The Univalence Axiom in Dependent Type Theory

Marc Bezem¹

¹Lecture based on: Thierry COQUAND, *Théorie des Types Dépendants et Axiome d'Univalence*, Séminaire Bourbaki, 66ème année, 2013-2014, n° 1085

Fall 2015

Higher-order Logic (HOL)

- ► First-order logic: predicate logic (e.g., group theory, ZFC)
- Higher-order logic (Church):
 - ► Types: *I* (individuals), *bool* (propositions), and with *A*, *B* also A → B (these are called *simple* types)
 - Forms are classified by their types: e.g., f : I → I; c, f(c) : I; P : bool; ∧, → : bool → (bool → bool); P ∨ ¬P : bool; Q : I → bool; ∀_I, ∃_I : (I → bool) → bool, (∀_I Q) : bool
 - We also have, e.g., ∀_{I→bool}, ∃_{I→I}, quantification over unary predicates and functions, in fact, ∀_A, ∃_A for any type A: HOL
 - ▶ Notation: $\forall x : A$. Q(x) for $\forall_A Q$, $\exists x : A$. Q(x) for $\exists_A Q$
 - Example: we can express Eq_A(t, u) : bool as

 $(\forall P : A \rightarrow bool. P(t) \rightarrow P(u)) : bool$

- Inference system defines the 'theorems' of type bool
- ▶ Natural semantics in set theory: *bool* = {0,1}, *I* a set

Extensionality Axioms in HOL

Pointwise equal functions are equal:

 $(\forall x : A. Eq_B(f(x), g(x))) \rightarrow Eq_{A \rightarrow B}(f, g)$

Equivalent propositions are equal:

$$((P \rightarrow Q) \land (Q \rightarrow P)) \rightarrow Eq_{bool}(P,Q)$$

 Univalence Axiom (UA): 'equivalent things are equal', where the meaning of 'equivalent' depends on the 'thing'

Exercise: prove that Eq_A is an equivalence relation for all A

Dependent Type Theory, $\Pi\text{-types}$ and $\Sigma\text{-types}$

- Limitation of HOL: not possible to define, e.g., algebraic structure on an arbitrary type; DTT can express this.
- Every mathematical object has a type, even types have a type: a : A, A : U₀, U₀ : U₁,..., the U_i are called universes
- ► Fundamental notion: family of types B(x), x : A; for every a : A we have B(a) : U ('a has property B')
- Context: $x_1 : A_1, x_2 : A_2(x_1), \ldots, x_n : A_n(x_1, \ldots, x_{n-1})$
- Example: x : N, p : P(x), y : N, q : Q(x, y)
- If B(x), x : A type family, then Πx:A. B(x) is the type of dependent functions (later: sections): f(x) = b in context x : A, i.e., b depending on x, f(a) = (a/x)b : B(a) if a : A
- Actually, $A \rightarrow B$ is $\Pi x: A. B(x)$ with B(x) = B
- Dually, we have Σx:A. B(x), the type of dependent pairs (a, b) with a : A and b : B(a).

Representation of Logic in DTT

- Curry-Howard-de Bruijn: formulas as types, (constructive) proofs as programs
- Define f(x, y) = x for x : A, y : B, then $f : A \to (B \to A)$
- Curry: f is a proof of the tautology $A \rightarrow (B \rightarrow A)$ (!!!)
- Similarly, g(x, y, z) = x(y(z)) (composition) is a proof of

$$(B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

- Modus ponens: if $f : A \rightarrow B$, a : A, then f(a) : B
- ∀x : A. B(x) as Πx:A. B(x)
- $\exists x : A. B(x) \text{ as } \Sigma x : A. B(x)$
- $A \wedge B$ as $A \times B = \Sigma x : A$. B(x) with constant B(x) = B
- $A \lor B$ as disjoint sum A + B (below)
- \perp as the empty type N_0 (below)

Inductive Types

- A + B is inductively defined by two constructors inl : A → (A + B), inr : B → (A + B)
- ▶ Destruction: h: Пz:A + B. C(z) can be defined by cases, given f : Пx:A. C(inl(x)) and g : Пy:B. C(inr(y)):

$$h(inl(x)) = f(x)$$
 $h(inr(y)) = g(y)$

- ▶ For constant C(z) = C this is Gentzen's \lor -elimination
- Also inductively: 0 : N and if n : N, then S(n) : N
- Destruction: f : Πn:N. C(n) can be defined by, given z : C(0) and s : Πn:N. (C(n) → C(S(n))):

$$f(0) = z$$
 $f(S(n)) = s(n, f(n))$

• For constant C(n) = C this is primitive recursion

- For non-constant C(n): inductive proof of $\forall n : N. C(n)$
- Moral: primitive recursion is the non-dependent version of induction; Both replace the constructors by suitable terms.

