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ABSTRACT. These notes explore some aspects of formal derived geometry related to
classical field theory. One goal is to explain how many important classical field theo-
ries in physics – such as supersymmetric gauge theories and supersymmetric�-models
– can be described very cleanly using derived geometry. In particular, I describe a
mathematically natural construction of Kapustin-Witten’s P1 of twisted supersymmet-
ric gauge theories.

Elliptic moduli problems. Moduli spaces of solutions to systems of elliptic equations
(such as the Yang-Mills instanton equations, self-duality equations, holomorphic map
equations, etc.) have played a central role in mathematics for many years. The first
aim of this paper is to develop a general homological language for discussing formal
derived moduli problems of solutions to elliptic differential equations. I call such an
object an elliptic moduli problem.

The equations of motion of a classical field theory are a system of elliptic differen-
tial equations, and so the formal moduli space of their solutions (infinitesimally near
a given solution) is an elliptic moduli problem. The fact that the moduli of solutions
to the equations of motion of a classical field theory are the critical points of an ac-
tion functional mean that this elliptic moduli problem is equipped with an additional
geometric structure: a symplectic form of cohomological degree −1. Following a sug-
gestion of Lurie, I will call a space with a degree −1 symplectic form 0-symplectic. 1

This elliptic moduli problem, with its symplectic form, is a complete encoding of
the classical field theory. In this paper, we will define a classical field theory to be a
0-symplectic elliptic moduli problem.

1The reason for this terminology is that there is a close relationship between spaces with a symplectic
form of cohomological degree k and the Ek+1-operad.

1
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I will only consider formal derived spaces. Even giving a good definition of sym-
plectic form on a global derived stack is a highly non-trivial matter: the general theory
of such objects is worked out in [Vez11] and [PTVV11].

In ordinary geometry, the simplest construction of a symplectic manifold is as a
cotangent bundle. There is a similar construction in our context: given any elliptic
moduli problem (corresponding to a system of elliptic differential equations) there is
a corresponding classical field theory, which we call the cotangent field theory. Many
field theories of interest in mathematics and physics arise as cotangent theories.

Quantization. After setting up this language for discussing classical field theories,
I will briefly discuss what it means to quantize a classical field theory, following
[Cos11b] and [CG11]. I will show that a quantization of a cotangent theory to an
elliptic moduli problem M on a compact manifold X leads to a volume form2 on the
finite-dimensional formal derived space M(X) of global solutions. This leads to a
program for defining (and computing) the non-perturbative partition function for a
cotangent theory: a quantization of the theory yields a volume form on the space of
solutions, and the partition function is the volume.

This program has been carried out succesfully in [Cos11a] for the cotangent theory
associated to the moduli space of degree zero maps form an elliptic curve to a compact
complex manifold X. In this case, the partition function is the Witten genus of X.

More details on this program, and on further examples, will appear in subsequent
publications.

Supersymmetry. Much of the rest of the paper is devoted to studying examples of
classical field theories using this language. The hope is to convince mathematicians
that the framework of derived geometry provides a very natural way to understand
supersymmetric field theories (or at least, their holomorphic and topological twists).

A more concrete goal is to give a mathematically natural construction of the P1 of
twisted N = 4 supersymmetric gauge theories constructed by Kapustin and Witten
[KW06] in their study of the geometric Langlands program; and to explain how this
P1 of field theories is related to the A- and B-models with target the Hitchin system.

To this end, I first define the A- and B-models of mirror symmetry, as well as their
half-twisted versions. It turns out that the half-twisted A- and B-models are partic-
ularly easy to describe in the language used in this paper: they are both cotangent
theories to natural elliptic moduli problems.

2defined up to an overall constant
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Then, after briefly discussing the basics of supersymmetry in 4-dimensions, I de-
scribe the self-dual limits of the N = 1, 2 and 4 supersymmetric gauge theories on
R4, using the twistor-space formalism developed in detail in [BMS07] (building on
earlier work of Witten [Wit04]). Again, these theories are cotangent theories to natural
elliptic moduli problems.

Next, the concept of twisting of a supersymmetric gauge theory is introduced. We
will see that the twisting procedure has many features that will be familiar to homolog-
ical algebraists: for example, there’s a spectral sequence starting from the observables
of the physical (untwisted) theory and converging to the observables of the twisted
theory.

Once we have defined what it means to twist a supersymmetric field theory, we
will analyze the twists of the N = 1, 2 and 4 supersymmetric gauge theories. We will
find, again, that the twisted theories are cotangent theories to simple elliptic moduli
problems. The twisted N = 1 theory on a complex surface X is the cotangent theory
associated to the moduli problem of holomorphic G-bundles on X; the twisted N = 2
theory is the cotangent theory to the moduli space of such bundles equipped with a
section of the adjoint bundle of Lie algebras; and the twisted N = 4 theory is the
cotangent theory to the moduli of Higgs bundles on X.

The N = 1 theory can be twisted only once; but the N = 2 and 4 theories admit
further twists. In the final section of the paper we will show that the N = 4 theory
admits a further P1 of twists, which (at special points in P1) dimensionally reduce to
the A- and B-models with target the Hitchin system.

I should say what I mean by dimensional reduction. As we have seen, a classical
field theory on X is a sheaf M of derived spaces on X. Dimensional reduction simply
means pushing forward this sheaf along a map X → Y. The precise relationship
between the twisted N = 4 gauge theory and the A- and B-models is that if we take
our gauge theory on a product Σ1 × Σ2 of two Riemann surfaces, and dimensionally
reduce in this sense along the map Σ1 × Σ2 → Σ1, we find a field theory on Σ1 which
is equivalent to the A-model with target T∗ BunG(Σ2) (if we use the A-twisted N = 4
gauge theory), or the B-model with target LocG(Σ2) (if we use the B-twisted N = 4
gauge theory).

Geometrically, the P1 of twisted N = 4 gauge theories is given by a family of
elliptic moduli problem with a symplectic form of degree −1. At a special point (the
B-model point) on P1, this is the cotangent theory associated to the elliptic moduli
problem of G-local systems on a complex surface S. At generic points of P1, the elliptic
moduli problem can be interpreted as the de Rham stack of the moduli stack of G-local
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systems on X, equipped with a certain symplectic form. At the A-model point, the
elliptic moduli problem becomes the de Rham stack of the derived moduli space of
Higgs bundles on X.

One advantage of the point of view advocated here is that one does not need to
know anything about supersymmetry to understand this P1 of twisted N = 4 theo-
ries. The only reason I discuss supersymmetry in this paper is to justify the assertion
that the field theories I describe using derived geometry are the same as those dis-
cussed in the physics literature.

Quantizing twisted supersymmetric gauge theories. So far, we have discussed su-
persymmetric gauge theories only at the classical level. I will say almost nothing
about quantization: except to prove that the minimally-twisted N = 1, 2, 4 theories
we consider admit a unique quantization on C2, compatible with all natural symme-
tries. Further analysis of these quantum field theories will appear elsewhere [Cos12].

Warning. The main objects of study in this paper are certain formal derived stacks,
equipped with extra geometrical structures (e.g. a symplectic form). I will give all
details for how to construct and work with these objects at the formal level. Even
though I don’t supply all the details required for my constructions at the non-formal
level, I will often (informally) talk about global derived stacks.

Terminology. My use of the term “twist” (as in, twisted supersymmetric field the-
ory) differs a little from the way some physicists use this term. In this paper, given a
supersymmetric field theory, the twisted theory is obtained by considering only quan-
tities invariant under a particular supercharge. (A supercharge is physics-speak for
an odd element of the Z/2 graded Lie algebra of supersymmetries, which acts on a
supersymmetric field theory).

For some authors, to twist a supersymmetric field theory is a two-step process.
Given a supersymmetric field theory on R4, one first changes the action of the Poincaré
group on the theory by choosing a map from the Poincaré group into the R-symmetry
group. (The R-symmetry group is a Lie group acting on a supersymmetric field the-
ory in a way lifting the trivial action on space-time). Then, one finds a supercharge Q
invariant under this new action of the Poincaré group, and twists (in my sense) with
respect to Q.
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1. ELLIPTIC MODULI PROBLEMS

Let us thus start by trying to give a general definition of an elliptic moduli space.
We will use a little losely the basic ideas of derived geometry, as developed in [Lur09,
Toë06].

1.1. The following statement is at the heart of the philosophy of deformation theory:

There is an equivalence of (∞, 1) categories between the category of
differential graded Lie algebras, and the category of formal pointed de-
rived moduli problems.

In a different guise, this statement goes back to Quillen’s [Qui69] and Sullivan’s [Sul77]
work on rational homotopy theory. These ideas were developed extensively in the
work of Kontsevich and Soibelman [Kon03, KS]. More general theorems of this nature
are considered in [Lur10], which is also an excellent survey of these ideas.
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The basic idea of this correspondence is as follows. Formal moduli problems are
defined using the functor of points. Thus, a formal moduli problem is a functor F
which takes a nilpotent Artinian differential graded algebra R, and assigns to it the
simplicial set F(R) of R-points of the moduli probelm. If g is a differential graded Lie
algebra, then the formal moduli probem Fg associated to g is defined as follows. If R
is a nilpotent Artinian dga, with maximal ideal m ⊂ R, then we set

Fg(R) = MC(g⊗m)

where MC(g⊗m) is the simplicial set of Maurer-Cartan elements of the dg Lie algebra
g⊗m.

We are interested in elliptic derived moduli problems: that is, derived moduli prob-
lems described by a system of elliptic partial differential equations on a manifold M.
As a first step towards a formal definition of an elliptic derived moduli problem, we
will give a definition of formal pointed elliptic moduli problem. Using the principle
quoted above as a guide, we will define an formal pointed elliptic moduli problem on
a manifold M to be a sheaf of L∞ algebras on M of a certain kind.

1.1.1 Definition. Let M be a manifold. An elliptic L∞ algebra on M consists of the following
data.

(1) A graded vector bundle L on M, whose space of sections will be denoted L .
(2) A differential operator d : L → L , of cohomological degree 1 and square 0, which

makes L into an elliptic complex.
(3) A collection of poly-differential operators

ln : L ⊗n → L

which are alternating, of cohomological degree 2 − n, and which endow L with the
structure of L∞ algebra.

Throughout this paper, formal pointed elliptic moduli problems will be described
by elliptic L∞ algebras.

If L is an elliptic L∞ algebra on a manifold M, then it yields a presheaf on M
of functors from dg Artin rings to simplicial sets. If (R, m) is a dg Artin ring with
maximal ideal R, and if U ⊂ M is an open subset, then we can consider the simplicial
set

MC(L (U)⊗m)
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of Maurer-Cartan elements of the L∞ algebra L (U) ⊗ m (where L (U) refers to the
sections of L on U). We will think of this as the R-points of the formal pointed moduli
problem associated to L (U).

Remark: When discussing global (i.e. non-formal) derived spaces, I will often be quite
informal; a thorough treatment of such objects as the derived moduli stack of local
systems on a manifold is out of reach of this paper. I will, however, try to be more
precise when talking about formal derived spaces, by giving an explicit description of
the corresponding Lie or L∞ algebra.

2. EXAMPLES OF ELLIPTIC MODULI PROBLEMS

2.1. Flat bundles. The most basic example of an elliptic moduli problem is that as-
sociated to flat bundles on a manifold M. Let G be a Lie group, and let P → M be
a principal G-bundle equipped with a flat connection. Let gP be the adjoint bundle
(associated to P by the adjoint action of G on its Lie algebra g). Thus, gP is a bundle of
Lie algebras on M, with a flat connection.

The elliptic L∞ algebra controlling deformations of the flat G-bundle P is simply

L = Ω∗(M, gP).

The differential on L is the de Rham differential on M coupled to the flat connection
on gP.

To see this, observe that any deformation of P just as a G-bundle is trivial. We can,
however, deform the flat connection on P. Let (R, m) be a nilpotent Artin ring with
maximal ideal m. Then, a family of flat connections on P, parametrized by Spec R, is
the same as an element

� ∈ Ω1(M, gP)⊗m

satisfying the Maurer-Cartan equation

d� + 1
2 [�,�] = 0.

Further, two such Maurer-Cartan elements give the same flat G-bundle if and only if
they are gauge equivalent. Gauge equivalences are represented by 1-simplices in the
Maurer-Cartan simplicial set. Thus, we see that �0 MC

(
Ω1(M, gP)⊗m

)
is the set of

isomorphism classes families of flat G-bundles over Spec R, which restrict to the given
G-bundle at the base-point of Spec R.

One can ask what role the forms Ωi for i > 2 play in this story. Of course, if we just
probe our moduli problem with ordinary (not dg) Artin rings, we do not detect the
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higher forms. However, if R is a differential graded Artin ring, then a Maurer-Cartan
element of Ω∗(M, gP)⊗ R may have components involving all of the Ωi.

2.2. Self-dual bundles. Let M be an oriented 4-manifold. Let G be a Lie group, and
let P → M be a principal G-bundle, and let gP be the adjoint bundle of Lie algebras.
Suppose we have a connection A on P with self-dual curvature:

F(A)− = 0 ∈ Ω2
−(M, gP)

(here Ω2
−(M) denotes the space of anti-self-dual two-forms).

Then, the elliptic Lie algebra controlling deformations of (P, A) is described by the
diagram

Ω0(M, gP) d−→ Ω1(M, gP)
d−−→ Ω2

−(M, gP).

Here d− is the composition of the de Rham differential (coupled to the connection on
gP) with the projection onto Ω2

−(M, gP).

2.3. Holomorphic bundles. In a similar way, if M is a complex manifold and if P →
M is a holomorphic principal G-bundle, then the elliptic dg Lie algebra Ω0,∗(M, gP),
with differential ∂, describes the formal moduli space of holomorphic G-bundles on
M.

3. SYMMETRIES OF ELLIPTIC MODULI PROBLEMS

Suppose that R is a differential graded algebra. Let R] refer to R without the differ-
ential.

3.0.1 Definition. An R-family of elliptic L∞ algebras on X consists of graded bundle L of R]-
modules on X, whose sheaf of sections will be denoted L ; together with an R]-linear differential
operator

d : L → L

which makes L into a sheaf of dg R-modules; and, collection of R-linear polydifferential oper-
ators

ln : L ⊗n → L

making L into a sheaf of L∞ algebras on X over R.

Remark: Note that in this definition, R can be a nuclear Fréchet dg algebra. In that case,
the tensor products should be the completed projective tensor product.
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Our main reason for introducing the concept of an R-family of elliptic L∞ algebras
is to talk about symmetries. Recall that in homotopy theory, to give an action of a
group G on an object is the same as to give a family of objects over the classifying
space BG. There is a similar picture in homotopical algebra: to given an action of an
L∞ algebra g on some object is the same as to give a family of such objects over C∗(g).
We will take this as our definition of action of an L∞ algebra g on an L∞ space.

3.0.2 Definition. If g is an L∞ algebra, and L is an elliptic L∞ algebra on a space X, a g-
action on L is a family of elliptic moduli problems L g on X, over the base ring C∗(g), which
specialize to L modulo the maximal ideal C>0(g) of C∗(g).

Remark: The Chevalley-Eilenberg cochain complex C∗(g) is the completed pro-nilpotent
dg algebra, which is an inverse limit

C∗(g) = lim←−C∗(g)/In

where I is the maximal ideal C>0(g).

3.1. There is one more generalization we would like to consider. The symmetries we
considered above always preserve the base point of a formal pointed elliptic moduli
problem. Indeed, we defined a symmetry as a family of formal pointed elliptic moduli
problems. In order to consider symmetries which do not preserve the base point, we
need to modify our definition so that our family is no longer equipped with a base
point.

Let R be a differential graded ring with a nilpotent differential ideal I ⊂ R. Recall
that a formal pointed derived space over R can be described by an is an L∞ algebra
g, in the category of flat R-modules. We can modify this definition to access formal
derived spaces which are not equipped with a base point, as follows.

Let R] denote the graded algebra R, with zero differential.

3.1.1 Definition. A curved L∞ algebra over R consists of a locally free finitely generated
graded R]-modules g, together with a derivation

d : Ŝym
∗
(g[1]∨)→ Ŝym

∗
(g[1]∨)

of cohomological degree 1 and square zero. In this expression, all tensors and duals are over the
graded algebra R].

The derivation d must make the completed symmetric algebra Ŝym
∗
(g[1]∨) into a differen-

tial graded algebra over the differential graded algebra R.
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Further, when we reduce modulo the nilpotent ideal I ⊂ R, the derivation d must preserve
the ideal in Ŝym

∗
(g[1]∨) generated by g.

If g is a curved L∞ algebra over R, then we let C∗(g) be the differential graded
algebra Ŝym

∗
(g[1]∨) over R. Note that C∗(g) is a pronilpotent commutative dga over

R, and can thus be thought of as a formal derived scheme over R. However, the ideal
C>0(g) is not necessarily preserved by the differential, because of the presence of the
curving. This indicates that this formal derived scheme is not pointed.

Once we have this definition, it is straightforward to modify our definition of R-
family of elliptic L∞ algebras.

3.1.2 Definition. Let R be as above. An R-family of curved elliptic L∞ algebras on M is
a graded bundle L of R] on M, whose sheaf of sections L is equipped with the structure of
curved L∞ algebra over R, where the curving vanishes modulo the maximal ideal I, and where
the structure maps are polydifferential operators.

4. MAPPING PROBLEMS AS ELLIPTIC MODULI PROBLEMS

Many field theories of interest in mathematics and physics have, for their space of
fields, the space of maps between two manifolds. In this section I will outline how one
can put field theories of this nature into the framework of elliptic moduli problems.

4.0.3 Definition. An elliptic ringed space is a manifold M, equipped with a sheaf A of
differential graded algebras over the sheaf Ω∗M, with the following properties.

(1) A is concentrated in finitely many degrees.
(2) Each A i is a locally free sheaf of modules for Ω0

M of finite rank.
(3) The differential d on A makes A into an elliptic complex.
(4) We are given a map of dg Ω∗M-algebras A → C∞

M .

We will let I ⊂ A be the ideal which is the kernel of the map A → C∞
M .

Note that, because each A i is a locally-free sheaf of modules over Ω0
M = C∞

M , A

must be the sheaf of sections of a finite-rank graded vector bundle on M.

We can discuss elliptic ringed spaces over R or C; an elliptic ringed space over C is
defined as above, except that we work over the sheaf of dg algebras Ω∗M ⊗R C.

Here are some examples of elliptic ringed spaces.



