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ABSTRACT

We construct non-trivial quasi-quantum groups associated to any finite group G and any
element of H3(G,U(1)). We analyze the set of representations of these algebras and show
that we recover the data of particular 3-dimensional topological field theories. We also give

the R-matrix structure in non abelian RCFT orbifold models.
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1. INTRODUCTION

This paper is part of an attempt to understand the connection between conformal field
theory and quantum groups [AGS,MS,Pal. It is now well known that the fusion rules of
the WZW theories coincide with the tensor product decomposition of representations of
the quantum Lie groups for ¢ a root of unity. The aim of this work is to give such an
interpretation to the fusion rules of orbifolds models considered in [DVVV] and generalized

by [DW] using 3-dimensional topological field theory.

In this case, the quasi-Hopf algebras, recently introduced by Drinfeld turn out to be the
adequate structure, the final result being a slight modification of the double construction
applied to the algebra of functions over a finite group. An extensive version of this work will

be published elsewhere [DPR].

2. QUANTUM DOUBLE CONSTRUCTION
2.1. DEFINITION OF THE HOPF ALGEBRA STRUCTURE

Let A be a Hopf algebra which is not necessarily quasitriangular. The quantum double
construction of Drinfeld [Drl] consists in building a quasitriangular Hopf algebra D(.A)
containing A as a Hopf subalgebra. Details of the construction are found in the original
paper of Drinfeld [Dr1] and developed in the paper of Reshetikhin [Re|. This construction
is an unvaluable tool for constructing the universal R matrix of ordinary quantum groups
U,(SL(n)) as shown in [Ro| and [Bu]. In this section, we will apply this construction to
A = F(G) where G is a finite group and F(G) is the abelian algebra of complex functions
defined on G.

A is endowed with its usual Hopf algebra structure and A* is equal to the Hopf algebra
C|G] (the group ring of G). As a vector space D(A) = A® A*. We shall use the notation
D(G) = D(A). A convenient basis of D(G) is (dy ® )4 zeq. Where 6,4 is the Dirac function
at the point g. We will adopt the following notation:

gl =0,z and ol =Rz

for ¢ element of F(G). In this paper e is the unit element of the group G and 1 = ) 4, is
geG
the unit element of F(G).



From the definition of the quantum double, it is easy to obtain an explicit description of

the structure of D(G). The algebra law is defined by:

gL “hl = 5g,mhm*‘ gL (21)

T Y Ty

and the unit element is 1|_. The comultiplication A is defined by:

e

Algl)= Y nlL @kl (2.2)
z hkeG 7 z
hk=g

The counit € and the antipode S are defined by:

E(g I_) = 5g,e 1 and S(q L) = mflgflm L. (23)
The R matrix of D(G) is
R=) g4L®@1L. (2.4)
geG ¢ 9

In the next sections, we will show that the study of the set of irreducible representations
of this algebra will permit us to recover Moore and Seiberg’s [MS| data (Verlinde algebra,
F, B and S matrices and conformal weights) of a particular RCFT described in [DVVV].

2.2. IRREDUCIBLE REPRESENTATIONS OF D(G)

Let {Ca}a—o,. p be the set of conjugacy classes of G (Cy = {e}). In each C4 we pick
an element 4g; and we define N4 the centralizer of 4g; i.e. Ny = {h € G, [h,* g1] = e}. We

choose 41, .., qu a set of representatives of the equivalence classes of G/N4 where, for
convenience, we take 4z1 = e. As a result C4 = {Ax‘fl_qflxl_l =Ag1, ..., Ax;;lgfm;l = qu}.

We will often forget the label A.

Consider the subalgebra B4 of D(G) spanned as a vector space by the elements (gL_)4 4
xr
where ¢ is in GG and h is in N4. Let m be an irreducible representation of N4 on a vector

space V. We define a representation p, of B4 on V; in the following way:
pr(gl) =844y m(z). (2.5)
x
This representation induces a representation of D(G), which we call pA . acting on the vector
space WA, As a left module, we have WA = D(G) ®p, Vy. Consider a basis |€i)i=1,...dimV.
of Vi, then a basis of W4 is (|ij, e)) = (11 ®lei))i;-

A
Tj



The action of g on the basis is easily computable, and one finds the following formula:
x

Pf—(q L) |A$ja ei> = 5g,mAg_7-r1:*1 |A$ka W(h)(€1)> (26)

€T

A

where “x; and h are defined by the relation .77‘4.7:]' = Azph and h € Ny.