Inductive Types (less familiar)

- ▶ N_0 (the empty type, or empty sum, representing *false*, $\neg A = (A \rightarrow N_0)$), inductively defined by no constructors
- ▶ Destruction: h : Πz:N₀. C(z) can be defined by zero cases, presuming nothing, h is 'for free' (induction principle for N₀)
- For constant C(z) = C this is the Ex Falso rule $N_0 \rightarrow C$
- For non-constant C(z): refinement of Ex Falso, probably used for the first time by VV to prove ∀x, y : N₀. Eq_{N0}(x, y)
- ► Eq_A(x, y) (equality, Martin-Löf), in context A : U, x, y : A, inductively defined by 1_a : Eq_A(a, a) for all a : A (diagonal!)
- Since Eq_A(x, y) is itself a type in U, we can iterate: Eq_{Eq_A(x,y)}(p, q) is equality of equality proofs of x and y
- ▶ Beautiful structure arises: an ∞-groupoid (miracle!)

Laws of Equality

- $(1_a : Eq_A(a, a) \text{ for all } a : A) + \text{ induction } + \text{ computation}$
- We actually want *transport*, for all type families *B*:

$$transp_B: B(a) \rightarrow (Eq_A(a, x) \rightarrow B(x))$$

and based path induction, for all type families C:

$$bpi_C: C(a, 1_a) \rightarrow \Pi p: Eq_A(a, x). C(x, p)$$

plus natural equalities like $Eq_{B(a)}(transp_B(b, 1_a), b)$

- These are all provable by induction
- Also provable: Peano's 4-th axiom $\neg Eq_N(0, S(0))$
- Proof: define recursively B(0) = N, B(S(n)) = N₀ and assume p : Eq_N(0, S(0)). We have 0 : B(0) and hence transp_B(0, p) : N₀.

Groupoid

- ► THM [H+S]: every type A is a groupoid with objects of type A and morphisms p : Eq_A(a, a') for a : A, a' : A
- ▶ In more relaxed notation (only here with = for *Eq*):

1. •:
$$x = y \to y = z \to x = z$$

2. $.^{-1}$: $x = y \to y = x$
3. $p = 1_x \cdot p = p \cdot 1_y$
4. $p \cdot p^{-1} = 1_x, \ p^{-1} \cdot p = 1_y$
5. $(p^{-1})^{-1} = p$
6. $p \cdot (q \cdot r) = (p \cdot q) \cdot r$

- ▶ Proofs by induction: is $transp_{x=_{-}}$, $^{-1}$ is $transp_{=_{x}} refl_{x}$ (!)
- Also: $x, y : A, p, q : Eq_A(x, y), pq : Eq_{Eq_A(x,y)}(p, q) \dots$

The Homotopy Interpretation [A+W+V]

- Type A: topological space
- Object a : A: point in topological space
- Object $f : A \rightarrow B$: continuous function
- ► Universe U: space of spaces
- ► Type family B : A → U: a specific fibration E → A, where the fiber of a : A is B(a), and
- *E* is the interpretation of $\Sigma A B$: the total space
- $\Pi A B$: the space of sections of the fibration interpreting B
- $Eq_A(a, a')$: the space of paths from a to a' in A
- Correct interpretation of Eq_A (in particular, transport) is ensured by taking Kan fibrations (yielding homotopy equivalent fibers of connected points)

Some Homotopy Levels [V]

- Level -1: $prop(P) = \prod x, y: P. Eq_P(x, y)$
- Example: N_0 is a proposition, $prop(N_0)$ also (!)
- Level 0: $set(A) = \prod x, y:A. prop(Eq_A(x, y))$
- Example: N is a set, set(N) is a proposition
- Proved above: N is not a proposition (Peano's 4-th axiom)
- Level 1: $groupoid(A) = \prod x, y:A. set(Eq_A(x, y))$
- Examples: N_0 , N (silly, the hierarchy is cumulative)
- Without UA it is consistent to assume $\Pi A: \mathcal{U}. set(A)$
- With UA, \mathcal{U} is not a set (U_0 not a set, U_1 not a groupoid, ...)

The Univalence Axiom [V]

- Level -2: $Contr(A) = A \times prop(A)$, A is contractible
- Examples: N_1 , $\Sigma x: B$. $Eq_B(x, b)$ for all b: B
- Fiber of $f : A \rightarrow B$ over b : B is the type

$$Fib_f(b) = \Sigma x: A. Eq_B(f(x), b)$$

- Equivalence (function): isEquiv(f) = Πb:B. contr(Fib_f(b))
- Equivalence (types): $(A \simeq B) = \Sigma f : A \rightarrow B$. isEquiv(f)
- Examples:
 - Logical equivalence of propositions
 - Bijections of sets
 - The identity function $A \rightarrow A$ is an equivalence, $A \simeq A$
- ▶ UA: for the canonical *idtoEquiv* : $Eq_U(A, B) \rightarrow (A \simeq B)$,

ua : isEquiv(idtoEquiv)

Consequences and Applications of UA/HoTT

- Function extensionality
- Description operator (define functions by their graph)
- The universe is not a set $(Eq_{\mathcal{U}}(N, N)$ refutes UIP)
- Practical: formalizing homotopy theory
- Practical: transport of structure and results between equivalent types, without the need for [Bourbaki 4] 'transportability criteria'.

 $wiki/Equivalent_definitions_of_mathematical_structures$

- ► Higher inductive types, example: the circle S¹
 - a point constructor base : \mathbb{S}^1
 - a path constructor loop : base $=_{\mathbb{S}^1}$ base
 - induction + computation
- What is base $=_{\mathbb{S}^1}$ base? (should be \mathbb{Z})