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Introduction  
 
 

 The term “pre-metric electromagnetism” refers to the formulation of the mathematical 
theory of electromagnetism in a manner that not only does not assume the existence of a 
Lorentzian metric on the spacetime manifold to begin with, but also exhibits the 
appearance of such a geometrical structure as a natural consequence of investigating the 
manner in which electromagnetic waves propagate through that medium.  Since the 
Lorentzian metric that appears – at least, under restricted conditions – is commonly taken 
to account for the presence of gravitation in the spacetime medium in the viewpoint of 
general relativity, one sees that in order to properly define the context of pre-metric 
electromagnetism one must really discuss not only electricity and magnetism, but also 
gravity, as well. 
 Hence, before we embark upon the detailed discussion of the mathematical and 
physical bases for the theory of pre-metric electromagnetism, we shall briefly recall the 
conceptual evolution of the three relevant physical phenomena of electricity, magnetism, 
and gravity. 
 
 
 1.  The unification of electricity and magnetism 1.  In ancient times, it is unlikely 
that man ever suspected that the natural phenomena associated with electricity, such as 
lightning and static electricity on animal furs, could possibly be associated with magnetic 
phenomena, which were discovered somewhat later in history, and most likely in the Iron 
Age in the context of lodestones, which are magnetite deposits that have become 
magnetized from long-term exposure to the Earth’s magnetic field. 
 However, when Europe emerged from the Dark Ages into the Renaissance the 
science of electricity gradually gave way to the development of batteries 2, wires, and 
currents, on the one hand, with the development of compasses for marine navigation on 
the other.  It was only a matter of time before the early experimenters, primarily Hans 
Christian Oersted (1777-1851) and Michael Faraday (1791-1867), noticed that electrical 
currents could produce measurable magnetic fields around conductors, while time-
varying magnetic fields could conversely induce electrical currents in current loops.  
Actually, this is not a precise converse, since a time-constant electrical current can induce 
a time-constant magnetic field, while a time-constant magnetic field will not induce an 
electrical current of any sort.  This reciprocal set of phenomena was called 
electromagnetic induction. 
 One of Faraday’s other innovations in the name of electromagnetism was the 
introduction of the concept of invisible force fields distributed in space that accounted to 
the forces of attraction or repulsion that “test” electric charges and magnetic dipoles 
experienced when placed at each point.  Although nowadays the concept of vector fields 

                                                
 1 For a comprehensive historical timeline of the theories of electricity and the ether, one should confer 
the tomely two-volume treatise of E. T. Whittaker [1].  
 
 2 Apparently, the concept of a battery had been developed in a rudimentary form by ancient cultures, as 
pottery that seemed to involve weak acids and metal electrodes has been unearthed by archeologists. 
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seems rather commonplace and above dispute, nevertheless, in its day the ideas of 
invisible lines of force apparently seemed rather mystical and dubious.  It is important to 
note that the key to defining such fields is the association of a purely dynamical notion – 
namely, force – with more esoteric ones, in the form of electrical and magnetic fields. 
 In addition to this key development, one must also observe the evolution of the theory 
of electrostatic forces from the early measurements by Charles Augustin de Coulomb 
(1736-1806) and the formulation of the empirical law that bears his name to its 
formulation in terms of potential theory by Laplace, Poisson, and the host of contributors 
to the theory of boundary-value problems in the Laplace or Poisson equation, such as 
Green, Cauchy, Dirichlet, Neumann, Robin, and many more.  It was also found that 
although the static magnetic field was not apparently due to a magnetic charge monopole, 
but a magnetic dipole, nevertheless, the Laplace equation could still be used in the 
context of a magnetic vector potential. 
 Part of the shift in emphasis from Coulomb’s law to the Poisson equation involves the 
introduction of electrical flux and the use of Gauss’s law, which is due to the German 
mathematician Karl Friedrich Gauss (1777-1855).  One can also introduce a 
corresponding notion of magnetic flux and obtain an analogous law that relates the 
electrical current in a loop that bounds a surface with the total magnetic flux through the 
surface; this law was due to the French physicist André Ampère (1775-1835). 
 The capstone of the unification of electricity and magnetism into a single unified field 
theory of electromagnetism was laid by James Clerk Maxwell (1831-1879) [2], when he 
postulated that the sort of electromagnetic induction that was discovered by Faraday 
might also work in reverse.  That is, a time-varying electric flux through a surface with 
boundary might induce a magnetomotive force, or displacement current, in the boundary 
loop; effectively, this amounts to saying that it induces a magnetic field. 
 However, there was a significant difference between the two types of electromagnetic 
induction, namely, the one was 180o out of phase with the other one.  This took the form 
of a relative minus sign in the resulting field equations for the curl of the electric field 
strength vector field E and the curl of the magnetic field strength vector field H. 
 The resulting set of four first-order partial differential equations for the vector fields 
E, B, D, H 3: 
 

∇×E = − 1

c t

∂
∂
B

, ∇⋅E = 4πρ, ∇×H = +
1

c t

∂
∂
D

+
4

c

π
J,  ∇⋅ B = 0, 

 
which constitute Maxwell’s equations in one of their simplest forms, represent the 
culmination of Faraday’s law, Coulomb’s law, Ampère’s law, combined with Maxwell’s 
displacement current, and the non-existence of magnetic monopoles, respectively.  The 
vector field J represents an electric current density, which can be associated with the 
electric charge density ρ by way of its motion with flow velocity vector field v in the 
form of ρv, or it can also be an electric source current that is independent of ρ. 
 Actually, the nature of the vector field J is not entirely arbitrary, since taking the 
divergence of the third equation gives the conservation of charge in the form: 

                                                
 3 We present these equations in the form that they are given in the standard reference work by J. D. 
Jackson [3], but, as we shall discuss in due course, many other forms exist.  
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One can also regard this as an integrability condition for the over-determined system of 
linear first-order partial differential equations for H and D that the third set of Maxwell 
equations, in the form above, represents. 
 The constant c is the speed of propagation of electromagnetic waves in vacuo.  
However, its introduction at this point seems unrelated to general considerations, since 
the system of equations is valid in media other than the vacuum, and at this point the 
constant c serves as more of a units conversion constant than a fundamental property of 
an electromagnetic medium of a particular sort.  We shall discuss these issues in more 
detail in the next section. 
 Moreover, in order to state Maxwell’s equations in their traditional form, we have 
introduced two further vector fields D and B, which were classically referred to as the 
electric displacement and magnetic flux density vector fields.  Hence, the system of 
equations as it was stated above is underdetermined; viz., we have defined nine 
component equations for the fifteen components of the vector fields E, B, D, H, J.  The 
six remaining equations that we require take the form of the electromagnetic constitutive 
law: 

D = D(E, B),  H = H(E, B), 
 
for the medium in question that relates the fields E and B to the fields D and H in a 
manner that is closely analogous to the way that mechanical constitutive laws couple the 
stress tensor for a material medium to its strain tensor.  We shall discuss this aspect of 
Maxwell’s equations in more detail in the next section of this introduction, as well, since 
it defines the key to understanding why pre-metric electromagnetism is based in 
established experimental physics, as well as purely mathematical refinements. 
 
 
 2.  The evolution of geometrical optics into wave optics.  Perhaps the most 
profound consequence of Maxwell’s hypothesis was that it led to the existence of 
solutions of his equations that took the form of electromagnetic waves.  This opened up a 
new realm of possibilities for explaining the optical phenomena that seemed beyond the 
reach of the earlier methods of geometrical optics. 
 The study of optics seems as old as man’s awareness of the presence of light in the 
world.  One can find writings on the subject as far back as Euclid, who also wrote about 
geometry more generally.  Indeed, one sees that the concept of “light rays,” which is at 
the root of geometrical optics, seems to be the first way of modeling the behavior of light. 
 One of the first enduring results of geometrical optics was due to Willebrod Snell 
(1581-1626), who experimentally derived the largely empirical result that the ratio of the 
sines of the angles of refraction and incidence at an optical interface could be expressed 
in terms of the ratio of two numbers that were characteristic of the materials.  Although 
we now understand that these numbers are the indices of refraction of the materials and 
they are inversely proportional to the speeds of propagation of electromagnetic waves in 
them, at the time Snell had no such insight into the nature of the numbers.  Interestingly, 
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after Snell’s contribution the next significant advance in optics did not come about until 
fifty-two years after his death. 
 Similarly, although Sir Isaac Newton (1642-1727) published his celebrated treatise 
[4] in 1704, in which he suggested that light was due to the motion of infinitesimal 
“corpuscles,” nonetheless, the Dutch physicist Christiaan Huygens (1629-95) had 
published a treatise [5] in 1678 in which he was introducing the notion that the behavior 
of light had more to do with envelopes of “elementary waves.” 
 One also notes that after Newton’s treatise the next major advance to optics did not 
seem to come until 104 years after its publication, which would be the work of Etienne-
Louis Malus (1775 –1812), who did many experiments on the polarization of light and 
derived a law for the resulting intensity of a light beam that passes through a polarizer, as 
well as observing that reflected light is always polarized.  His work [6] also made 
considerable use of what later become line geometry, which was first developed by the 
German geometer Julius Plücker (1801 – 1868). 
 As we will see, one of the foundations of pre-metric electromagnetism is due to the 
work of Augustin-Jean Fresnel (1788 – 1827), whose research in optics [7] further 
reinforced the wavelike conception that Huygens had previously introduced.  The concept 
of the Fresnel wave surface or ray surface also reinforces the fundamental role of line 
geometry, as it admits such a formulation and interpretation quite naturally. 
 One the most far-reaching conceptual advances for geometrical optics was due to the 
contributions of Sir William Rowan Hamilton (1805–1865) to the Royal Irish Society [8] 
over a period of time from 1828 to1837.  He essentially established that the same general 
mathematical techniques that allowed one to describe the trajectories of point particles in 
the motion of matter could suffice to determine the curves – viz., light rays − that were 
followed by light corpuscles.  Perhaps some inkling of how long it took for physics to 
completely digest new ideas in those days was in the fact that when the German geometer 
Felix Klein (1849 – 1925), a former student of Plücker’s who also advanced the cause of 
line geometry, commented upon the work of Hamilton some fifty-five years after his last 
supplement on the theory of rays had been published the title of his paper [9] (in 
translation) was “On recent English work in mechanics.” 
 In roughly the same year as Klein’s article, Pierre de Fermat (1601 or 1607/8 – 1665) 
began doing his own work on geometrical optics, which further reinforced the 
applicability of Hamilton-Jacobi theory by showing that one could derive the equations of 
geometrical optics by starting with a least-action principle, just as Hamilton’s equations 
are derived from Hamilton’s least action principle.  The trick is to define an appropriate 
action functional for curves between points of space if one is to make the curves one has 
in mind – viz., light rays, in this case – take the form of the paths along which the action 
function has a minimum.  The action that Fermat introduced for geometrical optics was 
the functional that associated each spatial curve segment with the time it took for light to 
go from one end to the other. 
 In 1895, H. Bruns published a lengthy treatise [10] in the papers of the mathematical 
physics class of the Saxon Academy of Sciences in which he introduced the notion of the 
eikonal, a function that embodied the essential information for the propagation of light 
rays.  Klein also responded to this contribution in 1901 with a paper [11] in Zeitschrift für 
Mathematik und Physik in which he showed that the eikonal of Bruns was virtually the 
same thing as the characteristic function of Hamilton-Jacobi theory in mechanics. 
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 Another tributary of research that was emerging in the later Nineteenth Century that 
eventually met up with both Hamiltonian mechanics and Hamiltonian optics was the 
method of contact transformations and contact geometry.  They had been introduced by 
Marius Sophus Lie (1842-1899) in his monumental 1888 treatise [12] on transformation 
groups in the form of “Berührungstransformationen.”  Not only did one-parameter 
families of such transformations describe the motion of massive particles in Hamilton 
mechanics, but, as Ernest Vessiot (1865-1952) observed in 1906 [13] they also serve to 
describe the motion of light corpuscles in geometrical optics. 
 To return to the wave conception of light, around the time of Maxwell the general 
drift in thinking was towards a mechanical conception of light waves as behaving 
somewhat like elastic waves in a medium they referred to as the “ether.”  However, it 
eventually emerged that the optical wave constructions of Huygens, which predated the 
work of Maxwell by a considerable margin, were nonetheless of sufficient generality as 
to continue to apply to the electromagnetic waves that Maxwell’s equations implied. 
 Consequently, the impact of Maxwell’s equations on physics was not only in their 
complete unification of the theories of electricity and magnetism, but also the fact that 
they gave a precise physical basis for the notion of wave optics; i.e., the idea that the 
behavior of light in optical media was best explained by the propagation of 
electromagnetic waves, rather than light corpuscles. 
 However, since geometrical optics, namely, the optical constructions that were based 
in the Newtonian conception of corpuscular light, was not only adequate in its 
experimental accuracy in some contexts, such as reflection and refraction, but also more 
convenient, it was important to also establish the way that geometrical optics might 
emerge from wave optics, at least as an approximate class of solutions.  One simply 
accepted that there were well-established optical phenomena, such as dispersion, 
diffraction, and polarization that seemed largely foreign to the methods of geometrical 
optics. 
 In order to account for diffraction, one must return to the wave optics of Huygens and 
regard each point of any spatial isophase surface (momentary wave front) as a potential 
source of elementary waves, such as expanding spherical waves.  The form of these 
elementary waves is intimately related to the form of the Fresnel surfaces, and it is 
generally only isotropic optical media in which the elementary wave fronts are expanding 
sphere.  One finds that if waves, in general, are characterized by a phase function, which 
defines the shape of the momentary wave fronts, and an amplitude function, which 
defines how the basic physical quantity is carried along by the wave fronts, then 
Huygens’s principle by itself only allows one to propagate the momentary isophase 
surfaces. 
 In order to propagate the amplitude, as well, one usually must look more specifically 
at the nature of the wave equations that one is concerned with.  When that equation is the 
linear wave equation, which again pertains to optically isotropic media, one often resorts 
to the methods of integral operators and fundamental solutions, such as Green functions, 
in order to propagate the amplitude.  When one reduces from time-varying wave 
solutions to stationary solutions, the linear wave equation, after separating the time 
variable becomes the Helmholtz equation, after the German physicist and physician 
Hermann Ludwig Ferdinand von Helmholtz (1821 – 1894), who published his treatment 
of the problem of propagating amplitudes in 1859 [14]. 
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 As is often the case with integrals, general solutions are not possible, and one often 
must resort to approximations.  The case of diffraction is no different and the 
approximate evaluation of the Helmholtz integral for the treatment of diffraction was first 
achieved by Sir George Gabriel Stokes (1819–1903) in his 1849 memoir [15] on the 
“Dynamical Theory of Diffraction” and refined by Gustav Robert Kirchhoff (1824–1887) 
in 1882 [16]. 
 What eventually emerged was that even Kirchhoff’s approximate integral was too 
complicated to admit general solutions, and the method of asymptotic approximations 
was introduced into the theory of diffraction.  This method originated in previous work 
[17] of Henri Poincaré (1854–1912) on the three-body problem of celestial mechanics 
and involved the introduction of series expansions for solutions that did not have to 
converge, except in some asymptotic limit.  One then obtains the solution for the 
propagation of amplitude in terms of successive contributions to the “classical” solution 
that one obtains from the geometrical optics approximation, which one then regards as 
the “diffracted fields” of each order. 
 
 It is mostly in the study of optical phenomena that one sees the full scope of the 
previous remark on the necessity of introducing electromagnetic constitutive laws for the 
medium in which one propagates electromagnetic waves.  Due to the vast and increasing 
variety of optical media that have been studied up to this point in time, one sees that even 
though the constitutive laws are a system of algebraic equations, not a system of 
differential equations, nonetheless, one must leave open a considerable degree of 
generality concerning the properties that go into them depending upon the medium in 
question. 
 In particular, the first issue that seems to arise is that of linearity, namely, the 
possibility that the system in question is a system of linear equations.  As usual, one finds 
that linearity is a simplifying approximation that one introduces only in order to make 
tangible progress in analyzing the equations, not a deep assumption about the laws of 
Nature.  Indeed, if Nature has any fundamental law in that regard it would have to be: 
Linearity is always a simplifying approximation for something more nonlinear and 
complicated.  In fact, nowadays, the field of nonlinear optics – i.e., the optics of nonlinear 
media – has grown to quite vast proportions in its own right in theory, experiment, and 
practical applications. 
 Other material properties that one must consider in the name of constitutive laws are 
homogeneity and isotropy.  That is, the optical properties of a medium can vary from 
point to point, although often the change is a discontinuity at the interface between two 
different media, and the propagation of electromagnetic waves might even have a strong 
correlation with the direction of propagation.  Furthermore, optical properties often 
depend upon the “state of polarization” of the wave, as well; by this term, we are 
referring to the fact that electromagnetic waves are generally polarized linearly, 
circularly, or elliptically. 
 Hence, one must realize that the model that one traditionally uses for the classical 
electromagnetic vacuum state is characterized by a constitutive law that is linear, 
isotropic, and homogeneous.  Thus, one can concisely define it by two constants ε0 and 
µ0, which represent the electric permittivity (or dielectric constant) and magnetic 
permeability of the vacuum.  It is important to note that speed of propagation c, which 
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was introduced above in a somewhat ad hoc way, then becomes a derived constant, by 
way of: 

c =
0 0

1

ε µ
, 

 
not merely a convenient basis for a unit conversion. 
 As we shall see later on, this situation is generic to optics, except that one does not 
always derive a single constant, such as c, but more generally a set of three functions of 
position. 
 
 
 3.  Geometrization of gravity.  Although the primary focus of this book is, of 
course, pre-metric electromagnetism, nonetheless, in order to fully account for the 
appearance of a spacetime metric, as well as to discuss its role in the equations of 
electromagnetism, one must unavoidable touch upon the fact that the spacetime metric 
plays the fundamental role in Einstein’s theory of gravitation. 
 If the natural phenomena that pertained to magnetism seemed remote in their 
manifestation from those of electricity, it is just as much the case they are both remote 
from the phenomena that pertained to gravitation.  Indeed, one encounters gravitational 
phenomena, such as falling, in primitive settings more frequently than one encounters 
electrical or magnetic ones. 
 However, as humanity learned more about nature, it eventually emerged that there 
was a close analogy between the law of gravitational attraction, as it was described by 
Newton, and the law of electrostatic attraction and repulsion, as it was described by 
Coulomb.  Of course, there were some perplexing difficulties associated with making that 
analogy precise. 
 For one thing, the fact that electrostatic forces could be either attractive or repulsive, 
while gravitational forces were only observed to be attractive, suggested that there were 
two types of charges – viz., positive and negative ones – but only one type of 
gravitational mass.  Indeed, if one postulates the existence of negative masses and 
examines their effect on Newton’s equations of motion when the force is due to 
gravitation, one obtains contradictory conclusions.  In particular, look at the one- 
dimensional picture, which is governed by: 
 

2

Mm
G

r
= mam = − MaM, 

 
in which M is one mass, m is the other, am and aM are their respective accelerations, r is 
the distance between their center of mass, and G is Newton’s gravitational constant. 
 Now, assume that the sign of M is positive, while that of m is negative.  Although this 
implies the intriguing “anti-gravitational” possibility that the gravitational force between 
them is repulsive, nevertheless, if one assumes that Galileo’s experiment is equally valid 
for negative masses as it is for positive ones – i.e., gravitational mass equals inertial 
mass, including their signs – then one must accept that the acceleration of a negative 
mass is in the opposite direction to the applied force, while the acceleration of the 
positive mass is in the same direction.  Hence, the effect is that the negative mass seems 
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to accelerate in the same direction as the positive mass and they “chase each other” off to 
infinity, rather than flying apart as electric charges of the same sign would. 
 Of course, one way around this is to weaken Galileo’s equality of gravitational and 
inertial mass to simply apply it to their absolute values.  However, in the absence of 
experimental confirmation for the gravitational and inertial behavior of negative masses, 
such speculations are rather moot. 
 Another fascinating aspect of the analogy between electrostatics and gravitostatics is 
that historically no one pursued the possibility that it might extend to an analogy between 
electrodynamics and gravitodynamics, as well, until rather recent – i.e., post-Einsteinian 
– history.  To be fair, this is because the gravitostatic force is quite small in its magnitude 
to begin with, except in astronomical contexts, and one usually expects the magnetic 
forces that are produced by moving charges to be considerably weaker than the 
electrostatic ones, as well.  Hence, the only laboratory in which any “gravitomagnetic” 
forces produced by moving masses, in addition to the gravitostatic ones, might possibly 
be measurable would have to be astrophysical.  It is only with the advances of high-
precision measuring technology and orbiting space vehicles that science has managed to 
discover that there are expansions in the scope of Newtonian gravitation that logically 
precede the refinements of general relativity, which represents essentially a “strong-field” 
theory of gravitation, while Newton’s theory represents its “weak-field” form. 
 Although nowadays general relativity is usually thought of as Einstein’s theory of 
gravitation, one must understand the crucial and unavoidable fact that he did not 
originally set out to address gravity.  Indeed, Einstein’s earliest work on relativity grew 
out of his studies of electromagnetism, namely, “The Electrodynamics of Moving 
Bodies” (cf., [18]).  The main issue at that point in time was the way that the equations of 
electromagnetism transformed from one measurer/observer to another, when one 
assumed that the medium itself was in its own state of “motion.” 
 Now, when the electromagnetic medium is a material one, such as glass, it is easier to 
justify the assumption that it is in a state of motion relative to the measurer/observer.  
Indeed, there are experimentally established phenomena associated with such a relative 
motion; for instance, the Fresnel-Fizeau effect, which is due to the French physicists 
Fresnel and Armand Hippolyte Louis Fizeau (1819-1896).  However, when one is 
considering an immaterial – i.e., massless – electromagnetic medium, such as the 
vacuum, it is harder to make the concept of its relative motion logically rigorous.  Indeed, 
the negative result of Michelson and Morley concerning the possibility of measuring a 
difference between the speed of propagation of light in the direction of motion of the 
Earth, relative to the vacuum of space, and transverse to it showed that there were severe 
limitations to the mechanical analogy for electromagnetic wave propagation that the ether 
model had suggested. 
 As is well-known by now, the resolution of the paradox was effected by assuming 
that one had to add the time dimension to the spatial manifold to produce a four-
dimensional spacetime manifold, and that the positive-definite, or “spherical,” Euclidian 
metric had to be replaced with an indefinite hyperbolic one.  This had the effect of 
replacing the origin as the sole “isotropic” point of Euclidian space with the light-cone of 
Minkowski space, which was named for Hermann Minkowski (1864-1909), who had 
observed that geometrical aspect of Einstein’s theory of special relativity in his address to 
the 80th Assembly of German Natural Scientists and Physicians at Cologne in 1908 [19]. 
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 Largely at the suggestion of Marcel Grossman, Einstein then used the extension of 
Euclidian geometry to Minkowski geometry as the basis for a further extension to the 
differential geometry of curved spaces [20], which was primarily due to Georg Bernhard 
Friedrich Riemann (1826-1866) at that point in time, although the geometry of Riemann 
was actually still positive-definite in its signature.  Nowadays, one refers to the spacetime 
manifold as a Lorentzian manifold, in honor of the Dutch physicist Hendrik Antoon 
Lorentz (1853-1928. cf., e.g., [21]), who actually did not define such manifolds, although 
his research in the relativity of electromagnetism led him to introduce transformations, 
namely, boosts, that augmented the Euclidian spatial rotations to give a six-dimensional 
group that is now called the Lorentz group.  Hence, putting his name on the group or the 
manifolds is simply a gesture of respect for his fundamental role in relativity, like many 
of the names that get associated with units of measurement. 
 Eventually, Einstein showed that when one extended Minkowski geometry to 
Lorentzian geometry, the resulting curvature of spacetime, when coupled to the energy, 
momentum, and stress in the distribution of matter in spacetime, produced a set of field 
equations for gravitation.  This curvature manifested itself primarily in the deviation of 
“geodesics” from straight lines into curves, and the solutions to these field equations then 
represented the Lorentzian metric tensor field, whose components took on the 
interpretation of gravitational potentials.  Indeed, Einstein showed that one could recover 
the Newtonian law of gravitation in the weak-field limit in the form of the Poisson 
equation for the gravitational potential functions. 
 As the theoretical physics community became sufficiently comfortable with the new 
picture for gravitation as a manifestation of the geometry of the spacetime manifold, they 
returned to the problem of the relativistic formulation of electromagnetism, first, in 
Minkowski space and then in a Lorentzian manifold.  Eventually, it was found that the 
most elegant way of representing Maxwell’s equations was to first absorb the E and B 
field into a single second-rank antisymmetric tensor field F: 
 

F = 1
2 Fµν dxµ ^ dxν,  F0i = Ei , Fij = εijk B

k. 

 
In these expressions, the Greek induces range from 0 to 3, with 0 representing the time 
dimension of the spacetime manifold, at least for the particular choice of coordinate 
system, and the Latin indices range over the spatial values of 1, 2, 3.  The Levi-Civita 
symbol εijk is completely anti-symmetric and normalized such that ε123 = 1.  The wedge 
symbol in the definition of F represents an anti-symmetrized tensor product of the 1-
forms dxµ and dxν; we shall discuss the definitions of all these terms in due course, but, 
for now, we refer to them casually. 
 Notice that although we are treating the components of E as if they are fundamentally 
those of a “spatial” covector field, nevertheless, we seem to treating the components of B 
as if they are fundamentally those of a spatial vector field that is associated with the 
components of a 2-form by way of the spatial “duality” that one obtains from the Levi-
Civita symbol.  As we shall see, this duality plays a key role in the geometry of 
electromagnetism. 
 One can then represent four of Maxwell’s equations, namely, the three equations for 
the curl of E and the one for the divergence of B, quite concisely as: 
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dF = 0, 
 
in which the d operator is the exterior derivative operator that acts on completely anti-
symmetric covariant tensor fields, which are referred to as exterior differential forms. 
 In order to obtain the remaining four Maxwell equations, one similarly forms the 2-
form: 

G = 1
2 Gµν dxµ ^ dxν,  G0i = Di , Gij = εijkH

k. 

 
One then introduces the Hodge * isomorphism, which is an invertible linear map from 2-
forms to 2-form that takes G to: 
 

*G = 1
2 *Gµν dxµ ^ dxν, *G0i = − Hi , *Gij = εijkD

k. 

 
Here, we have implicitly used the spatial Euclidian scalar product to raise and lower 
indices. 
 The last four of Maxwell’s equations then take the form: 
 

d*G = 4π*J  (J = ρdt + Ji dxi), 
 
or, if one defines the codifferential operator δ = *−1d*: 
 

δG = 4πJ. 
 

One can then append the electromagnetic constitutive law in the form: 
 

G = κ(F). 
 
 Before we return to criticize the necessity or desirability of introducing a Lorentzian 
metric in order to obtain the Maxwell equations in the present form, we return to our 
historical perspective in order to give further physical reasons for seeking a pre-metric 
form for them. 
 
 
 4.  Attempts at unifying electromagnetism with gravitation.  By the time that 
Einstein’s theory of gravitation was becoming widely known to theoretical physicists, in 
combination with Maxwell’s theory of electromagnetism, there was also an increasing 
suspicion − which mostly originated with Einstein himself − that perhaps the theories of 
electromagnetism and gravitation could be effectively unified, just as the theories of 
electricity and magnetism had been. 
 Many attempts at arriving at such a unification were subsequently made throughout 
the balance of the Twentieth Century 4, although after the 1930’s the emphasis shifted 
away from the “classical” (more properly, neo-classical) problem of unifying gravitation 

                                                
 4 An excellent historical reference on the various attempts that were made can be found in Vizgin [22].  
The geometric aspects of Kaluza-Klein and Einstein-Schrödinger are covered in detail in Part II of 
Lichnerowicz [23]. 
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and electromagnetism to the “quantum” problems that came about with the emergence of 
quantum field theory as the preferred approach to the theory of elementary particles and 
their interactions. 
 What all of the neo-classical models had in common was that they started with the 
assumption that one still had to consider the geometry of spacetime, and then enlarged 
the scope of the geometry in one manner or another.  Generally, they were also of the 
Einstein-Maxwell type, in the sense that they attempted to account for the Einstein 
equations for gravitation, along with the Maxwell equations for electromagnetism.  
However, we shall treat the solutions to the Einstein field equations that involved finding 
the metric tensor for a four-dimensional Lorentzian spacetime when one includes the 
energy, momentum and stress of an electromagnetic field as a source for the curvature as 
being distinct from this class of unified field theories; such attempts were made by 
Rainich [24] and Wheeler [25]. 
 One of the early set of attempts were made by the German mathematical physicist 
Hermann Weyl [26], the French mathematician Élie Cartan [27], who was also largely 
responsible for first emphasizing the utility of exterior differential forms in the expression 
of differential geometry, and the English astronomer and physicist Sir Arthur Stanley 
Eddington [28].  The basic expansion of scope in the geometry was in weakening the 
requirement that the spacetime connection, which allows one to define locally define the 
parallel translation of tangent vectors and frames, did not have to be a metric connection; 
that is, parallel translation did not have to preserve lengths and angles.  This had the 
effect of introducing four additional components for the connection 1-form, which would 
then eventually be associated with the components of the electromagnetic potential 1-
form A = Aµ dxµ.  Although the actual attempt at unification eventually failed – for 
instance, Einstein was concerned that the length of a tangent vector under parallel 
translation might depend upon the choice of curve used for the translation – nevertheless 
the mathematical apparatus that was introduced still drew considerable attention to the 
concerns of conformal geometry, as well as defining the tributary of research that 
eventually became gauge field theory. 
 Another attempt at unification that showed much promise, and is still being discussed 
in various forms, was made by Theodore Kaluza [29] and Oskar Klein [30].  The 
expansion of scope took the form of the addition of yet another dimension to the 
spacetime manifold and the extension of the Lorentzian metric gµν, which locally takes on 
the form of the hyperbolic normal metric of Minkowski space η = diag[+1, −1, −1, −1] in 
an orthonormal frame field, to a Lorentzian metric GAB, A, B = 0, …, 4 with the signature 
type [+1, −1, −1, −1, −1].  This had the effect of introducing five more components to the 
metric tensor field, four of which, namely, Gµ0, indirectly accounted for the 
electromagnetic potentials. 
 An intriguing consequence of the use of this metric was that when one formed the 
d’Alembertian operator 5□ = GAB ∂2 / ∂xA∂xB that allows one to define the five-

dimensional linear wave equation 5□ Ψ = 0, one found that separating out the fifth 

coordinate in the wave function by introducing a separation constant of the form k2 
produced a four-dimensional equation that took the form ψ□ + k2ψ = 0 of the Klein-
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Gordon equation 5.  In effect, the appearance of the mass in four-dimensions was a by-
product of separating out the fifth coordinate when one started with a massless wave 
equation in five dimensions.   
 To say that the Kaluza-Klein program failed is somewhat unfair, since it did obtain 
both the Einstein equations for gravitation and the Maxwell equations of 
electromagnetism; hence, the theory did not fail in the sense of implying an unacceptable 
contradiction.  The main issues that emerged as controversial were in the interpretation of 
the fifth coordinate x4, as well as the remaining extra component of the metric, namely 
G00, and the fact that no new couplings between electromagnetism and gravitation 
seemed to emerge.  That is, there seemed to be no “induction” terms to examine 
experimentally that would say that electromagnetic fields might affect gravitational ones 
or vice versa.  Hence, the unification of the field theories was really more of a 
concatenation. 
 Actually, there is good reason to assume that the fifth coordinate takes the form of the 
proper time parameter τ.  This has the effect of making the fifth component of velocity 
vectors represent the speed of propagation of light, so instead of restricting velocity 
vectors to lie on the unit proper time hyperboloid in a four-dimensional Minkowski 
space, one requires them to lie on a light cone in a five-dimensional one, along with 
lightlike ones, which are associated with τ = 0.  This way of extending spacetime has an 
immediate interpretation in terms of manifolds of jets of differentiable curves, although 
we shall not return to that aspect of jet manifolds when we discuss their geometry later 
on. 
 In the process of accounting for fifth coordinate and the G00 component of the 
Kaluza-Klein metric, various researchers, notably Einstein and Mayer [32], Cartan [33], 
Oswald Veblen [34], and the Dutch mathematicians Jan Schouten and David van Dantzig 
[35] pursued the possibility that introducing the extra coordinate really represented the 
transition from inhomogeneous coordinates to homogeneous coordinates that one uses in 
projective geometry.  Furthermore, this was consistent with the way that the Kaluza-
Klein picture related to the Klein-Gordon wave equation.  Of course, since it was still 
basically the same Kaluza-Klein model, the same criticisms applied, except that one 
could account for fifth coordinate and the extra metric component.  However, to this day, 
projective relativity still manages to attract serious attention (cf., Schmutzer [36]). 
 Another attempt at Einstein-Maxwell unification that continues to attract modern 
attention was the one that Einstein, and later Mayer, made [37] under the name of 
teleparallelism.  It was based the fact that a linear 4-coframe field {hµ , µ = 0, …, 3} on a 
four-dimensional differentiable manifold has sixteen independent components hµν , in 
general, which is also the total number of independent components that one expects from 
the metric tensor field gµν and the electromagnetic potential 1-form Aµ .  Now, Roland 
Weitzenböck [38] had already discussed the geometry of parallelizable manifolds – 
which are sometimes called Weitzenböck spaces, for that reason – which are 
differentiable manifolds on which there exists a global frame field.  For instance, given a 
choice of global frame field one can define a canonical volume element, Lorentzian 

                                                
 5 Not only was this the same Klein that came up with the Kaluza-Klein theory, but one finds that his 
father Felix had also done some work on the subject of how arbitrary geodesic equations could be 
represented as null geodesic equation by introducing the extra coordinate as one would in projective 
geometry; this is discussed at length in Rumer [31]. 
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metric, and linear connection.  However, unlike the Levi-Civita connection that one 
obtains from a metric tensor, which has zero torsion and generally non-vanishing 
curvature, the Weitzenböck connection, which is defined to make the given frame field 
parallel, has just the opposite property.  Hence, all of the geometry is in the torsion tensor 
field.  One finds that not only are Lie groups important examples of parallelizable 
manifolds, but general parallelizable manifolds are, in a sense, “almost Lie groups.”  In 
particular, one replaces left-translation with parallel translation and the Maurer-Cartan 
connection with the Weitzenböck connection. 
 The failure of teleparallelism took the form of unacceptable contradictions, namely, it 
did not admit the Schwarzschild solution for the case of a spherically symmetric 
stationary purely gravitational field and it did admit a stable configuration of gravitating 
masses with no other forces acting to stop their mutual attraction.  However, it is 
interesting that Einstein and Mayer made no mention of the topological obstructions to 
the existence of global frame fields, which are sufficiently severe that even such 
homogeneous spaces as most spheres (except in dimension 0, 1, 3, and 7) do not admit 
them.  Indeed, the first definitive work on the subject of topological obstructions to 
parallelizability was made by Ethan Stiefel [39] in 1936, several years after Einstein and 

Mayer went on to other things.  Stiefel constructed characteristic Z2-homology classes, 

whose dual Z2-cohomology classes are now referred to as Stiefel-Whitney classes, since 

Hassler Whitney preceded the work of Stiefel with his own derivation of the 
characteristic classes in 1935 [40]; however, the paper of Whitney does not explicitly 
address the problem of parallelizability. 
 The idea for such characteristic classes came to Stiefel as a generalization of the 
theorem of his advisor Heinz Hopf on obstructions to non-zero vector fields [41], which 
was also discussed by Henri Poincaré, in which the characteristic class one considers is 
the Euler class, whose integral, when it is represented by a differential form, over the 
manifold equals the Euler-Poincaré characteristic.  Since the work of Stiefel and Whitney 
did not seem to find a path to Einstein and Mayer in that era, there was no attempt to 
extend the theory to the case of a non-parallelizable manifold; i.e., a singular frame field 
whose singularities might very well generate non-vanishing curvature of topological 
origin. 
 It is worth pointing out that in the eyes of pure mathematics the topological issue of 
whether the spacetime manifold is parallelizable or not is an unavoidable fundamental 
question to address.  Hence, regardless of whether teleparallelism failed to unify 
gravitation and electromagnetism, the possible physical manifestation of these 
topological singularities will continue to be a fundamental problem. 
 Another way of weakening the hypotheses made on the spacetime connection that 
general relativity introduces to account for gravitation, besides dropping the requirement 
that it be a metric connection, is to weaken the assumption that it has vanishing torsion.  
Perhaps as a result of Einstein’s prior exposure to non-zero torsion by way of 
teleparallelism, he [42], and later Erwin Schrödinger [43], pursued that extension of 
scope in the geometry of spacetime.  Although the Einstein-Schrödinger unification 
program did not ultimately succeed, nevertheless, it did introduce the importance of 
considering spacetimes with non-vanishing torsion and the general role it plays, and 
interest in that topic has not vanished completely even to the present day.  Perhaps to 
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some extent this is due to the seminal papers of Cartan [44] on the subject of the 
geometry of spaces with torsion and their application to the spacetime of general 
relativity, and partly to the fact that the geometry of connections with non-vanishing 
torsion and curvature had become quite established in the literature of the theory of 
plastic materials with continuous distributions of defects that are referred to as 
dislocations and disclinations, respectively 6.  Hence, the applicability of the 
mathematical concept is more general than spacetime structure.  The reference by 
Lichnerowicz also contains a thorough discussion of the Einstein-Schrödinger models. 
 Yet another extension of Lorentzian spacetime geometry was made by John L. Synge 
[46] and Vranceanu [47].  To them, a promising way of interpreting the fifth coordinate 
in the Kaluza-Klein model was to imagine that actually the four-dimensional spacetime 
manifold was an anholonomic hypersurface in a five-dimensional manifold.  This term is 
really a misnomer, in the same way that the phrase “non-inertial coordinate system” is 
not rigorously justified, and for the same reason.  What one is really dealing with, as in 
the case of dynamical systems with anholonomic constraints, is a sub-bundle of the 
tangent bundle to a differentiable manifold that has corank one and is not assumed to be 
integrable as a differentiable system on the manifold.  That is, one is associating a 
hyperplane in each tangent space in such a manner that there is no foliation of the 
manifold into leaves of codimension one that might represent spacetime manifolds.  In 
effect, one sees them locally in the tangent spaces, even though they do not exist globally. 
 Although the method of anholonomic submanifolds attracted only passing attention, 
again the fact that it addresses fundamental issues, such as integrability and anholonomic 
constraints, suggests that it is still worthwhile to understand the possible implications of 
such considerations. 
 
 
 5.  Rise of quantum electrodynamics.  Eventually, Einstein himself developed some 
suspicions about the Einstein-Maxwell unification problem that were probably quite 
definitive.  For one thing, the mainstream of physics was increasingly focusing on the 
problems of the emerging field of quantum physics, which was pursuing directions of 
approach to its problems and interpretations that were largely inconsistent with the very 
spirit of Einstein-Maxwell physics.  Because the nature of electromagnetism at the 
atomic-to-subatomic level seemed to be seriously at odds with Maxwellian 
electromagnetism, Einstein increasingly suspected that the unification of 
electromagnetism with gravitation might be more meaningful when one introduced the 
quantum considerations. 
 One way of seeing that this is probably unavoidable is to note that the modern 
acceptance of gravito-electromagnetism as a valid extension of Newtonian gravitostatics 
to gravitodynamics suggests that really the Maxwell equations of electromagnetism – or 
gravito-electromagnetism, for that matter – are manifestly weak field equations, while the 
Einstein field equations of gravitation are mostly significant in the realm of large 
gravitational field strengths, such as in the neighborhood of compact astronomical bodies 
(neutron stars, black holes, and the like).  Hence, one might expect that the Einstein 

                                                
 6 This train of thought has roots in the early days of relativity theory and has generated a considerable 
body of literature.  For a modern reference that contains citations to classical references one might confer 
Kleinert [45].  
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equations should be unified with some corresponding strong-field equations of 
electromagnetism that might pertain to the field strengths that one encounters in the close 
proximity to elementary charge distributions, such as electrons and nuclei. 
 Here, one encounters the most fundamental obstacle that separates Einstein-Maxwell 
field theories from quantum field theories, such as quantum electrodynamics, in 
particular.  Because the nature of sub-atomic physics includes the idea that one will ever 
directly observe the inner structure of atoms, nuclei, and nucleons, the very methodology 
of quantum physics quickly took on an ad hoc sort of character that is now simply 
referred to as phenomenology.  This philosophy is essentially a variation on the basic 
tenet of solipcism that says “to be is to be measured.”  Hence, one always treats the 
system that one is investigating as something of a “black box,” such that all one can 
consider is the way that it responds to inputs.  Eventually, one hopes that a sufficiently 
complete set of input-output relationships will allow one to construct a model for the 
states of the system inside the box and then speculate on the nature of the system itself.  
For instance, this is how geophysics constructs models for the Earth’s interior out of 
seismic data and geomagnetic information. 
 One of the first leaps of faith that quantum electrodynamics made was to stop trying 
to model the fields of elementary particles as actual fields in the Einstein-Maxwell or 
continuum-mechanical sense and replace the emphasis on “fields of force” with a new 
emphasis on the “exchange particle” concept, which was largely due to Werner 
Heisenberg.  Hence, it was only the interactions of particle fields that was important, not 
the fields themselves. A secondary effect of this was to increasingly focus on the 
scattering of particles as the primary source of information about their structure.  At no 
point did anyone attempt to pose systems of partial differential equations for the fields 
and solve boundary-value problems for the static case or Cauchy problems for the time 
evolution of the fields. 
 Rather, one immediately turned to the problem of constructing the momentum-space 
kernel for the scattering operator, and eventually a vast set of largely algorithmic 
procedures for doing this emerged, including algorithms for dealing with the unphysical 
infinities that appeared as a consequence of the initial steps.  Interestingly, what one is 
implicitly constructing in momentum space is not ultimately the kernel for a nonlinear 
differential operator in configuration space – indeed the method of Green functions and 
linear integral operators is not applicable to nonlinear differential operators – but the 
kernel for a linear pseudo-differential operator in configuration space.  Hence, if one 
imagines that the most natural expansion of scope of Maxwell’s equations is from linear 
to nonlinear differential equations as a consequence of going from linear to nonlinear 
constitutive laws then clearly the momentum-space constructions that follow from the 
method of Feynman diagrams are not giving one such an extension, at least directly. 
 Nevertheless, the phenomenological methods of quantum electrodynamics eventually 
reconnect with classical electromagnetic field theory by the use of effective models, such 
as the ones that were defined by Heisenberg, in conjunction with Hans Euler [48], as well 
Max Born and Leopold Infeld [49].  That is, although one usually starts by assuming that 
the action associated with the fields in question has a classical sort of form, after one has 
“quantized” it and renormalized it to something that is physical again, one generally finds 
that supplementary terms have appeared in the action that one identifies as “quantum 
corrections.”  For instance, if one quantizes the field theory with the method of functional 
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integrals, which evolved from the Feynman path integrals of quantum mechanics, then 
one often expands the Green function in a “loop expansion,” which is a perturbation 
series expansion indexed by the number of loops in the Feynman diagram; the expansion 
parameter in a loop expansion is then Planck’s constant ℏ .  For instance, zero loops 
defines the “tree” level of expansion, and corresponds to the original classical theory, 
while one loop is analogous to the WKB approximation of quantum mechanics. Actually, 
the methodology of loop expansions is also based in the asymptotic expansions that 
Poincaré introduced, so geometrical optics represents essentially a “tree-level” 
approximation to wave optics, while diffraction introduces quantum corrections. 
 One sees that the effective actions, which usually suggest effective potentials, give 
one strongly-worded hints as to how one might expand the scope of one’s “classical” 
model to include the quantum corrections.  Of course, the ultimate challenge is not to 
simply refine the numerical accuracy, but to find a better model at the fundamental level.  
One is reminded of how long astronomy labored in its Ptolemaic phase of adding 
epicycles to cycles and then epi-epicycles in order to account for the motion of planets 
with increasing numerical accuracy when the elegant solution was to make the 
Copernican hypothesis at the outset.  Perhaps one day the historians of physics will 
regard the Feynman diagrams as a sort of Ptolemaic algorithm for obtaining better 
numerical accuracy in one’s agreement with experiments when the elegant solution was 
something of a Copernican revolution at the fundamental level. 
 The ultimate challenge to quantum electrodynamics is then to respect the largely 
empirical nature of its greatest successes while using them as qualitative insights into 
how one might construct a more fundamental model of the physics at the atomic-to-
subatomic level.  One can see that the problem defined by the modeling of quantum – i.e., 
atomic-to-subatomic – phenomena is closely analogous to that of modeling the Earth’s 
interior or that of the Sun in that one cannot expect direct information, so one must 
always propose effective models, and the measure of effectiveness for any effective 
model is in its conciseness, as well as its relationship to more general models of physics.  
For instance, concepts such as spontaneous symmetry breaking are just as important, as 
well as more directly observable, in the context of condensed matter physics as they are 
in theoretical particle physics. 
 In the name of qualitative lessons that one can learn from the empirical successes of 
quantum electrodynamics, one should start with the fact that every charged fermion, such 
as an electron or a proton, has an antiparticle that shares its properties except for having 
an opposite charge, while the photon, being a boson, has no anti-particle.  Furthermore, 
the fact that electrons and positrons are anti-particles manifests itself in the phase 
transition that takes the form of pair annihilation, which makes anti-particle pairs 
combine to produce photons, which are generally in the gamma range of energies.  The 
opposite process by which a photon of sufficient energy can split into an anti-particle pair 
is not as spontaneous, but still just as experimentally established.  In particular, one 
usually needs an external electric or magnetic field in order to convert a photon into an 
anti-particle pair. 
 At photon energies slightly above 1 MeV (the rest energy of an electron and a 
positron), the particles will be electrons and positrons with the excess photon energy 
being converted into the kinetic energies of the resulting particles.  When the photon 
energy exceeds the rest energy of a muon and its anti-muon (about 211 MeV), there is the 
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possibility that the particles created are a muon and an anti-muon.  Once one reaches the 
energy level of the rest energy of a pion and an anti-pion (about 280 MeV), the fact that 
one is now involved with strongly-interacting particles implies that quantum 
electrodynamics is insufficient and one must recast the problem in the context of 
quantum chromodynamics.  The converse process of pair annihilation is even more 
involved since an electron-positron collision at a sufficiently high total kinetic energy can 
create pion-anti-pion pairs, although their lifetimes will be brief, and ultimately one is left 
with various combinations of lower-energy electron-positron pairs and gamma rays as the 
stable particles. 
 These complementary processes of pair creation and annihilation then give rise to the 
possibility of vacuum polarization, in which the presence of photon as an intermediate 
stage in a particle interaction, such as an electromagnetic exchange particle, can be 
associated with the spontaneous creation and annihilation of “virtual” anti-particle pairs; 
i.e., intermediate steps in the process that are not observed directly.  Since this sort of 
process can be represented graphically in the form: 

 

γ γ 

e− 

e+ 

 
one sees how the concept of loop expansions emerges naturally from elementary 
principles.  In particular, there is nothing to say that the gamma photons in the diagram 
might not give rise to further virtual pairs with an increasing amount of loops. 
 The fact that vacuum polarization actually takes place in various quantum scattering 
and bound-state problems is well-established by numerous experiments by now.  One of 
the most celebrated experimental verifications is the Lamb shift of atomic electron energy 
levels due to the presence of an anomalous magnetic moment to the electron, in addition 
to the one that is associated with its spin, since the origin of this anomalous magnetic 
moment is presumed to be vacuum polarization.  Vacuum polarization can also affect the 
interaction of photons with charges, as well as other photons.  The (Delbrück) scattering 
of photons by nuclear electric fields, which does not exist in Maxwellian 
electromagnetism, was established by the experiment, and although the scattering of 
photons by other photons, which is similarly non-existent in Maxwell’s theory, was 
proposed theoretically in the early days of quantum electrodynamics.  Interestingly, 
although the experimental physics community has been promising theoreticians that high-
intensity laser technology has been “ten years” away from the critical field strengths for 
light pulses for quite some decades now, nevertheless, the actual experimental 
verification of photon-photon scattering has yet to emerge. 
 Besides the ubiquitous appearance of vacuum polarization in the quantum corrections 
to classical electromagnetic scattering and bound state problems, another fundamental 
concept that keeps asserting itself is that of a non-trivial electromagnetic “vacuum state.”  
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Indeed, the very definition of that notion is a fundamental problem.  One way of looking 
at the complexity of the problem is to recall that an electromagnetic wave can be 
regarded as a continuous distribution of coupled simple harmonic oscillators and then 
regard the quantum version of that wave – at least heuristically – as a continuous 
distribution of coupled quantum harmonic oscillators.  Of course, one key difference 
between the simple and the quantum harmonic oscillator is the fact that the quantum 
harmonic oscillator has a small, but non-zero, ground state energy of1/ 2 nωℏ , where ωn is 

the natural frequency of the oscillation.  Hence, one would expect this to imply that the 
lowest-energy quantum electromagnetic wave – i.e., photon – would have to also be of 
non-vanishing total energy, hence, of non-vanishing electric and magnetic field strengths.  
However, even though one can shift any scale of potential energy for a single oscillator to 
make the ground state energy precisely zero, nevertheless, when one extends this process 
to an infinitude of oscillators the necessary shift is not unique, and one finds that there is 
likely to be some – generally non-unique – zero-point-field.  One finds that the existence 
of such a field, which presumably is not due to any specific charge or current source, has 
been experimentally observed in the form of the Casimir effect [50, 51].  This effect 
amounts to the statement that an uncharged perfectly conducting parallel plate capacitor 
will experience a measurable force of attraction between the plates.  However, it is 
important to observe that the region between the plates is a compact manifold with 
boundary, so often the effect is attributed to that topological situation, as well as quantum 
electrodynamics. 
 The form that quantum electrodynamics eventually settled on (e.g., [52]) made it 
clear that one was dealing with a gauge field theory.  That is, the fundamental field, 
namely, the photon, was best represented by a potential 1-form, which could also be 
regarded as a connection 1-form on a U(1)-principal bundle that one referred to as the 
gauge structure of the field theory; one also refers to the connection form as a gauge field 
or gauge boson, since the fact that one is also dealing with a covector field means that the 
spin of the representation of the Lorentz group that governs its frame transformations is 
one, and particles that are described by fields of integer spins must obey Bose-Einstein 
statistics in their energy levels.  By contrast, the charged particles, such as electrons and 
positrons, are fermions, since they are represented by Dirac bi-spinor wave-functions, 
which are due to half-odd-integer spin representation of the Lorentz group and obey 
Fermi-Dirac statistics.  This association of spin and statistics is widely regarded as one of 
the foundations upon which quantum field theories all rest (see, for instance, Streater and 
Wightman [53]). 
 The theoretical successes that followed, in the form of the further unification of the 
quantum theory of electromagnetism with that of the weak interaction, further established 
the methodology of gauge field theories as a powerful tool in the formulation of quantum 
field theories [54, 55].  In particular, the concept of spontaneous symmetry breaking in 
the vacuum state played a key role in this unification.  Once again, the key qualitative 
notion is that of a non-unique vacuum ground state for the gauge field in question, 
although when the non-uniqueness follows from the existence of an unbroken vacuum 
symmetry group the set of vacuum states will have the geometrical and topological 
character of a “homogeneous space,” such as circles, spheres, and torii. 
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 6.  Spacetime topology and electromagnetism.  In addition to the increasing 
emphasis that was placed on the problems of quantum electrodynamics, another tributary 
of research in electromagnetism that grew more out of general relativistic consideration 
was the increasing interest in the role that spacetime topology played in 
electromagnetism. 
 Part of this increasing interest was due to the possible role of spacetime topology in 
the theory of gravitation, such as the spacetime singularities that one expected to find in 
the vicinity of black holes and the Big Bang singularity.  Indeed, when one models 
spacetime as a differentiable manifold, it becomes unavoidable that one must deal with 
the global nature of its topology, and not just the local nature, which is still Euclidian. 
 Another contribution to the increasing interest in the role of topology in 
electromagnetism was due to the concerns of gauge field theory.  In particular, when one 
is dealing with connections on principal fiber bundles from the outset one must similarly 
consider the global nature of the situation, such as whether the principal bundle is trivial 
or not; this is equivalent to the physical question of whether a global choice of gauge is 
possible.  One finds that the issues associated with the triviality of G-principal bundles P 
→ M over the spacetime manifold M, where G is the gauge group of the field theory, 
depend upon both the topology of M, as well as the topology of G, in a deep and 
complicated way. 
 Finally, the ambition to examine the role of topology in electromagnetism can arise at 
a much more elementary level that precedes the considerations of either general relativity 
or quantum electrodynamics, namely, the very nature of the constructions that one makes 
in classical electromagnetism itself. 
 For instance, the elementary concepts of charge, flux, and current can be most 
effectively defined in the language of topology, or, more to the point, homology.  One 
finds that the sources of electromagnetic fields are usually represented by elementary 
finite chain complexes with real coefficients, such as finite sets of points or networks of 
current loops, while the concepts of flux and potential difference take the form 
elementary cochains with real coefficients.  The introduction of field strength vector 
fields and covector fields with such cochains then follows naturally from the 
considerations of de Rham’s theorem.  Furthermore, electrostatics and potential theory 
can be elegantly formulated in the language of Hodge theory. 
 A key construction in all of this is that of an orientation on the spacetime manifold M 
(or really, its tangent bundle T(M)).  This is because one must introduce a volume 
element on a manifold in order to define the integration of differential forms that allows 
one to speak of flux and the bilinear pairing of k-chains with k-cochains, and before one 
can introduce a volume element one must assume the orientability of the vector bundle 
T(M).  Since not every differentiable manifold is orientable, one must accept that there 
are topological obstructions to the existence of global orientations.  However, every 
simply connected manifold is orientable and every manifold has a simply connected 
orientable covering manifold. 
 The existence of a volume element on an orientable manifold allows one to define a 
set of linear isomorphisms between k-vector fields and n−k-forms that one can call 
Poincaré duality.  Although its role in homology theory is well-established by now, one 
should realize that it started off as a more projective-geometric sort of concept than a 
topological one.  In particular, any k-dimensional subspace of an n-dimensional vector 
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space can either be spanned directly by k linearly independent vectors, whose exterior 
product is then a non-zero k-vector, or annihilated by n−k linearly independent covectors, 
whose exterior product is then a non-zero n-k-form. 
 Of course, there is nothing unique about the choice of spanning vectors or 
annihilating covectors, but any other choice would affect the resulting k-vector or n−k-
form only by a non-zero scalar multiplication.  One then confronts the Plücker-Klein 
representation of k-dimensional vector subspaces in an n-dimensional vector space as 
lines through the origin in either the vector space of k-vectors over it or the vector space 
of n−k-forms over it; that is, one considers points in the projective spaces that these 
vector spaces define. 
 Hence, one sees that the same concept of orientation that is so fundamental to the 
basic concepts of electromagnetism has both a projective-geometric and a topological 
aspect to it.  Mostly, we shall be concerned with the projective-geometric aspect in what 
follows.  Indeed, a recurring theme is that just as metric differential geometry seems to be 
the natural language for the description of gravitation, projective differential geometry 
seems to be the natural language for the description of electromagnetism. 
 