12 KEVIN COSTELLO

(1) Let M be any manifold. Then letting A = Ω∗M gives an elliptic ringed space
which we refer to as MdR.

(2) Let M be a complex manifold. Then there is an elliptic ringed space M
∂

over
C, with A = Ω0,∗(M), where the differential is the operator ∂.

(3) Let M be any complex manifold, and let R be any finite rank holomorphic
bundle of graded Artinian algebras on M. Then, Ω0,∗(M, R) defines an elliptic
ringed space.

(4) As a special case of the last example, let M be a complex manifold and let E
be a holomorphic vector bundle on M. We can define an elliptic ringed space
which we right as E

∂
[1] (or as just E[1]) with underlying manifold M, and sheaf

of algebras
A = Ω0,∗(M, Sym∗(E∨[−1]),

where Sym∗(E∨[−1]) indicates the free sheaf of graded-commutative algebras
generated by E∨ in degree 1. The differential on this dga is just ∂.

(5) Let M be a 4-manifold with a conformal structure. Then, the complex

A =
{

Ω0(M) d−→ Ω1(M)
d−−→ Ω2

−(M)
}

gives M the structure of an elliptic ringed space.

4.1. We will show how to construct elliptic moduli problems from elliptic ringed
spaces.

To start with, we will explain how to construct the formal moduli spaces of maps
from an elliptic ringed space to a formal derived space.

Recall that, for any L∞ algebra g, there is a formal moduli problem Bg which assigns
to an Artinian dg ring (R, m) the simplicial set MC(g⊗m) of solutions to the Maurer-
Cartan equation in g⊗m.

If A is a commutative dga, we can think of L∞ algebra A ⊗ g as describing the
formal moduli problems of maps Spec A → Bg, completed near the constant maps
with values the base point of Bg.

Given any finite-dimensional L∞ algebra g, and any elliptic ringed space (M, A ),
we can define an elliptic moduli problem (M, A ⊗ g). We will think of this as describ-
ing the space of maps from (M, A ) to Bg.

Since the formal neighbourhood of any point in a derived stack is described by
an L∞ algebra, this construction shows that, for any derived stack Y and any ellip-
tic ringed space (M, A ), the space of maps (M, A ) to Y formally completed near a
constant map to a point y ∈ Y is described by an elliptic L∞ algebra on M.
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5. GLOBAL MAPPING PROBLEMS AND L∞ SPACES

In this section we will briefly sketch a language which allows us to describe the el-
liptic moduli problem describing a quite wide class of mapping problems, for instance,
that between complex manifolds. We have seen how to describe mapping problems
from an elliptic ringed space to a formal derived scheme; the challenge is to globalize
this description. It is not essential to understand this section in order to follow the rest
of the paper.

A formal derived scheme is described by an L∞ algebra. Our global construction of
a mapping problem will take as target an “L∞ space”.

5.0.1 Definition. An L∞ space is a manifold X with a sheaf of curved L∞ algebra g over the
de Rham complex Ω∗X, where the curving vanishes modulo the ideal Ω>0

X .

More details on the theory of L∞ spaces are presented in [Cos11a].

A more standard approach to derived geometry is to work with spaces equipped
with a sheaf of differential graded commutative algebras. The theory of L∞ spaces is
Koszul dual to this more standard approach. If (X, g) is an L∞ space, let C∗(g) be the
Ω∗X-linear Chevalley-Eileberg cochain complex of g. This forms a sheaf of dg rings on
X.

For example, if X is a complex manifold, then it is shown in [Cos11a] that there is an
L∞ space (X, gX), with underlying manifold X, such that C∗(gX) is quasi-isomorphic
to the sheaf of holomorphic functions on X. More precisely, let J (OX) be the sheaf of
smooth sections of the bundle of jets of holomorphic functions on X. This is a bundle
with a flat connection, so that we can define the de Rham complex Ω∗X(J (OX)). The
sheaf of L∞ algebras gX is constructed so that there is an isomorphism of sheaves of
Ω∗X-algebras

C∗(gX) ∼= Ω∗X(J (OX)).

If (X, g) is an L∞ space, we can reduce the curved L∞ algebra g modulo Ω>0
X to get

a sheaf gred of (non-curved) L∞ algebras over the sheaf C∞
X of smooth functions on X.

In particular, gred is a cochain complex over smooth vector bundles on X. In the case
that gX encodes the complex structure on X, gred

X is the complex tangent bundle T1,0
X .

5.1. Global mapping problems. Now let (M, A ) be an elliptic ringed space, and
(X, g) be an L∞ space. We are interested in defining a notion of map from (M, A )
to (X, g). Such a map will, in particular, be a map of smooth manifolds� : M→ X.
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If� : M→ X is a smooth map, we will let

�∗g = �−1g⊗�−1Ω∗X
A .

Thus, �∗g is a curved L∞ algebra over A , whose curving vanishes modulo the ideal
I ⊂ A .

5.1.1 Definition. A map (M, A )→ (X, g) consists of the following data.

(1) A smooth map� : M→ X.
(2) A solution � to the Maurer-Cartan equation in �∗g, which vanishes modulo the ideal

I ⊂ A .

As an example, the following lemma is proved in [Cos11a].

5.1.2 Lemma. Let M and X be complex manifolds, and let A = Ω0,∗
M be the Dolbeaut res-

olution of the structrue sheaf of M, and let gX denote the curved L∞ algebra over Ω∗X which
encodes the complex structure of X.

Then a map from (M, Ω0,∗
M ) to (X, gX) is the same as a holomorphic map from M to X.

This formalism allows us to write down easily the elliptic L∞ algebra on a complex
manifold M controlling deformations of a fixed holomorphic map� : M→ X.

The lemma implies that the curving of �∗gX vanishes precisely when � is holo-
morphic. Thus, when � is holomorphic, �∗gX is a cochain complex of sheaves of
Ω0,∗

M -modules. There is an isomorphism of dg Ω0,∗
M -modules

�∗gX ∼= Ω0,∗(M,�∗TX[−1]).

Further, if J (OX) denotes bundle of jets of holomorphic functions on X, we have an
isomorphism of sheaves of differential graded Ω0,∗

M -modules

C∗(�∗gX) ∼= Ω0,∗
M (�∗J (OX).

Lie algebra cochains of�∗gX are taken linearly over Ω0,∗
M .

A Maurer-Cartan element of�∗gX (with coefficients in an Artinian dg ring (R, m) is
then the same as a map of Ω0,∗

M -algebras

Ω0,∗(M,�∗ J(OX))→ Ω0,∗
M ⊗m.

This is the same as a deformation of the holomorphic map�.
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Note that since the L∞ algebra is Ω0,∗
M -linear, locally on M the L∞ structure is en-

coded by a holomorphically-varying family of L∞ structures on the holomorphic bun-
dle �∗TX[−1]. Globally, we can view the L∞ structrue on Ω0,∗(M,�∗TX[−1]) as en-
coding a homotopical version a holomorphic L∞ structure on the holomorphic bundle
�∗TX[−1].

Note that, for any holomorphic vector bundle E on X, Ω
]
X ⊗C∞

X
E has the structure

of a curved L∞ module over gX. This curved L∞ structure is characterized up to
contractible choice by the property that C∗(gX , E) coincides with the Ω∗(X, J(E)), the
de Rham complex of X with coefficients in the C∞ bundle underlying the bundle of
jets of holomorphic sections of E.

It follows that Ω0,∗(M,�∗E) is equipped with the structure of L∞ module over the
L∞ algebra�∗gX = Ω0,∗(M, TX[−1]).

The semi-direct product L∞ algebra

Ω0,∗(M,�∗TX[−1]⊕�∗E[−1])

controls deformations of pairs (�, s) where� : M→ X is a holomorphic map, and s is
a section of�∗E (where we are deforming near s = 0).

6. PRINCIPAL BUNDLES ON ELLIPTIC RINGED SPACES

We are also interested in elliptic moduli problems describing principal bundles on
elliptic ringed spaces. For example, a principal bundle G-bundle on MdR will be a
flat G-bundle on M; and if G is a complex Lie group and M a complex manifold, a
principal G-bundle on M

∂
will be a holomorphic G-bundle on M. The reader who

is happy to accept that there is a reasonable notion of principal bundle on an elliptic
ringed space should skip this section.

The definition for a general group is a little involved, so we will start with the defi-
nition for GL(n).

6.0.3 Definition. Let (M, A ) be an elliptic ringed space over R or C. A rank n vector bundle
on M is a sheaf E of dg modules over the dg ring A , which, as a sheaf of graded modules over
the sheaf of graded A ] given by A without the differential, is locally free of rank n.

Note if E is a rank n vector bundle on (M, A ), then E /I is a locally free sheaf of
rank n over C∞

M , and so define a rank n vector bundle on M.

Let us list some examples.
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(1) A vector bundle on MdR is a vector bundle on M with a flat connection,
(2) If M is a complex manifold, a vector bundle on M

∂
is a holomorphic vector

bundle on M.
(3) If M is again a complex manifold, a vector bundle on T[1]M

∂
is a Higgs bundle

on M. Indeed, the sheaf of algebras on M describing T[1]M
∂

is Ω∗,∗M equipped
with the differential ∂. If E is a vector bundle on T[1]M

∂
, then E is isomorphic

to Ω∗,∗(M, V) for some rank n holomorphic vector bundle on M; but with a
differential of the form ∂ +�, where� ∈ Ω1,0(M, End(V)). The condition that
the differential squares to zero means that ∂� = 0 and [�,�] = 0.

6.1. Let us now discuss the definition of a general principal G-bundle on an elliptic
ringed space (M, A ). Because of lack of space, I will be a little terse.

To motivate our definition, let us recall the definition of a connection and of a flat
connection on a principal G-bundle on a manifold.

In what follows, if � : P → M is a principal G-bundle, and E is a sheaf on M of
modules over C∞

M , we use the notation �∗E to denote the sheaf of C∞
P -modules

�∗E = �−1E ⊗�−1C∞
M

C∞
P .

6.1.1 Definition. Let G be a real Lie group. Let P→ M be a principal G-bundle on a manifold
M. Then a connection on P is a G-equivariant and C∞

P -linear map

� : Ω1
P → �∗Ω1

M

which splits the natural map

�∗Ω1
M → Ω1

P.

By composing with the de Rham differential on P, such a connection induces a
derivation d� on the bundle of graded algebras �∗Ω∗M, by the formula

d�( f ⊗!) = �(d f ) ∧!+ f d!

for a local section! of �−1Ω∗M and f of C∞
P .

6.1.2 Definition. A connection � is flat if d2
� = 0.

We will adapt this definition to define the notion of principal bundle on an elliptic
ringed space (M, A ). Thus, suppose � : P → M is a principal G-bundle, and (M, A )
is an elliptic ringed space over R.
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Since A is a sheaf of algebras over Ω∗M, each graded component A i is a sheaf of
modules for C∞

M . Thus, we can define a sheaf of C∞
P -modules

�∗A i = �−1A i ⊗�−1C∞
M

C∞
P .

Note that the natural map Ω1
M → A 1 induces a map �∗Ω1

M → �∗A 1.

6.1.3 Definition. If G is a real Lie group, and P→ M is a principal G-bundle on M, then an
A -connection on P is a G-equivariant C∞

P -linear map

� : Ω1
P → �∗A 1

whose restriction to the subsheaf �∗Ω1
M is the natural map �∗Ω1

M → �∗A 1.

Note that such an A -connection on P induces a differential operator d� : C∞
P →

�∗A 1, obtained by composing the de Rham differential on P with �. This operator
extends uniquely to a derivation d� of the sheaf of graded algebras �∗A by the Leibniz
rule

d�( f ⊗ a) = �(d f )a + f dA a

for all local sections f of C∞
P and a of �−1A i. Here dA indicates the differential on A .

6.1.4 Definition. An A -connection on P is flat if the derivation d� of �∗A is of square zero.

Note that in this situation, �∗A , with the differential d�, is a sheaf of differential
graded algebras over the sheaf of dgas �−1A .

If the bundle P is trivialized, so that P = M × G, then there is a natural flat A -
connection on P given by composing the projection map Ω1

P → �∗Ω1
M with the natural

map Ω1
M → A . In this case, we can identify �∗A as

�∗A = A � C∞
G .

and the operator d� is defined by

d�(a � f ) = (dA f ) � g.

6.1.5 Definition. Let (M, A ) be an elliptic ringed space over R, and let G be a real Lie group.
Then a principal G-bundle on (M, A ) is a principal G-bundle on M equipped with a flat A -
connection.

Recall that MdR denotes the elliptic ringed space (M, Ω∗M). It is clear from the defi-
nition that a principal G-bundle on MdR is the same thing as a G-bundle on M with a
flat connection.
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6.2. The definition is slightly different in the cases when G is complex. Let (M, A )
be an elliptic ringed space over C, and let � : P → M be a principal bundle for a
complex Lie group G. We will let OP denote the sheaf of smooth functions on P which
are holomorphic on each fibre, and we will let Ω1

P,∂
denote the sheaf of 1-forms on

P which are holomorphic (1, 0) forms when restricted to each fibre. We will let Ωk
P,∂

denote the OP-linear exterior power of the sheaf Ω1
P,∂

. Finally, we will let Ω∗
P,∂

denote

the de Rham complex built from the sheaves Ωk
P,∂

.

If E is a sheaf on M of C∞
M modules, we will let �∗E denote the sheaf of OP modules

�∗E = �−1E ⊗�−1C∞
M

OP.

Thus, in particular, we have sheaves �∗A i of OP modules.

6.2.1 Definition. If G is a complex Lie group, (M, A ) is an elliptic ringed space over C, and
P → M is a principal G-bundle, then an A -connection on P is a G-equivariant OP-linear
map

� : Ω1
P,∂ → �∗A 1

whose restriction to �∗Ω1
M is the natural map �∗Ω1

M → �∗A 1.

Such a connection � is flat if the derivation d� on �∗A constructed as before has square
zero.

6.2.2 Definition. If G is a complex Lie group, a principal G-bundle on a complex elliptic
ringed space (M, A ) is a principal G-bundle on M equipped with a flat A -connection.

6.2.3 Lemma. If M is a complex manifold, then a principal G-bundle on the elliptic ringed
space M

∂
= (M, Ω0,∗

M ) is the same as a holomorphic principal G-bundle on M.

Proof. P → M is a bundle where the fibre and the base are both complex manifolds.
Suppose that we have a complex structure on the total space P which is G-equivariant
and compatible with the complex structures on the fibre and the base.

Let Ω1
P,hol be the sheaf of holomorphic 1-forms on P, and, as before, let Ω1

P,∂
be the

sheaf of 1-forms which are holomoprhic 1, 0 forms on each fibre.

Recall that we use the notation OP to denote the sheaf of functions on P which are
holomorphic on all fibres. If f ∈ OP is a local section, then the complex structure on P
allows us to define ∂ f ∈ Ω0,1

P . Since f is holomorphic on fibres, ∂ f will actually land
in the sheaf �∗Ω0,1

M ⊂ Ω0,1
P .

Thus, a complex structure on P induces a differential operator

OP → �∗Ω0,1
M .
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The sheaf Ω1
P,∂

of 1-forms on P which are holomorphic (1, 0)-forms on each fibre is the
sheaf of Kähler differentials of OP. The universal property of Kähler differentials thus
gives us an OP-linear map

Ω1
P,∂ → �∗Ω0,1

M

and so an A -connection as desired. Of course, since ∂
2

= 0 on P, this A -connection is
flat.

The converse is straightforward. �

6.3. Let (M, A ) be an elliptic ringed space over the field F, which is either R or C.
Given a principal G-bundle (P, �) → (M, A ), and a representation V of G. one can
define an associated sheaf VP,A of A -modules on M as follows. We give �∗A the
differential d�. Then, �∗A ⊗F V is a G-equivariant sheaf of �−1A modules on V. We
can then define a sheaf VP,A on U by defining

VP,A (U) = (�∗A (U)⊗F V)G .

In this way, for example, we construct a sheaf A (gP) of dg Lie algebras on M, over the
dg algebras A , associated to the adjoint representation of G. Note that, if VP denotes
the sheaf of C∞

M modules of sections of the adjoint vector bundle on M associated to P,
then VP,A is isomorphic to A ⊗C∞

M
VP equipped with a differential coming from �.

6.3.1 Lemma. In this situation, to give a deformaton of the flat A -connection � on the fixed
principal G-bundle P is the same as to give a Maurer-Cartan element

� ∈ (A (gP))1.

Proof. I will give the proof for the real case; the complex case is similar. Suppose
that �′ is another A -connection on the principal bundle P → M. Then, �′ − � is a
G-equivariaant C∞

P linear map
Ω1

P → �∗A 1

which is zero on �∗Ω1
M. Thus, if Ω1

� refers to the sheaf relative 1-forms for the map
� : P→ M, �′ − � is a G-equivariant map

Ω1
� → �∗A 1.

This is the same as a C∞
M-linear map

g∨P → A 1

where g∨P is the sheaf of sections of the coadjoint vector bundle on M associated to P.

Thus, we have seen that A-connections form a torsor for A 1 ⊗ gP. It is straight-
foward to calculate that the condition for an A -connection to be flat is the same
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Maurer-Cartan equation in the dg Lie algebra A (gP). (Recall that A (gP) = gP ⊗C∞
M

A

with a differential coming from �). �

From this observation, we see that to every principal G-bundle (P, �) on (M, A ), we
can construct an elliptic L∞ algebra A (gP), and that this elliptic L∞ algebra controls
the deformations of (P, �). We have already seen special cases of this construction.
When A = Ω∗M, we have seen that the elliptic L∞ algebra Ω∗(M, gP controls de-
formations of a flat principal G bundle P, and that in the complex case, Ω0,∗(M, gP)
controls deformations of a holomorphic principal G bundle P.

Of course, the statement that the elliptic L∞ algebra A (gP) controls deformations
of the principal G-bundle (P, �) requires proof. Since the proof is identical to the proof
of the more familiar statements concerning flat G-bundles or holomorphic G-bundles,
I will omit it. Alternatively, since in this paper we are mostly interested in formal
moduli problems, the reader can simply take the Maurer-Cartan moduli problem as-
sociated to A (gP) as a definition of the formal moduli space of G-bundles on (M, A ).

6.4. Finally, I will briefly consider one further example. Let M be a complex manifold,
and let E be a vector bundle on M. Let us consider the complex elliptic ringed space
T[1]M

∂
with sheaf of algebras A = Ω∗,∗(M), with differential ∂. The following lemma

is easy to verify from the above discussion.

