposition 3.3.25.

6.2 Kihara’s simplices

It has been a longstanding goal to establish a model structure on diffeological spaces

(see e.g. [CW14] and [HS18]). To this end Kihara endows the standard simplices

with a new diffeology in [Kih19, § 1.2]. With this diffeology the horn inclusions

admit deformation retracts (see Proposition 6.2.1), allowing Kihara to mimic the

construction of the model structure on topological spaces in [Qui67, §II.3], and show

that the resulting model category is Quillen equivalent to simplicial sets with the

Kan-Quillen model structure. We need Kihara’s simplices in order to construct

formally cofibrant objects in §6.4, but we will also give a simpler proof of the existence

of Kihara’s model structure, as well as the equivalence to the Kan-Quillen model

structure in §6.2.1.

For the convenience of the reader, we repeat the construction of Kihara’s simplices:

For each n ≥ 1 and each 0 ≤ k ≤ n we define the set

Ank :=

{
(x0, . . . , xn) ∈ ∆n xk < 1

}
.
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We now proceed inductively: On ∆0 and ∆1 the diffeology is the subspace diffeology

coming from R1 and R2, respectively. Let n > 1, and assume that the diffeologies

on the simplices ∆m for m < n have been defined, then we define a diffeology on Ank

by exhibiting this set as the underlying set of the quotient

∆n−1 × {0} ∆n−1 × [0, 1)

1 Ank ,

where ∆n−1 × [0, 1) → Ann is given by (x0, . . . , xn−1; t) 7→ ((1 − t) · x0, . . . , (1 − t) ·

xn, t). Finally, the diffeology on ∆n is determined by the map
∐n

k=0 A
n
k → ∆n.

Proposition 6.2.1 ([Kih19, § 8]). The horn inclusions Λn
k ↪→ ∆n for n = 2 and

n ≥ k ≥ 0 admit a deformation retract.

Definition 6.2.2. We write

∆• : ∆ → Diff r

∆n 7→ ∆n

for the cosimplicial object sending each simplex ∆n to the standard n-simplex en-

dowed with the diffeology described above. Moreover we write

∂∆n := ∆•! ∂∆n, n ≥ 0

Λn
k := ∆•! Λn

k , n ≥ 1, n ≥ k ≥ 0

A morphism X → Y in Diff r is called a singular equivalence if Diff r(∆•, X) →

Diff r(∆•, Y ) is a locally constant weak equivalence in Hom(∆op, S). y
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Proposition 6.2.3. The singular equivalences and the locally constant equivalences

in Diff r agree. There exist cofibrantly generated model structures on Diff r and

Diff r
≤0 with the aforementioned weak equivalences and with generating cofibrations

and trivial cofibrations given, respectively, by {∂∆n ↪→ ∆n}n≥0 and {Λn
k ↪→ ∆n}n≥1, n≥k≥0.

Moreover, all objects in these model categories are fibrant.

Proof. The proof is exactly the same as for Proposition 6.1.5, except that it is not

obvious that the simplices ∆n are ∆1-contractible, but this is shown in [Kih19,

Rmk. 9.3].

The model structures on Diff r
≤0 and Diff r are both referred to as the Kihara

model structure .

Corollary 6.2.4. The shape functor π! : Diff r → S commutes with all products.

To our knowledge this is a new result.

Corollary 6.2.5. The relative categories Diff r
≤0 and Diff r proper.

Remark 6.2.6. This is established for all local test toposes by Cisinski by more ab-

stract means. [Cis03, Cor. 4.2.12 & Cor. 5.3.20]. The result for Diff r is new. y

Proposition 6.2.7. The Kihara model structures on Diff r
≤0 and Diff r are not

Cartesian.

Proof. Taking the pushout-product of δ : ∂∆1 ↪→ ∆1 with itself produces the inclu-

sion δ2δ := (∆1 × ∂∆1) t∂∆1×∂∆1 ∂∆1 × ∆1 ↪→ ∆1 × ∆1. If this inclusion were a
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cofibration, then the square

δ2δ u!(∆
1 ×∆1)

∆1 ×∆1 1

would admit a lift, producing a similar contradiction as in Proposition 6.1.6.

Not only is the Kihara model structure not Cartesian, but fibrations are hard

to detect, because it is hard to write down maps ∆n → X, when X is an arbitrary

differentiable stack, essentially for the same reason that it is hard to write down

maps ∆n
sub → X, as explained in §5.2.2. This issue will be addressed in §6.3.

6.2.1 Kihara’s model structure on diffeological spaces

Here we provide a simple proof (using the theory developed in this thesis) of a model

structure, originally due to Kihara, on Diff r
concr, which is Quillen equivalent to the

category of simplicial sets together with the Kan-Quillen model structure.

Theorem 6.2.8 ([Kih19, Th. 1.3] [Kih17, Th. 1.1]). There exists a cofibrantly gen-

erated model structure on Diff r
concr in which the weak equivalences are equivalently

the shape equivalences or the singular equivalences, and in which the generating

cofibrations and trivial cofibrations are given, respectively, by {∂∆n ↪→ ∆n}n≥0 and

{Λn
k ↪→ ∆n}n≥1, n≥k≥0. Moreover, all objects in this model categories are fibrant. The

adjunction ∆̂ Diff r
concr

⊥ is a Quillen equivalence.

Proof. We shall transfer the model structure from ∆̂ using Proposition 3.4.3. Transfin-

ite composition of monomorphisms between diffeological spaces taken in Diff r re-
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mains in Diff r
concr by Proposition 5.2.16, so that the transfinite composition of mono-

morphisms which are also shape equivalences is again a shape equivalence, as shape

equivalences in Diff∞ are closed under taking colimits. Thus, it is enough to show

for any diffeological space X and any map f : Λn
k → X (n ≥ 1, n ≥ k ≥ 0), that

the map X → X ∪f ∆n is a weak equivalence, which follows from the fact that

X → X ∪f ∆n is a deformation retract, since Λn
k ↪→ ∆n is one.

The fact that all objects are fibrant follows from the fact that all inclusions Λn
k → ∆n

(n ≥ 1, n ≥ k ≥ 0) are deformation retracts.

To show that ∆̂ Diff r
concr

⊥ is a Quillen equivalence, we observe that by

Propositions 5.2.15 & 5.2.16 the Yoneda extension of ∆ → Diff r
≤0, ∆n 7→ ∆n

factors through the inclusion Diff r
concr ↪→ Diff r

≤0, thus both the unit and counit of

∆̂ Diff r
concr

⊥ are weak equivalences, because this is true for ∆̂ Diff r
≤0

⊥ .

6.3 The squishy fibration structure on Diff∞

In this subsection we construct the squishy fibration structure, which, together with

Kihara’s simplices, will allow us to construct formally cofibrant objects in the fol-

lowing subsection. In the preceding subsections, using various cosimplicial objects

in Diff≤0 r, we considered several model structures before constructing the Kihara

model structure, which has good formal properties. Similarly, we shall progress

through several model structures induced from cocubical objects, before construct-

ing the squishy fibration structure.

