The Univalence Axiom in Dependent Type Theory

Marc Bezem ${ }^{1}$

${ }^{1}$ Lecture based on: Thierry COQUAND, Théorie des Types Dépendants et Axiome d'Univalence, Séminaire Bourbaki, 66ème année, 2013-2014, nº 1085

Fall 2015

Higher-order Logic (HOL)

- First-order logic: predicate logic (e.g., group theory, ZFC)
- Higher-order logic (Church):
- Types: I (individuals), bool (propositions), and with A, B also $A \rightarrow B$ (these are called simple types)
- Terms are classified by their types: e.g., $f: I \rightarrow I ; c, f(c): I$; P : bool; \wedge, \rightarrow : bool \rightarrow (bool \rightarrow bool); $P \vee \neg P:$ bool; $Q: I \rightarrow$ bool; $\forall_{I}, \exists I$: $(I \rightarrow$ bool $) \rightarrow$ bool, $\left(\forall_{I} Q\right):$ bool
- We also have, e.g., $\forall_{I \rightarrow \text { bool }}, \exists_{I \rightarrow I}$, quantification over unary predicates and functions, in fact, \forall_{A}, \exists_{A} for any type A : HOL
- Notation: $\forall x: A . Q(x)$ for $\forall_{A} Q, \exists x: A$. $Q(x)$ for $\exists_{A} Q$
- Example: we can express $E q_{A}(t, u)$: bool as

$$
(\forall P: A \rightarrow \text { bool. } P(t) \rightarrow P(u)): \text { bool }
$$

- Inference system defines the 'theorems' of type bool
- Natural semantics in set theory: bool $=\{0,1\}$, I a set

Extensionality Axioms in HOL

- Pointwise equal functions are equal:

$$
\left(\forall x: A . E q_{B}(f(x), g(x))\right) \rightarrow E q_{A \rightarrow B}(f, g)
$$

- Equivalent propositions are equal:

$$
((P \rightarrow Q) \wedge(Q \rightarrow P)) \rightarrow E q_{b o o l}(P, Q)
$$

- Univalence Axiom (UA): 'equivalent things are equal', where the meaning of 'equivalent' depends on the 'thing'

Exercise: prove that $E q_{A}$ is an equivalence relation for all A

Dependent Type Theory, Π-types and Σ-types

- Limitation of HOL: not possible to define, e.g., algebraic structure on an arbitrary type; DTT can express this.
- Every mathematical object has a type, even types have a type: a: $A, A: U_{0}, U_{0}: U_{1}, \ldots$, the U_{i} are called universes
- Fundamental notion: family of types $B(x), x: A$; for every $a: A$ we have $B(a): \mathcal{U}$ ('a has property $\left.B^{\prime}\right)$
- Context: $x_{1}: A_{1}, x_{2}: A_{2}\left(x_{1}\right), \ldots, x_{n}: A_{n}\left(x_{1}, \ldots, x_{n-1}\right)$
- Example: $x: N, p: P(x), y: N, q: Q(x, y)$
- If $B(x), x$: A type family, then $\Pi x: A . B(x)$ is the type of dependent functions (later: sections): $f(x)=b$ in context $x: A$, i.e., b depending on $x, f(a)=(a / x) b: B(a)$ if $a: A$
- Actually, $A \rightarrow B$ is $\Pi x: A . B(x)$ with $B(x)=B$
- Dually, we have $\Sigma x: A . B(x)$, the type of dependent pairs (a, b) with $a: A$ and $b: B(a)$.

Representation of Logic in DTT

- Curry-Howard-de Bruijn: formulas as types, (constructive) proofs as programs
- Define $f(x, y)=x$ for $x: A, y: B$, then $f: A \rightarrow(B \rightarrow A)$
- Curry: f is a proof of the tautology $A \rightarrow(B \rightarrow A)(!!!)$
- Similarly, $g(x, y, z)=x(y(z))$ (composition) is a proof of

$$
(B \rightarrow C) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))
$$

- Modus ponens: if $f: A \rightarrow B, a: A$, then $f(a): B$
- $\forall x$: A. $B(x)$ as $\Pi x: A . B(x)$
- $\exists x$: A. $B(x)$ as $\Sigma x: A . B(x)$
- $A \wedge B$ as $A \times B=\Sigma x: A$. $B(x)$ with constant $B(x)=B$
- $A \vee B$ as disjoint sum $A+B$ (below)
- \perp as the empty type N_{0} (below)

