Dependent choice in Johnstone's topological topos

Michael Shulman^{*} and Alex Simpson[†]

March 17, 2024

1 Statement

The principle of *(countable)* dependent choice can be formulated in the internal logic of any elementary topos with natural numbers object.

Definition 1.1. An elementary topos \mathcal{E} with natural numbers object N validates *dependent choice* if, for any object X and subobject $R \longmapsto X \times X$,

 $\mathcal{E} \models \forall x \colon X \exists y \colon X R(x, y) \to \forall x \colon X \exists f \colon X^{\mathbf{N}} \left(f(0) = x \land \forall n \colon \mathbf{N} R(f(n), f(n+1)) \right) \ .$

In the special case of a Grothendieck topos, one can give a simple equivalent formulation avoiding the internal logic.

Proposition 1.2. A Grothendieck topos \mathcal{E} validates dependent choice if and only if, for every ω^{op} -chain of epimorphisms

 $\cdots \xrightarrow{e_3} X_3 \xrightarrow{e_2} X_2 \xrightarrow{e_1} X_1 \xrightarrow{e_0} X_0 ,$

the limit cone $(L \xrightarrow{l_i} X_i)_{i \ge 0}$ itself consists of epimorphisms.

Johnstone's topological topos \mathcal{T} [Joh79] is the Grothendieck topos given by the site defined below. The generating category is the full subcategory \mathbb{T} of the category of topological spaces on two objects: **1**, a one point space; and \mathbf{N}^{∞} , the one point compactification of a discrete countably infinite space. We take the underlying set of

^{*}This material is based upon work supported by the U.S. Air Force Office of Scientific Research under award numbers FA9550-15-1-0053 and FA9550-21-1-0009.

[†]Research supported by Slovenian Research and Innovation Agency Programme P1-0294

 \mathbf{N}^{∞} to be $\mathbb{N} \cup \{\infty\}$. For $i \in \mathbb{N} \cup \{\infty\}$, we write $i: \mathbf{1} \to \mathbf{N}^{\infty}$ for the function whose image is $\{i\}$.

We often consider infinite subsets $L \subseteq \mathbb{N}$ as given by strictly ascending enumerations $\{l_0, l_1, l_2, \ldots\}$, and we refer to n as the *index* of l_n in L. Given infinite sets $L \subseteq K \subseteq \mathbb{N}$, we write $\iota_{K \supseteq L} : \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$ for the continuous strictly increasing

$$\iota_{K\supseteq L}(i) = \begin{cases} j & \text{such that } j \text{ is the index of } l_i \text{ in } K, \text{ if } i < \infty \\ \infty & \text{if } i = \infty \end{cases}.$$

Note that if $K \subseteq L \subseteq M$ then $\iota_{M \supseteq K} = \iota_{M \supseteq L} \circ \iota_{L \supseteq K}$. We write ι_K as a shorthand for $\iota_{\mathbb{N} \supseteq K}$. Also, given infinite sets $L, I \subseteq \mathbb{N}$, we write L_I for the infinite subset $\{l_i \mid i \in I\} \subseteq L$. Note that the identities

$$\iota_I = \iota_{L \supseteq L_I} \qquad \qquad \iota_{L_I} = \iota_L \circ \iota_I \tag{1}$$

hold. In fact, the second follows from the first.

The Grothendieck topology consists of all sieves that contain a *basic covering family* of one the following forms.

- The only basic cover of 1 is the singleton $\{1 \longrightarrow 1\}$.
- A family $\{B_i \xrightarrow{c_i} \mathbf{N}^{\infty}\}_{i \in I}$ of maps into \mathbf{N}^{∞} is a basic cover if:
 - 1. the functions $\{c_i\}_{i \in I}$ are jointly surjective, and
 - 2. there exists a collection \mathcal{K} of infinite subsets of \mathbb{N} satisfying:
 - (a) for every infinite subset $M \subseteq \mathbb{N}$, there exist infinite $L \subseteq K \in \mathcal{K}$ such that $L \subseteq M$, and
 - (b) for every $K \in \mathcal{K}$, there exists $i \in I$ such that $c_i = \iota_K$.

The above defines the canonical Grothendieck topology $\mathcal{J}_{\mathcal{T}}$ on the two object generating category \mathbb{T} . This is shown in detail in [Joh79], where the covering sieves of the topology are defined directly, avoiding a basis. Johnstone's *topological topos* [Joh79] is the category \mathcal{T} of sheaves on the site $(\mathbb{T}, \mathcal{J}_{\mathcal{T}})$.

