
AN INTRODUCTION TO QUANTUM COHOMOLOGY

TOM COATES

Abstract. Lecture notes for the LMS course “Symplectic Geometry: From Dynamics to Quantum
Cohomology” to be held at the University of Aberdeen in July 2011.
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1. Pseudoholomorphic Curves in Symplectic Manifolds

1.1. Introduction and Outline. Overall goal: a gentle introduction to quantum cohomology and
Gromov–Witten invariants, emphasizing concrete examples. It will not be possible to give, or even
to sketch, proofs of many results. Nothing here is original. References:

• McDuff–Salamon, J-holomorphic curves and quantum cohomology. American Mathematical So-
ciety, University Lecture Series, 6. 1994.

• McDuff–Salamon, J-holomorphic curves and symplectic topology. American Mathematical Society
Colloquium Publications 52. 2004.

• Fulton–Pandharipande, Notes on stable maps and quantum cohomology. Algebraic geometry—
Santa Cruz 1995, 45–96, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., 1997.

• Givental, A tutorial on quantum cohomology. Symplectic geometry and topology (Park City, UT,
1997), 231–264, IAS/Park City Math. Ser., 7, Amer. Math. Soc., 1999.

• Kock–Vainsencher, An invitation to quantum cohomology. Progress in Mathematics, 249. Birkhuser,
2007.

Darboux: symplectic manifolds have no local invariants. So how are we to distinguish symplectic mani-
folds? Gromov: look at moduli spaces of holomorphic curves in (M,ω).

1.2. Pseudoholomorphic curves.

Definition. An almost-complex structure on X is J ∈ End(TX) such that J2 = − id.

This makes TX into a complex vector bundle.

Key words and phrases. Quantum cohomology, Gromov–Witten invariants, symplectic geometry.
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Aside for later. If X admits an almost-complex structure then the Chern classes of the complex vector
bundle TX are independent of the choice of J .

Definition. Let (M,ω) be a symplectic manifold. An almost-complex structure J is compatible with ω
if and only if:

(1) ω(v, Jv) > 0 for all non-zero v ∈ TX;
(2) ω(Jv, Jw) = ω(v, w) for all v, w ∈ TX.

c.f. Kähler geometry. Imposing only the condition (1) is J being tamed by ω.

Exercise 1. Show that:
(1) an almost-complex structure J is compatible with ω if and only if g(v, w) := ω(v, Jw) is a

Riemannian metric on M ;
(2) with g as above, g + iω is a Hermitian form on TM ;
(3) if h is a Hermitian form on TM such that the imaginary part of h is ω then the real part of h

determines a compatible almost complex structure J

Let (M,ω) be a symplectic manifold. The space of almost-complex structures compatible with (or
indeed tamed by) ω is non-empty and contractible.

Typically almost-complex structures on M will not be integrable, i.e. will not arise from a complex
structure on M . Example: Pn.

Definition. Let Σ be a Riemann surface with complex structure j ∈ End(TΣ). Let J be an almost-
complex structure on M . A map f : Σ → M is called (j, J)-holomorphic or J-holomorphic or pseudo-
holomorphic if and only if the derivative dfx is complex-linear for all x ∈ Σ, i.e. if and only if:

(1) dfx ◦ jx = Jf(x) ◦ dfx for all x ∈ Σ.

These are the Cauchy–Riemann equations.

Exercise 2. Take Σ = M = C. Show that (1) becomes the familiar Cauchy–Riemann equations.

Locally, pseudoholomorphic curves exist in abundance because the equations (1) are elliptic PDEs.
But moduli spaces of global solutions carry a lot of information about the geometry of M , c.f. gauge
theory on 4-manifolds.

Exercise 3. Let (M,ω) be a symplectic manifold and let J be an almost-complex structure tamed by
ω. Let f : Σ → M be a J-holomorphic curve. Show that∫

Σ

f?ω ≥ 0

with equality if and only if f is a constant map.

1.3. Moduli spaces of pseudoholomorphic maps from a fixed curve. Let (M,ω) be a symplectic
manifold. Fix a Riemann surface Σ and an element d ∈ H2(M ; Z). Let M(Σ, J, d) denote the moduli
space of pseudoholomorphic maps f : Σ → M such that f?[Σ] = d, and for later convenience let us delete
from M(Σ, J, d) any points that represent multiply-covered holomorphic maps. (These would typically
be singular points of M(Σ, J, d).) What does M(Σ, J, d) look like?