Inductive Types

- $A+B$ is inductively defined by two constructors inl : $A \rightarrow(A+B)$, inr : $B \rightarrow(A+B)$
- Destruction: $h: \Pi z: A+B . C(z)$ can be defined by cases, given $f: \Pi x: A . C(\operatorname{inl}(x))$ and $g: \Pi y: B . C(i n r(y))$:

$$
h(\operatorname{inl}(x))=f(x) \quad h(\operatorname{inr}(y))=g(y)
$$

- For constant $C(z)=C$ this is Gentzen's \vee-elimination
- Also inductively: $0: N$ and if $n: N$, then $S(n): N$
- Destruction: $f: \Pi n: N . C(n)$ can be defined by, given z:C(0) and $s: \Pi n: N .(C(n) \rightarrow C(S(n))):$

$$
f(0)=z \quad f(S(n))=s(n, f(n))
$$

- For constant $C(n)=C$ this is primitive recursion
- For non-constant $C(n)$: inductive proof of $\forall n: N . C(n)$
- Moral: primitive recursion is the non-dependent version of induction; Both replace the constructors by suitable terms.

Inductive Types (less familiar)

- N_{0} (the empty type, or empty sum, representing false, $\neg A=\left(A \rightarrow N_{0}\right)$), inductively defined by no constructors
- Destruction: $h: \Pi z: N_{0} . C(z)$ can be defined by zero cases, presuming nothing, h is 'for free' (induction principle for N_{0})
- For constant $C(z)=C$ this is the Ex Falso rule $N_{0} \rightarrow C$
- For non-constant $C(z)$: refinement of Ex Falso, probably used for the first time by $V V$ to prove $\forall x, y: N_{0} . E q_{N_{0}}(x, y)$
- $E q_{A}(x, y)$ (equality, Martin-Löf), in context $A: \mathcal{U}, x, y: A$, inductively defined by $1_{a}: E q_{A}(a, a)$ for all $a: A$ (diagonal!)
- Since $E q_{A}(x, y)$ is itself a type in \mathcal{U}, we can iterate: $E q_{E q_{A}(x, y)}(p, q)$ is equality of equality proofs of x and y
- Beautiful structure arises: an ∞-groupoid (miracle!)

Laws of Equality

- $\left(1_{a}: E q_{A}(a, a)\right.$ for all $\left.a: A\right)+$ induction + computation
- We actually want transport, for all type families B :

$$
\operatorname{transp}_{B}: B(a) \rightarrow\left(E q_{A}(a, x) \rightarrow B(x)\right)
$$

and based path induction, for all type families C :

$$
\text { bpic }: C\left(a, 1_{a}\right) \rightarrow \Pi p: E q_{A}(a, x) \cdot C(x, p)
$$

plus natural equalities like $E q_{B(a)}\left(\operatorname{transp}_{B}\left(b, 1_{a}\right), b\right)$

- These are all provable by induction
- Also provable: Peano's 4-th axiom $\neg E q_{N}(0, S(0))$
- Proof: define recursively $B(0)=N, B(S(n))=N_{0}$ and assume $p: E q_{N}(0, S(0))$. We have $0: B(0)$ and hence $\operatorname{transp}_{B}(0, p): N_{0}$.

