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1 Statement

The principle of (countable) dependent choice can be formulated in the internal logic of
any elementary topos with natural numbers object.

Definition 1.1. An elementary topos E with natural numbers object N validates de-
pendent choice if, for any object X and subobject R- - X ×X,

E |= ∀x :X ∃y :X R(x, y) → ∀x :X ∃f :XN (f(0) = x ∧ ∀n :NR(f(n), f(n+ 1))) .

In the special case of a Grothendieck topos, one can give a simple equivalent formulation
avoiding the internal logic.

Proposition 1.2. A Grothendieck topos E validates dependent choice if and only if, for
every ωop-chain of epimorphisms

· · · e3-- X3
e2-- X2

e1-- X1
e0-- X0 ,

the limit cone (L
li- Xi)i≥0 itself consists of epimorphisms.

Johnstone’s topological topos T [Joh79] is the Grothendieck topos given by the
site defined below. The generating category is the full subcategory T of the category
of topological spaces on two objects: 1, a one point space; and N∞, the one point
compactification of a discrete countably infinite space. We take the underlying set of
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N∞ to be N∪{∞}. For i ∈ N∪{∞}, we write i : 1 → N∞ for the function whose image
is {i}.

We often consider infinite subsets L ⊆ N as given by strictly ascending enumerations
{l0, l1, l2, . . . }, and we refer to n as the index of ln in L. Given infinite sets L ⊆ K ⊆ N,
we write ιK⊇L : N∞ → N∞ for the continuous strictly increasing

ιK⊇L(i) =

{
j such that j is the index of li in K, if i < ∞
∞ if i = ∞ .

Note that ifK ⊆ L ⊆ M then ιM⊇K = ιM⊇L◦ιL⊇K . We write ιK as a shorthand for ιN⊇K .
Also, given infinite sets L, I ⊆ N, we write LI for the infinite subset {li | i ∈ I} ⊆ L.
Note that the identities

ιI = ιL⊇LI
ιLI

= ιL ◦ ιI (1)

hold. In fact, the second follows from the first.
The Grothendieck topology consists of all sieves that contain a basic covering family

of one the following forms.

• The only basic cover of 1 is the singleton {1 - 1}.

• A family {Bi
ci- N∞}i∈I of maps into N∞ is a basic cover if:

1. the functions {ci}i∈I are jointly surjective, and

2. there exists a collection K of infinite subsets of N satisfying:

(a) for every infinite subset M ⊆ N, there exist infinite L ⊆ K ∈ K such
that L ⊆ M , and

(b) for every K ∈ K, there exists i ∈ I such that ci = ιK .

The above defines the canonical Grothendieck topology JT on the two object gener-
ating category T. This is shown in detail in [Joh79], where the covering sieves of the
topology are defined directly, avoiding a basis. Johnstone’s topological topos [Joh79] is
the category T of sheaves on the site (T,JT ).

Theorem 1.3. Johnstone’s topological topos T satisfies dependent choice.
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2 Proof

We begin by introducing notation. We write X1 and XN∞ for the sets that make up
an object X of the topological topos. Elements of X1 are in one-to-one correspondence
with global points of X in T , and we accordingly call such elements points. Any element

s ∈ XN∞ determines a family of points (si)i≤∞ via restriction along the maps 1
i- N∞

in T, using the presheaf structure of X. Elements s ∈ XN∞ can be understood as
specifying convergences (sn)n<∞ → s∞; that is, convergent sequences together with
their limits. However, there can be distinct s, t ∈ XN∞ for which si = ti for all i ≤ ∞.
As in [Joh79], one can view XN∞ as a set of ‘proofs’ s of convergences (sn)n → s∞. We
say that s witnesses the convergence (sn)n → s∞.

A morphism X
f - Y in T is given by a pair of functions f1 : X1 → Y1 and

fN∞ : XN∞ → YN∞ that together give the components of a natural transformation.
That is, for any map c : A - B in T (so A,B ∈ {1,N∞}) and x ∈ XB, it holds that

fA(x · c) = fB(x) · c ,

where we write x · c for the element of XA obtained by restricting x ∈ XB along c using
the presheaf structure of X.