Non-compactness 1: reparametrization. The group of automorphisms of Σ acts in the obvious way on
M(Σ, J, d).

Exercise 4. If Σ = P1 then Aut(Σ) = PSL(2, C)

Since PSL(2, C) is non-compact, we can never hope for M(Σ, J, d) to be compact in general: the best
we could hope for is that M(Σ, J, d)/ Aut(Σ) be compact.

Non-compactness 2: bubbling. But in general this isn’t true. For example, let M = P2. Let t ∈ R be
non-zero, and consider the map P1 → P2 defined by [x : y] 7→ [x2 : ty2 : xy]. On the main chart:
[z : 1] 7→ [z : tz−1 : 1], so this has image the graph of y = tx−1. Now let t → 0. The limit is the nodal
curve xy = 0. So in general M(Σ, J, d)/ Aut(Σ) cannot be compact.

Very very roughly, Gromov compactness says that M(Σ, J, d) fails to be compact only for these two
reasons. If you believe that, then you should also believe:

Theorem 5 (Gromov compactness, very special case). Let (M,ω) be a symplectic manifold and J an
almost-complex structure tamed by ω. Let d ∈ H2(M) be such that any non-constant J-holomorphic
sphere f : P1 → M has ω(d) ≤ ω(e), where e = f?[Σ]. Then the moduli space M(P1, J, d)/ Aut(P1) is
compact.

We will see in the next section that this has remarkable geometric consequences.
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Dependence on J . How does M(Σ, J, d) depend on J? Let g be the genus of Σ.
• for generic J tamed by ω (indeed for a set of such J of second category), M(Σ, J, d) is a smooth

oriented manifold of dimension:

(1− g) dim M + 2c1(TX) · d

• Let J0, J1 be almost complex structures tamed by ω and let Jt, t ∈ [0, 1] be a path between them.
Set:

M(Σ, {Jt}, d) =
{
(t, f) : t ∈ [0, 1], f ∈M(Σ, Jt, d)

}
In general it will not be possible to choose a path such that M(Σ, Jt, d) is a smooth manifold for
all t, but a generic path {Jt} will be such that M(Σ, {Jt}, d) is a smooth manifold. In this case
M(Σ, {Jt}, d) gives a cobordism between M(Σ, J0, d) and M(Σ, J1, d). (Think: irregular almost-
complex structures are “codimension 1” in the space of all ω-tame almost complex structures.)

Note that this is not so useful without compactness:

Exercise 6. Let X and Y be any two manifolds. Exhibit a non-compact cobordism between X and Y .

1.4. Gromov’s Non-Squeezing Theorem. Consider the evaluation map:

ev : M(Σ, J, d)× Σ → M

(f, x) 7→ f(x)

This respects the action of Aut(Σ) on M(Σ, J, d)× Σ, where g ∈ Aut(Σ) maps (f, x) to (f ◦ g−1, g(x)).
So we get an evaluation map out of the quotient:

ev : M(Σ, J, d)×Aut(Σ) Σ → M

(f, x) 7→ f(x)

For the remainder of this lecture, take Σ = P1 and take (M,ω) to be a symplectic manifold with
π2(M) = 0. Consider now the product P1 ×M , with the product symplectic form, and choose a generic
almost-complex structure J that is tamed by this product symplectic form.

Claim. There is a J-holomorphic curve through every point of P1 ×M .

Sketch of proof. �

Theorem 7 (Gromov’s Non-Squeezing Theorem). Suppose that (M,ω) is a symplectic manifold of di-
mension 2n−2 with π2(M) = 0. If there is a symplectic embedding from the ball B2n(r) into the cylinder
B2(λ)×M then r ≤ λ.

Sketch of proof. �

2. Moduli spaces of stable maps

Last time: non-compactness of M(Σ, J, d) from reparametrization and bubbling. This time: build a
compact moduli space of equivalence classes of J-holomorphic maps to (M,ω), where equivalence means
reparametrization.