Groupoid

- THM $[\mathrm{H}+\mathrm{S}]$: every type A is a groupoid with objects of type A and morphisms $p: E q_{A}\left(a, a^{\prime}\right)$ for $a: A, a^{\prime}: A$
- In more relaxed notation (only here with $=$ for $E q$):

$$
\begin{align*}
& \text { 1. } \cdot: x=y \rightarrow y=z \rightarrow x=z \\
& \text { 2. } .^{-1}: x=y \rightarrow y=x \\
& \text { 3. } p=1_{x} \cdot p=p \cdot 1_{y} \\
& \text { 4. } p \cdot p^{-1}=1_{x}, p^{-1} \cdot p=1_{y} \\
& \text { 5. }\left(p^{-1}\right)^{-1}=p \\
& \text { 6. } p \cdot(q \cdot r)=(p \cdot q) \cdot r \tag{!}
\end{align*}
$$

- Proofs by induction: • is $\operatorname{transp}_{x=-},{ }^{-1}$ is transp_=x refl l_{x}
- Also: $x, y: A, p, q: E q_{A}(x, y), p q: E q_{E q_{A}(x, y)}(p, q) \ldots$

The Homotopy Interpretation $[\mathrm{A}+\mathrm{W}+\mathrm{V}]$

- Type A : topological space
- Object a: A: point in topological space
- Object $f: A \rightarrow B$: continuous function
- Universe \mathcal{U} : space of spaces
- Type family $B: A \rightarrow \mathcal{U}$: a specific fibration $E \rightarrow A$, where the fiber of $a: A$ is $B(a)$, and
- E is the interpretation of $\sum A B$: the total space
- ПAB: the space of sections of the fibration interpreting B
- $E q_{A}\left(a, a^{\prime}\right)$: the space of paths from a to a^{\prime} in A
- Correct interpretation of $E q_{A}$ (in particular, transport) is ensured by taking Kan fibrations (yielding homotopy equivalent fibers of connected points)

Some Homotopy Levels [V]

- Level -1: $\operatorname{prop}(P)=\Pi x, y: P . E q_{P}(x, y)$
- Example: N_{0} is a proposition, $\operatorname{prop}\left(N_{0}\right)$ also (!)
- Level 0: $\operatorname{set}(A)=\Pi x, y: A . \operatorname{prop}\left(E q_{A}(x, y)\right)$
- Example: N is a set, $\operatorname{set}(N)$ is a proposition
- Proved above: N is not a proposition (Peano's 4-th axiom)
- Level 1: $\operatorname{groupoid}(A)=\Pi x, y: A \cdot \operatorname{set}\left(E q_{A}(x, y)\right)$
- Examples: N_{0}, N (silly, the hierarchy is cumulative)
- Without UA it is consistent to assume ПA:U. $\operatorname{set}(A)$
- With UA, \mathcal{U} is not a set (U_{0} not a set, U_{1} not a groupoid, ...)

The Univalence Axiom [V]

- Level -2: Contr $(A)=A \times \operatorname{prop}(A), A$ is contractible
- Examples: $N_{1}, \Sigma x: B . E q_{B}(x, b)$ for all $b: B$
- Fiber of $f: A \rightarrow B$ over $b: B$ is the type

$$
\operatorname{Fib}_{f}(b)=\Sigma x: A \cdot E q_{B}(f(x), b)
$$

- Equivalence (function): isEquiv $(f)=\Pi b: B \cdot \operatorname{contr}\left(\operatorname{Fib}_{f}(b)\right)$
- Equivalence (types): $(A \simeq B)=\Sigma f: A \rightarrow B . \operatorname{isEquiv}(f)$
- Examples:
- Logical equivalence of propositions
- Bijections of sets
- The identity function $A \rightarrow A$ is an equivalence, $A \simeq A$
- UA: for the canonical idtoEquiv : $E q_{\mathcal{U}}(A, B) \rightarrow(A \simeq B)$, ua : isEquiv(idtoEquiv)

Consequences and Applications of UA/HoTT

- Function extensionality
- Description operator (define functions by their graph)
- The universe is not a set $\left(E q_{\mathcal{U}}(N, N)\right.$ refutes UIP)
- Practical: formalizing homotopy theory
- Practical: transport of structure and results between equivalent types, without the need for [Bourbaki 4] 'transportability criteria'. wiki/Equivalent_definitions_of_mathematical_structures
- Higher inductive types, example: the circle \mathbb{S}^{1}
- a point constructor base: \mathbb{S}^{1}
- a path constructor loop : base $={ }_{\mathbb{S}^{1}}$ base
- induction + computation
- What is base $=\mathbb{S}^{1}$ base? (should be \mathbb{Z})