Lemma 2.1. A map X
f- Y in T is an epimorphism if and only if f1 is surjective

and fN∞ satisfies:

for every t ∈ YN∞, there exists s ∈ XN∞ and infinite K ⊆ N s.t. fN∞(s) = t · ιK. (2)

Proof. It is standard (see, e.g., [MLM94, Corollary III.7.5]) that epimorphisms in a
Grothendieck topos are characterised by the property of local surjectivity relative to any

defining site. That is, X
f- Y is an epimorphism if and only if for every object A in

the underlying category of the site, it holds that

for every y ∈ YA, there exists a covering family {Bi
ci- A}i∈I and

family {xi ∈ XBi
}i∈I such that fBi

(xi) = y · ci for every i ∈ I. (3)

In the case of Johnstone’s topological topos T , when A is the object 1 of T, it is
immediate from the description of the Grothendieck topology JT that (3) is equivalent
to the surjectivity of f1. Accordingly, we henceforth assume that f1 is surjective and
show that (3) is equivalent to (2) when A is N∞.

Suppose that A is N∞ and (3) holds. To show (2), consider any t ∈ YN∞ . Using

(3), let {Bi
ci- N∞}i∈I be covering (generated by a family K of infinite subsets) with
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{xi ∈ XBi
}i∈I such that fBi

(xi) = t · ci for every i ∈ I. By the definition of covers in JT
(one can take M = N), there exists K ∈ K such that, for some i ∈ I, we have ci = ιK .
Thus s = xi and K are the data required by (2).

Conversely, suppose (2) holds for A = N∞. To show (3), consider any y ∈ YN∞ and
define:

K = {K ⊆ N | K infinite, there exists xK ∈ XN∞ s.t. fN∞(xK) = y · ιK} .

We show that {1 i- N∞}i≤∞ ∪ {N∞ ιK- N∞}K∈K is covering. Joint surjectivity is
immediate from the left half of the union. Also, since the right-hand part involves a set
K satisfying (2b) in the definition of cover, we just need to show (2a). Accordingly, let
M ⊆ N be infinite. By (2) using t = y ◦ ιM , there exist s ∈ XN∞ and an infinite subset
K ′ ⊆ N such that fN∞(s) = y · ιM · ιK′ . So, defining K = MK′ , we have K ⊆ M and
fN∞(s) = y · ιK , hence also K ∈ K, establishing (2a) with L = K.

We have shown that {1 i- N∞}i≤∞ ∪ {N∞ ιK- N∞}K∈K is covering. By the
surjectivity of f1, for any i ≤ ∞, there exists xi ∈ X1 such that f1(xi) = y · i. By the
definition of K, for every K ∈ K, we have xK ∈ XN∞ such that fN∞(xK) = y · ιK . This
shows that the family {xi ∈ X1}i≤∞ ∪ {xK ∈ XN∞}K∈K enjoys the property required
by (3). (The use of an uncountable instance of the axiom of choice in the definition of
the family {xK ∈ XN∞}K∈K can be avoided by taking {(K, x) | fN∞(x) = y · ιK} as the
index set instead of K.)

Proof of Theorem 1.3. Suppose that we have a sequence of epimorphisms in T

· · · e3-- X3 e2-- X2 e1-- X1 e0-- X0 .

Let (L
lk- Xk)k≥0 be the limit of the above diagram. We need to show that every

lk is epimorphic. It suffices to show that l0 is epimorphic, since then so is every lk, by

the same argument applied to the limit cone (L
lk

′
- Xk)k′≥k of the truncated diagram

· · · ek+1
-- Xk+1 ek-- Xk.

Since limits in Grothendieck toposes are pointwise we have

L1 =

{
(xk)k≥0 ∈

∏
k∈N

Xk
1 | ∀k ek1(x

k+1) = xk

}
lk1((x

n)n) = xk

LN∞ =

{
(sk)k≥0 ∈

∏
k∈N

Xk
N∞ | ∀k enN∞(sk+1) = sk

}
lkN∞((sn)n) = sk .
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We show that l0 satisfies the conditions of Lenma 2.1. The surjectivity of l01 holds
by using surjectivity of every ek1 and applying dependent choice in the meta-theory. It
remains to show that l0N∞ satisfies property (2).