2.1. Stable Maps.

Definition. Let (M,ω) be a symplectic manifold and J be an almost-complex structure compatible with
ω. A genus-g n-pointed stable map to (M,ω) of degree d ∈ H2(M) is:

• a possibly-nodal Riemann-surface Σ of genus g;
• n distinct marked smooth points x1, . . . , xn;
• a J-holomorphic map f : Σ → M (which means. . . ) such that f?[Σ] = d;

satisfying a stability condition defined as follows. For each component C of Σ, write SC for the set of
special points on C, i.e. marked points or nodes. Then stability is the conditions:

• for each component C of genus zero such that f(C) = pt, |SC | ≥ 3;
• for each component C of genus one such that f(C) = pt, |SC | ≥ 1.

Definition. Two stable maps (Σ; x1, . . . , xn; f) and (Σ′;x′1, . . . , x
′
n; f ′) are equivalent if and only if there

exists a biholomorphism ϕ : Σ → Σ′ such that ϕ(xi) = x′i for all i and f = f ′ ◦ ϕ.

Note that stability means “no infinitesimal automorphisms”. Thus we might hope that the set of
equivalence classes of stable maps is something like a smooth orbifold.
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Definition. The moduli space of stable maps Mg,n(M,J, d) is the set of equivalence classes of genus-g
n-pointed stable maps to M of degree d.

The space Mg,n(M,J, d) admits a topology, called the Gromov topology, which makes it into a compact
Hausdorff metrizable space. Later in the lecture we will describe the convergent sequences in this topology.

Why Compactness? Let (M,ω) be a symplectic manifold and J an almost-complex structure compatible
with ω. Recall that ω and J together define a Riemannian metric g on M . The essential point in the
proof of compactness is that the energy :

E(f) :=
1
2

∫
Σ

|df(z)|2 dvolΣ

of a J-holomorphic map f : Σ → M is a topological invariant:

E(f) =
∫

Σ

f?ω

This gives uniform bounds on the first derivatives of all J-holomorphic curves of the same degree d = f?[Σ].
(That said, the analysis involved is not easy. e.g. McDuff–Salamon is roughly 650 pages long.)

2.2. Warm-up: Deligne–Mumford space. Suppose that the symplectic manifold M is a point. Then
the moduli space of stable maps becomes Deligne–Mumford space Mg,n. This consists of equivalence
classes of:

• possibly-nodal Riemann surfaces Σ of genus g; together with
• distinct smooth marked points x1, . . . , xn in Σ

satisfying a stability condition as above. Two marked Riemann surfaces (Σ;x1, . . . , xn) and (Σ′;x′1, . . . , x
′
n)

are equivalent if and only if there exists a biholomorphism ϕ : Σ → Σ′ such that ϕ(xi) = x′i for all i.
Deligne and Mumford showed that Mg,n is a compact orbifold of dimension 6g − 6 + 2n. Examples:
M0,n is empty for n < 3, M1,0 is empty, M0,3 = pt, M0,4 = P1.

Exercise 8. M0,5 is the blow-up of P2 at 4 points.

The orbifold Mg,n is stratified by the combinatorial type of Σ. In the same way, for general M the
moduli space of stable maps Mg,n(M,J, d) is stratified by the combinatorial type of the source curve of
the stable map.

Definition. There is a map π : Mg,n+1 → Mg,n defined by forgetting the last marked point and then
contracting any unstable components.

In fact this is the universal family for the moduli problem that defines Mg,n.

Definition. There are sections σi : Mg,n →Mg,n+1 of π, defined by the marked points.

2.3. Gromov Convergence. For simplicity we will discuss only Gromov convergence for J-holomorphic
spheres and for fixed J . There are similar notions for J-holomorphic curves of higher genus, for varying
J , and for stable maps1.

Definition (Energy). Let (M,ω) be a symplectic manifold and let J be an almost-complex structure
compatible with ω. Let f : Σ → M be a stable map and let B be a subset of Σ. Write:

E(f,B) :=
1
2

∫
B

|df(z)|2 dvolΣ

for the energy of the restriction of f to B.

Definition (Gromov Convergence for J-holomorphic spheres). Let (M,ω) be a symplectic manifold and
let J be an almost-complex structure compatible with ω.

• Let f : Σ → M be an n-pointed stable map of genus zero, let T be the set of components of Σ,
and let fα : P1 → M , α ∈ T , be the restrictions of f to components of Σ. Let x1, . . . , xn ∈ Σ be
the marked points. Let Zα be the set of nodes on the component α of Σ.