Theorem 1.3. Johnstone's topological topos \mathcal{T} satisfies dependent choice.

2 Proof

We begin by introducing notation. We write X_1 and $X_{\mathbf{N}^{\infty}}$ for the sets that make up an object X of the topological topos. Elements of X_1 are in one-to-one correspondence with global points of X in \mathcal{T} , and we accordingly call such elements *points*. Any element $s \in X_{\mathbf{N}^{\infty}}$ determines a family of points $(s_i)_{i\leq\infty}$ via restriction along the maps $\mathbf{1} \xrightarrow{i} \mathbf{N}^{\infty}$ in \mathbb{T} , using the presheaf structure of X. Elements $s \in X_{\mathbf{N}^{\infty}}$ can be understood as specifying *convergences* $(s_n)_{n<\infty} \to s_{\infty}$; that is, convergent sequences together with their limits. However, there can be distinct $s, t \in X_{\mathbf{N}^{\infty}}$ for which $s_i = t_i$ for all $i \leq \infty$. As in [Joh79], one can view $X_{\mathbf{N}^{\infty}}$ as a set of 'proofs' s of convergences $(s_n)_n \to s_{\infty}$. We say that s witnesses the convergence $(s_n)_n \to s_{\infty}$.

A morphism $X \xrightarrow{f} Y$ in \mathcal{T} is given by a pair of functions $f_1: X_1 \to Y_1$ and $f_{\mathbf{N}^{\infty}}: X_{\mathbf{N}^{\infty}} \to Y_{\mathbf{N}^{\infty}}$ that together give the components of a natural transformation. That is, for any map $c: A \longrightarrow B$ in \mathbb{T} (so $A, B \in \{\mathbf{1}, \mathbf{N}^{\infty}\}$) and $x \in X_B$, it holds that

$$f_A(x \cdot c) = f_B(x) \cdot c \;\;,$$

where we write $x \cdot c$ for the element of X_A obtained by restricting $x \in X_B$ along c using the presheaf structure of X.

Lemma 2.1. A map $X \xrightarrow{f} Y$ in \mathcal{T} is an epimorphism if and only if f_1 is surjective and $f_{\mathbf{N}^{\infty}}$ satisfies:

for every
$$t \in Y_{\mathbf{N}^{\infty}}$$
, there exists $s \in X_{\mathbf{N}^{\infty}}$ and infinite $K \subseteq \mathbb{N}$ s.t. $f_{\mathbf{N}^{\infty}}(s) = t \cdot \iota_{K}$. (2)

Proof. It is standard (see, e.g., [MLM94, Corollary III.7.5]) that epimorphisms in a Grothendieck topos are characterised by the property of *local surjectivity* relative to any defining site. That is, $X \xrightarrow{f} Y$ is an epimorphism if and only if for every object A in the underlying category of the site, it holds that

for every
$$y \in Y_A$$
, there exists a covering family $\{B_i \xrightarrow{c_i} A\}_{i \in I}$ and
family $\{x_i \in X_{B_i}\}_{i \in I}$ such that $f_{B_i}(x_i) = y \cdot c_i$ for every $i \in I$. (3)

In the case of Johnstone's topological topos \mathcal{T} , when A is the object **1** of \mathbb{T} , it is immediate from the description of the Grothendieck topology $\mathcal{J}_{\mathcal{T}}$ that (3) is equivalent to the surjectivity of f_1 . Accordingly, we henceforth assume that f_1 is surjective and show that (3) is equivalent to (2) when A is \mathbb{N}^{∞} .

Suppose that A is \mathbf{N}^{∞} and (3) holds. To show (2), consider any $t \in Y_{\mathbf{N}^{\infty}}$. Using (3), let $\{B_i \xrightarrow{c_i} \mathbf{N}^{\infty}\}_{i \in I}$ be covering (generated by a family \mathcal{K} of infinite subsets) with

 $\{x_i \in X_{B_i}\}_{i \in I}$ such that $f_{B_i}(x_i) = t \cdot c_i$ for every $i \in I$. By the definition of covers in $\mathcal{J}_{\mathcal{T}}$ (one can take $M = \mathbb{N}$), there exists $K \in \mathcal{K}$ such that, for some $i \in I$, we have $c_i = \iota_K$. Thus $s = x_i$ and K are the data required by (2).