Proposition 6.3.1. Let 1 ⇒ I be an interval in E≤0 (see Definition 3.2.8), and
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assume that the functor → E≤0 induced by Proposition A.0.2 (w.r.t. the categorical

product on E≤0) satisfies conditions (a) - (d) of Proposition 3.4.4, then the induced

model structures on E≤0 and E are Cartesian.

Proof. The functor ̂ → E≤0 is monoidal and commutes with colimits, so that the

axioms of a Cartesian model structure are verified by Proposition A.0.4.

Some basic facts about the cube category are summarised in §A.

6.3.1 Ordinary cubes

By Proposition A.0.2, sending 1 to either R1 or ∆1 produces an adjunction ̂ Diff∞≤0
⊥ ,

with which we may construct a Cartesian closed model structure using Proposition

6.3.1. For reasons completely analogues to the one given in Proposition 6.1.6, it is

not the case that all objects are fibrant in either model structure. In order to ad-

dress this problem, one might be tempted to construct a cocubical object in Diff r
≤0

whose constituent spaces have an analogues diffeology to the one on Kihara’s sim-

plices. Unfortunately, this would destroy the Cartesian closedness of the induced

model structure, as this property relies on n-th cube in the cocubical object being

the n-fold product of the first cube, i.e. the standard interval. Moreover, one would

inherit a defect from the model structures considered in the previous section, namely

that the fibrations would be hard to detect.

6.3.2 ε-squishy intervals and cubes

Here we construct a precursor to the squishy fibration structure considered in §6.3.3.

Throughout this subsection we fix 0 < ε < 1
2
.
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Definition 6.3.2. The pushout of the span

[0, ε] ∪ [1− ε, 1] {0} ∪ {1}

1
ε

(in Diff r) is called the ε-squishy interval and is denoted by 1
ε. For any n ∈ N

the n-fold product of 1
ε is called the ε-squishy n-cube , and is denoted by n

ε . y

Proposition 6.3.3. The ε-squishy n-cube n
ε is 0-truncated for all n ∈ N.

Proof. This is an immediate consequence of Lemma 3.3.8.

Proposition 6.3.4. For any n ≥ 0 the differentiable space n
ε corepresents the

functor sending any differentiable stack X to the summand of Diff r( n, X) consisting

of those maps n → X which can be extended (uniquely) to a cocone on ({0}∪{1}�

[0, ε] ∪ [1− ε, 1] ↪→ 1)n.

Notation 6.3.5. The above discussion yields a cocubical object, which we denote

as follows:
•
ε : → Diff r

≤0

n 7→ n
ε

Moreover, we write

∂ n
ε := ( ε)

•
! ∂

n, n ≥ 0

n
k,ξ,ε := ( ε)

•
!

n
i,ξ, n ≥ 1, n ≥ k ≥ 0, ξ = 0, 1.

y
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AmorphismX → Y in Diff r is called an ε-squishy equivalence if Diff r( •
ε, X)→

Diff r( •
ε, Y ) is a locally constant weak equivalence in Hom( op, S).

Lemma 6.3.6. The canonical inclusion {0} ∪ {1} → 1
ε determines a separating

interval (see Definition 3.2.8).

Proposition 6.3.7. The ε-squishy equivalences and the locally constant equival-

ences in Diff r agree. There exist cofibrantly generated model structures on Diff r

and Diff r
≤0 with the aforementioned weak equivalences and with generating cofibra-

tions and trivial cofibrations given, respectively, by {∂ n
ε ↪→

n
ε}n≥0 and { n

k,ε ↪→
n
ε}n≥1, n≥k≥0.

The model structures on Diff r and Diff r
≤0 constructed in Proposition 6.3.7 are

both referred to as the ε-squishy model structure . Unfortunately, it does not

seem to be the case that all objects are fibrant in the ε-squishy model structure.

Moreover, the model structure depends on the parameter 0 < ε < 1
2
. Removing this

dependence does produce a fibration structure, in which all objects are fibrant.

6.3.3 The squishy fibration structure on Diff∞

We now finally produce the fibration structure, that will allow us to produce form-

ally cofibrant objects. Throughout this subsection we prove results about pro-∞-

categories which are of independent interest.

Proposition 6.3.8. Let C be an ∞-category admitting finite products, then Pro(C)

admits finite products.
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Proof. Let x0, . . . , xn be objects in Pro(C) then for each 0 ≤ i ≤ n there exists

a filtered small ordinary category Ai and a functor xi• : Ai → C such that xi '

“ lim
α∈Ai

”xiα (see [Lur09, Prop. 5.3.1.16]). The category A0 × · · · × An is filtered, and

we claim that “ lim
α∈A0×···×An

”x0• × · · · × xn• pro-represents the product of x0, . . . , xn.

To see this, let y be any objects of C, then the isomorphisms

Pro(C)(y“ lim
A0×···×An

”x0• × · · · × xn•, y) ' limA0×···×An C(x0• × · · · × xn•, y)

' limA0×···×An C(x0•, y)× · · · × C(xn•, y)

' limA0 · · · limAn C(x0•, y)× · · · × C(xn•, y)

' limA0 · · · limAn−1 C(x0•, y)× · · · × C(xn−1•, y)× C(xn, y)

· · ·

' limA0 C(x0•, y)× C(x1, y)× · · · × C(xn, y)

' C(x0, y)× · · · × C(xn, y)

are natural in y.

Definition 6.3.9. The pro-differentiable stack

1 := “ lim
ε>0

” 1
ε

is called the squishy interval . For any n ∈ N the n-fold product of 1 is called

the squishy n-cube , and is denoted by n. The resulting cocubical pro-object is

denoted as follows:
• : → Pro(Diff r)

n 7→ n
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y

Proposition 6.3.10. There is a canonical isomorphism

n ' “ lim
ε>0

” n
ε n ≥ 0.

Proof. There is an isomorphism n ' “ lim(ε1>0)×···×(εn>0) ” 1
ε1
× · · · × 1

εn by the

proof of Proposition 6.3.8. As the ordered set
(
0, 1

2

)
admits products it is sifted, and

the diagonal map
(
0, 1

2

)
→
(
0, 1

2

)
× · · · ×

(
0, 1

2

)
is initial so that the induced map

“ limε>0 ” 1
ε×· · ·×

1
ε → “ lim(ε1>0)×···×(εn>0) ” 1

ε1
×· · ·× 1

εn is an isomorphism.

Proposition 6.3.11. For any n ≥ 0 the pro-differentiable stack n pro-corepresents

the functor sending any differentiable stack X to the summand of Diff∞( n, X)

consisting of those maps n → X which can be extended to a cocone on ({0}∪{1}�

[0, ε] ∪ [1− ε, 1] ↪→ 1)n for some 0 < ε < 1
2
.