• Let fν : P1 → M be a sequence of J-holomorphic spheres in M , and let (xν
1 , . . . , xν

n) be marked
points on P1.

We say that (P1;xν
1 , . . . , xν

n; fν) Gromov converges to (Σ;x1, . . . , xn; f) if and only if there exist a collec-
tion of Möbius maps {φν

α}ν∈N
α∈T such that:

1See McDuff–Salamon, J-holomorphic curves and symplectic topology, chapter 5.
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(1) for each α ∈ T , the sequence fν
α := fν ◦ φα converges to fα uniformly on compact subsets of

P1 − Zα.
(2) for each pair α, β of components of Σ that meet at a node zαβ ∈ Σ, the limits:

lim
ε→0

lim
ν→∞

E(fν
α , Bε(zαβ))

lim
ε→0

lim
ν→∞

E(fν
β , Bε(zαβ))

exist and concide with the energies of f restricted to the two “halves” of Σ that meet at zαβ .
Here Bε(zαβ)) denotes a ball of radius ε about zαβ in respectively the component α and the
component β of Σ.

(3) for each pair α, β of components of Σ that meet at a node zαβ ∈ Σ, the sequence (φν
α)−1 ◦ φν

β

converges to zαβ uniformly on compact subsets of P1 − {zαβ}.
(4) for each i such that the marked point xi lies on the component α of Σ, the limit:

lim
ν→∞

(φν
α)−1(xν

i )

exists and equals xi.

Exercise 9. Show that the example from Lecture 1 (the graphs of y = (νx)−1 in P2, ν = 1, 2, . . .) defines
a Gromov convergence sequence of stable maps.

The Gromov topology on the moduli space of stable maps Mg,n(M,J, d) is a Hausdorff topology such
that the convergent sequences are the Gromov convergent sequences. With this topology, Mg,n(M,J, d)
is compact and metrizable. This is proved for semipositive symplectic manifolds in McDuff–Salamon.

2.4. Evaluation and Collapsing Maps.

Definition. The evaluation maps evi, 1 ≤ i ≤ n are:

evi : Mg,n(M,J, d) → M

(Σ; x1, . . . , xn; d) 7→ f(xi)

The maps evi are continuous with respect to the Gromov topology.

Definition. There is a forgetful map or collapsing map:

ct : Mg,n(M,J, d) →Mg,n

that sends (Σ;x1, . . . , xn; d) to the stable map defined by Σ with any unstable components contracted.

Note that the stability conditions for stable maps and stable curves are different, so in general one will
need to contract some components of Σ. The map ct is continuous with respect to the Gromov topology.

2.5. Expected Dimension and Virtual Class. Fix a stable map (Σ; x1, . . . , nn; f) of genus g and
degree d. The expected dimension of Mg,n(M,J, d) is:

6g − 6 + 2n︸ ︷︷ ︸
dim. of moduli space of complex structures on Σ

+ index of ∂-operator︸ ︷︷ ︸
dim. of moduli space for fixed Σ

i.e.
6g − 6 + 2n + (1− g) dim M + 2c1(TX) · d

Henceforth we will assume that Mg,n(M,J, d) is a compact smooth orbifold of the expected dimension.
For example this holds, for generic J , when g = 0 and M is a homogeneous space.

Exercise 10. Let (M,ω) be an arbitrary symplectic manifold and J an almost-complex structure com-
patible with ω. Compute the expected and actual dimensions of Mg,1(M,J, 0).

In general things are significantly worse than this, and one needs the notions of Kuranishi structure
and virtual fundamental class; see e.g.:

• Fukaya–Ono, Arnold conjecture and Gromov-Witten invariant for general symplectic manifolds.
The Arnoldfest (Toronto, ON, 1997), 173–190, Fields Inst. Commun., 24, Amer. Math. Soc.,
Providence, RI, 1999.

• Li–Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds.
Topics in symplectic 4-manifolds (Irvine, CA, 1996), 47–83, First Int. Press Lect. Ser., I, Int.
Press, Cambridge, MA, 1998.