  
 7.  Pre-metric electromagnetism.  As one sees, the mainstream of theoretical 
physics in the Twentieth Century largely split into the two warring camps of gravitational 
theorists, whose main concern was the geometry, and sometimes the topology of the 
spacetime manifold, and the quantum field theorists, whose main concern was to obtain 
the best possible agreement between the relativistic particle scattering amplitudes that 
were obtained by the method of Feynman diagrams and the actual scattering data that was 
being obtained by high-energy particle scattering experiments. 
 It is therefore not surprising that one of the lesser-discussed topics in 
electromagnetism that largely fell through the cracks between these two communities was 
based in the early observations of the German physicist Friedrich Kottler [56] that 
actually the metric tensor field that was so fundamental to Einstein’s theory of gravitation 
seemed to play only an incidental role in formulating the Maxwell equations of 
electromagnetism.  Indeed, one could formulate them without the necessity of 
introducing a metric. 
 Other physicists and mathematicians, such as Hargeaves [57], Cartan [44], and 
Bateman [58] made similar observations in the course of their own discussion of 
electromagnetism, and eventually van Dantzig [59] published a series of papers that 
expanded upon the formulation of Maxwell’s equations in the absence of a metric.  The 
topic of pre-metric electromagnetism did not die away completely, though, and 
occasionally resurfaced in the work of Murnaghan [60], Post [61], Truesdell and Toupin 
[62], Hehl, Obukhov, and Rubilar [63, 64], and was masterfully presented in the modern 
language of exterior differential forms by Hehl and Obuhkov [65].  The present work 
comes about as the author’s attempt to summarize the topics that he himself pursued in 
response to the work of Hehl and Obukhov, and is intended to only enlarge the scope of 
the subject of pre-metric electromagnetism with other specialized techniques and issues, 
and not to replace their definitive treatise. 
 The picture of electromagnetism that emerges is based in the idea that the Lorentzian 
structure g on the spacetime manifold enters into Maxwell equations only by way of the 
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Hodge * isomorphism, as it acts on 2-forms, in particular.  Hence, one must take a closer 
look at this isomorphism from both a mathematical and a physical perspective. 
 One finds that it is best to factor the isomorphism *: Λ2M → Λ2M into a product of 
two isomorphisms, where Λ2M → M is the bundle of 2-forms over M.  The first one ig^ 
ig: Λ2M → Λ2M is the one that “raises both indices” on 2-forms, where Λ2M → M is the 
bundle of bivectors on M.  The second one #: Λ2M → Λ2M is the aforementioned 
Poincaré duality that one obtains from the assumption that M has a volume element on it. 
 Now, if one were to be more explicit about the introduction of an electromagnetic 
constitutive law into Maxwell’s equations then one would find that the role of the 
isomorphism ig^ ig could be absorbed into that constitutive law, as long as one 
represented it as a vector bundle isomorphism κ: Λ2M → Λ2M, at least for linear media. 
 One then finds that in order to account for the introduction of a Lorentzian structure, 
one can first consider the dispersion law for electromagnetic waves that follows from the 
Maxwell equations, when formulated in this “pre-metric” fashion.  What one obtains is 
generally a quartic hypersurface in the cotangent bundle T*M → M, rather than the usual 
quadratic one that derives from the light cones of a Lorentzian metric g.  A further 
reduction of the homogeneous quartic polynomial that one obtains from the dispersion 
law into a square of a quadratic one of Lorentzian type is possible only if the constitutive 
law has the proper sort of symmetries, such as spatial isotropy. 
 When viewed in this light, one sees that in a real sense the gravitational structure of 
spacetime, as defined by the Lorentzian structure on its cotangent bundle, is a specialized 
consequence of assumptions that one makes about the electromagnetic constitutive laws 
of the spacetime manifold.  Indeed, if one goes back to the historical progression that led 
Einstein from electromagnetism to gravitation then one sees that the connecting link 
between them related to the structure of the symbol of the wave operator that governed 
the propagation of electromagnetic waves in the spacetime manifold.  Hence, one sees 
that gravitation relates to light cones and not purely gravitational ones that are unrelated 
to the propagation of electromagnetic waves. 
 What emerges from the foregoing picture is nothing short of a major paradigm shift in 
the consideration of spacetime geometry from the metric geometry of tangent vectors that 
pertains to gravitational geodesics to the projective geometry of 2-forms and bivectors 
(i.e., 2-planes) that pertains to the propagation of electromagnetic waves.  This also 
suggests that one is redirecting one’s focus from the geometry of Riemann to the 
geometry of Klein, who once asserted that “projective geometry is all geometry.”  Hence, 
there is something mathematically satisfying about the fact that one is simply moving to a 
higher plane of generality in one’s discussion of geometry. 
 Another subtlety that appears is the fact that the Hodge * isomorphism has the 
property that if the metric g is Lorentzian then *2 = − I when * is applied to 2-forms.  
This means the linear operator * defines an “almost-complex structure” on the real vector 
bundle Λ2M.  However, as observed by the author [66], if one starts with an 
electromagnetic constitutive law and defines * = #⋅κ then one must note that not all of the 
physically meaningful laws give * isomorphisms with such a property.  In particular, 
anisotropic optical media will not define almost-complex structure in this way.  When 
one is dealing with such a class of media, though, one can also introduce concepts of 



22 Pre-metric electromagnetism 

complex projective geometry accordingly.  For instance, the complex projective space 

CP2 and its dual play an important role in the geometry of electromagnetic waves. 

 Since the geometry of metrics and geodesics seems to follow only after one passes 
from the pre-metric Maxwell equations to the characteristic equation that they define in 
the geometrical optics approximation, one sees that the transition from wave optics to 
geometrical optics implies a corresponding transition from wave geometry to geodesic 
geometry, just as one goes from wave mechanics to geometrical mechanics in quantum 
theory.  The question then arises of how one might define wave geometry in general, and 
one finds that the solution of this problem is well-known: the geometry of waves is the 
contact geometry that was previously mentioned in the context of geometrical optics. 
 One begins to gain some inkling of how Einstein’s suspicions about the unification of 
electromagnetism and gravitation were probably quite accurate: It would probably have 
to involve some simultaneous incorporation of quantum considerations and expansion of 
scope in spacetime geometry.  Of course, the problem of resolving the growing gap 
between the very formalism, if not the natural philosophy, of relativity and gravitation 
with that of quantum field theory has always been regarded as every bit as perplexing as 
the Einstein-Maxwell unification problem.  One might suspect that a better understanding 
of wave geometry might lead to a resolution of both the problem of reconciling general 
relativity with quantum physics and unifying the theory of electromagnetism with that of 
gravitation. 
 One also begins to see that gravity appears as an “emergent” phenomenon when one 
starts with the electromagnetic structure of spacetime; i.e., the dispersion law that follows 
from its electromagnetic constitutive law.  Hence, one suspects that the best way to 
formulate the mathematics of gravity is in terms of 2-forms to begin with.  Of course, this 
approach has been around since the 1960’s in the form of “complex relativity,” except, as 
we shall point out later, it becomes redundant to complexify the vector bundle Λ2M when 
one has already introduced an almost-complex structure.   
 Another possible expansion of scope that is associated with pre-metric 
electromagnetism is the fact that the very significance of Lorentz invariance in physics is 
based on the assumption that one is concerned with a quadratic dispersion law for 
electromagnetism.   One sees that the more general case of a quartic dispersion law 
implies that one might be required to alter one’s conception of the invariance of the laws 
of Nature accordingly.  This gives one a more tangible origin for the possible violation of 
Lorentz invariance. 
 So far, the emphasis on electromagnetic constitutive laws that result in quartic 
dispersion laws has mostly been based in macroscopic optical sorts of considerations.  
However, one finds that the effective models for quantum electrodynamics that take the 
form of the Heisenberg-Euler effective Lagrangian and the Born-Infeld both produce 
constitutive laws of the “bi-isotropic” type, in the language of Lindell [67], as well as 
dispersion laws that are of the “birefringent” type.  Hence, one sees that pre-metric 
electromagnetism might give some new insight into the problem of the modeling of the 
electromagnetic vacuum state when one takes into account the considerations of quantum 
physics. 
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 8.  Summary of contents.  Since the application of the calculus of exterior 
differential forms to the formulation of problems in electromagnetism as a substitute for 
vector calculus is better known to theoretical physicists who are usually only interested in 
Maxwellian electromagnetism as a springboard to more general gauge field theories, we 
begin our discussion of pre-metric electromagnetism with a chapter on that more recent 7 
calculus.  Furthermore, since most of the theoretical discussions are immediately 
concerned with topological matters – e.g., triviality of principal bundles – it is never 
emphasized that that exterior calculus can be applied at a much more elementary level in 
electromagnetism than the topological level, namely, at the level of a typical 
undergraduate course in electromagnetism.  Hence, we shall attempt to exhibit the 
formulation of as many of the traditional non-theoretical topics in electromagnetism as 
possible in terms of differential forms to show that they are more than just a topological 
necessity. 
 Of course, the topological aspects of differential forms are still essential in any 
discussion of the fundamental concepts in electromagnetism, so Chapter II will 
summarize the usual issues in the topology of differential manifolds to the extent that is 
necessary for the discussion of those fundamental concepts.  Although some attempt has 
been made at making the chapter self-contained and based only upon a knowledge of 
linear algebra and multi-variable calculus, nonetheless, it is suggested that readers with 
no prior exposure to differentiable manifolds will probably find the chapter a bit too 
concise. 
 In Chapter III, we discuss the topological nature of charge, flux, current, and field 
strengths in both the static electric and magnetic contexts.  We also discuss the distinction 
between the field strength and the associated excitations of the medium that they produce 
(also called “inductions,” by many researchers), as well as the introduction of potential 
functions for electric field strength 1-forms and potential 1-forms for magnetic field 
strength 2-forms, which then represent the classical “vector potentials”. 
 Then, in Chapter IV, we show how one goes from electrostatics and magnetostatics to 
electrodynamics by the introduction of the two types of electromagnetic induction, 
namely, the ones that are described by Faraday’s law and Maxwell’s law.  One can also 
assemble electric charge density and the electric current into a four-dimensional vector 
field, the vanishing of whose divergence is equivalent to the conservation of charge.  We 
finally assemble all of the accumulated laws for electric and magnetic fields into the pre-
metric Maxwell equations, which we express in both their three-dimensional time+space 
form, as well as the more general four-dimensional form.  We also discuss the four-
dimensional introduction of electromagnetic potential 1-forms for the field strength 2-
form, which is at the basis of all gauge approaches to electromagnetism, whether classical 
or quantum. 
 In Chapter V, we discuss the largely phenomenological nature of electromagnetic 
constitutive laws, except that we continue to use the language of differential forms and 
multivector fields to the greatest extent possible, while most treatments of the subjects are 
oriented towards experimental physicists, whose preference is for the methods of vector 

                                                
 7 Apparently, the transfer of wisdom from mainstream mathematics to mainstream physics is getting 
sufficiently sluggish that “new mathematics” generally encompasses most of the Twentieth Century.  In 
particular, the concept of differential forms was discussed by pure mathematicians such as Darboux and 
Goursat in the late Nineteenth Century. 
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calculus.  Among the examples of specific constitutive laws, we give not only ones 
familiar to experimental physicists, such as optical media and plasmas, but also more 
theoretical ones, such as Lorentzian and almost-complex media.  The example of bi-
isotropic media is shown to include both the constitutive laws of the Heisenberg-Euler 
effective model for the propagation of electromagnetic waves in the presence of 
background electromagnetic fields when one includes one-loop quantum corrections to 
the Maxwellian Lagrangian, and the Born-Infeld model, which is closely related to the 
Heisenberg-Euler model, but based in other considerations. 
 Because the pre-metric Maxwell equations give partial differential equations when 
one expresses them locally, Chapter VI is concerned with the formulation of the basic 
notions from the theory of partial of differential equations that relate to classical 
electromagnetism when one formulates those equations on differentiable manifolds.  
Since there is no universal agreement amongst mathematicians as to the “best” way to 
formulate partial differential equations on manifolds, we discuss three of the most 
popular approaches: differential operators on vector bundles, hypersurfaces in jet 
manifolds, and exterior differential systems, as well as how they relate to each other.  We 
then attempt to formulate the traditional boundary-value problems of electrostatic or 
magnetostatic potential theory, along with the Cauchy problem of electrodynamics, in 
that language.  Although the methods of Green functions and Fourier transforms are 
fundamentally limited to the treatment of linear differential equations, as well as being 
rather difficult to deal with specifically when the manifold in question does have a high 
degree of homogeneity (affine spaces, spheres, etc.), nevertheless, we attempt to at least 
define the nature of the mathematical problems involved. 
 In Chapter VII, we return to the physics of electromagnetism and discuss the issues 
that arise when one looks at all of the ways that electromagnetic fields and source 
distributions can interact with each other.  However, since the interaction of sources and 
fields that takes the form of electromagnetic radiation is quite involved in its own right, 
we content ourselves with only a cursory discussion of some of the issues and defer a 
more detailed analysis of pre-metric radiation theory – if there even is such a thing – for a 
later monograph. 
 Chapter VIII represents the culmination of the pre-metric theory of electromagnetism 
in which one sees that the Lorentzian structure of spacetime can emerge from the 
dispersion laws for the medium that one obtains from the field equations when one 
specifies a constitutive law.  However, the quadratic dispersion law that gives a 
Lorentzian metric is a degenerate case of the more general quartic polynomial law, and is 
usually associated with isotropic media. 
 In Chapter IX, one then finds that the geometrical optics approximation also 
represents an approximation to the geometry of waves by null geodesics in the same way 
that it represents an approximation to the physics of electromagnetic waves by light rays.  
Interestingly, this was also the driving force behind the early formulation of quantum 
wave mechanics, namely, to make its relationship to classical mechanics be analogous to 
the relationship of wave optics to geometrical optics.  In optics, one usually attempts to 
go beyond the geometrical optics approximation by the introduction of diffraction effects 
and asymptotic expansions, so we discuss what that might mean in the context of pre-
metric electromagnetism. 
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 In Chapter X, we discuss the way that energy and action are associated with 
electromagnetic fields in both the static and dynamics contexts.  We then show how one 
defines pre-metric Lagrangians for the static and dynamic field equations, as well as the 
equations of motion for an electric charge in the presence of the Lorentz force.  We 
finally show that the usual statement of Fermat’s principle for the variational formulation 
of the spatial light rays (spatial projections of null geodesics) is fraught with subtleties 
when one attempts to generalize from metric geometry to pre-metric geometry since even 
the nature of the projection of spacetime onto space needs to be considered in the 
language of projective geometry, along with a rethinking of the basic action functional 
that gives the elapsed-time along a curve. 
 The last three chapters essentially summarize some of the author’s previous research 
into the extension of some traditional results in classical electromagnetism and general 
relativity.  The expansion of scope that comes about when one attempts to examine the 
symmetries of the pre-metric field equations themselves is discussed in Chapter XI, when 
it is known that in the Lorentzian case, one must go from Lorentzian invariance to 
conformal Lorentzian invariance, among other extensions.  Since projective geometry has 
been persistently suggesting itself as an unavoidable expansion of the scope of metric 
geometry, the topic is discussed at a more elementary level in Chapter XII and applied to 
elementary physical mechanics, as well as electromagnetism.  A key construction is the 

Plücker-Klein association of linear planes in R4 with lines through the origin in either the 

vector space of bivectors or 2-forms over R4 by way of decomposable bivectors and 2-

forms.  Finally, Chapter XIII discusses the fact that the usual formulation of “complex 
relativity” in terms of 2-forms is naturally embedded in the present context, and indeed, is 
probably an essential part of incorporating “gravitational” considerations into pre-metric 
electromagnetism, in the form of more general spacetime connections than the Levi-
Civita connection that is defined by its Lorentzian structure. 
 
 It would be inexcusably ungrateful of the author of this monograph to fail to mention 
the continued encouragement that he received from Friedrich Hehl at Cologne, without 
whose counsel this book would have ever materialized. 
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Chapter I 
 

Calculus of exterior differential forms 
 

 
 Although at the present time it is traditional for mathematicians − and even some 
physicists − to first introduce the calculus of exterior differential forms in the context of 
differentiable manifolds, nevertheless, since the purpose of this study is to begin the 
discussion of electromagnetism in the same place that conventional physics does, it 
seems more appropriate to illustrate that there are really three advantages to the use of 
differential forms over vector calculus: computational conciseness, dimensional 
generality, and their sensitivity to the topology of the space in question.  Hence, the sole 
purpose of this first chapter will be to show how the calculus of exterior differential 
forms on vector spaces neatly subsumes the main results of vector calculus.  Chapter II 
will then address the topological aspects of differential forms as a separate issue. 
 Most of the material in this chapter can be found, in one form or another, in the 
introductory chapters of most books on differential manifolds [1-3], the later chapters of 
some books on advanced calculus [4-6], and various books on differential forms 
themselves [7, 8].  The list of references at the end of the chapter is only a sample of 
these possibilities. 
 
 
 1. Multilinear algebra.  The topic of exterior algebra is actually a special case of 
the more general topic of tensor algebra, or, as it is sometimes called, multilinear 
algebra [9].  Hence, we shall begin by summarizing a few generalities from the latter 
branch of mathematics. 

 Let V represent a vector space of dimension n whose scalars come from the field R of 

real numbers; later, we shall return to some of the same notions when it becomes 
necessary to discuss complex vector spaces.  We also let V* represent the dual vector 
space to V – viz., the vector space of all linear functionals on V.  Hence, if φ ∈ V*, v, w ∈ 

V, and α, β ∈ R then we will always have: 

 
φ(αv + βw) = α φ(v) + β φ(w).   (I.1) 

 

 a.  Bilinear functionals.  A function T: V × V → R is said to be bilinear if it is linear 

in each variable separately: 
 

T(αu + βv, w) = α T(u, w) + β T(v, w),   (I.2a) 
T(u, αv + βw) = α T(u, v) + β T(u, w),   (I.2b) 

 
 If { ei, i = 1, …, n} is a basis for V, so u = ui ei , v = vj ej (the summation convention is 
always in effect unless specified to the contrary) then from bilinearity one will have: 
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T(u, v) = uivj T(ei, ej).     (I.3) 
 
 If we introduce the notation Tij = T(ei, ej), which one refers to as the components of T 
with respect to the basis ei, then we can write (I.3) in the component form: 
 

T(u, v) = Tij u
ivj .     (I.4) 

 
 Suppose we perform a change of basis ei → ie , which defines an invertible linear 

transformation of V with a matrix j
iA  relative to the basis ei that is defined by the basic 

equations: 
 ie  = j

i jA e .      (I.5) 

 
 The componentsiu of u with respect to the transformed basisie are then obtained from 

the assumption that both of the linear combinations ui ei and i
iu e = i j

i ju A e  must define the 

same vector, namely, u.  Hence, one must have: 
 

iu = i j
jA uɶ ,      (I.6) 

 
in which we are using a tilde to denote the matrix inverse to j

iA . That is, the 

transformation of components for vectors is inverse to the transformation of bases, a 
situation that one sometimes refers to as contragredience, while the vector u is said to be 
contravariant.  Since the purely component-oriented formulation of tensor algebra 
usually performs the transformation of components first, modern mathematics adapted by 
usually assuming that bases – or frames – are the objects that transform by the inverse. 
 The effect of this change of basis on the components Tij is obtained by inserting u = 

i
iu e and v = j

jv e  into T(u, v) in (I.4), which gives: 

 
i j

ijT u v = Tij u
ivj .     (I.7) 

 
By means of (I.6), and a similar equation for the vj, this gives: 
 

ijT = k l
i j klA A T .      (I.8) 

 
 Since the effect of the frame change in V shows up in the components of T directly, 
not inversely, one says that the bilinear functional T on V is covariant.  Often, one hears T 
referred to as a (doubly-) covariant second rank tensor on V. 
 When one considers bilinear functionals on V* one obtains formulas that are 
analogous to those of the covariant case, and which then represent contravariant second 
rank tensors on V.  In particular, a coframe for V* is a basis {θi, i = 1, …, n}, so any 
covector α ∈V* can be expressed in the form α = αi θi.  Relative to this coframe, the 
value of a contravariant bilinear functional T(α, β) when evaluated on two covectors α 
and β is: 
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T(α, β) = Tij αi βj .     (I.9) 
 
 When one chooses a frame ei on V there is a unique coframe θi that it defines on V* 
by the requirement that one must have: 
 

θi(ej) =
i
jδ ;     (I.10) 

 
one calls this coframe the reciprocal (or inverse) coframe to ei .  Since the reciprocal 
coframe iθ to any other frameie must satisfy the analogue of (I.10), as well, one sees that 

under the transformation from ei to ie = j
i jA e , the reciprocal coframe θi must go to: 

 
iθ = i j

jA θɶ .     (I.11) 

 
 Hence, coframes transform contragrediently to frames.  The effect of the 
transformation of ei on the components of covectors must then be: 
 

iα = j
i jA α .     (I.12) 

 
 This then has the effect of making the transformation of the components of T a 
contravariant one: 

ijT = i j kl
k lA A Tɶ ɶ .     (I.13) 

 
 b.  Multilinear functionals.  In order to go from bilinearity to multilinearity, all that 

one has to do is to require that a multilinear functional V × … × V → R, with k factors of 

V in each the Cartesian product, be linear in of its factors individually. 
 If we choose a basis ei for V then the components: 
 

Tij…k = T(ei , ej , …, ek)    (I.14) 
 
of T for this basis will have k indices, so: 
 

T(u, v, …, w) = Tij…k u
i vj …wk .   (I.15) 

 
 Under a change of basis on V, the components will transform covariantly: 
 

ij kT
⋯

= l m n
i j k lm nA A A T

⋯
⋯ .   (I.16) 

 

 Analogously, a multilinear functional T: V* × … × V* → R will have components 

with respect to the reciprocal coframe θi to the frame ei that are defined by: 
 

Tij…k = T(θi
 , θj

 , …, θk)   (I.17) 
and transform contravariantly: 
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ij kT ⋯ = i j k lm n
l m nA A A T ⋯ɶ ɶ ɶ⋯ .   (I.18) 

 
 The set of all multilinear functionals on V of rank k can be made into a vector space in 

its own right, since R is a vector space.  One defines a scalar combination αT1 + … + βTm 

of m multilinear functionals by letting each Ta, a = 1, …, m act on the m-tuple of vectors 
(u, …, w) to produce m numbers Ta(u, …, w) and then forming the corresponding scalar 
combination of real numbers: 
 

(αT1 + … + βTm)(u, …, w) = αT1(u, …, w) + … + βTm(u, …, w).  (I.19) 
 
 Since the vector space of linear functionals on V is denoted by V*, we denote the 
vector space of k-linear functionals by V*⊗…⊗V*, for consistency, and refer to it as the 
tensor product of k copies of V*.  Hence, the tensor product of a finite number of vector 
spaces is another vector space8.  Its dimension is nk, which can be seen by defining a 
basis {θi ⊗…⊗ θj} for V*⊗…⊗V* by forming all tensor products of the basis vectors θi 
for V*.  Although it is possible to give a mathematically rigorous definition of the tensor 
product of vectors or covectors (see [9]), for our purposes it is only necessary to know 
that it is bilinear, so the tensor product of k vectors is k-linear, and the tensor product of 
vectors belongs to a higher-dimensional vector space. 
 One can then express a k-linear functional T in component form relative to this tensor 
product basis as: 

T = Ti…j θi ⊗…⊗ θj.     (I.20) 
  
 Similarly, one can form the tensor product V ⊗…⊗ V to represent the vector space of 
all k-linear functionals on V*.  It is also nk-dimensional and has a basis {ei ⊗…⊗ ej} that 
is defined by all tensor products of the basis elements ei .  In fact, the basis {θi ⊗…⊗ θj} 
on V*⊗…⊗V* is easily seen to be reciprocal to the basis {ei ⊗…⊗ ej} on V ⊗…⊗ V 
when θi is reciprocal to ei . 
 A general k-linear functional T on V* can be represented in component form relative 
to this basis as: 

T = Ti…j ei ⊗…⊗ ej
  .     (I.21) 

 
 
 2.  Exterior algebra.  Whenever a multilinear functional acts on a Cartesian product 
of copies of the same vector space − such as V or V* − with itself, one can consider the 
issue of whether the functional is symmetric under permutations of the vectors that it acts 
upon. 
 
 a.  Antisymmetric multilinear functionals.  For instance, a bilinear functional T on V is 
symmetric iff T(u, v) = T(u, v) and antisymmetric (or skew-symmetric) iff T(u, v) = − 

                                                
 8 Some members of the physics community find this ambivalence between the use of the words 
“vector” and “tensor” confusing, since tensors have more indices than vectors, to them.  Hopefully, if one 
can understand that vector spaces are the general concept and tensor products of vector spaces are a 
specialization of the concept of a vector space then this confusion will pass in time. 
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T(u, v).  This has the effect of making its components with respect to any frame ei on V 
be symmetric or antisymmetric under permutation, as well: 
 

Tij = ± Tji .     (I.22) 
 
 One finds that the symmetric bilinear functionals on V form a vector subspace in 
V*⊗V*, as do the antisymmetric ones.  This follows from the fact that scalar combinations 
of (anti-)symmetric bilinear functionals are also (anti-)symmetric.  In fact, one can 
polarize any bilinear functional into a symmetric part T+ and an antisymmetric part T− : 
 

T = T+ + T− , T±(u, v) ≡ 1
2 [T(u, v) ± T(v, u)].  (I.23) 

 
Correspondingly, the components of T polarize in the form: 
 

Tij = T(ij) + T[ij], T(ij ) ≡ 1
2 [Tij + Tji], T[ij ] ≡ 1

2 [Tij − Tji] . (I.24) 

 
 One can then think of the association of T with T+ and T− as defining linear 
projections of V*⊗V* onto subspaces that we denote by V*

⊙V* and V* ^ V*, respectively.  
This means that we can express V* ⊗V* as the direct sum: 
 

V*⊗V* = (V*
⊙V*) ⊕ (V* ^ V*).   (I.25) 

 
We think of the vector space V*

⊙V* as the symmetric tensor product of V* with itself and 
the vector space V* ^ V*as the exterior product of V* with itself. 
 We shall be primarily concerned with the antisymmetric case in what follows. 
 If α, β ∈ V* then one defines their exterior product by antisymmetrizing their tensor 
product: 

α ^ β = 1
2 (α ⊗β − β ⊗α).    (I.26) 

 
 Relative to the coframe θi, this takes the component form: 
 

α ^ β = 1
2 (αi βj – αj βi) θi ^ θj.    (I.27) 

 
 One notices that the antisymmetry of the “wedge” product makes: 
 

α ^ α = 0     (I.28) 
 
in any case.  Another of way of looking at this is to observe that the tensor product α ⊗α 
is always symmetric, so its projection into the space of antisymmetric tensors must be 
zero. 
 The vector space V* ^ V* is seen to have dimension n(n – 1)/2 if one considers the 
number of linearly independent antisymmetric combinations of basis covectors θi ^ θj.  
For instance, if V* is of dimension 1, 2, 3, 4, resp. then V* ^ V* is of dimension 0, 1, 3, 6, 
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resp.  By contrast, the (complementary) dimension of V*
⊙V* is n(n + 1)/2, which is zero 

only when n = 0. 
 In terms of bilinear functionals, the action of α ^ β on any two vectors u, v ∈ V gives: 
 

(α ^ β )(u, v) = 1
2 (α ⊗β  − β ⊗α)(u, v) = 1

2 [α(u) β(v) − β(u)α(v)],  (I.29) 

 
which has the component form: 
 

(α ^ β )(u, v) = 1
2 (αi βj  − βi αj) u

i vj ;    (I.30) 

 
one could also obtain this from (I.27). 
 When one goes beyond the symmetry of second-rank covariant tensors, one sees that 
polarization no longer gives a simple dichotomy of the higher-rank tensor product spaces; 
i.e., there are more than two types of symmetry since there is more than one way to 
permute pairs of vectors.  (Indeed, this is at the root of the decomposition of tensor 
product representations of groups into irreducible representations.)  In order to define the 
exterior algebra over a vector space, one need only focus on the completely 
antisymmetric subspaces of the higher-rank tensor products.  That is, any transposition of 
a pair of vectors that the multilinear functional acts on will change the sign of its value. 
 More generally, if π: {1, 2, …, k} → {1, 2, …, k}is a permutation (i.e., a bijection) 
then if T is a k-linear functional on V one says that T is completely antisymmetric iff: 
 

T(vπ(1), …, vπ(k)) = sgn(π) T(u1, …, uk)   (I.31) 
 

where sgn(π) is + when the number of transpositions in π is even and – when it is odd. 
 One finds that the set of all completely antisymmetric k-linear functionals forms a 
vector under the scalar combinations that are defined by the obvious extension of (I.19).  
We shall denote this vector space by Ak(V) and refer to its elements as algebraic k-forms 
on V.  It has a dimension that vanishes when k > n and is given by the binomial 

coefficient
n

k

 
 
 

for k ≤ n . This can be seen from the fact that Ak(V) has a basis that is 

given by the linearly independent k-fold exterior products 1iθ ^ … ^ kiθ of the θi, and from 
the fact that any permutation of the indices [i1…ik] will change the functional thus 
defined by at most a sign, while there are k! such permutations.  One can express the 
arbitrary k-form α in terms of this redundant basis as: 
 

α =
1

!
i j

i jk
α θ ∧ ∧ θ
⋯

⋯      (I.32) 

 
or in terms of a non-redundant basis by using only those k-fold products for which the 
indices are in ascending order: 
 

α = 1

1

1

k

k

k

ii
i i

i i

α
< <

θ ∧ ∧ θ∑ ⋯

⋯

⋯ .    (I.33) 



Calculus of exterior differential forms                                                       35 

Although the term “redundant” sounds pejorative, there are actually times when 
calculations are more conveniently carried out in the redundant basis. 
 Note that in order for the right-hand side of (I.32) to make sense the indices of αi…j 
need to have the same permutation symmetry as the k-fold wedge product of the θi: 
 

(1) ( )ki iπ π
α

⋯
= sgn(π)

1 ki iα
⋯

.    (I.34) 

 
Indeed, even if one had formed the linear combination in question when starting with 
components αi…j of unspecified symmetry, the complete antisymmetry of the exterior 
product of basis elements would select out only the completely antisymmetric part of 
αi…j; for instance, αij θi ^ θj = 0 when αij = αji . 

 Due to the symmetry 
n

k

 
 
 

=
n

n k

 
 − 

, one sees that the dimension of Ak(V) is the same 

as the dimension of An–k(V).  Hence, they are linearly isomorphic, but not canonically so; 
a typical way of defining the isomorphism would be to choose bases for both spaces.  For 

instance, when n = 3, one has A0(V) ≅ A3(V) ≅ R, A1(V) ≅ A2(V) ≅ R3. 

 
 b.  Volume elements.  One notes that in the extreme case k = n, one always has An(V) 

≅ R.  A basis for this one-dimensional vector space is simply a non-zero n-form V.  In 

terms of a basis θi for V*, it can be written as either: 
 

V = θ1 ^ … ^ θn     (I.35) 

or: 

V = 1

1

1

!
n

n

ii
i in

ε θ ∧ ∧ θ
⋯

⋯ .    (I.36) 

 
The ε symbol represents the usual Levi-Civita symbol with n indices, which equals +1 
when i1 … in is an even permutation of 12…n, equals −1 when it is an odd permutation, 
and is zero otherwise. 
 One generally refers to a choice of V as a volume element on V since the effect of 

applying the n-linear function V to an n-tuple of vectors in V is: 

 

V(v1, …, vn) = 1

1 1

1

!
n

n

ii
i i nv v

k
ε
⋯
⋯ =det( )i

jv ,   (I.37) 

 
where i

jv is the n×n matrix whose columns are the components of v1, …, vn .  Hence, the 

value of V when applied to an n-tuple of vectors in V is to give the volume of the 

parallelepiped that they span.  This volume will vanish unless they are all linearly 
independent. 
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 Under a change of coframe from θi to iθ = i j
jA θ , the redundant form (I.36) shows that 

V goes to: 

V = det(A) V.     (I.38) 

 
This situation is often described by physicists as implying that n-forms are “pseudo-
scalars.” 
 
 c.  Exterior products of general k-forms.  So far, we have really only discussed the 
exterior products of covectors as a means of defining completely antisymmetric 
multilinear functionals on vector spaces.  Now, we shall extend the exterior product to 
include the product of a k-form α and an l-form β.  If we demand that the result be a k+l-
form then we see that although a simple tensor product of α and β will produce a tensor 
of the required rank, it will only have the desired anti-symmetry if one completely anti-
symmetrizes the resulting tensor product accordingly.  Naively, this involves (k+l)! 
permutations of the factors, but since α and β are antisymmetric to begin with k! of those 
permutations will affect only the sign of α and l! will affect only the sign of β; that is, 
one only needs to anti-symmetrize the transpositions that are not already antisymmetric.  
The result is: 
 
  (α ^ β )(v1, …, vk, vk+1, …, vk+l)  

= 
( )!

! !

k l

k lπ

+
∑ sgn(π) α(vπ(1), …, vπ(k))β(vπ(k+1), …, vπ(k+l)). (I.39) 

 
 The effect on components is similar: 
 

(α ^ β)1…k, k+1…k+l =
( )!

! !

k l

k lπ

+
∑  sgn(π) απ(1) …π(k) βπ(k+1) …π(k+l). (I.40) 

 
 For instance if α is a 1-form and β is a 2-form then the components of α ^ β will take 
the form: 

(α ^ β)ijk = ( ) ( ) ( )( 1) sgn( ) i j kl a bπ π π
π

π+ ∑ .   (I.41) 

 
 Hence, if we define the direct sum A*(V) = A0 ⊕ A1 ⊕ …  ⊕ An of all the vector 
spaces Ak(V), which we abbreviate by Ak when V is unambiguous, then we obtain a 
vector space of dimension 2n whose elements then represent finite sums of multilinear 
functionals on V.  When all of the functionals in a sum have the same rank k, one calls the 
linear combination homogeneous, and it will define an element of Ak; the other elements 
are called mixed forms. 
 The exterior product, as we have extended it, defines a bilinear map A* × A* → A*, 
(α, β) ֏  α ^ β, which then makes A*, with this bilinear product, into an algebra over 
the vector space A*.  It is associative: 
 

(α ^ β) ^ γ = α ^ (β ^ γ), (all α, β, γ)   (I.42) 
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and has a unity element – namely, the real number 1 ∈ A0 – but it is not commutative, 
since if α is a k-form and β is an l-form, one has: 
 

α ^ β = (−1)kl β ^ α.     (I.43) 
 
Hence, although we have obtained the exterior product by a process of complete anti-
symmetrization, the exterior product itself can be either antisymmetric or symmetric.  In 
particular, as long as either k or l is even, the product will be symmetric. 
 Since the product of exterior algebraic forms always has a rank that is greater than or 
equal to the individual ranks, and the unity element 1 has rank 0, one sees that the only 
possible units in the algebra – i.e., elements that have multiplicative inverses under the 
wedge product – will be non-zero real numbers.  Similarly, from (I.43), one sees that the 
only way that a k-form α can commute with all l-forms β, regardless of l, is if kl = 0 for 
all l; hence, k = 0.  This says that the center of the algebra A* − viz. the set of all elements 
in A* that commute with all other elements − is defined by the elements of A0. 
 The fact that the exterior product takes Ak × Al  to Ak+l means that, by definition, the 
algebra over A* that is defined by the exterior product, which one calls the exterior 
algebra over V*, is a graded algebra. 
 
 d.  The algebra of multivectors.  One can also define an exterior algebra over the 
vector space V itself by an analogous process of the complete anti-symmetrization of 
tensor products.  For instance, the exterior product of vectors v and w in V is the bivector: 
 

v ^ w = 1
2 (v ⊗ w − w ⊗ v).    (I.44) 

 
 If ei is a basis for V then all ei ^ ej will define a redundant basis for A2(V), and in order 
to eliminate the redundancy, one must use only exterior products with i < j .  The 
components of v ^ w are then: 

(v ^ w)ij = vi wj – vj wi ,    (I.45) 
and: 

v ^ w = 1
2 (vi wj – vj wi) ei ^ ej .    (I.46) 

 
 One could regard a bivector as an antisymmetric linear functional on A2, since the 
expression: 
 

(v ^ w)(α ^ β) = (α ^ β)(v ^ w) = (α ^ β)(v, w) = 1
2 [α(v)β(w) − α(w)β(v)], (I.47) 

 
can be extended by linearity to all finite linear combinations of 2-forms, but it is 
generally preferable to regard a non-zero bivector as more like a pair of linearly 
independent vectors in V, although this is true only in the simple case, where the bivector 
is of the form v ^ w for some pair of vectors v and w, which is not, however, unique. 
 One defines the vector spaces Ak(V) in an analogous manner to the way that one 
defined the Ak(V), only in terms of vectors in V, not covectors in V*.  The elements of 
Ak(V) − or just Ak , for short – are called k-vectors or multivectors, in general.  One 
similarly defines the exterior product of k-vectors and l-vectors, and ultimately the 
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exterior algebra A* becomes a graded algebra that is isomorphic to A* as an algebra by 
means of any choice of basis for V.  More specifically, each vector space Ak is linearly 
isomorphic to the corresponding Ak.  However, none of these isomorphisms are canonical 
– i.e., defined uniquely in the absence of further assumptions. 
  
 e.  Interior products.  Just as (I.47) can be generalized to give a bilinear pairing Ak × 

Ak  → R, (α, A) ֏ α(A), which represents the evaluation of a k-form on a k-vector, one 

can generalize this construction, as well, to give a bilinear pairing Al × Ak → Ak−l when k 
> l and Al × Ak → Ak−l

  when k < l. 
 The construction begins by looking at how it works for the bilinear pairing of a vector 
v and a simple 2-form α ^ β.  We define: 
 

iv(α ^β) = (ivα) β – α (ivβ) = α(v)β – β(v)α.   (I.48) 
 
and extend to a simple k-form similarly: 
 

iv(α1 ^ … ^ αk) = 1
1

1

ˆ( 1) ( )( )
k

m
m m k

m

α α α α+

=
− ∧ ∧ ∧ ∧∑ v ⋯ ⋯ ,  (I.49) 

 
in which the caret over the αm means that the indicated 1-form is omitted from the 
exterior product. 
 Since any k-form can be expressed as a finite linear combination of simple k-forms – 
e.g., the basis elements – the action of v on simple k-forms can be extended by linearity 
to all of Ak, which then gives a bilinear pairing A1 × Ak → Ak−1 that one refers to as the 
interior product of a k-form with a vector. 
 One can further extend this interior product from vectors to simple l-vectors by 
iteration: 

iv ^ …^ wα = (−1)τ iv (…iwα),    (I.50) 
 
and to all l-vectors by linearity.  The sign comes from the number τ of transpositions that 
it takes to permute the sequence v … w into its reverse sequence w … v.  For instance, 
vw goes to wv by one transposition, as does uvw to wvu, while it takes two 
transpositions to take tuvw to wvut.  Therefore, in the cases that will be of recurring 
interest to us: 
 

iv ^ wα = − iv (iwα),  iu ^ v ^ wα = − iu (iv (iwα),  it ^ u ^ v ̂  wα = i t(iu(iv(iwα), (I.51) 
 
 Hence, we now have our bilinear pairing of Al × Ak → Ak−l, when k > l. 
 In order to define the bilinear pairing when k < l, we start by defining the interior 
product of a simple k-vector by a 1-form, analogously to (I.49): 
 

iα(v1 ^ … ^ vk) = 1
1

1

ˆ( 1) ( )( )
k

m
m m k

m

α+

=
− ∧ ∧ ∧ ∧∑ v v v v⋯ ⋯ ,  (I.52) 
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and then extend this by linearity to all k-vectors.  This gives a bilinear pairing Ak × A1 → 
Ak−1 .  We then extend to a bilinear pairing Ak × Al → Al−k for k < l analogously to (I.50): 
 

iα ^ …^ β A= (−1)τ iα (… iβA).    (I.53) 
  
 f.  Poincaré duality.  An important consequence of the bilinear pairings that we 
discussed in the last section is that whenever one chooses a volume element V ∈ An for V 

one then defines a linear map #: Ak → An−k, A ֏  iAV for each 0 ≤ k ≤ n.  These linear 

maps are seen to be, in fact, linear isomorphisms. 
 Conversely, if one chooses a volume element V ∈ An for V* then one can define 

linear maps in the opposite directions #′: Ak → An−k , α ֏  iαV, which are also linear 

isomorphisms.  In fact, as long as one chooses V to be the n-vector that makes V(V) = 1, 

for consistency, the isomorphism #′ will be the inverse to #. 
 The complete set of linear isomorphisms that are defined by a choice of volume 
element on V is then referred to as Poincaré duality.  Its geometric origin is in projective 
geometry, as we shall discuss later, and amounts to the idea that a k-dimensional 
subspace of V can either be spanned by k linearly independent vectors in V or annihilated 
by n – k linearly independent covectors in V*.  It plays an essential role in the foundations 
of electromagnetism, as we shall see. 
 We illustrate the nature of Poincaré duality by showing how it works in the low 
dimensional vector spaces in terms of frame and coframes. 
 In two dimensions, if {e1, e2} is a basis and {θ1, θ2} is its reciprocal basis then we can 

define V = e1 ^ e2 and V = θ1 ^ θ2.  The dual of a 0-vector λ ∈ R is the form λV, and 

conversely.  As for the duals of the basis elements, by direct calculation, one verifies that: 
 

#e1 =
1

1 2( )i θ ∧ θe = θ2,  #e2 = − θ1.   (I.54) 

 
 More generally, one can say: 
 

#ei = εij θj,  εij =
0 1

1 0

 
 − 

.    (I.55) 

 
Although this all looks somewhat trivial at this point, actually when one goes from real to 
complex scalars, as we shall do later on, one finds that these isomorphisms are of great 

help in understanding the representation of Lorentz transformations in terms of SL(2, C), 

which acts naturally on C2. 

 The three-dimensional case pertains directly to conventional vector algebra, as we 
shall discuss in more detail shortly.  The non-trivial isomorphism is now #: A1 → A2, 
which one can think of as taking “polar” vectors to “axial” vectors in the traditional 
physics terminology.  If V = e1 ^ e2 ^ e3 and V = θ1 ^ θ2 ^ θ3 now, then we have: 
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#e1 = θ2 ^ θ3,  #e2 = θ3 ^ θ1,   #e3 = θ1 ^ θ2 ,  (I.56) 
or: 

#ei = 1
2 εijk θj ^ θk.    (I.57) 

 
 In four dimensions, both the isomorphisms A1 → A3 and A2 → A2 are non-trivial: 
 

#e1 = θ2 ^ θ3 ^ θ4, #e2 = θ3 ^ θ4 ^ θ1,      
#e3 = θ4 ^ θ1 ^ θ3, #e4 = θ1 ^ θ2 ^ θ3     (I.58a) 

 
#(e1 ^ e2) = θ3 ^ θ4, #(e1 ^ e3) = θ4 ^ θ2, #(e1 ^ e4) = θ3 ^ θ2,    
#(e2 ^ e3) = θ1 ^ θ4, #(e2 ^ e4) = θ3 ^ θ1, #(e3 ^ e4) = θ1 ^ θ2,   (I.58b) 

 
or, more concisely: 
 

#ei = εijkl θj ^ θk ^ θl,   #(ei ^ ej) = εijkl θk ^ θl.   (I.59) 
 
These will be the isomorphisms that are most useful for electrodynamics. 
 
 g.  Algebraic operators defined on exterior algebras.  The concepts of exterior 
product and interior product allow one to define various linear operators on A* and A* 
that prove useful in treating more elaborate topics. 
 Since the exterior product takes Ak × Al to Ak+l, one sees that by fixing a k-form α, 
one can define a linear map eα : A

l → Ak+l, β ֏ α ^β, which one might think of as the 
adjoint map defined by α in the algebra, or simply, left multiplication by α. 
 Naively, the dimension of the image of Al – i.e., the rank of eα − under this map is 
less than or equal to min{dim(Al), dim(Ak+l)}.  In order for the dimension to be dim(Al) 
the map would have to be an injection, which would imply that its kernel would have to 
vanish.  This, in turn, would have to imply that α ^ β ≠ 0 as long as β ≠ 0.  However, this 
is not always the case.  For instance, in the elementary case of a 1-form α acting on other 
1-forms, one sees that all β of the form λα for a real scalar λ will give α ^β = 0.  Hence, 
the kernel of eα : A1 → A2 is 1-dimensional, so its image is n – 1-dimensional; its 
restriction to any hyperplane in A1 = V* that is transverse to α will then be injective. 
 As we have seen, the interior products define a bilinear pairing Ak × Al → Al−k, when 
k < l and Ak × Al → Ak−l when k > l.  Hence, when one fixes a k-vector A one defines a 
linear map iA: Al → Al−k, for k < l, and when one fixes an l-form α one defines a linear 
map iα : Ak → Ak−l when k > l. 
 A crucial property of the interior product operator is that when α is a k-form and β is 
an l-form one has for any vector v∈V: 
 

iv(α ^ β) = ivα ^ β + (−1)k α ^ ivβ .   (I.60) 
 
 Suppose ei is a basis for V and θi is the reciprocal basis for V*.  Any vector v∈V can 
be expressed as: 

v = viei = θi(v)ei =( )( )i
i

e i
θe v� .   (I.61) 
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Hence, i
i

e i
θe � = I when applied to vectors in V.  In fact, each individual i

i
e i

θe � (i not 

summed) acts as a projection of v onto the line in the direction ei .  Therefore, the sum of 
terms over i represents a sort of spectral decomposition of the identity operator into 
projections onto the basis elements. 
 Similarly, i

i
e i

θ e� = I when applied to covectors in V*. 