6.4.1 Lemma. A principal G-bundle on T[1]M
∂

is the same as a Higgs bundle on M, that is,
a holomorphic principal G-bundle P on M together with an element

� ∈ Ω1,0(M, gP)

satisfying

∂� = 0

[�,�] = 0.

7. CLASSICAL FIELD THEORIES IN THE BATALIN-VILKOVISKY FORMALISM

Before I get to giving a definition of a perturbative classical field theory in the lan-
guage of elliptic L∞ algebras, I will explain a little about the general Batalin-Vilkovisky
formalism for classical field theories.
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Let us start by discussing the classical Batalin-Vilkovisky formalism in a finite-
dimensional toy model (which we can think of as a 0-dimensional classical field the-
ory). Our model for the space of fields is a finite-dimensional smooth manifold mani-
fold M. The “action functional” is given by a smooth function S ∈ C∞(M). Classical
field theory is concerned with solutions to the equations of motion. In our setting,
the equations of motion are given by the subspace Crit(S) ⊂ M. Our toy model will
not change if M is a smooth algebraic variety or a complex manifold, or indeed a
smooth formal scheme. Thus we will write O(M) to indicate whatever class of func-
tions (smooth, polynomial, holomorphic, power series) we are considering on M.

If S is not a nice function, then this critical set can by highly singular. The classical
Batalin-Vilkovisky formalism tells us to take, instead the derived critical locus of S. (Of
course, this is exactly what a derived algebraic geometer [Lur09, Toë06, CFK01] would
tell us to do as well).

The critical locus of S is the intersection of the graph

Γ(dS) ⊂ T∗M

with the zero-section of the cotangent bundle of M. Algebraically, this means that we
can write the algebra O(Crit(S)) of functions on Crit(S) as a tensor product

O(Crit(S)) = O(Γ(dS))⊗O(T∗M) O(M).

Derived algebra geometry tells us that the derived critical locus is obtained by replac-
ing this tensor product with a derived tensor product. Thus, the derived critical locus
of S (which we denote Crith(S) is an object such that

O(Crith(S)) = O(Γ(dS))⊗L
O(T∗M) O(M).

In derived algebraic geometry, as in ordinary geometry, spaces are determined by their
algebras of functions. In derived geometry, however, one allows differential-graded
algebras as algebras of functions (normally one restricts attention to differential-graded
algebras concentrated in non-positive cohomological degrees).

We will take this derived tensor product as a definition of O(Crith(S)).

7.1. It is convenient to consider an explicit model for the derived tensor product. By
taking a standard Koszul resolution of O(M) as a module over O(T∗M), one sees that
O(Crith(S)) can be realized as the complex

O(Crith(S)) ' . . . ∨dS−−→ Γ(M,∧2TM) ∨dS−−→ Γ(M, TM) ∨dS−−→ O(M).

In other words, we can identifty O(Crith(S)) with functions on the graded manifold
T∗[−1]M, equipped with the differential given by contracting with dS.
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Note that

O(T∗[−1]M) = Γ(M,∧∗TM)

has a Poisson bracket of cohomological degree 1, called the Schouten-Nijenhuis bracket.
This Poisson bracket is characterized by the fact that if f , g ∈ O(M) and X, Y ∈
Γ(M, TM), then

{X, Y} = [X, Y] {X, f } = X f { f , g} = 0

(the Poisson bracket between other elements of O(T∗[−1]M) is inferred from the Leib-
niz rule).

The differential on O(T∗[−1]M) corresponding to that on O(Crith(S)) is given by

d� = {S,�}

for� ∈ O(T∗[−1]M).

7.2. The derived critical locus of any function is a dg manifold equipped with a sym-
plectic form of cohomological degree −1. We call such an object a 0-symplectic dg
manifold. In the Batalin-Vilkovisky formalism, the space of fields always has such a
symplectic structure. However, one does not require that the space of fields arises as
the derived critical locus of a function.

8. CLASSICAL FIELD THEORIES

We would like to consider classical field theories in the BV formalism. For us, such
a classical field theory is specified by an elliptic moduli problem equipped with a
symplectic form of cohomological degree −1.

We defined the notion of formal elliptic moduli problem on a manifold M using
the language of L∞ algebras. Thus, in order to give the definition of a classical field
theory, we need to understand the following question: what extra structure on an L∞
algebra g endows the corresponding formal moduli problem with a symplectic form?

The answer to this question was given by Kontsevich [Kon93]. Given a pointed
formal moduli problem M, the associated L∞ algebra gM has the property that

gM = TpM[−1].

Further, we can identify geometric objects on M in terms of gM as follows.
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C∗(gM) The algebra O(M) of functions on M

gM-modules V OM-modules
C∗(gM, V) the OM module

The gM-module gM[1] TM

Following this logic, we see that the complex of two-forms on M can be identified with
C∗(gM,∧2(g∨M[−1])).

However, on a symplectic formal manifold, one can always choose Darboux coor-
dinates. Changes of coordinates on M correspond to L∞ isomorphisms on gM. In
Darboux coordinates, the symplectic form has constant coefficients, and thus can be
viewed as a gM-invariant element of ∧2(g∨M[−1]).

Note that the usual Koszul rules of signs imply that

∧2(g∨M[−1]) = Sym2(g∨M)[−2].

To give a gM-invariant element of Sym2(g∨M) is the same as to give an invariant sym-
metric bilinear form on gM.

Thus, we arrive at the following principle:

To give a formal pointed derived moduli problem with a symplectic
form of cohomological degree k is the same as to give an L∞ algebra
with a symmetric, invariant, and non-degenerate pairing of cohomo-
logical degree k− 2.

We will define a classical field theory to be an elliptic L∞ algebra equipped with a
non-degenerate invariant pairing of cohomological degree−3. Let us first define what
it means to have an invariant pairing on an elliptic L∞ algebra.

8.0.1 Definition. Let M be a manifold, and let E be an elliptic L∞ algebra on M. An invariant
pairing on E of cohomological degree k is a symmetric vector bundle map

〈−,−〉E : E⊗ E Dens(M)[k]

satisfying some additional conditions.

(1) Non-degeneracy: we require that this pairing induces a vector bundle isomorphism

E→ E∨ ⊗Dens(M)[−3].
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(2) Invariance: let Ec denotes the space of compactly supported sections of E. The pairing
on E induces an inner product on Ec, defined by

〈−,−〉 : Ec ⊗ Ec → R

� ⊗�→
∫

M
〈�,�〉 .

We require that this is an invariant pairing on the L∞ algebra Ec.

Recall that a symmetric pairing on an L∞ algebra g is called invariant if, for all n,
the linear map

g⊗n+1 → R

�1 ⊗ · · · ⊗�n+1 7→ 〈ln(�1, . . . ,�n),�n+1〉

is graded anti-symmetric in the�i.

8.0.2 Definition. A formal pointed elliptic moduli problem on with a symplectic form of coho-
mological degree k on a manifold M is an elliptic L∞ algebra on M with an invariant pairing
of cohomological degree k− 2.

8.0.3 Definition. A (perturbative) classical field theory on M in the BV formalism is a formal
pointed elliptic moduli problem on M with a symplectic form of cohomological degree −1.

8.1. Suppose that L is an elliptic L∞ algebra with an invariant pairing of cohomologi-
cal degree k− 2 on a manifold M, in the sense described above. Then, if M is compact,
the pairing sets up a quasi-isomorphism between L (M) and the continuous linear
dual L (M)∨, with a shift. Since the differential on L is elliptic, L (M) has finite di-
mensional cohomology. Thus, L (M) describes a finite-dimensional formal moduli
problem (in the ordinary sense), together with a symplectic form of degree k.

One neds to be a little careful in interpreting the invariant pairing on L on non-
compact open subsets U of M. If U is such a subset, then the invariant pairing on L

does not give a quasi-isomorphism between L (U) and its continuous linear dual.

Rather, if Lc(U) denotes the compactly supported sections of L , the invariant pair-
ing gives a quasi-isomorphism

L (U) ∼= Lc(U)∨.

One should interpret this as follows. L (U) describes a (possibly infinite-dimensional)
formal pointed moduli problem, whose tangent complex at the base point is L (U).
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Note that Lc(U) ⊂ L (U) is an L∞ ideal: any higher bracket at least one of whose
inputs is compactly supported will yield a compactly supported section of L (U).

In the dictionary between formal geometry and L∞ algebras, L∞ ideals correspond
to foliations. Thus, we see that Lc(U) gives a foliation on the formal moduli problem
corresponding to L (U). Two points of the formal moduli problem BL (U) associated
to L (U) are on the same leaf if they coincide outside of a compact set.

Let us denote the subbundle of the tangent bundle of BL (U) corresponding to this
foliation as TcBL (U) ⊂ TBL (U).

The pairing between L (U) and Lc(U) gives rise to an isomorphism between TcBL (U)
and the dual to TBL (U). In other words, BL (U) is equipped with a kind of “leaf-
wise” symplectic structure, pairing a tangent vectors along a leaf with an arbitrary
tangent vector.

This leafwise symplectic structure can also be thought of as a Poisson structure on
BL (U) satisfying a weak version of non-degeneracy: namely, that the map T∗BL (U)→
TBL (U) arising from the Poisson tensor gives an isomorphism T∗BL (U)→ TcBL (U).

8.2. The basic way symplectic manifolds arise in geometry is, of course, as cotangent
bundles. Thus, given any elliptic moduli problem, we can construct a classical field
theory as a shifted cotangent bundle. Let us explain this construction in detail.

Let L be an elliptic L∞ algebra on a manifold X; and let ML be the associated elliptic
moduli problem.

Let L! be the bundle L∨ ⊗ Dens(X). Note that there is a natural pairing between
compactly supported sections of L and compactly supported sections of L!.

Recall that we use the notation L to denote the space of sections of L; we will let
L ! denote the space of sections of L!.

8.2.1 Definition. Let us define T∗[k]ML to be the elliptic moduli problem associated to the
elliptic L∞ algebra L⊕ L![k− 2].

This elliptic L∞ algebra has a pairing of cohomological degree k− 2.

The L∞ structure on the space L ⊕L ![k− 2] of sections of the direct sum bundle
L⊕ L![k− 2] arises from the natural L -module structure on L !.

8.2.2 Definition. Let M be an elliptic moduli problem. Then, the cotangent field theory
associated to M is the −1-symplectic elliptic moduli problem T∗[−1]M.
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8.3. Next I will give the definition of an L∞ action on a classical field theory. Recall
that, if g is an L∞ algebra and L is an elliptic L∞ algebra on a space X, then a g-action
on L is a family of elliptic L∞ algebras over C∗(g), which specializes to L modulo
the maximal ideal C>0(g). The same definition applies to classical field theories.

Let R be a differential graded algebra, and let L be an R-family of elliptic L∞ al-
gebras. Recall that this means that we have a graded bundle L of R]-modules on X,
whose sheaf L of sections is equipped with a differential making it into a sheaf of dg
R-modules, and with an R-linear L∞ structure. We will let

L! = L∨ ⊗DensX

where L∨ is the R]-linear dual of L. We will let L ! denote the sheaf of sections of L!.
This has a natural structure of sheaf of dg modules over R, with an L∞ action of L .

8.3.1 Definition. An invariant pairing of degree k on an R-family of elliptic L∞ algebras L

is an R-linear isomorphism

L ∼= L ![k]

of sheaves of L -modules, which is symmetric as before.

8.3.2 Definition. Let g is an L∞ algebra, and let L be a classical field theory on a space X.
Thus L is an eliptic L∞ algebra on X with an invariant pairing L ∼= L ![−3] of degree −3.
Then a g-action on L is a family of elliptic moduli problems L g on X, flat over the base ring
C∗(g), equipped with an invariant pairing of degree −3, which specializes to L modulo the
maximal ideal C>0(g) of C∗(g).

If L is an elliptic L∞ algebra on X with an action of g, then the cotangent field
theory T∗[−1]L also has a natural action of g, compatible with the invariant pairing.

9. EXAMPLES OF COTANGENT FIELD THEORIES

Many classical field theories of interest in mathematics and physics arise as cotan-
gent theories. In this section we will list some examples.

In order to make the discussion more transparent, I will normally not explicitly
describe the elliptic L∞ algebra related to an elliptic moduli problem; instead, I will
simply define the elliptic moduli problem in terms of the geometric objects it classifies.
In all examples, it is straightforward using the techniques we have discussed so far to
write down the elliptic L∞ algebra describing the formal neighbourhood of a point in
any of the elliptic moduli problems we will consider.
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9.1. Self-dual Yang-Mills theory. Let X be an oriented 4-manifold equipped with a
conformal class of a metric. Let G be a compact Lie group. Let M(X, G) denote the
elliptic moduli problem parametrizing principal G-bundles on X with a connection
whose curvature is self-dual.

Then, we can consider the cotangent theory T∗[−1]M(X, G). This theory is known
in the physics literature as self-dual Yang-Mills theory.

Let us describe the L∞ algebra of this theory explicitly. Observe that the elliptic L∞
algebra describing the completion of M(X, G) near a point (P,∇) is

Ω0(X, gP) d−→ Ω1(X, gP)
d−−→ Ω2

−(X, gP)

where gP is the adjoint bundle of Lie algebras associated to the principal G-bundle P.

Thus, the elliptic L∞ algebra describing T∗[−1]M is given by the diagram

Ω0(X, gP)
d // Ω1(X, gP)

d− //

⊕
Ω2
−(X, gP)

⊕
Ω2
−(X, gP)

d // Ω3(X, gP) // Ω4
−(X, gP)

This is a standard presentation of the fields of self-dual Yang-Mills theory in the BV
formalism.

Ordinary Yang-Mills theory arises as a deformation of the self-dual theory. The de-
formation is given by simply deforming the differential in the dg Lie algebra presented
in the diagram above by the identity map from the copy of Ω2

− situated in degree 1 to
the copy in degree 2.

9.2. Holomorphic Chern-Simons theory. Let E be an elliptic curve and let X be a
complex manifold. Let M(E, X) denote the elliptic moduli problem parametrizing
holomorphic maps from E → X. As before, there is an associated cotangent field
theory T∗[−1]M(E, X).

This field theory was called a holomorphic Chern-Simons theory in [Cos10]. The
reason for this terminology is that one constructs this theory using the AKSZ [AKSZ97]
formalism in exactly the same way as one constructs the usual 6-dimensional holomor-
phic Chern-Simons theory. Indeed, if X is a Calabi-Yau manifold of dimension d, and
Y is a derived stack with a symplectic form of dimension d− 1, then the space of maps
from X to Y has a symplectic form of degree −1.

The usual holomorphic Chern-Simons theory arises from the space of maps from a
Calabi-Yau 3-fold X to the classifying stack BG of a semisimple algebraic group. The
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invariant pairing on the Lie algebra g of G can be thought of as a symplectic form of
degree 2 on BG, so that the mapping space X → BG has a symplectic form of degree
−1.

The case we are considering here is that of maps from an elliptic curve E to the
cotangent bundle of a smooth variety X. Since T∗X has a symplectic form of degree
0, and E is a one-dimensional Calabi-Yau, the space of maps from E to T∗X has a
symplectic form of degree −1.

In the physics literature [Wit05, Kap05] this theory is called a twisted (0, 2) super-
symmetric sigma model.

This theory has an interesting role in both mathematics and physics. For instance,
the factorization algebra associated to this theory (using the techniques of [CG11]) is
believed [Wit05, Kap05] to be an incarnation of the chiral differential operators of X.
Also, it was shown in [Cos11a] that the partition function of this theory (at least, the
part which discards the contributions of non-constant maps to X) is the Witten genus
of X.

10. THE A- AND B-MODELS OF MIRROR SYMMETRY

In this section we will first describe the 1
2 -twisted A- and B-models, and then de-

scribe how the fully twisted A- and B-models arise as deformations of the 1
2 -twisted

models.

10.1. Both the 1
2 -twisted models we will be discussing are cotangent theories built

from holomorphic maps between graded complex manifolds. Recall that the space of
maps between any elliptic ringed space and any L∞ space defines an elliptic moduli
problem. The source elliptic ringed space will be one of the following:

Σ
∂

= (Σ, Ω0,∗
Σ

T[1]Σ
∂

= (Σ, Ω0,∗(Σ, OΣ ⊕ KΣ[−1])

T∗[1]Σ
∂

= (Σ, Ω0,∗(Σ, OΣ ⊕ TΣ[−1])

ΣdR = (Σ, Ω∗Σ ⊗C).

Let X be a complex manifold, and let gX be the curved L∞ algebra over Ω∗X encoding
the complex structure of X. Recall that gX has the property that the sheaf of Ω∗X-linear
cochains C∗(gX) are quasi-isomorphic to Dolbeaut complex Ω0,∗

X .
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The target L∞ space be one of the following:

X
∂

= (X, gX)

T[1]X
∂

= (X, gX ⊕ gX[1])

T∗[1]X
∂

= (X, gX ⊕ g∨X[2]).

Recall that points in the elliptic moduli problem of maps Σ
∂
→ X

∂
are just holomor-

phic maps from Σ to X. The only reason for rewriting holomorphic maps in terms of
the L∞ space (X, gX) is that this language allows us to give a concrete description of
the formal neighbourhood of every holomorphic map in the derived moduli space of
maps.

10.2. Let us first discuss the 1
2 -twsted B-model. Let Σ be a Riemann surface, and let X

be a complex manifold.

10.2.1 Definition. The 1
2 -twisted B-model is the cotangent theory to the elliptic moduli prob-

lem on Σ describing maps

� : Σ
∂
→ T∗[1]X

∂

to the shifted cotangent bundle of X (which we view as a graded complex manifold).

Let us fix a holomorphic map � : Σ → X. We will describe the elliptic L∞ algebra
on Σ describing the classical field theory near �. If � : Σ → X is a holomorphic map,
the pull back

�∗gX = �−1gX ⊗�−1Ω∗X
Ω0,∗

Σ

is an ordinary (non-curved) L∞ algebra, which controls deformations of the holomor-
phic map�. Also, as a sheaf of Ω0,∗

Σ -modules,

�∗gX = Ω0,∗(Σ,�∗TX[−1]).

This identification equips Ω0,∗(Σ,�∗TX[−1]) with an Ω0,∗
Σ -linear L∞ structure. In

what follows, we will identify�∗gX in this way.

Deformations of� as a map to T∗[1]X are described by the elliptic L∞ algebra

Ω0,∗(Σ,�∗TX[−1]⊕�∗T∗X).