Conversely, suppose (2) holds for $A = \mathbb{N}^{\infty}$. To show (3), consider any $y \in Y_{\mathbb{N}^{\infty}}$ and define:

$$\mathcal{K} = \{ K \subseteq \mathbb{N} \mid K \text{ infinite, there exists } x_K \in X_{\mathbf{N}^{\infty}} \text{ s.t. } f_{\mathbf{N}^{\infty}}(x_K) = y \cdot \iota_K \} .$$

We show that $\{\mathbf{1} \xrightarrow{i} \mathbf{N}^{\infty}\}_{i \leq \infty} \cup \{\mathbf{N}^{\infty} \xrightarrow{\iota_{K}} \mathbf{N}^{\infty}\}_{K \in \mathcal{K}}$ is covering. Joint surjectivity is immediate from the left half of the union. Also, since the right-hand part involves a set \mathcal{K} satisfying (2b) in the definition of cover, we just need to show (2a). Accordingly, let $M \subseteq \mathbb{N}$ be infinite. By (2) using $t = y \circ \iota_{M}$, there exist $s \in X_{\mathbf{N}^{\infty}}$ and an infinite subset $K' \subseteq \mathbb{N}$ such that $f_{\mathbf{N}^{\infty}}(s) = y \cdot \iota_{M} \cdot \iota_{K'}$. So, defining $K = M_{K'}$, we have $K \subseteq M$ and $f_{\mathbf{N}^{\infty}}(s) = y \cdot \iota_{K}$, hence also $K \in \mathcal{K}$, establishing (2a) with L = K.

We have shown that $\{\mathbf{1} \xrightarrow{i} \mathbf{N}^{\infty}\}_{i \leq \infty} \cup \{\mathbf{N}^{\infty} \xrightarrow{\iota_{K}} \mathbf{N}^{\infty}\}_{K \in \mathcal{K}}$ is covering. By the surjectivity of $f_{\mathbf{1}}$, for any $i \leq \infty$, there exists $x_{i} \in X_{\mathbf{1}}$ such that $f_{\mathbf{1}}(x_{i}) = y \cdot i$. By the definition of \mathcal{K} , for every $K \in \mathcal{K}$, we have $x_{K} \in X_{\mathbf{N}^{\infty}}$ such that $f_{\mathbf{N}^{\infty}}(x_{K}) = y \cdot \iota_{K}$. This shows that the family $\{x_{i} \in X_{\mathbf{1}}\}_{i \leq \infty} \cup \{x_{K} \in X_{\mathbf{N}^{\infty}}\}_{K \in \mathcal{K}}$ enjoys the property required by (3). (The use of an uncountable instance of the axiom of choice in the definition of the family $\{x_{K} \in X_{\mathbf{N}^{\infty}}\}_{K \in \mathcal{K}}$ can be avoided by taking $\{(K, x) \mid f_{\mathbf{N}^{\infty}}(x) = y \cdot \iota_{K}\}$ as the index set instead of \mathcal{K} .)

Proof of Theorem 1.3. Suppose that we have a sequence of epimorphisms in \mathcal{T}

$$\cdots \xrightarrow{e^3} X^3 \xrightarrow{e^2} X^2 \xrightarrow{e^1} X^1 \xrightarrow{e^0} X^0 .$$

Let $(L \xrightarrow{l^k} X^k)_{k \ge 0}$ be the limit of the above diagram. We need to show that every l^k is epimorphic. It suffices to show that l^0 is epimorphic, since then so is every l^k , by the same argument applied to the limit cone $(L \xrightarrow{l^{k'}} X^k)_{k' \ge k}$ of the truncated diagram $\cdots \xrightarrow{e^{k+1}} X^{k+1} \xrightarrow{e^k} X^k$.