 Now, let us examine the opposite operatori
i

i e
θ e� .  When applied to v it gives: 

 
( )( )i

i
i e
θ e v� = ( )i ii

θ
∧e v = θi(ei)v – ei θi(v) = nv – v = (n – 1)v.  (I.62) 

 
This means that when we sum the operators thus defined, we get: 
 

i
i

e i
θe � + i

i
i e
θ e� = nI.     (I.63) 

 
 More generally, we would also find that for any non-zero vector v and covector α 
such that α(v) = 1, one would have: 
 

I = ev ⋅ iα + iα ⋅ ev .     (I.64) 
 

 The first term represents a projection of a vector in V onto the direction [v] spanned 
by v, so the second term represents a projection of that vector onto the hyperplane 
Ann(α) in V that is annihilated by α, which is transverse to the line through v.  Hence, the 
pair (v, α) defines a direct sum decomposition V = [v] ⊕ Ann(α), and (I.64) corresponds 
to the fact that one will have a unique decomposition w = w|| + w⊥ of w ∈ V into 
projections parallel to v and transverse to it. 
 One finds that the operator ev ⋅ iα + iα ⋅ ev also acts as the identity operator on all of 
the other spaces Ak.  Analogous statements to the preceding ones apply to the action of 
the operator I = eα ⋅ iv + iv ⋅ eα on Ak.  These operators will prove essential later when 
treating the effect of defining a timelike observer on the spacetime manifold; i.e., a space 
+ time decomposition of the tangent bundle to the spacetime manifold. 
  
 
 3. Exterior derivative.  From multi-variable calculus [4, 5], one presumably knows 
how to define the differential df of a differentiable function f on a vector space V with 
real values and the fact that it represents a linear functional on V. 

 A choice of basis ei for V defines a linear isomorphism V → Rn, x ֏  (x1(x), …, 

xn(x)) which can also be treated as a global coordinate system on V.  Each of the 
coordinate functions xi on V is presumed to be differentiable and defines a differential dxi.  
This makes: 

df = i
i

f
dx

x

∂
∂

= f, i dxi,     (I.66) 

 
in which we have introduced a common notation for partial derivatives as being indicated 
by a comma. 
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 If one regards smooth functions on V as (differential) 0-forms and their differentials 
as (differential) 1-forms then one sees that the effect of differentiation is to take 0-forms 

to 1-forms.  However, since functions take their values in R without actually being 

elements of R, and the components of differential 1-forms are functions, not constants, in 

general, we see that we are not really dealing with A0 and A1 directly, but rather with 
smooth functions on V that take their values in these vector spaces.   
 In general, we will then denote the vector space of all smooth functions on V with 
values in Ak by Λk(V), or Λk, for short.  For instance, elements of Λ0 will be smooth 
functions on V, elements of Λ1 will be smooth maps from V to V*, and elements of Λ2 will 
be of the form: 

F = 1
2 Fij(x) dxi ^ dxj .     (I.67) 

 
  The exterior derivative operator is an extension of the differential operator d: Λ0 → 
Λ1 to a more general linear operator d: Λk  → Λk+1.  As it turns out (see [1]), besides 
requiring linearity and agreement with the differential on 0-forms, this operator is 
uniquely defined by further requiring only that d be an anti-derivation with respect to the 
exterior product and that its square be zero, in any case.  That is, if α is a k-form and β is 
an l-form then: 

d(α ^ β) = dα ^ β + (−1)k α ^ dβ .    (I.68a) 
d2 = 0.        (I.68b) 

 
 For instance, let us see what this produces for the exterior derivatives of 1-forms.  If 
α = αi(x) dxi then a direct application of the rules gives: 
 

dα = dαi ^ dxi + αi d
2xi = (αi,j dxj) ^ dxi = − 1

2 (ai,j – aj,i) dxi ^ dxj .  (I.69) 

  
 If F = 1

2 Fij dxi ^ dxj is a 2-form then: 

 
  dF = 1

2 dFij ^ dxi ^ dxj = 1
2 (Fij,k dxk) ^ dxi ^ dxj  

= 1
3 (Fij,k + Fjk,i + Fk,ij) dxi ^ dxj ^ dxk.    (I.70) 

 
 The fact that we are making d2 vanish in any case is really a generalization of the fact 
that the second derivative of f defines a symmetric bilinear functional on V at each point 
of V; i.e., the mixed partial derivatives ∂2f / ∂xi ∂xj are symmetric in i and j, since we are 
assuming that f has continuous second derivatives.   Hence, the antisymmetric part of the 
bilinear functional must vanish.  To illustrate how the symmetry of mixed partial 
derivatives implies the vanishing of d2, apply it to a smooth function f: 
 

d(df) = d(f,i dxi) = − 1
2 (f,i,j – fj,i) dxi ^ dxj = 0.   (I.71) 
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 4. Divergence operator.  When one has chosen a volume element V for a vector 

space V, one can use Poincaré duality to define a differential operator on multivector 
fields that is “adjoint” to d.  For our immediate purposes, a k-vector field on V will be a 
smooth function from V to Ak .  Hence, if {∂i, i = 1, …, n}is a basis for V then a k-vector 
field A on V has the local form 9: 

A =
1

( )
!

ij m
i j mA x

k
∂ ∧ ∂ ∧ ∧ ∂⋯

⋯ .   (I.72) 

 
 We use Poincaré duality and the exterior derivative operator to define a divergence 
operator δ: Λk → Λk−1 by way of: 

δ = #−1 ⋅ d ⋅ #.     (I.73) 
 
This can be represented schematically by a “commutative diagram:” 
 

 
Λn− k 

d 

Λk 

Λn – k + 1 

Λk − 1 
δ # # 

 
 The properties of δ are not as convenient as those of d, although some of them are 
derived from properties of d, such as linearity, and the fact that: 
 

δ2 = #−1 ⋅ d2 ⋅ # = 0.    (I.74) 
 
 An immediate consequence of (I.73) is the useful relation: 
 

d# = δ#.     (I.75) 
 We also have: 
 

δ∂i = #−1 ⋅ d ⋅ #∂i = εij…m #−1 ⋅ d (dxj ^ … ^ dxm) = 0.   (I.76) 
 

Hence, as long as the coordinate basis ∂i for V is reciprocal to the differential basis dxi for 
Λ1, the vanishing of the divergences of these basis vectors follows from d2 = 0. 
 The relation (I.75) suggests that, in some sense, the linear operator δ is “adjoint” to 
the operator d.  In order to clarify the sense in which this is meaningful, we introduce the 
bilinear pairing <.,.>: Ak × Ak → An, that takes (α, A) to: 
 

  <α. A> = α(A) V = α ^ #A .    (I.77) 

 
 Now, let α ∈ Ak−1, A ∈ Ak and compare <dα, A> to <α, δA>: 
 

                                                
 9 Although we shall eventually wish to regard the symbols ∂i as relating to directional derivative 
operators, for the present, we shall only regard them as vectors in V. 
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   <dα, A> = dα  ^ #A = d(α  ^ #A) – (−1)k α ^ d#A  
= d(α  ^ #A) – (−1)k α ^ #δA,    (I.78) 

 
which leads to: 

<dα, A> + (−1)k <α, δA> = d(α  ^ #A).   (I.79) 
 
Once we have discussed the integration of differential forms and Stokes’s theorem, we 
can show this leads to a “graded” form of adjointness between d and δ, at least for 
compact, orientable manifolds without boundary. 
 What complicates the use of δ in computations is that since # is a linear isomorphism, 
but not an algebra isomorphism – viz., it does not take α ^ β to #α ^ #β – the divergence 
operator is not an anti-derivation.  One does, however, have the following useful result 
when f is a smooth function and A is a k-vector field: 
 

  δ(fA) = #−1(df ̂  #A) + f δA     (I.80) 
 

 For k = 1, δ produces the usual divergence of a vector field: 
 

δv = δ(vi ∂i) = #−1(dvi ^ #∂i) + vi δ∂i = vi
,j (dxj ^ #∂i)(V) = vi

, i .  (I.81) 
 
In the last step, we made use of what will later be described as an “orthogonality” 
condition: 

dxj ^ #∂i = δj
i V.     (I.82) 

 
 As we will also discuss later, when one is dealing with a Riemannian – or even 
Lorentzian – manifold, which has a metric tensor field gij dxi dxj defined on it, the local 

form of the volume element V will also include a factor ofg , where g ≡ |det gij |; hence, 

the volume element V will have a factor of 1/ g .  One then sees that (I.81) takes on the 

customary form: 

δv =
( )1 i

i

g v

xg

∂
∂

.     (I.83) 

 
 Although the discussion of such matters at this point seems somewhat premature, the 
reason for mentioning it is to point out that in its most fundamental form the divergence 
operator is related solely to volume elements, not metrics, and this fact is essential to 
understanding pre-metric electromagnetism.  In the next section, we shall see that vector 
fields with vanishing divergence generate flows of volume-preserving diffeomorphisms. 
 
 
 5.  Lie derivative.  Now that we have defined the exterior derivative and the interior 
product, we have enough tools to construct the Lie derivative operator.  However, before 
we do so, in order to interpret that operator we first mention a few elementary notions 
from the theory of systems of ordinary differential equations (see [10] for all references 
to matters concerned with that theory). 
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 a.  Systems of first order ordinary differential equations.  A vector field v: V → V, x 
֏ v(x) = vi(x) ∂i on an n-dimensional vector space V defines a system of n first order 
ordinary differential equations by starting with the assumption that v(x) represents the 

velocity vector field of a differentiable curve γ: R → V, τ  ֏ γ(τ) = xi(τ) ∂i at each point.  

The system of equations then takes the form: 
 

idx

dτ
= vi(xj(τ))      (I.84) 

 
relative to this choice of coordinate system on V. 
 Actually, this system is more general than it looks on first glance.  For one thing, any 
ordinary differential equation of order k can be converted into a system of k first order 
equations, so the order of the system is no restriction.  Furthermore, although the fact that 
v is only indirectly a function of τ implies that the system is autonomous – i.e., time-

invariant – one can extend v to a vector field on R × V that gives a system that is 

autonomous on that extended space. 
 From the theorem of existence and uniqueness of such systems of ordinary 
differential equations, as long as one assumes that v is continuously differentiable one 
always has the existence of local flows about each point x∈V; that is, there is always a 

sufficiently small neighborhood (− ε, +ε) of 0 ∈ R and a neighborhood U of x such that: 

 a.  There is a one-parameter family of differentiable maps Φ: (− ε, +ε) × U → V, (τ, x) 
֏Φτ (x), such that for each τ the map Φτ : U → V is a diffeomorphism onto its image.  
That is, it is invertible onto its image, and both it and its inverse are continuously 
differentiable. 
 b.  The differentiable curves that are defined through each x0 ∈ U by way of γ0(τ) = 
Φτ (x) are solutions to the equation dγ / dτ = v. 
 Because of the uniqueness of solutions in U these curves cannot intersect within U, 
and one finds that U is “foliated” by a congruence of integral curves; i.e., U is partitioned 
into distinct curves that are each a local solution of the system of ordinary differential 
equations that is defined by v. 
 Two obvious questions to ask about the local flows that we have defined are those of 

whether (−ε, +ε) can be extended to all of R for a given U and whether U can be 

extended to all of V, for a given ε.  In the former case, the local flow would be called 
complete, and in the latter case, it would be a global flow.  Neither possibility is obtained 
in all cases, but the analytical details are beyond the scope of the present discussion, so 
we refer the reader to the reference cited above. 
 
 b.  Differentiation along a flow.  To return to the calculus of exterior differential 
forms, the concept of a Lie derivative is based in the notion of looking at the time rate of 
change of something as it flows along a given integral curve for a system of first order 
ordinary differential equations.  When our “something” takes the form of a smooth 
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function F: R × V → W, (τ, x) ֏  F(τ, x), where W is a vector space of dimension N, this 

derivative with respect to τ along a curve x(τ) becomes: 
 

0( , ( ))x

dF

d τ ττ
= 0 0 0 00

1
lim [ ( , ( )) ( , ( ))]F x F x
τ

τ τ τ τ τ τ
τ→

+ + − =
A i A

Ai

F dx F

d xτ τ
 ∂ ∂+ ∂ ∂ ∂ 

, (I.85) 

 
in which {∂A , A = 1, …, N}is the basis for W defined by a choice of coordinates. 
 Not surprisingly, this sort of derivative plays a key role in continuum mechanics, 
where it called variously the “material derivative” or the “substantial derivative.”  If we 
set vi = dxi/dτ then we shall also regard this derivative as the Lie derivative of F with 
respect to v, and denote it by LvF.  We shall state without proof some useful facts about 
Lie derivatives, and refer the curious to other references for the proofs (e.g., [1-3]) 
 The Lie derivative of a vector field X = Xj ∂j on V with respect to another vector field 
v = vi ∂i  takes the form: 

LvX = [v, X] = 
i i

j j
ij j

X v
v X

x x

 ∂ ∂− ∂ ∂ ∂ 
.  (I.86) 

 
 The square brackets that we introduced are referred to as the Lie bracket of the vector 
fields in question.  Because they are bilinear, anti-symmetric: 
 

[X, Y] = − [Y, X],    (I.87) 
and satisfy the Jacobi identity: 
 

 [X, [Y, Z]] + [Y, [Z, X]] +[Z, [X, Y]] = 0,  (I.88) 
 
the product [.,.]: X(V) × X(V) → X(V) defines, by definition, a Lie algebra on the 

(infinite-dimensional) vector space X(V) of all vector fields on V. 

 In fact, the usual vector (or cross) product on R
3 satisfies these requirements and thus 

defines a Lie algebra that is isomorphic to the Lie algebra of all infinitesimal Euclidian 
rotations in space.  As we shall see, all that one needs to do to make the cross product 

useful in relativistic physics is to define it on C3, instead.  The Lie algebra thus defined is 

then isomorphic to that of the infinitesimal Lorentz transformations. 
 The Lie derivative of more general multivector field on V is obtained from (I.86) by 
adding the assumption that the Lie derivative with respect to v acts on Λ*(V) as a 
derivation with respect to the exterior product: 
 

Lv(A ^ B) = LvA ^ B + A ^ LvB .   (I.89) 
 
 For instance, when one takes the Lie derivative of a simple bivector field X ^ Y, one 
gets: 

Lv(X ^ Y) = [v, X] ^ Y + X ^ [v, Y].   (I.90) 
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 The Lie derivative of a covector field α = αi dxi with respect to v is given by: 
 

Lvα  = (ivd + div)α = ivdα + dα(v) = 
( )j

jj ii
j i

v
v dx

x x

αα ∂∂ +  ∂ ∂ 
, (I.91) 

 
and can be similarly extended to all k-forms by assuming that Lv also acts as a derivation 
with respect to the exterior product on differential forms: 
 

Lv(α ^ β) = Lvα ^ β  + α ^ Lvβ .   (I.92) 
 
However, one finds that the expression in parentheses in the first equality of (I.90) is 
general to all differential forms.  One obtains what is sometimes referred to as Cartan’s 
Magic Formula: 

Lv = ivd + div .      (I.93) 
 

 Of particular interest is the Lie derivative of a volume element V – or any other n-

form − along the integral curves of a vector field v: 
 

LvV = ivdV + divV = d#v = #δv = (δv)V.   (I.94) 

 
(In the second step, we implicitly used the fact that dV is an n+1-form on an n-

dimensional vector space, hence, zero.)  This gives, as a consequence the fact that the 
flow of v preserves the volume element iff v has vanishing divergence. 
 
 
 6. Integration of differential forms.  Since a differential n-form φ = f(xi) dx1 ^ …^ 
dxn looks suspiciously reminiscent of the integrand f(xi) dx1… dxn for the integration of a 

function f: V → R over some n-dimensional region B in a vector space V of dimension at 

least n, it should come as no surprise that the integral of a differential n-form over such 
an n-dimensional region can be defined in much the conventional way that is defined in 
multivariable calculus by replacing the expression f(xi) dx1 ^ …^ dxn with the expression 
f(xi) dx1 …dxn.  The possible change in sign that comes about by changing the order of 
the factors in dx1 ^ …^ dxn then simply represents the possibility that ultimately there will 
be two orientations for B, and opposite orientations give opposite signs for the integral. 
 There is another possibility, namely, that B is not orientable, in the first place.  In that 
case, B does not admit an n-form that is non-zero everywhere.  We shall discuss the 
subject of orientation in more detail in the next chapter when we can give it its proper 
topological context. 
 We denote the integral of an n-form f over an n-dimensional region B by: 
 

B
φ∫  = 1 1( , , )n n

B
f x x dx dx∫ ⋯ ⋯ .    (I.95) 
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 It is important to recognize the integral of an n-form is defined only over an n-
dimensional region.  This is because one expects the integral of anything over B to be 
independent of the parameterization of B, and the only n for which n-forms transform 
properly is n = dim(B); in effect, this is the only dimension in which the differential map 
of a change in parameterization contributes only a determinant to the transformation of 
the n-form components.  That is, if yi = yi(xj) represents a change in parameterization – 
i.e., a diffeomorphism − for the region B then the n-form f(yi) dy1 ^ …^ dyn goes to f(xi) 
J(x) dx1 ^ …^ dxn, in which: 

J(x) =det
i

j

y

x

 ∂
 ∂ 

     (I.96) 

is the Jacobian of the diffeomorphism. 
 Note that since the differential map to a diffeomorphism must be invertible (this 
follows from the chain rule for differential maps), one must have that J(x) ≠ 0 
everywhere.  If J(x) > 0 everywhere then the change in parameterization is orientation-
preseving; if it is < 0 everywhere then it is orientation-reversing. 
 Ultimately, one can only take line integrals of 1-forms, surface integrals of 2-forms, 
and volume integrals of 3-forms, etc.  Although this may sound trivial, actually, it is 
common practice in physics and engineering to integrate components of vector fields and 
tensor fields whose rank is largely unrelated to the dimension of the region, such as when 
one defines the total linear momentum or total angular momentum of a three-dimensional 
extended object by integrating the components of the corresponding densities.  One is 
cautioned that the resulting integrals are not invariant under changes of frames that are 
not constant at all points, such as the transition from a holonomic to an anholonomic 
frame.  Hence, just as differentiation can produce fictitious – i.e., frame-dependent – 
velocities and accelerations, integration can produce “fictitious moments.” 
 If α is a k-form then dα is a k+1-form.  Hence, if B is an orientable k+1-dimensional 
region with a k-dimensional boundary ∂B then it is possible to define the integral of α 
over ∂B and dα over B invariantly.  If V is the k+1-dimensional volume element on B and 

n is the unit normal to the k-dimensional boundary (assuming that V is equipped with a 
Euclidian metric) then the k-form inV, when restricted to the points of ∂B gives it a k-

dimensional volume element.  In an “adapted” coordinate system for B, if V = dx1 ^ dx2 ^ 

… ^ dxk+1 and x1 is adapted to the normal direction then inV = dx2 ^ … ^ dxk+1. 

 The two integrals are related in a simple, but far-reaching, way by the fact that: 
 

B
α

∂∫ =
B
dα∫ .     (I.97) 

 
 Depending upon the dimension of B this equality can be interpreted as the 
fundamental theorem of calculus (dim = 1), Green’s theorem (dim = 2), or Stokes’s 
theorem (dim = 3).  We shall discuss this more in the next section. 
 In fact, Gauss’s theorem (i.e., the divergence theorem) also relates to the three-
dimensional form, by way of Poincaré duality.  We shall have more to say about this in 
Chapter III after we have defined charge and flux, but, for now, suppose that α = #a.  
Then (I.97) becomes: 
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#
B∂∫ a= ( )

B
δ∫ a V .     (I.98) 

Proof: 

#
B∂∫ a= #

B
d∫ a = #

B
δ∫ a= ( )

B
δ∫ a V  

 
 In the standard treatments on differential forms, the generic term for this theorem is 
Stokes’s theorem 10.  Since the topological significance of this relationship is quite subtle, 
but important, we shall have more to say about this theorem in Chapter II. 
 One can further note that, from (I.97), whenever a k-form α is closed – viz., dα = 0 – 
the integral of α over the boundary of a k+1-dimensional region must always vanish. 
 We can now return to the discussion of adjointness between d and δ that we 
suspended in a previous section.  We simply redefine our bilinear pairing to be <.,.> : Ak 

× Ak → R, which takes (α, A) to: 

<α, A> = #
B
α ∧∫ A ,     (I.99) 

 
when B is a compact, orientable n-dimensional manifold with boundary. 
 By integration and an application of Stokes’s theorem, (I.79) takes the form: 
 

<dα, A> + (−1)k <α, δA> = #
B
α

∂
∧∫ A .   (I.100) 

 
 Hence, when B has no boundary, one can say that: 
 

<dα, A> = − (−1)k <α, δA>.    (I.101) 
 
In particular, in even dimensions d and δ are skew-adjoint, while in odd dimensions they 
are self-adjoint. 
 
 
 7.  Relationship to vector calculus.  The first thing that one notices about the 
relationship between exterior differential forms and vector analysis is that the exterior 

product subsumes the vector cross product, as it defined in V = R3. 

 To see this, give A1 = R3 the canonical basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), 

which one depicts as column vectors, so the reciprocal basis θi has the same triples of 
numbers as row vectors.  One can give A2 the basis e1 ^ e2, e2 ^ e3, e3 ^ e1, which means: 
 

ei ^ ej = εijk ek .     (I.102) 
 

                                                
 10  Vladimir Arnol’d may have made a valid point in [11] when he suggested that if one wished to be 
consistent with the modern tendency to hyphenate all of the names that contributed to the general form of a 
modern theorem then one might wish to call it the Newton-Leibniz-Gauss-Green-Ostragradskii-Stokes-
Poincaré theorem!  (…and perhaps abbreviate this to the acronym NLGGOSP!) 
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Hence, one can think of the symbol εijk as essentially the matrix of the isomorphism of A1 
with A2. 
 Now, strictly speaking, this isomorphism only comes about because we chose a basis 

for R3.  In point of fact, the natural frame-invariant isomorphism is the Poincaré duality 

between A1 and A2: 
θi ^ θi = εijk ek .     (I.103) 

 
The volume element on V that defines this is given by the 3-form θ1 ^ θ2 ^ θ3. 
 In order to make this a frame-invariant isomorphism of A1 with A2, one must define 
either an isomorphism of A1 with A1 or A2 with A2, such as one usually gets from the 
Euclidian metric.  However, the spirit of pre-metric electromagnetism is to treat the 
spacetime metric as something that shows up at a later stage than the most fundamental 
assumptions about the spacetime manifold.  Indeed, we shall find that both the electric 
permittivity and the magnetic permeability by themselves can also define such 
isomorphisms. 
 For now, we notice that the components of a ^ b with respect to the stated basis are: 
 

(a ^ b)ij = ai bj – aj bi ,     (I.104) 
and those of a × b are: 

(a × b)i = 1
2 εijk (a ^ b)jk .    (I.105) 

 
Hence, one is basically associating the two sets of components by way of the 
isomorphism of vectors and bivectors that we have chosen. 
 Of course, the advantage of exterior forms then becomes the generality of their 
application in the eyes of dimension, while the cross product can only be defined in 
dimension three. 
 The triple product a ⋅⋅⋅⋅ b × c, which also involves the Euclidian scalar product, is 
related to an even more elementary exterior product: 
 

a ^ b ^ c = (a ⋅⋅⋅⋅ b × c)V = det[a | b | c]V.   (I.106) 

 
 One finds that the exterior derivative operator immediately subsumes both the 
gradient operator, as applied to smooth functions, and the curl operator, as applied to 
vector fields, and we have already showed that the divergence operator, as we have 
defined it, agrees with the classical one on vector fields: 
 

(df )i = , ,
f f f

x y z

 ∂ ∂ ∂
 ∂ ∂ ∂ 

= (∇f)i ,    (I.107a) 

(dv)ij = vi,j − vj,i = εijk(∇ × v)k ,    (I.107b) 
δv = ∇ ⋅⋅⋅⋅ v .      (I.107c) 

 
 However, as is usually the case in three-dimensional computations, one is always 

implicitly defining the Euclidian scalar product on R3 and using it to associate vectors 
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with covectors.  For instance, the gradient of a function is usually thought of as a vector 
field, not a covector field.  Consequently, in the component formulation of vector and 
tensor analysis, there is no attention paid to whether one is implicitly raising or lowering 
indices as it suits the calculations; indeed, all indices are usually written as subscripts, for 
simplicity.  This is really a bad habit to get into if one is also going to be concerned with 
spaces of other dimensions and metrics of other signature types, since it often involves 
remembering when such tacit constructions were being carried out, if one is to replace 
them with the more general constructions. 
 The fact that d2 = 0, in any case, subsumes the vanishing of ∇×∇f for any f and ∇⋅⋅⋅⋅ 
(∇×v) for any v; that is, the curl of a gradient and the divergence of a curl vanish 
identically.  Ordinarily, one assumes that the vanishing of ∇ × v implies that v = ∇f for 
some (non-unique) function f, but, as we shall see in the next chapter, this really goes 
back to the fact that we are looking at vector fields and k-forms on a vector space, which 
is, among other things, simply connected.  That is, whether dα = 0 implies that there is a 
φ such that α = dφ depends upon deeper topological considerations, which we will 
discuss in Chap. III. 
 In order to relate the general notation for the integration of a k-form α over a k-
dimensional region B in an n-dimensional vector space V to the various notations for the 

integral of a function or vector field over regions of R3 that are one, two, and three-

dimensional, one mostly has to show how the free index of a vector field A(x) = (A1(x), 
A2(x), A3(x)) gets absorbed to produce a k-form that looks like fVk . 

 For line integrals, it is sufficient to turn the vector field A into a 1-form A = Ai dxi by 
means of the Euclidian scalar product (Ai = δijA

i) and show that this is equal to: 
 

A = A ⋅⋅⋅⋅ ds ,      (I.108) 
in which: 

 ds = v dτ = (dx1, dx2, dx3)     (I.109) 
 
is the differential element of arc length; however, the result is immediate by this 
definition.  Hence, we can unambiguously write: 
 

C
A∫  =

C
d⋅∫ A s� .     (I.110) 

  
 In two dimensions, the elimination of the free vector index is accomplished by means 
of taking the scalar product of A with the normal vector field n = #−1dS to the surface S 
over which the integration is performed; here dS refers to the surface element on S (i.e., a 
non-vanishing 2-form in Λ2(S)).  We can also associate the vector field A with the 2-
form: 

#A = iAV = An inV = An dS.    (I.111) 

 
Indeed, the only 2-forms that can be integrated over S have to be tangent to S, and 
therefore of the form An dS. 
 If one uses an adapted coordinate system in the neighborhood of S that makes: 
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V = n ^ dS  (ni = δij n
j)   (I.112) 

then one has: 
#A = iAV = n(A) dS – n ^ iA dS .   (I.113) 

 
and the part of this that is tangential to S is: 
 

n(A) dS = (A ⋅ n) dS .     (I.114) 
 
 Thus, in order to make sense of the equality: 

 

S
A∫ = ( )

S
dS⋅∫∫ A n	      (I.115) 

 
the 2-form A and the vector field A must be related by: 
 

A = PS(#A),      (I.116) 
 
in which PS refers to the projection onto the tangential 2-forms.  This implies that, 
although the map # is a bijection, nonetheless, a sizable subspace of vector fields will 
produce the same tangential 2-form, namely the ones for which iAdS is non-vanishing; 
i.e., ones that differ by a vector that is tangent to S. 
 As for a three-dimensional B, the only things that can be integrated invariantly are 
pseudo-scalars of the form fV3 .  A non-algebraic way of turning A into a scalar is to take 

its divergence, which gives Gauss’s theorem (I.99) the form: 
 

( )
B

dS
∂

⋅∫∫ A n	 = ( )
B

∇ ⋅∫∫∫ A
 V .   (I.117) 

  
 Something that one begins to notice after working with the calculus of exterior 
differential forms long enough is that even though it is possible to find differential form 
equivalents for many of the tabulated formulas of vector calculus beyond the elementary 
ones that were discussed above, nevertheless, part of the beauty of differential forms is in 
the way that many of these vector calculus identities become largely unnecessary, since 
one generally only needs them as lemmas for the proofs of more fundamental results that 
can be proved more directly with differential forms. 
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Chapter II 
 
 

Topology of differentiable manifolds 
 
 
 From the standpoint of physics, there are two main reasons for extending the calculus 
of exterior differential forms from the formulation that was presented in the previous 
chapter for vector spaces to a formulation that pertains to more general differentiable 
manifolds: 
 1. The introduction of coordinate systems is inevitable in physics and differentiable 
manifolds are the mathematical structures that have evolved to address that situation. 
 2. The physical foundations of electromagnetism, such as charge and flux, are 
manifestly topological in character. 
 Consequently, the purpose of this chapter is to carry out that extension so that the 
aforementioned foundations of electromagnetism can be presented in their topological 
form in the next chapter.  We shall present only the elements of point-set topology to 
begin with, and then we shall introduce some of the more advanced topological notions in 
a form that is adapted to the nature of the problem at hand. 
 
 
 1. Differentiable manifolds.  In the previous chapter, we made use of coordinate 
systems on vector spaces, which often came about as a consequence of defining a basis 
for the vector space. Actually, such a construction will produce only “rectilinear” or 
“Cartesian” coordinate systems.  If one wishes to discuss “curvilinear” coordinate 
systems then one will have to deal with the fact that they usually come about as an 
adaptation to the demands of dealing with nonlinear spaces such as cylinders, spheres, 
and ellipsoids. 
 First, we need to recall some useful generalities at the level of point-set topology. 
 
 a. Topological spaces [1, 2].  In mathematics, one of the most useful nonlinear 
generalizations of a vector space is that of topological space.  Such a space is a set S that 
is given a topology – viz., a collection of open subsets that satisfy certain axioms 
regarding unions and intersections.  In particular, the union of any family of open subsets 
is another open subset and the intersection of any finite family is another open subset 11.  
One can then define a closed subset as the set complement of an open set and obtain a 
collection of closed subsets that satisfy the complementary axioms (finite unions, any 
intersections).  Conversely, one can start with closed subsets and define open subsets by 
complementation.  Note that a given subset of S can be open, closed, both, or neither. 
 Some elementary elementary examples of topological spaces that will be of interest in 

what follows are the real line R and the Cartesian product Rn of ordered n-tuples of real 

numbers.  The topology that is commonly used for R is defined by means of its total 

                                                
 11 Often, one encounters the axioms that S and the empty set are open subsets, although to some authors, 
these axioms follow logically from the two that were stated.  
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ordering <, namely, the interval topology, whose open subsets are unions of open 

intervals of the form (a, b) = {x ∈ R | a < x < b}.  The closed subsets are then 

intersections of finite unions of closed intervals [a, b] = (a, b) ∪{ a, b}.  One can also 

define a topology for R by means of the metric d(x, y) = | x – y |, which allows one to 

define open “ε-balls” Bx(ε) about each point by way of Bx(ε) = {y ∈ R | | x – y | < ε}.  

Since these will also define open intervals of the form (x – e, x + e), one sees that the two 
topologies just defined amount to the same open subsets; hence, they are topologically 

equivalent.  As for Rn, one can extend the interval topology on R by means of the product 

topology on Rn, which makes every open subset the union of finite intersections of 

products (a1, b1) × … × (an, bn) of open intervals in R.  An equivalent topology is given 

by extending the concept of ε-balls to n dimensions by extending the norm in the 
Euclidian manner || v || = 2 2 1/ 2

1( )nv v+ +⋯ .  Of course, one needs to show that every ε-ball 

is the union of n-cubes or vice versa, but, as it turns out, in order to show the topological 
equivalence of the two topologies, it is only necessary to show that there is a continuous, 
invertible map from one to the other that also has a continuous inverse, as we shall 
discuss shortly.  Such a map is given by radially projecting the points of one onto the 
other. 
 The effect of defining a topology is to define an abstract way of characterizing 
“closeness” without introducing an actual numerical way of defining the concept, such as 
a metric.  A neighborhood of a point x ∈ S is any subset U ⊂ S that contains an open 
subset that includes x.  Hence, any point of S defines a localization of the topology on S 
to a system of neighborhoods of x.  The partial ordering of subset inclusion allows one to 
the think of the relative “closeness” of a point y to x, as compared to another point z as 
being related to whether there is a neighborhood of x that contains one point, but not the 
other. 
 One can use the partial ordering of subset inclusion to define a partial ordering on the 
set of topologies over a given set.  A topology τ on S is finer than another topology τ′ iff 
every open subset in τ′  is also an open subset in τ.  Hence, τ potentially has “more open 
subsets” than τ′.  One also says that the topology τ′  is coarser than the topology τ. 
 Another issue that is related to the “fineness” of the topology is the question of 
whether there is always an open neighborhood of x that excludes any other given point of 
S.  This gets one into the separation axioms, the most common of which is the 
Haussdorff axiom: A topological space is Haussdorff iff given any two distinct points 
there are disjoint open neighborhoods of each point.  Another axiom that shows up in the 
study of manifolds is normality: A topological space is normal iff any two disjoint closed 
subsets have disjoint open neighborhoods.  One sees that as long as subsets that consist of 
only individual points are always closed normal spaces must be Haussdorff. 
 So far, the nature of topological spaces seems rather set-theoretic and prosaic.  The 
real power of the topological structure on a set emerges when one uses it to define the 
continuity of maps.  A map f: A → B between topological spaces A and B is said to be 
continuous iff the inverse image f−1(V) = {x ∈ S |  f(x) ∈ V} of any open subset of B is an 
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open subset of A.  All that one needs to do to reconcile this with the “ε−δ” definition that 
one encounters in calculus is to consider the topologies on normed vector spaces V, W 
that are given by considering open balls Bδ(x) in V and Bδ(y) in W.  Hence, one of the 
subtle sources of the power of topology is that it simultaneously generalizes elements of 
both geometry and analysis. 
 An even stronger condition on the map f than continuity is that it should be invertible 
and have a continuous inverse.  Such a map between topological spaces is called a 
homeomorphism.  They are fundamental because they represent topological equivalences, 
since one has not only a one-to-one correspondence between the points of the spaces one 
also has a one-to-one correspondence between the open subsets of the topologies. 
 For instance, the map f might be the identity map on a set S that has been given two 
different topologies.  Although the map is clearly invertible, whether it is continuous in 
one direction or another is another way of characterizing the fineness of one topology 

relative to the other one.  For instance, the previous example of Rn, when given both the 

product topology and the norm topology, has the property that the identity map is 
continuous, along with its inverse, since every open subset of one topology is an open 
subset of the other one; hence, we can say that the two topologies are homeomorphic. 
 Having defined topological structures and maps that relate to them, one also wishes to 
know what sort of properties of topological spaces are preserved by such maps.  Since 
homeomorphic spaces have equivalent topologies, it is essentially a matter of definition 
to say that a topological property of a space is one that is equally true for homeomorphic 
spaces.  The properties that are preserved by merely continuous maps, at least on their 
images, are somewhat more definitive. 
 One such property of continuous maps is compactness: a topological space S is called 
compact iff it is Haussdorff and every open covering of it can be reduced to a finite sub-
covering; note that this does not say that any space S that can be covered by a finite 
number of open subsets is compact, since S itself covers any topological space, in any 
case.  One finds that any closed subset of a compact space is compact, and any compact 
subset of a Haussdorff space is closed.  By the Heine-Borel theorem, the compact subsets 

of Rn, when given the Euclidian norm topology, are the closed and bounded subsets.  The 

fact that the image of a compact topological space by a continuous map is compact also 
explains why any continuous real-valued function on a compact space, such as a sphere, 
must have a maximum value, along with a minimum value, at some points of the space. 
 Another property that is preserved by continuous maps, which also gets generalized 
to more sophisticated methods in topology, such as algebraic topology, is connectedness.  
A topological space is connected iff it is not the union of two disjoint open subsets; 
equivalently, the only subsets that are both open and closed are the empty set and the 
entire set.  The fact that continuous real-valued function from a connected space S onto 
the interval (a, b) in the real line must attain each intermediate value between a and b is 

due to the fact that the connected subsets of R are the intervals. 

 Conversely, a continuous map γ: [a, b] → S must have a connected image.  Such a 
map is described as a path in S from γ(a) to γ(b).  If any two points of S admit at least one 
path that connects them then S is called path-connected.  The image of a path-connected 
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space under a continuous map is clearly path-connected.  One also finds that any path-
connected space is connected, although the converse is not necessarily true. 
 A particular class of paths in a space that is of fundamental interest is the class of all 
loops: A loop in S is a path γ:[a, b] → S such that γ(a) = γ(b).  Note that this includes the 
possibility that the image of γ is just one point. 
 
 b.  Homotopy theory [1-3].  A fundamental question about a topological space is 
whether every loop can be continuously deformed to a point.  That is, two continuous 
maps f, g: A → B between topological spaces are called homotopic iff there is a 
continuous map F: A × [0, 1] → B such that F(x, 0) = f(x) and F(x, 1) = g(x).  Hence, if f 
is homotopic to g then one can continuously deform f into g by means of a one-parameter 
family of maps in between.  In effect, this is also like defining a path in the “topological 
space” of continuous maps from A to B, although defining the topology on the space that 
would make this statement well-defined proves to be the less practical way of looking at 
homotopies.  One finds that homotopy is an equivalence relation between continuous 
maps, since every map is homotopic to itself, if f is homotopic to g then g is homotopic to 
f, and if f is homotopic to g while g is homotopic to h the f is homotopic to h.  Hence, one 
can partition the set of all continuous maps from A to B into equivalences classes, 
namely, homotopy classes, which we denote by [f]. 
 In the case of homotopies of loops in a topological space S, one finds that the set 
π1(S) of homotopy classes [γ] of loops can often have a very elementary character to it.  
When there is only one such class – i.e., all loops are homotopic to constant loops – one 
calls S simply-connected, and denotes this by π1(S) = 0.  For instance, any vector space is 
simply-connected.  The notion of simple-connectedness is neither stronger nor weaker 
than path-connectedness, since a plane minus a point – i.e., a punctured plane – is path-
connected, but not simply-connected, while a pair of disjoint discs in the plane is simply-
connected, but not path-connected.  The homotopy classes of loops in a circle – i.e., the 
homotopy classes [f] of continuous maps f: S1 → S1 − are in one-to-one correspondence 

with the integers Z, by way of the “winding number” of the map f. 

 The set π1(S) can also be given a group structure by composing subsequent loops, and 
with that group structure one calls π1(S) the fundamental group of S.  The subscript “1” 
on π1(S) is suggestive of a sequence of other such groups.  Indeed, one can define higher 
homotopy groups for a topological space S by defining the kth homotopy group πk(S) to 
consist of homotopy classes of continuous maps of the k-dimensional sphere Sk into S. 
The group structure is somewhat more difficult to describe (cf. [3]), although, as it turns 
out, homotopy groups are always Abelian in dimensions higher than one.  Interestingly, 

although clearly πn(S
n) = Z, by way of a higher-dimensional winding number argument, 

and π1(S
n) = 0 whenever n > 1, nonetheless, finding the higher homotopy groups of 

spheres in general is more difficult than it sounds. 
 For the sake of completeness, one usually denotes the set of all path connected 
components of S by π0(S), although it is not generally given a group structure. 
 Since the composition of continuous maps is continuous, one finds that the image of a 
loop γ in A by a continuous map f: A → B is a loop f ⋅ γ in B.  Since homotopic loops in A 
will have homotopic images in B under f – in particular, homotopic loops – a continuous 
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map will take π1(A) to a subgroup of  π1(B).  Indeed, this situation extends to the higher 
dimensions, and when two topological spaces are homeomorphic they will have 
isomorphic homotopy groups in all dimensions.  The converse, however, is not always 
true, although it has finally been proven for spheres, which was the generalized Poincaré 
conjecture. (The original conjecture was for three-dimensional spheres, which was also 
the last dimension in which the conjecture was proved.) 
 The most extreme form of a homotopy is a contraction: A topological space is called 
contractible iff the identity map is homotopic to a constant map; i.e., the whole space is 
homotopic to one of its points.  For example, any vector space is contractible, as is a 
space that consists of only one point, to begin with.  The homotopy groups of a 
contractible space vanish in every dimension, since this is the case for a point.  It is a 
deep result of homotopy theory that the converse statement is also true: Any topological 
space whose homotopy groups vanish in every dimension is contractible. 
  
 c.  Differential structures [4-9].  The next step beyond considering topological spaces 
that are homeomorphic to vector spaces, which are only so topologically interesting, is 
considering topological spaces that are locally homeomorphic to vector spaces.  That is, a 
topological manifold is a topological space M such that every point x∈M has a 

neighborhood U that is homeomorphic to Rn.  One can think of the homeomorphism φ: U  

→ Rn, p ֏ (x1(p), …, xn(p)) as defining a coordinate system on U, and we call the pair 

(U, φ) a coordinate chart on M about x. 
 Examples of such spaces are spheres, tori, polygons, polyhedra, and many algebraic 
sets.  Counter-examples would be such things as intersecting curves, a pair of tangent 
spheres, and a disk with a line segment attached to its perimeter at one endpoint.  In 

effect, since Rn is homeomorphic to any open n-ball (regardless of radius), to say that a 

point of M has a neighborhood that looks like Rn topologically is to say that it has a 

neighborhood that looks like a (sufficiently small) open n-ball. 

 If one has another neighborhood V of x and another homeomorphism ψ: V: → Rn, p 

֏ (y1(p), …, yn(p)) then on the overlap U ∩ V one can invert φ and compose it with ψ to 

obtain a homeomorphism ψ ⋅ φ−1: Rn → Rn, (x1, …, xn) ֏ (y1, …, yn) which then 

represents a coordinate transformation. 
 From the examples given above, it is clear that topological equivalence is really quite 
vague in character, since it ignores many of the geometric properties of spaces.  For 
instance, every point of a circle has a unique tangent, but the vertices of a triangle, which 
is homeomorphic to a circle, have double tangents.  Hence, if one wishes to refine the 
equivalence classes of topological equivalence, a next step might be to include some 
consideration for how tangent spaces are associated with the points of the space.  Since 
the main point of differentiation is to locally linearize nonlinear functions by associating 
them with linear ones, to some degree of approximation, this brings one into the realm of 
differential topology. 
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 In order to refine the structure of a topological manifold, since the differentiation of 

maps from Rn to Rn can be defined (when they are differentiable) we restrict the class of 

allowable coordinate transformations, as defined above, to the ones that are differentiable 

and have a differentiable inverse; i.e., to diffeomorphisms of Rn.  Hence, since such a 

coordinate transformation ψ ⋅ φ−1: Rn → Rn will have a differential map D(ψ ⋅ φ−1)|y : R
n 

→ Rn that is defined at each y ∈ Rn, and since this is an invertible linear map it defines an 

element of the group GL(n) of all invertible n×n real matrices (by means of the standard 

basis on Rn) we can define a transition function gUV: U ∩ V → GL(n), x ֏  D(ψ ⋅ 

φ−1)|φ(x).  If the coordinates that are defined by φ are xi and those defined by ψ are yi then 
the coordinate transformation takes the form yi = yi(xj) and the transition function takes 
the form: 

[ ]( )
i

U V j
g x∩ =

i

j

x

y

x

∂
∂

.     (II.1) 

 
 Notice that is it the coordinate transformations that we are restricting, not the 
coordinate charts.  However, having fewer allowable transformations will lead to having 
fewer charts. 
 A differential structure on a topological manifold M is a collection {(Uα, φα), α ∈Γ} 
of charts – which one calls an atlas − such that: 
 1. The atlas covers M, i.e., every point of M is contained in at least one chart. 

 2. All of the coordinate transformations are diffeomorphisms of Rn. 

 3. The atlas is maximal, in the sense that any chart whose intersections with the 
existing charts gives coordinate transformations that are diffeomorphisms must already 
be a chart of the atlas. 
 A topological manifold that has been given a differential structure is called a 
differentiable manifold.  If f: M → N is a map from a differentiable manifold M to another 
one N then for every chart (U, φ) about a point x ∈ M and every chart (V, ψ) about the 

point f(x) ∈ N one can define the map ψ ⋅ f ⋅ φ−1: Rm → Rn by inversion and composition.  

 If this map is differentiable for every possible x, (U, φ), and (V, ψ) then one calls the 
map f itself differentiable.  Furthermore, if f is invertible, differentiable, and has a 
differentiable inverse then one calls f a diffeomorphism of M and N.  This is a stronger 
statement than homeomorphism, since every differentiable map is continuous, but not 
always the converse.   
 When M is given two differential structures, one can consider the differentiability of 
the identity map.  If it is a diffeomorphism then the two differential structures are 
equivalent.  Although the definition of differential structure sounds sufficiently general as 
to encompass all of the possibilities for a given M, that is not the case.  Even in the 

simplest example of differential structures on Rn itself, it is now known (thanks to a 

theorem of Simon Donaldson in 1983) that all of the spaces Rn have a unique differential 
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structure except for R4, which has an infinitude of inequivalent differential structures that 

are often called “fake R4’s.”  It had been known for a long time, from the work of Milnor, 

that the seven-dimensional sphere admits two inequivalent differential structures: the 

conventional one that it inherits from R8 and an “exotic” one. 

 More specifically, when an n-sphere is defined as a point set in Euclidian R
n+1 in the 

usual way, one cannot cover it with one chart since Sn is compact, but Rn is not.  At the 

very least, one can cover it with two charts, one that is homeomorphic to an open n-disc 
centered at the North pole and covers everything except the South pole and another one 
with the poles reversed.  Their intersection is everything except for the two poles, which 

is an open subset that is homeomorphic to the “cylinder” R × Sn−1, with Sn−1 playing the 

role of “equator.” 
 A closely related compact differentiable manifold to Sn is the n-dimensional real 

projective space RPn, which we shall return to later in this work.  It consists of all lines 

through the origin in Rn+1, and since every such line intersects Sn (when centered at the 

origin) in two antipodal points, one can also think of RPn as consisting of all pairs of 

antipodal points on Sn.  At the very minimum, one can cover RPn with n+1 charts, which 

are defined by the fact that the projection of homogeneous coordinates (x0, …, xn) ∈ Rn+1 

for a point of RPn onto its inhomogeneous coordinates (X1, …, Xn) can be accomplished 

in n+1 ways by choosing a non-zero coordinate xk and defining  Xi = xi/xk , all i ≠ k. 
 
 d.  Tangency, tangent spaces [4-9].  In multivariable calculus, one learns that 
differentiation allows one to associate a straight line with each point of a differentiable 
curve and, more generally, a k-dimensional vector space with each point of a 
differentiable k-dimensional hypersurface by way of the concept of tangency.  The notion 
of a differential structure on a topological manifold also allows one to associate an n-
dimensional vector space TxM with each point x of an n-dimensional differentiable 
manifold M by a more general notion of tangency. 

 The key to this construction is to note that when the images of two curves in M in Rn 

for some coordinate chart (U, φ) have a common tangent line in at a particular point x ∈ 
U ⊂ M the same will be true in any other coordinate chart; i.e., tangency is a coordinate-
invariant concept.  One can then define an equivalence class [γ]x of all curves through x 

M that have a common tangent in Rn at x for some, and therefore all, coordinate charts 

about x.  One calls this equivalence class a tangent vector to M at x, since it is associated 

with a vector in Rn.  The set of all tangent vectors to M at x is called the tangent space to 

M at x and is usually denoted by TxM. 
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 One can give TxM the structure of an n-dimensional vector space by way of the fact 

that Rn has that structure, but here is where differential topology takes a convenient, but 

non-obvious, turn and associates a tangent vector vx ∈ TxM, not merely with an n-tuple of 
real numbers, such as (v1, …, vn), that is defined by a choice of coordinate chart (U, xi) 
about x ∈ M, but with the directional derivative operator that these components define: 
 

vx = i
i

v
x

∂
∂

.     (II.2) 

 
 The key to making this association work is to see that this directional derivative also 
has a coordinate invariant character, as well, from the chain rule for differentiation.  In 
another coordinate system (V, yi) about x, one has: 
 

vx = i
i

v
y

∂
∂

 = 
j

i
i j

x
v

y x

∂ ∂
∂ ∂

,    (II.3) 

 
which is consistent with (II.2) as long as: 
 

vi =
i

j
j

x

x
v

y

∂
∂

= 1[ ] i j
U V jg v−

∩ .    (II.4) 

 
 Note that the components of v transform by means of the inverse of the transition 
function that is defined by the coordinate transformation.  Hence, one can think of 

transition functions as transformations that act on tangent objects to Rn, while coordinate 

transformations act on points of Rn. 