The L∞ structure here is a semi-direct product L∞ algebra, arising from the natural
L∞ action of Ω0,∗(Σ,�∗TX[−1]) on Ω0,∗(Σ,�∗T∗X).

The cotangent theory to this elliptic L∞ algebra is then

Ω0,∗(Σ,�∗TX[−1]⊕�∗T∗X⊕ KΣ ⊗�∗T∗X[−1]⊕ KΣ ⊗�∗TX[−2]).
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As before, the L∞ structure is a semi-direct product structure arising from the action
of Ω0,∗(Σ,�∗TX[−1]) on the other summands.

Note that we can view this field theory also as the cotangent field theory to the
elliptic moduli problem described by

Ω0,∗(Σ,�∗TX[−1]⊕ KΣ ⊗�∗TX[−2]).

The latter elliptic moduli problem can be interpreted as the space of maps T[1]Σ
∂
→

X
∂
.

Following this reasoning, the full elliptic moduli problem (i.e. including the cotan-
gent directions) for the 1

2 -twisted theory can also be interpreted as describing the space
of holomorphic maps from T[1]Σ to T∗[1]X. The degree −1 symplectic form on this
mapping spaces arises via the AKSZ formalism by transgressing the degree 1 sym-
plectic form on T∗[1]X

∂
using the degree −1 volume form on T[1]Σ

∂
.

10.3. Next let us discuss the half-twisted A-model, with target X. The factorization
algebra associated to this field theory is conjectured [Kap05] to be the chiral de Rham
complex of X [GMS00].

10.3.1 Definition. The 1
2 -twisted A-model is to be the cotangent theory for the elliptic moduli

problem of maps

Σ
∂
→ T[1]X

∂
.

If we perturb around a given holomorphic map � : Σ → X, as above, then the
elliptic L∞ algebra describing this mapping problem is

Ω0,∗(Σ,�∗T[−1]X⊕�∗TX)

where�∗TX is an L∞ module over�∗T[−1]X.

The corresponding cotangent theory is described by the elliptic L∞ algebra

Ω0,∗(Σ,�∗T[−1]X⊕�∗TX⊕ KΣ ⊗�∗T∗X[−2]⊕ KΣ ⊗�∗T∗X[−3]).

10.4. Let us now consider the fully twisted A- and B-models. We will start with the
fully-twisted B-model.

When we discuss supersymmetric gauge theories, we will see that the a twist of
a supersymmetric field theory is given by a C× equivariant family of field theories
over C; which at the origin specializes to the original theory, and elsewhere to the
twisted theory. I will only discuss supersymmetry in detail in 4 dimensions; in 2
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dimensions, I will only describe the twisted theories, without giving a derivation in
terms of supersymmetry.

10.4.1 Definition. The (fully twisted) B-model with source a Riemann surface Σ, and target
a complex manifold X, is the cotangent theory to the elliptic moduli problem of maps

ΣdR → X
∂
.

Note that the un-derived version of the space of maps from ΣdR to X
∂

is the space
of constant maps. We can describe the derived moduli space of such maps as the L∞
space (X, gX ⊗Ω∗(Σ)). Note that this is quasi-isomorphic to the L∞ space (X, gX ⊗
H∗(Σ, C)), because there is a quasi-isomorphism of commutative dg algebras Ω∗(Σ) '
H∗(Σ).

The corresponding cotangent theory is described by the L∞ space

(X, (gX ⊕ g∨X[2])⊗Ω∗(Σ)).

This cotangent theory (i.e. the fully-twisted B-model) can be interpreted as the space
of maps

ΣdR → T∗[1]X
∂
.

In order to justify the relationship between this theory and the 1
2 -twisted B-model,

we need to exhibit this theory as the general fibre of a C×-equivarlant family of theo-
ries over C.

For t ∈ C, let us define an elliptic ringed space Reest(ΣdR) by

Reest(ΣdR) = (Σ, Ω∗,∗Σ , ∂ + t∂).

As t varies, this defines the Rees family of algebras associated to the Hodge filtration
on Ω∗Σ. At t = 0, Reest(ΣdR) is T[1]Σ

∂
, and for t 6= 0, Reest(ΣdR) is ΣdR.

By considering the cotangent theory associated to the elliptic moduli problem of
maps

Reest(ΣdR)→ X
∂

we find a C×-equivariant family of theories over C. At t = 0, this family of elliptic
moduli problems specializes to the cotangent theory associated to maps T[1]Σ

∂
→ X

and we have seen above that this cotangent theory is the 1/2 twisted B-model.

Remark: When I claim that “this is the B-model” all I mean is that this is the classical
field theory which a physicist would call the B-model. Later we will see how, if one
quantizes this theory, one finds a projective volume form on the derived space of maps
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from ΣdR to X
∂
. Integrals against this volume form should produce the correlators of

the B-model topological field theory.

10.5. Next, let us describe the fully-twisted A-model. From the point of view of per-
turbative quantum field theory, the fully-twisted A-model is not very interesting: we
will see that the elliptic L∞ algebra describing this theory on a surface Σ has vanishing
cohomology.

We have seen that the 1
2 -twisted A-model is the cotangent theory for holomorphic

maps from Σ to T[1]X. Note that the sheaf on X of holomorphic functions on T[1]X is
the holomorphic de Rham algebra of X, with zero differential. Of course, this is quasi-
isomorphic to the sheaf Ω∗X of C∞ de Rham complex, equipped with the differential
∂.

To define the fully-twisted A-model, we will deform this sheaf of rings into the de
Rham complex of X. Thus, we define

Reest(XdR)

to be the L∞ space

(X, gX
t×Id−−→ gX[−1]).

Note that the Ω∗X-linear cochain complex of the L∞ algebra gX[1] t×Id−−→ gX is quasi-
isomorphic to Ω∗X with differential ∂ + t∂. The deformation parameter t is best taken
to be a formal parameter.

10.5.1 Definition. The fully twisted A-model is the family of theories over C[[t]] obtained as
the cotangent theory to the elliptic moduli problem of maps

Σ
∂
→ Reest(XdR).

If we perturb near a given holomorphic map� : Σ→ X, then the elliptic L∞ algebra
on Σ (linear over C[[t]]) describing this mapping problem is

Ω0,∗(Σ,�∗TX t×Id−−→ �∗TX[−1])⊗C[[t]].

That is, the sheaf �∗TX ⊕�∗TX[−1] is equipped with a differential, which is t times
the identity map from �∗TX in degree 0 to �∗TX in degree 1. Note that if we invert
t, this sheaf of elliptic L∞ algebras has no cohomology. Thus, perturbative quantum
field theory has nothing interesting to say about the fully-twisted A-model.

When we discuss quantization later, we will see that the quantization of a cotangent
theory to an elliptic moduli problem leads to a volume form on that elliptic moduli
problem. The A-model is essentially the cotangent theory to the de Rham stack of the
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moduli space of holomorphic maps from Σ to X. A volume form on any space Z is a
section of the Grothendieck-Serre dualizing sheaf. The dualizing sheaf of ZdR should
be the topological Verdier dualizing sheaf of the topological space Z, and a section of
this is a homology class on X.

Thus, we would hope that the volume form arising from quantizing the A-model
should be the virtual fundamental class of the moduli space of holomorphic maps
from Σ to X.

One might hope that a complete construction of the 1
2 -twisted A-model will give us

an interesting refinement of the theory of Gromov-Witten invariants.

10.6. Of course, there are many variants of the 1
2 -twisted A- and B-models. Given any

surface Σ with a line bundle L, one can consider the cotangent theory of the elliptic
moduli problem of holomorphic maps from the graded complex manifold L[1] to X.
When L = KΣ, this is the 1

2 -twsted B-model, and when L is trivial, this is the 1
2 -twisted

A-model.

11. QUANTIZATION

In this section I’ll say a little bit about the geometric meaning of a quantization of a
classical field theory. Quantization is interpreted in the sense of [Cos11b] and [CG11].
The main result sketched in this section is the following.

11.0.1 Proposition. Let M denote a formal elliptic moduli problem on a manifold X, and let
T∗[−1]M be the associated cotangent field theory. Then, a quantization of the cotangent field
theory yields a volume form (defined up to multiplication by a scalar) on the formal derived
space M(X).

This result is a version of a theorem proved by Koszul [Kos85].

In order to separate the analytic technicalities from more conceptual issues, I will
start by proving this result in a finite-dimensional context, that is, when the space-time
manifold X is a point. Then I will indicate how the statements need to be modified
for the general case. This modification is not difficult, and uses techniques developed
extensively in [Cos11b].

Thus, let g be a finite dimensional differential graded L∞ algebra, equipped with
an invariant pairing of degree −3. Such a g describes a formal pointed derived space
with a symplectic form of degree −1. Let C∗(g) denote the pro-nilpotent differential
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graded algebra of cochains on g. The invariant pairing on g endows C∗(g) with a
Poisson bracket of cohomological degree 1.

11.0.2 Definition. A P0 algebra is a commutative differential graded algebra equipped with a
Poisson bracket of cohomological degree 1.

The P0 operad is the operad in the category of cochain complexes whose algebras are P0

algebras.

11.1. Our approach to quantization parallels the deformation-quantization interpre-
tation of quantum mechanics. In ordinary deformation quantization, one starts with
commutative algebra A with a Poisson bracket of degree 0. This encodes the classical
mechanical system we start with. The problem of quantization is then interpreted as
the problem of deforming A into a flat family of associative algebras Ã over C[[h̄]],
which reduces to A modulo h̄, and has the property that, to first order in h̄, the failure
of Ã to be commutative is measured by the Poisson bracket on A.

11.2. Before introducing the notion of quantization of a dga with a Poisson bracket of
degree 1, I will show how the usual deformation-quantization story can be expressed
using the language of operads.

11.2.1 Definition. Let Pk be the operad whose algebras are commutative dg algebras with a
Poisson bracket of cohomological degree 1− k.

Thus, a P1-algebra is a Poisson algebra in the usual sense.

Remark: This terminology was suggested by Jacob Lurie: the point is that the Pk operad
is closely related to the operad Ek of little k-discs. Note that E1 is equivalent to the
associative operad.

Next, we will construct an operad BD1 over C[[h̄]] with the propety that, modulo h̄,
BD1 is isomorphic to the Poisson operad; and that when we invert h̄, BD1 is isomor-
phic to the associative operad tensored with C((h̄)). This operad was constructed by
Ed Segal [Seg10].

11.2.2 Definition. Let V be a cochain complex flat over C[[h̄]]. A BD1 structure on V consists
of an associative product ?, on V, and a Lie bracket [−,−] on V, both C[[h̄]] linear and of
degree 0; such that the following additional relations hold.

a ? b− (−1)|a||b|b ? a = h̄[a, b]

[a ? b, c] = a ? [b, c] + (−1)|b||c|[a, c] ? b.
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Let BD1 be the operad over C[[h̄]] whose algebras are BD1 algebras.

Note that, modulo h̄, BD1 is the ordinary Poisson operad P1. Indeed, the relations
in BD1 are precisely those ensuring that the product ? is commutative, and that the
bracket [−,−] is a Poisson bracket. When h̄ is inverted, BD1 is the associative operad.
One can check that BD1 is flat over C[[h̄]].

11.2.3 Lemma. Suppose that A is a differential graded P1 algebra. Then, deformation quanti-
zations of A are the same as lifts of A to a BD1 algebra Ã.

Proof. Indeed, let Ã be a deformation quantization of A. If ? denotes the product on
Ã, then the bracket a ? b− (−1)|a||b|b ? a lands in the image of h̄. Thus, we can define a
Lie bracket on Ã by

[a, b] = h̄−1a ? b− (−1)|a||b|b ? a.

It is clear that, with the product ? and bracket [−,−], Ã defines a BD1 algebra which
reduces modulo h̄ to the Poisson algebra A. The converse is clear. �

One way to think about this construction is as follows. We can think of an operad P
as the universal multicategory containing a P-algebra. Thus, the operad P1 is, in this
sense, the universal Poisson algebra. The operad BD1 plays the role of the universal
deformation quantization.

11.3. We will follow this operadic approach when formulating the notion of quantiza-
tion of a P0 algebra.

11.3.1 Definition. Let P0 denote the operad whose algebras are P0-algebras as above. The
BD operad is the differential graded operad over C[[h̄]] which, as a graded operad, is simply
P0 ⊗C[[h̄]]; but where the differential is given by

d∗ = h̄{−,−}.

Note that BD is a flat family of operads over C[[h̄]], which reduces mod h̄ to P0.
Further, when we invert h̄, the operad BD becomes contractible: the cohomology of
BD(n)[h̄−1] vanishes when n > 0, and the cohomology when n = 0 is one dimen-
sional, corresponding to the unit element of a P0 algebra.

11.3.2 Definition. A quantization of a P0 algebra A is a BD algebra Ã, flat over C[[h̄]], which
reduces mod h̄ to the P0 algebra A.
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11.4. The main result of this section will relate quantizations of certain P0 algebras to
“projective volume forms” on formal moduli problems. Thus, I need to explain what
I mean by a projective volume form on a formal moduli problem.

11.4.1 Definition. Let X be a complex manifold. A projective volume form on X is a flat
connection on the canonical bundle KX. Equivalently, it is a trivialization of the O×X /C×-
torsor associated to KX.

Note that what we call a projective volume form is not the same as a volume form on
X up to scalar multiplication. Locally, the two notions coincide. Globally, however, the
flat connection on KX may have non-trivial monodromy: this provides an obstruction
to lifting a projective volume form to a volume form.

11.4.2 Lemma. A projective volume form on X is the same as a right DX-module structure
on OX.

Proof. If M is a right DX-module, then M ⊗ K−1
X is a left DX-module. Thus, a right

DX-module structure on OX induces a left DX-module structure on K−1
X , that is, a flat

connection on K−1
X ; and so a flat connection on KX. The converse is immediate. �

11.5. We are interested in projective volume forms on formal moduli problems. I will
follow a very helpful suggestion of Nick Rozenbluym, and define a projective volume
form on a formal moduli problem to be a right D-module structure on the structure
sheaf. The reason for this approach is that I don’t know how to define the canonical
sheaf of a formal moduli problem; presumably, the correct definition would involve
some version of Grothendieck-Serre duality.

Let us introduce some notation related to formal moduli problems. Let g be an L∞
algebra (without an invariant pairing). We will let Bg denote the corresponding formal
moduli problem; thus, O(Bg) will refer to the dga of cochains on g, and so on.

Let Vect(Bg) be the dg Lie algebra of vector fields on Bg, that is,

Vect(Bg) = C∗(g, g[1]) = Der(O(Bg)).

Let us define the associative algebra of differential operators D(Bg) to be the free asso-
ciative algebra generated over O(Bg) by X ∈ Vect(Bg) subject to the usual relations:

X · f − f · X = (X f )

f · X = f X

where · denotes the associative product in D(Bg), and juxtaposition indicates the ac-
tion of Vect(Bg) on O(Bg) or the O(Bg)-module structure on Vect(Bg).
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11.5.1 Definition. A projective volume form on Bg is a right D(Bg)-module structure on
O(Bg).

11.6. Let T∗[−1]Bg denote the formal moduli problem B(g⊕g∨[−3]). Note that T∗[−1]Bg

has a symplectic form of degree−1, so that O(T∗[−1]Bg) is a commutative dga equipped
with a Poisson bracket of degree 1. In otherwords, O(T∗[−1]Bg) is a P0 algebra.

Note that there’s a C× action on T∗[−1]Bg by scaling the cotangent fibres, that
is, by scaling the g∨[−3] in the Lie algebra g ⊕ g∨[−3]. Under this C× action on
O(T∗[−1]Bg), the Poisson bracket has weight −1, and the product has weight 0.

One way to say this is to observe that there is a C× action on the P0 operad, where
the Poisson bracket has weight−1; and that O(T∗[−1]Bg) is a C×-equivariant algebra.

Note that the operad BD0 also has a C×, where the parameter h̄ has weight 1, the
product has weight 0 and the bracket has weight −1. Thus, we can talk about C×-
equivariant quantizations of a C×-equivariant P0 algebra.

11.7. Possible right D(Bg)-module structures on O(Bg) form a simplicial set, as we
can consider such objects in families over the algebra Ω∗(4n) of forms on the n-
simplex.

We can also define a simplicial set of quantizations of O(T∗[−1]Bg). By the graded
along of the Darboux lemma, O(T∗[−1]Bg) can not be deformed as a graded P0 al-
gebra (without a differential). Thus, any quantization of O(T∗[−1]Bg) is given by a
BD0 structure on O(T∗[−1]Bg)[[h̄]] with fixed underlying graded P0 algebra. Such a
BD0 structure is entirely specified by the differential, which must be compatible with
the P0 structure in the sense described above, and which must agree with the given
differential modulo h̄.

We can thus define the simplicial set of quantizations by saying that the n-simplices
are families of BD0 structures on O(T∗[−1]Bg)⊗Ω∗(4n)[[h̄]], with fixed underlying
P0 structure, and linear over Ω∗(4n).

11.7.1 Proposition. There is a natural homotopy equivalence between the simplicial set of
right D(Bg)-structures on O(Bg) and that of C×-equivariant quantizations of the P0 algebra
O(T∗[−1]Bg).

Proof. Suppose we have a right D(Bg)-module structure on O(Bg). If V ∈ D(Bg) and
f ∈ O(Bg), we will let f�(V) ∈ O(Bg) be the result of applying V to f using the right
D-module structure. Note that, by definition, for g ∈ O(Bg) ⊂ D(Bg), f�(g) = f g.
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Thus, for X ∈ Vect(Bg),

f�(X) = 1�( f )�(X) = 1�( f X).

Thus, the entire action is determined by a linear map

Φ : Vect(Bg)→ O(Bg)

Φ(X) = 1�(X).

Note that the relations in D(Bg) imply that X · f = (X f ) + (−1)| f ||X| f X. It follows
that

(†) Φ( f X)− f Φ(X) = −(−1)| f ||X|(X f ) ∈ O(Bg).

We will use the map Φ to define a quantization of O(T∗[−1]Bg). The underlying
graded Poisson algebra of our quantzation is O(T∗[−1]Bg)[[h̄]]. To describe the dif-
ferential, let us introduce an auxiliary operator 4 : O(T∗[−1]Bg). The operator 4 is
the unique order 2 differential operator with the property that, for f ∈ O(Bg), and for
X ∈ Vect(Bg)[1] ⊂ O(T∗[−1]Bg), we have

4( f ) = 0

4(X) = Φ(X).