Since limits in Grothendieck toposes are pointwise we have

$$L_{1} = \left\{ (x^{k})_{k \ge 0} \in \prod_{k \in \mathbb{N}} X_{1}^{k} \mid \forall k \ e_{1}^{k} (x^{k+1}) = x^{k} \right\} \qquad l_{1}^{k} ((x^{n})_{n}) = x^{k}$$
$$L_{\mathbf{N}^{\infty}} = \left\{ (s^{k})_{k \ge 0} \in \prod_{k \in \mathbb{N}} X_{\mathbf{N}^{\infty}}^{k} \mid \forall k \ e_{\mathbf{N}^{\infty}}^{n} (s^{k+1}) = s^{k} \right\} \qquad l_{\mathbf{N}^{\infty}}^{k} ((s^{n})_{n}) = s^{k}$$

We show that l^0 satisfies the conditions of Lenma 2.1. The surjectivity of l_1^0 holds by using surjectivity of every e_1^k and applying dependent choice in the meta-theory. It remains to show that $l_{\mathbf{N}^{\infty}}^0$ satisfies property (2).

Consider any $t^0 \in X_{\mathbf{N}^{\infty}}^0$. Applying property (2) to $e_{\mathbf{N}^{\infty}}^0$, there exist $t^1 \in X_{\mathbf{N}^{\infty}}^1$ and infinite $L^1 \subseteq \mathbb{N}$ such that $e_{\mathbf{N}^{\infty}}^0(t^1) = t^0 \cdot \iota_{L^1}$. Iteratively, for every $k \ge 1$, given $t^k \in X_{\mathbf{N}^{\infty}}^k$, we apply property (2) to $e_{\mathbf{N}^{\infty}}^k$ to obtain $t^{k+1} \in X_{\mathbf{N}^{\infty}}^{k+1}$ and infinite $L^{k+1} \subseteq \mathbb{N}$, such that $e_{\mathbf{N}^{\infty}}^k(t^{k+1}) = t^k \cdot \iota_{L^{k+1}}$. By dependent choice in the meta-theory, the above gives us a sequence $(t^k)_k \in \prod_{k \in \mathbb{N}} X_{\mathbf{N}^{\infty}}^k$ and a sequence $L_{k\ge 1}^k$ of infinite subsets of \mathbb{N} . We define a derived sequence of infinite subsets $(K^k)_k$ by $K^0 = \mathbb{N}$ and $K^{k+1} = K_{L^{k+1}}^k$. Clearly $K^0 \supseteq K^1 \supseteq K^2 \dots$ is a descending sequence of sets. Also, by (1), we have $\iota_{L^{k+1}} = \iota_{K^k \supset K^{k+1}}$ and $\iota_{K^{k+1}} = \iota_{K^k} \circ \iota_{L^{k+1}}$.

We elucidate the above in terms of convergences. The starting convergence t^0 witnesses that $(t_n^0) \to t_\infty^0$ in X^0 . Then t^1 witnesses that $(t_n^1)_n \to t_\infty^1$ in X^1 , and the preservation of this convergence by e^0 gives us $(e_1^0(t_n^1))_n \to e_1^0(t_\infty^1)$ in X^0 witnessed by $e_{\mathbf{N}^{\infty}}^0(t^1)$, i.e., by $t^0 \cdot \iota_{K^0}$. In general, for any $k \ge 0$, we write $X^k \xrightarrow{d^k} X^0$ for the composite $e^0 \circ e^1 \circ \cdots \circ e^{k-1}$ (so for example $d^0 = \mathrm{id}_{X^0}$ and $d^1 = e^0$). Then t^k witnesses that $(t_n^k)_n \to t_\infty^k$ in X^k , and the preservation of this convergence by d^k gives us a convergence $(d_1^k(t_n^k))_n \to d_1^k(t_\infty^k)$ in X^0 witnessed by $d_{\mathbf{N}^{\infty}}^k(t^k)$ which is equal to $t^0 \cdot \iota_{K^k}$. That is, the convergence associated with $d_{\mathbf{N}^{\infty}}^k(t^k)$ is the subconvergence of $(t_n^0) \to t_\infty^0$ obtained by restricting to the subsequence with indices from K^k .

Let $\{h_0^k, h_1^k, h_2^k, \dots\}$ enumerate K^k in strictly ascending order. Since $K^{k+1} \subseteq K^k$, we have $h_n^k \leq h_n^{k+1}$, for all n. For each $k \geq 0$, define the diagonal set $D^k = \{h_m^m \mid m \geq k\}$. Then each D^k is an infinite subset of K^k in which h_{k+n}^{k+n} is the element with index n. For later convenience, we note the identity

$$\iota_{L^{k+1}} \circ \iota_{K^{k+1} \supseteq D^{k+1}} = \iota_{K^k \supseteq K^{k+1}} \circ \iota_{K^{k+1} \supseteq D^{k+1}} \qquad \text{by (1)}$$

$$= \iota_{K^k \supseteq D^{k+1}}$$

$$= \iota_{K^k \supseteq D^k} \circ \iota_{D^k \supseteq D^{k+1}}$$

$$= \iota_{K^k \supseteq D^k} \circ \iota_{\{n|n \ge 1\}} , \qquad (4)$$

where the last equality holds because the element with index n in D^{k+1} is h_{k+1+n}^{k+1+n} , which has index n+1 in D^k .