 Now that we have defined a notion of differential maps and functions on M and 
tangent vectors as directional derivatives, we can give an invariant sense to the action of 

the tangent vector vx ∈ TxM on a differentiable function f: M → R, which actually only 

needs to be defined in some neighborhood of x: 
 

vx f = i
i

x

f
v

x

∂
∂

.     (II.5) 

 
 There is a slight generalization of the n operators ∂i = ∂/∂xi that one uses as a 
generalized basis for TxM, at least relative to a choice of chart, that has far-reaching 
applications and fundamental significance to physics, in general.  That is the concept of a 
tangent frame in TxM , namely, a set {ei, i = 1, …, n} of n linearly independent tangent 
vectors in TxM.  Hence, one can represent any tangent vector vx ∈ TxM uniquely in the 
form: 

vx = vi ei      (II.6) 
relative to this frame. 
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 Since the members of the frame ei are themselves tangent vectors, when one chooses 
a coordinate chart (U, xi) about x one can express them as: 
 

ei = j
i jA ∂      (II.7) 

 
for a unique invertible matrix of componentsjiA .  Hence, the n operators ∂i can just as 

well be regarded as defining a tangent frame in TxM.  Since they are only defined by a 
choice of coordinate chart, one refers to the frame {∂i} as the natural frame at x that is 
defined by (U, xi). 
 
 e.  Vector fields [4-9].  So far, the components of a tangent vector, such as vx , relative 
to some chosen tangent frame are just constant scalars.  Since a choice of coordinate chart 
(U, xi) allows us to define a tangent vector at every x ∈ U, one can extend the concept of 
a tangent vector at x to a tangent vector field on U – or vector field, for short − whose 

components relative to the natural frame ∂i on Rn will be functions on U: 

 
v(x) = vi(x) ∂i .     (II.8) 

 
 In order to extend the concept of a vector field on U to a vector field on all of M, we 
need to introduce one more general construction, in the form of the tangent bundle to M.  
It is a differentiable manifold T(M) of dimension 2n that one obtains by taking the 
disjoint union of all TxM as x ranges over all of the points of M.  Hence, as a disjoint 
union, when x and y are distinct points of M the vector spaces TxM and TxM will be 
distinct from each other, as well, no matter how “close” the two points are.  There is a 
natural projection T(M) → M, vx ֏ x, and the set of all vx that project to a given x, which 
is, of course TxM, is called the fiber of the projection over x.  One can also restrict the 
projection to T(U) → U for any U ⊂ M. 
 The coordinate systems about each tangent vector vx ∈ T(M) take the form of 

homeomorphisms T(U) → U × Rn for some, but not all, open neighborhoods U about 

each x ∈ M, such that the projection of T(U) onto U corresponds to the projection of U × 

R
n onto its first factor.  Such a coordinate chart is called a local trivialization of T(M) 

over U, since the most elementary sort of fibration A → B of one topological space A 
over another B (i.e., a projection that is local trivial)  is the projection M × N → M of a 
product space onto one of its factors; one calls such a fibration trivial .  In that sense, fiber 
bundles do not become topologically interesting until one considers the ones for which 
the local trivializations cannot be extended beyond some limit to global trivializations.  
For instance, even on a manifold as elementary as the two-dimensional sphere S2 the 
tangent bundle T(S2) is not globally trivializable, although one can define a local 
trivialization over an open subset U ⊂ S2 that omits only a single point.  Indeed, the only 
dimensions for which spheres are trivializable are dimensions 0, 1, 3, and 7.  (This is 
actually closely related to the fact that the only real “division algebras,” i.e., algebras with 

inverses, are defined over R, R2, R4, and R8.) 
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 Once one has the concept of the fibration T(M) → M to work with, one can define the 
opposite concept of a (global) section of this fibration, namely, a differentiable map v: M  
→ T(M), x ֏  v(x) such that when one projects T(M) back to M each v(x) goes back to x; 
this is equivalent to the statement that v(x) ∈ TxM for each x ∈ M.  One can also define 
local sections over any U  ⊂ M by the same means.  Since the local sections correspond 
to what we called local vector fields above, we see that a global section of the tangent 
bundle fibration is a reasonable candidate for a global vector field on M.  Now, more 
general fiber bundles, whose fibers are not always vector spaces, do not have admit 
global sections, while T(M) → M always has at least one global section, namely the zero 
section Z: M  → T(M) that takes each x ∈ M to the origin of TxM.  However, as the 
example of S2 shows, one cannot always find a global non-zero section of the tangent 
bundle fibration, since every vector field on S2 must have at least one zero, a result that is 
usually described rather colorfully as the “Hairy Ball Theorem,” when one thinks of the 
tangent vectors as hairs. 
 One can now extend the concept of a tangent frame in TxM to a local frame field on U  
⊂ M, namely, a set of n vector fields ei : U → T(U), x ֏ ei(x) that are linearly 
independent at each x.  A local vector field v : U → T(U) can then be expressed in terms 
of this local frame field as: 

v(x) = vi(x) ei(x),     (II.9) 
 
in which it is important to see that we are allowing the frame members themselves to vary 
over the points of U.  In fact, if U admits a coordinate system xi the local frame field can 
be expressed in the form: 

ei(x) = ( )j
i iA x ∂ ,     (II.10) 

 
in which the component matrices( )i

jA x  are now differentiable functions on U, and are 

invertible at each x ∈ U.  Among other things, this means that every coordinate chart 
defines a local frame field by way of ∂i that one calls the natural frame field defined by 
this chart.  However, not every local frame field is the natural frame field for some 
coordinate chart.  This gets one into the difference between holonomic and anholonomic 
local frame fields, which we shall discuss later in this book. 
 Although global vector fields always exist on a general manifold, global frame fields 
do not, in general.  In fact, the existence of a global frame field on M is equivalent to the 
possibility that T(M) admits a global trivialization.  When this is possible, one calls M 
parallelizable, because one then has unique linear isomorphisms between each pair of 
tangent spaces in T(M) that allow one to clarify the meaning of parallelism between 
tangent vectors at finitely-separated points. 
 In the case of the 2-sphere, it is clear that any manifold that does not admit a non-zero 
vector field cannot admit a global frame field, but it is not true that the existence of a 
non-zero vector field implies the existence of a global frame field.  Hence, the existence 
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of global frame fields is a much stronger condition than the existence of non-zero vector 
fields 12. 
 By defining vector fields on M in terms of directional derivative operators, we 
introduce the possibility of composing the action of two vector fields X and Y on a 
smooth function f on M, such as XY f, which has the local form: 
 

XY f = i j
i j

f
X Y

x x

∂ ∂ 
 ∂ ∂ 

=
2j

i i j

i j i j

Y f f
X X Y

x x x x

∂ ∂ ∂+
∂ ∂ ∂ ∂

.  (II.11) 

 
 However, this construction does not have the coordinate-invariant (or really, frame-
invariant) character that we desire for objects that are defined on manifolds.  Since it is 
the second term in the final expression that is undesirable, we find that in order to obtain 
a frame-invariant object, we need only to subtract YX f and obtain: 
 

[X, Y] f = XY f −−−−YX f = 
j j

i i
i i j

Y X f
X Y

x x x

 ∂ ∂ ∂− ∂ ∂ ∂ 
,   (II.12) 

 
so we can define the vector field: 
 

[X, Y] = XY −−−−YX  =
j j

i i
i i j

Y X
X Y

x x x

 ∂ ∂ ∂− ∂ ∂ ∂ 
,   (II.13) 

 
which can also be defined globally. 
 This means that not only is the set X(M) of all vector fields on M an infinite-

dimensional vector space under pointwise finite linear combinations, but with this 
bracket, it also becomes an infinite-dimensional Lie algebra.  Note that one also has a 
local Lie algebra X(U) for each U ⊂ M.  A deep problem in differential topology is that 

of determining how much detail concerning the differential structure on M can be 
expressed in terms of the algebraic structure of X(M).  For instance, not all n-dimensional 

Lie algebras on Rn can be represented in X(M), or even X(U).  In particular, the Abelian 

Lie algebra on Rn is often hard to find globally. 

 A basic property of natural frame fields is that they are holonomic: 
 

[∂i, ∂j] = 0,     (II.14) 
 

which follows from the equality of the mixed partial second derivatives.  (Simply set Xi = 
Yi = const. in (II.13).) 
 

                                                
 12 One can even introduce an intermediate notion of k-parallelizability, which means that there are k 
globally linearly independent vector fields on M, but not k+1.  One calls k the degree of parallelizability of 
M.  Not surprisingly, the topological nature of this gets quite involved. 
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 e.  Covector fields [4-9].  There are dual constructions to those of the preceding 
subsection that have just as much, if not more, application to the problems of physics.  
One starts by defining a covector αx at x ∈ M to be a linear functional on TxM.  Since TxM 
is presumed to be a vector space, in its own right, it has a dual vector space consisting of 
all linear functionals on TxM, and we denote it by *xT M ; one calls this vector space the 

cotangent space to M at x.  Hence, we can say αx ∈ *
xT M , and if vx ∈ TxM then we write 

the evaluation of αx on vx as αx(vx). 
 We can basically jump ahead to define the cotangent bundle on M as the disjoint 
union of all the cotangent spaces, which then has a projection T*M → M, and is locally 

trivial by way of local trivializations T*U → U × Rn* over all of the same open subsets 

that locally trivialize T(M), if one chooses a linear isomorphism of Rn with its dual; for 

instance, one could map the standard frame on R
n to its reciprocal coframe.  Similarly, 

this means that the bundle T(M) is isomorphic to the bundle T*M, but not canonically 
so13.  One also has restrictions T*U → U over any open subset U ⊂ M. 
 Going in the opposite direction, a local covector field on U is a section α: U → T*U, x  
֏ αx and a global covector field on M is a section α: M → T*M.  If U carries a 

coordinate system xi then the coordinate differentials dxi define a coframe on Rn* that is 

reciprocal to the frame defined by the ∂i : 
 

dxi(∂j) = δi
j .     (II.15) 

 
 Any local covector field α: U → T*U can then be expressed in local form as: 
 

α(x) = αi(x) dxi .    (II.16) 
 

in which the components αi(x) are presumed to be smooth functions on U. 
 Global covector fields are defined predictably, and the same caveat that applies to the 
existence of global non-zero vector fields applies to existence of global non-zero covector 
fields.  A local coframe field θi : U → T*U will be reciprocal to a unique local frame field 
ei on U, and if U carries a local coordinate system xi then one can express θi in the form: 
 

θi(x) = ( )i j
jA x dxɶ ,     (II.17) 

 

where ( )i
jA xɶ is the matrix inverse to ( )i

jA x at each x, and one also has: 

 
ei(x) = ( )i

jA x ∂i .     (II.18) 

 

                                                
 13   By “vector bundle isomorphism,” we simply mean that the manifolds T(M) and T*M are 

diffeomorphic by a diffeomorphism that takes each fiber Tx(M) to the fiber
x

T ∗ linearly. 
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 One might think that the isomorphism of T(M) and T*M would imply that anything 
that is true of one bundle is true of the other.  However, this shows one the danger of 
extending equivalence relations beyond their natural limits.  For instance, the infinite-
dimensional vector space of sections α: M → T*M, i.e., global covector fields, does not 
admit a natural Lie algebra structure, as does X(M).  Conversely, as we shall see, one can 

define the exterior derivative of a covector field, but not a vector field.  Interestingly, 
these last two statements are weakly related.  
 
 f.  Vector bundles in general [4-9].  Since the fibers of T(M) and T*M over any point x 
∈ M are both vector spaces, it is useful to generalize to the concept of (differentiable) 
vector bundle, which is a differentiable manifold E that projects onto M in such a manner 
that the fiber Ex over each x ∈ M is a vector space whose dimension n – which is assumed 
constant over M – is called the rank of the vector bundle 14.  Furthermore, one assumes 
that E is locally trivial, which means that each x ∈ M has some open neighborhood U 

such that E(U) is diffeomorphic to U  × Rn in such a way that the projection of E(U) onto 

U corresponds to the projection of U  × Rn onto its first factor.  These local trivializations 

also define the atlas of coordinate charts for the manifold E. 
 Although the mathematics of vector bundles can go off into abstruse, esoteric realms 
that often seem hopelessly divorced from the problems of physics, the same can be said 
of group theory; so the challenge to the theoretical physicist is to isolate from the 
potentially vast set of irrelevant sidetracks that one “critical path” that is most 
immediately relevant to the problem at hand, which is the spirit of Occam’s Razor.  For 
our purposes, the main objective of generalizing to vector bundles is merely to define the 
bundle of exterior differential forms on M and the bundle of multivector fields on M.  
Hence, we shall only point out some of the elementary constructions on vector bundles 
that will give us that much. 
 Some of the same constructions that one carries out with vector spaces can be applied 
to vector bundles, as well.  In particular, just as one can form direct sums V ⊕ W and 
tensor products V ⊗W of vector spaces, one can form direct – or Whitney – sums E ⊕ F 
and tensor products E ⊗F of vector bundles that are both fibered over the same manifold 
M.  All that is basically necessary is to do these operations on each fiber individually; that 
is, the fiber of E ⊕ F over x ∈ M is Ex ⊕ Fx , and the fiber of E ⊗ F is Ex ⊗ Fx .  Indeed, 
one can extend these constructions to direct sums of families of vector bundles and tensor 
products of finite families. 
 Both of these constructions can be applied to the vector spaces Γ(E) and Γ(F) of 
sections of the vector bundles E and F.  The result is that Γ(E) ⊕ Γ(F) represents the 
vector space of sections of E ⊕ F → M, and Γ(E) ⊗ Γ(F) represents the vector space of 
sections of the vector bundle E ⊗ F → M. 
 One can also define the dual E* to a vector bundle E by looking at all linear 
functionals on the vectors of E. 

                                                
 14 A non-constant rank tends to suggest a non-connected base manifold M, which we shall mostly 
exclude from our considerations. 
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 Some of things that one expects of tangent and cotangent bundles that no longer have 
any meaning for more general vector bundles are: the interpretation of elements in the 
fibers as directional derivatives, the existence of a natural Lie algebra on the vector space 
of sections, and the existence of a naturally-defined exterior derivative operator. 
 
 
 2. Differential forms on manifolds [4-10].  When the basic constructions that we 
discussed above are applied to the vector bundles T(M) and T*M, one finds that it is 
straightforward to define the bundles ΛkM → M and ΛkM → M, which represent the kth 
exterior products of the vector bundles T(M) and T*M, respectively.  Hence, the fibers of 
these vector bundles are the vector spaces that one obtains by taking the kth exterior 
power of the vector spaces TxM and *

xT M at each x ∈ M. 

 A section of the bundle ΛkM → M is called a k-vector field on M and a section of its 
dual ΛkM → M is called a differential k-form.  At each point x ∈ M, the value of such a 
field will be a k-vector in ,k xΛ or an algebraic k-form in k

xΛ , respectively.  Hence, one can 

think of a non-zero k-vector field on M as associating k linearly independent vectors in 
the tangent space to each point (at least in the simple case), and a differential k-form 
associates a completely anti-symmetric k-linear functional on the tangent vectors at x. 
 The local forms of k-vector fields A and k-forms α over U ⊂ M are: 
 

A(x) =
1

( )
!

ij m
i j mA x

k
∂ ∧ ∂ ∧ ∂⋯

⋯ , α(x) =
1

( )
!

i j m
ij m x dx dx dx

k
α ∧ ∧ ∧
⋯

⋯  (II.19) 

 
when U carries a coordinate system xi and, more generally: 
 

A(x) =
1

!k
Aij…m(x) ei ^ ej ^ … ^ em , α(x) =

1

!k
αij…m(x) θi ^ θj ^ … ^ θm   (II.20) 

 
when U carries a local frame field ei and its reciprocal coframe field θi.  (Of course, the 
component functions will not generally be the same in these two cases.) 
 One can define bilinear pairings of k-forms and l-vector fields for the cases of k < l, k 
= l and k > l.  However, one must be careful in the case of k = l to notice that although the 
evaluation of an algebraic k-form on a k-vector is a number, nonetheless, when this is 
going on at each point of a manifold, the evaluation of a differential k-form on a k-vector 
field gives a smooth function on M. 
 The basic rules for interior products that were discussed in Chapter I still apply with 
only a new interpretation.  For instance: 
 

iv(α1 ^ … ^ αk) = 1
1

1

ˆ( 1) ( )
k

i
i i k

i

α α α α+

=
− ∧ ∧ ∧ ∧∑ v ⋯ ⋯ ,  (II.21a) 

iα(v1 ^ … ^ vk) =
1

1
1
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i
i i k

i

α+

=
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 The exterior derivative operator that we previously defined in Chapter 1 can be 
extended to a linear anti-derivation d: Λk  → Λk+1 that not only agrees with df on smooth 
functions, but also agrees with the exterior derivative operator that we defined in Chapter 
I for local k-forms over open subsets U  ⊂ M that carry coordinate systems or local 
coframe fields.  Hence, if α ∈ Λk and β ∈ Λl then: 
 

d(α ^ β) = dα ^ β + (−1)k α ^ dβ .   (II.22) 
 
 Sometimes it useful to have a way of evaluating exterior derivatives without having 
to introduce local coframe fields and components.  For that purpose, one has the intrinsic 
formula for the exterior derivative.  Although it can be generalized (see [1]), we shall 
present it only for 1-forms.  Basically, one must evaluate the 2-form dα on an arbitrary 
pair of vector fields X, Y and obtain: 
 

dα(X, Y) = X(α(Y)) – Y(α(X) – α([X, Y]).   (II.23) 
 
Here, we see our first inkling of the relationship between Lie brackets of vector fields and 
exterior derivatives of 1-forms. 
 The Lie derivative of a k-vector field A or a k-form α with respect to a vector field v 
still works as it did in Chapter I, as well.  One has, for instance: 
 

Lv(X ^ Y) = LvX ^ Y  + X ^ LvY = [v, X] ^ Y + X ^ [v, Y],  (II.24a) 
Lvα = (ivd + div) α .       (II.24b) 

 
 
 3. Differentiable singular cubic chains [11-13].  In order to define the integration 
of differential forms on differentiable manifolds, one basically has to show how the 
integrals on manifolds can be converted – viz., “pulled back” – to conventional multiple 

integrals over regions in Rn in a coordinate-invariant manner.  Hence, it helps to be 

mapping regions of Rn into the manifold in question in a differentiable manner that 

permits such a pull-back. 

 A particularly useful class of differentiable mappings of regions in Rn into a manifold 

M that is adapted to this purpose is that of differentiable singular cubic chains.  These 
objects also have bonus that they define elementary building blocks for the topology of 
the manifold, as well. 

 To begin with, a k-cube Ik ⊂ Rk is simply any region of Rk that is homeomorphic to 

the k-fold Cartesian product [0, 1] ×… × [0, 1].  Note that this means that a k-cube could 
just as well be a closed k-ball or a k-simplex, which is the k-dimensional generalization of 
a triangle or a tetrahedron.  Of course, since we are going to be dealing with objects in the 
differentiable category, it is important to recall that the corners and edges of a cube 
prevent it from being diffeomorphic to a ball. 
 A singular cubic k-simplex in a topological space M is a continuous map σk: I

k → M.  
Note that since we did not require that it be a homeomorphism onto – i.e., a topological 
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embedding of a k-cube – there is nothing to say that the image of Ik is still k-dimensional; 
indeed, it could very well be merely a point.  This is why one calls such simplexes 15 
“singular.”  As it turns out the effect of such degenerate cases eventually disappears when 
one goes on to homology.  A differentiable singular cubic k-simplex is then a singular 
cubic k-simplex for which the defining map is differentiable.  Since the k-cube is not 
really a differentiable manifold, in the first place, the way that one addresses this detail is 

to extend σk to a differentiable map on any open neighborhood of Ik in Rk.  Because 

differentiation is a purely local process, the differentials of all of the extensions must 
agree everywhere on Ik, as well as the functions themselves. 
 Once again, differentiable k-cubes, which is how we will abbreviate the more 
cumbersome expression, do not have to be diffeomorphisms onto.  Also, one finds that in 
the eyes of homotopy theory, differentiability is no severe restriction, since a 
“smoothing” argument shows that any homotopy class [σk] of continuous maps of Ik into 
M contains a differentiable representative. 
 A differentiable singular cubic k-chain, or differentiable k-chain, for short, is a 

formal linear combination 
1

N

i i
m

α σ
=
∑ of a finite number of k-cubes σi with real coefficients 

αi .  We should point out that singular homology (see, [11, 12]) usually starts with 

coefficients in more general rings than R, such Z, and the resulting homology has more 

detail than what we will be considering, but we are using real coefficients to be consistent 
with the de Rham cohomology that we shall discuss in a later section.  If one is justifiably 
suspicious of all “formal” constructions as having no rigorous basis, then be assured that 
these formal linear combinations can be easily made rigorous.  All one needs to do is 

define the “free R-vector space” Ck(M; R) that has the set of all k-cubes in M for its basis.  

Suffice it to say the main consequence of this construction is that one can regard the set 
of all k-cubes in M as the basis for an uncountably-infinite dimensional vector space.  The 
miracle of homology is that one can usually reduce this uncountable infinitude to a finite 
set of equivalence classes that pertains to the topology of M. 
 Since non-zero real numbers have signs, one can think of a k-cube as being oriented 
by the sign of its coefficient.  The actual numerical value of the coefficient should be 
regarded as simply a scalar that one associates with the k-cube, like a “charge.” 
 The nature of “free” constructions in mathematics, such as free groups, rings, 
modules, etc., is that the only role that the set of generators plays is due to solely to its 

cardinality.  That is, the free R-vector space over a set of three apples is no different from 

the one over a set of three oranges; they are both linearly isomorphic to R3.  In particular, 

                                                
 15 Although in the early days of homology everyone was content to form the plural of “simplex” just as 
they formed the plural of “complex” – with an “es” – sometime in the 1960’s mathematicians apparently 
had second thoughts because “vertex” forms its plural with “ices,” and took to saying “simplices;” note that 
the spelling checker on most word processors does not approve of that construction.   One could say it is 
really just a matter of personal taste, but that is also the sort of attitude towards the English language that 
gave us “Canterbury Tales.” 
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the topology of M does not affect the free R-vector space of all k-chains in M, at this 

point.  The way that topology enters the picture is by way of defining a boundary map for 

each k-chain in Ck(M; R).  This means that one is regarding the k-cubes in a given k-chain 

as being “glued” to each other on their mutual boundaries in some way. 

 In general, the boundary map is a linear map ∂: Ck(M; R) → Ck−1(M; R) with the 

property that ∂2 = 0.  Since one assumes linearity, it is sufficient to define the effect of the 
boundary operator on k-cubes.  By definition, one regards any 0-cube – i.e., any point in 
M – as having boundary zero.  The boundary of a 1-cube – i.e., an oriented path AB in M 
– is ∂(AB) = B – A.  If one represents a 2-cube in M by the images of its vertices as ABCD 
then one sees that its boundary is the 1-chain: 
 

∂(ABCD) = AB + BC + CD + DA.   (II.25) 
 
A second application of ∂ to this 1-chain gives: 
 

∂2(ABCD) = (B – A) + (C – B) + (D – C) + (A – D) = 0,  (II.26) 
 
as expected.  We illustrate this situation in Fig. 1. 
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Figure 1.  The boundary of a boundary of a 2-cube. 

 
 An elementary example that shows how the boundary operator attaches k-cubes along 
their boundaries is that of a circle, which we think of as the 1-chain AB + BA, whose 
boundary is then B – A + A – B = 0.   
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Figure 2.  The representation of a circle as a 1-chain with boundary zero. 
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However, this means that we must regard the 1-cube BA as basically distinct from – AB, 
since otherwise the 1-chain itself would vanish, as well.  We illustrate this situation in 
Fig. 2. 
 Many two-dimensional examples can be represented as squares with sides and 
corners identified by means of the boundary operator.  We depict some of them in Fig. 3. 
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Figure 3.  Two-dimensional spaces that are described by 2-chains. 

 
 We can represent these four examples by 2-chains c2 and boundary operators as 
follows: 
  Cylinder: ∂c2 =    CA + AB – BD − CD  
   + AC – AB – DB + CD 
   = AC + CA – (BD + DB), 
 
which then represents the formal difference of two circles. 
 
  Torus: ∂c2 =   BA + AC – CD – BD 
     − AB + CA + DC – DB 
     + AB – AC – DC + BD 
     − BA – AC + CD + DB 
    = 0, 
 
which is what one would expect for a torus.  This time, one sees that the 1-cycles AC + 
CA and AB + BA do not bound any 2-chains, nor does their difference. 
 
  Möbius band: ∂c2 =    AB − BD − CD – CA 
     − AB           + CD            + DA − BC  
    =   BD + DA – (CA + BC). 
 
If one replaces BD + DA with the homologous arc BA, while replacing CA + BC with – 
AB then one sees that the boundary of a Möbius band is a circle, which is completed 
twice. 
  Klein bottle: ∂c2 =    BA + AC – CD – BD 
     − AB          + DC          + CB – DA 
     + AB – AC – DC + BD 
     − BA           + CD         − CB  + DA 
   = 0 
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One can think of a Klein bottle as a twisted cylinder with its ends identified in the same 
way that a Möbius band is a twisted rectangle with its ends identified. 
 It is important to understand that, in some sense, the boundary operator must be 
defined “by hand” to reflect the topological nature of the manifold M and that it is not, by 

any means, canonically defined by the bases for the vector spaces Ck(M; R). 

 We have now introduced the fact that there are three different types of k-chains ck as 
far as the boundary operator is concerned: the ones for which ∂ck is non-vanishing, the 
ones for which ∂ck is vanishing, and the ones for which ck = ∂ck+1 for some k+1-chain 
ck+1.  Since ∂2 = 0, the last possibility implies the second-to-last one.  The first type of k-
chain has no special name, but those of the second type are called k-cycles, and those of 

the third type are called k-boundaries.  Since ∂: Cx(M; R) → Ck+1(M; R) is linear, its 

image is a vector subspace of Ck+1(M; R) that represents all k+1-boundaries, and we 

denote it by Bk+1(M; R).  Similarly, its kernel is a vector subspace of Cx(M; R) that 

consists of all k-cycles, and we denote it by Zk(M; R). 

 The power of homology theory to define elementary building blocks for the topology 

of M is that even though both Zk(M; R) and Bk(M; R) are generally infinite-dimensional 

vector spaces, nonetheless, their quotient vector space 16 Hk(M; R) = Zk(M; R) / Bk(M; R) 

is often finite-dimensional; indeed, it is often 0-dimensional.  One calls the vector space 

Hk(M; R) the kth homology space of M.  Ordinarily, one uses coefficients in a more 

general ring and obtains homology modules, but, once again, we shall be mostly 
concerned with the field of real coefficients, for the sake of de Rham cohomology.  In 
order for a homology space to vanish in dimension k all of the k-cycles must bound k+1-
cycles.  A convenient way of regarding the basis elements for the homology space Hk(M; 

R) is to think of them as essentially “k-dimensional holes” in M, such as circles that do 

not bound disks and spheres that do not bound balls. 
 The equivalence relation of homology is actually more tangible than it might seem.  
One sees that two k-cycles zk and kz′  are homologous iff their difference is the boundary 

of a k-chain ck+1: zk − kz′  = ∂ck+1 .  As we saw above, the boundary of a cylinder is a pair of 

circles.  Hence, since circles are 1-cycles, one can say that the two boundary components 
of a cylinder are homologous, and the 2-chain that effects this homology is the cylinder 
itself.  When the boundary of a k-chain has only one component, such as the boundary of 
a disk, one says that this component is homologous to zero.  Often, physics uses a more 
general homology to describe this sort of situation that one calls cobordism.  The main 
difference at the elementary level is that one does not assume a triangulation of the 
differentiable manifold whose boundary components are being connected together, but 

                                                
 16 Recall that the quotient A/B of two vector spaces B ⊂ A is the set of all translates of the subspace B by 
the vectors in A.  One can also say that its elements are equivalence classes [a] of vectors a1, a2 ∈ A whose 
difference a1 – a2 is some vector b ∈ B. 
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the effect in the long run is that generally much less is known about the structure of the 
cobordism ring of compact submanifolds of a given manifold than is known about its 
singular homology.  Generally, the power of cobordism is more necessary when one is 
dealing with purely mathematical aspects of differentiable manifolds, such as defining 
equivalence classes of them and classifying them. 
 One of the advantages of using cubes for ones basic topological objects is that a 
homotopy of a singular k-cube is itself a singular k+1-cube.  This follows from the fact 
that, by definition, if σk: I

k → M is a singular k-cube in a topological space M then a 
homotopy of σk is a continuous map F: Ik × I→ M, that is, a continuous map F: Ik+1→ M, 
which is then simply a singular k+1-cube in M.  The maps F(x, 0) and F(x, 1) then 
represent two opposite k-faces of the k+1-cube F. 
 As we saw above, a 1-cycle can take the form of a loop, up to homeomorphism.  If a 
loop bounds a 2-chain, which is then homeomorphic to a two-dimensional disk, then the 
boundary is homotopic to any point of the disk.  Conversely, if no such disk exists then 
the boundary loop cannot be contracted to any point in M.  Hence, one sees that there is 
clearly a close relationship between homology and homotopy, at least in dimension one.  
In fact, they are related in all dimensions, but not as conveniently as one might wish.  The 
closest that one can come, at present, is Hurwitz’s theorem, which says, for our purposes, 
that the first non-zero homotopy group – say πk(M) – has as many generators as the 

dimension of Hk(M; R); for k = 1, one must specify that one is looking at generators of 

the “Abelianization” of π1(M), if it is not already Abelian.  For all dimensions above that 
dimension, one only has a possibly many-to-one map of generators for πm(M) to basis 

vectors for Hm(M; R). 

 For instance, as Fig. 2 shows, the homology of the circle S1 is H0(M; R) = R, H1(M; 

R) = R, Hk(M; R) = 0, for k > 1.  For any contractible topological space – whose 

homotopy groups also vanish – all homology vector spaces vanish, as well.  Such 
topological spaces are sometimes called acyclic. 

 It is always true that if the dimension of a manifold M is n then Hm(M; R) = 0 for all 

m > n. 
 As an example of one of the limitations to doing homology with coefficients in a field 

such as R, consider the difference between the 2-sphere S2 and the two-dimensional 

projective space RP2.  Whereas S2 is simply-connected, RP2 has a fundamental group that 

is isomorphic to Z2, which comes from the two-to-one projection of S2 onto RP2.  Had we 

considered homology with integer coefficients, as one usually does in singular homology, 

we would have found that H1(S
2) = 0, but H1(RP2) = Z2 .  However, the use of 

coefficients in a field does not permit the appearance of “finite cyclic summands” in the 

homology modules, and we then find that H1(S
2; R) = H1(RP2; R) = 0.  Therefore, one 

sees that there is something topologically “incomplete” about looking at homology with 
real coefficients. 
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 4. Integration of differential forms [4-10].  Before going on to a discussion of the 
duals of the homology spaces, we first return to the more elementary business of 
integrating differential forms over manifolds. 
 In effect, we shall be restricting ourselves to manifolds that can be “triangulated,” i.e., 
ones that are homologically equivalent to finite chain complexes with suitably-defined 
boundary operators.  In fact, this is not much of a restriction, since it can be shown (cf., 
[14]) that any compact differentiable manifold can be triangulated. 
 One first notes that the only things that can be integrated over an n-dimensional 
compact manifold M are n-forms, which must, moreover, take the form fVn , where Vn is a 

globally non-zero volume element on M.  Of course, this presupposes that such a volume 
element actually exists, which means that first we must address the issue of orientability 
for differentiable manifolds. 
 The fibers of Λn(M) → M are each one-dimensional, so if one takes away the zero 
section from Λn(M) then what will be left looks like the disjoint union (−∞, 0) ∪ (0, +∞) 
at each point of M.  Up to homotopy, one can contract each such union to a pair of 
disjoint points, which we denote by {−, +}.  This defines a fibration O(M) → M whose 

fibers all look like {−, +}, but it does not have to be trivial.  In fact, it is trivial iff it 
admits a global section, which we will then call an orientation for M.  (Really, it is an 
orientation for T(M).) 
 Not all manifolds are orientable.  For instance, the aforementioned Klein bottle and 
Möbius band, as well as all of the projective spaces, are all non-orientable.  Since all of 

them have Z2 for a fundamental group, one suspects that this is relevant; it is, but we 

shall not go into the matter of “Stiefel-Whitney classes” at the moment.  All simply-
connected manifolds are orientable, but not all orientable manifolds are simply-connected 
(counterexample: torus).  In any event, O(M) itself is always an orientable manifold, and 

one refers to it as the orientable covering manifold of M. 
 Actually, although orientability of a manifold is necessary and sufficient for the 
existence of a volume element, nonetheless, the choice of volume element is still open to 
one’s discretion.  Hence, one has to specify that a manifold M be not only orientable, but 
also oriented, and a choice of volume element has made before one can define integrals 
on it. 
 Having made such restrictions on a compact manifold M, as well as a choice of 
triangulation, M = cn = ∑ αiσi one then defines the integral of an n-form fVn over M by 

assuming that integration is linear with respect to linear combinations of n-chains: 
 

nM
f∫ V =

i
i nf

σ
α∑ ∫ V .     (II.27) 

 
 One then defines the integral over any basis simplex σi: I

n → M by pulling back the 
integral over its image in M to an integral over In: 
 

i
nf

σ∫ V =
1 1 1

0 0
( ) ( ) n

i if J dx dxσ σ∫ ∫⋯ ⋯ ,   (II.28) 
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in which J(σi) is the Jacobian of the map σi .  Hence, in order for this to be non-vanishing, 
one must consider only the non-singular n-simplexes; i.e., the ones that are 
diffeomorphisms onto their images, which makes them embeddings. 
 Stokes’s theorem can be generalized to the integration of n-forms over n-chains in a 
manner that has deep topological significance, as we shall see in the next section.  If α ∈ 
Λn(M) and M = ∂cn+1 is an n-chain then Stokes’s theorem says that: 
 

1nc
α

+∂∫  =
1nc
dα

+
∫  .     (II.29) 

 
 We introduce the following bracket notation for the integration of an n-form α on an 
n-chain cn : 

<α, cn> = 
nc
α∫ .     (II.30) 

 
With this notation, Stokes’s theorem takes the form: 
 

<α, ∂cn+1> = <dα, cn+1>.    (II.31) 
 
 In this form, Stokes’s theorem appears to be asserting that in some sense the exterior 
derivative operator on differential forms is “adjoint” to the boundary operator on chains.  
In the next section, we shall clarify the extent to which this is indeed the case. 
 An important consequence of Stokes’s theorem is that if zk and kz′  are homologous k-

cycles then the integral of a closed k-form α is the same over both zk and kz′ .  Abstractly, 

this only says that the value of the integral <α, zk> can be expressed as <α, [zk]>. 
 At the more practical level of physics applications, this invariant pairing of closed k-
forms and k-dimensional homology classes by way of integrals serves as the basis for 
certain integral invariants when the homology of two k-cycles comes about in less 
abstract ways.  For instance, the interpolating k+1-chain ck+1 − that is, one that makes zk 
− kz′  = ∂ck+1 – might take the form of a differentiable homotopy of zk to kz′ , or even a one-

parameter family of diffeomorphisms that represent the flow of a vector field on ck+1 . 
 
 
 5.  De Rham’s theorem [5, 10].  From (II.30), we see that for a fixed α ∈ Λk the 

bracket <α, ck> defines a linear functional on the vector space Ck(M; R).  If we denote the 

dual vector space to Ck(M; R) by Ck(M; R) then we can say that <α, . > ∈ Ck(M; R).  

Since the elements of Ck(M; R) are called k-chains, we call the elements of Ck(M; R) 

cochains. 
 We can define a coboundary operator on cochains that is adjoint to the boundary 
operator under the bilinear pairing (ck, ck) = ck(ck) of k-cochains with k-chains that 
amounts to the evaluation of a linear functional on a vector: 
 

(δck, ck+1) ≡ (ck, ∂ck+1).    (II.32) 
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Note the resemblance to (II.31). 

 Hence, from the way that we defined things the coboundary operator δ: Ck(M; R)  → 

Ck+1(M; R) is a linear operator with the property that δ2 = 0.  This means that most of 

what we said in the context of chains applies just as well to cochains.  For instance, there 
are three types of cochains in the eyes of δ: cochains for which δck ≠ 0, those for which 
δck = 0, and those for which there is a k−1-cochain ck−1 such that ck = δck−1.  The first type 
has no special name, but the second type is called a cocycle, while the last type is called a 

coboundary.  We denote the vector space of all k-cocycles by Zk(M; R) and the vector 

space of all k-coboundaries by Bk(M; R); the former space is the kernel of δ: Ck(M; R)  → 

Ck+1(M; R), while the latter is the image of δ: Ck−1(M; R) → Ck(M; R). 

 Just as we defined the real singular homology vector spaces by quotients of spaces of 
cycles by spaces of boundaries, we now do the same thing with cocycles and 

coboundaries.  We call the vector space Hk(M; R) = Zk(M; R) / Bk(M; R) the real singular 

cohomology vector space in dimension k.  One of the advantages of using real 
coefficients that partially compensates for the fact that we cannot consider the “torsion” 
summands in our homology or cohomology modules – i.e., finite cyclic Abelian groups – 

is the fact that one does indeed have that the vector space Hk(M; R) is the dual to the 

vector space Hk(M; R); in particular, they have the same dimension, so if one of them 

vanishes then the other one does. 
 Now, since the exterior derivative operator d: Λk → Λk+1 works in a manner that is 
clearly analogous to the coboundary operator, we see that we can define vector 
spaces ( )k

dRZ M , ( )k
dRB M , and ( )k

dRH M = ( )k
dRZ M / ( )k

dRB M  by means of the kernel, image, 

and quotient constructions.  One calls the vector space( )k
dRZ M , the space of closed k-

forms, ( )k
dRB M , the space of exact k-forms, and ( )k

dRH M , the de Rham cohomology vector 

space in dimension k.  A de Rham cohomology class can then be represented by a closed 
k-form, and two closed k-forms α, α′ are cohomologous if they differ by an exact k-form: 
α – α′ = dβ, for some k−1-form β.  One must note that β is not unique, since one can add 
any closed k−1-form γ to it and still produce the same exterior derivative: d(β + γ) = dβ. 
 Since a de Rham cohomology class [α] ∈ ( )k

dRH M can be represented by a closed k-

form α and a k-form defines a singular cochain by way of <α, .>, we see that we have a 

linear map from ( )k
dRZ M  to Zk(M; R).  One finds that this map also “descends to 

cohomology” since it commutes with the action of the exterior derivative and coboundary 

operators.  Hence, there is a corresponding linear map of ( )k
dRH M to Hk(M; R).  It was 

the profound and far-reaching contribution of Georges de Rham that this map could be 
shown to be an isomorphism.  Basically, it meant that the otherwise analytic issue of 
whether a closed k-form was also an exact k-form, which amounts to a question of 
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integrability for the operator d, was rooted in purely topological matters, such as whether 
the manifold M has “holes” in dimension k. 
 In dimension one this usually takes the form of multiple connectedness.  Hence, one 
finds many classical references to the difference between “single-valued” potentials and 
“many-valued” potentials in the context of vector calculus, such as in electromagnetism 
or hydrodynamics.  One should be advised that since d2 = 0 follows from the equality of 
mixed partial derivatives of functions that are twice continuously differentiable, the 
introduction of many-valued potentials is one way of getting around that identity by 
dropping the assumption that the second derivative exists everywhere.  Rather than deal 
with topology by way of closed forms that are not exact, one introduces topology in the 
form of the singular subset of the many-valued potential φ for which d2φ ≠ 0, which 
would be the points at which d2φ has jump discontinuities. 
 If M is a contractible space, such as any vector space, then any closed k-form will be 
exact, and this will be true in each dimension k.  Since every point of any manifold has a 

neighborhood U that is homeomorphic to Rn – hence, contractible – one then sees that 

Hk(U; R) ≅ ( )k
dRH U  vanishes in every dimension, and one can say that every closed k-

form on M is locally exact; this is referred to as the Poincaré lemma. 
 One way in which cohomology differs from homology, despite the linear 
isomorphism of the spaces, is in the fact that there is a natural ring structure on 
cohomology that is does not appear in homology, in general.  It is easiest to account for 
the ring structure in terms of de Rham cohomology because the “cup” product [α] ∪ [β] 
of a cohomology class [α] in dimension k with another one [β] in dimension l is simply 
the k+ l-dimensional cohomology class [α ^ β].  In order to show that this definition does 
not depend upon the choice of closed k-form α and closed l-form β, one actually only 
needs to show that α ^ β is also closed; of course, this is an elementary calculation. 
 Now, suppose that M is orientable and given a choice of volume element V ∈ Λn.  We 

have already seen that this implies isomorphisms of the vector spaces Ak and An−k, which 
define the fibers of the vector bundles in question.  Hence, there is an isomorphism of the 
vector bundles themselves #: Λk → Λn−k, A ֏  iAV that one calls Poincaré duality, as 

well. 
 In the singular homology of orientable manifolds (see [11, 12]), the phrase “Poincaré 
duality” generally refers to a set of isomorphisms of the homology modules Hk(M; R) 
with the cohomology modules Hn−k(M; R), where R is a more general coefficient ring.  
We could use de Rham’s theorem to replace Hn−k(M; R) with ( )n k

dRH M−  for the case 

where R = R, but we find that on orientable manifolds it is also possible to define 

homology vector spaces that are directly dual to the de Rham cohomology spaces, and 
which make Poincaré duality even more straightforward. 
  We simply define our de Rham k-chains 17 to be k-vector fields and our boundary 
operator to be the divergence operator δ: Λk → Λk−1 , which still takes the same form δ = 

                                                
 17 Strictly speaking, de Rham did not define the homology that was dual to his cohomology in terms of 
multivector fields and the divergence operator, but in terms of currents, which amount to continuous linear 
functionals on k-forms – i.e., k-form distributions.  However, since the structure of the homology that we 
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#−1 ⋅ d ⋅ #, as it did in the previous chapter.  (From now on, we drop the use of δ to mean 
the coboundary operator in singular cohomology.)  The kernel of δ, which we denote 
by ( )dR

kZ M , consists of divergenceless k-vector fields, which play the role of de Rham k-

cycles.  The image of δ: Λk−1 → Λk , which we denote by ( )dR
kB M , then plays the role of 

de Rham k-boundaries.  The quotient vector space ( )dR
kH M is then the de Rham homology 

vector space in dimension k, and is isomorphic to ( )k
dRH M , but not canonically, and is 

therefore also isomorphic to the real singular homology vector space Hk(M; R) . 

 One sees that Poincaré duality #: ( )dR
kH M → ( )n k

dRH M−  follows naturally from the 

way that we defined δ, since it implies that: 
 

d# = #δ.     (II.33) 
 
Hence, # takes de Rham k-cycles to n−k-cocycles and k-boundaries to n−k-boundaries, 
which allows one conclude that the isomorphism #: ( )dR

kC M → ( )n k
dRC M−  “descends to 

homology.” 
 One finds that there is another intriguing difference between homology and 
cohomology in the fact that there is a Lie algebra structure defined over vector fields that 
is not defined over covector fields.  In fact, the Lie bracket of divergenceless vector fields 
is also divergenceless, so one can define the Lie bracket of de Rham homology classes in 
dimension one.  It is even possible to extend the Lie bracket to include k-vector fields for 
k > 1, but since the divergence operator is not an anti-derivation on k-vector fields, it is 
more difficult to establish whether the Lie bracket of divergenceless k-vector fields is still 
divergenceless.  Furthermore, the possible role that topology might play in a Lie algebra 
structure on the homology spaces would have to be explored. 
 
 
 6. Hodge theory [4, 15].  In the study of Riemannian manifolds, one has another 
isomorphism of k-vector fields and k-forms at one’s disposal.  It is rooted in the fact that 
a Riemannian metric on a differentiable manifold M, which is a positive-definite 
symmetric non-degenerate second-rank covariant tensor field g on M, defines an 
isomorphism ig : T(M) → T*M, v ֏  igv, of the tangent bundle with the cotangent bundle.  
In this definition, we intend that the covector field igv is defined by: 
 

(igv)(w) = g(v, w)     (II.34) 
 

for any tangent vector w on M. 
 This isomorphism of bundles defines a corresponding isomorphism of the vector 
space X(M) = Λ1(M) of vector fields with the space Λ1(M) of covector fields (i.e., 1-

forms).  By tensor product, and consequently, exterior product, one can extend this to an 
isomorphism ig ^ …^ ig : Λk → Λk of k-vector fields and k-forms. 

                                                                                                                                            
are defining is clearly derived from corresponding concepts in de Rham cohomology, we shall make a 
minor abuse of terminology. 



Topology of differentiable manifolds                                                         79 

 If g = gµν dxµ dxν in some local coordinate system (U, xµ) then: 
 

igv = (gµν v
ν) dxµ = vµ dxµ.    (II.35) 

 
Hence, the isomorphism ig amounts to what is usually called “lowering the index” in this 
case, as well as in its extension to k-vector fields, which then amounts to lowering all 
indices.  In particular, for bivector fields, we have: 
 

(ig^ ig)A = 1
2 Aµν  dxµ ^ dxν = 1

2 (gµα gνβ – gµβ gνα) Aαβ dxµ  ̂  dxν . (II.36) 

 
Therefore, we can think of the linear map ig ^ ig as having the matrix: 
 

[ig ^ ig]µναβ = gµα gνβ – gµβ gνα ,   (II.37) 
 
relative to this choice of local coframe field. 
 Understanding this isomorphism is crucial to all of what follows, since the whole 
point of pre-metric electromagnetism is to replace this isomorphism with one that is 
defined not by the spacetime metric, but by the electromagnetic constitutive laws of the 
medium. 
 When one composes the inverse [ig ^ …^ ig]

−1: Λk → Λk  of the metric isomorphism 
with the Poincaré isomorphism #: Λk → Λn−k one gets a linear isomorphism *: Λk → Λn−k: 
 

* = # ⋅ [ig ^ …^ ig]
−1      (II.38) 

 
that one refers to as Hodge duality. 
 Since * is defined for every k from 0 to n one can take its square and obtain: 
 

* 2 = (−1)k(n−k) I.     (II.39) 
 
 Of particular interest is the middle dimension k in an even-dimensional space, for 
which *2 = I, so the eigenvalues of * in this case are +1 and −1.  This allows one to 
decompose Λk into a direct sum of eigen-bundles that one calls the bundles of self-dual 
and anti-self-dual k-forms, respectively.  However, we shall be generalizing from the 
case of a Lorentzian g, which is not positive-definite, and whose eigenvalues in the case 
of 2-forms on a four-dimensional manifold are imaginary, not real.  A decomposition of 
Λ2 into essentially “real” and “imaginary” sub-bundles is not canonical, and must be 
specified, much as one chooses a frame for a vector space. 
 The metric isomorphism allows one to map the divergence operator on k-vector fields 
over to a codifferential operator δ: Λk → Λk−1 on k-forms: 
 

δ = ig ⋅ δ ⋅ 1
gi
−  = *−1d* = (−1)n(k+1) *d*    (II.40) 

 Clearly, one has δ2 = 0, as a consequence of the fact that d2 = 0.  A k-form α for 
which δα vanishes is called co-closed and one for which there is a k+1-form β such that 
α = δβ is called co-exact. 
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 Using the operators d and δ, one can form a second-order differential operator ∆: Λk 
→ Λk: on k-forms: 

∆ = dδ + δd      (II.41) 
 
that one calls the Laplacian operator for the Riemannian manifold (M, g). 
 A k-form α for which ∆α = 0 is called harmonic.  Clearly, it is sufficient that a 
harmonic k-form be both closed and co-closed: 
 

dα = 0,   δα = 0.    (II.42) 
 
In fact, if M does not have a boundary then this is also necessary. 
 This follows from the fact that if α, β ∈ Λk then: 
  

α ^ *β  = β  ^ *α      (II.43) 
 
is always an n-form, and if we assume that M is compact then we can define the 
following symmetric, bilinear functional on k-forms: 
 

(α, β) = 
M

α β∧ ∗∫ ,     (II.44) 

which is also positive-definite. 
 From (II.39) and (II.43), * becomes a (graded) self-adjoint operator under this inner 
product. 