The fact that 4 is well-defined follows from the fact that Φ is an order 1 differential
operator. It is not hard to verify (from equation (†)) that the failure of4 to be a deriva-
tion is the Poisson bracket on O(T∗[−1]Bg). Thus, we define the differential on our
BD0 algebra to be d + h̄4, where d is the usual differential on O(T∗[−1]Bg).

Let us now consider the converse. The simplicial set of quantizations we are consid-
ering has, for n-simplices, BD0 structures on O(T∗[−1]Bg)⊗Ω∗(4n)[[h̄]] with fixed
underlying graded P0 algebra. The C× invariance properties of the quantization force
the differential to be of the form d + h̄4, where d is the given differential on O(T∗[−1]Bg),
and4 is some operator mapping Γ(Bg,∧iTBg) → Γ(Bg,∧i−1TBg). The operator4 is
determined uniquely by its behaviour on Vect(Bg); restricted to this subspace, it must
be a cochain map

Φ4 : Vect(Bg)→ O(Bg)

satisfying the axiom in (†).

Thus, we have set up a bijection of simplicial sets between right D(Bg)-module
structures on O(Bg) and C×-invariant quantizations. �
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11.8. Now, suppose we have a classical field theory on a compact manifold M, given
by an elliptic L∞ algebra L equipped with an invariant pairing of degree −3. Let
L (M) denote the global sections of L ; note that, since M is finite dimensional and
the differential on L is elliptic, L (M) has finite dimensional cohomology.

Let C∗(L (M)) denote the Chevalley-Eilenberg cochain complex of the topological
L∞ algebra L (M). By definition, C∗(L (M)) is a commutative differential graded al-
gebra; one would expect that the invariant pairing on L (M) induces a Poisson bracket
of degree 1 on C∗(L (M)).

It turns out that a little work is require to produce this Poisson bracket, because of
analytic difficulties inherent in the infinite-dimensional nature of L (M). In [Cos11b],
it is shown how to construct a canonical, up to contractible choice, P0 algebra structure
on C∗(L (M)). (The results of [Cos11b] assume an additional technical condition,
namely the existence of a gauge fixing condition. This condition is easy to verify in all
examples we consider here).

However, in order to avoid having to discuss any infinite-dimensional issues, I will
explain how the results of [Cos11b] yield structures on the cohomology of L (M).

11.8.1 Lemma. There is a canonical, up to contractible choice, L∞ structure on H∗(L (M))
for which the pairing on H∗(L (M)) is invariant. Further, this L∞ algebra is equipped with
an L∞-equivalence to L (M).

This L∞ structure is given by the familiar homotopical transfer of structures.

The Chevalley-Eilenberg cochain complex C∗(H∗(L (M))) is thus equipped with a
P0 structure, arising from the invariant pairing on H∗(L (M)).

In [Cos11b], a definition of quantization of a classical field theory is presented. Part
of the data of a quantization of a classical field theory is a quantization of the P0 al-
gebra C∗(H∗(L (M))), in the operadic sense discussed earlier. Our discussion about
the relationship between BD0 algebras and projetive volume forms now shows the
following.

11.8.2 Lemma. Suppose that L0(M) is an elliptic moduli problem on M, and that L (M) =
L0(M)⊕L !

0(M)[−3] is the corresponding cotangent field theory.

Then, a C×-invariant quantization of this cotangent theory (using the definitions of [Cos11b])
yields a projective volume form on the formal moduli problem L0(M).

The key concept in the definition of quantization presented in [Cos11b] is that of
locality. This is reflected in the fact that possible quantizations of a classical field theory



40 KEVIN COSTELLO

form a sheaf on M: so that the projective volume form on the moduli problem L0(M)
is built up from local data on M.

In the algebraic language presented in [CG11], locality is reflected in the fact that
the a quantization provides a BD0 algebra3 quantizing not just C∗(L (M)), but also
C∗(L (U)), for each open subset U ⊂ M. We refer to this BD0 algebra as the complex
of quantum observables Obsq(U). As U varies, the quantum observables form what
we call a factorization algebra.

12. BASICS OF SUPERSYMMETRY

Many of the field theories of interest in mathematics arise as twists of supersym-
metric field theories. In this section I will say what it means for a field theory in
4-dimensions to be supersymmetric, and explain te twistor-space construction of cer-
tain supersymmetric gauge theories on R4 developed in [BMS07, Wit04].

Before we start, I should say a few words about the gradings used in supersymme-
try. Supersymmetric field theories have two gradings: one by Z/2, and one by Z. The
first grading is the number of fermions, and the second is a cohomological grading,
called in the physics literature the “ghost number”. Both gradings contribute to signs:
if we move an element� of bidegree (a1, a2) past an element � of bidegree (b1, b2), we
introduce a sign of (−1)(a1+a2)(b1+b2).

When we deal with such bi-graded cochain complexes, the differential is of degree
(0, 1). In other words, the differential only affects the cohomological degree and not
the fermionic degree. We call such an object a super cochain complex.

There are two possible ways of shifting a supercochain complex: we can reverse the
fermionic grading, or we can shift the cohomological grading. If V is a supercochain
complex, we will let �V denote the same complex with fermionic grading reversed
and cohomological grading unchanged. We will let V[−1] denote the same complex
with fermionic grading unchanged, and cohomological grading shifted by one.

We would like to adapt the definition of classical field theory given earlier to this
bigraded context. The main point to remember is that all algebraic structures we con-
sider preserve the fermion degree, and have the same cohomological degree as they do
in the world of ordinary cochain complexes. Thus, a super L∞ algebra is a super cochain

3In the current incarnation of [CG11], the theorem is a little weaker than I have stated: we have not
yet constructed the BD0 algebra on Obsq(U) for each open subset U, we have only constructed these as
cochain complexes. The stronger statement is work in progress.
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complex V, equipped with maps ln : V⊗n → V of bidegree (0, 2− n), satisfying the
usual L∞ relation.

The relationship between L∞ algebras and formal moduli problems exists in the su-
per context as well, where one defines a super formal moduli problem to be a functor
on the category of super Artinian dg algebras.

All of the definitions we gave earlier (like that of an elliptic L∞ algebra) can be
defined without any difficulty in the super context.

12.0.3 Definition. Let M be a manifold. A perturbative classical field theory with fermions
on M is a super elliptic L∞ algebra L on M together with an invariant pairing on L of bide-
gree (0,−3).

Given any super elliptic L∞ algebra L on M, corresponding to a sheaf of formal
super moduli problems on M, one can, as before, construct a classical field theory L ⊕
L ![−3]. This classical field theory will be called the cotangent field theory associated to
L .

12.1. First, let us give the definition of supersymmetry. I will concentrate on dimen-
sion 4 in Euclidean signature. Suppose that M is a classical field theory on R4. Thus, M
is a formal elliptic moduli problem on R4, equipped with a symplectic form of degree
−1.

Let us suppose that the classical field theory M is invariant under the group Spin(4)n
R4, the double cover of the group of Euclidean symmetries of R4. This means that this
group acts on M(R4) in such a way that, if g ∈ Spin(4) n R4, the action of g on M(R4)
takes M(U) ⊂M(R4) to M(g(U)).

We will further assume that this action differentiates to an action of the Lie algebra
so(4) n R4 on M(U), for each U ⊂M.

We will define a supersymmetric field theory on R4 to be a field theory equipped
with an action of a certain super Lie algebra called the super Euclidean Lie algebra,
extending the given action of the Euclidean Lie algebra.

In Euclidean signature, this larger Lie algebra is only defined over C, and not over
R. Thus, to talk about supersymmetry in Euclidean signature, we need to use elliptic
moduli problems which are defined over C. (For an elliptic moduli problem M to
be defined over C just means that the corresponding L∞ algebra gM is a complex Lie
algebra).
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12.2. Recall that there is an isomorphism of groups

Spin(4) ∼= SU(2)× SU(2).

We will refer to the two copies of SU(2) as SU(2)+ and SU(2)−.

Let S+ denote the 2 complex dimensional fundamental representation of SU(2)+,
endowed with the trivial SU(2)− action. Thus, S+ is a complex representation of
Spin(4). Define S− in the same way.

Let V denote the definining 4-dimensional real representation of SO(4). There is an
isomorphism of complex Spin(4) representations

VC = V ⊗R C ∼= §+ ⊗ §−.

Given any complex vector space W, we can define a super-translation Lie algebra
based on W. The dimension of W will be the number of supersymmetries.

The super-translation Lie algebra TW is defined to be the super Lie algebra

TW = VC ⊕ Π(S+ ⊗W ⊕ S− ⊗W∨).

Thus, the even part of TW is VC, and the odd part is S+ ⊗W ⊕ S− ⊗W∨.

The only non-trivial bracket on TW is between S+ ⊗W and S− ⊗W∨. If � : S+ ⊗
S− → VC is the natural map, then the bracket is defined by the formula

[s⊗ w, s′ ⊗ w′] = �(s⊗ s′)
〈
w, w′

〉
for s ∈ S+, s′ ∈ S−, w ∈W, w′ ∈W∨.

We will often use the notation

TN =k = TCk

to refer to the super-translation Lie algebra associated to Ck. The cases of interest are
when k = 1, 2, 4.

Note that there is a natural action of Spin(4) on TW . Thus, the complexified Lie
algebra so(4, C) acts on TW , so that we can define the semi-direct product so(4, C) n
TW . This is the (complexified) super Euclidean Lie algebra.

Also, the group GL(W) acts on TW , in a way commuting with the natural action of
Spin(4).

12.2.1 Definition. A field theory on R4 with N = k supersymmetries is a Spin(4) n R4-
invariant super elliptic moduli problem M defined over C with a symplectic form of cohomo-
logical degree −1; together with an extension of the action of the complexified Euclidean Lie
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algebra so(4, C) n VC to an action of the complexified super-Euclidean Lie algebra so(4, C) n
TN =k.

Given any complex Lie subgroup G ⊂ GL(k, C), we say that such a supersymmetric field
theory has R-symmetry group G if the group G acts on the theory in a way covering the trivial
action on space-time R4, and compatible with the action of G ⊂ GL(k, C) on TN =k.

12.3. Examples. Now that we have a definition of a supersymmetric classical field
theory, I should give some examples. Supersymmetric gauge theories are difficult
to write down explicitly on real space, in a way which makes supersymmetry evi-
dent. Thus, I will describe the twistor-space formulation of (self-dual) supersymmetric
gauge theories, which is much more accessible.

I gave the definition of a supersymmetric field theory on R4. However, one can also
define supersymmetric field theories on other spaces equipped with an action of the
translation group R4: if X is a manifold with such an action, then a supersymmetric
field theory on X is a field theory on X, invariant under the action of R4, together with
an extension of the infinitesimal action of R4 to an action of the appropriate super-
translation Lie algebra.

We will consider theories on twistor space. Recall [WW91] that the twistor space
PT of R4 can be identified with the complement of a P1 on P3, or equivalently with
the total space of O(1) ⊕ O(1) → P1. We can view the twistor space PT is a non-
holomorphic fibration over R4, whose fibres are copies of P1. The group of conformal
motions of R4 acts naturally on PT.

In a more invariant way, the twistor space is the total space of O(1)⊗ S− → P(S+),
where as before S+ and S− are the two complex dimensional spinor representations
of Spin(4) = SU(2) × SU(2). In this presentation, the action of the complex group
SL(S−)× SL(S+) on PT is evident.

Let � : PT→ P(S+) be the projection. The relative tangent bundle to � is �∗O(1)⊗
S−. Thus, there’s a natural map

�∗ : H0(P(S+), O(1)⊗ S−)→ H0(PT, TPT).

Note that

H0(P(S+), O(1)⊗ S−) = S+ ⊗ S− = C4

is the complexification of the Lie algebra of translations on R4. The resulting map

C4 → H0(PT, TPT)

is the infinitesimal form of the natural translation action of R4 on PT.
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12.4. Recall that the Penrose-Ward correspondence [WW91] states that there is a nat-
ural bijection between vector bundles on R4 equipped with anti-self-dual connections
R4 , and holomorphic vector bundles on PT which are trivial on every twistor fibre. A
refined version of the Penrose-Ward correspondence [BMS07, Mov08] is the following.

12.4.1 Theorem. The anti-self-dual Yang-Mills theory on R4 (i.e. the cotangent theory to the
elliptic moduli problem of anti-self-dual instantons) is equivalent to the cotangent theory for
holomorphic vector bundles on PT, which are trivial on every twistor fibre.

A proof of this is presented in [BMS07] and [Mov08].

Let me give a more precise version of the statement. Let G be a semisimple algebraic
group. Let P → PT be a principal G bundle, and suppose that for every twistor fibre
P1 ⊂ PT, the G-bundle P |P1 is trivial (but not trivialized).

The Penrose-Ward correspondence tells us that, associated to P, there is a C∞ G-
bundle T (P)→ R4, equipped with a connection whose curvature is anti-self-dual.

Note that we are considering the complex anti-self-duality equations for a complex
connection on a complex principal bundle. In order to find solutions to the real anti-
self-duality equation, one needs to put some reality structures on the holomorphic
principle bundle P→ PT. We will, however, only consider the complex case.

Given P → PT, we can consider the elliptic moduli problem of deformations of P.
This is described by the elliptic Lie algebra

Lhol = Ω0,∗(PT, gP)

where gP adjoint bundle of Lie algebras associated to P. The cotangent theory to this
elliptic moduli problem is described by the elliptic Lie algebra

T∗[−1]Lhol = Ω0,∗(PT, gP)⊕Ω3,∗(PT, g∨P).

If U ⊂ R4, let PT(U) ⊂ PT be the inverse image of U under the twistor fibration
� : PT → R4. Our elliptic moduli problem on PT gives rise to a sheaf of dg Lie
algebras on R4, which assigns to U the dg Lie algebra

�∗Lhol = Ω0,∗(PT(U), gP).

This is not quite an elliptic Lie algebra on R4, because it is not built from sections of a
finite-rank vector bundle on R4.

However, it is quasi-isomorphic to an elliptic Lie algebra on R4. Recall that the
moduli of deformations of the anti-self-dual Yang-Mills bundle T (P) on R4 can be
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described by the elliptic Lie algebra

LASD = Ω0(R4, gT (P))→ Ω1(R4, gT (P))→ Ω2
+(R4, gT (P)).

Then, it is shown in [BMS07] that there is a homotopy equivalence of sheaves of Lie
algebras on R4

LSD ' �∗Lhol .

This homotopy equivalence extends to the cotangent theories: there is a homotopy
equivalence

T∗[−1]LSD ' �∗T∗[−1]Lhol ,

where T∗[−1]LSD is the elliptic Lie algebra describing the shifted cotangent bundle to
the moduli of anti-self-dual bundles.

This shows that the anti-self-dual Yang-Mills theory on R4 is equivalent to the cotan-
gent theory for holomorphic bundles on the twistor space PT.

12.5. The supersymmetric extension of the Penrose-Ward correspondence states that
there is an equivalence between holomorphic vector bundles on a graded complex
manifold – the super-twistor space – and the anti-self-dual versions of supersymmetric
gauge theories on R4. In [BMS07, Wit04] it is shown that this correspondence can be
lifted to a homotopy equivalence of sheaves of dg Lie algebras on R4, where one sheaf
is the elliptic Lie algebra describing solutions to the super-symmetric anti-self-duality
equations, and the other sheaf is the push-forward from the twistor space of the elliptic
Lie algebra describing holomorphic bundles on the appropriate super-twistor space.

The twistor space formulation of anti-self-dual supersymmetric gauge theory is far
more transparent than the real-space formulation. Thus, we will take the twistor space
formulation as a definition.

There are three versions of supersymmetric gauge theory: those with N = 1, 2, 4
supersymmetry. Thus, there are three corresponding super-twistor spaces.

12.6. We will present a uniform construction of super-twistor spaces. For any k ≥ 0,
let us define a holomorphic super-manifold

PTN =k = Π(O(1)⊗Ck)→ PT.

Thus, PTN =k is the complex Z/2 graded manifold which is the total space of the
purely odd bundle O(1)⊗Ck Let

ON =k = ∧∗(O(−1)⊗Ck)
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be the structure sheaf of PTN =k, viewed as a sheaf of super algebras on PT. Note that
∧i(O(−1)⊗Ck) is in fermion degree i mod 2, and cohomological degree 0.

Let P → PT be a principal G-bundle. Let gP be the adjoint bundle of Lie algebras
on PT. Let us consider the super elliptic moduli problem of holomorphic bundles on
PTN =k which are deformations of the bundle �∗P.

The corresponding elliptic Lie algebra is

LN =k = Ω0,∗(PT, ON =k ⊗OPT gP).

Here, we have a mixture of cohomological and fermionic degrees: Ω0,i(PT,∧ j(O(−1)⊗
Ck)⊗ gP) is in cohomological degree i and fermionic degree j mod 2.

12.6.1 Lemma. The graded complex manifold PTN =k has a natural action of the super-
translation Lie algebra TN =k. Further, the composed projection

PTN =1 → PT→ R4

is compatible with the action of the translation Lie algebra of R4 on all the three spaces.

Further, this action is compatible with the natural action of Spin(4, C) × GL(k, C) on
PTN =k.

Proof. Let us change to more invariant notation. Let W be a complex vector space of
dimension k. The super Lie algebra TW was defined earlier. We will let PTW refer to
the total space of Π(O(1)⊗W) over PT. If W = Ck then, then PTW is what we called
PTN =k above.

Thus, PTW is the total space of the Z/2-graded bundle

O(1)⊗ (S⊕ΠW)

over P(S+).

We will use this presentation to define linear maps

ΠS− ⊗W∨ → Vect(PTW)

ΠS+ ⊗W → Vect(PTW).

Every endomorphism of the bundle O(1) ⊗ (S− ⊕ ΠW) yields a vector field on PT.
Clearly, endomorphisms of the super vector space S− ⊕ ΠW yield endomorphisms of
this super vector bundle. Since

ΠW∨ ⊗ S− ⊂ End(S− ⊕ ΠW)

we get a map
ΠW∨ ⊗ S− → Vect(PTW).



NOTES ON SUPERSYMMETRIC AND HOLOMORPHIC FIELD THEORIES IN DIMENSIONS 2 AND 4 47

Next, we will construct the map

ΠS+ ⊗W → Vect(PTW).

Any section of the super vector bundle O(1)⊗ (S− ⊕ ΠW) yields a vector field on the
total space of this bundle. This gives us a map

H0 (P(S+), O(1)⊗ (S− ⊕ ΠW))→ Vect(PTW).