Proof. As pushouts and products preserve epimorphisms, the map n → n
ε is an

epimorphisms for all n ≥ 0 and all 0 < ε < 1
2
, and thus for 0 < ε′ < ε the map n

ε′ →

ε is likewise an epimorphism. Let X be any differentiable stack, then Diff∞( n, X)

is the colimit of the diagram · · · → Diff( n
ε , X)

ε′<ε−−→ Diff( n
ε′ , X) → · · · , where

each transition map is a monomorphism, and thus Diff( n, X) → Diff( n, X) is a

monomorphism. The statement then follows from Proposition 6.3.4.

Lemma 6.3.12. Let I be a set, and for each element i ∈ I consider a small filtered

category Ai and a functor Xi : Ai → S, then the canonical morphism

colim
(αi)∈

∏
Ai

∏
i∈I

Xi,αi →
∏
i∈I

colim
αi∈Ai

Xi,αi (7)
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is an equivalence.

Proof. By [KS06, Prop. 3.1.11.ii] the statement is true in Set. Then, by [Cis19,

Cor. 7.9.9] we may lift the functors Xi : Ai → S to functors Ai → ∆̂, which we may

then compose with the Ex∞ functor to obtain functors valued in Kan complexes.

The morphism in ∆̂ corresponding to (7) is then an isomorphism, and the statement

follows from the fact that Kan complexes as well as weak equivalences are closed

under filtered colimits (see [Cis19, Lm. 3.1.24 & Cor. 4.1.17]).

Proposition 6.3.13. Let C be an accessible ∞-category admitting finite limits and

coproducts, then the ∞-category Pro(C) is cocomplete.

Proof. We show that Pro(C) admits pushouts and small coproducts.

Pro(C) admits pushouts: Recall that Pro(C) may be identified with the full subcat-

egory of Hom(C, S)op spanned by the left exact functors f : C → S such that C/f is

accessible ([DAGXIII, Prop. 3.1.6]). Consider a pullback square

p f

g h

y

of functors in Hom(C, S) with f, g, h in Pro(C). As limits of functors are computed

pointwise, p : C → S commutes with finite limits. Moreover, the above diagram
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induces a homotopy pullback diagram

Cop
/p Cop

/f

Cop
/g Cop

/h

in ∆̂ w.r.t. the Joyal model structure. The morphisms Cop
/f → Cop

/g and Cop
/h → Cop

/g

are colimits preserving, so that C/p is accessible by [Lur09, Prop. 5.4.6.6].

Pro(C) admits small coproducts: Let I be a small set, and consider a family of ob-

jects x• : I → Pro(C), then for each i there exists a filtered small ordinary category

Ai and a functor xi• : Ai → C such that xi ' “ lim
α∈Ai

”xiα (see [Lur09, Prop. 5.3.1.16]).

We obtain canonical isomorphisms

∐
i∈I

xi '
∐
i∈I

“ lim
αi∈Ai

”xiαi ' “ lim
(αi)∈

∏
Ai

”
∐
i∈I

xiαi ,

in Hom(Cop, S), as limits and colimits in presheaf categories are computed pointwise.

The functor • : → Pro(Diff r) may thus be extended to a colimit preserving

functor Hom( op, S)→ Pro(Diff r).

Notation 6.3.14. We write

∂ n := •
! ∂

n, n ≥ 0

n
k,ξ := •

!
n
i,ξ, n ≥ 1, n ≥ k ≥ 0, ξ = 0, 1.

y
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Proposition 6.3.15. There is a canonical isomorphism

n
k,ξ
∼= “ lim

ε>0
” n

k,ξ,εn ≥ 1, n ≥ k ≥ 0, ξ = 0, 1.

Definition 6.3.16. A map X → Y of differentiable stacks is a squishy fibration

if it has the right lifting property w.r.t. all inclusions n
k,ξ ↪→

n (n ≥ 1, n ≥ k ≥

0, ξ = 0, 1), and a trivial squishy fibration if it has the right lifting property w.r.t.

the inclusions ∂ n ↪→ n for all n ≥ 0. y

Notation 6.3.17. Let 0 < ε′ < ε < 1
2
, then λεε′ : [0, 1] → [0, 1] denotes any map

such that

(a) λεε′|[0,ε′] ≡ 0, λεε′ |[1−ε′,1] ≡ 1,

(b) λεε′(t) = t for all t ∈
[

1
2
(ε+ ε′), 1− 1

2
(ε+ ε′)

]
, and

(c) λ̇εε′(t) > 0 for all t ∈ (ε′, 1− ε′).

y

Lemma 6.3.18. Let 0 < ε′ < ε < 1
2
, then the triangle

1 1

1
ε

λε
ε′

commutes.
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Proof. It is enough to show that composing [ε′, 1 − ε′] → 1 → 1
ε yields an epi-

morphism, then the statement follows from the observation that the triangle

[ε′, 1− ε′]

1
ε

1
ε

[λε
ε′ ]

commutes. To see this, let X be any differentiable space, then any map f : 1 → X,

which descends to a map 1
ε → X, may be obtained by glueing f |(ε′,1−ε′) : (ε′, 1−ε′)→

X with
[
0, 1

2
(ε′ + ε)

)
→ 1

f(ε′)−−→ X and
(
1− 1

2
(ε′ + ε), 1

]
→ 1

f(1−ε′)−−−−→ X along their

common intersection.

Theorem 6.3.19. Let X be a differentiable stack, then

X∆n → X∂∆n

is a squishy fibration for any n ≥ 0.

Proof. In this proof we use the following notation:

k ?i,ξ ∆n :=
(

k
i,ξ ×∆n

)
t k×∆n

(
k × ∂∆n

)
;

k ?i,ξ ∆n :=
(

k
i,ξ ×∆n

)
t k×∆n

(
k × ∂∆n

)
;

k
ε ?i,ξ ∆n :=

(
k
i,ξ,ε ×∆n

)
t k

ε×∆n

(
k
ε × ∂∆n

) (
0 < ε < 1

2

)
.
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We must show that for every n ≥ 1, n ≥ k ≥ 0 and ξ = 0, 1

k ?i,ξ ∆n X

n ×∆n

admits a lift. The horizontal map is represented by a map

k ?i,ξ ∆n → X

which factors through k
ε ?i,ξ ∆n for some 0 < ε < 1

2
. Fix 0 < ε′ < ε, and write

λ := λε′ . To prove the statement we define maps µ, ν : k × ∆n → k × ∆n such

that the digram

k ?i,ξ ∆n k ?i,ξ ∆n

k ×∆n k ×∆n k ×∆n k ×∆n k ×∆nλk×id∆n µ ν λk×id∆n

(
λk×id∆n | k

?i,ξ∆n

)2

commutes and admits a (necessarily unique) diagonal lift. (Qualitatively, the first

instance of λk × id∆n ensures that the resulting lift factors through k
ε′ × ∆n, µ is

a first approximation to the desired retract, then ν completes the retraction in the

“∆n-direction”, and the second instance of λk× id∆n completes the retract in the “ i-

direction”.) Recall, that by Lemma 6.3.18 the map λk × id∆n : k ×∆n → k ×∆n

descends to the identity map id : k
ε ×∆n → k

ε ×∆n, so that the triangle obtained
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by postcomposing with k ?i,ξ ∆n → X in

k ?i,ξ ∆n k ?i,ξ ∆n X

k ×∆n

commutes, yielding a commutative diagram

k
ε′ ?i,ξ ∆n X

k
ε′ ×∆n.