(*α, β) = (−1)k(n−k)(α, *β).     (II.45) 
 

 Suppose α ∈ Λk and β ∈ Λk+1, so that (dα, β) and (α, δβ) make sense.  Now: 
 

d(α ^ *β) = dα ^ *β + (−1)k α ^ d*β = dα ^ *β  − α ^ *δβ ,  (II.46) 
 
so, by Stokes’s theorem, one has: 
 

(dα, β) − (α, δβ) = 
M

α β
∂

∧ ∗∫ .    (II.47) 

 
Hence, when M is closed (= compact, without boundary) d and δ are adjoint to each 
other. 
 This makes: 
 
  (∆α, β) = (dδα, β) + (δdα, β)  

= (−1)k[(δα, δβ) + (dα, dβ)] + ( )
M

dα β δα β
∂

∧ ∗ + ∧ ∗∫ . (II.48) 

 
 Therefore, if ∆α = 0, which is a generalization of the Laplace equation, and one 
specializes this last formula by setting β = α then since the inner product is positive-
definite, we see that when M has no boundary one must have the vanishing of dα and 
δα.as a consequence of the vanishing of ∆α. 
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 Another formula that is useful in the solution of boundary-value problems for the 
Laplace equation is Green’s formula (one of many, actually; cf., [16, 17]): 
 

(∆α, β) − (α, ∆β) = [ ]
M

d dα β β α δα β δβ α
∂

∧ ∗ − ∧ ∗ + ∧ ∗ − ∧∗∫ . (II.49) 

 
Once again, we see that whether the Laplacian operator itself is self-adjoint depends upon 
the vanishing of the boundary of M. 
 The Hodge decomposition theorem says that on a compact, orientable manifold M 
without boundary the vector spaces Λk can all be expressed as direct sums Zk ⊕ Yk ⊕ Hk, 

in which Yk represents the space of all co-closed k-forms and Hk represents the space of 

all harmonic k-forms.  In other words, any k-form can be expressed as the sum of a closed 
form, a co-closed form, and a harmonic form. 
 A well-known consequence of this decomposition is the fact that if M is a compact, 
orientable manifold without boundary then each de Rham cohomology class [α] 
∈ ( )k

dRH M contains a unique harmonic representative.  In particular, if M is a vector space 

then there should be no harmonic forms in any dimension.  This has, as a consequence, 
the well-known result of vector calculus that is called Helmholtz’s theorem, which says 
that any vector field (i.e., 1-form α) can be uniquely expressed as the sum of an 
irrotational (i.e., closed) vector field and a solenoidal (i.e., co-closed) one.  Actually, the 
way that this changes in the case of non-vanishing cohomology is that one simply has to 
specify the generators γa, a = 1, …, bk of ( )k

dRH M , or equivalently, the values of the <α, 

γa>, in addition to the irrotational and solenoidal parts; bk refers to the Betti number in 
dimension k, which is the dimension of ( )k

dRH M .  This decomposition was discovered by 

Lord Kelvin in the case of multiply-connected spaces (k = 1, b1 > 0). 
 Of course, if one has been exposed to the rich variety of harmonic functions that arise 
by way of solving boundary-value problems in the Laplace equation – also known as 
potential theory – then one will find it disappointing that Hodge theory gives such a 
result.  The resolution of the discrepancy is in the fact that the Hodge decomposition 
theorem is purely related to manifolds without boundary, which obviously eliminates the 
possibility of posing boundary-value problems. 
 There are, however, some results for the case of manifolds with boundary.  They 
mostly involve going to what one calls relative homology, in which a chain in M is a 
relative cycle modulo ∂M iff its boundary is a chain in ∂M.  Since this is going beyond 
the scope of the present study, we simply refer the curious to the work of Duff and 
Spencer [16, 17]. 
 Another physical context in which Hodge theory does not apply is when one 
generalizes the construction of the Laplacian operator on k-forms to metrics of more 
general signature type, such as Lorentzian manifolds.  One finds that the proof of the 
Hodge decomposition theorem breaks down due to the fact that the kernel of the 
d’Alembertian operator, which is hyperbolic, is infinite-dimensional, while the kernel of 
the Laplacian, which is elliptic for Riemannian manifolds, is finite-dimensional. 
 Basically, Hodge theory will apply to the physics of static or stationary fields, in 
which the four-dimensional hyperbolic picture reduces to a three-dimensional Euclidian 
one.  However, this reduction must be treated with care, as it bears upon fundamental 
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issues in relativistic physics, such as simultaneity, and fundamental issues in 
mathematics, such as integrability. 
 
 
 7.  Space-time splittings of the spacetime manifold.  Although the subtle 
geometrical, topological, and physical issues that are involved with space-time splittings 
(see [18] for more discussion and references), since our treatment of the foundations of 
electromagnetism begins in the traditional realm of static fields, it is unavoidable that we 
make at least some perfunctory remarks about the subject. 
 If the spacetime manifold M takes the form of a four-dimensional vector space V, as it 
does in special relativity, then the main geometrical issue associated with decomposing 
spacetime into a three-dimensional spatial manifold Σ and a one-dimensional time line L 
is simply one of decomposing V into a direct sum L ⊕ Σ. 
 This implies that any vector v ∈ V can be uniquely expressed as a sum vt + vs of a 
temporal vector vt ∈ L and a spatial vector vt ∈ Σ. One also has canonically-defined 
projections Pt: V → L, v ֏  vt and Ps: V → Σ, v ֏  vs . 
 Usually, it is the line L that is defined first, in the form of a line that is tangent to the 
motion of the measurer/observer that defines a rest space.  In other words, one is 
“modding out” the motion of the measure/observer by defining a comoving frame field 
along its world line.  The complementary spatial vector space Σ then becomes essentially 
the normal space V/L to L in V.  However, this normal space is really a subspace of V*, 
not a subspace of V, so if one is to define a complement to L in V, one must either choose 
it arbitrarily or introduce – say – a scalar product, such as the Minkowski scalar product, 
and define Σ to be the orthogonal complement to L.  Of course, that is not in the spirit of 
pre-metric physics, but fortunately there is much that can still be said about space-time 
splittings at a pre-metric level, as we shall see. 
 Now, when one goes from a vector space V to a more general manifold M there are 
actually two ways that one can speak of space-time separability.  The most stringent form 
is to demand that the manifold M take the form of a product manifold L × Σ, where L is a 
one-dimensional temporal manifold and Σ is a three-dimensional spatial manifold.  

Hence, the time manifold might be either R, as in the vector space, or possibly the circle 

S1, which would be more appropriate to situations in which periodicity featured 
prominently. 
 An immediate consequence of assuming that M has a product structure is the fact that 
the tangent bundle T(M) can be given a direct sum – i.e., Whitney – decomposition L(M) 
⊕ Σ(M), which then means that the tangent space Tx at any point x M admits a direct sum 
decomposition Lx ⊕ Σx as a vector space, with the previous consequences applying 
locally.  Similarly, one has a Whitney sum decomposition of the cotangent bundle T*M 
into L*M ⊕ Σ*M. 
 One then has direct sum decompositions of the various tensor products of tangent and 
cotangent bundles.  For instance: 
 

T(M) ⊗ T(M) = [T(L) ⊗T(L)] ⊕ [T(L) ⊗T(Σ)] ⊕ [T(Σ) ⊗T(L)] ⊕ [T(Σ) ⊗T(Σ)], 
 
and similarly for T*M ⊗ T*M. 
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 One often hears the projections Ttt , Tts , Tst , Tss of a second-rank tensor field T  when 
it is decomposed in this way as its time-time, time-space, space-time, and space-space 
projections.  (See, for instance, Cattaneo [19]). 
 Under symmetrization or anti-symmetrization, one finds that the sub-bundle [T(L) 
⊗T(Σ)] ⊕ [T(Σ) ⊗T(L)] becomes either T(L)⊙T(Σ) or T(L) ^ T(Σ), respectively.  In 
particular, the exterior algebra Λ*(M) of T*M becomes: 
 
     Λ0M = Λ0L ⊗ Λ0Σ, 
     Λ1M = Λ1L ⊕ Λ1Σ, 
     Λ2M  =  [Λ1L ^ Λ1Σ] ⊕  Λ2Σ, 
     Λ3M  =  [Λ1L ^ Λ2Σ] ⊕  Λ3Σ, 
     Λ4M = Λ1L ^ Λ3Σ. 
 
Note that since L is one-dimensional, ΛkL = 0 for all k > 1, and similarly, ΛkΣ = 0 for all k 
> 3.  It is particularly convenient that each of the bundles ΛkL for k = 1, 2, 3 admits a 
decomposition into only a temporal sub-bundle and a spatial one, where “temporal” in 
this case means that it has Λ1L as an exterior factor. 
 One can then extend the projection operators Pt and Ps to ΛkM, k = 1, 2, 3 such that 
Pt: ΛkM = Λ1L ^ Λk−1Σ, Ps : ΛkM = ΛkΣ. 
 The specific forms that k-forms in each dimension then take are: 
 

f(t, x) = T(t)S(x),    (II.49a) 
φ = φ0 dt  + φs ,     (II.49b) 
F = dt ^ Es + Fs ,    (II.49c) 
G = dt ^ Fs + Gs ,    (II.49d) 
ρ = ρ0 dt ^ ρs ,     (II.49e) 

 
in which the subscript s denotes k-forms in Λ*Σ in each case. 
 A subtlety that is easy to overlook is the fact that since the component functions for k-
forms on M are functions on M the component functions for the temporal and spatial 
parts of any k-form will still be functions on M, in general, not purely temporal or spatial 
functions.  For instance, one will have: 
 

φ = φ0(t, x) dt + φi(t, x) dxi .    (II.50) 
 
This is especially important to keep in mind when differentiating. 
 Of course, there is an analogous decomposition for the exterior algebra Λ*M of 
multivector fields on M that amounts to lowering all of the superscripts in the 
decompositions above. 
 One finds that the exterior derivative operator d: Λk(M) → Λk+1(M), k = 0, 1, 2, 3 
admits a decomposition into a temporal part dt: Λk(M) → Λ1L ^ ΛkΣ, and a spatial one ds: 
Λk(M) → Λk+1Σ .  One simply composes the operator d with the projections Pt and Ps, 
respectively.  For instance: 
 

dφ = dtφ + dsφ  = − φ0, i dt ^ dxi − 1
2 [φi, j − φj,i ] dxi ^ dxj.  (II.51) 
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 By means of such compositions of operators with projections, one can similarly 
decompose the divergence operator δ: Λk(M) → Λk−1(M), k = 1, 2, 3, 4, as well as the 
various exterior multiplication and interior multiplication operators on k-forms or k-
vector fields. 
 As we mentioned above, there are two ways of imposing a space-time decomposition, 
the most demanding of which is a product structure L × Σ on the manifold M.  One finds 
that quite often since most of the physical constructions are local and define differential 
equations, the reason that one needs a space-time decomposition first asserts itself in the 
local context.  That is, one does not always require that M to decompose as a manifold, 
but only that T(M) decompose as a vector bundle. 
 When T(M) is given a Whitney sum decomposition T(L) ⊕ T(Σ), with no other 
restrictions on M, one says that M has been given an almost-product structure.  Whether 
such an almost-product structure implies a product structure on M is a deep and subtle 
matter of integrability.  For further discussion, one might confer the author’s work in 
[20], which includes references to other approaches to the problem. 
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Chapter III 
 

Static electric and magnetic fields 
 
 In addressing the laws of nature in their most fundamental form, however enigmatic, 
one must first address the issue of what constitute the most directly observable 
phenomena of nature.  In physics, these phenomena tend to be the ones that appeal to 
one’s vision, hearing, and sense of touch.  (Taste and smell seem to be more chemical in 
character.)  Not surprisingly, much of physics is concerned with light, sound, and motion, 
and, more generally, wave phenomena. 
 One can immediately distinguish classes of physical phenomena, such as passive and 
reactive phenomena, or static and dynamic ones.  One sees that, in effect, these two ways 
of distinguishing phenomena are really the same.  Passive or static phenomena are the 
ones that are observable in the absence of input from other parts of the system, including 
the observer, such as light from the distant stars or the equilibrium state of a mechanical 
structure.  The reactive or dynamic phenomena are then the ones that pertain to the 
response of the state of a system to an input from elsewhere in the system, which then 
includes the measurements performed by an observer. 
 At the root of the physics of electricity and magnetism, one must realize that such a 
fundamental concept as charge does not represent a directly observable phenomenon, but 
only an indirectly observable one.  The directly observable phenomenon that pertains to 
charge is the acceleration of some – but not all – matter as a result of the presence of 
some – but not all – other matter, in a manner that cannot be accounted for by the other 
known forces, such as gravitation.  One only postulates the existence of an invisible, 
intangible quality, such as charge, to account for the dynamics of that interaction, just as 
thermodynamics once postulated the concept of “phlogiston” to account for the fact that 
some materials were flammable and others were not. 
 Of course, nowadays one must add the atomic hypothesis to the list of basic axioms, 
namely, that not only does charge come in three basic types +, −, and 0, but furthermore 
it does not really exist on an entire continuum of possible values. Rather, one always 
considers integer multiples of a nearly infinitesimal basic charge unit that is due to the 
presumed “indivisibility” of elementary matter.  Nonetheless, just as the study of ideal 
gases is not best approached by looking at an ensemble of individual molecules whose 
cardinality is Avogadro big (> 1023), but by replacing it with suitable totals and density 
functions defined on the volume in question, similarly, macroscopic electromagnetism is 
usually defined in terms of total and average quantities that are traceable to microscopic 
origins. 
 An unexpected consequence of the history of Twentieth Century physics is that it 
seems that the success of the atomic hypothesis reached its zenith during the early years 
of quantum physics, when it successfully accounted for the structure of periodic table.  
After that, it became clear that atoms were not indivisible, and neither were nuclei, or 
even nucleons.  Hence, in the present era, one must quibble over whether the most 
elementary unit of electric charge is due to the electron, which is observable in a free 
state, or the quarks whose charge has an absolute value of one-third that of the electron, 
but are, apparently, observable only in bound states.  Thus, one can only think of quarks 
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as having a somewhat more tentative character than electrons, positrons, protons, and the 
like.  Furthermore, if one regards “elementary” particles as synonymous with their fields, 
and fields belong to an infinite-dimensional space, then one must realize that matters are 
not getting simpler as one goes deeper into the realm of elementary matter, but more 
complicated!  Hence, we shall try to be objective about the existence of a fundamental 
duality between discreteness and continuity in the manifestation of matter, and use one or 
the other as it seems convenient. 
 Another issue that affects the way that one perceives physics at its most fundamental 
level – viz., the observation and measurement of physical phenomena in nature – is that 
there seems to be an unavoidable “duality” between statics and dynamics.  That is, should 
one think of dynamics as the response of statics to “external” (i.e., external to the 
subsystem in question) perturbations, or should one think of statics as the limiting state of 
dynamics in the absence of external perturbations?  This question actually bears upon the 
difference in spirit between quantum physics and relativistic (but non-quantum) physics.  
In the former approach to physics, one is essentially looking at the response of static – or, 
at least, stationary − systems to the perturbations – viz., measurements – of an external 
“measurer.”  Indeed, most of one’s early exposure to quantum mechanics is exclusively 
concerned with the structure of the stationary states.  In the latter approach, one must 
regard the four-dimensional world of dynamics as more fundamental in character, and the 
static world only comes about as the rest space that is defined by a choice of “observer.” 
 Perhaps, the best way to reconcile these two viewpoints is to keep both of them in 
mind and consider the observation of Max Born that all measurements are made in the 
rest space of the measuring devices.  Hence, there is something unavoidable, indeed 
fundamental, about the role of measurer/observer in the description of physical 
phenomena. 
 
 
 1. Electric charge [1-4].  We shall start with the concept of electric charge − with 
all of the aforementioned caveats − as the new logical primitive that we add to the laws of 
kinematics and dynamics as a starting point for our theory of electrostatics.  The axioms 
are then that total electric charge is a real number Q[V] that one associates with a volume 
V of space Σ (which is a differentiable manifold of dimension one, two, or three) like an 
extensive variable, in the language of thermodynamics.  That is, when one combines 
disjoint volumes, one adds the total electric charges that they contain: 
 

1

N

i
i

Q V
=

 
 
 
∑ =

1

[ ]
N

i
i

Q V
=
∑ .     (III.1) 

 
This amounts to saying that total electric charge defines a measure on space, in the 
language of measure theory, as long as the volume V is a measurable subset. 
 The value Q[V] of charge is an integer multiple of an elementary charge, which we 
call e.  Interestingly, although e is very small in units of Coulombs, that fact is really a 
criticism of the applicability of the latter unit, since one Coulomb of static charge is 
harder to configure than it sounds.  (It is, nevertheless, quite dynamically practicable.  
Consider one Ampere of current flowing through the cross-section of a wire, which 
amounts to one Coulomb every second.) 
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 Although a region of space that contains no elementary charge sources will be 
associated with zero charge, the converse is not true. In fact, most macroscopic matter, 
such as stars, seems to have close to zero total charge, despite the fact that it contains an 
enormous number of elementary charges.  That is why gravitational forces seem to be 
dominant at the astronomical level, even though the force of gravitation is almost 
infinitesimal by comparison to that of electrostatic attraction/repulsion. 
 The intensive variable that is associated with total electric charge is electric charge 
density, which one first obtains as an average charge density in a given volume by 
dividing the total charge in a volume by its volume: 
 

[ ]Vρ =
1

[ ]Q V
V

     (III.2) 

 
 and then passing to the limit of zero volume while regarding each V as a neighborhood 
of each of its points: 

ρ(x) =
0

lim ( )
x

x
V

Vρ
→

.     (III.3) 

 
 Of course, we are then assuming that such a limit actually exists.  This is where the 
concept of a point charge introduces a predictable infinity in the form of the electric 
charge density at the point where the charge is localized.  If one takes the position that 
infinity never manifests itself in physical reality (i.e., in measurements) then one must 
regard the point charge as merely a convenient approximation to something more difficult 
to fathom, namely, a charge distribution that is concentrated in a volume that is too small 
to probe directly.  Furthermore, the fact that quantum mechanics routinely regards 
electrons as wavelike in character suggests that they have finite spatial extent. 
 Here, we introduce the methods of the last chapter by restricting ourselves to volumes 
that take the form of differentiable singular cubic n-chains, where n = dim(Σ).  Hence, the 
additivity that we postulated in (III.1) suggests that we might wish to regard total electric 
charge as an n-cochain; i.e., a linear functional on n-chains.  All that we need to add is the 
requirement that it also be homogeneous of degree one with respect to scalar 
multiplication by a real number λ: 
 

Q[λV] = λQ[V].     (III.4) 
 
Admittedly, the concept of multiplying a volume by a real scalar is less physically 
intuitive than that of adding disjoint volumes, but we shall see that this is a small price to 
pay for the utility of homology in describing charge and flux. 
 Since we are clearly assuming that Σ is orientable, oriented, and endowed with a 
volume element V, we already have one linear functional on n-chains that is defined by 

the volume functional.  On any n-cube σn it takes the form: 
 

V[σn] = 
nσ∫ V .      (III.5) 

 
One then extends this definition to more general n-chains by the assumption of linearity. 
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 From (III.2), one can then define the average electric charge density in the region 
described by σn as the ratio: 

[ ]nρ σ =
[ ]

[ ]
n

n

Q

V

σ
σ

.     (III.6) 

 
 It is in passing to the limit that one must deal with the existence of elementary 
charges, since that fact suggests that ultimately a volume must contain either one 
elementary charge (with its sign) or none at all.  If an elementary charge is distributed 
over a finite volume then, in a sense, it is not really elementary, since it is presumed to be 
further reducible.  If it is pointlike then one must accept the non-existence of a finite 
limiting charge density for the neighborhoods that it contains. 
 One can consider some sort of “confinement” hypothesis for charges less than e, 
similar to the hypotheses that make free quarks unobservable.  However, in the next 
section, we shall resolve the issue by a simple topological device, namely, by removing 
the point to which the volumes are converging from space itself.  This then has the effect 
of saying that the concept of electric charge density is useful only as a macroscopic 
approximation. 
 Hence, we accept that the concept of electric charge density is only so fundamental at 
the elementary level and assume the electric charge density ρ(x) at a point x ∈ Σ actually 
exists as a function.  One can then think of it as the “distribution kernel” of the electric 
charge functional: 

Q[σn] =
nσ
ρ∫ V .     (III.7) 

 
 The non-existence of a limit to the electric charge density for a point charge is closely 
related to the concept of the Dirac delta function, which is not really a function, at all, but 
a fictitious kernel for a much-better-defined distribution called the “evaluation” 
functional, which we briefly describe. 

 If S is a set and F(S; R) is the vector space of real-valued functions on S then the 

evaluation functional that is associated with each x ∈ S is the linear functional Ex: F(S; R)  

→ R, f  ֏Ex[f] = f(x), which simply evaluates the function f: S → R at the point x.  We 

can extend this to a linear functional on n-forms Ex: Λn → R by assuming that all 

elements of Λn take the form fV, so Ex[fV] = f(x)Vx.  Despite the fact that this distribution 

does not have a kernel, we follow tradition and formally write: 
 

Ex[fV] = ( , ) ( ) yx y f yδ
Σ∫ V  = f(x)Vx ,   (III.8) 

 
in which δ(x, y) is the Dirac delta function.  Here, we are using the notation Vy to suggest 

that the integration is over the y variable, while the x is held fixed. 
 If we integrate over a subset V ⊂ Σ, instead of Σ itself, then we can define the 
selection functional for x ∈ V using this delta function: 
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ψx[V] = ( , ) yV
x yδ∫ V =

1

0 otherwise.

x V∈



   (III.9) 

 
Hence, the selection functional for x identifies all subsets that have x as an element; i.e., 
all neighborhoods of x.  Of course, this makes perfect sense as an n-cochain, as long as 
we restrict ourselves to subsets V that can be parameterized by k-chains. 
 Usually, when Σ is a vector space, one defines δ(x) to give evaluation at the origin 
and then replaces x with x – y to give evaluation at x = y, but one can see that this 
definition breaks down when Σ does not have an affine structure that would allow us to 
make sense of the expression x – y for two points x, y ∈ Σ.  This is a recurring theme for 
the problems that are associated with generalizing linear constructions to nonlinear 
manifolds. 
 By means of this fictitious kernel, one can define electric charge densities for finite 
sets of point charges of charge Qi at points xi ∈ Σ as linear combinations of delta 
functions: 

ρ(y) =
1

( , )
N

i i
i

Q x yδ
=
∑ .     (III.10) 

 
Although our sum over points suggests that we are defining a 0-cochain, from (III.9), we 
see that this sum makes better sense as an n-cochain, which only means multiplying both 
sides by Vy and integrating over an n-chain V: 

 

Q[V] =
V

ρ∫ V =
1

( , )
N

i i yV
i

Q x yδ
=
∑ ∫ V = total charge in V.  (III.11) 

 
 
 2.  Electric field strength and electric flux [1-4].  If a point charge Q at a point x ∈ 
Σ experiences a force F(x; Q) ∈ xT M∗ , which we presume to be of electrostatic origin, 

then we define the electric field strength 1-form for this charge to be the covector field E: 
Σ   → T*(Σ): 

E(x; Q) =
1

Q
F(x; Q).    (III.12) 

 
 However, this definition has two unsavory aspects to it: 
 1.  We are defining it for point charges, and we have already expressed doubts about 
the limits of that approximation. 
 2. We are defining E in terms of a particular charge Q, which suggests that a 
different charge Q′ might define a different E. 
 The traditional way of getting around the second objection is to introduce the test 
particle hypothesis:  For every real number Q, no matter how small, there exists a 
charged particle in nature whose charge is Q.  Clearly, this is totally inconsistent with the 
assumption that there is a non-zero minimum charge. 
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 If one accepts this hypothesis then one can factor out the effect of Q by passing to the 
limit – if there is one − and defining: 

E(x) =
0

1
lim
Q Q→

E(x; Q).    (III.13) 

 
 If one does not wish to introduce test particles then one can define E(x) to be the force 
on a unit charge. 

E(x) ≡ F(x; 1).     (III.14) 
 
 Now, we can deal with an even more subtle issue concerning the nature of the 
electrostatic force: Is E(x; Q) going to be this same 1-form for Q ≠ 1, and if not, how does 
it change?  At first, this suggests the question of the linearity of the field equations for E 
in disguise; i.e., the principle of superposition.  However, in order for the nature of the 
electrostatic force to be consistent with the independence of E(x) from Q, it is necessary 
and sufficient to assume that F(x, Q) is homogeneous of degree one in Q: 
 

F(x; λQ) = λF(x; Q),    (III.15) 
which then makes: 

F(x; Q) = QF(x; 1) = QE(x).    (III.16) 
 
 We shall simply work with the definition of E that we get from (III.14) and keep in 
mind what that might entail. 
 If we represent a path in Σ by a 1-chain c1 then since the work done by a force F 
along that path is the 1-cochain: 

∆U[c1] =
1c
F∫ ,     (III.17) 

 
we define the change in potential energy along c1 due to the influence of F(x; Q) on a 
charge Q to be: 

∆U[c1; Q] =
1

( ; )
c

F x Q∫ ,   (III.18) 

 
and the change in electric potential along c1 due to the influence of F(x; Q) to be the 
change in potential energy experienced by a unit charge: 
 

E[c1] = ∆U[c1; 1] =
1

( ;1)
c

F x∫ =
1c
E∫ .   (III.19) 

 
We are using the notation E to be consistent with the classical term “electromotive force,” 
but that term, despite it continued popularity, is a misnomer, since the quantity being 
described has units of work per unit charge, not force per unit charge. 
 Usually, in elementary physics, one regards the issue of whether this work done is 
independent of the path between two points as being equivalent to the question of 
whether it vanishes around any loop (i.e., any 1-cycle).  Of course, that is because one is 
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usually concerned with life in Σ = R3, which is contractible, and therefore simply 

connected, a fortiori. 
 Since we are focusing more on topological issues in this study, we shall clearly 
distinguish between the two conditions.  Hence, one must treat the cases of loops that do 
or do not bound 2-chains separately.  If z1 is a bounding 1-cycle z1 = ∂c2 then, by Stokes’s 
theorem: 

E[∂c2] =
2c
E

∂∫ =
2c
dE∫ .     (III.20) 

 
 Hence, if the work done on a unit charge by an electrostatic force F vanishes around 
any loop in Σ that bounds a 2-chain then one must have: 
 

dE = 0.      (III.21) 
 
This amounts to the statement that the electric field strength 1-form E is closed; one can 
also say that it is irrotational.  Hence, E defines a de Rham cohomology class in 
dimension 1: [E] ∈ 1 ( )dRH M . 

 Of course, if Σ is simply connected then every 1-cycle bounds a 2-chain and (III.21) 
is equivalent to the condition that E be exact; we shall return to this concept in a later 
section. 
 Another way of looking at (III.21) is that it represents an integrability condition for 
the exterior differential system that is defined by E = 0.  That is, since E is a 1-form, at 
each point of Σ there is a hyperplane Ann(E)x in TxΣ that consists of the tangent vectors v 
at x that are annihilated by E: E(v) = 0.  This set of hyperplanes defines a sub-bundle of 
T(M) of codimension one that calls a differential system on M.  It is completely integrable 
iff every point x ∈ Σ has a hypersurface that passes through it, and its tangent hyperplane 
agrees with Ann(E)x .  Such a hypersurface is called an integral hypersurface or integral 
submanifold and Σ is said to be foliated by these integral submanifolds. 
 The most general necessary and sufficient condition for the complete integrability of 
Ann(E) is given by Frobenius’s theorem, which says that Ann(E) is completely 
integrable iff it is involutory.   By definition, this means that the vector space of vector 
fields on Σ that take their values in the fibers of Ann(E) is closed under the Lie bracket; 
i.e., it is a Lie subalgebra of X(Σ).  An equivalent condition is that: 

 
E ^ dE = 0,     (III.22) 

 
which is equivalent to the condition that there be a 1-form η such that: 
 

dE = η ^ E .     (III.23) 
 
Hence, (III.21) is a stronger condition than Frobenius requires. 
 An even stronger condition is that E be exact, which gets us into the realm of electric 
potential functions and shows us that the nature of the integral hypersurfaces is simply 
that of equipotentials.  We shall return to this topic shortly. 
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 3. Electric excitation (displacement) [1-4].  When an electric field E is present in a 
macroscopic medium that is composed of atomic ions and electrons that are bound into a 
crystal lattice or molecules that are bound into a more amorphous solid or fluid, the 
charges in the medium will react to E to a greater or lesser degree.  In conductors, for 
which the electron mobility is high, the response of the medium will generally take the 
form of an electric current – i.e., the translational motion of the electrons.  In an insulator, 
for which the electron mobility is low, the effect will often be the alignment of its electric 
dipoles, which are spatially separated charge pairs of the form {+Q, − Q}.  If the spatial 
separation is described by the displacement vector d that points from +Q to –Q then the 
electric dipole moment of the pair is Qd. 
 When this is going on macroscopically, so we can consider an electric charge density 
ρ in place of Q, we can replace Qd with a vector field D that represents an electric dipole 
density.  We shall call this vector field the electric excitation of the medium; it is also 
called the electric displacement, following Maxwell’s terminology. 
 Actually, one usually associates such a vector field with E even in the otherwise 
uninteresting case of the electromagnetic vacuum.  However, the association, which we 
write in the form: 

D = ε0 igE   (Di = ε0 g
ijEj)   (III.24) 

 
has some suspicious features that get passed over when one is only doing topology, 

geometry, and physics in R3: 

 1.  To characterize the response of the vacuum state to E by the constant ε0, which 
one calls the electric permittivity or dielectric constant of the vacuum, is to assume that 
the vacuum is a linear, homogeneous, isotropic dielectric medium, which ignores a lot of 
lessons from quantum electrodynamics, such as vacuum polarization.  (We shall discuss 
this in more detail in a later chapter.) 
 2.  We are using the spatial Euclidian metric g on Σ as if it were given independently 
of electrostatic considerations.  One of the main assumptions of pre-metric 
electromagnetism is that the four-dimensional Lorentzian structure on spacetime is a 
consequence of the electromagnetic constitutive laws as they relate to the propagation of 
electromagnetic waves, so we wonder if this also extends to the electrostatic level, as 
well. 
 For now, we simply assume that there is a diffeomorphism εx: 

1
xΛ → Λ1,x that takes 

each fiber of Λ1 at x ∈ Σ to the corresponding fiber of Λ1 at x.  When this diffeomorphism 
is a linear isomorphism, the map ε: Λ1 → Λ1 is a vector bundle isomorphism.  Of course, 
this would leave out the possibility of nonlinear electrostatics, such as one encounters in 
the effective field theories of quantum electrodynamics [2]. 
 Since we are assuming that Σ is orientable and given a volume element V, the vector 

field D can be associated with an n−1-form: 
 

#D = iDV = 
1

3!
εijk D

k dxi ^ dxj     (III.25) 

 by Poincaré duality. 
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 We call this n−1-form the electric flux density.  The corresponding integral of #D 
over an n−1-chain: 

ΦD[cn−1] =
1

#
nc −
∫ D     (III.26) 

 
is then the total electric flux though cn−1 .  This makes it clear that the total electric flux 
defines an n−1-chain on Σ. 
 If cn−1 = ∂cn then from Stokes’s (viz., Gauss’s, in this case) theorem 
 

ΦD[cn−1] = #
nc
d∫ D = ( )

nc
δ∫ D V = Q[cn],  (III.27) 

 
in which we need only set our charge density ρ equal to: 
 

δD = ρ      (III.28) 
 
in order to make (III.26) valid for every bounding n-chain. 
 Hence, one can say that the total electric flux through the boundary of an n-cycle is 
equal to the total electric charge that is contained in the n-cycle itself.  (We are omitting a 
multiplicative constant, such as 4π, which can be absorbed into the definition of V.) 

 One can also include the constitutive law that connects D with E and express (III.28) 
as first order partial differential equation in E: 
 

δ ⋅ ε(E) = ρ.     (III.29) 
 
 If ε is expressed by local component functions of the form εij(x, E) then (III.29) can 
be expressed in local form as: 

ij
jij

ji i

E
E

x x

εε
∂ ∂+
∂ ∂

ɶ = ρ,     (III.30) 

 
in which we have introduced the notation: 
 

ijεɶ = εij +
ik

k
j

E
E

ε∂
∂

.     (III.31) 

 
Therefore, we conclude that the inhomogeneity in ε affects E directly, while the 
nonlinearity affects the spatial derivatives of E. 
 We see from (III.28) that outside the support of ρ (supp(ρ) = closure of the set of 
points at which ρ is non-vanishing) the vector field D is divergenceless.  Hence, if one 
thinks of ρ as the generator of a one-parameter family of local diffeomorphisms of Σ then 
outside of supp(ρ) these diffeomorphisms preserve the volume element V.  The integral 

curves of the vector field D are what one commonly refers to as electric field lines, or, 
more precisely, electric flux lines.  In the case of D = ε igE, where ε is a smooth function, 
D will also represent the direction of the force and acceleration that acts on a charge Q of 



 Static electric and magnetic fields 95 

non-zero mass at each given point.  It is not, in general, the direction of the velocity 
vector for the subsequent motion. 
 Since any n−1-chain that bounds will be an n−1-cycle, the question arises of what 
happens to the total electric flux through a non-bounding n−1-cycle.  Of course, in order 

for this to be possible Hn−1(Σ; R) must not vanish.  From Poincaré duality, this is 

equivalent to the non-vanishing of H1(Σ; R) ≅ H1(Σ; R), so it is sufficient that Σ be non-

simply connected. 

 Another possibility for making Hn−1(Σ; R) non-vanishing is that Σ is simply 

connected, but the first non-vanishing homotopy group is in dimension n−1, which is the 

case with Rn – {0}.  A generator for Hn−1(Σ; R) ≅ R in that case is then defined by any 

n−1-sphere (i.e., any n−1-cycle) that includes the origin in the ball that it bounds. 
 When zn−1 is not a bounding cycle, Stokes’s theorem no longer applies, so ΦD[zn−1] 
can be non-vanishing even when the total charge contained in the region “bounded” by 
zn−1 can no longer be defined, since there is no such region.  This allows one to give a 
purely topological origin to charge, which is probably more appropriate at the elementary 
level than the macroscopic one that involves a more statistically-defined charge density: 
Elementary charge is due to the presence of non-bounding n−1-cycles in Σ; i.e., the non-
vanishing of its homology in dimension n−1. 

 Furthermore, if Hn−1(Σ; R) is non-vanishing then so is 1( )n
dRH − Σ , and there are closed 

n−1-forms that are not exact.  Hence, it is possible to find #D such that d#D = 0, but 
ΦD[zn−1] ≠ 0; for such a D, one clearly has δD = 0.  This is essentially the spirit of what 
Wheeler and Misner [5] called “charge without charge;” i.e., non-vanishing flux with 
vanishing divergence. 
 For example, the Coulomb D-field: 
 

D(r) =
2

0

1
ˆ

4

Q

rπε
r ,    (III.32) 

has this property. 
 
 
 4. Electrostatic field equations [2].  If we combine the equations that we proposed 
for E and D so far then we have: 
 

dE = 0,  δD = ρ, D = ε(E).   (III.33) 
 
 As we have seen, the presence of ρ tends to be more of interest in macroscopic 
problems, in which the concept of a charge density makes sense as an approximation to a 
large ensemble of elementary charges.  When dealing with elementary charges, it is 
probably preferable to consider the homogeneous form of these equations, which is also 
valid outside supp(ρ): 
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dE = 0,  δD = 0, D = ε(E).   (III.34) 
 
 In this form, one can see the manifestly topological nature of the first two equations, 
since the first one says that E defines a de Rham cohomology class for Σ in dimension 
one and the second one says that D defines a de Rham homology class in dimension one; 
equivalently, #D defines a de Rham cohomology class in dimension n − 1.  This also 
introduces a topological origin for elementary charges by the possibility that either of – 
hence, both of − 1 ( )dRH Σ and 1( )n

dRH − Σ are non-trivial vector spaces.  For instance, Σ might 

be multiply connected or it could be simply connected and have its first non-vanishing 

homotopy group in dimension n − 1, like Rn – {0}, among other possibilities. 

 Although one often encounters the equations of electrostatics as differential 
equations, one can also express them in integral form: 
 

2c
E

∂∫ = 0,  
3

#
c∂∫ D=

3c
ρ∫ V , D = ε(E).  (III.35) 

  
One can think of the first two equations as expressing conservation of energy and 
conservation of charge, respectively. 
 The integral form of differential equations is equivalent to regarding the differential 
equations as having distributions for solutions, which is necessary when one is dealing 
with solutions that have singularities, such as jump discontinuities or poles. 
 
 
 5. Electrostatic potential functions [2].  Previously, we only required that the work 
done by an electrostatic force around a loop that bounded a 2-cycle vanished, and showed 
that if this were true for all 1-boundaries then one could conclude that E was closed. A 
closely-related issue associated with work and potential energy, independently of the 
nature of F as we discussed above, is the issue of whether the work done along a path 
connecting two points A and B is path-dependent or not.  However, one must keep in 
mind that if c1 is a path from A to B, we must have ∂c1 = B – A.  This suggests that we 
might define ∆V as a 0-cochain; i.e.: 
 

∆V[A, B] =
1c
V

∂∫ =
1c
dV∫ =

1c
E∫ .   (III.36) 

 
 If this is true for all 1-chains then we can conclude that E is exact: 
 

E = dV.     (III.37) 
 
Of course, the function V is not defined uniquely, but only up to an additive constant.  
This is because it is only the difference: 
 

∆V[A, B] = V(B) – V(A)    (III.38) 
that is uniquely defined. 
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 If one chooses a point, such as A, and a value V(A) to associate with A then one can 
convert the two-point function ∆V[A, B] on Σ × Σ to a one-point function on Σ, at least, 
under the assumption that it is path-connected: 
 

V(x) = V(A) + ∆V[A, x].    (III.39) 
 
One calls such a function V an (electrostatic) potential function for E. 
 Note that (III.38) implies that the work done around any 1-cycle – bounding or not – 
vanishes.  One simply puts two points A and B on the loop and treats the two arcs AB and 
BA as two paths from A to B, one which has a negative orientation with respect to the 
other. 
 As we pointed out above, exactness is the strongest integrability requirement that one 
can put on the exterior differential system E = 0.  Basically, it makes the integral 
submanifolds take the form of the level hypersurfaces V(x) = const. of the function V; a 
different choice of V(A) will not change the nature of the hypersurfaces, only the value of 
V on each of them. 
 If E admits a potential function then we can combine the three field equations (III.33) 
into a single one: 

∆ε V = ρ,     (III.40) 
in which: 

∆ε = δ ⋅ε ⋅ d      (III.41) 
 
is the generalized Laplacian operator on 0-forms that is defined by ε.  If ε is a nonlinear 
map then ∆ε  will be a nonlinear second-order elliptic differential operator. 
 From (III.30), all that we have to do to get the local form of (III.40) is substitute Ei = 
V,i : 

2 ij
ij

i j i j

V V

x x x x

εε ∂ ∂ ∂+
∂ ∂ ∂ ∂

ɶ = ρ.    (III.42) 

 
  
 6. Magnetic charge and flux [1, 4].  If we continue our argument that the most 
fundamental level of any force of nature involves the observation/measurement of 
changes in the state of a natural systems that are consistently correlated with some other 
natural phenomenon then we admit that magnetism first manifests itself as forces on 
some, but not all, materials (viz., magnetic materials) as a result of being exposed to other 
influences that we simply identify as magnetic forces.  Of course, this all sounds very 
tautological, unless we get more specific about the origin of magnetic forces. 
 Here, the atomic hypothesis is only so helpful.  If we break a bar magnet into a 
geometric progression of smaller pieces then once again the series will terminate with 
electrons, but not in the same way as for electrostatic forces.  If a bar magnet is a 
macroscopic ensemble of elementary magnetic dipoles then one sees that the most 
elementary manifestation of a magnetic field is due to a dipole, not a pair of monopoles.  
Namely, the ultimate source of magnetic fields seems to be the relative motion of 
elementary electric charges.  In the case of elementary dipoles, this usually takes the form 
of electron or nucleon spin. 
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 Of course, at this point in the history of physics, the possible existence of magnetic 
monopoles is a hotly-contested subject.  They were first postulated by Dirac in the 1930’s 
as a possible consequence of the formulation of electromagnetism as a U(1) gauge theory. 
In particular, if the U(1)-principal bundle on spacetime that represented the gauge 
structure for electromagnetism happened to be non-trivial − so no global choice of U(1) 
gauge was possible − then this would suggest topological obstructions (viz., the first 
Chern class of the bundle) that might bring about magnetic monopoles.  Because these 
topological considerations seem to be so fundamental and unavoidable, the fact that, to 
date, no experimental evidence for the existence of magnetic monopoles has emerged has 
not deterred theoretical physics from continuing to publish thousands of books and papers 
on the subject.  Nowadays, one can always use spontaneous symmetry breaking as a 
convenient excuse for the non-existence of theoretically-predicted phenomena in 
experiments: One simply postulates that the energy level of spontaneous symmetry 
breaking for the phenomenon in question is many orders of magnitude beyond any 
reasonable experimental bounds (e.g., 1015 or 1019 GeV vs. 103 GeV for terrestrial 
particle colliders, 106 GeV for ultra-high energy cosmic rays).  This usually means that 
everything unobservable on Earth probably existed in the first nanosecond of the Big 
Bang when the universe was that energetic. 
 We shall err on the side of caution in this presentation and take the experimentally 
established position that the source of all magnetic fields is the relative motion of electric 
charges, whether that takes the form of the rectilinear motion of charges in currents or the 
rotational motion of spinning charge distributions.  Even then, we must caution the reader 
that, as Jackson [6] pointed out, there does not always exist a rest frame for an observer 
that makes a given magnetic field disappear.  There is certainly such a frame for a single 
elementary charge moving along a curve in spacetime; one simply chooses a co-moving 
frame, in which the only field is the electrostatic field.  However, as the example of a bar 
magnet shows, when one is concerned with macroscopic magnetic fields, trying to find a 
co-moving frame gets hopeless.  In fact, there is always the question of whether a 
measurer/observer that is orbiting around a rotating charge distribution with the same 
orbital period as the angular period of the rotation will similarly see no magnetic field, 
since there are fictitious forces that come about due to the orbital motion. 
 One sees that if one truly believes that the origin of all magnetic forces is the relative 
motion of electric charges then the existence of magnetic monopoles seems to be a patent 
absurdity.  We shall express this situation topologically by saying that elementary 
charges represent non-trivial generators of π2(Σ) – i.e., monopoles, in the language of 
topological defects [7, 8] – and elementary magnetic sources represent non-trivial 
generators of π1(Σ) – i.e., vortex defects 18.  That is, the spatial sources of magnetic fields 
will, for us, exist as curves in Σ, not individual points. 
 One immediately sees that the apparent non-existence of magnetic monopoles makes 
it harder to define a magnetic field in Σ than it was to define the electric field E.  We 
cannot speak of the magnetic force on a unit magnetic charge if there is no such thing as a 
magnetic charge.  Since magnetic fields exert torques on magnetic dipoles, one might 

                                                
 18 Although these are also called string defects, since the use of the term “string” in theoretical physics is 
so well-established in the literature of Big-Bang cosmology and life beyond the Planck scale of space, time, 
and energy, we shall avoid its usage in the context of tangible physics that is easily observed in terrestrial 
experiments. 
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define the magnetic field strength B(x) at a point x ∈ Σ to be the torque on a unit dipole.  
This has the advantage of making B a 2-form on Σ, by its nature.  However, a magnetic 
dipole moment µµµµ has to have a direction in space, as well as a magnitude, since it is a 
vector, not a scalar. 
 If one looks at the way that the torque ττττ is coupled to B and µµµµ, namely: 
 

ττττ = µµµµ × B = *(µµµµ ^ B)     (III.43) 
 
then one sees that although one cannot simply divide ττττ by µµµµ to get B, nevertheless, in 
principle, a complete knowledge of the ττττ as a function of µµµµ will give a unique vector B. 
 This is three-step process for a given “test dipole” µµµµ: 
 1. Obtain the magnitude B of B from the maximum value of τ/µ as the direction of µµµµ 
varies over all possibilities. 
 2. Obtain the direction of B – up to orientation – from the direction of µµµµ that gives a 
null to ττττ, since µµµµ × B = 0 iff µµµµ is parallel to B. 

 3. Since ττττ cannot be parallel to a non-zero µµµµ, the plane of ττττ−µµµµ then divides R3 into 

two disjoint halves.  By choosing one of them to contain the positive normal to that plane, 
one can define that to also contain the direction of B. 
 In order for this construction to produce a vector field B(x) on Σ, one simply 
understands that the aforementioned process is concerned with tangent vectors at each 
point of Σ. 
 We point out that it is generally more traditional to define B in terms of the Lorentz 
linear force density F = I × B that acts on a “test” current vector I , but currents do not 
seem to suggest the same kind of minimal unit as the Bohr magneton defines for the 
magnetic dipole moment of the electron. 
 The total magnetic flux through a 2-chain is then: 
 

ΦB[c2] =
2

#
c∫ B .     (III.44) 

 
 When c2 is a bounding 2-cycle ∂c3 Stokes’s theorem gives: 
 

ΦB[∂c3] = 
3

#
c

d∫ B = 
3

( )
c

δ∫ B V = QM[c3].   (III.45) 

 
 Since this is supposed to equal the total “magnetic charge” that is contained in the 
region of Σ defined by c3, to say that there are no magnetic monopoles is to say that 
ΦB[∂c3] must vanish for all bounding 2-cycles, which leads to the differential equation: 

 
δB = 0.      (III.46) 

 

 Of course, if there are non-bounding 2-cycles z2, which implies that H2(Σ; R) is non-

vanishing, it is entirely possible that ΦB[z2] is non-vanishing even though one still has 
(III.46).  Hence, this is another way of accounting for “magnetic charge without magnetic 
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charge” by a purely topological device.  Furthermore, in the gauge formulation of 
electromagnetism, a necessary, but not sufficient, condition for the non-triviality of the 

U(1)-principal bundle that defines the gauge structure is that H2(Σ; R) ≅ 2 ( )dRH M be non-

vanishing, since one is concerned with the first Chern class of the bundle, and this will be 
a closed 2-form; i.e., a de Rham cohomology class in dimension two. 
 
 
 7. Magnetic excitation (induction).  When a magnetic material is exposed to a 
magnetic field, there is a tendency for the elementary magnetic dipoles to align 
themselves to a greater degree.  As opposed to the situation described in the context of 
electric fields there is no corresponding issue of the translational motion of the 
elementary magnetic monopoles, only the rotational motion of the dipoles.  There is a 
resulting magnetic dipole moment density associated with the medium, which we refer to 
as the magnetic excitation of the medium, and describe by a 1-form H on Σ.  Although 
the term “magnetic induction” is also used, since that tends to lead to confusion in the 
context of electromagnetic induction, we shall use the more precise term of “excitation.” 
 The response H of a given medium to an applied B field will then be described by a 
magnetic constitutive law: 

H = µ−1(B),     (III.47) 
 
in which µ: Λ1 → Λ1 is a diffeomorphism of each cotangent space with its corresponding 
tangent space.  Here, we see that classical electromagnetism seemed to be treating the 
vector field B and the 1-form H as having the opposite roles to what later seemed to work 
better in the eyes of relativistic electromagnetism.  Hence, we shall have to use the 
inverse of the map µ, instead of the map itself. 
 In the case of the classical electromagnetic vacuum, which is linear, isotropic, and 
homogeneous with respect to its magnetic response, this relation takes the form: 
 

H = 
0

1

µ
1

gi
− B ,   (Hi = 

0

1

µ
gij B

j).  (III.48) 

 
The constant µ0 is referred to as the magnetic permeability of the vacuum.  This, too, is 
subject to vacuum polarization in the eyes of quantum electrodynamics. 
 When one integrates the 1-form H along a 1-chain c1 the resulting number: 
 

M[c1] = 
1c
H∫      (III.49) 

 
is called the magnetomotive force, which is also an unfortunate term, since the units of 
the quantity are work done per unit magnetic charge, not force. 
 If the 1-chain is a bounding 1-cycle ∂c2 then Stokes’s (or rather, Green’s) theorem 
gives: 

M[∂c2] =
2c
dH∫ = 

2

#
c∫ i = I[c2],   (III.50) 
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in which i is the electric current density – or electric charge flux density – in that region 
of Σ so I[c2] then represents the total electric current through c2.  In magnetostatics, this 
law is referred to as Ampère’s Law. 
 If this relationship (III.50) is valid for all bounding 1-cycles then one can deduce the 
differential equation: 

dH = #i .     (III.51) 
 
 If one expresses H = #H, which would make H a bivector field, then this latter 
equation can be put into the form: 

δH = i .     (III.52) 
 
 In the macroscopic case, the vector field i, which represents the source of the H field, 
commonly takes the form: 

i = ρ v,      (III.53) 
 

in which ρ is the electric charge density and v is the velocity of the charge cloud.  Both ρ 
and v then have the same support. 
 The vector field i, or equivalently v, defines a congruence of integral curves.  Outside 
the support of i, the field equations (III.52) become: 
 

δH = 0.     (III.54) 
 
 In local form, with B = Bi ∂i, H = Hi dxi , (III.51) becomes: 
 

Hi = ijµɶ Bj,   1
2 (Hi,j – Hj,i) = − εijk i

k,   (III.55) 

and (III.52) becomes: 
Hij = εijk Hk,  Hki

,i = ik.    (III.56) 
 

 If one thinks of Σ as being the disjoint union of supp(i) and its complement Σ′ = Σ – 
supp(i) then the restriction of H to Σ′ is a de Rham homology class in dimension two.  
However, since the integral of #H around a 1-cycle in not in Σ′, which bounds in Σ, but 
Σ′, is non-zero, we must conclude that H is divergenceless, but not the divergence of a 3-
vector field.  This is analogous to the way that Coulomb D field (III.32), which is not 
defined at the origin, has zero divergence, even though its integral over any sphere 
centered at the origin is Q/ε0 .  In either case, when one removes the source points from 
Σ, the same 2-cycles that bound in Σ might no longer bound in Σ′, and Stokes’s theorem 
no longer applies. 
 In the extreme case of a point charge moving along a single differentiable curve, 
Σ′ will be missing that curve, which might have the effect of introducing a non-trivial 

generator for the fundamental group of Σ′, as well as H1(Σ′; R).  Hence, the source 

singularity can be regarded as a topological defect in Σ′ of vortex type. 
 Perhaps the fact that the elementary sources of electric fields are of monopole type 
and the elementary sources of magnetic fields are of vortex type might shed some light 
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on the reason for the continued absence of magnetic monopoles from the world of 
experimental physics. 
 