We complete the proof that $l_{\mathbf{N}^{\infty}}^0$ satisfies property (2) by constructing $(s^k)_k \in L_{\mathbf{N}^{\infty}}$ such that $l_{\mathbf{N}^{\infty}}^0((s^k)_k) = t^0 \cdot \iota_{D^0}$. Accordingly, define $s^0 = t^0 \cdot \iota_{D^0}$. It remains to extend s^0 to a sequence $(s^k)_k \in L_{\mathbf{N}^{\infty}}$.

To help orientate the reader, we first give an informal description of the construction of $(s^k)_k$, and then follow with the formal treatment. We already have $s^0 \in X^0_{\mathbf{N}^{\infty}}$ which witnesses the convergence $(t_{h_n^n}^0)_n \to t_\infty^0$, which can be equivalently written as $(t_{\iota_{K^0 \supseteq D^0}(n)}^0)_n \to t_\infty^0$. Given s^k for $k \ge 0$, we define s^{k+1} so that the associated convergence $(s_n^k)_n \to s_\infty^k$ satisfies: for $n \le k$, the point s_n^{k+1} is some chosen $x_n^{k+1} \in X_1^{k+1}$ such that $e_1^k(x_n^{k+1}) = s_n^k$ (such an element exists by the surjectivity of e_1^k); for n with $k < n < \infty$, we have $s_n^{k+1} = t_{\iota_{K^{k+1} \supseteq D^{k+1}(n-(k+1))}}^{k+1}$; and $s_\infty^{k+1} = t_\infty^{k+1}$. The above properties imply that $e_1^k(s_i^{k+1}) = s_i^k$, for all $i \le \infty$. The formal definition of s^{k+1} below, which is given via the sheaf structure, implies the stronger property that $e_{\mathbf{N}^\infty}^k(s^{k+1}) = s^k$ holds. This ensures that the resulting sequence $(s^k)_k$ resides in $L_{\mathbf{N}^\infty}$.

Formally, we iteratively, for k = 0, 1, ..., define s^k together with $\{x_n^k \in X_1^k\}_{n < k}$ such that: (i) $s_n^k = x_n^k$ for all n < k, and (ii) $s^k \cdot \iota_{\{n|n \ge k\}} = t^k \cdot \iota_{K^k \supseteq D^k}$. Note that (i) and (ii) together determine s, because they express that s is the amalgamation of $\{x_n^k \in X_1^k\}_{n < k} \cup \{t^k \cdot \iota_{K^k \supseteq D^k} \in X_{\mathbf{N}^\infty}^k\}$, which is a matching family for the cover $\{\mathbf{1} \longrightarrow \mathbf{N}^\infty\}_{n < k} \cup \{\mathbf{N}^\infty \xrightarrow{\iota_{\{n|n \ge k\}}} \mathbf{N}^\infty\}$. (As the cover is disjoint the matching property is vacuous, as will also be the case in all subsequent applications of the sheaf property in this proof.) In the case k = 0, the family $\{x_n^0 \in X_1^0\}_{n < 0}$ is empty, and (i) and (ii) hold for the $s^0 = t^0 \cdot \iota_{D^0}$ because $K^0 = \mathbb{N}$ and $\iota_{\mathbb{N}}$ is the identity. In the case k > 0, using the surjectivity of e_1^k , let $x_n^k \in X_1^k$ be such that $e_1^{k-1}(x_n^k) = s_n^{k-1}$, for every n < k. Define s^k to be the amalgamation of the family $\{x_n^k \in X_1^k\}_{n < k} \cup \{t^k \cdot \iota_{K^k \supseteq D^k} \in X_{\mathbf{N}^\infty}^k\}$ with respect to the cover $\{\mathbf{1} \longrightarrow \mathbf{N}^\infty\}_{n < k} \cup \{\mathbf{N}^\infty \xrightarrow{\iota_{\{n|n \ge k\}}} \mathbf{N}^\infty\}$. Then (i) and (ii) are satisfied by construction.