This lift factors through k×∆n � k
ε′×∆n, because of the first instance of λk×id∆n

in the sequence of morphisms in the bottom of the above diagram.

Construction of µ and ν: In order to ease the notational burden we will only define

µ and ν for i = k and ξ = 1.

To define µ, I require an auxiliary smooth function ρ : k−1 ×∆n → 1, such that

(a) ρ(t1, . . . , tk, s0, . . . , sn) = 1 if t1, . . . , tk > 2
3
· ε′ or s0 + · · ·+ sn >

2
3
;

(b) ρ(t1, . . . , tk, s0, . . . , sn) = 0 if t1, . . . , tk < 1
3
· ε′ and s0 + · · ·+ sn <

1
3
.

Then, we define

µ : k ×∆n → k ×∆n

((t1, . . . , tk), s) 7→ ((t1, . . . , tk−1, ρ(t1, . . . , tk−1, s) · tk), s).

Using partition of unity one can patch together the retractions ∆n → Λn
k2
, 1 ≤ k2 ≤ n
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to obtain a retract σ :

{
(s0, . . . , sn) ∈ ∆n s0 + · · ·+ sn >

1
3

}
→ ∂∆n. Now, let

τ : 1 → 1 be a smooth map such that

(a) τ(t) = 1 for t > 2
3
· ε′, and

(b) τ(t) = 0 for t < 1
3
· ε′.

Then, we define

ν : k ×∆n → k ×∆n

((t1, . . . , tk), s) 7→ ( (t1, . . . , tk), id∆n +( id∆n +τ(tk) · (σ − id∆n) )(s) ).

Proof of continuity of lift: By construction, it is clear that the lift is continuous at

any point which gets mapped to k × ∆n \
(

k−1 × {0}
)
× ∂∆n. Points which

get mapped to
(

k−1 × {0}
)
× ∂∆n admit a neighbourhood which gets mapped to(

k−1 × {0}
)
×∆n, which concludes the proof.

Remark 6.3.20. It does not seem to be the case that the inclusion of pro-objects
n
k,δ ↪→

n admits a retract for n ≥ 2, n ≥ k ≥ 0. y

Theorem 6.3.21. The locally constant weak equivalences and the squishy fibrations

determine a fibration structure on Diff∞, in which all objects are fibrant.

Proof. We must verify that weak equivalences and fibrations described in the state-

ment of the theory satisfy conditions (a) - (d) of Definition 2.0.6. Conditions (a) &

(b) are clear.

Proof of (c): Let X → Y be a morphism of differentiable stacks. Denote by X →

X3 → Y a factorisation of X → Y into a trivial cofibration followed by a fibration
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in the 1
3
-squishy model structure, then denote by X3 → X4 → Y a factorisation of

X3 → Y into a fibration followed by a fibration in the 1
4
-squishy model structure

and so on; finally, denote by X → X ′ → Y the factorisation of X → Y obtained

by taking the transfinite composition of the maps X → X3 → X4 → · · · . The map

X → X ′ is a shape equivalence, as these are preserved by colimits. We claim that

X ′ → X is a squishy fibration. To see this, consider a lifting problem

n
k,ξ X ′

n Y

for some n ≥ 1, n ≥ k ≥ 0, ξ = 0, 1, then by Proposition 7.3.3 and the fact that

compact objects are closed under finite colimits, we see that n
k,ξ → X ′ must factor

through Xn → X ′ for some n ≥ 3. We then obtain a new lifting problem

n
k,ξ,ε Xn

n
ε Y

for some 0 < ε < 1
n
, so that we obtain a lift.

Proof of (d): Let us call a map of differentiable stacks which has the right lifting

property w.r.t. the inclusions ∂ n ↪→ n for n ≥ 0 a squishy acyclic fibration. As

squishy fibrations and squishy acyclic fibrations are defined via a right lifting prop-

erty they are both closed under pullback. It thus remains to show that the squishy

acyclic fibrations are precisely the squishy fibrations which are also shape equival-

ences, but this is completely formal: Let X → Y be a map of differentiable stacks,
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then X → Y is an squishy acyclic fibration iff ( •)∗X → ( •)∗Y is a trivial fibration

in Hom( op, S) iff ( •)∗X → ( •)∗Y is both a fibration and a weak equivalence iff

X → Y is both a squishy fibration and a shape equivalence.

Finally, all differentiable stacks are seen to be fibrant by applying Theorem 6.3.19

for n = 0.

Remark 6.3.22. In the proof (c) in Theorem 6.3.21 one could alternatively factor any

morphism of differentiable stacks through a path fibration constructed using ∆1. y

Definition 6.3.23. The fibration structures on Diff∞≤0 and Diff∞ are both referred

to as the squishy fibration structure . y

Corollary 6.3.24. The cofibrations in the Kihara model structure are formal cofibra-

tions.

While not being a model structure, the squishy fibration structure does enjoy

some of the nice properties of a (Cartesian) model structure.

Proposition 6.3.25. The squishy (trivial) fibrations are closed under arbitrary products.

Proof. This follows from the fact that the squishy (trivial) fibrations are determined

via right lifting property.

Proposition 6.3.26. For any differentiable stack X

(1) the map X
n

→ X∂
n

is a squishy fibration for n ≥ 0, and

(2) the map X
n

→ X
n

k,ε is a squishy trivial fibration for n ≥ 1, n ≥ k ≥ 0.
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6.4 Formally cofibrant objects

Recall that a differentiable stack A is formally cofibrant if for every differentiable

stack X the canonical map π!Diff∞(A,X)→ S(π!A, π!X) is an equivalence. The full

subcategory of Diff∞ spanned by formally cofibrant stacks is denoted by C.

6.4.1 Closure properties of formally cofibrant stacks

Formally cofibrant objects are closed under various operations.

Proposition 6.4.1. The subcategory C ⊆ Diff∞ of formally cofibrant stacks is

closed under arbitrary coproducts.

Proof. All objects in Diff∞ are fibrant in the squishy fibration structure.

Proposition 6.4.2. Let A : N → Diff∞ be a diagram such that Ai → Ai+1 is

a cofibration in the Kihara model structure for all i ∈ N then colimA is formally

cofibrant.