The set p2 is the complete list of irreducible representations of D(G). This can be shown

with the use of the orthogonality relations:

1

B 2 e Bl L) = dapie (2.7)

g,x€G

Let consider the integers NZ%YC satisfying :

A B o C
pi ® pff = @ NGHerS (2.8)
Cyy

These integers can be exactly computed using relation (2.7) and we found that they are
exactly those defining the fusion rules of the RCFT considered in [DVVV] in the case o = 1.
Moreover if we define RZ% = P(pi® pg)(R) where P is the usual permutation operator
and KZ?C is the projection onto the isotypic component Wg of Wi ® Wﬂ, we have shown

that the following relation is satisfied:
KGR R = a(Mg) BB g0)v(Cor K pe. (2.9)

Using the results of [MS] and [AGS] we find that the conformal weight hy , of the sector

[pA] satisfies:

s — a(tg)) (2.10)

which is the relation found by purely CFT ideas in [DVVV].

In this section we have described what is the algebraic structure underlying special type
of orbifold models with ¢ = 1. Using the point of view of topological field theory Witten
and one of the authors have classified in [DW] this whole class of RCFT. The results was
that these theories are classified by the group H3(G,U(1)). One of our goal is to modify
the definition of D(G) in order to recover Moore and Seiberg’s data of these RCFT (or

equivalently 3-dimensional topological field theories).



3. GROUP COHOMOLOGY AND QUASI HOPF ALGEBRAS
3.1. CONSTRUCTION OF THE QUASI HOPF ALGEBRA D¥(G)

A brief description of quasi Hopf Agebras is given in the appendix and a complete study
of these algebras is given in the papers of Drinfeld [Dr2]. Let w be an element of H3(G,U(1)),
we will always work with a representative of w i.e a 3-cocycle. We are looking for an algebra

D¥(G) and we will assume the following statements:
1) D¥(G) = D(G) as a vector space and is a quasitriangular quasi Hopf algebra.

2) The algebra law and coalgebra law take the following form:

glL.nl = 597.73]“371 gl Gg(x,y) (31)
x Yy xry
Algl)= > nlL @kl (k) (3.2)
v hkeG 7 v
hk=g

where 6,(z,y) and 7, (h, k) are phases such that if z,y or g is equal to e then 64(z,y) and

’Yg(xa y) are equal to one.

3) ¢ and R are given by:

p= > wlghk) YL@ ®K_ (3.3)
g,h,kEG e e e
R=) g4L®@1L. (3.4)
geG ¢ 9

These assumptions determine completely D*(G). We first remark that relation (A.5) of

the appendix is equivalent to the 3-cocycle relation verified by w.

Quasitriangularity implies that relations (A.12) and (A.13) are satisfied. When written

in detail, these equations are equivalent to:

w(g,z, y)w(z,y, (zy) 'gay)
0 () = Y (3.5)
w(z, 719z, y)
w(g, h, 2wz, z " gz, 27 he
Vx(g,h) = ( Jo ) (3.6)

w(g, z,z~thr)



By a repeatedly use of the cocycle relation, the reader will verify the three following identities:

gg(m:y)eg(my: Z) = eg(mayz)()x*‘gaz(ﬁyaz) (37)
Yo (9, W)va (gh, k)a(z gz, ha, 2 ka) = v (h, k)v.(g, hk)a(g, b, k) (3.8)
Oy (2, 9)0n (2, y) Ve (9. ) vy (™ gz, 2 hir) = Ogn (2, y) Yy (g, ). (3.9)

These relations imply respectively that the algebra law is associative, the comultiplication
is quasi coassociative and the comultiplication is an algebra morphism. This algebra also

posess also a counit and an antipode:

(gl ) =041l and S(gl )=ag " L Ggfl(x,mfl)flfyx(g,gfl)fl. (3.10)

If 53 is any 3-coboundary then D“%5(G) is obtained from D (G) by the twist element

F=> plgh) yenL. (3.11)
g,heG € €

This remark implies that modulo natural transformations the set of representations of D“(G)
depends just on the class of w in H3(G,U(1)).

We note that when [z, g] = [z, h] = e then 7,(g, h) and 6,(g, h) both take the value

w(z, g, h)w(g, h,x)
z(9,h) = 3.12
) ST ) 12

which is the 2-cocycle appearing in [DW].
3.2. TRREDUCIBLE REPRESENTATIONS OF D¥(G)

Irreducible representations of D“(G) are easily constructed using the previous method.
B4 is still a subalgebra of D“(G). Let m be an irreducible projective representation of N4
with cocycle ca, . We define a representation pr of B4 by the formula (2.5) and induce it to

a representation p2 of D¥(G). Formula (2.6) is now changed into :

pf}(g L) ‘A"I;jJ ei) = gg(va :1:.7')9!] (Axka h’)il(sg,:vf‘gjm*‘ |Axk= ﬂ-(h')(ei»' (3'13)
xr
Once again NZﬂBVC defined by equation (2.8) are shown to be the fusion rules computed in

[DW).



