HoTT

The Univalence Axiom in Dependent Type
Theory

Marc Bezem!?!

ILecture based on: Thierry COQUAND, Théorie des Types Dépendants et
Axiome d’Univalence, Séminaire Bourbaki, 66éme année, 2013-2014, n° 1085

Fall 2015

HoTT
- Introduction

Higher-order Logic (HOL)

» First-order logic: predicate logic (e.g., group theory, ZFC)
» Higher-order logic (Church):
» Types: / (individuals), bool (propositions), and with A, B also
A — B (these are called simple types)
» Terms are classified by their types: e.g., f : | — I; ¢, f(c) : I
P : bool; A, — : bool — (bool — bool); P\ =P : bool,
Q: | — bool; ¥;,3; : (I = bool) — bool, (¥, Q) : bool
» We also have, e.g., V| pool, i—ss, quantification over unary
predicates and functions, in fact, V4,34 for any type A: HOL
» Notation: Vx : A. Q(x) for Va4 Q, Ix : A. Q(x) for 34 Q
» Example: we can express Eqa(t, u) : bool as

(VP : A— bool. P(t)—P(u)) : bool

» Inference system defines the ‘theorems’ of type bool
» Natural semantics in set theory: bool = {0,1}, | a set

HoTT
- Introduction

Extensionality Axioms in HOL

» Pointwise equal functions are equal:

(Vx : A. Eq(f(x),g(x))) = Eqa_s(f,g)

» Equivalent propositions are equal:
((P — Q) A (Q — P)) — Eqbool(Pa Q)

» Univalence Axiom (UA): ‘equivalent things are equal’, where
the meaning of 'equivalent’ depends on the 'thing’

Exercise: prove that Eqa is an equivalence relation for all A

HoTT
- Introduction

Dependent Type Theory, [1-types and 2 -types

» Limitation of HOL: not possible to define, e.g., algebraic
structure on an arbitrary type; DTT can express this.

» Every mathematical object has a type, even types have a type:
a:A A: Uy, Up: Us,..., the U; are called universes

» Fundamental notion: family of types B(x), x : A; for every
a: A we have B(a) : U (‘a has property B')

» Context: x1 : A1, x2 0 Aa(x1), ..., Xn @ An(X1y ooy Xn—1)

» Example: x: N, p: P(x), y: N, g: Q(x,y)

» If B(x), x : A type family, then MNx:A. B(x) is the type of
dependent functions (later: sections): f(x) = b in context
x : A, i.e., bdepending on x, f(a) = (a/x)b: B(a) ifa: A

» Actually, A — B is x:A. B(x) with B(x) = B

» Dually, we have Xx:A. B(x), the type of dependent pairs
(a,b) with a: A and b: B(a).

HoTT

- Introduction

Representation of Logic in DTT

>

Yy Vv vV Vv Y

Curry-Howard-de Bruijn: formulas as types, (constructive)
proofs as programs

Define f(x,y) =x for x: A, y : B, then f : A— (B — A)
Curry: f is a proof of the tautology A — (B — A) (!!I)
Similarly, g(x,y,z) = x(y(z)) (composition) is a proof of

(B—-C)—(A—=B)—=(A— ()

Modus ponens: if f : A— B, a: A, then f(a): B

Vx : A. B(x) as MNx:A. B(x)

dx : A. B(x) as Ix:A. B(x)

AN B as Ax B=XYx:A.B(x) with constant B(x) = B
AV B as disjoint sum A+ B (below)

1L as the empty type Ny (below)

HoTT
- Introduction

Inductive Types

» A+ B is inductively defined by two constructors
inl :A— (A+ B), inr: B— (A+ B)

» Destruction: h: Mz:A+ B. C(z) can be defined by cases,
given f : Mx:A. C(inl(x)) and g : My:B. C(inr(y)):

h(inl(x)) = f(x) h(inr(y)) = &(v)
» For constant C(z) = C this is Gentzen's V-elimination
» Also inductively: 0: N and if n: N, then S(n) : N
» Destruction: f : Mn:N. C(n) can be defined by, given z : C(0)

and s : Mn:N.(C(n) — C(5(n))):
0=z F(S(n) = s(n, f(n))

» For constant C(n) = C this is primitive recursion
» For non-constant C(n): inductive proof of Vn: N. C(n)

» Moral: primitive recursion is the non-dependent version of
induction; Both replace the constructors by suitable terms.