• Ruan, Virtual neighborhoods and pseudo-holomorphic curves. Proceedings of 6th Gökova Geometry-
Topology Conference. Turkish J. Math. 23 (1999), no. 1, 161–231.
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• Siebert, Symplectic Gromov-Witten invariants. New trends in algebraic geometry (Warwick,
1996), 375–424, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge,
1999.

• Joyce, Kuranishi homology and Kuranishi cohomology: a User’s Guide. arXiv:0710.5634
But there is always a canonically-defined class in Hk(Mg,n(M,J, d)), where k is the virtual dimension,
called the virtual fundamental class. When Mg,n(M,J, d) is a smooth orbifold of the expected dimension,
the virtual fundamental class coincides with the ordinary fundamental class.

2.6. Gromov–Witten Invariants.

Definition. Let (M,ω) be a symplectic manifold and let J be a generic almost-complex structure com-
patible with ω. Let α1, . . . , αn ∈ H•(M), and write:

(2) 〈α1, . . . , αn〉Mg,n,d =
∫

[Mg,n(M,J,d)]vir

ev?
1α1 ∪ · · · ∪ ev?

n(αn)

where the integral denotes cap product against the virtual fundamental class. This is a Gromov–Witten
invariant of M .

Gromov–Witten invariants are independent of the choice of J ; they are invariants of the symplectic
manifold (M,ω). In good cases they have enumerative meaning, as follows. . .

Note however that, because Mg,n(M,J, d) may have orbifold singularities, the Gromov–Witten in-
variant 〈α1, . . . , αn〉Mg,n,d will in general be a rational number even if α1, . . . , αn are integral cohomology
classes on M .

3. Quantum Cohomology

3.1. Recap: Gromov–Witten invariants. Definition and enumerative meaning.

3.2. Basic properties of Gromov–Witten invariants. Behaviour under permutations of α1, . . . , αn.

Lemma 11 (The String Equation). Let (M,ω) be a symplectic manifold. Let g, n, and d be such that
either d 6= 0 or 2g − 2 + n > 0. For any cohomology classes α1, . . . , αn ∈ H•(M), we have:

〈α1, . . . , αn, 1〉Mg,n+1,d = 0

Proof. �

Exercise 12 (The Divisor Equation). Let (M,ω) be a symplectic manifold. Let g, n, and d be such
that either d 6= 0 or 2g − 2 + n > 0. For any cohomology classes α1, . . . , αn ∈ H•(M), and any class
β ∈ H2(M), we have:

〈α1, . . . , αn, β〉Mg,n+1,d = (β · d) 〈α1, . . . , αn〉Mg,n,d

What does this mean in terms of enumerative geometry?

3.3. Big Quantum Cohomology and Small Quantum Cohomology. Quantum cohomology is a
family of algebra structures on H•(M) defined in terms of genus-zero Gromov–Witten invariants of M .
This family is either parametrized by t ∈ H•(M), in the case of big quantum cohomology, or by t ∈ H2(M),
in the case of small quantum cohomology. First we introduce a new coefficient ring for cohomology, the
Novikov ring of M , which will allow us to define the quantum product in terms of an infinite sum without
worrying about questions of convergence. Depending on your point of view, this is either:

• essential; or
• completely unimportant.

3.3.1. The Novikov Ring.

Definition. The Novikov ring Λ(M) of M is the completion of the group ring Q[H2(M ; Z)] with respect
to the valuation v such that:

v(d) = ω · d d ∈ H2(M)

Concretely: suppose that M is a Kähler manifold, choose a basis φ1, . . . , φr for the free part of
H2(M ; Z) such that the cone spanned by φ1, . . . , φr contains the Kähler cone of M . Let β1, . . . , βr be
the dual basis for the free part of H2(M ; Z) and write d ∈ H2(M) as d = d1β1 + · · · + drβr. Then the
Novikov ring consists of elements: ∑

d∈H2(M ;Z)

αd qd1
1 · · · qdr

r
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such that for each λ ∈ R, the set{
d ∈ H2(M ; Z) : d · ω ≤ r and αd 6= 0

}
is finite.

3.3.2. The Gromov–Witten Potential. The Gromov–Witten potential F 0
M is a generating function for all

genus-zero Gromov–Witten invariants of M .