In particular, we get a map

H0(P(S+), O(1)⊗ ΠW) = ΠS+ ⊗W → Vect(PTW).

It’s not difficult to verify that these maps satiisfy the relations necessary to define an
action of the super-translation Lie algebra TW on PTW , in a way compatible with the
map PTN =1 → R4. �

12.7. Now we are ready to define the anti-self-dual versions of the N = 1 and N = 2
supersymmetric gauge theories.

12.7.1 Definition. The anti-self-dual N = 1 (respectively, N = 2) gauge theory is the
cotangent field theory for the super elliptic moduli problem on PT describing holomorphic
bundles on the N = 1 (respectively, N = 2) twistor space PTN =1 (respectively, PTN =2).

Since the super-translation Lie algebra TN =k acts on the super-twistor space PTN =k,
it is clear that this construction yields a super-symmetric field theory in the sense we
described earlier Further, this theory has the largest possible R-symmetry GL(k, C).

Remark: I should emphasize that, in practise, the entire R-symmetry group will not act
on the quantum theory. As Anton Kapustin explained to me, in the ordinary N = 1
gauge theory with no matter fields, the classical R-symmetry group C× has an anom-
aly at the quantum level: there, only a discrete cyclic subgroup acts.

Recall that ON =k indicates the pushforward of the structure sheaf of PTN =k to OPT.
Let

O∨N =k = HomOPT(ON =k
PT , OPT).

By definition, the elliptic Lie algebra describing this cotangent theory is

T∗[−1]LN =k = Ω0,∗ (PT, ON =k ⊗OPT gP ⊕O∨N =k ⊗OPT KPT ⊗OPT g∨P
)

.

Here, k = 1, 2 as above. The full N = 1 or N = 2 gauge theory is, as is described in
[BMS07], given by a 1-parameter family of deformations of the anti-self-dual theory.
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12.8. The construction of the theory with N = 4 supersymmetry does not quite fol-
low the patter set by the N = 1, 2 theories.

We have seen that PTN =4 has an action of TN =4. Let LN =4 be the elliptic Lie
algebra describing bundles on PTN =4, near a particular G-bundle P pulled back from
PT. Thus, if gP is the adjoint bundle of Lie algebras on PT, we have

LN =4 = Ω0,∗(PT, ON =4 ⊗OPT gP).

With the N = 2 and N = 1 theories, we took the cotangent theory to the moduli of
G-bundles on the appropriate super-twistor space. With the N = 4 theory, we don’t
need to do this.

12.8.1 Lemma. LN =4 theory has an invariant pairing of cohomological degree −3 (and
fermion degree 0), so that the corresponding elliptic moduli problem is a classical field the-
ory.

Proof. Indeed,
ON =4 = Sym∗

(
ΠOPT(−1)⊗C4

)
.

Thus, there’s a map

ON =4 → ∧4(O(−1)PT ⊗C4) = OPT(−4) = KPT

of super vector bundles on OPT.

The invariant pairing on the Lie algebra gP thus gives us a map of super vector
bundles on PT

(ON =4 ⊗OPT gP)⊗2 → KPT.

Composing with the isomorphism

Ω0,3(PT, KPT) ∼= Dens(PT)

gives the desired invariant pairing. �

Of course, this lemma is simply observing that PTN =4 is a super Calabi-Yau man-
ifold. The anti-self-dual N = 4 theory is the holomorphic Chern-Simons theory on
this super Calabi-Yau.

It is clear that the action of the super-translation Lie algebra TN =4 on the N = 4
theory is compatible with the action of the complexifed Euclidean Lie algebra, so this
is indeed a supersymmetric field theory.

The R-symmetry group of the N = 4 theory is not GL(4, C), because we need to
choose a trivialization of det C4 in order to write down the symplectic pairing. Instead,
the R-symmetry group is SL(4, C).
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Remark: Our conventions are slightly different to usual conventions in the physics lit-
erature. Our theories have complex space of fields, and we are not concerned about
reality conditions. Thus, our R-symmetry group is SL(4, C). In the physics literature,
reality conditions are considered to be more important, so the R-symmetry group for
the N = 4 theory is usually taken to be SU(4).

Remark: One can ask why we have not considered a theory with N = 3 supersymme-
try. We could follow the pattern set by the N = 1 and N = 2 theories, and define
the N = 3 theory to be the cotangent theory to the moduli of holomorphic bundles
on the graded manifold

O(1)[1]⊕2 ⊕O(1)[−1]→ PT.

This cotangent theory will recover the N = 4 theory. Thus, the N = 3 theory already
has N = 4 supersymmetry.

13. TWISTINGS OF SUPERSYMMETRIC FIELD THEORIES

Many of the quantum field theories of interest in mathematics arise as twistings of
supersymmetric field theories. In this section I will describe the concept of twisting
of a supersymmetric field theory, and analyze the twists of the supersymmetric gauge
theories introduced in the previous section.

Recall that a field theory on R4 (or on some other space naturally associated to R4,
such as the twistor space PT) has N = k supersymmetry if it is equipped with an
action of the super Lie algebra

TN =k ∼= TW = Π
(
S− ⊗W∨ ⊕ S+ ⊗W

)
⊕VC,

where W is a complex vector space of dimension k and where VC = C4 denotes the
complexification of the abelian Lie algebra of translations on R4.

We also assume that our supersymmetric field theory is equipped with an action of
an R-symmetry group GR ⊂ GL(W), in a way compatible with the natural action of
GR on TW .

The basic idea of twisting is as follows. Suppose we have an odd element Q of TW

which satisfies [Q, Q] = 0. A physicist would say that the twisted theory is obtained
by treating Q as a BRST operator (that is, as a differential). In our set-up, field theories
are already differential-graded objects. Therefore, we should imagine constructing the
twisted theory by adding Q to the differential on the elliptic moduli problem defining
our classical field theory. This naive idea leads to problems, because our differential
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should be of fermion degree 0 and cohomological degree 1, whereas Q is of fermion
degree 1 and cohomological degree 0.

In order to do this construction properly, we need some additional data.

13.0.2 Definition. Twisting data for a supersymmetric field theory consists of a group ho-
momorphism � : C× → GR, an odd element Q ∈ TW , such

(1) [Q, Q] = 0.
(2) �(t)(Q) = tQ for t ∈ C×, and �(t) indicates the action of C× on TW arising from

the natural action of GR ⊂ GL(W) on TW .

Suppose that M is a classical field theory on R4 (or on PT) with N = k supersym-
metry. Thus, M is a super elliptic moduli problem on R4 (or on PT), with an invariant
pairing of degree −1, and additionally equipped with a compatible action of Spin(4)
and of the super-Lie algebra TW . Let us suppose also that M is acted on by the R-
symmetry group GR, in a way compatible with the GR action on TW .

Then, a choice of twisting data (�, Q) as above gives rise (via Q) to an action on
M of the Abelian super-Lie algebra ΠC, and (via �) to an action of the group C×.
These two actions are compatible, and can be viewed as an action of the super-Lie
group C× n ΠC. (Since ΠC is a nilpotent Lie algebra, we can think of it as a super-Lie
group).

13.1. The twisting construction can be defined for any field theory M on a manifold X
with an action of the super-group C× n ΠC, covering the trivial action on X. Morally,
the procedure to construct a twisted theory is as follows.

(1) First take the homotopy fixed points of M under the action of ΠC. This gives a
field theory over the Chevalley-Eilenberg Lie algebra cochain algebra C∗(ΠC) =
C[[t]], where t has cohomological degree 1 and fermion degree 1.

(2) Invert the parameter t in our base ring, to give a field theory over C((t)).
(3) Now, take C× invariants.

Let us now explain in detail how to do this at the formal level, where M is a formal
elliptic moduli problem, corresponding to an elliptic super L∞ algebra L , equipped
with an invariant pairing of cohomological degree −3. As above, suppose that L is
equipped with an action of the super-group C× n ΠC, covering the trivial action on
X. Thus, the sheaf BL on X of formal moduli problem is equipped with an action of
C× n ΠC in a way preserving the base point.
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Let us assume that the action of C× on L is linear. Thus, this C× action will give L

an additional grading.

Let us think of the action of ΠC on L as a Lie algebra action, and let us denote a
basis of ΠC by Q Recall that, for us, an action of a Lie algeba g on a field theory is
described by a family of field theories over C∗(g). Thus, the action of ΠC on L is
described by a family of elliptic L∞ algebras L ΠC over the base ring C∗(ΠC) = C[[t]]
where t has a cohomological degree 1, and fermion degree 1. This L∞ algebra (viewed
as an L∞ algebra over C) is the homotopy fixed points for the ΠC action on L .

Concretely, if the action of ΠC on the L∞ algebra L happens to be linear (as is the
case for the field theories we are interested in), then

L ΠC = L [[t]]

with differential dL + tQ. L ΠC is the homotopy fixed points of L under the action of
ΠC.

Next, let us invert the parameter t, to giving us the elliptic L∞ algebra

L ΠC[t−1] = L ΠC ⊗C[[t]] C((t)).

Finally, we take the C× fixed point of this object. That is, the twisted theory is

L Twisted =
(
L ΠC[t−1]

)C×
.

The invariant pairing on L Twisted is defined as follows. Note that L ΠC[t−1] has an
invariant pairing valued in C((t)). This restricts to a pairing on L Twisted with values
in the C×-invariants of C((t)), which is C.

13.2. Let us make this construction more explicit. Let us assume for a moment that
the action of Q ∈ ΠC on L is linear (as will be the case in the examples of interest).
Let L k ⊂ L denote the subspace on which s ∈ C× acts by sk. For simplicity (so we
don’t have to discuss completions) let us assume that L k = 0 for all but finitely many
k. Note that the operator Q maps L k to L k+1. Then, we can identify(

L ΠC[t−1]
)C×

= ⊕k∈Z

(
ΠkL k[−k]

)
.

Thus, L k is shifted up by cohomological degree k, and also has a shift of fermion
degree by k mod 2. This shift comes from the fact that tk has fermion degree k mod 2
and cohomological degree k.

The differential on this complex is arises from the ordinary differential dL on L ,
together with the operator Q, which maps each L k to L k+1. Because of the shift of
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fermion and cohomological degrees, the operator Q is now of fermion degree 0 and
cohomological degree 1, as is required for a differential.

13.3. Let L be a field theory on X as above, with an action of C× n ΠC. Then there is
a filtration on L Twisted by setting

FiL Twisted = ⊕k≥iL
ktk ⊂ L Twisted.

The associated graded coincides with L , except for a change of grading, where the
summand L k is shifted by cohomological degree k and by fermion degree k. In other
words, the associated graded coincides with L twisted by the given action of C× and
the trivial action of ΠC.

In [CG11], we analyze classical and quantum field theories in terms of the associated
factorization algebra. The factorization algebra for the classical field theory L assigns,
to an open subset U ⊂ X, the Chevalley-Eilenberg cochains C∗(L (U)). Let us denote
this factorization algebra by Obscl

L : it is the factorization algebra of classical observables
of the field theory.

The group C× n C acts on the factorization algebra Obscl
L , and one can construct

the factorization algebra for the twisted theory directly from this action. Indeed, it is
not difficult to verify that Obscl

L Twisted can be computed by

Obscl
L Twisted(U) =

(
Obscl

L (U)ΠC ⊗C[[t]] C((t))
)C×

.

In other words, the observables for the twisted theory are obtained from the observ-
ables of the untwisted theory by first, taking the homotopy fixed points with respect
to ΠC; then inverting the parameter t; and finally taking C×-invariants. (In this ex-
pression, a little care is needed with completions of topological vector spaces in order
to make the equality exact).

It follows from this expression that there is a spectral sequence computing the co-
homology of the observables of the twisted theory from those of the untwisted theory,
as follows. Let Hi, j,k(Obscl

L (U))) denote the cohomology in cohomological degree i,
fermion degree j and weight k under the C× action. Then we have a spectral sequence

Hi, j,k(Obscl
L (U))⇒ Hi+k, j+k(Obscl

L Twisted(U)).

If one can construct a quantization of the classical theory described by L , and if this
quantization is compatible with the action of C× n ΠC, then one automatically has a
quantization of the twisted theory. Further, the relation between observables of the
twisted and untwisted theories described above holds at the quantum level. It follows
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that one has a similar spectral sequence relating quantum observables of the twisted
and untwisted theories.

14. TWISTED SUPERSYMMETRIC GAUGE THEORIES

Next, we will give a detailed description of the theories obtained by twisting our
anti-self-dual super-symmetric gauge theories on twistor space. We will see that the
twisting procedure yields natural “holomorphic gauge theories” on C2.

We will start with the case of N = 1 supersymmetry. Let us choose an element
Q ∈ S+. Recall that the choice of such an element yields a complex structure on the
linear space R4; indeed, the stabilizer of Q in Spin(4) = SU(2)× SU(2) is SU(2), so
that Q provides a reduction of structure group to SU(2).

Since the R-symmetry group of the N = 1 theory is C×, there is a unique map
� : C× → GN =1

R under which Q has weight 1.

Recall that the N = 1 anti-self-dual theory is the cotangent theory to the elliptic
moduli problem of holomorphic bundles on PTN =1 = ΠO(1)→ PT. As before, let

ON =1 = ΠOPT(1)⊕OPT

be the structure sheaf of PTN =1, viewed as a sheaf of super commutative algebras on
PT.

Recall that

PT = O(1)⊕2 → P(S+).

Thus, the element Q ∈ S+ yields a section on P(S+) of O(1), and so a section of OPT(1).
Thus, it yields a map

Q : OPT(−1)→ OPT.

Recall that the twisting procedure described above involves a shift in grading. In
this example, we shift OPT(−1) from being in fermion degree 1 and cohomological
degree 0 to being in fermion degree 0 and cohomological degree −1.

Thus, the twisting procedure yields the sheaf OQ
N =1 of differential graded algebras

OQ
N =1 = OPT(−1)[1]

Q−→ OPT.

The twisted N = 1 theory is the cotangent theory to the elliptic moduli problem for
holomorphic bundles on the differential graded complex manifold PT with structure
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sheaf OQ
N =1. Explicitly, near the trivial bundle principal G-bundle on PT, the twisted

theory is the cotangent theory associated to the elliptic Lie algebra

Ω0,∗(PT, OQ
N =1 ⊗ g).

Note that this theory is concentrated entirely in fermion degree 0, so we can con-
sider it to be an ordinary (non-super) elliptic moduli problem. This will be a feature
of all the twisted theories we consider.

We showed above that, in general, the twisted theory lives in a C×-equivariant
family of theories over A1 whose value at the central fibre is the untwisted theory
(with a different grading). For this example, the family of theories is defined by the
family of differential graded algebras

OPT(−1)[1]
tQ−→ OPT.

This has a natural C× action (of weight 0 on OPT and weight −1 on OPT(−1)[1]) mak-
ing it into a C×-equivariant family of theories over A1.

14.1. Observe that there is a quasi-isomorphism of sheaves of algebras on PT

OQ
N =1 ' OZ(Q)

where

Z(Q) ⊂ PT

is the copy of C2 realized as the zero locus of Q ∈ Γ(PT, O(1)). The twistor projection
PT→ R4 yields a diffeomorphism

Z(Q)→ R4.

The complex structure on R4 induced by this diffeomorphism is, of course, the com-
plex structure associated to Q ∈ S+.

It follows that there is a homotopy equivalence of sheaves of dg Lie algebras

�∗Ω
0,∗(OQ

N =1 ⊗ g) ' Ω0,∗(OZ(Q) ⊗ g),

where � : PT→ R4 is the twistor fibration.

Thus, we have shown the following.

14.1.1 Lemma. The twisted self-dual N = 1 theory is equivalent to the cotangent theory for
the moduli space of holomorphic bundles on C2 = R4, holomorphic with respect to the complex
structure determined by the choice of spinor Q ∈ S+.
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Note, however, that in this presentation the relationship between the twisted theory
and the original theory has been obscured. There is no filtration on the dg Lie algebra
Ω0,∗(OZ(Q) ⊗ g) corresponding to that on the homotopy equivalent dg Lie algebra
�∗Ω0,∗(OQ

N =1 ⊗ g); the filtration can only be written down after passing to a larger
(but homotopy equivalent) complex.

14.2. Let us now consider the twists of the N = 2 and N = 4 theories. In each case
we need to choose twisting data (for the N = 1 theory, all choices are essentially
equivalent).

Recall that the R-symmetry group of the N = 2 theory is GL2(C). Part of the
twisting data is a group homomorphism � : C× → GL2(C). We will choose the homo-
morphism given by the matrix (

t 0
0 t

)
.

Recall that the odd part of TN =2 is S+⊗C2⊕S−⊗C2. The other part of our twisting
data is an odd element Q of TN =2 which satisfies [Q, Q] = 0 and which is of weight 1
under the C× action. The C× action gives S+ ⊗C2 weight 1 and S− ⊗C2 weight −1.
Thus, the space of possible Q’s is S+ ⊗C2. Let� ∈ S+ be a spinor (corresponding to a
complex structure on R4). We will take our Q to be a decomposable element

Q = � ⊗
(

1
0

)
.

Remark: Note that the twisting data we choose is not generic. Indeed, once we have
chosen our homomorphism � : C× → GL2(C), we see that possible Q’s is S+ ⊗ C2.
The group GL(2)× Spin(4, C) acts on this space; the action factors through GL2(C)×
SL2(C). Two twists which are related by an element of this symmetry group are equiv-
alent. We are choosing our Q to be a decomposable tensor, and thus in a lowest-
dimensional non-zero orbit.

We call twists of this form minimal twists. We will realize twists by more generic
elements as being obtained by further twisting the minimally twisted theory.

We find that the twisted N = 2 theory is the cotangent theory to the moduli of
holomorphic G-bundles on the differential graded complex manifold with structure
sheaf

OQ
PTN =2 = Sym∗ (OPT(−1)[1]⊕OPT(−1)[1])

with differential induced from the map Q : OPT(−1)[1]→ OPT.
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An argument similar to that we applied for the N = 1 theory now shows the
following.

14.2.1 Lemma. The twisted N = 2 theory is the cotangent theory for the elliptic moduli
problem of principal G-bundles on the graded complex manifold C[−1] → C2, where C[−1]
refers to the trivial line bundle put in degree 1.

14.3. Next, let us consider the N = 4 theory. The R-symmetry group in this case is
SL4(C). We choose our homomorphism � : C× → SL4(C) to be given by the matrix

t 0 0 0
0 t 0 0
0 0 t−1 0
0 0 0 t−1

 .