HoTT

- Introduction

Inductive Types (less familiar)

>

No (the empty type, or empty sum, representing false,
—A = (A — Np)), inductively defined by no constructors

Destruction: h: Mz:Ny. C(z) can be defined by zero cases,
presuming nothing, h is ‘for free" (induction principle for Np)

For constant C(z) = C this is the Ex Falso rule Nop — C

For non-constant C(z): refinement of Ex Falso, probably used
for the first time by VV to prove Vx,y : No. Eqn,(x,y)

Eqa(x,y) (equality, Martin-Lof), in context A: U, x,y : A,
inductively defined by 1, : Eqa(a, a) for all a: A (diagonal!)

Since Eqa(x,y) is itself a type in U, we can iterate:
Eqega(x,y)(P; q) is equality of equality proofs of x and y

Beautiful structure arises: an oo-groupoid (miracle!)

HoTT
- Introduction

Laws of Equality

» (15 : Eqa(a, a) for all a: A) + induction + computation

» We actually want transport, for all type families B:
transpg : B(a) — (Eqa(a, x) — B(x))

and based path induction, for all type families C:
bpic : C(a,1,) — Mp:Eqa(a, x). C(x, p)

plus natural equalities like Eqp(,)(transpg(b,1a), b)

» These are all provable by induction

» Also provable: Peano’s 4-th axiom =Eqn(0, S(0))

» Proof: define recursively B(0) = N, B(S(n)) = Np and
assume p : Eqn(0,5(0)). We have 0 : B(0) and hence
transpg(0, p) : No.

HoTT
- Introduction

Groupoid

v

THM [H-+S]: every type A is a groupoid with objects of type
A and morphisms p : Eqa(a,d’) for a: A, a': A

In more relaxed notation (only here with = for Eq):
CIX=y—oSy=z—3x=2z

Tlix= y—y=x

p=Llp=p-1,
prpt=1,pt:
(P =p
p-(q-r)=(p-q)-r

Proofs by induction: = is transpy—_, ~lis transp—x refl, (!)

Also: x,y 1 A, p,q: Eqa(x,y), PG : Eqegux,y) (P q) -

v

p=1,

AR A

v
o

v

HoTT
- Introduction

The Homotopy Interpretation [A+W+V]|

» Type A: topological space

» Object a: A: point in topological space
» Object f : A — B: continuous function
> Universe Uf: space of spaces

> Type family B : A — U: a specific fibration E — A, where the
fiber of a: Ais B(a), and

» E is the interpretation of ¥ A B: the total space
» [1AB: the space of sections of the fibration interpreting B
» Eqa(a,d’): the space of paths from ato &’ in A

» Correct interpretation of Eqa (in particular, transport) is
ensured by taking Kan fibrations (yielding homotopy
equivalent fibers of connected points)

HoTT
- Introduction

Some Homotopy Levels [V]

> Level —1: prop(P) = MNx,y:P. Eqp(x,y)

» Example: N is a proposition, prop(Np) also (!)

> Level 0: set(A) = INx, y:A. prop(Eqa(x, y))

» Example: N is a set, set(N) is a proposition

» Proved above: N is not a proposition (Peano's 4-th axiom)

> Level 1: groupoid(A) = INx, y:A. set(Eqa(x, y))

» Examples: No, N (silly, the hierarchy is cumulative)

» Without UA it is consistent to assume MA:U. set(A)

» With UA, U is not a set (Up not a set, U; not a groupoid, ...)

HoTT
- Introduction

The Univalence Axiom [V]

> Level —2: Contr(A) = A x prop(A), A is contractible
» Examples: Ny, Xx:B. Eqg(x, b) for all b: B
» Fiberof f : A— B over b: B is the type

Fibs(b) = Xx:A. Eqg(f(x), b)

» Equivalence (function): isEquiv(f) = MNb:B. contr(Fibs(b))
» Equivalence (types): (A~ B) = Xf:A — B.isEquiv(f)
» Examples:

» Logical equivalence of propositions

» Bijections of sets

» The identity function A — A is an equivalence, A~ A

» UA: for the canonical idtoEquiv : Eqy(A, B) — (A~ B),

ua : isEquiv(idtoEquiv)

HoTT

Llntroduction

Consequences and Applications of UA/HoTT

vV V. v v Y

Function extensionality

Description operator (define functions by their graph)
The universe is not a set (Eqy(N, N) refutes UIP)
Practical: formalizing homotopy theory

Practical: transport of structure and results between
equivalent types, without the need for [Bourbaki 4]
‘transportability criteria’ .
wiki/Equivalent_definitions_of_mathematical structures
Higher inductive types, example: the circle S!

» a point constructor base : S?
» a path constructor loop : base =g base
» induction + computation

What is base =g1 base? (should be Z)

https://en.wikipedia.org/wiki/Equivalent_definitions_of_mathematical_structures

	Introduction