 
 8. Magnetostatic field equations.  We can summarize the field equations of 
magnetostatics that we have obtained up to this point as differential equations: 
 

δB = 0,  dH = #i, H = µ−1(B).   (III.57) 
 
 However, for the sake of introducing a vector potential, which we will do in the next 
section, it is also convenient to give them the form: 
 

dB = 0,  δH = i,  H = µ−1(B),   (III.58) 
 
in which B = #B is now a 2-form and H = #−1H is a bivector field.  The constitutive map 
µ−1: Λ2 → Λ2, B ֏  H, is usually represented by the corresponding map of vector fields 
to 1-forms # ⋅ µ−1 ⋅ # : Λ1 → Λ1, B ֏  H, which one locally denotes by: 
 

Hi = µijB
j.     (III.59) 

 
Hence, we can represent the local components of the map on 2-forms in the form: 
 

µijkl = εijmεklnµmn .     (III.60) 
 
 One can also express the differential equations in integral form: 
 

2c
H

∂∫ =
2

#
c∫ i ,  

3

#
c∂∫ B = 0 .    (III.61) 

 
 The second of these admits the topological interpretation that the (singular) 2-cochain 
ΦB[.], which associates the total magnetic flux through a 2-chain, is a 2-cocycle.  In terms 
of de Rham cohomology, this is equivalent to the statement that the 2-form B = #B is 

closed, which is the first equation in (III.58).  When H2(Σ; R) does not vanish, neither 

does H2(Σ; R) or 2 ( )dRH Σ , and it is possible for there to be closed – but non-bounding – 

surfaces through which the total magnetic flux is non-zero.  This is equivalent to the 
possibility that there are closed 2-forms B that are not exact.  We shall return to this in the 
next section. 
 The first of equations (III.61) takes on a similar topological interpretation outside the 
support of i, where the 1-cochain M[.] vanishes on every bounding 1-cycle.  Hence, it 

too becomes a 1-cocycle, and the 1-form H becomes a closed 1-form; i.e., a de Rham 
cohomology class in dimension one.  However, since we have changed the topology of Σ 
by deleting supp(i), we see that H ∈ 1 ( )dRH ′Σ , and if the deletion of supp(i) renders this 

cohomology vector space non-trivial then the fact that H is closed but not exact implies 
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that M[z1] is non-vanishing.  Although Stokes’s theorem does not apply when z1 is not a 

boundary, one can treat the non-vanishing of M[z1] as a topological source for the field 

H that surrogates for the missing current i. 
 
 
 9. Magnetostatic potential 1-forms.  Now that we have drawn attention to the 
possible non-exactness of the closed 2-form B, let us consider the case in which B is 
exact.  Recall that from the Poincaré lemma this is always possible locally about any 
point of Σ.  Hence, we are assuming that there is a 1-form A such that: 
 

B = #B = dA.     (III.62) 
 
 Such a 1-form is called a potential 1-form for B, or more imprecisely, a vector 
potential.  It is clearly not uniquely defined since the addition of any closed 1-form α to 
A will produce the same B.  This defines an equivalence relation on 1-forms, which one 
calls gauge equivalence, by the requirement that gauge-equivalent 1-forms A and A′ must 
differ by a closed 1-form: 

A′  – A = α ∈ Z1(Σ).    (III.63) 
 

 If one is dealing with α locally, or if Σ is simply connected, then α is also exact – say, 
α = dλ – and one obtains the conventional form of a gauge transformation (of the second 
kind): 

A ֏A + dλ .     (III.64) 
 
 From Stokes’s theorem, the integral of A around a bounding 1-cycle ∂c2 is: 
 

2c
A

∂∫ =
2c
dA∫ =

2c
B∫ = ΦB[c2];    (III.65) 

 
i.e., it gives the total magnetic flux through the 2-chain. 
 When B is expressed in terms of a potential 1-form A, one can consolidate the field 
equations (III.58) into a single second-order equation: 
 

(δ ⋅ µ−1 ⋅ d)A = i .    (III.66) 
 
 If the action of µ−1 on 2-forms is locally expressed by the action of a matrix of 
functions of the form µijkl(x, B) then (III.66) can be given the local form: 
 

2 ijkl
ijkl k k

i j i j

A A

x x x x

µµ ∂ ∂∂+
∂ ∂ ∂ ∂

ɶ = i l,    (III.67) 

in which we have introduced: 

ijklµɶ = µijkl + ,

ijkl

r s
rs

A
B

µ∂
∂

.     (III.68) 
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 When the medium is linear, homogeneous, and isotropic, such as the classical 
magnetic vacuum, one can express µmn as 1/µ0 δmn, and (III.60) becomes: 
 

µijkl =
0

1

µ
εijmεklm =

0

1

2µ
(δikδjl − δilδjk),    (III.69) 

 
while ijklµɶ = µijkl, µijkl

,i = 0, which makes (III.66) take the form: 
 

δdA = µ0 i .     (III.70) 
and (III.67) takes the form: 

2 k
ij

i j

A

x x
δ ∂

∂ ∂
= µ0 i

k.     (III.71) 

 
We have implicitly raised the index of Ak by means of the Euclidian spatial metric that is 
naturally associated with any linear, isotropic (but not necessarily homogeneous) 
magnetic constitutive law. 
 When magnetostatics has the luxury of a spatial metric at its disposal − or, at least, a 
Hodge * operator that is defined in all dimensions of Λk − one can choose the gauge 
potential A to be one that has vanishing codifferential: 
 

δA = 0,      (III.72) 
 
which allows one to write (III.70) in the form of Poisson’s equation for A: 
 

∆A = µ0 i ;     (III.73) 
 
now, we have lowered the index on the source current vector field i in order to make it a 
1-form. 
 Of course, in pre-metric magnetostatics, one must simply deal with (III.70) directly. 
 
 
 10.  Field-source duality [3].  There has been a recurring theme in the foregoing 
presentation:  As a general rule, the most elementary fields are not defined at their 
sources, and, as a result, one must deal with the topology of the space that is 
complementary to the region in which the source is defined.  Frequently, this deletion 
will render the applicability of Gauss’s theorem invalid, and one will be dealing with 
non-zero fluxes over k-cycles that are associated with vector fields that nonetheless have 
zero divergence. 
 For instance, Coulomb’s law of electrostatics breaks down at the origin – if that is 
where the point charge is located.  However, one notices that there is a further 
equivalence between the field that is exterior to a spherically-symmetric extended charge 
distribution and that of a point charge.  Since a ball is contractible to a point, one sees that 
in the eyes of homotopy it is only the absence of a single point from the space in which 
the field exists that dictates the appearance of the field. 
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 One can interpret the deletion of a point from a closed n-ball ( ; )B x r in a topological 

space Σ from either the standpoint of homotopy or homology.  In the context of 
homotopy, the absence of a point from ( ; )B x r means that its boundary n−1-sphere is 
(probably) no longer homotopic to a point.  Hence, there is at least one non-trivial 
generator to πn-1(Σ), depending upon what is happening with the topology of Σ, more 
globally.   In the context of homology, it means that the boundary n−1-cycle is (probably) 
not the boundary of an n-chain, which implies that there is a non-trivial generator for 

Hn−1(Σ; R). 

 Actually, when one goes to the case of one-dimensional field sources, such as line 
charges and currents in (non-closed) infinite wires, one finds that, up to homotopy, 

deleting a straight line from Rn is the same thing as deleting a point from R
n−1.  That is 

because the line being deleted is contractible to a point by a contraction that takes the rest 

of Rn to Rn−1 minus the point that the line turns into.  For instance, R3 minus the z-axis 

contracts to R2 minus the origin, and R2 minus the y-axis contracts to two non-zero points 

on the x axis. 

 Of course, Rn minus a circle is an entirely different matter.  When n = 2, one sees that 

a plane minus a circle is homeomorphic to the disjoint union of an open disc and a plane 
minus a closed disc, which is then homotopically equivalent, by contraction, to the 
disjoint union of a point and a circle.  When n = 3, one already sees that the resulting 
space is rather homotopically complicated.  In addition to contractible loops, there are 
also non-contractible ones that encircle the missing circle, but one cannot retract the 
space to the circle without deleting – say – the z-axis, which must then be added as a 
“line at infinity.” 

 When one deletes R2 from Rn the resulting space is homotopically equivalent to R
n−2 

minus a point.  For instance, R3 minus a plane is homotopically equivalent to two points.  

This is useful in approaching the electric field of a charge distribution on an infinite 
plane. 
 Similarly to the situation in the second-to-last paragraph, the deletion of a 2-sphere – 

i.e., a basic 2-cycle − from Rn is not generally equivalent to the deletion of a plane.  For 

instance, in the case of R3, the resulting space is contractible to the disjoint union of a 

point and a 2-sphere, which is reminiscent of the deletion of a circle from a plane, only 
with the next higher dimension of sphere.  More generally, deleting an n-sphere from 

R
n+1 will produce a space that is homotopically equivalent to a point and an n-sphere. 

 Since a point is a 0-cycle, we begin to see that the sources of electric and magnetic 
fields seem to take the form of a finite set {zi, i = 1, …, N} of singular cycles of varying 
dimensions.  In the most elementary case, this is a finite set of points.  Furthermore, we 
can associate a number Qi with each cycle that represents an electric charge in the case of 
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an electrostatic field and an electric current in the case of a magnetostatic field.  Hence, 
one can form the linear combination: 
 

Q = 
1

N

i i
i

Q z
=
∑ ,     (III.74) 

 
which is then a cycle of mixed dimension, in general, and we call this cycle the source 
complex.  For instance, when one has a set of N charged points it will be a 0-cycle. 
 Hence, we shall always think of the field – say, D – that is produced by any source 
complex as being defined in the space Σ − Q that is complementary to (the carrier of) Q 
in Σ.  When we take the total flux ΦD[zn−1] of D over an n−1-cycle zn−1 that bounds in Σ, 
but not in Σ − Q, we shall define the value of ΦD[zn−1] to be Q, even though Gauss’s 
theorem is in applicable in Σ − Q. 
 In fact, that is exactly what happens in the case of Coulomb’s law: the field D is not 
defined at the point charge Q, but the total flux over any sphere that includes it in its 
interior equals Q, even though D has zero divergence.  Since the total flux functional is a 
singular cocycle, in the event that D has vanishing divergence we shall call this coupling 
of the homological information in the source complex to the cohomological information 
in the field space field-source duality. 
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Chapter IV 
 
 

Dynamic electromagnetic fields 
 
 
Much of the modern fascination, if not obsession, with the unification of the theories of 
the fundamental forces of nature is probably traceable to the stellar success of the 
unification of the theories of electricity and magnetism into a single theory of 
electromagnetism, which was not only capable of explaining both theories as they existed 
independently up to that point in history, but was also capable of explaining natural 
phenomena that had not been recognized as being explainable in electromagnetic terms, 
namely, optical phenomena. 
 Here, we see a perfect example of the difference between a unification of theories and 
a mere “concatenation” of them.  Generally, the unification of theories that pertain to 
phenomena that do not seem to be otherwise related will produce unpredicted 
consequences due to unexplored interactions between the individual theories.  In general, 
one calls these interactions inductions, because the state of one field is inducing a 
response in the state of the other field. 
 
 1. Electromagnetic induction.  One can distinguish static inductions from dynamic 
ones by the constraint that with a static induction the field itself induces a response, 
whereas with a dynamic response, it is one of the derivatives of the field that is provoking 
the response.  For instance, a time-varying magnetic field induces a time-varying electric 
field.  However, although it is true that a time-constant electric current will induce a time-
constant magnetic field, nevertheless the converse statement is not true. 
 
 a.  Faraday’s law of induction [1].  Historically, the first dynamical coupling of 
electric and magnetic fields to be discovered was the coupling of time-varying magnetic 
fields to time-varying electric fields.  More precisely, the first manifestation of that 
phenomenon was the coupling of time-varying magnetic fields to electric currents that 
was observed by Michael Faraday.  However, if one regards the current in a conductor as 
being a response to the imposition of an electric field on the medium then one sees that it 
is more intrinsic to look at the coupling of time-varying magnetic fields and electric 
fields. 
 One first encounters Faraday’s law of induction in the form of the coupling of time-
varying magnetic flux to an induced electromotive force: 
 

E[∂c2] = − 2[ ]d c

dτ
ΦB .     (IV.1) 

 In words, this says: When a loop ∂c2 bounds a 2-chain c2, the time-variation of the 
magnetic flux that links the 2-chain will induce an electromotive force in the loop that is 
180 degrees out of phase with the time-variation in the magnetic flux. 
 When expressed in integral form, (IV.1) becomes: 
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2c
E

∂∫ = − 
2

#
c

d

dτ ∫
B ,     (IV.2) 

 
and an application of Stokes’s theorem makes this take the form: 
 

2c
dE∫ = − 

2

#
c

d

dτ ∫
B .     (IV.3) 

 
 Of course, when phrased in the manifestly topological form (IV.1), one notices 
certain features that are never discussed in a first exposure to Faraday’s law: 
 1.  The loop has to be a bounding 1-cycle.  This leaves open the possibility that when 
the spatial manifold Σ is not simply connected there might non-zero emf’s in loops that 
do not bound. 
 2.  In some sense, we are defining a “differentiable curve” in the infinite-dimensional 

vector space Z2(Σ; R) that the 2-cocyle ΦB[.] lives in, although we have not said anything 

up till now about putting a topology or differential structure on it. 
 3.  We now have a good example of the non-conservation of energy in an 
electromagnetic system that has nothing to do with dissipation in the thermodynamic 
sense.  Basically, the reason that E cannot be exact anymore is because it is not closed 
and the non-vanishing of dE is due to the time-variation of ΦB[.].  Hence, energy is being 
added to the loop in such a manner that the work done on a unit charge as it goes around 
the loop does not vanish. 
 4. If E were the covelocity 1-form for a fluid flow then one would say that the time-
variation of ΦB[.] is acting like a torque that induces vorticity in the flow around the loop 
∂c2 . 
 We see that what (IV.1) accomplishes is to effectively generalize our previous law of 
electrostatic fields, which becomes the limiting form of Faraday’s law when the magnetic 
flux is constant in time. 
 Of course, one always learns that the minus sign in Faraday’s law is a law unto itself, 
namely, Lenz’s law.  One can think of the induced emf as a sort of “damping” term that 
shows up to oppose the changes that create it, just as viscous damping in a fluid medium 
acts to oppose the change in position of an object immersed in the medium. 
 Even though Faraday’s law is usually applied to sinusoidally changing magnetic 
fluxes, it works just fine for linearly and exponentially changing fluxes, as well.  In 
particular, a linearly growing/decaying magnetic flux induces a constant emf, while an 
exponentially growing/decaying flux induces an exponentially growing/decaying emf. 
 Due to the derivative coupling, the actual magnitude of the change in flux does not 
have to be large to produce potentially enormous emf’s.  Indeed, a serious issue in most 
practical situations is what happens as the change in flux approaches a jump 
discontinuity, such as a switching transient, for which the magnitude of the derivative can 
grow quite large, even though the current itself is small. 
 Now suppose that the induced emf in ∂c2 induces a current I[∂c2], which is coupled to 
an induced magnetic flux ΦB[c2] in the 2-chain that is bounded by the current loop.  If the 
coupling of current in the loop to the resulting magnetic flux in the 2-chain it bounds is 
simply: 
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ΦB[c2] = L I[∂c2]    (IV.4) 
 
in which the constant L is the self-inductance of the loop, then we can write Faraday’s 
law as: 

E[∂c2] = − L 2[ ]
d

I c
dτ

∂ .   (IV.5) 

 
Notice that now the coupling takes place solely on the bounding 2-cycle. 
 Part of the subtle profundity in Faraday’s law is based in the fact the emf that is 
induced in a loop does not depend upon it being composed of a conducting medium, and, 
in fact, emf’s can be induced in a vacuum, just the same.  Of course, in that event one 
usually thinks in terms of induced E fields directly.  Hence, we need to examine the 
process of going from the integral form of Faraday’s law to its differential form. 
 Since the magnetic flux integral can be regarded as the evaluation <ΦB, c2> of a linear 
functional on a vector – or rather, the evaluation <#B, c2> of a 2-form on a 2-chain − if 
one wishes to make the resulting number time-varying then one can make both B and c2 

time-varying, in their own right.  However, since allowing c2 to vary in time is more 
interesting to engineering applications, such as motors and generators, we shall simply 
consider the possibility that only B = B(τ, xi)  is a (differentiable) function of time. 
 This makes the magnetic flux derivative take the form: 
 

2[ ]d c

dτ
ΦB =

2

(# )
c τ

∂
∂∫

B
.     (IV.6) 

 
 We can now write Faraday’s law (IV.3) in the form: 
 

2

[ (# )]
c

dE τ+ ∂∫ B = 0,     (IV.7) 

 
and if this is true for any possible 2-chain c2 then one obtains the differential equation: 
 

dE + ∂τ (#B) = 0.     (IV.8) 
  
 Of course, this means that we are regarding both E and B as time-varying fields, now. 
 
 b.  Maxwell’s law of induction [1].  It was Maxwell who put the capstone on the 
classical theory of electromagnetism by the intuitive leap of assuming that there is a 
partial converse to Faraday’s law of induction that takes the form of saying that a time-
varying electric flux through a 2-chain c2 will induce a magnetomotive force in its 
boundary loop.  However, this time the induction is in phase: 
 

M[∂c2] = + 2[ ]d c

dτ
ΦD .     (IV.9) 

 In integral form, this is: 
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2c
H

∂∫ = +
2

#
c

d

dτ ∫
D ,     (IV.10) 

 
and by an application of Stokes’s theorem, this becomes: 
 

2c
dH∫ = +

2

#
c

d

dτ ∫
D .     (IV.11) 

 
 If (IV.10) is to serve as a generalization of Ampère’s law (III.49) then we must add a 
contribution to the right-hand side that accounts for the current that is also producing the 
field: 

M[∂c2] = + 2[ ]d c

dτ
ΦD + I[c2],    (IV.12) 

in which: 

I[c2] =
2

#
c∫ i      (IV.13) 

 
is the total electric current through c2 .  Keep in mind that the actual support of the 
electric current density i will generally be different from c2 , so the integral will involve 
only the intersection of those two sets. 
 Once again, if we consider only the possibility that D is time varying, but not c2 itself, 
this leads to the differential equation: 
 

dH − ∂τ #D = #i .    (IV.14) 
 
 It was this reciprocity in the coupling between time-varying electric fields and time-
varying magnetic fields that eventually led to the possibility of wavelike solutions to the 
electromagnetic field equations, and the wave theory of optics. 
 
 
 2.  Conservation of charge [1].  If we wish to go beyond the static perspective on 
electric and magnetic fields, we need to also go beyond the static perspective on their 
sources.  Of course, we have actually made a first step in this direction by pointing out 
that electric currents already represent electric charges in a state of relative motion, but in 
order to produce static magnetic fields it was necessary to consider only time-invariant 
currents. 
 Now we shall consider the situation in its full generality, and assume that we have a 
time-varying electric charge density ρ = ρ(τ, x) that is defined on the spatial manifold Σ, 

or really, on R × Σ.  On the support supp(ρ) of this density, we also have a time-varying 

vector field v = v(τ, x) that is defined, and which represents the flow velocity vector field 
of the charge distribution. 
 Together, these two data define another time-varying vector field: 
 

i = ρv,      (IV.15) 
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whose support is clearly the same as that of ρ and i.  We call this vector field the electric 
current density for the distribution ρ. 
 The sense in which we think of the charge as being carried along by the motion 
defined by the vector field v – i.e., its congruence of integral curves – is defined by 
looking at the time rate of change for the total charge Q[c3] that is contained in a spatial 
3-chain c3.  (By “spatial,” we mean it is a 3-chain in τ0 × Σ for some fixed value τ0 of τ.): 
 

3[ ]dQ c

dτ
=

3

#
c

d

d
ρ

τ ∫
=

3c

ρ
τ

∂ 
 ∂ 

∫ V .   (IV.16) 

 
 We couple this to i by the assumption that the physical meaning of the total flux of i 
through the boundary of c3: 

Φi[c3] =
3

#
c∂∫ i      (IV.17) 

 
is the time rate at which charge is flowing out of the region described by c3: 
 

3[ ]dQ c

dτ
= − Φi[∂c3].    (IV.18) 

 
This coupling of total charge with total charge current through the boundary is the most 
fundamental form of the law of charge conservation.  
 In integral form, this is: 

3c

ρ
τ

∂ 
 ∂ 

∫ V = −
3

#
c∂∫ i ,    (IV.19) 

 
and an application of Stokes’s theorem makes this become: 
 

3c

ρ δ
τ

∂ + ∂ 
∫ i V = 0,    (IV.20) 

 
after a few self-evident manipulations. 
 If (IV.20) is to be true for all possible spatial 3-chains then one must have the validity 
of the following differential equation: 

ρ
τ

∂
∂

+ δi = 0.     (IV.21) 

 
Hence, the differential form of (IV.18) amounts to the statement that the divergence of 
the vector field i, when restricted to the boundary of a 3-chain, is minus the time rate of 
change of the electric charge density at each point. 
 In local form, with i = ρvi∂i , one has: 
 

( )i

i

v

x

ρ ρ
τ

∂ ∂+
∂ ∂

= 0.    (IV.22) 
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 3. Pre-metric Maxwell equations.  Let us summarize the equations that we have 
accumulated for the fields E, D, H, and B.  In integral form, they are: 
 

Gauss’s law for D:   ΦD[∂c3] = Q[c3],   (IV.23a) 
Gauss’s law for B:   ΦB[∂c3] = 0,     (IV.23b) 
Faraday’s law of induction:  E[∂c2] = − ∂τ ΦB[c2],   (IV.23c) 

Maxwell’s law of induction:  M[∂c2] = + ∂τ ΦD[c2] + I[c2],  (IV.23d) 

 
and in differential form, they are: 
 

Gauss’s law for D:   δD = ρ,    (IV.24a) 
Gauss’s law for B:   δB = 0,     (IV.24b) 
Faraday’s law of induction:  dE + ∂τ #B = 0,   (IV.24c) 
Maxwell’s law of induction:  dH − ∂τ #D = #i .   (IV.24d) 

 
 Furthermore, we must add the constitutive laws that we have been using, so far, 
namely: 

D = ε(E), H = µ(B).    (IV.25) 
 

 Collectively, (IV.24a-d) represent the formulation of Maxwell’s equations in terms of 
differential forms, at least in the eyes of non-relativistic physics.  The first two equations 
basically express the divergences of D and B, while the last two equations express their 
curls, if one takes into account the constitutive laws (IV.25) that couple them. 
 One of the most important advances to these classical equations came from the work 
of Lorentz, Poincaré, Minkowski, and others to give these non-relativistic equations a 
relativistic form (as one might find in [2-8]).  Basically, one must replace the four-

dimensional time + space manifold R × Σ, in which the time dimension really represents 

the proper time parameter τ that would be measured by a particular measurer/observer, 
with a more general four-dimensional spacetime manifold M.  Now, the time dimension 
only shows up as one of the coordinates xµ in a choice of coordinate chart (U, xµ) about 
each point of M. 
 It was eventually established that the most intuitive and computationally useful 
formulation of Maxwell’s equations on M came about by consolidating E and B together 
into a single 2-form on M: 

F = dt ^ E − #B,    (IV.26) 
 
while consolidating D and H into the bivector field: 
 

h = ∂t ^ H + #−1D .    (IV.27) 

 We relate h to F by a more general constitutive law than (IV.25): 

 
h = κ(F) .     (IV.28) 
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We shall discuss the nature of four-dimensional constitutive laws in the next chapter, but, 
for now, we just treat it as a diffeomorphism of each fiber of Λ2(M) at each x ∈ M with 
the corresponding fiber of Λ2(M) at the same point. 
 Furthermore, we consolidate the sources ρ and i into a single four-dimensional 
current vector: 

J = ρ ∂t + i .     (IV.29) 
 
 With these consolidations, the Maxwell equations can be expressed in the form: 
 

dF = 0,  δh = J,  h = κ(F).   (IV.30) 

 
 One sees that conservation of charge follows as an unavoidable consequence: 
 

δJ = 0.      (IV.31) 
 
One can also treat this equation as an integrability – or compatibility – condition for a 
given electric current four-vector field J to be the source of a bivector field H. 
 If one expresses the 2-form F, the bivector field h, and the electric current J in local 

form as: 
F = 1

2 Fµν dxµ ^ dxν, h = 1
2 Hµν ∂µ ^ ∂ν , J = Jµ ∂µ    (IV.32) 

 
then Maxwell’s equations take on their familiar local form: 
 

Fµν,κ + Fνκ,µ + Fκµ,ν = 0, Hµν
,ν = Jµ,  Hµν = κ(Fµν). (IV.33) 

 
 When the constitutive map k is linear, the last equation can be expressed in local form 
as: 

Hµν = κµναβ Fαβ .    (IV.34) 
 
 We point out that at no point has it been necessary to introduce a metric of any 
signature in order to define the system of equations (IV.30), only a volume element.  The 
usual role of the Lorentzian metric g in the formulation of Maxwell’s equations in terms 
of differential forms is purely confined to the definition of the Hodge duality 
isomorphism *, and only for 2-forms, moreover. 
 In order to see that we have essentially replaced the necessity for g by means of the 
constitutive map κ, we first rephrase the middle equation in (IV.30) as: 
 

d#κ(F) = #J .     (IV.35) 
 
 If we consider the case of a linear map κ and define *: Λ2M → Λ2M, F ֏ #κ(F) then 
we see that * is an isomorphism of 2-forms with 2-forms.  We can then put (IV.35) into 
the form: 

d*F = #J.     (IV.36) 
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This is consistent with the metric form of Maxwell’s equations that gets presented in 
most texts on relativistic electrodynamics, as long as our isomorphism * has one of the 
key properties of the Hodge isomorphism, at least, as it acts on 2-forms on a four-
dimensional Lorentzian manifold, namely: 
 

* 2 = −I,     (IV.37) 
 
which actually means that the * isomorphism defines an “almost-complex structure” on 
the vector bundle Λ2M.  We shall have more to say about this later, but, for now, we point 
out that generally all that one can assume is that: 
 

* 2 = #κ#κ.     (IV.38) 
 
 The integral form of Maxwell’s equations is then: 
 

ΦF[∂c3] = 0, Φh[∂c3] = ΦJ[c3], h = κ(F).  (IV.39) 

  
 Once again, we see that we can give topological interpretations to the field equations 
of electromagnetism (IV.30), just as we did for the static field equations of electric and 
magnetic fields individually.  Now, we see that F must be a de Rham cocycle in 
dimension 2, while h, outside the support of the source current J, is a de Rham cycle in 

dimension two. 
 
 
 4. Electromagnetic potential 1-forms.  The first of Maxwell’s equations – viz., dF 
= 0 – takes the form of saying that the 2-form F is closed.  Depending upon whether 

2 ( )dRH M is trivial or not, F might be globally exact or locally exact, resp.  That is, there 

will be a 1-form A such that: 
F = dA.     (IV.40) 

 
One calls this 1-form an electromagnetic potential 1-form, or a choice of gauge for the 
electromagnetic field F. 
 
 a.  Gauge equivalence.  As before, A is not unique because any other 1-form A′ that 
differs from A by a closed 1-form z1 will give the same 2-form F under exterior 
differentiation.  The relation A ~ A′ iff dA = dA′ iff A − A′ ∈ 1 ( )dRZ M is an equivalence 

relation that is usually called gauge equivalence.  We denote the set of all gauge 
equivalent 1-forms (mod F) by A(M; F). 

 Note that two cohomologous closed 2-forms F and F′  will generally differ by an 
exact 2-form dα; hence, if F = dA and F′ = dA′ then: 
 

F − F′ = d(A – A′) = dα  ≠ 0.    (IV.41) 
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Since α is not closed A and A′ cannot be gauge equivalent.  That is, cohomologous 2-
forms will not generally have gauge-equivalent potential 1-forms. 
 It is not true that if A ~ A′ then any linear combination αA + βA′ will be an element of 
the same gauge equivalence class as A and A′, since: 
 

 d(αA + βA′) = (α + β) F,    (IV.42) 
 
which is not generally equal to F.  Hence, A(M; F) is not a vector space.  However, the 

fact that the expression A − A′ ∈ 1 ( )dRZ M is well-defined implies that it is an affine space 

that is modeled on the vector space1 ( )dRZ M .  The fact that it is infinite-dimensional 

follows from the fact that at long as M has finite-dimensional de Rham cohomology in 
dimension one the dimension of 1 ( )dRZ M is the same as the dimension of1 ( )dRB M , and 

since each of its elements take the form dλ for some smooth function λ, the dimension of 
1 ( )dRB M is the same as the dimension of C∞(M; R), which is denumerably or non-

denumerably infinite depending upon whether M is compact or not, respectively. 
 Since gauge equivalence takes the local form A − A′ = dλ, one can think of this as 
defining a gauge transformation (of the second kind) by the replacement A → A + dλ.  In 
order to define the gauge transformations of the first kind, one must express λ in the form 
λ = ln g, which makes: 

dλ = g−1 dg .     (IV.43) 
 
 Since multiplication by real numbers is commutative, one can express the gauge 
transformation of the second kind as the replacement of A with: 
 

A′ = g−1Ag + g−1 dg.    (IV.44) 
 
although the excess complexity in the expression is, of course, unnecessary for the 
Abelian case at hand.  It does, however, become non-trivial for non-Abelian gauge 
theories. 
 
 c.  Field equations in terms of a potential.  If F = dA then the first of equations 
(IV.30) becomes an identity.  The constitutive law makes h = κ(dA), and this puts the 

non-trivial differential equation of the set into the form: 
 

Aκ□ = (δ ⋅ κ ⋅ d)A = J.   (IV.45) 

 
 This means that the operator κ□ : Λ1 → Λ1 plays the role of a “pre-metric 

d’Alembertian.”  Ordinarily – i.e., in the metric theory, which provides a Hodge * 
isomorphism in all dimensions, not just dimension two – we could say that this operator 
equals the d’Alembertian operator by the Lorentz choice of gauge for A, namely δA = 0.  
However, in the absence of a metric, we cannot generally define the codifferential 
operator for δA to make any sense. 
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 If we represent A in a local coordinate chart as Aµ dxµ, J as Jµ ∂µ , and κ by means of 
functions κµναβ(x, F) then the field equation (IV.45) takes the local form: 
 

A

x x
µναβ α

µ βκ ∂∂  
 ∂ ∂ 

= Jν,     (IV.46) 

 
and, upon carrying out the partial derivatives, it becomes: 
 

2A A

x x x x

µναβ
µναβ α α

µ β µ β
κκ ∂ ∂∂+

∂ ∂ ∂ ∂
ɶ = Jν,   (IV.47) 

with: 

µναβκɶ ≡ κµναβ +
A

F x

µναβ
κ
λ

κλ

κ ∂∂
∂ ∂

.    (IV.48) 

 
 c.  U(1) gauge structures [9, 10].  Because the expression (IV.44) looks so formally 
similar to the way that the local representative of a connection 1-form A on a U(1)-
principal bundle P → M would transform from one local trivialization over U ⊂ M to 
another one over V ⊂ M that overlaps the first, we briefly summarize the physical roots of 
the rest of that construction. 
 An element of the Abelian Lie group U(1) can be represented by a complex number 
of the form eiθ.  Hence, an element of its Abelian Lie algebra will take the form iθ.  Our 
group of gauge transformations of the second kind can then be represented by the group 
C∞(U, U(1)) of smooth maps from U to U(1). 
 A U(1)-principal bundle P → M has a fiber over each point of M that looks like U(1), 
which is topologically a circle.  However, as usual, the diffeomorphism of each fiber with 
U(1) is not canonical, and one finds that there are generally inequivalent U(1)-principal 
bundles over a given M.  In particular, they are not all generally trivial – i.e., equivalent 
to the projection M × U(1) → M – since that is equivalent to saying that there is a global 
section of the bundle. 
 The physical meaning of a local section φ: U → P is that it represents a local choice 
of U(1) gauge for an electromagnetic field F, which we now assume to be a 2-form on P.  
By means of φ, one can then pull F down to a 2-form φ*F on U.  If F = dA then if one 
interprets the 1-form A on P as a u(1)-connection 1-form then this would make F the 

curvature 2-form that it defines (since the Lie algebra u(1) is Abelian).  The 1-form A 
also pulls down to a 1-form φ*A on U. 
 If V ⊂ M is an open subset that overlaps U and supports a local section ψ: V → P then 
on the overlap U ∩ V there is a transition function g: U ∩ V → U(1) that allows one to 
transform from one choice of local gauge to the other by way of: 
 

ψ(x) = g(x)φ(x).     (IV.49) 
 

This is what one commonly calls a gauge transformation of the first kind. 
 One finds that the pull-down of A transforms to A′ = ψ*A by way of: 
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A′ = g−1Ag + g−1 dg = A + dλ,     (IV.50) 
 

and the curvature 2-form F transforms to: 
 

F′ = g−1Fg = F.     (IV.51) 
 
 In the eyes of modern differential geometry [11], this implies that it is possible to 
interpret electromagnetism as involving basic constructions that are consistent with the 
geometry of a U(1)-principle bundle over spacetime that has been given a choice of 
connection.  In the vocabulary of modern theoretical physics, one calls such a theory a 
U(1) gauge theory of the interaction in question. 
 We pointed out that the triviality of a G-principal bundle P → M is equivalent to the 
existence of a global section of the fibration.  The branch of topology called obstruction 
theory [12, 13] gives the obstruction to the extension of a local section to a global one in 
terms of the non-vanishing of a certain cocycle called the primary obstruction cocycle 
whose dimension is one more than the dimension of the first non-vanishing homotopy 
group πk(G) of the fiber − namely, G − and whose coefficient group is πk(G).  In the case 

of G = U(1) the first, and only, non-vanishing homotopy group is π1(U(1)) = π1(S
1) = Z, 

so the primary obstruction cocycle for a U(1)-principal bundle over a manifold M is a 

cocycle c1 ∈ H2(M; Z) that one calls the first Chern class for P.  The gist of the Chern-

Weil homomorphism is that this integer cocycle can be represented in de Rham 
cohomology by the 2-form: 

c1 = 
1

2
F

π
.     (IV.52) 

 
As it turns out, the choice of u(1)-connection 1-form A is irrelevant, because any other 

possible choice A′  would give a curvature F′  that is cohomologous to F. 
 In the case of M = S2, the issue of triviality leads to the consideration of Dirac 
monopoles, although not in the form that Dirac described.  Suppose one has a a U(1) 
principal bundle P → S2.  Basically, one cannot cover the 2-sphere with a single local 
trivialization of P, but must cover it with two overlapping hemispheres UN and US 
centered on the North and South pole.  One assumes, moreover, that the overlap UN ∩ US 
is homotopic to a circle. 
 We will call two local sections of the fibration over the two hemispheres φN and φS .  
There must be a transition function gNS : UN ∩ US → U(1) that relates them be way of: 
 

φN  = gNS φS .     (IV.53) 
 
 Since UN ∩ US is homotopic to S1, as is U(1), the homotopy classes [gNS] are all 

elements of π1(S
1) = Z.  Hence, there is a denumerable sequence of homotopically 

inequivalent transition functions, which also implies a corresponding sequence of 
homotopically inequivalent U(1)-principal bundles over S2.  In fact, the integers that 
index this sequence of bundles can be obtained by a simple integration of c1 over S2: 
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c1[P] = 
2

1

2 S
F

π ∫
.    (IV.54) 

 
 This integer c1[P] is called the first Chern number for P, and since it happens to equal 
to the Euler-Poincaré characteristic 19 of S2 in this case, equation (IV.54) is another form 
of the Gauss-Bonnet theorem, which is what Chern was originally attempting to 
generalize when he was eventually led to define the characteristic classes that bear his 
name.  For a trivial U(1)-principal bundle over S2 the first Chern class will vanish, so a 
non-vanishing first Chern number is necessary and sufficient for the non-triviality of such 
a bundle. 
 The way that this relates to magnetic monopoles is that the right-hand side of (IV.54) 
is also proportional to the total magnetic flux though S2 when one thinks of F as an 
electromagnetic field strength 2-form, hence, the total magnetic charge contained in it, 
assuming that S2 bounds a closed 3-ball. 
 An interesting point to ponder, since magnetic monopoles have not been 
experimentally demonstrated, and even seem to contradict one’s basic intuition about the 
nature of magnetic field sources, is whether it is actually necessary that one assume that 
the gauge transformation A ֏A + dλ actually has to imply that one dealing with U(1) 
indeed.  Basically, it is only a statement about Lie algebras, and there is another Lie 

group that has a Lie algebra that is isomorphic to R, namely, the additive group (R, +) of 

real numbers.  The usual argument for going the route of U(1) is purely reasoning by 
analogy with wave mechanics, on the assumption that gauge transformations of the first 
kind work the same way for potential 1-forms as they do for quantum wave functions.  

However, if this analogy were weak, and the actual gauge group was (R, +), not U(1), 

that would account for the non-existence of magnetic monopoles, since R is contractible, 

so all of its homotopy groups vanish, and there is no obstruction to a global section of any 

R-principal bundle; i.e., they are always trivial.  Then again, the experimentally-verified 

validity of the Bohm-Aharonov effect suggests that U(1) might be the correct choice, 
after all. 
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Chapter V 
 

Electromagnetic constitutive laws 
 
 
Although the subject of electromagnetic constitutive laws seems to be best established for 
the response of macroscopic matter to electromagnetic fields, it seems to be gradually 
emerging from quantum electrodynamics that there is much more internal structure to the 
electromagnetic vacuum state than can be conveniently described by the constants ε0 and 
µ0 .  Since the nature of that state is apparently beyond the limits of direct observation, 
one must hope that it is permeable to intuitive probes that are based on analogies with 
more established macroscopic phenomena.  Therefore, we shall first discuss some of the 
issues that pertain to macroscopic matter and then summarize the most established 
aspects of the quantum electrodynamical vacuum state that suggest analogies with 
nonlinear optics. 
 
 
 1. Electromagnetic fields in macroscopic matter [1-4].  As pointed out previously, 
the application of an electromagnetic field F to a macroscopic medium will imply the 
application of forces and torques to the elementary charges and dipoles – both electric 
and magnetic – in the medium.  The main issue for a given medium is the degree of 
freedom that those elementary charges and dipoles have in the medium.  This, in turn, 
reverts to the question of how they interact. 
 Any model for macroscopic matter, such as one finds in condensed matter physics 
[5], is going to be based in some empirical approximation to the interaction of the 
elementary constituents of the medium.  For instance, the ideal gas model assumes that 
the gas molecules all have zero volume and interact only by elastic collisions.  Hence, the 
limits of the model for the medium are usually defined by the limits of the interaction 
model for its constituents.  One often finds that the nature of phase transitions in such 
media is closely related to the transition from one interaction model to another.  For 
instance, the ideal gas model begins to break down when the molecules get close enough 
for inter-atomic forces to take over, which suggests a high gas density, as one would 
expect during condensation from the gaseous phase to the liquid phase.  Similarly, when 
a gas goes to the plasma state the outer electrons of the gas molecules are no longer 
bound to the molecules, so the interaction model for the electrons and gaseous ions must 
change accordingly. 
 The elementary charges in a macroscopic electromagnetic medium come in two basic 
forms: electrons and atomic ions.  The electrons are free to move in response to applied 
electromagnetic fields to a greater or lesser degree that mostly determines whether the 
medium is regarded as a conductor, insulator, or something more exotic, such as a 
semiconductor.  That is, the translational response of atomic electrons to applied electric 
and magnetic forces will take the form of an electric current that flows in the medium. 
 Atomic ions in a solid medium are often bound to each other into a crystal lattice, so 
they do not generally translate very far from their equilibrium positions, but they are still 
capable of exhibiting collective vibrational modes of response, as well as electronic 
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energy level transitions.  Atomic ions can appear in non-solid media such as electrolytic 
solutions and in the plasma state. 
 Elementary electric dipoles are most commonly associated with rather complex 
molecules, such as one finds in plastic dielectrics, but also in the silicon dioxide that 
mostly constitutes many optical media, such as quartz and the various glasses.  It is no 
coincidence that optically transparent media are not generally conductors, although we 
shall not go into the details here. 
 Elementary magnetic dipoles are mostly associated with the angular momenta, both 
orbital and intrinsic, of elementary charges.  However, in the case of both nuclear and 
electronic magnetic moments, it is the intrinsic angular momentum – i.e., spin – that 
tends to dominate in macroscopic phenomena over the orbital angular momentum.  In 
particular, the response of most magnetic media to applied magnetic fields is generally 
due to the degree of freedom that the electron spins have in the medium. 
 As mentioned above, the electromagnetic properties of macroscopic media tend to be 
partitioned according to the phase of the medium.  This, in turn, is often related to the 
magnitudes of the field strengths involved.  One simply has to consider the possible 
phase transitions that might come about when field strengths exceed critical limits.  For 
instance, in most optical media, the propagation of waves involves the responses of the 
atomic electrons to the impinging photons.  One can see that there will be various types 
of photons in that regard: photons that bring about level transitions and result in 
absorption or stimulated emission of photons, photons of sufficient energy to bring about 
the ionization of electrons, photons that get Compton scattered by the electrons, etc.  
Hence, it is clear the optical character of the medium will change dramatically when the 
energy of the photon – i.e., the field strengths of its electric and magnetic fields – exceeds 
the ionization limit or has the proper frequency to initiate stimulated emission, as in 
lasers, or perhaps when it equals a level transition that would cause absorption. 
 In this chapter, which is more phenomenological than the previous ones, we shall 
start with the linear electromagnetic media and then go on to the nonlinear ones.  From 
that study, we shall comment upon some of the possible analogies with the quantum 
electrodynamical vacuum state.  In all of the discussion, the primary objective will be to 
obtain possible forms for the electromagnetic constitutive law that shows up in the pre-
metric Maxwell equations. 
 
 
 2. Linear constitutive laws [1-4].  Even though linearity is invariably an 
approximation in physics, nonetheless, it can also be such a useful approximation to a 
wide class of natural phenomena – which usually amounts to the realm of weak field 
strengths in the case of electromagnetism – that we still need to discuss the linear case.  
Indeed, one finds that the extension to nonlinearity is so fraught with complexity that it is 
only by starting with the firm intuitive foundation that one gains from the linear 
phenomena that one can even hope to choose a fruitful direction of mathematical 
generalization into the domain of nonlinear phenomena. 
 We shall first deal with the most general case of non-local linear constitutive laws, so 
that we can give the local laws their proper context.  We will then discuss some of the 
classes of natural phenomena that pertain to the structure of local linear constitutive laws.  



122 Pre-metric electromagnetism 

We shall also be considering only non-conducting media, so the applied electromagnetic 
field will not be assumed to produce an electric current in the medium. 
 
 a. Non-local linear laws.  In its most general form, when an electromagnetic 
medium exhibits a linear response to an applied electromagnetic field strength F ∈ Λ2M 
the resulting bivector field h ∈ Λ2M is related to F by an linear operator κ: Λ2M  → Λ2M 

that is not necessarily local.  That is, it does not induce linear maps on the individual 
fibers of these vector bundles at each point of M.  Rather, it can generally be represented 
as an integral operator: 

 h(x) = ( , ) ( )
M

K x y F y∧∫ ,    (V.1) 

 
in which K: M×M − ∆ → Λ2M ⊗ Λn−2M, (x, y) ֏K(x, y) ∈ Λ2,x ⊗ 2n

y
−Λ  is a kernel 

function for the operator K that is not, however, defined on the diagonal ∆ of M×M; viz., 
the set of all (x, x).  One way of characterizing the kernel function is to think of it as the 
impulse-response function for the medium.  That is, use F(y) = δ(y) and note that the 
resulting h(x) will equal K(x, 0). 

 This non-locality takes two basic forms: temporal and spatial. 
 In the temporal case, one must consider the fact that a real-world medium will not 
respond to an applied field instantaneously, nor will its response cease immediately after 
the applied field itself vanishes.  There will generally be a certain time delay before the 
medium begins to respond, as well as a certain decay envelope after the impulse ceases.  
One must also add causality constraints on the kernel to insure that h is not responding to 

the future state of the field F. 
 Nonlocality in the spatial case is based on the notion that generally neighboring 
dipoles, whether electric or magnetic, are not completely independent of each other, but 
generally have some sort of interaction.  Often, this interaction takes the form of 
essentially a “nearest-neighbor” interaction, as one finds in the Heisenberg ferromagnet.  
Spatial nonlocality does not involve a causality constraint in the same way as temporal 
nonlocality, but one might imagine that the state of a given dipole could not depend upon 
the state of dipoles that are not sufficiently close that electromagnetic waves could pass 
between them within a lightlike time interval. 

 If M is a compact region in R4 and we assume that K is translation-invariant, so it can 

be expressed in the form K(x – y), then we can take the Fourier transform of (V.1) to get 
an algebraic equation in frequency-wave number space, which we express in component 

form for a choice of coordinates on R4: 

 
h

µν(ω, ki) = 1
2 Kµναβ(ω, ki) Fab(ω, ki).   (V.2) 

 

 Hence, we are now dealing with a complex 2-form F ∈ Λ2(R4*) on frequency-wave 

number space R4*, a complex bivector field h ∈ Λ2(R
4*), and a complex linear map K 

from one to the other, which is now local.  In general, temporal nonlocality will manifest 



Electromagnetic constitutive laws                                         123 

itself as a frequency dependence of the components of K, and spatial nonlocality will 
imply wave-number dependence. The appearance of non-zero real parts to the 
components of K is related to the possibility that the medium might tend to absorb 
electromagnetic energy. 
 
 b. Local linear laws.  From the preceding discussion, it should be clear that there is a 
fundamental approximation associated with passing from nonlocal linear constitutive 
laws to local linear ones, just as there is a fundamental approximation that is associated 
with the restriction to linear laws, in the first place.  Basically, the approximation is that 
the temporal impulse response must involve a short time delay and a quick decay 
afterwards, while the spatial response must be confined to only a sufficiently small 
neighborhood of each elementary dipole. 
 In dealing with the general form of the component matrix for a local linear 
constitutive map κ, it is generally more convenient to ignore the specific nature of the 
elements of the vector spaces 2

xMΛ and Λ2,xM as exterior products of other vector spaces 

and treat them as simply six-dimensional real vector spaces, at least when M is four-
dimensional.  Furthermore, since most of what we shall be discussing is local and linear 

in character, we shall consider only the vector spaces A2(R4) and A2(R
4), which serve as 

typical fibers of the vector bundles Λ2M and Λ2M. 
 Hence, a basis for A2 will consist of six linearly independent vectors {bI , I = 1, …, 
6} (which are really bivectors) and a basis for A2 will consist of six linearly independent 
covectors{bI , I = 1, …, 6} (which are really algebraic 2-forms).  As in any other vector 
space, they will be reciprocal to each other iff bI(bJ) = δI

J . 

 If { eµ , µ = 0, …3} represents a basis for R4 and {θµ, µ = 0, …, 3} its reciprocal basis 

for R4* then one can define a basis for A2 by means of: 

 
bi = e0 ^ ei ,  bi+3 = 1

2 εijk ej ^ ek, i, j, k = 1, 2, 3  (V.3) 

 
and one for A2 by means of: 
 

bi = θ0 ^ θi ,  bi+3 = 1
2 εijk θj ^ θk.    (V.4) 

 
It is easy to see that these bases are themselves reciprocal. 
 For instance, in this basis we can represent the electromagnetic field strength F as: 
 

F = Ei b
i + Bi b

i+3 .     (V.5) 
 
 Because the bases seem to split evenly into three members that have a common 
exterior factor of e0 (θ0, resp.) and three members that do not involve it, we shall find it 
convenient, as well as mathematically and physically significant, to represent A2 as the 
direct sum Re Im

2 2A A⊕ and A2 as the direct sum2 2
Re ImA A⊕ of two three-dimensional real 

vector spaces.  Our notations “Re” and “Im” are suggestive of “real” and “imaginary,” 
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respectively, although we have more to say about why that is actually appropriate in 
Chapter XII. 
 When a basis has been chosen for both A2 and A2, any linear transformation L: A2 → 
A2 , α ֏ L(α) can be represented by a matrix LIJ with respect to these bases that is 
defined by: 

L(bI) = LIJ bJ .      (V.6) 
 

 In block-matrix form, the matrix of a local linear constitutive map κ looks like: 
 

κIJ =
ij ij

ij ij

α β
γ η
 
 
  

.     (V.7) 

 
 So far, we have said nothing concerning the symmetry of the indices I and J.  Indeed, 
one can first regard them as having no specified symmetry.  However, one can polarize 
κIJ into a sum IJκ+ + IJκ− of a symmetric part IJκ+ and an anti-symmetric partIJκ− , where: 

 
IJκ+ = 1

2 (κIJ + κJI),  IJκ− = 1
2 (κIJ + κJI) .  (V.8) 

 
 However, IJκ+ can be decomposed further, since the inverse #−1 of the Poincaré duality 

isomorphism also has a matrix that is symmetric: 
 

 #IJɶ =
0

0

I

I

 
 
 

.      (V.9) 

 
 In the terminology of Hehl and Obukhov [3], the principal part of κIJ is then defined 
to be the part of IJκ+ that does not include this contribution: 

 

(1)κIJ = IJκ+ − 1
6 Tr( I

Jκ ) #IJɶ = 
ij ij

ji ij

ε γ
γ µ
 −
 
  

ɶ
.   (V.10) 

 
In the second term, we have used I

Jκ ≡ #JK κKI. 

 The sub-matrix εij, which is Hermitian, represents the electric permittivities of the 
medium, which generalize the dielectric constant; the reason for the minus sign will 
become clear shortly.  The matrixijµɶ , which is also Hermitian, represents the inverse of 
the matrix of magnetic permeabilities of the medium.  The remaining off-diagonal 
matrices γij and its Hermitian transposejiγ represent the contribution of the magnetic field 
Bi to the electric excitation Di and that of the electric field Ei to the magnetic excitation 
Hi.  We shall discuss possible origins for these contributions in a bit. 
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 The anti-symmetric part of κ − namely, (2)κIJ = IJκ−  − is called the skewon part of κ 

and the remaining “trace-class” contribution (3)κIJ = 1
6 Tr( I

Jκ ) #IJɶ is called its axion part, 

which represents a contribution from the volume element on R4. 