By dependent choice in the meta-theory, the above defines a sequence $(s^k)_k$. To see that this indeed lies in $L_{\mathbf{N}^{\infty}}$, we must show that $e_{\mathbf{N}^{\infty}}^k(s^{k+1}) = s^k$, for all k. By the characterisation of s^k via (i) and (ii), it is enough to show that $e_{\mathbf{N}^{\infty}}^k(s^{k+1})$ is an amalgamation of the matching family $\{x_n^k \in X_1^k\}_{n < k} \cup \{t^k \cdot \iota_{K^k \supseteq D^k} \in X_{\mathbf{N}^{\infty}}^k\}$ for the cover $\{\mathbf{1} \xrightarrow{n} \mathbf{N}^{\infty}\}_{n < k} \cup \{\mathbf{N}^{\infty} \xrightarrow{\iota_{\{n \mid n \ge k\}}} \mathbf{N}^{\infty}\}$. When n < k, we have:

$$\begin{split} (e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}))_{n} &= e_{\mathbf{1}}^{k}(s_{n}^{k+1}) & \text{naturality of } e^{k} \\ &= e_{\mathbf{1}}^{k}(x_{n}^{k+1}) & \text{property (i)} \\ &= s_{n}^{k} & \text{choice of } x_{n}^{k+1} \\ &= x_{n}^{k} &. \end{split}$$

It remains to verify $e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}) \cdot \iota_{\{n|n \geq k\}} = t^{k} \cdot \iota_{K^{k} \supseteq D^{k}}$. This holds because both sides restrict along the cover $\{\mathbf{1} \xrightarrow{0} \mathbf{N}^{\infty}\} \cup \{\mathbf{N}^{\infty} \xrightarrow{\iota_{\{n|n \geq 1\}}} \mathbf{N}^{\infty}\}$ to the same matching family;

that is, the two identities below hold.

$$(e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}))_{\iota_{\{n|n\geq k\}}(0)} = t_{\iota_{K^{k}\geq D^{k}}(0)}^{k}$$
(5)

$$e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}) \cdot \iota_{\{n|n \ge k\}} \cdot \iota_{\{n|n \ge 1\}} = t^{k} \cdot \iota_{K^{k} \ge D^{k}} \cdot \iota_{\{n|n \ge 1\}} \quad .$$

$$(6)$$

Indeed, (5) holds because

$$\begin{split} (e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}))_{\iota_{\{n|n\geq k\}}(0)} &= (e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}))_{k} \\ &= e_{\mathbf{1}}^{k}(s_{k}^{k+1}) & \text{naturality of } e^{k} \\ &= e_{\mathbf{1}}^{k}(x_{k}^{k+1}) & \text{property (i)} \\ &= s_{k}^{k} & \text{choice of } x_{k}^{k+1} \\ &= t_{\iota_{K}k_{\geq D^{k}}(0)}^{k} & \text{property (ii)} \ , \end{split}$$

and (6) because

$$\begin{aligned} e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}) \cdot \iota_{\{n|n \ge k\}} \cdot \iota_{\{n|n \ge 1\}} &= e_{\mathbf{N}^{\infty}}^{k}(s^{k+1}) \cdot \iota_{\{n|n > k\}} \\ &= e_{\mathbf{N}^{\infty}}^{k}(s^{k+1} \cdot \iota_{\{n|n > k\}}) & \text{naturality of } e^{k} \\ &= e_{\mathbf{N}^{\infty}}^{k}(t^{k+1} \cdot \iota_{K^{k+1} \ge D^{k+1}}) & \text{property (ii)} \\ &= e_{\mathbf{N}^{\infty}}^{k}(t^{k+1}) \cdot \iota_{K^{k+1} \ge D^{k+1}} & \text{naturality of } e^{k} \\ &= t^{k} \cdot \iota_{L^{k+1}} \cdot \iota_{K^{k+1} \ge D^{k+1}} & \text{definition of } t^{k+1} \\ &= t^{k} \cdot \iota_{K^{k} \ge D^{k}} \cdot \iota_{\{n|n \ge 1\}} & \text{by (4)} \end{aligned}$$

References

[Joh79] P. T. Johnstone. On a topological topos. Proc. London Math. Soc. 38(3), pp. 237–271, 1979.

[MLM94] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer, 1994.