4. CONCLUSION

In this paper we have shown that the study of representations of special kinds of quasi
Hopf algebras could give new insights in the study of RCFT. We have found an interesting
modification of the quantum double of A when A is equal to F(G). It is not difficult to

construct such a modification in the case of an arbitrary Hopf algebra.

The conformal field theories we recovered are orbifolds of holomorphic CFT. What are
the algebraic objects underlying orbifolds of more general CF'T? An interesting step to the
answer would be to analyze, from the (quasi)-quantum group approach the ¢ = 1 orbifolds

theories based on finite subgroups of SU(2).

It also remains to understand the S and T" matrices of modular transformations as Hopf

algebra constructions [AGS].
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APPENDIX

In this appendix, we recall the most important properties of quasi Hopf algebras [Dr2].
Let A be an unital algebra over C. A coproduct A is an algebra morphism A : 4 — A® A.
If A is endowed with a coproduct, then there is a natural notion of tensor product of
representations of A.Namely, if (V1,7m) and (Va,mg) are representations of A, one defines

the representation m; ® w9 by acting on V; ®¢ Vo with A.

In an ordinary Hopf algebra it is required that A is coassociative, which means that
(A®id)A = (1d @ A)A. (A.1)
This relation implies strict associativity of tensor product of representations , i.e we have :
(11 @ m2) @ 3 = ® (M2 @ m3) (4.2)

where 7y, w9 and w3 are representations of A .



The notion of quasi Hopf algebra arises naturally when one requires that (m ® m) ® 73
is equivalent to m; ® (w9 ® m3). This is always satisfied if there exists an invertible element

@ such that
(A ®id)Ala) = p(id @ A)A(a)p ', Va € A, (A.3)

the intertwiner being @123 = (m ® 7 ® m3)(¢). We shall say that the coproduct is quasi-

coassocilative.

Finally in order that the following pentagonal diagram be commutative :

(Men)e)eV, — WNeaWhe(VzeVy) — e (he (V3eVy))

J l (A.4)

V1 ® (Va® V) ® Vy — Vi@ ((Va®V3)® Vi)

one requires the following relation:
(id ® id @ A)()(A @ id ® id) (@) = (1 ® ) (id ® A @ id)(p) (¢ ® 1). (A.5)

In a quasi Hopf algebra there exists also analogues of the counit and antipode [Dr2,DPR].

A Hopf algebra is said to be quasitriangular if there exists an invertible element R of

A ® A such that :

A'(a) = RA(a)R™ ' Va € A (A.6)
(A X ’Ld)(R) = Ri3Rs3 (A7)
(1d ® A)(R) = RizRi2 (4.8)

Eq. (A.6) implies that:
T ® w9 18 equivalent to my ® mq

for any couple of representations of A.



From eq (A.7) (resp.(A.8)) the following diagrams are commutative:

Nelhevs) — Ve (Bel) — (Viel;) eV,

l l (A.9)

(V1®V2)®V3 — V3®(V1®V2) — (V3®V1)®V2

VeWneV; — (KheW)eVs — Khe (Ve Vs)

J l . (A.10)

V1®(V2®V3) — (V2®V3)®V1 — V2®(V3®V1)
Eq (A.6) and (A.7) (resp (A.8)) implies the Yang-Baxter equation:

R19R13R93 = Ro3R13R19. (A.11)

A quasi Hopf algebras is called quasitriangular if there exists an invertible element R of
A ® A verifying Eq. (A.6) and two other relations replacing Eq. (A.7) and (A.8) which
imply the commutativity of (A.9) and (A.10). These two relations take the following form:
A

(A ®id)(R) = p312R130 135 R3¢, (A.12)

(id ® A)(R) = py3; Rizpo1sRiap ™" (A.13)
(where we have used the notation : if ¢ = Za% ® a? ® a} then Ps(1)s(2)s(3) = Za:q(l) ®

s7'(2)

—1
a; ® a'; (3)). From these relations follows the quasi Yang-Baxter equation:

Ri2p31a Ri3p 3y a3 = @321 Raspnsy Rizpais Raa. (A.14)

It (A, A, ) is any quasi Hopf algebra, one can construct a new quasi Hopf algebra
(AP, AT oF) associated to any F invertible element of A ® A, using the following defi-
nitions:

AP as an algebra is isomorphic to A,

AF(a) = FA(a)F 1, (A.15)

o = (19 F)(id® A)(F)p(A®id)(F ) (F1a1). (A.16)

One says that AF is obtained from A by a twist F.
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