The space of possible Q’s of weight 1 under this twist is S+ ⊗C2 ⊕ S− ⊗C2. We take
our Q to be, as in the N = 2 theory, a decomposable tensor

Q = � ⊗
(

1
0

)

for some� ∈ S+.

The following lemma is easy to verify.

14.3.1 Lemma. The twisted N = 4 theory is the cotangent theory for the elliptic moduli
problem describing holomorphic G-bundles on the graded complex manifold C2[1]→ C2.

14.4. It is worthwhile describing these field theories completely explicitly. For the
N = 1 theory, near the trivial principal G-bundle, the elliptic Lie algebra with invari-
ant pairing is

L Q
N =1 = Ω0,∗(C2, g⊕ g∨[−1]),

where g⊕ g∨[−1] is made into a Lie algebra by the action of g on g∨[−1]. The invariant
pairing is

〈�⊗ A, ⊗ B〉 =
∫

C2
� dz1dz2 〈A, B〉g

where A ∈ g, B ∈ g∨, and�, ∈ Ω0,∗(C2).

The N = 2 Lie algebra is

L Q
N =2 = Ω0,∗(C2, g["]⊕ g∨[−2]["]),
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where " is a parameter of degree −1, and the pairing between g["] and g∨["] is given
by combining the pairing between g and g∨ with the trace map on C["] defined by

Tr : C["]→ C

Tr(") = 1.

Finally, let us describe the N = 4 Lie algebra. Consider the algebra A = C["1,"2],
where "i are of degree 1, equipped with the trace map of degree −2 defined by

Tr("1"2) = 1.

The N = 4 Lie algebra can be written as

L Q
N =4 = Ω0,∗(C2, g⊗ A⊕ g∨[1]⊗ A).

Note that the N = 1, 2 and 4 twisted theories all arise from taking a graded-
commutative Frobenius algebra A, with a trace of degree −k, and then considering

Ω0,∗(C2, g⊗ A⊕ g∨[k− 1]⊗ A).

14.5. A supersymmetric field theory, by definition, is one equipped with an action
of a certain super Lie algebra. In this section we will see that a twist of a twist of a
supersymmetric gauge theory has some residual symmetries.

Recall that a theory with N = k supersymmetries has an action of the super Lie
algebra

(gR ⊕ sl2(C)⊕ sl2(C)) n TN =k,

where gR is the Lie algebra of the appropriate R-symmetry group (which is SL4(C) in
the case k = 4, GL2(C) in the case k = 2, or C× in the case k = 1).

Let (�, Q) be twisting data as above. Let g�R ⊂ gR be the sub Lie algebra fixed under
the restriction of the adjoint GR action under the homomorphism � : C× → GR.

Recall that the odd part of TN =k is

S+ ⊗Ck ⊕ S− ⊗Ck.

The group C× acts on this space via the homomorphism � : C× → GR ⊂ GLk(C).
(Recall that the copy of Ck tensored with S− is dual to the copy which is tensored with
S+).

In our examples, the space S+⊗Ck⊕S−⊗Ck decomposes into weight 1 and weight
−1 subspaces under this C× action. Let us introduce a Z-grading on the space of odd
elements of TN =k, by saying that elements of weight 1 are in cohomological degree 1,
and elements of weight −1 are in cohomological degree −1.
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Thus, with this grading, we find a Z-graded Lie algebra

(
gC×

R ⊕2 (C)⊕2 (C)
)

n TN =k.

The element Q ∈ TN =k is, by assumption, in cohomological degree 1.

It is clear that every element of this Z-graded Lie algebra which commutes with Q
acts on the twisted theory. Further, symmetries of the form [Q, X] act homotopically
trivially. Thus, we see that

14.5.1 Lemma. A theory twisted by a supercharge Q acquires an action of the differential
graded Lie algebra sl2 ⊕ sl2 ⊕ gC×

R ⊕ TN =k, with differential Q.

Later we will see that the N = 4 theory admits further twists. These twists arise
from elements of H1 of this differential graded Lie algebra.

14.6. So far, we have described the anti-self-dual supersymmetric gauge theories via
the twistor-space formulation, and we have described the twisted theories arising
from the anti-self-dual theories. We have not, however, described the full supersym-
metric gauge theory.

As explained in [BMS07], the full supersymmetric gauge theory also as a twistor
space description: it is obtained by deforming the action for the anti-self-dual theory
by adding a certain explicit term to the action.

Because the full supersymmetric gauge theory is acted on by the same supersym-
metry group as the anti-self-dual theory, the twisting construction described above
can be applied to the full theory.

14.6.1 Proposition. The deformation of the anti-self-dual theory into the full supersymmetric
gauge theory does not change the minimally-twisted theory.

The minimally-twisted supersymmetric gauge theory we described above has an
action of an R-symmetry group, and is also invariant under translations and the group
GL2(C) acting on C2. The deformation of this theory we are interested in has the same
symmetry group, inherited from the symmetries of the full supersymmetric gauge
theory.

In order to prove the result, we will verify that the minimally twisted theories we
analyzed earlier admit no deformations with these symmetries.
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14.6.2 Theorem. Let G be a simple algebraic group, and g its Lie algebra. Let us consider the
minimally-twisted N = 1, 2, 4 supersymmetric gauge theories on C2, perturbing around the
trivial G-bundle.

Then, the cohomology of the complex of translation-invariant local functionals for the N =
1, 2, 4 minimally twisted field theories, also invariant under the action of C× by dilation on
C2 and the appropriate R-symmetry group, is trivial in degrees 0 and < −1, and isomorphic
to H5(g) in degree 1.

For the N = 1 theory, the degree −1 cohomology group is also trivial. For the N = 2, 4
theories, the degree −1 cohomology group is C, which corresponds to the Lie algebra of the
center of the R-symmetry group acting on the twisted theory.

The proof is presented in the appendix.

I should remark that this theorem has an immediate consequence.

14.6.3 Corollary. The minimally-twisted supersymmetric gauge theories on C2 all admit a
unique quantization, invariant under translation, dilation, and R-symmetry.

Proof. Indeed, the obstruction to quantizing lies in H5(g). However, the outer auto-
morphism group of g acts on everything, and the obstruction must be invariant under
this symmetry. Since, for any semi-simple Lie algebra g, there are no elements of H5(g)
invariant under Out(g), we conclude that the obstruction must vanish. �

This argument was also used in [Cos11b], Chapter 6 to prove the existence of a
quantization of ordinary Yang-Mills theory.

15. TWISTED THEORIES ON A COMPLEX SURFACE

Next, I will explain how these twisted theories can be put on an arbitrary complex
surface, and not just on C2.

The twisted N = 1 theory is the cotangent theory to the moduli problem of holo-
morphic bundles on C2. This theory makes sense on any complex surface.

15.0.4 Definition. Let X be a complex surface. Then N = 1 twisted supersymmetric gauge
theory on X is the cotangent theory to the moduli problem of holomorphic principal G-bundles
on X.
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Thus, if P→ X is a principal G-bundle, the elliptic Lie algebra describing the N = 1
theory is

LN =1(X) = Ω0,∗(X, gP)⊕Ω0,∗(X, g∨P ⊗ KX[−1]).

15.1. The twisted N = 2 and N = 4 theories are defined to be the cotangent theories
to the moduli of bundles on certain graded complex manifolds extending C2. For the
N = 2 theory, the graded complex manifold is C[−1] → C2. For the N = 4 theory,
the graded complex manifold is C2[1]→ C2.

Thus, the N = 2 theory can be defined on any graded complex manifold which
locally looks like C[−1]→ C2. This leads to the following definition.

15.1.1 Definition. Let X be a complex surface, and let L → X be a line bundle. Then the
L-twisted N = 2 theory is the cotangent theory to the moduli of holomorphic principal G-
bundles on the graded complex manifold L[−1]→ X.

Let X be a complex surface, and let V → X be a line bundle. Then the V-twisted N = 4
theory is the cotangent theory to the moduli of holomorphic principal G-bundles on the graded
complex manifold V[1]→ X.

Remark: In the physics literature, this choice of vector bundle is also (confusingly)
called a “twist”. I prefer to think of this choice of a vector bundle as playing the
same role as the choice of the complex surface S.

15.2. The most important examples are when the vector bundle is naturally associated
to X. For the N = 2 theory, the example we will be interested in is when the line
bundle L is the trivial line bundle consider will be when L is trivial. We will refer to
this as “the” twisted N = 2 gauge theory.

In all examples we have considered so far, we have only twisted by one supersym-
metry operator. We will refer to a theory twisted in this way as a minimally twisted
theory. In many examples, however, one can perform further twists.

For the N = 2 gauge theory (with trivial line bundle L) the theory can be twisted
further to give a topological theory. This further twist is the classical field theory
related to Donaldson theory; in the same was as the fully-twisted A-model is related
to the theory of Gromov-Witten invariants.

The elliptic Lie algebra on X describing the minimally twisted N = 2 theory is

Ω0,∗(X, gP["]⊕ KX ⊗ g∨P ["][−2])
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where " is a parameter of degree −1. The pairing arises from the natural pairing
between gP and g∨P and the trace map

Tr : C["]→ C

Tr(") = 1.

15.3. For the N = 4 theory, there are two natural choices of rank 2 vector bundle V.
One is when V is trivial. This version of the twisted N = 4 theory was considered by
Vafa and Witten in [VW94]; it admits a further twist into a classical topological field
theory, whose partition function is supposed to be the Euler characteristic of moduli
spaces of holomorphic bundles.

The other natural choice is when V is the tangent bundle. This version of the twisted
N = 4 theory was considered by Kapustin and Witten [KW06]. This is the only
version of the minimally twisted N = 4 theory we will consider from now on, and
we will refer to it as “the” twisted N = 4 theory. This theory has a very familiar
geometric interpretation: it is the cotangent theory to the derived moduli space of
Higgs bundles on X. Recall that a Higgs bundle on X is a holomorphic principal G-
bundle P with an element� ∈ H0(X, gP ⊗ T∗X) satisfying [�,�] = 0.

Kapustin and Witten consider theories where one twists by several supersymmetry
operators, and not just by one. The theory described above is the minimally twisted
N = 4 theory, where we have twisted only by a single supersymmetry operator. Later
we will consider further twists of the minimally twisted theory, which lead to the P1

of topological theories considered by Kapustin and Witten.

The elliptic Lie algebra describing this twisted N = 4 theory is

LN =4(X) = Ω∗,∗(X, gP ⊕ g∨P [1]),

where the differential is the ∂ operator, and of course, Ωp,q(X) is situated in degree
p + q.

16. THE KAPUSTIN-WITTEN FAMILY OF TWISTED N = 4 THEORIES

So far we have constructed the minimal twists of the N = 1, 2, 4 supersymmetric
gauge theories, on a complex surface. In this section I will show how the twisted
N = 4 theory we have constructed can be twisted further, to yield a P1 of (classical)
topological field theories.
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Let G be a simple algebraic group, and let P be a G local system on X. To describe
the P1 of twisted theories where we perturb around P, I will just write down a P1 of
elliptic Lie algebras on X.

Let (s, t) ∈ C2. Let us define an elliptic Lie algebra

L (s, t) = (Ω∗,∗(X, gP ⊗C["])

where " is a parameter of degree −1. The differential is

∂ + s∂ + t
∂

∂"
.

The Lie bracket on L (s, t) is independent of s and t.

The elliptic Lie algebra L (s, t) has an invariant pairing given by the formula

〈"�,�〉 =
∫

X
〈�,�〉g .

Here �,� ∈ Ω∗,∗(X, gP), and 〈−,−〉g is a chosen invariant pairing on the Lie algebra
g of G (which, since G is simple, is unique up to scale).

When s = t = 0, this family of elliptic Lie algebras coincides with that describing
the minimally twisted theory we considered earlier.

The elliptic Lie algebra L (0, 0) has a C× action, where an element

� ∈ "rΩp,q(X, gP)

has weight p − 4r. This C× action is easily seen to preserve the pairing. The action
therefore gives an isomorphism of classical field theories

L (s, t) ∼= L (�s, �4t).

Thus, the family of twisted theories is parametrized by a weighted P1.

16.1. Note that, when t = 0, the theory L (1, 0) is the cotangent theory to elliptic
moduli problem of G local systems on X. As we will see shortly, this theory becomes,
on dimensional reduction, the B-model with target the space of G-local systems on a
curve. We will this value of the parameter the B-model point.

For s = 1 and t ∈ C, the theory L (1, t) is a “twisted” form of the cotangent theory to
the moduli of G local systems on X. Let LocG(X) denote the derived moduli space of
G-local systems on X. As always, I will only be precise at the formal level: the elliptic
Lie algebra describing the formal neighbourhood of a G-local system P is Ω∗(X, gP),
with the de Rham differential.
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Note that the Poincaré pairing gives this elliptic Lie algebra a pairing of cohomo-
logical degree −4. It follows that the derived moduli space LocG(X) has a symplectic
pairing of cohomological degree −2. This symplectic pairing can be interpreted as a
Poisson bracket of cohomological degree 2. The Poisson bivector P is then a cohomo-
logical degree 0 function on T∗[−1] LocG(X), which is quadratic along the cotangent
fibres. The Jacobi identity implies that {P, P} = 0, where {−,−} refers to the Poisson
bracket on functions on T∗[−1] LocG(X).

Thus, we can deform the 0-symplectic manifold T∗[−1] LocG(X) by adding t{P,−}
to the differential. This one-parameter family of 0-symplectic manifolds (for t ∈ A1)
describes the Kapustin-Witten family of theories at the points (1 : t).

Note that we can use the symplectic form on LocG(X) to identify T∗[−1] LocG(X)
with T[1] LocG(X). Functions on T[1] LocG(X) are forms on LocG(X). Under this
identification, the operation {P,−} (on functions on T∗[−1] LocG(X)) becomes the de
Rham differential. Thus, we can think of the 0-symplectic manifold describing the
Kapustin-Witten theory at a point (1 : t) with t 6= 0 as being equivalent to the de
Rham stack of LocG(X). With this identification, the symplectic form depends on t.

16.2. Finally, let us discuss the theory when s = 0. The theory L (0, 1) described by
elliptic Lie algebra

Ω∗,∗(X, gP["])

with differential ∂ + d
d" . This elliptic Lie algebra is contractible; just like the elliptic L∞

algebra describing the fully-twisted A-model. Thus, perturbation theory does not say
anything about the theory with this parameter. When we dimensionally reduce, this
theory becomes the A-model with target the stack of Higgs bundles on a curve.

17. DIMENSIONAL REDUCTION

In this section I will introcuce the general idea of dimensional reduction. Shortly we
will apply this idea to relate the twisted 4-dimensional gauge theories we have been
studying to the 2-dimensional field theories we discussed earlier: the various twists
of the A- and B-models.

Because of lack of space, I will be a little informal in the general discussion of di-
mensional reduction. As I mentioned in the introduction, I will not attempt to give
detailed definitions of global objects of derived algebraic geometry. I will, howver, try
to be more precise at the level of formal derived spaces.
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17.1. The basic idea of dimensional reduction is very simple. We have defined a (per-
turbative) field theory on a space X to be a sheaf of (formal) derived spaces on X,
together with a symplectic form. If f : X → Y is a fibration, and M is a sheaf of formal
derived spaces on X, then we can define a push forward sheaf f∗M. If M is a classical
field theory – that is, equipped with a symplectic fom of degree −1 – then so is f∗M.
We call f∗M the dimensional reduction of the field theory M on X.

Let us consider a simple example. Let M and N be complex manifolds. Let G be an
algebraic group, and let BunG(N) denote the (derived) moduli stack of G-bundles on
N.

Then, the derived moduli stack of holomorphic maps M → BunG(N) is the same
as the derived moduli stack of holomorphic G-bundles on M× N.

Thus, we see that an elliptic moduli problem on M× N (that describing holomor-
phic G-bundles) can be turned into an elliptic moduli problem on M (that describing
maps from M to BunG(N)).

17.2. Let us now give a formal definition of dimensional reduction. We will work
at the perturbative level, where a classical field theory is described by an elliptic L∞
algebra with an invariant pairing.

Let � : F→ M be a proper fibration of manifolds (so that � has compact fibres). Let
L be an elliptic L∞ algebra on F. Let L be the underlying graded vector bundle of L .

We would like to define the elliptic L∞ algebra on M to be the sheaf-theoretic push-
forward �∗L . This, however, does not obey the axioms I gave for an elliptic L∞ alge-
bra, because �∗L does not arise as the sections of a finite-dimensional graded vector
bundle on M.

We can, instead, look for an elliptic L∞ algebra on M which is quasi-isomorphic to
�∗L . This gives a precise definition of a dimensional reduction of a formal elliptic
moduli problem.

17.2.1 Definition. Let L be an elliptic L∞ algebra on F. Then an ellliptic L∞ algebra L̃

on M is a dimensional reduction of L if we are given a quasi-isomorphism of sheaves of L∞
algebras

L̃ ' L .

Let us see how this works in case when M and N are Riemann surfaces, and the
elliptic moduli problem we are considering is that of holomorphic G-bundles on M×
N.
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Let P → M× N be such a G-bundle. The elliptic Lie algebra controlling deforma-
tions of P is Ω0,∗(M× N, gP), where gP denotes the adjoint bundle of Lie algebras on
M× N associated to P.

Dimensional reduction, in this case, means that we consider P to be a map from M
to the moduli stack BunG(N) of holomorphic G-bundles on N. Note that because N
is a Riemann surface, BunG(N) can be treated as an ordinary (non-derived) stack.

Let � : M → BunG(N). Let T BunG(N) denote the tangent complex of BunG(N).
There is an L∞ structure on Ω0,∗(M,�∗T BunG(N)) which controls deformations of
the map�.

In this example, the statement that the elliptic moduli problem on M is dimension-
ally reduced from that on M× N means that there is a canonical equivalence between
two sheaves of L∞ algebras on M. The first sheaf of L∞ algebras sends U ⊂ M to

g1(U) = Ω0,∗(U,�∗T BunG(N)).

The second sheaf of L∞ algebras sends U ⊂ M to

g2(U) = Ω0,∗(U × N, gP)

where gP is the principal G-bundle on M× N arising from the map M→ BunG(N).

The existence of such an equivalence of sheaves of L∞ algebras is automatic from
the universal property of BunG(N).