Consider any t0 ∈ X0
N∞ . Applying property (2) to e0N∞ , there exist t1 ∈ X1

N∞

and infinite L1 ⊆ N such that e0N∞(t1) = t0 · ιL1 . Iteratively, for every k ≥ 1, given
tk ∈ Xk

N∞ , we apply property (2) to ekN∞ to obtain tk+1 ∈ Xk+1
N∞ and infinite Lk+1 ⊆ N,

such that ekN∞(tk+1) = tk · ιLk+1 . By dependent choice in the meta-theory, the above
gives us a sequence (tk)k ∈

∏
k∈N X

k
N∞ and a sequence Lk

k≥1 of infinite subsets of N.
We define a derived sequence of infinite subsets (Kk)k by K0 = N and Kk+1 = Kk

Lk+1 .
Clearly K0 ⊇ K1 ⊇ K2 . . . is a descending sequence of sets. Also, by (1), we have
ιLk+1 = ιKk⊇Kk+1 and ιKk+1 = ιKk ◦ ιLk+1 .

We elucidate the above in terms of convergences. The starting convergence t0 wit-
nesses that (t0n) → t0∞ in X0. Then t1 witnesses that (t1n)n → t1∞ in X1, and the
preservation of this convergence by e0 gives us (e01(t

1
n))n → e01(t

1
∞) in X0 witnessed by

e0N∞(t1), i.e., by t0 · ιK0 . In general, for any k ≥ 0, we write Xk dk- X0 for the com-
posite e0 ◦ e1 ◦ · · · ◦ ek−1 (so for example d0 = idX0 and d1 = e0). Then tk witnesses that
(tkn)n → tk∞ in Xk, and the preservation of this convergence by dk gives us a convergence
(dk1(t

k
n))n → dk1(t

k
∞) in X0 witnessed by dkN∞(tk) which is equal to t0 · ιKk . That is, the

convergence associated with dkN∞(tk) is the subconvergence of (t0n) → t0∞ obtained by
restricting to the subsequence with indices from Kk.

Let {hk
0, h

k
1, h

k
2, . . . } enumerate Kk in strictly ascending order. Since Kk+1 ⊆ Kk, we

have hk
n ≤ hk+1

n , for all n. For each k ≥ 0, define the diagonal set Dk = {hm
m | m ≥ k}.

Then each Dk is an infinite subset of Kk in which hk+n
k+n is the element with index n. For

later convenience, we note the identity

ιLk+1 ◦ ιKk+1⊇Dk+1 = ιKk⊇Kk+1 ◦ ιKk+1⊇Dk+1 by (1)

= ιKk⊇Dk+1

= ιKk⊇Dk ◦ ιDk⊇Dk+1

= ιKk⊇Dk ◦ ι{n|n≥1} , (4)

where the last equality holds because the element with index n in Dk+1 is hk+1+n
k+1+n, which

has index n+ 1 in Dk.
We complete the proof that l0N∞ satisfies property (2) by constructing (sk)k ∈ LN∞

such that l0N∞((sk)k) = t0 · ιD0 . Accordingly, define s0 = t0 · ιD0 . It remains to extend
s0 to a sequence (sk)k ∈ LN∞ .

To help orientate the reader, we first give an informal description of the construc-
tion of (sk)k, and then follow with the formal treatment. We already have s0 ∈ X0

N∞
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which witnesses the convergence (t0hn
n
)n → t0∞, which can be equivalently written as(

t0ιK0⊇D0 (n)

)
n
→ t0∞. Given sk for k ≥ 0, we define sk+1 so that the associated con-

vergence
(
skn
)
n
→ sk∞ satisfies: for n ≤ k, the point sk+1

n is some chosen xk+1
n ∈ Xk+1

1

such that ek1(x
k+1
n ) = skn (such an element exists by the surjectivity of ek1); for n with

k < n < ∞, we have sk+1
n = tk+1

ι
Kk+1⊇Dk+1 (n−(k+1)); and sk+1

∞ = tk+1
∞ . The above properties

imply that ek1(s
k+1
i ) = ski , for all i ≤ ∞. The formal definition of sk+1 below, which is

given via the sheaf structure, implies the stronger property that ekN∞(sk+1) = sk holds.
This ensures that the resulting sequence (sk)k resides in LN∞ .