Proposition 6.4.3. The subcategory C ⊆ Diff∞ of formally cofibrant stacks is

closed under finite products.

Proof. Let A,B be formally cofibrant stacks, and letX be any stack, then one obtains
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the following series of canonical equivalences:

π!Diff∞(A×B,X) ' π!Diff∞(A,Diff∞(B,X))

'−→ S(π!A, π!Diff∞(B,X))

'−→ S(π!A, S(π!B, π!X))

' S(π!A× π!B, π!X)

' S(π!(A×B), π!X).

Proposition 6.4.4. The ∞-category of formally cofibrant objects is closed under

R-, ∆1-, and 1-homotopy equivalence.

6.4.2 Partitions unity

Here we describe a more refined closure property of formally cofibrant objects than

the ones discussed in §6.4.1, which will let us exhibit many interesting spaces as

being formally cofibrant.

Let X be a diffeological space, and let U = {Uα}α∈A be a cover of X then there

exists a Diff∞concr-enriched category XU with

ObjXU =
∐

σ Uσ

MorXU =
∐

σ⊇τ Uσ

where σ, τ denote non-empty finite subsets of A such that Uσ :=
⋂
α∈σ Uα 6= ∅. The

geometric realisation of (the nerve of) XU is denoted by BXU . The space BXU may
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be constructed in stages using the pushouts

∐
σn)···)σ0

Uσn × ∂∆n BX
(n−1)
U

∐
σn)···)σ0

Uσn ×∆n BX
(n)
U

(8)

At each stage one can construct inductively an obvious commutative square obtained

by replacing BX(n)
U by X in (8), thus producing a canonical map BXU → X. As the

legs in each pushout are monomorphisms each stage BX(n)
U is a diffeological space

by Proposition 5.2.15; the object BXU is then a diffeological space by Proposition

5.2.16, as it is a filtered colimit of diffeological spaces along monomorphisms.

Definition 6.4.5. A covering on a diffeological space is called numerable if it

admits a subordinate partition of unity. y

The original formulation of the following lemma in the setting of topological

spaces is due to Segal [Seg68, §4] and tom Dieck [tD71, Th. 4]. Translating these

results into the smooth setting is very technical, and is carried out by Kihara in

[Kih20, §9].

Lemma 6.4.6 ([Kih20, Prop. 9.5]). Let X be a diffeological space, and let U be

a numerable cover of X, then the canonical map BXX → X is a ∆1-homotopy

equivalence.

Theorem 6.4.7. Let X be a diffeological space, and let U be a numerable cover of

X. If each member of U is formally cofibrant, then so is X.
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Proof. By Lemma 6.4.6 and Proposition 6.4.4 the space X is formally cofibrant iff

BXU is. We will show that each stage BX(n)
U is formally cofibrant, and then conclude

that BXU is formally cofibrant by Proposition 6.4.2. The diffeological space BX(0)
U

is formally cofibrant by Proposition 6.4.1. Applying Diff∞( , X) to the square (8)

yields the pullback

Diff∞(BX
(n)
U , X)

∏
σn)···)σ0

Diff∞(Uσn , X)∆n

Diff∞(BX
(n−1)
U , X)

∏
σn)···)σ0

Diff∞(Uσn , X)∂∆n

in which the vertical morphism to the right is sharp as it is a squishy fibration by

Theorem 6.3.19 and Proposition 6.3.25.

Corollary 6.4.8. Any Hausdorff paracompact manifold is formally cofibrant.

Proof. Such manifolds admit numerable covers in which all intersections are either

empty or diffeomorphic to Rn for some n ≥ 0.

Remark 6.4.9. The above corollary may be extended to infinite dimensional mani-

folds, as studied in [KM97]; see [Kih20, Th. 11.1]. y

6.4.3 Counterexamples

There are many directions in which it is not possible to extend Corollary 6.4.8. One

cannot extend to non-0-truncated stacks:

Example 6.4.10. BZ = π!Diff(1, S1) = π!Diff(π∗BZ, S1) 6= S(BZ, BZ) = Z. y

93



One must be careful when dropping the Hausdorfness requirement:

Example 6.4.11. Denote by R•• the real line with two origins, then

BZ = π!Diff(R, S1)

= π!Diff(R••, S
1)

6= S(π!R••, π!S
1)

= S(BZ, BZ)

= Z.

y

Example 6.4.12. Denote by R|| the space obtained by glueing two copies of R along

the subspace (−∞,−1) ∪ (1,∞), then R|| is A1-homotopy equivalent to S1, so that

it is formally cofibrant. In particular,

π!Diff(R||, S
1) = π!Diff(S1, S1) = S(π!S

1, π!S
1) = S(π!R||, π!S

1).

y

Non-paracompact manifolds may not be formally cofibrant:

Example 6.4.13. Let L denote the long line. It has trivial shape but is not con-

tractible. Thus S(π!L, π!L) = S(1, 1) = 1, while Diff(L,L) has at least two path

components. y
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7 Compact manifolds are compact

Here we show that closed manifolds and modified notions of closed intervals are both

compact in the categorical sense.

The only general paradigm that we are aware of for proving categorical compactness

in (∞-)toposes involves n-coherent ∞-toposes (see [Lur18, §A.2.3.]). These are ∞-

toposes satisfying strong boundedness conditions. Applying this theory to the case

at hand would amount to showing that Diff∞ is generated by sufficiently compact

objects (in the topological sense), and that these are closed under pullback. This has

no hope of being true; while, for instance, closed manifolds do indeed generate Diff∞,

it is possible to obtain the Cantor set (with the discrete differential structure) as a

pullback of closed manifolds. Fortunately, the pullback stability of compact manifolds

is close enough to being true by virtue of all manifolds being locally compact. In order

to exploit this property we must acquire a good understanding of the sheafification

procedure, which we do in the following subsection.

7.1 Sheafification in one step

Throughout this subsection C denotes a small (ordinary) site. Let X : Cop → S≤n

be a presheaf, then for n = 0 the plus-construction (recalled below), first introduced

in [SGA4I, §4.ii.3], is a functor Ĉ → Ĉ such that a double application thereof to

X produces the sheaf universally associated to X. For arbitrary n < ∞ the plus-

construction must be applied n + 1 times in order to obtain the stack universally

associated to X (see [Lur09, §6.5.3]). The plus-construction is built using Čech
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coverings; an analogous construction using hypercovers produces the universally as-

sociated stack in one step. Considering again the case n = 0, such a construction,

using a variant of hypercovers, has been part of the folklore for decades, and first

appeared in writing in [Yuh07], following ideas of Dubuc; this is the construction

that we will use in this section.

We will first recall the plus-construction so that we may better contrast it with

the sheafification construction in one step. For more details, we refer the reader to

[Yuh07, §3.2]. From now on the word presheaf refers to a presheaf valued in sets.

