
HoTT

The Univalence Axiom in Dependent Type
Theory

Marc Bezem1

1Lecture based on: Thierry COQUAND, Théorie des Types Dépendants et
Axiome d’Univalence, Séminaire Bourbaki, 66ème année, 2013-2014, no 1085

Fall 2015



HoTT

Introduction

Higher-order Logic (HOL)

I First-order logic: predicate logic (e.g., group theory, ZFC)
I Higher-order logic (Church):

I Types: I (individuals), bool (propositions), and with A,B also
A→ B (these are called simple types)

I Terms are classified by their types: e.g., f : I → I ; c , f (c) : I ;
P : bool ; ∧,→ : bool → (bool → bool); P ∨ ¬P : bool ;
Q : I → bool ; ∀I ,∃I : (I → bool)→ bool , (∀I Q) : bool

I We also have, e.g., ∀I→bool ,∃I→I , quantification over unary
predicates and functions, in fact, ∀A,∃A for any type A: HOL

I Notation: ∀x : A. Q(x) for ∀A Q, ∃x : A. Q(x) for ∃A Q
I Example: we can express EqA(t, u) : bool as

(∀P : A→ bool . P(t)→P(u)) : bool

I Inference system defines the ‘theorems’ of type bool
I Natural semantics in set theory: bool = {0, 1}, I a set



HoTT

Introduction

Extensionality Axioms in HOL

I Pointwise equal functions are equal:

(∀x : A. EqB(f (x), g(x)))→ EqA→B(f , g)

I Equivalent propositions are equal:

((P → Q) ∧ (Q → P))→ Eqbool (P,Q)

I Univalence Axiom (UA): ‘equivalent things are equal’, where
the meaning of ’equivalent’ depends on the ’thing’

Exercise: prove that EqA is an equivalence relation for all A



HoTT

Introduction

Dependent Type Theory, Π-types and Σ-types

I Limitation of HOL: not possible to define, e.g., algebraic
structure on an arbitrary type; DTT can express this.

I Every mathematical object has a type, even types have a type:
a : A, A : U0, U0 : U1, . . ., the Ui are called universes

I Fundamental notion: family of types B(x), x : A; for every
a : A we have B(a) : U (‘a has property B’)

I Context: x1 : A1, x2 : A2(x1), . . . , xn : An(x1, ..., xn−1)
I Example: x : N, p : P(x), y : N, q : Q(x , y)
I If B(x), x : A type family, then Πx :A.B(x) is the type of

dependent functions (later: sections): f (x) = b in context
x : A, i.e., b depending on x , f (a) = (a/x)b : B(a) if a : A

I Actually, A→ B is Πx :A.B(x) with B(x) = B
I Dually, we have Σx :A.B(x), the type of dependent pairs

(a, b) with a : A and b : B(a).



HoTT

Introduction

Representation of Logic in DTT

I Curry-Howard-de Bruijn: formulas as types, (constructive)
proofs as programs

I Define f (x , y) = x for x : A, y : B, then f : A→ (B → A)

I Curry: f is a proof of the tautology A→ (B → A) (!!!)

I Similarly, g(x , y , z) = x(y(z)) (composition) is a proof of

(B → C )→ ((A→ B)→ (A→ C ))

I Modus ponens: if f : A→ B, a : A, then f (a) : B

I ∀x : A. B(x) as Πx :A.B(x)

I ∃x : A. B(x) as Σx :A.B(x)

I A ∧ B as A× B = Σx :A.B(x) with constant B(x) = B

I A ∨ B as disjoint sum A + B (below)

I ⊥ as the empty type N0 (below)



HoTT

Introduction

Inductive Types
I A + B is inductively defined by two constructors

inl : A→ (A + B), inr : B → (A + B)
I Destruction: h : Πz :A + B.C (z) can be defined by cases,

given f : Πx :A.C (inl(x)) and g : Πy :B.C (inr(y)):

h(inl(x)) = f (x) h(inr(y)) = g(y)

I For constant C (z) = C this is Gentzen’s ∨-elimination
I Also inductively: 0 : N and if n : N, then S(n) : N
I Destruction: f : Πn:N.C (n) can be defined by, given z : C (0)

and s : Πn:N. (C (n)→ C (S(n))):

f (0) = z f (S(n)) = s(n, f (n))

I For constant C (n) = C this is primitive recursion
I For non-constant C (n): inductive proof of ∀n : N. C (n)
I Moral: primitive recursion is the non-dependent version of

induction; Both replace the constructors by suitable terms.