Definition. Let (M,ω) be a symplectic manifold. The Gromov–Witten potential or genus-zero Gromov–
Witten potential is a function of t ∈ H•(M) taking values in Λ(M), defined by:

F 0
M (t) =

∑
d∈H2(M ;Z)

∑
n≥0

qd

n!
〈t, . . . , t〉M0,n,d

It is conventional in the physics literature, and also in mathematics in situations where the series
defining the Gromov–Witten potential converges (examples. . . ) to omit the Novikov variables, replacing
the factor qd by 1. If M is Kähler and we have set things up as above, then qd = qd1

1 · · · qdr
r and no

negative powers of the variables qi occur.

Exercise 13 (The Gromov–Witten potential of P2). Let M = P2 with the standard symplectic form
and complex structure. Let p ∈ H2(M) be the first Chern class of O(1), and write x ∈ H•(M) as
x = s1 + tp + up2. Set:

Nd =

〈
p2, . . . , p2︸ ︷︷ ︸

3d−1

〉M

0,3d−1,d

d = 1, 2, 3, . . .

(1) Give an enumerative interpretation of the Gromov–Witten invariant Nd.
(2) Use the String Equation and the Divisor Equation to express the Gromov–Witten potential F 0

M (x)
in terms of s, t, u, and Nd.

3.3.3. The Big Quantum Product.

Definition. Let (M,ω) be a symplectic manifold, and let t ∈ M . The (big) quantum product ∗t on
H•(M ; Λ(M)) is defined by:(

u ∗t v, w
)

= ∇u∇v∇wF 0
M (t) for all u, v, w ∈ H•(M)

where (·, ·) denotes the Poincaré pairing on H•(M) and ∇u denotes directional derivative along u ∈
H•(M).

Note the Novikov variables hiding in the definition of F 0
M . More concretely:

φα ∗t φβ =
∑

d∈H2(M)

∑
n≥0

qd

n!
〈φα, φβ , t, t, . . . , t, φγ〉M0,n+3,d φγ

where {φα} and {φβ} are bases for H•(M) that are dual with respect to the Poincaré pairing and we
use the summation convention, summing over repeated indices. Big quantum cohomology is the family
of algebras

(
H•(M ; Λ(M)), ∗t

)
. This family of algebras encodes, via its structure constants, genus zero

Gromov–Witten invariants of M . Properties:

• (super)commutative
• associative
• unital, with unit equal to 1 ∈ H•(M)
• a deformation of the usual cup product on H•(M)

From the point of view of symplectic geometry, this is rather depressing: Gromov–Witten invariants
satisfy many universal identities (i.e. identities which hold independent of the geometry of M), and
so provide fewer tools for distinguishing symplectic manifolds than one might hope. (For a maximal
example of this, see Teleman’s proof of Givental’s conjectural formula for the higher-genus Gromov–
Witten invariants of manifolds with semisimple quantum cohomology.) But from the point of view of
algebraic geometry, this is good news: there is a remarkable amount of hidden structure to enumerative
geometry. (See e.g. Example 16 below.)
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3.3.4. The Small Quantum Product. In practice we will concentrate attention on a subfamily of big
quantum cohomology.

Definition. The small quantum product ? on H•(M ; Λ(M)) is ∗t|t=0.

Remark. I previously described small quantum cohomology as being parametrized by H2(M), whereas
in the definition we set t = 0. This was not a mistake, but rather has to do with the presence of
the Novikov variables and with the Divisor Equation. Let φ1, . . . , φr be basis elements which span
H2(M); let t1, . . . , tt be the co-ordinates on H2(M) corresponding to φ1, . . . , φr; and let q1, . . . , qr be
the corresponding Novikov variables. Then the Divisor Equation implies that the quantum product ∗t

depends on t1, . . . , tr and q1, . . . , qr only through the products qie
ti

, 1 ≤ i ≤ r. Thus the products ∗t|t=0

and ∗t|t∈H2(M) carry the same information.

The small quantum product, concretely:

φα ? φβ =
∑

d∈H2(M)

qd 〈φα, φβ , φγ〉M0,3,d φγ

The small quantum product, geometrically:

φα ? φβ =
∑

d∈H2(M)

qdev?
3

(
ev?