Let X be a presheaf on C, let c be an object of C, and let U = {u→ c} be a covering

of c. A matching family of X at U is a family of maps {u → X}, satisfying the

following property: For any pair of morphisms a→ u, a→ u′, if the square

u

a c

u′

commutes, then so does
u

a X

u′

Given another covering V = {v → c}, then a matching family of X at V is a

refinement of the matching family of X at U if for each span c ← v → X in the

matching family at V there exists a span c ← u → X in the matching family at U

96



together with a morphism v → u such that the resulting diagram

v

c X

u

commutes. The plus-construction applied to X yields a presheaf X+, which sends

any object c in C to the set of matching families of X at coverings of c modulo the

equivalence relation generated by refinement.

Dubuc and Yuhjtman’s construction is obtained by modifying the notion of matching

family. For a covering U = {u → c} a hyper-matching family of X at U is a

family of maps {u→ X} satisfying the following property: For any pair of morphisms

a→ u, a→ u′, if the square

u

a c

u′

commutes, there exists a covering {v → a} such that the squares

u

v X

u′
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obtained from composing the morphisms v → a in the covering with a → u and u′

commute. Refinement of hyper-matching families is defined as for matching families.

The assignment of equivalence classes of hyper-matching families to objects in C is

functorial. We denote resulting presheaf on C by X‡.

Proposition 7.1.1 ([Yuh07, §3.2]). The presheaf X‡ is the associated sheaf of X.

7.2 Closed manifolds are compact

Throughout this subsection we fix 0 ≤ r ≤ ∞. We now apply Proposition 7.1.1 to

prove the following theorem.

Theorem 7.2.1. Let M be a closed manifold, then Diff r
≤0(M, ) commutes with

filtered colimits.

Proof. Let A be a filtered category, and consider a functor X : A→ Diff∞≤0, then we

must show that the canonical morphism

colim
α

Diff∞≤0(M,Xα)→ Diff∞≤0(M, colim
α

Xα) (9)

is invertible. Recall, that the category Diff∞≤0 is equivalently given by the category of

sheaves on Mfd∞. Denote by F the colimit ofX in M̂fd∞, then Diff∞≤0(M, colimαXα) =

F ‡(M).

The map (9) is injective: Let f : M → Xα, g : M → Xα′ be two maps which get

mapped to the same equivalence class by (9), then there exists a covering of M by

open subsets {Ui}i∈I , such that for each i ∈ I there exists an object αi and maps
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α → αi, α′ → αi such that f |Ui = g|Ui : Ui → Xαi . Because M is compact, the cov-

ering {Ui}i∈I admits a finite subcovering (which is a refinement of {Ui}i∈I); choose

an object β in A with morphisms αi → β for all i ∈ I ′, then f and g determine the

same matching family of Xβ at M , which must descend to a morphism M → Xβ,

because Xβ is a sheaf, and this morphism is in the same equivalence class as f and

g, so that f and g are equivalent.

The map (9) is surjective: Let {Ui}i∈I be a covering of M , and let {fi : Ui → F}i∈I

be a hyper-matching family of F , then one may again restrict to a finite subcovering

{Ui}i∈I′ . For each i, j ∈ I ′ choose a covering {Wijk}k∈Kij of Ui ∩ Uj. The covering

{Ui}i∈I′ can be further refined to a covering {Vi}i∈I′ such that V i ⊆ Ui for each

i ∈ I ′. Each intersection V i ∩ V j lies in
⋃
k∈K′ij

Wijk for a finite subset K ′ij ⊆ Kij.

The intersection Vi ∩ Vj is then covered by {Wijk ∩ Vi ∩ Vj}k∈K′ . We then obtain

a hyper-matching family {f |Vi : Vi → F}i∈I′ ; as I ′ is finite all maps in the hyper-

matching family may be represented by maps f |Vi : Vi → Xα for some fixed α in A.

For each pair i, j′ in I we can then find an object αij in A and a map α→ αij such

that for each k ∈ K ′ij the resulting square

Vi

Wkij Xαij

Vj

commutes. Chose an object β in A and a morphism αij → β for each pair i, j in

I ′, then the resulting compositions of f |Vi : Vi → Xα → Xβ for all i ∈ I ′ form a
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hyper-matching family of M at Xβ, and thus a map M → Xβ, because Xβ is a

sheaf.

7.3 Special intervals are compact

Throughout this subsection we fix 0 ≤ r ≤ ∞. As discussed in §5.2.2, ordinary

intervals seem to be determined by infinitely many plots, and are thus unlikely to

be categorically compact. However, this also means that for any differentiable stack

X which is not a manifold without boundary it is very hard to construct maps

[0, 1] → X, even if one has a good grasp of the maps Rn → X. It thus stands to

reason that the extendable and squishy intervals considered here are likely to be more

useful in practice, and luckily these are categorically compact.

Let M be a smooth manifold (without boundary), then by Proposition 5.2.10, maps

[0, 1]→M are precisely the maps which are the restriction of maps (−ε, 1+ε)→M .

This motivates the following definition.

Definition 7.3.1. The functor

Diff∞≤0 → Set

X 7→
{
f : [0, 1]→ X ∃ ε > 0,∃ f̃ : (−ε, 1 + ε)→ X, s.t. f = f̃ |j[0,1]

}

is called the extendable interval , and is denoted by Diff∞(J0, 1K, ). y

Proposition 7.3.2. The extendable interval preserves filtered colimits.
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Proof. The comparison map

colim
α

Diff∞≤0(J0, 1K, Xα)→ Diff∞≤0(J0, 1K, colim
α

Xα) (10)

is given by the restriction of

colim
α

Diff∞≤0([0, 1], Xα)→ Diff∞≤0([0, 1], colim
α

Xα).

The proof is very similar to the proof of Proposition 7.2.1. Again, denote by F the

colimit of X in M̂fd∞.

The map (10) is injective: Let f : J0, 1K → Xα, g : J0, 1K → Xα′ be two maps which

get mapped to the same equivalence class by (10). W.l.o.g. we may assume that

there exists a single value ε > 0, such that the maps f, g are represented by maps

f̃ : (−ε, 1 + ε) → Xα, g̃ : (−ε, 1 + ε) → Xα′ . There exists some 0 < ε′ < ε and a

covering of (−ε′, 1 + ε′) by open subsets {Ui}i∈I , such that for each i ∈ I there exists

an object αi and maps α → αi, α′ → αi such that f |Ui = g|Ui : Ui → Xαi . For any

0 < ε′′ < ε′ there exists a finite subset I ′ ⊆ I such that (−ε′′, 1 + ε′′) ⊆
⋃
i∈I′ Ui, and

this part of the proof proceeds precisely as in the corresponding part of the proof

Proposition 7.2.1.