Formally, we iteratively, for k = 0, 1, . . . , define sk together with {xk
n ∈ Xk

1}n<k

such that: (i) skn = xk
n for all n < k, and (ii) sk · ι{n|n≥k} = tk · ιKk⊇Dk . Note that

(i) and (ii) together determine s, because they express that s is the amalgamation
of {xk

n ∈ Xk
1}n<k ∪ {tk · ιKk⊇Dk ∈ Xk

N∞}, which is a matching family for the cover

{1 n- N∞}n<k ∪ {N∞ ι{n|n≥k}- N∞}. (As the cover is disjoint the matching property
is vacuous, as will also be the case in all subsequent applications of the sheaf property
in this proof.) In the case k = 0, the family {x0

n ∈ X0
1}n<0 is empty, and (i) and (ii)

hold for the s0 = t0 · ιD0 because K0 = N and ιN is the identity. In the case k > 0,
using the surjectivity of ek1, let x

k
n ∈ Xk

1 be such that ek−1
1 (xk

n) = sk−1
n , for every n < k.

Define sk to be the amalgamation of the family {xk
n ∈ Xk

1}n<k ∪ {tk · ιKk⊇Dk ∈ Xk
N∞}

with respect to the cover {1 n- N∞}n<k ∪ {N∞ ι{n|n≥k}- N∞}. Then (i) and (ii) are
satisfied by construction.

By dependent choice in the meta-theory, the above defines a sequence (sk)k. To
see that this indeed lies in LN∞ , we must show that ekN∞(sk+1) = sk, for all k. By
the characterisation of sk via (i) and (ii), it is enough to show that ekN∞(sk+1) is an
amalgamation of the matching family {xk

n ∈ Xk
1}n<k∪{tk · ιKk⊇Dk ∈ Xk

N∞} for the cover

{1 n- N∞}n<k ∪ {N∞ ι{n|n≥k}- N∞}. When n < k, we have:

(ekN∞(sk+1))n = ek1(s
k+1
n ) naturality of ek

= ek1(x
k+1
n ) property (i)

= skn choice of xk+1
n

= xk
n .

It remains to verify ekN∞(sk+1) · ι{n|n≥k} = tk · ιKk⊇Dk . This holds because both sides

restrict along the cover {1 0- N∞}∪{N∞ ι{n|n≥1}- N∞} to the same matching family;
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that is, the two identities below hold.

(ekN∞(sk+1))ι{n|n≥k}(0) = tkι
Kk⊇Dk (0)

(5)

ekN∞(sk+1) · ι{n|n≥k} · ι{n|n≥1} = tk · ιKk⊇Dk · ι{n|n≥1} . (6)

Indeed, (5) holds because

(ekN∞(sk+1))ι{n|n≥k}(0) = (ekN∞(sk+1))k

= ek1(s
k+1
k ) naturality of ek

= ek1(x
k+1
k ) property (i)

= skk choice of xk+1
k

= tkι
Kk⊇Dk (0)

property (ii) ,

and (6) because

ekN∞(sk+1) · ι{n|n≥k} · ι{n|n≥1} = ekN∞(sk+1) · ι{n|n>k}

= ekN∞(sk+1 · ι{n|n>k}) naturality of ek

= ekN∞(tk+1 · ιKk+1⊇Dk+1) property (ii)

= ekN∞(tk+1) · ιKk+1⊇Dk+1 naturality of ek

= tk · ιLk+1 · ιKk+1⊇Dk+1 definition of tk+1

= tk · ιKk⊇Dk · ι{n|n≥1} by (4) .
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