 
 
 3.  Examples of local linear media.  It will prove essential in what follows to have 
some specific examples of constitutive laws to consider, so we shall show how one 
accounts for some of the most commonly used electromagnetic media in the 
aforementioned formalism.  One thing that should be self-evident is that when one is 
referring to the constancy of matrix components this unavoidably begs the question of “in 
what frame?”  In most cases the answer is simply: the rest frame of the medium itself.  Of 
course, in the case of massless media, such as the electromagnetic vacuum – whether 
classical or quantum – it is meaningless to speak of a rest frame for the medium, which 
was, of course, the problem with the former concept of the “ether,” and one must then 
accept the more ambiguous answer: the frame of some measurer/observer. 
 
 a.  Linear isotropic media.  The most elementary electromagnetic media of all are the 
linear isotropic media, which include the classical vacuum itself.  The term “isotropic” 
refers to invariance under spatial rotations in the chosen frame, such as the rest frame of 
the medium, when it is not massless.  At the elementary level, this generally means that 
the electric and magnetic dipoles of the medium must be capable of aligning themselves 
to an imposed field just the same way at any point and in any direction. 
 Such media are characterized by the fact that κIJ agrees with its principal part, so it is 
symmetric, and its constituent submatrices are of the form: 
 

εij = ε δij, ijµɶ  = (1/µ) δij,  γij = 0.   (V.11) 
 
 The function ε is referred to as the electric permittivity of the medium.  The function 
µ is its magnetic permeability.  When these functions are constant in the chosen frame 
one calls the medium homogeneous, as well.  The constant ε is usually referred to as the 
dielectric constant of the medium, in that case. 
 The classical electromagnetic vacuum is assumed to be linear, isotropic, and 
homogeneous; one denotes its dielectric constant by ε0 and its magnetic permeability by 
µ0 .  We shall denote its constitutive map by κ0, and it will play a recurring role in what 
follows as essentially an asymptotic state that one finds in the absence of electromagnetic 
fields. 
 
 b.  Linear optical media.  The next level of generality is defined by the linear optical 
media, which are basically like (V.11), except that one allows εij to possibly be 
inhomogeneous or anistropic.  In regular optical practice, the most common 
inhomogeneity that one treats involves matrix components that are piecewise constant 
and undergo jump discontinuities on the interfaces between dissimilar media.  However, 
an important example of continuous inhomogeneity is defined by the variation of the 
optical properties of some transparent media under stress.  Since the magnetic 
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permeability of an optical medium generally plays no role, one customarily thinks of 
them as dielectric media; i.e. ijµɶ  = (1/µ0) δij, with µ0 a constant that is usually set to 
unity. 
 When εij is symmetric, but anisotropic, it is customary to define the principal frame, 
in which it becomes the diagonal matrix diag[εx , εy , εz].  The diagonal elements, which 
are the principal permittivities, are the eigenvalues of the matrix εi

j = δjk εik, and the 

vectors of the principal frame (in R3) are its normalized eigenvectors.  Because εij is 

symmetric, these eigenvalues exist and are real, and the eigenvectors associated with 
distinct eigenvalues must be orthogonal.  Note that one implicitly introduces the 
Euclidian metric on the spatial manifold in order to speak of eigenvectors and 
eigenvalues. 
 There are three basic ways that the eigenvalues of εij can equal or differ from each 
other: 
 1.  When they are all equal, one calls the medium isotropic. 
 2. When two are equal, and the third one differs, the medium is called uniaxial.  
(The axis in question belongs to the distinct eigenvalue.) 
 3. When all three are unequal, the medium is called biaxial. 
 Generally, the symmetry type of a dielectric is traceable to the symmetry type of the 
crystal lattice of the material that it is composed of. 
 The complementary class to that of optical media is defined by magnetic media, for 
which εij = ε0 δij, where ε0 is regarded as constant, but ijµɶ  is possibly inhomogeneous or 
anisotropic.  For magnetic media, one has an analogous notion of a principal frame for 
the symmetric matrix ijµɶ , whose eigenvalues are 1/µx , 1/µy , 1/µz , are then principal 

permeabilities.  Clearly, the principal frame forijµɶ will be the same as the principal frame 

for its inverse matrix µij , and the eigenvalues of the inverse matrix will be µx , µy , µz . 
 It is important to understand that the physical nature of electric and magnetic 
polarization in a medium suggests that there is no reason to believe that in the general 
case where εij and ijµɶ are both anisotropic they will have a common principal frame.  
Basically, this is equivalent to the condition that the matrices commute under 
multiplication, which is always the case when one of them is a scalar multiple of δij, but 
not true in general.  When both εij and ijµɶ  have a common principal frame, we shall call 
such a medium electromagnetically diagonalizable.  In such a frame, one has: 
 

κIJ = diag[−εx , −εy , −εz, 1/µx , 1/µy , 1/µz].   (V.12) 
 
 In all of the cases for which αij = 0 one can summarize the constitutive relations by 
the conventional three-dimensional component equations: 
 

Di = −εij Ej ,  Bi = µij H
j .   (V.13) 

 
 c.  Bi-isotropic media.   An elementary example of a medium in which the off-
diagonal matrices can be non-vanishing is that of bi-isotropic media (see Lindell [4]), 
which are like isotropic media in their diagonal matrices, but have: 
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γij = jiγ = γ δij .     (V.14) 

 

In this case, the off-diagonal matrices are symmetric, and the part of κIJ is #IJγ ɶ . 
 As we shall see, these media include the case of greatest interest in quantum 
electrodynamics, namely, the Heisenberg-Euler media. 
 
 d. Lorentzian media.  Recall that the crucial step in pre-metric electromagnetism is 
the replacement of the purely geometric tensor field ιg ^ ιg that represents the 
isomorphism of the vector space of 2-forms with the vector space of bivectors at each 
point of the spacetime manifold with a purely physical – indeed, as we have seen, largely 
phenomenological – tensor field that represents the response of the medium to the 
presence of electric and magnetic fields.  It is then heuristically useful to examine the 
form that the isomorphism ιg ^ ιg takes when expressed in terms of the I, J indices in 
order to compare the effect that it has to that of an electromagnetic constitutive law. 
 One simply has to start with the expression for the raising of two indices: 
 

h
µν = gµα gνβ Fαβ = 1

2 (gµα gνβ − gµβ gνα)Fαβ    (V.15) 

and expand: 
h

0i = (g00 gij – g0i g0j) F0j + 1
2 (g0j gik – g0k gij) Fjk ,  (V.16a) 

h
ij = 1

2 (gi0 gjk – g0j gik) F0k + 1
2 (gik gjl – gil gjk) Fkl .  (V.16b) 

 If we set: 
F0i = Ei , Fij = εijk B

i, h
0i = Di, h

ij = εijk Hk   (V.17) 

 
then (V.16a, b) take the form: 
 

Di = −εij Ej + i
jγ Bj,  Hi = i

jγ Ej + ijµɶ Bj,  (V.18) 

as long as we set: 
 

εij = g0i g0j  − g00 gij,  i
jγ = εklj g

0k gil,  ijµɶ = εnmi εklj g
nk gml. (V.19) 

 
 Of particular interest is the case of the Minkowski space metric: 
 

 gµν = ηµν = diag[+1, −1, −1, −1],    (V.20) 
which makes: 

εij = δij,   i
jγ = 0,   ijµɶ = δij .  (V.21) 

 
 Hence, we can put κIJ into the form: 
 

 κIJ =
0

0

ij

ij

δ
δ

 −
 
  

     (V.22) 
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in this case; we now see the reason for the inclusion of the minus sign in the general form 
(V.10) for (1)κIJ above. 
 Note that one cannot generally solve (V.19) for the gµν when given the εij, i

jγ , 

ijµɶ since the manifold Lor(4) of all gµν is 10-dimensional, whereas the manifold Cons(4) 

of all ε, µ, and γ, in which the first two are symmetric and the last one has no specified 
symmetry, is 6 + 6 + 9 = 21-dimensional.  Therefore, not all possible combinations (ε, µ, 
γ) will be consistent with the mapping Lor(4) → Cons(4), g ֏ (ε, µ, γ) that that is 
defined by (V.19), and one must specify 11 compatibility conditions, in order to define 
the image of that map as a submanifold of Cons(4). 
 Actually, there is an increasing body of literature, both mathematical and physical 
(see, e.g., [6]), that is based on the fact that the principal part of a linear electromagnetic 
constitutive law defines a fourth-rank totally covariant tensor field κ  on the spacetime 
manifold of a symmetry type that is sometimes called an algebraic curvature tensor [7], 
which also defines an area metric – i.e., a metric on the vector bundle Λ2M.  We shall 
return to discuss this latter aspect of k in Chapters XII and XIII, but for now, we simply 
point out that a key result is the Gilkey decomposition [7]: 
 

κκλµν = 
( ) ( ) ( ) ( )

( )
( ) 1

N i i i i

i
i

Z g g g gκµ λν κν λµ
=

 −  
∑ ,   (V.23) 

 

in which the Z(i), i = 1, …, N are frame-invariant scalar functions and the 
( )i

gκλ are metric 

tensor fields.  This decomposition is not, however, unique, since, at the very least one can 
choose other scalar factors. 
 We shall refer to an electromagnetic medium whose constitutive law takes the form 
of (V.19) for some Lorentzian metric as a Lorentzian medium. 
 
 e. Almost-complex media [8].  If one left-multiplies κIJ in (V.22) by the matrix #IJ 
that is inverse to (V.9) then one gets a matrix: 
 

* I
J  = #JK κKI  = 

0

0

I

I

 
 − 

    (V.24) 

 
that represents a linear isomorphism *: Λ2 → Λ2 with the property that: 
 

*2 = − I;     (V.25) 
 
In particular, it is the Hodge duality isomorphism that is associated with the Lorentzian 
metric, as it acts on 2-forms. 
 Now, a linear isomorphism of an even-dimensional real vector space with itself that 
has the property (V.25) defines a complex structure on that vector space, because 
multiplication by the imaginary i has that same effect on the vectors in a complex vector 
space.  We shall have much more to say about the role of complex structures in pre-
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metric electromagnetism in Chapter XII, but, for now, we confine ourselves to the aspects 
that pertain to constitutive laws. 
 Since an electromagnetic constitutive law κ is supposed to replace the * isomorphism 
that one derives from a Lorentzian structure, it is natural to postulate that it have the same 
property (V.25).  However, in the simplest case of an isotropic medium (V.11), since: 
 

I
Jκɶ = 

0 (1/ )

0

I

I

µ
ε

 
 − 

,  (κɶ ≡ # ⋅ κ)  (V.26) 

one must have: 
2κɶ = − ε

µ
I .     (V.27) 

 
 Hence, it probably more prudent to postulate that there is some function λ on the 
spacetime manifold M such that: 

2κɶ = − λ2 I .     (V.28) 
 
One can then define * by normalization: 
 

* = (1/λ)κɶ .     (V.29) 
 
The function λ can be shown to have the dimension of an admittance (i.e., 1/impedance), 
and for the vacuum it has the numerical value of 1/377 mhos. 
 An immediate consequence of the condition (V.28) is that it implies further restricting 
conditions on the submatrices that representκɶ .  If κ agrees with its principal part, so its 
matrix has the form (V.10), then: 

κɶ =
Tγ µ
ε γ

 
 −  

ɶ
.     (V.30) 

 
 From the condition (V.28), a direct evaluation of 2κɶ gives a set of four matrix 
equations that reduce to just two: 
 

ε = λ2 µ + µ γ2, µγT = γµ .   (V.31) 
 
 Here, we see that this constraint is actually more restrictive than it sounds like it 
would be.  If we assume that γ = 0 then we are left with the constraint that the matrix ε 
must be proportional to the matrix µ.  Hence, the medium must have the same symmetry 
under spatial rotations for both its electric and magnetic properties; i.e., both must be 
isotropic, uniaxial, or biaxial, resp.  Whereas this is certainly the case for the classical 
vacuum, and any other isotropic space, it is not generally true of most anisotropic optical 
media, since one assumes that they are magnetically isotropic and homogeneous. 
 For a bi-isotropic medium, the second equation in (V.31) is trivial, and the first says 
that one must have: 

ε = (λ2  + γ2) µ     (V.32) 
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for some λ.  Once again, ε must be proportional to µ, but the factor of proportionality 
depends upon γ. 
 Nonetheless, we shall see that media for which κ satisfies (V.33), which we call 
almost-complex media, provide a considerable wealth of applications for the methods of 
complex projective geometry, which is also closely suggested by the use of 2-forms and 
bivector fields. 
 
 f.  Purely axionic media.  A purely axionic electromagnetic medium will have a 
constitutive tensor field of the form: 

κ =
0

0

I

I
α
 
 
 

,     (V.33) 

which makes: 
* = αI.      (V.34) 

 
 This sort of relationship between F and H = *F is strongly analogous to a variation on 
Ohm’s law for coupling current to voltage in a two-port electrical network that was 
obtained by Tellegen [9, 10].  For the network that he devised, which he called a 
“gyrator” instead of the usual V = IR rule, he obtained: 
 

1

2

v

v

 
 
 

= 1

2

0 1

1 0

i
s

i

−   
  

   
,    (V.34) 

 
in which ia, va, a = 1, 2 are the currents and voltages at the two ports, respectively, while s 
has the dimensions of a resistance. 
 Physical examples of electromagnetic media that exhibit such laws also exist.  For 
instance, Lindell and Sihvola [10] have described such media as perfect electromagnetic 
conductors, and the emerging class of metamaterials [11] appears to offer the promise of 
implementing such a law in a tangible medium. 
 
 g.  Magneto-electric materials [12].  As a contribution to an electromagnetic 
constitutive law, and not a law unto itself, an axion part represents one type of magneto-
electric coupling, in addition to the contributions of skewon type.  In the next section, we 
shall discuss how magneto-electric couplings can come about as a result of frame 
transformations, and some of the experimentally established physical that exhibit them, 
but, for now, we cite as an example of a magneto-electric material the much-studied anti-
ferromagnetic material chromium sesquioxide (Cr2O3). 
 It gives a * isomorphism whose matrix has the block matrix form: 
 

[*] =
0 0

0 0

I

I

ε
αµ

   
+   −   

ɶ
,   (V.35) 

in which: 
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ε =

2

2
0

2
|| || ||

/ 0 0

0 / 0

0 0 /

ε α µ
ε ε α µ

ε α µ

⊥ ⊥ ⊥

⊥ ⊥ ⊥

 −
 − 
 − 

, µɶ =
0

||

1/ 0 0
1

0 1/ 0

0 0 1/

µ
µ

µ
µ

⊥

⊥

 
 
 
 
 

,(V.36) 

 

α = || 0

|| 0

1
2

3

α εα
µ µ µ

⊥

⊥

 
+  

 
.   (V.37) 

 
Hence, such a medium has no skewon contribution, and its magneto-electric coupling is 
solely due to the axionic part. 
 Experiments with Cr2O3 [12] have verified that α ≠ 0. 
 
 h. Fresnel-Fizeau effect [1, 2].  It has long been established that magneto-electric 
couplings in an electromagnetic medium can appear in as a result of the propagation of 
electromagnetic waves in a massive electromagnetic medium that is in a state of motion 
relative to the measurer/observer.  This effect of relative motion on such a medium was 
first studied by Fresnel and later by Fizeau; it was also discussed by Einstein in his early 
work on special relativity. 
 Basically, the effect of a relative velocity v on the medium is to couple magnetic 
fields to electric ones and vice versa in a manner that is analogous to the Lorentz force, at 
least up to first order.  All that one needs to do is subject the E and B field to a Lorentz 
transformation that corresponds to a transformation to a frame that has a relative velocity 
of v.  One finds (see Jackson [13], Landau and Lifschitz [14]) that the transformation of 
fields is, to first order: 
 

E′ = γE + γ/c v × B,  B′ = γB – γ/c v × E .  (V.38) 
 
Hence, the effect of the relative velocity is to make: 
 

γij = 1/c εijk vk =

0
1

0

0

z y

z x

y x

v v

v v
c

v v

 −
 − 
 − 

.   (V.39) 

 
 Note that although κIJ remains symmetric the individual off-diagonal matrices γij and 

jiγ are anti-symmetric. 
 
 i.  Plasmas [15-18].  One of the most important examples of an electromagnetic 
medium is defined by the plasma state.  This state, which comes about from the 
ionization of gases as a result of high temperatures or applied electric fields, is 
characterized by an ensemble of (usually) two oppositely charged fluids that are 
collectively neutral.  The positively-charged fluid, which is composed of the atomic or 
molecular ions, has a low mobility due to the higher masses of the ions, while the 
negatively-charged fluid is composed of free electrons, which will then have a high 
degree of mobility.  Examples of plasmas are found at all levels of scale, including 
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possibly the scale of strongly-interacting particles.  Commonly, one encounters them in 
the form of flames, glowing gases in discharge tubes, such as neon lights, the Earth’s 
ionosphere, as well as the solar atmosphere, and even interstellar space seems to be 
composed of a very dilute plasma whose ions are mostly protons – i.e., hydrogen ions.  
Since the scope of plasma physics is so vast as to touch upon most of the established 
branches of physics, we shall confine our remarks to only those aspects of plasmas that 
affect the electromagnetic constitutive properties and later, the propagation of 
electromagnetic waves. 
 The key aspect of plasmas that affects their electromagnetic constitutive properties is 
the fact that high electron mobility implies high conductivity.  Hence, in the usual 
Maxwell equations for electromagnetic fields in plasmas, one must add an electric current 
iσ = i(E) that comes about in response to the applied electric field.  Customarily, one 
assumes that the response is linear but not necessarily isotropic or homogeneous, so the 
induced current obeys Ohm’s law in the form: 
 

iiσ  = σij(t, x)Ei ,    (V.40) 

in which the matrix: 

σij =
x xy xz

xy y yz

xz yz z

σ σ σ
σ σ σ

σ σ σ

 
 − 
 − 

    (V.41) 

 
is the electrical conductivity of the plasma and is generally complex. 
 For as lossless plasma one will have that σ is anti-Hermitian (i.e., σ † = − σ).  In this 
case, the elements σxy and σyz will be real, while the others are imaginary. 
 Generally, the origin of the anisotropy in the conductivity of a plasma is the presence 
of a background magnetic field, which then introduces a preferred direction and an orbital 
motion to the charged particles, although the electrons will be dynamically affected by 
the magnetic field more than the ions. 
 The electric current due to the applied E can be absorbed into the dielectric constant 
of the plasma to give an effective dielectric constant: 
 

εij = ε0 δij +
1

iω
σij .    (V.42) 

 
Hence, εij will have the same symmetry as σij, except that for lossless plasmas, one will 
have that εij is Hermitian (i.e., ε † = ε). 
 In the case of an isotropic plasma, such as when no background magnetic field is 
present, one has that σij = σδij, with: 

σ = − 
2

e

ne
i

m
,     (V.43) 

 
in which me is the electron mass and n is the number density of the electrons. 
 This makes the effective dielectric constant take the form: 
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ε(ω) = 
2

01
e

ne

m
ε

ω
 

− 
 

.     (V.44) 

 
One immediately sees that the dependence of the dielectric constant on the frequency of 
the electric field that is present is such that it will vanish when that frequency equals: 
 

ωp(n) = 
1/ 224

e

ne

m

π 
 
 

= 2p(8980) n ,   (V.45) 

 
and is referred to as the plasma frequency. 
 The process of electric polarization in a medium with considerable charge mobility 
implies the formation of a counter-electric field that tends to oppose the applied field.  
For instance, in the close proximity of a charged electrode in a plasma one can expect 
that there will be a shielding layer with a characteristic thickness that one calls the Debye 
screening length: 

λD = 
1/2

0
2

eKT

ne

ε 
 
 

.    (V.46) 

 
The fact that this length depends upon the temperature Te of the electrons, in addition to 
their number density n, derives from the fact that when the electrons have sufficiently 
high temperature they can escape the electrostatic well that is created by the screening 
effect. 
 Note that such a statistical argument is applicable only when the total number N of 
electrons in the shielding layer is appreciable.  This also defines a characteristic number, 
in the form of the total number of free electrons in a “Debye sphere”: 
 

ND = 34

3 Dn πλ 
 
 

= 1.38×106 
1/23T

n

 
 
 

  (T in oK). (V.47) 

 
 Actually, since the number density of the free electrons is not constant, but is 
assumed to vary in response to the ambient electric and magnetic fields, one must add a 
further equation to the Maxwell equations that is based in the Boltzmann equation of 
physical kinetics [18] and expresses the balance law for the number density in terms of 
these ambient fields.  This equation is often called the Vlasov equation. 
 
 
 4.  Some physical phenomena due to magneto-electric couplings.  The presence of 
magneto-electric couplings in an electromagnetic medium can give rise to various 
phenomena that are well-documented in the world of experimental physics and 
sometimes the most powerful tools that physics − especially astrophysics − has in 
determining the nature of the medium that electromagnetic waves are propagating 
through.  Although we shall discuss the propagation of electromagnetic waves in a later 
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chapter, for now we shall mostly concentrate on the way that these effects manifest 
themselves in changes to the constitutive properties of the medium. 
 
 a. Faraday effect [1, 2].  The way that electromagnetic waves propagate through an 
electromagnetic medium can be influenced by the presence of “external” electric and 
magnetic fields in the medium, in addition to those of the wave itself.  For instance, in 
astrophysics, one generally has to deal with the presence of galactic magnetic fields that 
might affect the propagation of photons from the stars of the galaxy in question. 
 In particular, the presence of a magnetic field can bring about a rotation of the 
polarization planes (which is generated by the E and k vectors) within the tangent spaces.  
This is because an imposed magnetic field, which we assume to point in the positive z-
direction, will affect both the dielectric and magnetic properties of the medium, and 
either effect is called the Faraday effect. 
 The dielectric Faraday effect changes the εij matrix of an isotropic dielectric with 
permittivity ε to one of the form: 
 

εij =

0 0

0

0
yz

yz

i

i

ε
ε ε
ε ε

′ 
 
 
 − 

.    (V.48) 

 
Note, in particular, that the contribution is imaginary and the medium is no longer 
isotropic, but uniaxial. 
 Similarly, the magnetic Faraday effect changes theijµɶ matrix for an isotropic 

magnetic medium with a permeability of µ to one of the form: 
 

ijµɶ =

1/ 0 0

0 1/

0 1/
yz

yz

i

i

µ
µ µ

µ µ

′ 
 
 
 − 

.    (V.49) 

 
 b. Natural optical activity 20.  In Landau, Lifschitz, and Pitaevski [1], the 
phenomenon of natural activity is described as something that occurs in optical media 
with no center of symmetry and takes the form of allowing εij to be a function of both ω 
and k. 
 To first order, this takes the form: 
 

εij(ω, k) = 0 ( )ijε ω  + iγijk kk .    (V.50) 

 
Hence, the effect of natural optical activity is equivalent to the dielectric Faraday effect 
for a background magnetic field in an optically inactive medium. 
 However, in Post [2] the effect of natural optical activity is to make: 

                                                
 20 Since the mathematical representations of this phenomenon that were given in Landau, et al [1] and 
Post [2] are inconsistent, we shall defer to the former reference.  
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γij = − jiγ = iγ δij .    (V.51) 
 
That is, it affects the off-diagonal matrices in κIJ, not the off-diagonal terms in εij itself. 
 
 
 5. Nonlinear constitutive laws [19-21].  Since the appearance of linearity in physics 
is invariably based in some simplifying empirical approximation, such Hooke’s law, 
Ohm’s law, or others, the consideration of nonlinear phenomena is also invariably the 
most promising mathematical horizon for further exploration in physics. 
 Generally, the transition from the linear regime to the nonlinear regime is indexed by 
some magnitude, such as displacement, temperature, or field strength.  Quite often, a 
complicating factor that can drastically change the nature of a system’s response from 
linear to nonlinear is the possibility of a phase change.  For instance, in the case of Ohm’s 
law (viz., I = ∆V/R) one finds that current I flowing through a resistor R in response to an 
applied voltage difference ∆V will cause it to heat up, which increases the resistance.  
That, in its own right, would make the current through the resistor related to the voltage 
drop across the resistor in a nonlinear manner, but ultimately the heat will bring about 
complete vaporization of the resistor, as in fuses.  This then represents the sort of 
catastrophic nonlinearity that one associates with phase transitions. 
 In the case of electromagnetic constitutive laws, since the elementary electric and 
magnetic dipoles are associated with more complicated systems, such as atoms and 
crystal lattices, it is not surprising that linear constitutive laws are just as much of an 
approximation as in any other linear law of nature.  For instance, one can imagine that an 
intense laser beam in a transparent plastic fiber will have a similar effect to a high current 
in a resistor, and at a threshold level of intensity the fiber will melt or vaporize. 
 As with linear effects, one can distinguish between non-local nonlinear effects and 
local nonlinear effects.  An example of a non-local nonlinear effect that is quite common 
in electromagnetics is magnetic hysteresis.  The idea is that as one increases the 
magnitude B of B in most magnetic media, the resulting H field will involve a time lag in 
its response that depends upon the magnitude B in such a way that if one decreases the 
value of B back to its original value then the medium will respond to the same values of B 
differently.  This situation is illustrated in Fig. 4. 
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Figure 4.  Magnetic hysteresis. 
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The same sort of situation occurs when an incandescent filament heats up at one rate as 
the current in it increases and then cools down at a different rate when the current 
decreases, so instead of the straight-line plot of Ohm’s law one has something more like 
Fig. 4 for I vs. ∆V. 
 
 a. Electromagnetic susceptibilities.  There is a regime between linearity and the 
onset of some phase transition that is sometimes referred to as “weak nonlinearity.” It is 
characterized by the possibility of representing the diffeomorphism κ:  A2 → A2, F ֏ h 

= κ(F) by the first terms of a Taylor series in F: 
 

h(F) = h0 + dκ|0(F) + 1
2 d2κ|0(F, F) + …   (V.52) 

 
which can be expressed in coordinates as: 
 

h
µν(Fαβ) = 

2

0

0 0

1

2
F F

F F F
F F F

µν µν
µν

αβ αβ γδ
αβ αβ γδ= =

∂ ∂+ +
∂ ∂ ∂
h h

h + …  (V.52) 

 
 Actually, the leading term in this expansion, which we shall suggestively call the 
zero-point field, represents a possible source of nonlinearity, in the sense that it makes the 
linear relationship that is defined by the second term into an affine relationship.  In the 
case of magnetism the presence of a non-zero constant term in H is usually attributed to 
ferromagnetism; in the case of electric fields, it is called ferroelectricity. 
 For the purposes of nonlinear optics, it is usually preferable to use a Taylor expansion 
in the electric polarization vector field P, which relates to E by way of: 
 

D = ε0E + 4πP.     (V.53) 
 
 Similarly, in magnetic media one introduces the magnetization vector field M  by way 
of: 

µ0H = B + 4πM .     (V.54) 
 
 In order to combine these into something more useful to pre-metric electromagnetism 
– i.e., a four-dimensional construction – we must use the classical vacuum isomorphism 
κ0 to define a sort of reference medium, in order to define the subtraction above. 
 We call the bivector field: 
 

Q(F) = 0

1
( )( )

4
Fκ κ

π
− = Pi b

i + Mi b
i+3 ,    (V.55) 

 
the electromagnetic polarization bivector field. 
 Now, we can expand 4πQ(F) in a Taylor series: 
 

4πQ(F) = χ(0) + χ(1)(F) + χ(2)(F, F) + …   (V.56) 
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 The successive terms χ(i), i = 0, 1, …, are the electromagnetic susceptibilities.  To the 
zeroth and first order, they relate to κ by way of: 
 

χ(0) = 4πh0, χ(1) = 4π d(κ − κ0)|F=0 ,  …, χ(i) = 4π d(i)(κ − κ0)|F=0 , …, (V.57) 

 
in which the d(i) refers to the i th differential map.  Therefore, the essential difference 
between the susceptibilities and the corresponding terms in the Taylor series for the 
constitutive law is in the linear terms. 
 
 b. Nonlinear optical effects.  Although the field of nonlinear optics has expanded by 
now into a vast volume of literature (for some elementary treatments, however, cf. Mills 
[20] or Butcher and Cotter [21], as well as the synopsis in Delphenich [22]), most of 
which is considerably more applied and empirical than is relevant to our present 
theoretical discussion, there are some general phenomena that occur as a result of the 
nonlinearity itself that we shall find intuitively illuminating to summarize.  Basically, the 
nonlinear effects are classified according to the level of susceptibility that first introduces 
the effect. 
 At second order, one first encounters a departure from the law of superposition that is 
definitive of linear fields or waves.  In particular, when two interacting electromagnetic 
waves have frequencies ω1 and ω2, one can find that waves with their difference and sum 
frequencies appear in addition to the original frequencies.  When they both have same 
frequency, the resulting waves can include a DC component and one with the double 
frequency.  The former effect is called optical rectification, while the latter one is called 
second-harmonic generation. 
 In some cases, such as when one F0 of two fields F0 and F can be treated as a 
“background” field, in some sense, instead of dealing with – say – second-order effects in 
the combined field F0 + F, one can absorb the background field into the second-order 
susceptibility: 

 χ(2)(F0 + F, F0 + F) = χ(2)(F0, F0) + 2χ(2)(F0, F) + χ(2)(F, F)   (V. 58) 
 
to produce a first-order effect, in which the background field has “modulated” the first 
order susceptibility.  For instance, one might consider, among other terms: 
 

4πQ = χ(1)(F) + χ(2)(F0, F) = [χ(1) + 2χ(2)(F0, .)](F).  (V.59) 
 
Hence, the background field has effectively altered the first order susceptibility.  In the 
context of electric fields, which is of interest to optics, this is referred to as the linear 
electro-optic – or Pockels – effect.  Similarly, the cubic term 3χ(2)(F0, F0, .) can also 
contribute to the linear term, which is referred to as the quadratic electro-optic – or Kerr 
– effect in the electric case. 
 Another cubic effect that gets considerable attention is due to the fact that in addition 
to the original frequencies and their sums and differences, one can also produce waves of 
other combination frequencies, such as 2ω1 – ω2 .  This case is called four-wave mixing.  
However, one must always impose the constraint on the incoming and outgoing 
frequencies and wave numbers that they sum to zero, which is essentially a form of the 
conservation of energy-momentum. 
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 When the background field is a magnetic field, there are magnetic phenomena that 
correspond to the electrical ones.  For instance, there are linear and quadratic magneto-
optical effects due to the modulation of the electrical susceptibilities by a background 
magnetic field.  The conversion of circularly polarized waves into elliptically polarized 
ones under reflection is called the magneto-optic Kerr effect.  The presence of non-zero 
magnetization in a medium can make an electrically isotropic medium behave like a 
uniaxial dielectric, with the associated birefringence 21, and this is referred to as the 
Couton-Mouton effect. 
 Many of the optical phenomena that nonlinear optics is concerned with are based in 
the idea that macroscopic media will generally have resonant frequencies, due to either 
the discrete nature of electron level transitions in atoms or the normal modes of 
mechanical vibrations in the crystal lattice.  When the incoming frequency mixes with a 
resonant frequency to produce sum and difference frequencies, one gets Raman 
scattering; the difference frequency is the Stokes component of the scattered wave and 
the sum frequency is the anti-Stokes component.  In Brillouin scattering, the acoustic 
modes of the lattice create an effective diffraction grating, producing dispersion. 
 The nonlinear wave equations of solitons have found considerable application in 
nonlinear optics, as well.  In particular, the nonlinear Schrödinger equation relates to the 
phenomenon of self-focusing in cylindrical beams, while the sine-Gordon equation 
describes self-transparency in a nonlinear medium.  In the former case, the index of 
refraction can vary with the beam intensity, which varies with radial distance from the 
center of the beam, and in the latter case, the frequency of the incoming wave couples to 
a resonant frequency that originates in an electronic level transition. 
 
 c.  Nonlinear plasma phenomena [15].  The range over which the plasma state of 
matter manifests itself – indeed, over ninety percent of the matter in the universe is in that 
state – is sufficiently vast in scope that the breakdown of linear approximations in its 
mathematical modeling can also be quite broad-ranging. 
 Most of the nonlinear phenomena first manifest themselves in the form of nonlinear 
wave phenomena, which we will defer to a later discussion.  However, as far as the actual 
constitutive properties of plasma are concerned, we can mention here that the electrical 
resistivity of plasmas can take on anomalous contributions due to the fact that the 
diffusion equation that one uses is fundamentally nonlinear, while treating it as a linear 
partial differential equation is only a limiting approximation.   
 
 
 6. Effective quantum constitutive laws.  Beyond a doubt, the most challenging 
task for pre-metric electromagnetism is to see if some sort of formal extension of the 
scope of classical – i.e., linear – Maxwellian electromagnetism makes it possible to 
absorb some of the phenomenological successes of quantum electrodynamics into the 
domain of things that can be explained by the theoretical methodology that is sometimes 
called “classical.” 

                                                
 21 Birefringence − or “double refraction” − means that the index of refraction depends upon the direction 
of the wave vector for the wave.  As we shall see in Chapter VIII, it plays a fundamental role in pre-metric 
electromagnetic dispersion laws. 
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 At this point, it is necessary to clarify that the use of the word “classical” to refer to 
physics or mathematics that was not actually being discussed by the classical physicists – 
say, the Copenhagen school of quantum physics – is incorrect, if not pejorative.  The 
essential difference between what is currently dismissed as “classical” formalism and 
what is considered to be the more modern quantum formalism is essentially the 
difference between field theories and scattering theories. 
 That is, modern quantum electrodynamics (cf., for instance, Berestetskii, Lifschitz, 
and Pitaevski [23] or Jauch and Rohrlich [24]) does not even attempt to pose boundary-
value problems in electrostatics or Cauchy problems in electrodynamics because it has 
long since been agreed that the details of physical processes at that level of resolution are 
beyond the limits of experimental measurement or observation, and therefore it would be 
pointless for theoretical physics to speculate on them.  (Of course, this argument does not 
seem to apply to the nature of the early Big Bang, or physics at the Planck energy scale, 
or at the scale of supersymmetry breaking, all of which is many orders of magnitude 
beyond the limits of experiment, but nonetheless quite dominant in the topics that modern 
theoretical physics is concerned with!) 
 Rather, the methodology of quantum physics is based in the statistical interpretation 
of wave mechanics, combined with the notion that if the only things that experimental 
physics will ever “know” about the nature of physics at the atomic-to-subatomic scale 
must manifest themselves in the results of particle scattering experiments then there is no 
loss in theoretical scope associated with treating the scattering theory as if it were 
identical with the field theory.  In fact, scattering theories follow from dynamical field 
theories as an asymptotic approximation whereby one does not address the time evolution 
of a set of fields in interaction during that interaction itself, but only the relationship of 
the asymptotic incoming fields at a time long before the interaction took place to the 
asymptotic fields at a time long afterwards (cf., e.g., Lax and Phillips [25]).  Hence, in a 
sense, a scattering theory follows from a field theory in a manner that is similar to the 
way that static fields relate to dynamic fields. 
 Nevertheless, one must respect the empirical successes of quantum electrodynamics, 
even if the theoretical formalism seems to be manifestly limiting in its scope.  Here, it 
helps to remind oneself that the problems of the qualitative and quantitative description 
of natural phenomena are quite distinct from that of the mathematical modeling of those 
phenomena.  Hence, one can accept that charged particles have certain properties that are 
entirely consistent with the formalism of quantum electrodynamics without taking the 
position that the established formalism is the only possible solution to the problem of 
mathematical modeling.  For instance, one must address the unavoidable facts that – at 
least as far as the electromagnetic interaction is concerned – there is a minimum total 
electric charge e that forms the basis for all larger total charges, that charged particles all 
have anti-particles, that the most elementary charges have non-vanishing internal angular 
momentum or spin, and other established truths of electromagnetism at the elementary 
level. 
 One of the recurring themes of quantum electrodynamics is that the fundamental 
process by which photons of more than a critical energy – viz., 2mec

2, or about 1 MeV – 
can split into an electron-positron pair plays a fundamental role in all of the other 
processes.  Conversely, an electron-positron pair can annihilate each other to form a 
photon.  One calls this process and its inverse pair creation and annihilation, 
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respectively, and it can lead to what one calls vacuum polarization, a phenomenon that 
accounts for some of the most definitive experimental confirmations of quantum 
electrodynamics, such as the anomalous magnetic moment of the electron and the 
associated Lamb shift of atomic electron energy levels. 
 Since we have been treating the electromagnetic polarization of a medium as a purely 
macroscopic process that eventually resolves to the alignment of elementary atomic 
dipoles there is always the question of whether one might take the phrase “vacuum 
polarization” literally and propose to regard it as the basis for replacing the elementary 

constants ε0 and µ0 – and thus also c0 = 0 01/ ε µ  − with more elaborate functions, most 

likely, functions of the electric and magnetic field strengths.  There are various arguments 
for and against taking this step. 
 On the one hand, one might argue that is it not really the vacuum itself that is 
polarizing, but the photon.  That is, electron-positron pairs originate in the splitting of 
photons, not from regions of space in which there is not even so much as a photon 
present.  However, this argument is weakened by other considerations. 
 For one thing, one regularly uses vacuum polarization as a means of accounting for 
the difference between the “bare” charge and the “dressed,” or renormalized, charge of a 
particle, namely, one assumes that the dressed charge comes about as a result of the 
polarization of the surrounding vacuum in the presence of the high electric field strength 
that one finds close to elementary charges.  In that event, there is no photon present, only 
the static electric field of the charge distribution and the static magnetic field due to its 
spin. 
 Perhaps the most compelling argument for treating vacuum polarization more 
generally is based in the idea that nowadays the electromagnetic vacuum is not regarded 
as a region of space in which no fields are present, and which is associated with various 
empirical constants, such as ε0 and µ0 .  Rather, the vacuum is regarded as a state in a 
large state space of electromagnetic fields, which is not only infinite-dimensional to 
begin with, but, more to the point, one must clearly distinguish the vacuum state, in the 
sense of energetic ground state, from the “zero” state, if indeed the space in question is a 
linear space, and not some more general manifold.  This opens the possibility that the 
vacuum state might even be non-unique, as with the phenomenon of spontaneous 
symmetry breaking, which gives ground states non-zero expectation values for their 
energies. 
 In the case of the electromagnetic field, one must intuitively replace the classical 
conception of that field as being a spatial distribution of simple harmonic oscillators with 
its conception as a spatial distribution of quantum harmonic oscillators.  A consequence 
of this is that since quantum harmonic oscillators have a non-zero ground state energy the 
quantum electromagnetic field must also have a non-zero ground state configuration, 
which one calls the zero-point field.  Note that this field is entirely distinct from the 2.7K 
cosmic microwave background radiation that is also ubiquitous to space. 
 The existence of a zero-point electromagnetic field has actually been confirmed 
directly by experiments in the form of the Casimir effect [26].  This effect amounts to the 
fact that an ideal parallel-plate capacitor in a vacuum will experience a slight, but 
measurable, force of attraction between its plates. 
 One sees that an immediate problem with the conception of the zero-point field as a 
spatial distribution of quantum harmonic oscillators is that if one adheres to the constraint 
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that all of them must be in their non-zero ground state then no matter how small that 
energy is, the fact that there are an infinitude of points in space will make the total energy 
of the vacuum state infinite, as well.  Hence, one must accept that “most” of that 
infinitude of points must be in the zero energy state and that only the total energy of the 
field must exist in some ground state.  Of course, this suggests that the vacuum ground 
state is anything but unique, since once generally imagines an infinite set of possible 
“vacuum fluctuations” of a largely stochastic nature. 
 One of the compelling experimental verifications of vacuum polarization in the 
neighborhood of elementary charges takes the form of Delbrück scattering.  In that 
process, a photon can be scattered by the electrostatic field of an atomic nucleus, which is 
a classically non-existent possibility, due to the fact that the combined field of the photon 
and nucleus might exceed the threshold for electron-positron pair production, and the 
electron-positron pair then couples to the nuclear field electromagnetically. 
 Another non-classical possibility that follows from vacuum polarization is photon-
photon scattering.  This would imply that the superposition of the photon fields is 
nonlinear, since the only linear effect of combining electromagnetic waves is possible 
interference where they intersect each other, but no lasting effects on their subsequent 
propagation.  Interestingly, this process has yet to be experimentally verified, although 
the minimum energy level for observing it seems only incrementally beyond the limits of 
laser technology. 
 Although it seems unavoidable that the proper context for the mathematical modeling 
of the electromagnetic vacuum must involve infinite-dimensional spaces, nevertheless, 
since experimental physics always involves a finite set of measurements, which can only 
span a finite-dimensional space, one must eventually come back to effective models for 
the vacuum state.  In our case, these will be effective quantum constitutive laws that are 
derived from effective field theories for quantum electrodynamics, so we briefly discuss 
that notion. 
 
 a. Effective actions [27-31].  Although we shall have more to say about the 
variational formulation of electromagnetism later, at this point, since we are mostly 
concerned with simply stating electromagnetic constitutive laws for nonlinear field 
theories that have emerged from quantum electrodynamics, we shall assume a minimal 
familiarity with conventional Lagrangian field theory. 
 Without going into the details here, we simply say that the difference between a full 
quantum field theory and an effective quantum field theory goes back to some of the 
early problems in quantum electrodynamics 22 that all originated in the concept of the 
“Dirac Sea” as a model for the electromagnetic vacuum state.  In that model, electrons 
were positive energy states and positrons were negative energy states, with an energy gap 
of 2mec

2 between them that represented the difference between the non-zero rest energies 
of the electron and the positron.  The problem was that in the eyes of classical physics 
there is no mirror symmetry between positive energy, which represents free particle 
states, and negative energy, which represents bound particle states.  Furthermore, an 
energetic state is stable iff it is minimal; i.e., iff there are no lower energy states to decay 

                                                
 22 An engrossing discussion of the early years of quantum electrodynamics can be found in Miller [32], 
along with translations of many of the key papers. 
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into.  Hence, because the energy states of the Dirac Sea went down to negative infinity 
they would all be unstable. 
 The “solution” to this dilemma was to assume that all of the negative energy states 
were occupied, so that the Pauli exclusion principle would prevent the runaway decay of 
particles to negative infinity.  However, this implies that the vacuum state would have to 
have infinite rest mass – hence, infinite rest energy – and infinite charge, which was 
clearly absurd. 
 The approach that Heisenberg took was a combination of the “exchange-particle 
concept” and the so-called “subtraction of infinities”.  The exchange-particle concept 
effectively replaced all consideration of fields and forces at the fundamental level with 
the consideration of particles that were exchanged during interactions.  Basically, 
subtraction of infinities amounted to treating the unphysical infinities in the vacuum state 
as being passive to the process of interaction.  That is, the only energy states that were 
actually affected by the process of interaction would be a finite number of low-energy 
states.  The subtraction of infinities eventually turned into the more modern techniques 
for the regularization and renormalization of unphysical infinities. 
 A similar transition occurs between a complete quantum formulation of a field theory 
and an effective theory of that field.  In the complete theory one starts with a classical 
action for the fields in question and “quantizes” it, either by regarding some of the fields 
as taking their values in an operator algebra or by forming an integral over an infinite-
dimensional space of fields (or, at least, gauge equivalence classes of them) that gives the 
transition probability for the incoming scattering state to turn into the outgoing one.  This 
then leads to unphysical infinities, such as mass and charge, which are then corrected by 
the processes of regularization of the integral and renormalization of the action. 
 Finally, one can often define an effective action for the process in question to be a 
correction to the original classical action that includes the effects of renormalization.  In 
the language of the functional integral approach, one is performing a “loop expansion” of 
the scattering amplitude (really, the Green function).   This is an asymptotic series 
expansion in powers of ℏ , in which the “tree level,” which has no loops, represents the 
classical action.  At the one-loop level, one must renormalize the first-order radiative 
corrections that come from the possibility of the creation and subsequent annihilation of 
one electron-positron pair from a photon.  Similarly, succeeding levels of approximation 
will involve increasing numbers of loops on external and internal lines of the Feynman 
diagrams for the interaction. 
 One sometimes hears it said that what effective field theories amount to are low-
energy theories that result from integrating out the higher-energy states.  This is, of 
course, quite reminiscent of the Heisenberg approach to the subtraction of infinities from 
the Dirac Sea.  They can be an invaluable tool in probing the quantum domain because 
what they provide is a strong sense of direction when desires to go beyond the classical 
theories into an infinite set of possible directions. 
 
 b.  Heisenberg-Euler action.  What Heisenberg and Euler were addressing in their 
seminal paper [27] was essentially the question of what happens to the classical action for 
an electromagnetic field F in vacuo, which is based on a Lagrangian of the form: 
 

Lem = 1
4 Fµν F

µν = 1
2 κ̂ (F, F)    (V.60) 
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when one includes the possibility that the vacuum might also polarize.  That is, the 
electromagnetic field might produce any number of virtual electron-positron pairs.  
Althoughκ̂ is basically distinct from the ultimate nonlinear constitutive law κ, it still 
defines a scalar product on 2-forms, as well as an isomorphism of 2-forms and bivectors. 
 Hence, the full quantum treatment of this situation must include contributions to the 
action that represent the fields of the fermions and their interactions with the given 
electromagnetic field.  This must then be renormalized beyond the tree level, and one 
finds that the one-loop correction to Lem is the effective Lagrangian: 
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 In this expression, α = 2 /e cℏ = 1/137 is the fine structure constant; the fact that it 
appears to the first power is associated with the fact that this is a one-loop correction.  
The symbol Ec = 2 3 /em c eℏ  refers to the critical field strength for pair production; it 

equals either 1.3 × 1016 V/cm or 4.4 × 1013 G.  The notations F and G refer to the 
fundamental Lorentz-invariant expressions that F defines: 
 

F = 1
2 Fµν F

µν  = κ̂ (F, F),  G = 1
2 Fµν *Fµν = V(F, F).  (V.62) 

 
 We have, as a consequence, that: 

Lem = 1
2F.     (V.63) 

 
 The Lagrangian (V.61) is, of course, quite complicated to work with directly, and one 
most often encounters it in applications in its weak-field (E < Ec) Taylor series 
expansion: 

LHE = 2 2
2
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360 4cE

α
π

+F G .    (V.64) 

 
As Barcelo, Liberati, and Visser [33] point out, since this is a one-loop correction, it is 
absurd to carry the expansion to higher-order terms.  One also needs to note that the 
numerical value of the leading scalar factor in c.g.s units is 10−42 cm2/V2 if one is to get 
some sense of how the correction term compares to the classical – i.e., tree-level − term 
(V.63). 
 In order to obtain an electromagnetic constitutive law from the combination L = Lem 

+ LHE, one need only know at this point that in Lagrangian electromagnetics one has that 

the electromagnetic excitation 2-form H is related to the field strength 2-form F by: 
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 Hence, we can make the general expression for the constitutive isomorphism: 
 

κ = ˆ #κ∂ ∂+
∂ ∂
L L

F G
.     (V.66) 

 
One sees from this that if κ̂ does not have an axion part to begin with then the origin of 
an axion contribution to κ will be in the functional dependency of the field Lagrangian on 
G. 