1φα ∪ ev?
2φβ

)
This should remind you of Topological Field Theories:

Properties:
• (super)commutative
• associative
• unital
• graded2, where deg qd = d · ω
• a deformation of the usual cup product on H•(M)

The grading is one reason why the completion involved in the definition of Novikov ring is often not so
important in practice.

Theorem 14 (The Small Quantum Cohomology of Projective Space). Let M = Pn with the standard
symplectic form. Let p ∈ H2(M) be the first Chern class of O(1), let β ∈ H2(M) be dual to p, and let q
be the Novikov variable that corresponds to β in the sense of §3.3.1. Then the small quantum cohomology
algebra

(
H•(M ; Λ(M)), ?

)
is:

Q[p, q]/(pn+1 − q)
It is a graded algebra with deg q = 2n + 2.

Proof. �

4. Associativity and the WDVV Equations

Theorem 15. Let (M,ω) be a symplectic manifold. The big quantum cohomology algebra:(
H•(M ; Λ(M)), ∗t

)
is associative. Equivalently, let {φα} be a basis for H•(M), let t = tαφα (summation convention!), let
gαβ = (φα, φβ), and let gαβ be such that gαεgεβ = δα

β. Then:

∂3F 0

∂tα∂tβ∂tµ
(t)gµν ∂3F 0

∂tν∂tγ∂tδ
(t)

is symmetric in indices α, β, γ, δ.

2Big quantum cohomology is also graded, but it is a little more complicated.
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So associativity of quantum cohomology is equivalent to a system of non-linear PDEs for the Gromov–
Witten potential. These are the WDVV equations.

Sketch of Proof. �

In some cases, the WDVV equations are strong constraints on F 0
M .

Exercise 16. (after Kontsevich) Recall from Exercise 13 that one can write the Gromov–Witten potential
for P2 in terms of the Gromov–Witten invariants:

Nd =
〈
p2, . . . , p2

〉M

0,3d−1,d
d = 1, 2, 3, . . .

Show that the WDVV equations give the following recursive formula for Nd:

N(d) =
∑

k+l=d

N(k)N(l)k2l

[
l

(
3d− 4
3k − 2

)
− k

(
3d− 4
3k − 1

)]
d ≥ 2

Together with the initial condition N1 = 1, this recursively determines the number of degree-d rational
curves in the plane through 3d− 1 points in general position.

But in some cases, the WDVV equations give no information at all.

Exercise 17. (the quintic threefold) Let Q ⊂ P4 be the hypersurface defined by a generic degree-5
polynomial in 5 variables. Let:

n0,d = 〈 〉Q0,0,d (the empty correlator)

• Give an enumerative interpretation of the Gromov–Witten invariant nd.
• Express the genus-zero Gromov–Witten potential of Q in terms of nd.
• Show that the WDVV equations give no constraints on nd.

5. A Word About Mirror Symmetry

Example 18 (The Landau–Ginzburg Model that is mirror to Pn). Recall that Pn = (Cn+1)//C×, where
C× acts on Cn+1 via the embedding:

C× → (C×)n+1

t 7→ (t, . . . , t)

The dual to this embedding is:

p : (C×)n+1 → C×

(x0, . . . , xn) 7→ x0x1 · · ·xn

There is a function W : (C×)n+1 → C, called the superpotential, defined by:

W (x0, . . . , xn) = x0 + x1 + · · ·+ xn

The fiber Yy of p : (C×)n+1 → C× over y ∈ C× is the torus x0x1 . . . xn = y. The family(
p : (C×)n+1 → C×,W

)
is a family of open Calabi–Yau manifolds3 Yy, y ∈ C×, equipped with a family of functions W : Yy → C.
This is an example of a Landau–Ginzburg model. The algebra of functions on the critical set of W |Yy is
isomorphic to:

C{x, y}/(xn+1 − y)
i.e. to the small quantum cohomology algebra of Pn.

In fact all of the symplectic topology of Pn (Gromov–Witten invariants of all genera, the derived
Fukaya category, etc.) can be recovered from the Landau–Ginzburg model. There is a similar story for
other toric varieties, and for a broad class of complete intersections in toric varieties.

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
E-mail address: tomc@imperial.ac.uk

3In fact to define a family of Calabi–Yau manifolds I need to specify also a holomorphic volume form on each fiber Yy ;
this is:

ωy =
d log x0 ∧ · · · d log xn

d log y
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