The map (10) is surjective: Consider ε > 0, and let {Ui}i∈I be a covering of (−ε, 1 +

ε), and let {fi : Ui → F}i∈I be a hyper-matching family of F . By restricting to

(−ε′, 1 + ε′) for some 0 < ε′ < ε one may again restrict to a finite subcovering

{Ui}i∈I′ and proceed as in the second half of the proof of Proposition 7.2.1.

Proposition 7.3.3. The squishy interval 1 is compact.
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Proof. Similar to the proof of Proposition 7.3.2.

Corollary 7.3.4. Squishy (trivial) fibrations are closed under filtered colimits.

Vista 7.3.5. It is possible to define extendable and squishy variants of compact man-

ifolds with boundary (and possibly even manifolds with corners), which are then also

compact. y
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8 Change of regularity and concreteness

Consider the following diagram, in which every functor is the left adjoint of either a

pullback functor or an inclusion:

TSpc

Diff∞concr Diff0
concr

Diff∞≤0 Diff0
≤0

Diff∞ Diff0

•

“more concrete”

smooth to continous

(11)

It is natural to ask how applying these functors to a given space affects its homotopy

type. Denote by u : Cart∞ → Cart0 the forgetful functor, then both constituent

functors in the adjunction u∗ : Hom((Cart∞)op, S) Hom((Cart0)op, S) : u∗⊥ pre-

serve sheaves, thus one obtains a commutative triangle of ∞-connected geometric

morphisms

Diff∞ Diff0

S

a
a

aa
aa
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so that the functor u! : Diff∞ → Diff0 in (11) is shape preserving for all differen-

tiable stacks. The other functors in (11) do not preserve the shape of all objects

in their respective domains. In §8.1 we show that the functor Diff∞≤0 → Diff0
≤0

preserves the shape of smooth manifolds. For the other functors we are not aware

of any systematic method for determining the objects for which they preserve their

shape.

The topmost left adjoint Diff0
concr → TSpc sends any diffeological space to its un-

derlying set together with the coarsest topology making all plots into it continuous.

The respective subcategories on which the unit and counit morphisms are equival-

ences may be identified with the category ∆TSpc of ∆-generated spaces [SYH18,

Prop. 3.2]. Thus, ∆TSpc, a popular convenient category for doing algebraic to-

pology, is completely contained in Diff0
≤0. We give a sample algebro-topological

application of Diff0 in §8.2.

Remark 8.0.1. By the above discussion all ∆-generated spaces are of singular shape

in the sense of [Lur17, Def. A.4.9]. y

8.1 Change of regularity

Let M be a smooth manifold, then the following is a well known folk theorem.

Theorem 8.1.1. The map of simplicial sets Mfd∞(∆•,M) → Mfd0(∆•,M) is a

weak homotopy equivalence.

Proof. Let {U} be a good cover of M , then M may be written as the colimit of the
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Čech nerve

· · ·
∐
U ×M U ′

∐
U,

but each stage of the above diagram is the coproduct of copies of smooth Euclidean

space, so that u! : Diff∞ → Diff0 sends the diagram to the analogous diagram ob-

tained by replacing each of copy of smooth Euclidean space by topological Euclidean

space. As u! commutes with colimits, we deduce that u! sends M to its underlying

topological manifold.

The functor u : Cart∞ → Cartn is initial, as its composition with A• : ∆→ Cart∞

is initial, and initial functors are right cancelative. Thus the unit map M → u!u
∗M

is a weak equivalence, and applying (A•)∗ produces the map of simplicial sets in the

statement of the theorem.

Remark 8.1.2. In the proof of Theorem 8.1 it is not necessary to use a good cover

of M ; the same argument goes through using a hypercover which at each stage is

diffeomorphic to a coproduct of Euclidean space. y

8.2 A sample application to algebraic topology: principal

bundles

It is often taken for granted that the base space of a principal bundle in TSpc is

a homotopy quotient of the total space (in a sense which we make precise in course

of the discussion below)7. While this statement is true, it is not straightforward to
7In fact, this is often claimed, incorrectly, to be true of the quotient of any free group action.

To see that this is not the case, consider any non-trivial ordinary group G, and equip it with the
discrete topology. Let G act on copy of itself equipped with the trivial topology, then the quotient
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show using classical methods. For CGWH spaces a proof may be obtained by com-

bining [May75, Thm. 7.6] and [Shu09, Lm. 12.4], where the first reference relies on

technical pointset topological arguments. Alternatively, one can exhibit TSpc as a

model topos (in the sense of [Rez10, §6]), and use a descent argument, which, when

performed with rigour, is again technically demanding. Both of these approaches

however do not adequately address the relationship between the geometry and ho-

motopy theory of principal bundles.

We now exhibit how in the theory developed in this thesis this statement admits a

natural proof.

Definition 8.2.1. Let C be an∞-category with a final object, and let G : ∆op → C

be a group object, then a G-object in C is a Cartesian natural transformation

∆1 ×∆op → C with target G. y

Convention 8.2.2. In S, Set, Mfd∞ etc. G-objects will, respectively, be referred

to as G-homotopy types, G-sets, G-smooth manifolds etc. y

Example 8.2.3. Let G be an ordinary group, and let P• be a G-set, then P0 may

be equipped with both a left G-action and a right G-action in a canonical way. To

obtain the left G-action, observe that for any map α : ∆0 → ∆n in ∆ the square

Pn G× n×· · · ×G

P0 1

α∗
y

is a point. If the quotient were a homotopy quotient, it would have to model the classifying space
of G.
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is again a pullback diagram. For each n ≥ 1, choosing α : 0 7→ n one obtains a

bijection between Pn and the Cartesian product G× n×· · · ×G × P0. By transferring

the remaining face and degeneracy maps along these isomorphisms one obtains a

simplicial object encoding a left G-action. The right G-action on P0 is obtained

similarly and, writing (g, x) 7→ g · x for the induced left action, the right action is

given by (x, g) 7→ g−1 ·x, and the isomorphisms between the left G-set and right G-set

over G• is given by

G× n×· · · ×G× P0 → P0 ×G×
n×· · · ×G

(g1, . . . , gn, x) 7→ (g1 · · · gn · x, g1, . . . , gn).

y

Definition 8.2.4. Let G be a group object in either Diff∞concr, Diff0
concr, or TSpc,

then a classical 8 smooth, continuous, or topological principal G-bundle is, re-

spectively, a G-object P in Diff∞concr, Diff0
concr, or TSpc such that B := colimP

admits a cover by open subsets U for which P0|U ∼= U ×G as G-objects. y

Definition 8.2.5. Let (C,W ) be a relative ∞-category, then an augmented simpli-

cial object (∆op)� → C is called a homotopy quotient if it is a homotopy colimit

of its restriction ∆op → C (in the sense of Definition 2.0.1). y

Thus the theorem that we wish to prove is the following:

Theorem 8.2.6. Let G be a topological group, and let P → B be a classical principal

G-bundle, then B is a homotopy quotient of P , viewed as a G-space (Definition
8This qualifier reflects the fact that, in a precise sense, any G-object in an ∞-topos may be

viewed as principal bundle.
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8.2.1).