HoTT

Introduction

Inductive Types (less familiar)

I N0 (the empty type, or empty sum, representing false,
¬A = (A→ N0)), inductively defined by no constructors

I Destruction: h : Πz :N0.C (z) can be defined by zero cases,
presuming nothing, h is ‘for free’ (induction principle for N0)

I For constant C (z) = C this is the Ex Falso rule N0 → C

I For non-constant C (z): refinement of Ex Falso, probably used
for the first time by VV to prove ∀x , y : N0. EqN0(x , y)

I EqA(x , y) (equality, Martin-Löf), in context A : U , x , y : A,
inductively defined by 1a : EqA(a, a) for all a : A (diagonal!)

I Since EqA(x , y) is itself a type in U , we can iterate:
EqEqA(x ,y)(p, q) is equality of equality proofs of x and y

I Beautiful structure arises: an ∞-groupoid (miracle!)



HoTT

Introduction

Laws of Equality

I (1a : EqA(a, a) for all a : A) + induction + computation

I We actually want transport, for all type families B:

transpB : B(a)→ (EqA(a, x)→ B(x))

and based path induction, for all type families C :

bpiC : C (a, 1a)→ Πp:EqA(a, x).C (x , p)

plus natural equalities like EqB(a)(transpB(b, 1a), b)

I These are all provable by induction

I Also provable: Peano’s 4-th axiom ¬EqN(0, S(0))

I Proof: define recursively B(0) = N, B(S(n)) = N0 and
assume p : EqN(0, S(0)). We have 0 : B(0) and hence
transpB(0, p) : N0.



HoTT

Introduction

Groupoid

I THM [H+S]: every type A is a groupoid with objects of type
A and morphisms p : EqA(a, a′) for a : A, a′ : A

I In more relaxed notation (only here with = for Eq):

1. � : x = y → y = z → x = z
2. .−1 : x = y → y = x
3. p = 1x

� p = p � 1y

4. p � p−1 = 1x , p−1 � p = 1y

5. (p−1)
−1

= p
6. p � (q � r) = (p � q) � r

I Proofs by induction: � is transpx= , −1 is transp =x reflx (!)

I Also: x , y : A, p, q : EqA(x , y), pq : EqEqA(x ,y)(p, q) ...



HoTT

Introduction

The Homotopy Interpretation [A+W+V]

I Type A: topological space

I Object a : A: point in topological space

I Object f : A→ B: continuous function

I Universe U : space of spaces

I Type family B : A→ U : a specific fibration E → A, where the
fiber of a : A is B(a), and

I E is the interpretation of Σ A B: the total space

I Π A B: the space of sections of the fibration interpreting B

I EqA(a, a′): the space of paths from a to a′ in A

I Correct interpretation of EqA (in particular, transport) is
ensured by taking Kan fibrations (yielding homotopy
equivalent fibers of connected points)



HoTT

Introduction

Some Homotopy Levels [V]

I Level −1: prop(P) = Πx , y :P.EqP(x , y)

I Example: N0 is a proposition, prop(N0) also (!)

I Level 0: set(A) = Πx , y :A. prop(EqA(x , y))

I Example: N is a set, set(N) is a proposition

I Proved above: N is not a proposition (Peano’s 4-th axiom)

I Level 1: groupoid(A) = Πx , y :A. set(EqA(x , y))

I Examples: N0, N (silly, the hierarchy is cumulative)

I Without UA it is consistent to assume ΠA:U . set(A)

I With UA, U is not a set (U0 not a set, U1 not a groupoid, ...)



HoTT

Introduction

The Univalence Axiom [V]
I Level −2: Contr(A) = A× prop(A), A is contractible
I Examples: N1, Σx :B.EqB(x , b) for all b : B
I Fiber of f : A→ B over b : B is the type

Fibf (b) = Σx :A.EqB(f (x), b)

I Equivalence (function): isEquiv(f ) = Πb:B. contr(Fibf (b))
I Equivalence (types): (A ' B) = Σf :A→ B. isEquiv(f )
I Examples:

I Logical equivalence of propositions
I Bijections of sets
I The identity function A→ A is an equivalence, A ' A

I UA: for the canonical idtoEquiv : EqU (A,B)→ (A ' B),

ua : isEquiv(idtoEquiv)



HoTT

Introduction

Consequences and Applications of UA/HoTT

I Function extensionality

I Description operator (define functions by their graph)

I The universe is not a set (EqU (N,N) refutes UIP)

I Practical: formalizing homotopy theory

I Practical: transport of structure and results between
equivalent types, without the need for [Bourbaki 4]
‘transportability criteria’ .
wiki/Equivalent definitions of mathematical structures

I Higher inductive types, example: the circle S1

I a point constructor base : S1

I a path constructor loop : base =S1 base
I induction + computation

I What is base =S1 base? (should be Z)

I ...

https://en.wikipedia.org/wiki/Equivalent_definitions_of_mathematical_structures

	Introduction