In practise, however, in this and in other examples, there is no need to repace the
sheaf g2(U) of L∞ algebras on M by a smaller sheaf. The sheaf g2(U) does not strictly
conform to the definition of an elliptic L∞ algebra I gave earlier: it does not arise as the
sections of a finite rank graded vector bundle on M. However, there are no essential
difficulties caused by working directly with a sheaf of L∞ algebras of the form g2.

17.3. The factorization algebra point of view [CG11] on perturbative quantum field
theory gives a clean way to think about dimensional reduction. Let � : F → M be a
proper fibration of manifolds. Let F be a factorization algebra on F, in the sense of
[CG11]. If we are dealing with a classical field theory on F, then F will be a commu-
tative factorization algebra with a Poisson bracket of degree 1. If we are dealing with
a quantum field theory, then F will be a factorization algebra over R[[h̄]].

In either case, we can define a factorization algebra �∗F on M be setting

(�∗F)(U) = F(�−1(U))

for an open subset U ⊂ M. This pushforward factorization algebra describes the
observables of the dimensionally reduced theory.
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17.4. Many of the theories we have considered in this paper are the cotangent theories
associated to elliptic moduli problems. It is straightfoward to verify, from the defini-
tions given above, that dimensional reduction commutes with the operation of taking
the cotangent theory associated to an elliptic moduli problem.

18. FROM 4-DIMENSIONAL GAUGE THEORIES TO 2-DIMENSIONAL � -MODELS

In this section we will see how dimensional reduction of the various twisted 4-
dimensional gauge theories we have considered lead to 2-dimensional�-models with
target various versions of the moduli stack of G-bundles on a Riemann surface.

18.1. Let us start with the twisted N = 1 gauge theory on a product Σ1 × Σ2 of two
Riemann surfaces. The 4-dimensional theory is the cotantent theory to the moduli of
holomorphic G-bundles on Σ1 × Σ2. It follows that the 2-dimensional theory (dimen-
sionally reduced along Σ2) is the cotantent theory to the moduli of holomoprhic maps
from Σ1 to BunG(Σ2).

Recall that, given any complex manifold X, the cotangent theory to the moduli of
holomorphic maps from a Riemann surface Σ to X is known in the physics literature
as a twisted (0, 2) �-model. It is believed [Wit05, Cos10] that the factorization algebra
of this theory – or at least, that part of the factorization algebra which only considers
constant holomorphic maps to X – is the chiral differential operators of X.

Thus, one expects that factorization algebra constructed from the twisted N = 1
theory (if it could be defined) should be closely related to the chiral differential oper-
ators of BunG(Σ2); and that the partition function of this theory contains the Witten
elliptic genus of the moduli stack BunG(Σ2).

Unfortunately, one can show [Cos12] that the twisted N = 1 theory can only be
defined on complex surfaces M with c1(M) = 0.

18.2. Next, let us consider the minimally twisted N = 2 theory. Recall that this is the
cotangent theory to the derived moduli space of G-bundles on a complex surface M,
together with a holomorphic section of the adjoint bundle gP.

Upon dimensional reduction along a curve Σ2, this becomes the cotangent theory
to the space of holomorphic maps from Σ1 to the derived moduli stack of pairs

{(P,�) | P ∈ BunG(Σ2), � ∈ H0(Σ, gP)}.

(When I say the derived moduli stack of such pairs, it is implicitly assumed that the
higher cohomology Hi(Σ, gP) is included as part of the derived structure).
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Note that we can identify the tangent complex TP BunG(Σ2) as

TP BunG(Σ2) = H∗(Σ, gP)[1].

Thus, the twisted N = 2 gauge theory becomes, upon dimesional reduction, the
cotangent theory to the space of holomorphic maps from Σ1 to T[−1] BunG(Σ2).

This agrees, as a Z/2 graded theory, with the 1
2 -twisted A-model on BunG. As I

discussed earlier, the Z grading we gave to supersymmetric field theories is a little
arbitrary; thus, we can say that, after changing the grading on our minimally twisted
N = 2 theory, it dimensionally reduces to the 1

2 -twisted A-model on BunG.

It is not difficult to see that the minimally twisted N = 2 theory can be further
twisted into a theory which dimensionally reduces to the fully-twisted A-model. This
further twist of the N = 2 theory is the one considered by Witten [Wit88] in his study
of Donaldson theory.

19. DIMENSIONAL REDUCTION OF THE N = 4 THEORY

In this section, we will show the following.

19.0.1 Proposition. The dimensional reduction of the minimally-twisted Kapustin-Witten
theory on a product of two Riemann surfaces Σ1 × Σ2 is the 1

2 -twisted B-model with target
T∗ BunG(Σ2).

Since T∗ BunG(Σ2) has a (holomorphic) symplectic form, the 1
2 -twisted A- and B-

models with this target coincide.

Proof. The minimally-twisted Kapustin-Witten theory is the cotangent theory to the
derived moduli space of G-bundles on T[1](Σ1 × Σ2). The elliptic Lie algebra on Σ1 ×
Σ2 describing this derived moduli space (near a given principal G-bundle) is

Ω∗,∗(Σ1 × Σ2, gP)

with differential ∂.

Note that we can write

T[1](Σ1 × Σ2) = (T[1]Σ1)× (T[1]Σ2).

Thus, when we dimensionally reduce along Σ2, we find the cotangent theory to the
elliptic moduli problem describing holomorphic maps

T[1]Σ1 → BunG(T[1]Σ2).
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For a general complex target X, the cotangent theory to the space of holomorphic maps
T[1]Σ→ X is the 1

2 -twisted B-model on X.

Thus, it remains to verify that, for any Riemann surface Σ,

BunG(T[1]Σ) = T∗ BunG(Σ).

Note that BunG(T[1]Σ) is, by definition, the derived moduli space of pairs (P,�),
where P is a principal G-bundle on Σ and � is a section of KΣ ⊗ gP. In other words,
BunG(T[1]Σ) is the derived moduli space of Higgs bundles on Σ. It is well known that
this moduli space describes the cotangent bundle to BunG(Σ). �

In a similar way, we see the following.

19.0.2 Lemma. The dimensional reduction of the fully twisted N = 4 theory at the point
(1, 0) in the P1 of twists is the B-fully-twisted model with target LocG(Σ2).

The dimensional reduction of the fully-twisted N = 4 theory at the point (0, 1) is the
fully-twisted A-model with target T∗ BunG(Σ2).

Proof. Let us first prove the B-model statement. At the point (1, 0) the fully-twisted
N = 4 theory is the cotangent theory to the moduli space of G-local systems on
Σ1 × Σ2. When we dimensionally reduce, we find the cotangent theory to the space of
locally constant maps Σ1 → BunG(Σ2), which is the B-model with target BunG(Σ2).

Recall that the minimally-twisted N = 4 theory becomes, upon dimensional re-
duction, the cotangent theory to the moduli of Higgs bundles on Σ1 × Σ2. We can also
view this as the cotangent theory to the space of maps from T[1]Σ1 → T∗ BunG(Σ2).
The A-model with target X is a deformation of the cotangent theory of holomorphic
maps from T[1]Σ→ X, deformed by introducing the de Rham differential on T[1]Σ. It
remains to verify that the deformation of the minimally-twisted N = 4 theory to the
twisted theory with parameter (0, 1) amounts to introducing the de Rham differential
on T[1]Σ1; this is straightforward.

�

APPENDIX

In this appendix I present a proof of a cohomology vanishing result, which allowed
us to conclude that the twist of the full supersymmetric gauge theory coincides with
the twist of the anti-self-dual theory. This result also shows that our minimally twisted
theories admit a unique quantization on C2, invariant under translation, dilation, and
R-symmetry.
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19.0.3 Theorem. Let g be a simple Lie algebra. The cohomology of the complex of translation-
invariant local functionals for the N = 1, 2, 4 minimally twisted field theories, with gauge
Lie algebra g, which are also invariant under the action of C× by dilation on C2 and the
appropriate R-symmetry group, is trivial in degrees 0 and ≤ −2. In degree 1 it coincides with
H5(g).

For the N = 1 theory, the degree −1 cohomology group is also trivial. For the N = 2, 4
theories, the degree −1 cohomology group is C, which corresponds to the Lie algebra of the
center of the R-symmetry group acting on the twisted theory.

Proof. General results from [Cos11b], Chapter 5, allow one to identify the groups of
translation-invariant local functionals with certain Lie algebra cohomology groups, as
follows. For each k ≥ 0, consider the Lie algebra

G ′k = g[[z1, z2, z1, z2, dz1, dz2,"1, . . . ,"k]]

⊕ g[[z1, z2z1, z2, dz1, dz2,"1, . . . ,"k]]dz1dz2(d"1)−1 . . . (d"k)−n[−1].

Here g is a fixed semi-simple Lie algebra; the parameters "i and dzi has cohomological
degree 1. The differential on G ′ is induced by the usual Dolbeaut operator, ∑ dzi

d
dzi

.
The factor of dz1dz2 ∏(d"i)−1 is indicated to show how symmetries of C2, and the
R-symmetry group, act on everying.

Note that G ′k is acted on by the Abelian Lie algebra C4, with basis ∂i, ∂ j, where ∂i

acts by d
dzi

and ∂ j acts by d
dzi

.

General results from [Cos11b] imply that the complex of translation-invariant de-
formations of our minimally twisted N = 1, N = 2 or N = 4 theory is given by a
Lie algebra cohomology group of the form

C∗(C4, C∗red(G
′
k )dz1dz2dz1dz2).

for different values of k: k = 0 corresponds to N = 1, k = 1 to N = 2 and k = 2 to
N = 4.

This expression indicates the Lie algebra chains of the Abelian Lie algebra C4 with
coefficients in the reduced Lie algebra cochains of G ′k .

Our aim is to show that there is nothing in H0 of this complex which is invariant
under the group C× ×GLk(C), which acts as follows. The factor of C× is the dilation
symmetry of C2, and so acts on zi, zi, dzi, dzi in the evident way. The factor GLk(C) is
the R-symmetry group, which acts on the exterior algebra C["1, . . . ,"k] in the evident
way.
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The C× action on the "i is taken to be trivial. This is just a convention: if "i had
weight � ∈ Z under the action of C×, then by conjugating by an isomorphism of the
group C× × GL2(C) we could return to a situation where "i was preserved by the
group C×.

Now, let Gk ⊂ G ′k be the sub Lie algebra which has no z’s and no dz’s. Note that
the inclusion Gk ⊂ G ′k is a quasi-isomorphism. It follows that we can compute the
cohomology groups of interest using Gk in place of G ′k .

Note that the elements ∂i in the Abelian Lie algebra C4 act trivially on Gk. We can
rewrite our complex as

C∗(C2, C∗red(Gk)dz1dz2)⊗
(
C[∂1, ∂2]dz1dz2

)
where in the algebra C[∂1, ∂2] the generators ∂1, ∂2 are given degree −1.

We are only interested in quantities which are invariant under the action of C× ×
GL2(C). The only C× invariant quantities contain the same number of ∂i’s and dz j’s,
so we see that our complex reduces to

C∗
(
C2, C∗red(Gk)dz1dz2

)C××GL2(C)
[2].

Let

C∗red(Gk)i ⊂ C∗red(Gk)

be the subcomplex consisting of elements of weight −i under the C× action (with
respect to which zi has weight 1 and " j has weight 0). This complex has a natural
GLk(C)-action; the invariants under GLk(C) will be denoted by C∗red(Gk)i,GLk(C).

We will compute the C××GLk(C)-invariant cohomology group we want by a spec-
tral sequence. The first term of our spectral sequence computes the cohomology with
respect to the internal differential on C∗red(Gk); the next term uses the action of the
Abelian Lie algebra C2.

The C×-invariant part of the first term of our spectral sequence is the the direct sum
of the following complexes:

C∗red(Gk)0
∂1∂2dz1dz2[4]

C∗red(Gk)−1
∂1dz1dz2[3]⊕ C∗red(Gk)−1

∂2dz1dz2[3]

C∗red(Gk)−2dz1dz2[2].

Now, recall that

Gk = g[[z1, z2,"1, . . . ,"k]]⊕ g[[z1, z2,"1, . . . ,"k]]dz1dz2(d"1)−1 . . . (d"k)−1[−1].
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Let us denote by gk the Lie algebra

gk = g["1, . . . ,"k].

Thus, the complex C∗red(Gk)0 is just C∗red(gk). The GLk(C)-invariants of C∗red(gk) is
C∗red(g). So, we find H∗red(g)[4] as one summand of the C× × GLk(C)-invariant part of
the first page of our spectral sequence.

Next, note that C∗red(Gk)−1 consists of C∗(gk, (zigk)∨), for i = 1, 2. If we further re-
strict to the GLk(C) invariants, we find C∗(g, (zig)∨). Since g is semi-simple, H∗(g, g∨) =
0, so that GLk(C)-invarinat part of the cohomology of C∗red(Gk)1 vanishes.

Finally, let us consider C∗red(Gk)−2. One possible source of weight −2 cochains is
C∗(gk, (zigk)∨⊗ (z jgk)∨. If we restrict again to GLk(C) invariants, we find C∗(gk, (zigk)∨⊗
(z jgk)∨. Since H∗(g,∧2g∨) = 0, the only non-zero possibility is when i = 1 and j = 2,
giving us

H∗(g, Sym2 g∨(z∨1 z∨2 ))

as a second direct summand of the GLk(C) × C× invariant part of our spectral se-
quence.

A second possibility for weight −2 cochains is

C∗(gk, (dz1dz2d"−1
1 . . . d"−1

k gk)∨)[2].

Here, we take d"−1
1 . . . d"−1

k to have cohomological degree −k if the "i have degree
1, and +k if the "i have degree −1. Let Cdet refer to C viewed as the determinant
representation of GLk(C); then this term in the spectral sequence can be written as
C∗(gk, g∨k ⊗Cdet[2± k]).

Note that the invariant pairing on the Lie algebra g, as well as the natural Frobenius
algebra structure on C["1, . . . ,"k], gives an isomorphism

g∨k ⊗Cdet[pmk] ∼= gk.

Thus, this term in the spectral sequence is simply C∗(gk, gk)[2].

To summarize: we have shown that the GLk(C)×C×-invariant part of the E1 page
of our spectral sequence consists of

H∗red(g)[4]⊕ H∗(g, Sym2 g∨)⊕ H∗(gk, gk)GLk(C)[2].

Note that H∗red(g)[4] consists of H3(g) in degree −1 and H5(g) in degree +1; these are
the only degrees of interest to us. Also, H∗(g, Sym2 g∨) consists of the g-invariants in
Sym2 g∨ in degree 0, and is zero in all other degrees which are ≤ 1.

It is not completely obvious what H∗(gk, gk) is, but we will compute it shortly.
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To complete the proof, we need to prove two lemmas.

19.0.4 Lemma. On the next page of the spectral sequence, the differential gives an isomor-
phism between H3(g) (situated in degree −1) and H0(g Sym2 g∨) (situated in degree 0).

Proof. If we reintroduce the symbols z, dz, we see that our possible differential maps

H3(g)∂1∂2 → H0(g, Sym2 g∨z∨1 z∨2 ).

A straightforward computation (carried out in a very similar context in [Cos11b],
Chapter 5) shows that this map is an isomorphism. �

19.0.5 Lemma. The cohomology H∗(gk, gk)GLk(C)[2] is the following:

(1) 0 if k = 0.
(2) C in degree −1 if k = 1 or k = 2.

Proof. If k = 0, then gk = g, and H∗(g, g) = 0.

If k = 1, then gk = g["]. This corresponds to the theory with N = 2 supersymmetry;
in which case we put " in degree −1.

The only C×-invariant part of H∗(g["], g["])[2] comes from

H∗(g, ("g)∨ ⊗"g)[2] = H∗(g, Sym2 g)[1].

Thus, we find H0(g, Sym2 g) in degree −1, and 0 in degrees 0, 1.

Next, let us consider the case k = 2, which corresponds to the theory with N = 4
supersymmetry. In this case, we take the "i to have cohomological degree 1. (GL2(C)-
invariance implies that the cohomology groups we end up with are independent of
the degree we choose to assign to the "i, as long as that degree is odd. As, GL2(C)-
invariance implies that the number of "i’s and "∨i ’s is the same).

Let us give g["1,"2] a grading by giving g has weight 0, and the subspace ("1 ⊕
"2)g["1,"2] weight −1. This induces a grading on C∗(g2, g2), not compatible with the
differential. Define FkC∗(g2, g2) to be the subcomplex of elements of weight ≥ k in
this grading. The differential on C∗(g2, g2) preserves these subspaces, so that we have
defined a filtration on the complex C∗(g2, g2).

This filtration induces a spectral sequence, whose first term is the cohomology of
the associated graded. We will compute the GL2(C) invariants of this cohomology.

Let us denote by V the 2-dimensional vector space spanned by "1,"2, situated in
degree 1. Thus, our Lie algebra is g⊗ Sym∗ V.
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The only possible GL2(C)-invariant elements Gr C∗(g2, g2)[2] are of one of the four
following forms:

(1) C∗(g, g). The cohomology of this summand is of course zero.
(2) C∗(g, (V∨ ⊗ g∨) ⊗ (V ⊗ g))[1]. The GL(V)-invariants of V∨ ⊗ V are one di-

mensional. The g-invariants of g∨⊗ g coincide with the g-invariants of Sym2 g.
Thus, this summand contributes H∗(g, Sym2 g)[1]. The only part that can con-
tribute to the cohomology groups of interest is H0(g, Sym2 g) in degree −1.

(3) C∗(g, (∧2V∨⊗ g∨)⊗ (∧2V⊗ g))[1]. Again, contributes H0(g, Sym2 g)in degree
−1.

(4) C∗(g, Sym2(V ⊗ g)∨(∧2V ⊗ g)). The GL2(V)-invariants of this is one dimen-
sional. Thus, we find H0(g,∧2g∨ ⊗ g) in degree 0. Since g is semi-simple, this
coincides with H0(g,∧3g) in degree 0.

The differential on the next page of the spectral sequence maps the third summand
listed above to the fourth. Thus, we find that the cohomology reduces to H0(g, Sym2 g)
in degree −1. �

This completes the proof of the theorem. �

REFERENCES

[AKSZ97] M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky, The Geometry of the master
equation and topological field theory, Internat. J. Modern Phys. 12(7), 1405–1429 (1997), hep-
th/9502010.

[BMS07] R. Boels, L. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, J. High
Energy Phys. (2), 014, 21 pp. (electronic) (2007).

[CFK01] I. Ciocan-Fontanine and M. Kapranov, Derived Quot schemes, Ann. Sci. École Norm. Sup. (4)
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