The proof of Theorem 8.2.6 relies on the following two results.

Lemma 8.2.7. The quotient map of a classical principal bundle in Diff r
concr (0 ≤

r ≤ ∞) is an effective epimorphism.

Proof. Let G be a diffeological group, and let P → B be a classical principal G-

bundle. For any cover {U} of B such P |U ∼= U × G for all U in {U} we obtain a

pullback square ∐
U ×G P

∐
U B.

Each projection U × G → U admits a section, and is thus an epimorphism, so that∐
U ×G→

∐
U is an epimorphism. The morphism E → B is then an epimorphism

by [Lur09, Prop. 6.2.3.15].

Proposition 8.2.8. Let G be a diffeological group, and let P → B be a classical

principal bundle in Diff r
concr (0 ≤ r ≤ ∞), the B is a homotopy quotient of P ,

viewed as a G-space.

Proof. This follows from the preceding lemma and from combining [Lur09, Cor. 6.2.3.5]

with the classical fact that

· · · P ×G P
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is canonically isomorphic to the Čech nerve

· · · P ×B P P

of P → B.

Proof of Theorem 8.2.6. Replacing a topological space with its associated ∆-generated

space does not affect its homotopy type in the Quillen model structure, and it is eas-

ily checked that this procedure preserves the property of being a classical principal

bundle, so we may assume w.l.o.g. that both P and B are ∆-generated. We may

now view P → B as a classical principal bundle in Diff0
concr, so that the proof follows

from Proposition 8.2.8.
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Appendix

A The cube category

Here we discuss some background material on the cube category needed in §6.3.

Definition A.0.1. The cube category is the subcategory of Set whose objects

are given by {0, 1}n (n ≥ 0), and whose morphisms are generated by the maps

δξi : n−1 → n

(x1, . . . , xn−1) 7→ (x1, . . . , xi−1, ξ, xi, . . . , xn−1)

for n ≥ i ≥ 1 and ε = 0, 1, and

σi : n+1 → n

(x1, . . . , xn+1) 7→ (x1, . . . , xi−1, xi+1, . . . , xn+1)

for n ≥ 0 and n ≥ i ≥ 1. The category of cubical sets is the category ̂ of

presheaves on . y

The cube category admits a (strict) monoidal structure given by ( m, n) 7→
m+n which extends to cubical sets via Day convolution. This monoidal structure is

denoted by ⊗.

We denote by ≤1 the full subcategory of spanned by 0, 1.

Proposition A.0.2 ([Cis06, Prop. 8.4.6]). Let M be a monoidal category, then the
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restriction functor

Hom( ,M)→ Hom( ≤1,M)

induces an equivalence of categories between the full subcategory of Cat( ,M) spanned

by monoidal functors, and the full subcategory of Cat( ≤1,M) spanned by functors

sending 0 to the monoidal unit of M .

Definition A.0.3. For every n ≥ 0 the boundary of n is the subobject ∂ n :=

∪(j,ζ)Imδζj
⊂ n, and for every n ≥ i ≥ 1 and ξ = 0, 1 the (i, ξ)-th horn of n is the

subobject n
i,ξ := ∪(j,ζ)6=(i,ξ)Imδζj

⊂ n. y

Proposition A.0.4 ([Cis06, Lm. 8.4.36]). For m ≥ 1, n ≥ k ≥ 1 and ε = 0, 1

the universal morphisms determined by the pushouts of the spans contained in the

commutative squares

n
i,ε⊗∂

m n ⊗ ∂ m ∂ m ⊗ n
i,ε ∂ n ⊗ m

n
i,ε⊗

m n ⊗ m m ⊗ n
i,ε

n ⊗ m

recover the canonical inclusions n+m
i,ε ↪→ n+m and n+m

i+m,ε ↪→
n+m and the univer-

sal morphism determined by the pushout of the span contained in the commutative

square
∂ m ⊗ ∂ n ∂ m ⊗ n

m ⊗ ∂ n m ⊗ n

recovers the inclusion ∂ m+n ↪→ m+n.

Theorem A.0.5 ([Cis06, Cor. 8.4.13 or Prop. 8.4.27]). The cube category is a test
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category.

Theorem A.0.6 ([Cis06, Th. 8.4.38]). The maps

(i) ∂ n ↪→ n (n ≥ 0), and

(ii) n
i,ε ↪→

n (n ≥ i ≥ 1, ε = 0, 1)

generate, respectively, the cofibrations and acyclic cofibrations of the test model struc-

ture on ̂.
Theorem A.0.7 ([Cis06, Th. 8.4.38]). The test model structure together with the

monoidal structure on ̂ form a monoidal model structure.
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Conventions and notation

Linguistic conventions In order to facilitate readability we use the following

contractions:

• We write “iff” instead of “if and only if”.

• We write “w.l.o.g.” instead of “without loss of generality”.

• We write “w.r.t.” instead of “with respect to”.

Editorial conventions

• Propositions stated without proof are marked with the symbol “2”.

Category theory

• We identify ordinary categories with their nerves, and consequently do not

notationally distinguish between ordinary categories and their nerves.

• ∞-categories (including ordinary categories) are denoted by C, D, . . .

• Let C be an ∞-category and let x, y ∈ C be two objects, then the homotopy

type of morphisms from x to y is denoted by C(x, y).

• For any enriched or cartesian closed ∞-category C and any to objects x, y in

C the enriched or internal hom object in C is denoted by C(x, y), while yx is

used only for internal hom objects. If C is enriched and Cartesian closed, then
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C(x, y) refers to the enriched hom objects and C(x, y) refers to the internal

hom object.

• For any∞-category C we denote it subcategory of n-truncated objects by C≤n.

• For A any small ordinary category Â denotes the category of (set-valued)

presheaves on A.

• For any two categories C,D, an arrow C ↪→ D denotes a fully faithful functor.

• For any two categories C,D, an arrow C � D denotes a faithful functor.

• We use the following notation for various categories:

– Set denotes the category of sets.

– TSpc denotes the category of topological spaces.

– ∆TSpc is the full subcategory of TSpc spanned by the ∆-generated

topological spaces.

– Cartr denotes the category of r-times differentiable smooth manifolds and

smooth maps.

– OMfdr denotes the full subcategory of Mfdr spanned by open subsets of

Rn (0 ≤ n <∞).

– Cartr denotes the full subcategory of Mfdr spanned by the spaces of Rn

(0 ≤ n <∞).

• Hom denotes the internal hom in ∆̂, the category of simplicial sets.
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• Let X be a simplicial set, then X' denotes the classifying space of X, given

e.g. by Ex∞A.
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