 For the classical electromagnetic Lagrangian Lem , one finds that: 
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and for the Lagrangian in question – viz., L = Lem + LHE − one has: 
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As Ec grows arbitrarily large, the Lagrangian L converges to the classical vacuum 

expression. 
 When the matrix ˆ IJκ is associated with the classical vacuum, we find that the 
constitutive matrix κIJ is of the bi-isotropic form: 
 

κIJ =
(1/ )

ij ij

i ij
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,    (V.69) 

in which: 
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. (V.70) 

 
 We see that κIJ is symmetric, so its skewon part vanishes, and it has an axion part 
whose proportionality factor is γ. 
 As we shall see later, when we discuss complex geometry, the representation of κ by 
a 6×6 real matrix that is given by (V.69) is equivalent (by a rescaling of the field 
strengths to make ε = 1/µ) to its representation by the 3×3 complex matrix (γ + iε)I.  
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Hence, its effect on 2-forms, when regarded as elements of a complex three-dimensional 
vector space, is that of complex scalar multiplication.  This also shows that a constitutive 
law of Heisenberg-Euler type is almost-complex iff γ vanishes, hence G = 0. 

 
 c. Born-Infeld action.  Born and Infeld [29, 30] were motivated by the fact that 
Coulomb’s law leads to not only an infinite field strength at the origin, but also an infinite 
total self-energy for an electron.  They postulated that if there were a maximum allowable 
field strength Ec then the infinite field strength predicted by Coulomb’s law for a 
pointlike particle would be unphysical.  They deduced a largely heuristic electromagnetic 
Lagrangian, which is also based in the Lorentz invariants F and G, as before, and which 

has the property that the field strength of a pointlike charge origin will be Ec at the origin.   
 The Born-Infeld Lagrangian is: 
 

LBE = 
1/ 22

2
2 4

7
2 1

180 720c
c c

E
E E

α α
π π

 
− − − 

 

F G
.   (V.71) 

 
 In order to compute κ from this, we only need to find: 
 

∂
∂
L

F
=

1/ 22

2 4

7
1

180 720c cE E

α α
π π

−
 

− − 
 

F G
,   (V.72a) 

∂
∂
L

G
=

1/22

2 4 2

7 7
1

180 720 360c c cE E E

α α α
π π

−
 

− − 
 

F G G
.  (V.72b) 

 
Thus, in the limit as Ec grows arbitrarily large these expressions also converge to the 
classical vacuum expressions.  If we expand the expression in parenthesis by means of 
the binomial theorem then we get: 
 

1/ 22

2 4

7
1

180 720c cE E

α α
π π

−
 

− − 
 

F G ≈ 
2

1
360 cE

α
π

+ F
,  (V.73) 

 
and we see that the partial derivatives in (V72a,b) are approximately equal to the 
corresponding ones (V.68) for the Heisenberg-Euler Lagrangian. 
 Similarly, by direct inspection, one can see that the Born-Infeld vacuum is also of the 
bi-isotropic variety, as was the Heisenberg-Euler vacuum, and we see that the expressions 
in (V.70) now take the form: 

ε =
1/ 22

2 4

7
1

180 720c cE E

α α
π π

−
 

− − 
 

F G ε0 ,   (V.74a) 

γ = 
1/22
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π π
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F G G
,  (V.74b) 
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1/µ =
1/ 22

2 4

7
1

180 720c cE E

α α
π π

−
 

− − 
 

F G
(1/µ0).  (V.74c) 

 
Therefore, the essential difference between the Heisenberg-Euler constitutive law and the 
Born-Infeld one amounts to the differences between precise values of the corresponding 
scalar multipliers. 
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Chapter VI 
 
 

Partial differential equations on manifolds 
 

 Since the most fundamental statements of electromagnetism, in any of its 
representations, involve systems of partial differential equations, and we are trying to 
maintain a consistent use of the topological and geometric benefits of differentiable 
manifolds to the greatest extent possible, it is inevitable that we must say something 
about the representation of such systems of partial differential equations on manifolds. 
 We hasten to point out that such a task can be quite formidable in the modern era, 
since, in effect, the first problems regarding partial differential equations on manifolds to 
be formally addressed by the mathematics community were not concerned with 
redefining the elementary methods that one applies to the equations of physics, but with 
more general problems, such as the nature of the eigenvalues of the Laplacian operator on 
Riemannian manifolds, the topological aspects of the Yang-Mills field equations, or the 
formal integrability of overdetermined systems of partial differential equations. 
 Certainly, these problems are not insignificant, even insofar as physics applications 
are concerned.  However, many of the methods of mathematical physics that get used 
most widely by the physics community are more in the nature of applied mathematical 
techniques for solving specific problems, not general techniques for proving purely 
mathematical theorems.  Hence, the purpose of this chapter will be to show how many of 
these elementary concepts can be represented in terms of things that pertain to 
differentiable manifolds and the elementary vector bundles that relate to them.  In 
particular, we need to eventually address the linear differential operators on the vector 
bundles of k-forms and k-vector fields over the spatial manifold Σ or the spacetime 
manifold M that take the form of d and δ. 
 There are three basic ways of representing a system of partial differential equations 
on a manifold M: one can represent it by a differential operator L: E → F between vector 
bundles over M, by a hypersurface in a manifold Jk(M, N) of k-jets of Ck maps from M to 
another manifold N, or by an exterior differential system on M.  The choice of method is 
usually determined by the class of problems that one is ultimately addressing, so we shall 
begin by discussing each method at an elementary level. 
 Next, we discuss the nature of the most common types of problems that one 
encounters in the partial differential equations: boundary-value problems and initial-value 
problems.  In the case of a linear system of partial differential equations, these problems 
can be reformulated in terms of a linear integral equation involving an integral operator 
whose kernel takes the form of a Green function, so we then discuss the extent to which 
the usual definitions can or cannot be carried over to corresponding construction on 
manifolds. 
 Finally, we briefly discuss the much more involved problem of what becomes of the 
Fourier transform on a differential manifold that is not necessarily an affine space, or 
even a homogeneous space.  Indeed, this problem has been a predictable obstacle to the 
formulation of the foundations of quantum wave mechanics in the language of 
differentiable manifolds. 
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  1. Differential operators on vector bundles [1, 2].  As far as field theories are 
concerned, the most convenient way of representing most of the fields of interest to 
physics is by means of sections φ: M → E of vector bundles E over the manifold M in 
which the fields are assumed to reside.  Since the vector space V that represents the 
typical fiber of E – up to linear isomorphism – can be the tensor product of other vector 
spaces, one sees that any tensor or spinor field on M can be represented in such a manner.  
In particular, electromagnetism is often concerned with those vector bundles over the 
space manifold Σ or the spacetime manifold M whose sections are differential forms and 
multivector fields. 
 As pointed out above, the set Γ(E) of sections of a vector bundle E → M can be given 
the structure of an infinite-dimensional vector space.  Basically, one defines scalar 

combinations of sections pointwise.  That is, if φ, ψ ∈ Γ(E) are sections and α, β ∈ R are 

scalars then the scalar combination αφ + βψ is defined to take each x ∈ M to the vector: 
 

(αφ + βψ)(x) = αφ(x) + βψ(x)    (VI.1) 
in the vector space Ex . 
 If E → M and F → M are vector bundles over M then it is simple enough to define a 
linear operator L: Γ(E) → Γ(F) from the vector space of sections of the former bundle to 
the vector space of sections of the latter.  Such an operator takes any linear combination 
αφ + βψ ∈ Γ(E) to the section: 

L(αφ + βψ) = αL(φ) + βL(ψ)    (VI.2) 
in Γ(F). 
 In order to give an operator O: Γ(E) → Γ(F), whether linear or nonlinear, a local 

expression as a system of equations, one must choose a local trivialization U×E of E over 
a subset U ⊂ M.  The best way to do this is to define the frame fields ea: U → E, x 
֏ ea(x), a = 1, …, N = rank(E) and fb: U → F, x ֏ fb(x), b = 1, …, N′ = rank(F); both 
fields consist of N (N′, resp.) sections over U that are linearly independent at each point.  
Hence: 

 O(φ) = O(φa ea) = Ob(φa ea) fb ,   (VI.3) 

 
in which the φa and Ob(φa ea) are smooth functions on U that represent the components of 

φ and O(φ) with respect to the chosen frames.  This gives rise to the following local 

system of N′  equations in the N unknown functions φa: 
 

O
b = Ob(φa).     (VI.4) 

 
When O is linear, one can replace the right-hand side of the latter expression with the 

column matrix b a
aφO of functions on U. 

 An operator O: Γ(E) → Γ(F) is called algebraic iff it induces a corresponding map 

Ox: Ex → Fx on each fiber of E.  In that case, (VI.4) also works for the individual values: 
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O
b(x) = Ob(φa(x)).    (VI.5) 

 
   If O is a linear algebraic operator then Ox will be a linear map at each x ∈ M.  Some 

examples of linear algebraic operators that we have previously encountered include scalar 
multiplication, the identity operator, left-multiplication of k-forms by a 1-form, the 
interior product operator on either differential forms or multivector fields, and Poincaré 
duality. 
 Of the non-algebraic types of operators on sections the two that will be of interest to 
us will be differential and integral operators.  We shall first discuss differential operators 
and then return to the discussion of integral operators. 
 Ordinarily – i.e., when M is a vector space – one tends to think of the action of a 

differential operator D of degree k on a smooth function f ∈ C∞(M, R) as essentially a 

“functional” expression: 
Df(x) = F(x, f(x), df|x, …, dkf|x)    (VI.6) 

 
in the points of M, the values of f at each point, and the values of its differentials dmf up to 
order k. 
 Actually, this way of looking at partial differential equations leads directly into the 
methods of jet manifolds, which we will discuss in the next section.  However, for now, 
we point out that when M is not a manifold and the function f takes its values in a vector 

bundle E, instead of R, one runs into the problem of whether the differential df of the 

section f: U → E transforms properly under changes of local frames in E. 
 In general, the only way to get around this is to introduce a connection on E and 
replace the differential d with the covariant differential ∇ that goes with the chosen 
connection.  However, one advantage of using differential forms, i.e., sections of Λk(M) 
→ M is the fact that the exterior derivative operator d transforms properly without the 
necessity of introducing a connection. 
 Hence, since we will be mostly concerned with the field equations of pre-metric 
electromagnetism, the differential operators of order k that will be of interest to us will 
consist of scalar combinations of compositions: 
 

 D = A1 ⋅ d ⋅ A2 ⋅ … ⋅ Ak ⋅ d ⋅ Ak+1    (VI.7) 

 
of k+1 algebraic operators and the exterior derivative operator d.  Note that if any of the 
algebraic operators besides A1 and Ak+1 are a scalar multiple of the identity operator then 
the resulting operator D = 0. 

 This restricted class of differential operators on differential forms and multivector 
fields nevertheless includes the exterior derivative operator, the divergence operator δ = 
#−1 ⋅ d ⋅ #, and the Lie derivative operator Lv = ivd + div, which are all first order, as well 
as the field operator κ□  = δ ⋅ κ ⋅ d, which is second order. 
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 a. Integrability.  Suppose D: Γ(E) → Γ(F) is a differential operator from sections of 

a vector bundle E → M to sections of a vector bundle F → M.  A typical problem for 
differential equations that D might define could take the form of the inhomogeneous 

problem: Given a section ρ ∈ Γ(F), find a section φ ∈ Γ(E) such that: 
 

Dφ = ρ .     (VI.8) 

 
The homogeneous problem is defined by choosing ρ = 0. 
 In general, the inhomogeneous problem is not going to have a solution, since it will 
usually be overdetermined; that is, the map D might not be a surjection.  In such an event 

the image im(D) = D(Γ(E)) ⊂ Γ(F) is a proper subset; when D is linear, it is a proper 

linear subspace. 
 When ρ ∈ im(D) one says that the system of equations defined by (VI.8) is 

integrable.  A set of integrability conditions − or compatibility conditions – usually takes 
the form of a set of equations that define the subset im(D).  For instance, one might have 

another differential operator D′: Γ(F) → Γ(G), and then characterize im(D) as the kernel 

of D′.  That is, ρ  ∈ im(D) iff: 

D′ρ = 0.     (VI.9) 

 
 Of course, in the case of the exterior derivative operator this sort of condition 
introduces a subtlety in the form of the fact that whether or not ker(d) = im(d) at some 
step in the sequence … 1d d dk k+→ Λ →Λ →  … depends upon the vanishing of de 
Rham cohomology in that dimension, which then defines a topological constraint on the 
manifold M; analogous remarks apply to the divergence operator δ. 
  
 b. Symbol of a differential operator.  If D: Γ(E) → Γ(F) is a first-order 

differential operator from sections of a vector bundle E → M to sections of a vector 
bundle F → M then its symbol is a bundle map σ[D]: T*(M) ⊗ Γ(E) → Γ(F) that takes 

any df ⊗φ to D(fφ) − fD(φ).  Hence, it is a linear algebraic map between the fibers 

x xT E∗ ⊗ and Fx at each point x ∈ M.  When one fixes a covector field k the map σ[D, k] 

takes sections of E to sections of F linearly; hence, σ[D, k]: Γ(E) → Γ(F). 

 In the case of the ordinary differential operator, which we denote by D to avoid 
confusion with the exterior derivative d, since D(fφ) = Df ⊗φ + fDφ, the symbol of D is 
tensor multiplication by a covector field k: 
 

σ[D, k](φ) = k ⊗φ.    (VII.10) 
 
 From this, by polarization, we find that: 
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σ[Ds, k](φ) = k ⊙ φ = 1
2 (k ⊗φ + φ ⊗ k),  (VII.11a) 

σ[d, k](φ) = k ^ φ = 1
2 (k ⊗φ − φ ⊗ k).   (VII.11b) 

 
Here, the operator Ds represents symmetrized differentiation and d represents anti-
symmetrized differentiation; i.e., the exterior derivative operator. 
 Hence, the linear algebraic operator on sections of E that corresponds to symmetrized 
or anti-symmetrized differentiation is symmetrized or anti-symmetrized tensor 
multiplication by k, respectively.  By abuse of notation, we shall denote any of the three 
maps σ[D, k], σ[Ds, k], σ[d, k] by ek: E → F and let the context of its usage dictate the 
precise meaning implied. 
 Had we gone the route of replacing D with a covariant differential, we would have 
found that the symbol of the operator would not change, since the difference between 
ordinary and covariant differentiation, in any case, is an algebraic operator, whose 
symbol is then zero.  Similarly, if a differential operator is quasi-linear – i.e., linear in its 
highest-order derivatives, but possibly nonlinear in its lower-level ones – then the symbol 
(really, the principal symbol) of that operator is the same as that of the linear operator 
that is defined by its highest-order term. 
 The symbol of the divergence operator δ is: 
 

σ[δ, k](ΦΦΦΦ) = k(ΦΦΦΦ) = ikΦΦΦΦ,   (VII.12) 
i.e., interior multiplication by k. 
 In order to extend this conception of the symbol of a differential operator to operators 
of order higher than one, we confine ourselves to linear operators of the form (VII.7) and 
assume that: 
 i. The symbol of a composition of linear differential and algebraic operators is the 
composition of the symbols. 
 ii . The symbol of a linear algebraic operator (in such a sequence) is itself. 
 Hence, the symbol of an operator defined of the form (VII.7) is: 
 

σ[D, k] = A1 ⋅ ek ⋅ A2 ⋅ … ⋅ Ak ⋅ ek ⋅ Ak+1 .  (VI.13) 

 
 In the case where any of the sequences A ⋅ ek ⋅ A′ take the form of ik = #−1 ⋅ ek ⋅ #, 
which is the symbol of δ, it is generally simpler to replace them with ik .  For instance, the 
symbol of the field operator κ□ = δ ⋅ κ ⋅ d, when κ is linear is most simply expressed as: 

 
σ[ κ□ , k] = ik ⋅ κ ⋅ ek = κµναβ kν kβ .   (VI.14) 

 
 c. Characteristic variety. Since σ[D, k]: Γ(E) → Γ(F) is a linear algebraic map, 

there is always the question of its invertibility to be addressed.  As long as E and F both 
have finite rank, this amounts to the question of the integrability of the linear map σ[D, 

k]x : Ex → Fx at each x ∈ M.  If the dimensions of both fibers are unequal then the map 
can never be invertible.  When they are equal, invertibility can be characterized in a 
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frame-invariant way by considering the determinant of σ[D, k]x .  This will depend not 

only upon x, but also upon the choice of k ∈ xT ∗ , and one calls the set of all k such that: 

 
det{σ[D, k]x} = 0    (VII.15) 

 
the characteristic variety of D at x; it will then be a hypersurface in*xT M .  This has the 

immediate consequence that for differential operators of the type that we are considering, 
from (VI.13), we obtain: 
 

det{σ[D, k]} = det(A1) det(ek) det(A2) … det(Ak) det(ek) det(Ak+1).  (VI.16) 

 
 However, one immediately sees that there is a problem, since all of the linear maps in 
the sequence (VI.13) must be invertible in order for the product to be non-vanishing, in 
general, and the map ek is not invertible in any case.  It is not injective, since its kernel in 
dimension m will be spanned by all simple m-forms that contain at least one exterior 
factor of k.  It is not generally surjective, except for n−1 forms, since its image will also 
be spanned by simple m+1-forms that contain k as an exterior factor.  Therefore, in order 
to arrive at a non-trivial characteristic variety, one must always restrict the domain of ek 
to the quotient Λm/ker(ek) and the range to im(ek) = k ^ Λm at each x ∈ M.  For instance, in 
the case of ek: Λ1 → Λ2 for an n-dimensional manifold one must restrict ek to any n−1-
dimensional subspace of Λ1 that is transverse to the line generated by k and the range to 
the linear subspace of Λ2 that is spanned by all 2-forms of the form k ^ α for some 1-form 
α. 
 Now, the determinant function on an n×n matrix represents a homogeneous 
polynomial of degree n in the components of the matrix.  The number of times that the 
components of k appear in the terms of the characteristic polynomial that is defined by   
det{σ[D, k]}, with suitable restriction on the domains and ranges, will be equal to the 

order of the differential operator.  Hence, in the case of a mth-order differential operator 
on sections of a vector bundle of rank n, after restriction, the characteristic polynomial 
will be a homogeneous polynomial in k of degree mn. 
 In the cases of interest to us, when the relevant constitutive laws are linear: 
 i. The second-order field operator ∆ε : Λ0 → Λ0 , with ∆ε  = δ ⋅ ε ⋅ d, has the symbol: 
 

σ[∆ε , k] = ik ⋅ ε ⋅ ek  = ε(k, k) = εij ki kj ,  (VI.17) 
 
which is also the characteristic quadratic polynomial, since the matrix is 1×1. 
 ii . For three-dimensional space Σ, the second-order field operator ∆µ : Λ1 → Λ1, with 
∆µ  = δ ⋅ µɶ  ⋅ d, has the symbol: 

σ[∆µ , k] = ik ⋅ µ−1 ⋅ ek .    (VI.18) 
 
However, in order to derive the characteristic polynomial we must first note that since ek 
is not invertible, for each choice of k ∈ Λ1 we must restrict the map σ[∆µ , k] to a two-
dimensional subspace at each point of Σ that is transverse to k, and similarly, one must 



154 Pre-metric electromagnetism 

restrict oneself to the two-dimensional subspaces of Λ1 that define its image.  If θa, θ3 is 
an adapted coframe (a = 1, 2, k = κθ3) and ea, e3 is its adapted reciprocal frame then the 
2×2 matrix σ[∆µ , k]ab takes the form: 
 

σ[∆µ , k]ab = −−−− 2 a cd d
c bκ ε µ εɶ , ( a

bε = εab).  (VI.19) 

 
The characteristic polynomial is actually a degenerate quartic in κ: 
 

P[∆µ , k] = κ4/µ2, (µ = 1/det[µɶ ]).  (VI.20) 
 
 iii.  The second-order field operator κ□ : Λ1 → Λ1, with κ□ = δ ⋅ κ ⋅ d, has a symbol 

that is given by (VI.14).  We shall devote a section of chapter VIII to the discussion of 
this case, since it is fundamental to geometrical optics, as well as the manner by which a 
Lorentzian structure “emerges” from the laws of pre-metric electromagnetism. 
 
 
 2. Jet manifolds [2-4].  If we return to the expression (VI.6) then we see that if we 
were to define a manifold that represented the space that is locally described by the 
components (xµ, ya, ya

µ , … ,
1 k

ay µ µ⋯ ) then we could regard a system of N partial 

differential equations of order k in the unknown functions ya on the n-dimensional 
manifold M whose local coordinates are described by the functions xµ as a level 
hypersurface of a function F on this manifold: 
 

F(xµ, ya, ya
,µ , … ,

1, , , k

ay µ µ⋯ ) = const.   (VI.21) 

 
 For instance, the linear wave equation ψ□ = gµν(x)ψ,µ,ν = 0 can be defined by the 0-
hypersurface of the quadratic function: 
 

F(xµ, ψ, ψµ , ψµν) = gµν(x)ψµν .    (VI.22) 
 
 The function F is often restricted by the requirement that one be able to solve (VI.21) 
for the highest-order derivatives: 
 

1, , , k

ay µ µ⋯ = F′(xµ, ya, ya
,µ , … ,

1 1, , , k

ay µ µ −⋯
).   (VI.23) 

 
Courant and Hilbert [5] call this the normal form for a system of partial differential 
equations.  This also makes the system quasilinear, since the only possible nonlinearity 
in the system (VI.23) must be in the derivatives of less than maximal order. 
 From the implicit function theorem, the condition on F that makes this possible is that 
one must have: 

1, , , k

a

F

y µ µ

∂
∂

⋯

≠ 0  (all a, µ1, …, µk).  (VI.24) 
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Otherwise, one must deal with a singular system of equations whose order is reduced at 
some points. For instance, in the case of systems of first-order ordinary differential 
equations, which can be represented by vector fields on manifolds, the points at which the 
derivative vanishes will also be zeroes of the vector field, and therefore fixed points of its 
local flow. 
 
 i.  Jets of functions and sections.  The manifold that F is defined on in (VI.20) is 
called the manifold Jk(M; N) of k-jets of Ck functions f:M → N.  The k-jet k

xj f of such a 

Ck function f at x ∈ M is defined to be the equivalence class of all Ck functions that are 
defined in some neighborhood of x, which may vary with the function, and have the same 
values at x as functions, along with the same values of their first k derivatives.  Hence, it 
is easy to see how this gives rise to local coordinate charts on Jk(M; N) of the form (xµ, ya, 
ya

µ , … ,
1 k

ay µ µ⋯ ); note that we do not include commas in the subscripts, which will 

become significant shortly. 
 One immediately has three manifold projections for any k that are defined by: 
 
     Jk(M; N) → M, k

xj y ֏ x, 

     Jk(M; N) → N,  k
xj y ֏ y, 

     Jk(M; N) → M × N, k
xj y ֏ (x, y). 

 
The first two are referred to as the source and target projections. 
 In general, these projections do not define fiber bundles, but only give Jk(M; N) the 
structure of a fibered manifold, since they are surjective submersions; i.e., the projections 
have differential maps that have maximal rank at each point of Jk(M; N). 
 Of the three possible types of sections for the projections above, the ones that are 
most fundamental for us are the sections of the first projection, which then take the form 
of differentiable maps s: M → Jk(M; N) that give the identity when composed with the 
projection.  This basically means that the value s(x) of s at each x ∈ M is an element of 
the fiber ( ; )k

xJ M N .  Locally, the values of s(x) have the coordinates 

 
s(x) = (xµ, y(x), yµ (x), … ,

1
( )

k
y xµ µ⋯ ).   (VI.25) 

 
 Of particular interest are the integrable sections, for which these coordinates also 
locally satisfy: 

yµ (x) = y,µ (x), …, 
1

( )
k

y xµ µ⋯ =
1, , , ( )

k
y xµ µ⋯ .  (VI.26) 

 
 The global way of characterizing integrable sections is that they represent k-jet 
prolongations of differentiable functions on M, which can be thought of as differentiable 
sections of the third projection above.  One then notates the k-jet prolongation of a 
function f(x) by jkf(x).  It is basically defined by the function f and its first k derivatives.  
One is cautioned that not all sections of the projection Jk(M; N) → M are integrable. 
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 ii.  Contact form.  Although the contact form can be defined for manifolds of k-jets 
when k > 1, we shall confine our attention to the case of k = 1 for the moment.   
 The integrable sections of J1(M; N) → M have the property that the pull-backs s*θa of 
a certain set of N one-forms θa on J1(M; N) by a section s vanish iff the section is 
integrable.  The 1-forms θa are collectively called the contact form on J1(M; N) and can 
be locally represented in the form: 
 

θa = dya – ya
µ dxµ .     (VI.27) 

 
 One is cautioned that the coordinates ya

µ are functions on an open subset of J1(M; N), 
not an open subset of M.  However, pulling θa down to M by means of s turns dya into ya

,µ 
dxµ and θa into: 

s*θa  = (ya
,µ  − ya

µ) dxµ  (all a),   (VI.28) 
 
in which the ya

µ  are now functions on M. 
 Hence, locally, s is integrable iff: 

ya
µ = ya

,µ   (all µ, a).  (VI.29) 
 
 
 iii.  Differential equations.  The notion of higher jet prolongations gives a particular 
concise way of explaining the usual process by which a differential equation (either 
ordinary or partial) of order k in a Ck function y on M can be converted into an equivalent 
system of k first-order differential equations.  All that one is doing is introducing the 

higher jet coordinates of Jk(M; R), such as yµ , yµν , …, and coupling them to the 

derivatives of y by means of first order differential equations yµ = y,µ , etc. 
 For instance, suppose that we have an nth-order ordinary differential equation in 
normal form: 

n

n

d y

dτ
=

( 1)

( , , , , )
n

F y y yτ
−

ɺ ⋯ .   (VI.30) 

 

 If one introduces supplementary variables v = yɺ , 
(1)

v = yɺɺ , …,
( 2)n

v
−

=
( 1)n

y
−

for the 
successive derivatives then (VI.30) can be converted into the equivalent system of n first-
order equations: 

( 2)
( 2)

( 1)
( 2)

,

,

( , , , , )

n
n

n
n

dy
v

d

d v
v

d

d v
F y v v

d

τ

τ

τ
τ

−
−

−
−

 =



 =


 =


⋮

⋯

    (VI.31) 
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 Since the supplementary variables are clearly the coordinates of Jn-1(R, R) beyond τ 

and y, and the first n−1 equations in (VI.27) amounts to the vanishing of the contact form, 
one sees that the nth-order differential equation (VI.26) is equivalent to a first-order 

system on Jn-1(R, R), as well as a hypersurface in Jn(R, R).  One can thus conclude that 

any non-singular system of nth-order differential equations (ordinary or partial, linear or 
nonlinear) in normal form is equivalent to a first-order system of quasilinear equations. 
 Of particular interest to us are k-jets of Ck sections of vector bundles E → M.  In 
principle, the definitions of the k-jet k

xj φ  of a Ck section φ: M → E at x ∈ M and its k-jet 

prolongation jkφ are analogous to those for more general functions between these 
manifolds.  The difference is in the fact that the fiber structure on E translates into a fiber 
structure on the target projection J1(E) → E; in fact, it is a vector bundle.  One can 
actually regard the case of general Ck functions f: M → N as a special case of Ck sections 
by regarding each f as a section of the trivial fiber bundle M × N → M. 
 The way that the k-jet formulation of systems of partial differential equations relates 
to their formulation in terms of differential operators is quite simple to explain if one 
considers the case of k-jets of sections of vector bundles.  If one wishes to represent a kth 
order differential operator (linear or not) D: E → F, by which we really mean D acts on 

sections, as a hypersurface in a manifold of jets, one need only define a Ck fiber-
preserving map O: JkE → F such that if s: M → E is a section then Ds takes the form Ds 

= O ⋅ jks.  Hence, O plays the same role in this case that F did in the more elementary 

case that we first considered. 
 
 
 3. Exterior differential systems [6-9].  A third way of representing systems of 
partial differential equations that can be of advantage to some classes of problems is the 
method of exterior differential equations.  Much of that methodology goes back to the 
seminal works of Cartan [6] and Kähler [7]. 
 In general, a differential system of rank k on a manifold M is a vector sub-bundle 
D(M) ⊂ T(M) of constant rank k.  That is, one associates a k-plane in TxM with each x ∈ 
M.  For instance, a line field on M is a differential system of rank 1 and a field of 
hyperplanes is a differential system of corank 1. 
 An integral submanifold of a differential system of rank k on M is a submanifold σ: N 
→ M such that tangent space to the submanifold – i.e., dσ|x(TxN) – is contained Dσ(x)M for 
each x ∈ N.  When the dimension of N equals k, one calls such an integral submanifold 
maximal.  The differential system D(M) is called integrable iff there is an integral 
submanifold through each of its points and completely integrable iff there is a maximal 
integral submanifold through point.  In the latter case, the images of the integral 
submanifolds partition M into what one calls a foliation of dimension k (or codimension n 
– k, n being the dimension of M); the integral submanifolds are then called leaves. 
 The necessary and sufficient condition for complete integrability is given by 
Frobenius’s theorem, which can be stated in various forms.  The one that pertains to the 
present definition of a differential system is that D(M) is completely integrable iff the 
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vector space X(D) of all sections of D(M) → M is closed under the Lie bracket of vector 

fields.  This also means that X(D) is a Lie subalgebra of X(M); one also calls D(M) 

involutory when this is true. 
 The way that an exterior differential system differs from a more general one is in the 
representation of the sub-bundle D(M).  Any k-form α ∈ ΛkM defines an n-k-dimensional 
linear subspace of TxM at each x ∈ M by way of the set DxM of all tangent vectors with 
the property that for any k vectors v1, …, vk in DxM one must always have: 
 

a(v1, …, vk) = 0.     (VI.32) 
 
 More concisely, one says that DxM is the solution to the exterior algebraic equation: 
 

α = 0.      (VI.33) 
 

 An exterior differential system on M is then a differential system on M that is the 
simultaneous solution of a set of exterior algebraic equations: 
 

0 = αi ,  i = 1, …, p.    (VI.34) 
  
in which the αi are p differential forms of varying degree. 
 Of particular interest are the Pfaffian systems, for which all of the differential forms 
in the systems are 1-forms.  Since 1-forms are obstructed in the same way as vector fields 
from being globally non-zero, one sees that in the general case − at least when M is 
compact − one will be dealing with differential systems with singularities. 
 The complete integrability of an exterior differential system of the form (VI.34) is 
given by a variant form of Frobenius: The exterior differential system (VI.34) is 
completely integrable iff: 

0 = αi ^ dαi  (all i)    (VI.35) 
 
which, in turn, is equivalent to the condition that there exist 1-forms i

jη such that 23: 

 
dαj = i

jη ^ αi .     (VI.36) 

 
 The actual representation of a system of partial differential equations by an equivalent 
exterior differential system is not generally uniquely defined.  For one thing, it is often 
more convenient to put higher-order partial differential equations into the form of 
systems of first-order equations.  Furthermore, the manifold on which the exterior 
differential system is ultimately defined will generally have to be adapted to the nature of 
the problem. 

                                                
 23 One can also say that the “ideal” in the exterior algebra Λ*M that is generated by the set {α1 , …, αp}, 
namely, the vector space spanned by all finite linear combinations of expressions of the form β ^ αi where 
β is arbitrary, is closed under the exterior derivative.  This is yet another way of stating Frobenius that is 
favored by the school of Chern, et al. [9]. 
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 In the case of the pre-metric vacuum Maxwell equations in the form dF = 0, d*F = 0 
on a manifold M, and with * = # ⋅ κ, one might think on first glance that they already 
represent an exterior differential system.  However, their solutions are 2-forms, not 
submanifolds of M, so if one desires to define an exterior differential system whose 
integral submanifolds are 2-forms then it is better to realize that since a 2-form is a 
smooth map F: M → Λ2M it is also a four-dimensional submanifold of the ten-
dimensional manifold Λ2M.  Hence, if a solution is to be an integral submanifold, one 
should define the exterior differential system on Λ2M, not on M; in effect, one must “lift” 
the system from M to Λ2M. 
 Since a local coordinate system on Λ2M – i.e., a local trivialization – has the form (xµ, 
Fµν), by differentiation of the local expressions F = 1

2 Fµν dxµ ^ dxν, *F = 1
2 *Fµν dxµ ^ dxν, 

one sees that the exterior differential system on Λ2M that represents the vacuum Maxwell 
equations takes the form: 

Θ1 = Θ2 = 0,     (VI.37) 
where 24: 

Θ1 = dFµν  ̂  dxµ ^ dxν, Θ2 = d*Fµν ^ dxµ ^ dxν.  (VI.38) 
 

Be careful to note that in these expressions the Fµν and *Fµν represent functions on Λ2M, 
not functions on M.  However, if F is a section of Λ2M → M then the pull-back of Θ1 by 
F becomes dF itself, and similarly one pulls Θ2 back to d*F by the section *F. 
 Often, one defines exterior differential systems on jet manifolds.  For instance, the 
methods of prolongations of exterior differential systems to integrable ones that were first 
suggested by Cartan and later proved by Kuranishi [10] essentially amount to higher jet 
prolongations in which the supplementary variables that one is extending to are the 
higher jet manifold coordinates.  We have already encountered one exterior differential 
system on a jet manifold in the form of the integrability condition for a section of J1(M, 
M) → M, as it is expressed in terms of the contact form θa, namely, the exterior 
differential system that is defined by the vanishing of those 1-forms.  The integral 
submanifolds are then the integrable sections. 
 
 
 4. Boundary-value problems. [11-13].  When one is confronted with a linear 
differential operator L: C∞(M) → C∞(M) on smooth functions on a manifold, a natural 
problem to pose is that of solving the overdetermined linear differential equation: 
 

Lf = ρ.      (VI.39) 
 

 As we pointed out above, the first question to address is that of integrability, which 
simply amounts to the statement that unless ρ is in the image im(L) = L(C∞(M)) of the 
map L there can be no solution to begin with. 
 The second question to address, once one has identified the subspace of C∞(M) in 
which the solutions exist, is whether a solution is unique.  Of course, in the case of 

                                                
 24 Actually, one can generally expand d*Fµν into an expression in dxκ and dFαβ , but, for now, we pass 
over that fact for the sake of brevity. 
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differential operators this is generally impossible since even for the most elementary case 

of the operator d/dx acting on C∞(R), smooth functions that differ by a constant function 

will map to the same derivative.  Hence, one can hope to find, at best, a section of a 
surjection. 
 The issue then becomes one of how to characterize the nature of a particular section, 
and this is, of course, where one introduces initial/boundary conditions on the function f 
that would single it out from an infinite class of possibilities.  Hence, we shall assume 
that M has boundary ∂M, so the boundary conditions on f – and possibly its derivatives – 
will be defined on ∂M.  Therefore, the initial/boundary-value problem that is defined by 
(VI.39) for an integrable ρ is: Find that unique function f ∈ C∞(M) that satisfies equation 
(VI.39) and has specified functions φ, φ′, … ∈ C∞(∂M) for the restriction to ∂M of f and 
its derivatives up to some order. 
 As long as L is linear, one will expect a solution of (VI.39) for a well-posed 
initial/boundary value problem to take the form of a linear operator L−1: im(L) → C∞(M), 
where our notation is suggestive only of the operator being a right inverse to L, so LL−1 = 
I; i.e.: 

LL−1 ρ = ρ     (VI.40) 
 

when the boundary conditions have been imposed on L−1ρ. 
 One can also represent this situation in the form: 
 

f = L−1ρ (mod C∞(∂M)).   (VI.41) 
 
 The actual distinction between an initial-value problem and a boundary-values 
problem does not become clear until one looks at the specific nature of L – e.g., elliptic, 
hyperbolic, parabolic – and how that affects the nature of a “well-posed” problem; i.e., 
one that has a unique solution that depends continuously upon the given data.  For 
instance, elliptic problems, such as might be defined by Poisson’s equation, are fairly 
restrictive as far as what sort of boundary data one can specify. 
 The Dirichlet problem is defined by specifying only the boundary values of the 
function f, while the Neumann problem is defined by specifying only the boundary values 
of its normal derivative – viz., its derivative in the normal direction n: 
 

fn = nf = i
i

f
n

x

∂
∂

    (VI.42) 

 
(Of course, we have to assume that ∂M is orientable in order to define n = #−1

VΣ, where 

VΣ is the volume element on ∂M.) 

 One can also envision mixed or Robin boundary-value problems, at least when ∂M is 
composed of more than one connected component.  In such problems, one might define f 
on some components and its normal derivative on others. 
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 5. Initial-value problems [4, 5, 11].  Often, the problems that one poses in the case 
of dynamical fields take the form of initial-value – or Cauchy – problems.  If one were 
dealing with a system of nth-order ordinary differential equations then an initial-value 
problem would take the form of finding that particular integral curve that has a given 
kinematical state, in the sense of the position, and subsequent time derivatives up to order 
n – 1 at the initial time t0 .  In the case of partial differential equations, the initial point 
becomes an initial hypersurface, the initial position becomes the initial values of the 
solution function or field on the initial hypersurface, and the various subsequent time 
derivatives become corresponding normal derivatives of the solution. 
 One usually finds that only the normal derivative can be specified independently of 
the initial function, at least when it has derivatives of all orders involved, since that 
would determine the derivatives in all of the directions are tangent to the initial 
hypersurface. 

 

x0 

0xɺ  

φ(x0) 

φn(x0) 
 φ( 0x′ ) 

 

φn( 0x′ ) 

 

0( )n xφ ′′  

0( )xφ ′′  

Ordinary Partial 

Σ0 

 
Figure 5.  Initial-value problems for ordinary and partial differential equations. 

 
 
 a. Existence and uniqueness.  It was Cauchy who first made significant progress 
towards the solution of the problem that bears his name, and later the proof was extended 
by Sonja Kowalevski 25 (see Courant and Hilbert [5] for the references).  In essence, the 
Cauchy-Kowalevski theorem says that if a system of partial differential equations, in 

normal form, is given by an analytic function F on Jn−1(M, Rm) and the Cauchy (i.e., 

initial) data is analytic on some initial hypersurface Σ0 then a unique solution to the 
Cauchy problem exists in a neighborhood of each point of Σ0 for a sufficiently small time 
interval into the future. 
 One must be careful to distinguish positive time evolution from negative time 
evolution in the context of partial differential equations since in many cases the two are 
quite distinct.  One can say that the “flows” of partial differential equations are then due 
to one-parameter semigroups of transformations, not one-parameter groups, as is the case 
for ordinary differential equations; this is especially true of diffusion equations. 
 Although the Cauchy-Kowalevski theorem is sufficiently general as to make no 
mention of the type of system that one dealing with – e.g., elliptic, parabolic, or 
hyperbolic – one finds that generally the Cauchy problem is not well-posed for elliptic 

                                                
 25 Since there are a number of spellings for her name that are used in the literature, we follow the 
argument of John [6] in using this spelling, on the grounds that she herself used that spelling in her papers. 
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systems 26.  As it turns out, the very assumption that one can put the partial differential 
equation into normal form includes the constraint that initial hypersurface is not 
“characteristic,” in a sense that follows from the signature type of the principal symbol.  
Furthermore, the restriction to analytic initial data is more severe than it sounds, since an 
important class of initial-value problems in the theory of waves concerns initial data that 
have discontinuities in their derivatives at some order, such as shock waves and 
acceleration waves.  We shall discuss the Hadamard theory of the Cauchy problem for 
acceleration waves in chapter VIII. 
 The Cauchy-Kowalevski theorem was extended into the context of exterior 
differential systems by Cartan [7] and Kähler [8], although its very statement requires a 
considerable amount of preliminary definitions and constructions.  We shall not elaborate 
here, but only refer the curious to Choquet-Bruhat [9] or Bryant, Chern, et al. [10] 
 
 b. Method of characteristics: first-order case.  The simplest Cauchy problem is 
posed for a first-order partial differential equation in a real-valued function y(x) on a 
manifold M.  In local coordinates, the partial differential equation can be expressed in the 
form: 

F(xµ, y, yµ) = 0,    (VI.43) 
 

and for a function y that is a solution to this equation, one will have: 
 

yµ = 
y

xµ
∂
∂

     (VI.44) 

in addition to (VI.43). 
 The initial-value problem for this class of partial differential equations is completely 
solvable by Cauchy’s method of characteristics.  This method reduces the solution of the 
initial-value problem for the partial differential equation (VI.43) to the solution of an 
initial-value problem for a system of first-order ordinary differential equations on the 

manifold J1(M; R), whose local coordinates take the form (xµ, y, yµ). 

 In order to define the characteristic equations for a first-order partial differential 
equation of the form (VI.43) we first regard the function F as a differentiable function on 

J1(M; R), so the partial differential equation in question represents a hypersurface in 

J1(M; R).  Hence, F defines a 1-form on J1(M; R), namely: 

 

dF =
F F F

dx dy dy
x y y

µ
µµ

µ

∂ ∂ ∂+ +
∂ ∂ ∂

.   (VI.45) 

 

 For an integrable section s: M  → J1(M; R) this pulls down to: 

 

                                                
 26 One can, however, think of equipotential hypersurfaces as “evolving” along the field lines.  
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d(s*F) = s*dF = ,

F F F
y dx dy

x y y
µ

µ µµ
µ

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
.  (VI.46) 

 

 In order to turn (VI.45) into a vector field on J1(M; R), we first look at the 2-form that 

the contact form θ  = dy – yµ dxµ defines, namely: 
 

dθ = dxµ  ^ dyµ .    (VI.47) 
 If one has a vector field: 

X = yX X X
x y y

µ
µµ

µ

∂ ∂ ∂+ +
∂ ∂ ∂

   (VI.48) 

 

on J1(M; R) then one can define a 1-form using X and dθ, namely: 

 
iXdθ  = Xµ dyµ  − Xµ dxµ .    (VI.49) 

 
 If one requires, moreover, that θ itself annihilate X, so: 
 

Xy = y,µ Xµ ,     (VI.50) 
 
then the combined algebraic equations: 
 

iXdθ  = dF, θ(X) = 0, s*θ = 0   (VI.51) 
 
define X uniquely, and its local components are then: 
 

Xµ = 
F

yµ

∂
∂

, Xy = y,µ Xµ, Xµ  = − ,

F F
y

x yµµ
 ∂ ∂+ ∂ ∂ 

. (VI.52) 

 

 This vector field on J1(M; R) is then the characteristic vector field for the partial 

differential equation that F defines.  The system of 2n + 1 ordinary differential equations 
that X defines is then the system of characteristic equations: 
 

dx

d

µ

τ
= 

F

yµ

∂
∂

,  
dy

dτ
= y,µ Xµ,  

dy

d
µ

τ
= − ,

F F
y

x yµµ
 ∂ ∂+ ∂ ∂ 

. (VI.53) 

 
 To solve the initial-value problem that is defined by giving the values y(x0) of the 
function y on some initial hypersurface Σ0 in M and requiring that y be a solution to the 
partial differential equation (VI.43) that is defined on all of M, one first converts it into an 
initial-value problem for the system of ordinary differential equations (VI.53) by means 
of the 1-jet prolongation of y on Σ0.  Hence, each pair (x0, y(x0)) turns into a 1-jet (x0, 
y(x0), y,µ(x0)) and if one projects the unique integral curve (xµ(τ, x0), y(τ, x0), y,µ(τ, x0)) to 
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X that passes through this point back down to M then one obtains a curve xµ(τ) = xµ(τ, x0) 
in M that is transverse to the initial hypersurface Σ0 at x0 for each choice of x0. 
 The solution y(x) is then obtained by the requirement that y be constant on each of the 
projected integral curves.  Hence, in a coordinate system0( , )ixτ that is adapted to Σ0 one 

will have: 

0( , )iy xτ = 0( )iy x     (VI.54) 

 
for all τ in the range of values for which the integral curve is defined. 
 One must observe that for the case of an F that does not depend upon y, numerous 

reductions of scope follow.  The manifold J1(M; R) reduces to T*M, F = F(xi, yi) becomes 

a function on T*M, θ becomes its canonical 1-form, so dθ = − yi dxi is the canonical 
symplectic form, and the characteristic equations of F become: 
 

idx

dτ
= 

i

F

y

∂
∂

,  idy

dτ
= −

i

F

x

∂
∂

,   (VI.55) 

 
which are Hamilton’s equations is one regards F as a Hamiltonian function. 
 Note that a section s: M → T*M can be regarded as either a covector field on M or a 
1-form.  It is integrable relative to d iff: 
 

s = dS      (VI.56) 
 
for some differentiable function S on M; i.e., iff it is an exact 1-form. 
 The partial differential equation: 

F(xi, y,i)  = 0     (VI.57) 
 
that one obtains for any section s: M → T*M is then the (stationary) Hamilton-Jacobi 
equation that F defines. 
 Although it may seem like a restriction in scope to eliminate the functional 
dependency of F on y, actually, it is not.  One simply adds y, which we now call τ, as an 

extra dimension to M – i.e., one goes to M×R − so T*(M×R) takes on a fiber dimension y0 

that refers to partial differentiation with respect to τ. 
 In order to obtain the usual time-varying Hamilton-Jacobi equation, one must replace 
F(xi, yi) with  y0 + F(xi, yi).  For an integrable section, y0 = ∂S/∂τ and yi = ∂S/∂xi, so the 
Hamilton-Jacobi equation takes the time-varying form: 
 

,i
i

S S
F x

xτ
∂ ∂ +  ∂ ∂ 

= 0.    (VI.58) 

 
 One must be aware that although the method of characteristics gives a complete 
solution to the Cauchy problem for a first-order partial differential equation in a real-
valued function, it does not extend to the case of a system of first-order equations. This is 
because, as we mentioned above, any nth-order partial differential equation can be 



Partial differential equations on manifolds                                            165 

converted into an equivalent system of first-order equations by introducing the successive 
derivatives up to order n – 1 as auxiliary variables. 
 
 c. Method of characteristics: second-order case.  A second-order partial differential 
equation in a C2 function y on M takes the form: 
 

F(xµ, y, y,µ , y,µ, ν) = 0.    (VI.59) 
 

 Hence, F is now a differentiable function on the manifold J2(M; R) of 2-jets of C2 

functions on M.  A 2-jet is simply the next level of differentiation from a 1-jet, namely, 
an equivalence class of functions that are defined on some neighborhood of each point x 
M that have common values as functions at x, along with their first and second 

derivatives.  A local coordinate system about a point 2
xj y ∈ J2(M; R) then has the form 

(xµ, y, yµ , yµν), in which  yµν = yνµ , since they must behave like second partial derivatives. 
 When one considers jet prolongations beyond the first one, one must be very careful 

concerning a certain subtlety: the first prolongation of a section s of J1(M; R) → M does 

not have to be a section of J2(M; R) → M; i.e., a 1-jet does not always prolong to a 2-jet.  

This is because if s takes the local form s(x) = (xµ, y(x), yµ(x)) then its first prolongation 
will take the form j1s(x) = (xµ, y(x), yµ(x), yµ,ν(x)).  However, unless s is an integral 
section to begin with, so yµ(x) = y,µ(x) the resulting functions yµ,ν(x)) will not generally be 

symmetric in their lower indices.  Hence, the manifold J1(J1(M; R)) is higher-dimensional 

than J2(M; R), which can be embedded as a submanifold in the latter manifold. 

 The Cauchy problem for a second-order partial differential equation of the form 
(VI.59) for an initial (orientable) hypersurface Σ0 in M then amounts to defining not only 
the values of y on Σ0, but also its normal derivative yn . 

 Although it would be nice if there were a characteristic vector field on J2(M; R) that 

would allow one to convert the initial-value problem for the partial differential equation 
(VI.55) into an initial-value problem for a system of ordinary differential equations, alas, 
such is not the case.  However, as we shall see in the next chapter, there is a process that 
is almost as convenient: One first converts the second-order partial differential equation 
into a – generally, nonlinear – first-order partial differential equation, which one also 
calls the “characteristic equation,” and which usually captures the essentials of the 
second-order equation to a lesser extent.  One then solves this first-order partial 
differential equation by the method of characteristics, and, to avoid confusion, one calls 
the characteristic equations for the first-order equation “bicharacteristic” equations for the 
second-order one. 
 
 
 6.  Distributions on differential forms [15-17].  In order to lead into a proper 
treatment of solving boundary-value problems for systems of linear differential equations 
– whether ordinary or partial – one must generalize from differential operators that act on 
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functions or differential forms to differential operators that act on distributions, which are 
also sometimes called “generalized functions.”  This is largely due to the fact that in 
order to define the Green function for an integral operator, which we shall do in the next 
section, one must unavoidably introduce the Dirac delta function, which is not a function, 
at all, but a distribution.  Consequently, the Green function itself becomes a distribution, 
as well, and the defining equation makes sense only in the distributional sense. 
 
 a. Continuous linear functionals.  The infinite-dimensional vector spaces ΛkM and 

k
CMΛ , which consists of smooth k-forms with compact support, can be given topologies, 

although we shall not elaborate here 27, except to say that one can make sense of the 
notion of a null sequence of k-forms; viz., a sequence αi , i = 1, 2, … of k-forms that 
converges uniformly to 0.  One refers to the elements of k

CMΛ as test k-forms. 

 A linear functional T on either vector space is called continuous if the sequence of 
real numbers T[αi] converges to 0 for every null sequence αi .  A distribution on either 
space ΛkM and k

CMΛ is a continuous, linear functional on that space.  Hence, a 

distribution is an element of the dual spaces to ΛkM and k
CMΛ , as topological vector 

spaces, which we denote by (Λk)′ and( )k
C

′Λ , resp.  In the case of distributions on test k-

forms, the term that de Rham used was “currents,” and they defined the foundations for 
his formulation of his famous theorem. 
 This latter fact gives us our first example of a distribution on k-forms, regardless of 

whether their support is compact or not, namely, any k-chain ck ∈ Ck(M; R) defines a 

distribution by way of: 

ck[α] =
kc
α∫ .      (VI.60) 

 

Hence, one has a linear map [.]: Ck(M; R) → (ΛkM)′ that takes the k-chain ck to the 

distribution ck[.].  Since we have not given Ck(M; R) a topology, it is meaningless to 

speak of continuity for this map, but we shall not need that condition, anyway.  However, 
we can say something about injectivity, which amounts to the issue of whether the kernel 
of the map [.] is trivial or not.  An element of the kernel is a k-chain such that any k-form 
will integrate to zero over it.  However, that can only be the 0-chain, since we are not 
allowing degenerate k-chains of dimension less than k, which might have “measure zero.”  

Hence, the map in question is injective.  It is not surjective, but the image of Ck(M; R) is 

dense in (ΛkM)′ (see de Rham [15]). 
 Any (n – k)-form α defines a distribution on test k-forms by way of: 
 

α[β] =
M

α β∧∫ .    (VI.61) 

 

                                                
 27 The details can be found in de Rham [15] or Hörmander [16].   For a general discussion of 
distributions, one might confer Friedlander [17]. 
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Now, we have a linear map [.]: Λn−k → ( )k
C

′Λ , α ֏ α[.].  It is continuous and injective 

since α ^ β = 0 for all β iff α = 0. 
 Finally, since the evaluation α(A) of a k-form α on a k-vector field A produces a 
function, when α has compact support, one can use this to define yet another distribution 
on k

CMΛ : 

A[α] = ( )
M

α∫ A V .    (VI.62) 

 
 b. Operations on distributions.  Many of the operations that that one performs on 
differential forms can be performed on distributions, as well.  For instance, one can 
clearly form scalar combinations of distributions. 
 One can form the exterior product of a distribution T that acts on k+l-forms with an l-
form α to form a distribution T ^ α that acts on k-forms: 
 

(T ^ α)[β] = T[α ^ β].    (VI.63) 
 
We can thus define left-multiplication of distributions by α as a linear map lα : (Λk+l)′ → 
(Λk)′, which then works more like the operator of taking the interior product by α does on 
(k+l)-vector fields. 
 The tensor product T1 ⊗ T2, of two distributions can be defined as a distribution on Λk 
⊗ Λl: 

(T1 ⊗ T2)[α ⊗β] = T1(α) T2(β).   (VI.64) 
 

 Similarly, the exterior product of two distributions T1 ∈ (Λk)′ and T2 ∈ (Λl)′ can be 
defined as a distribution (T1 ^ T2) on Λk+l, but the anti-symmetrization of (VI.63) is not 
always immediate.  Thus, we can define the exterior algebra (Λ*)′ of distributions on 
differential forms as being generated by (Λ1)′. 
 The interior product of a distribution T ∈ (Λk)′ with a vector field v can be defined 
predictably: 

(ivT)[α] = T[ivα].    (VI.65) 
 
Hence, it is a linear map iv : (Λk−1)′ → (Λk)′, so it behaves more like ev does on Λk−1

 . 
 The divergence of a distribution T can be defined to be adjoint to the exterior 
derivative of the differential forms that it acts on: 
 

δT[α] = − (−1)n−k T[dα].    (VI.66) 
 
The choice of sign comes from the product rule for the exterior derivative if one uses T = 
β[.], where β is an (n – k)-form: 
 

d(β ^ α) = dβ ^ α + (−1) n−k β ^ dα    (VI.67) 
 
which vanishes since β ^ α is an n-form on an n-dimensional manifold. 
 We can also define distributions on the vector spaces Λk or Λk,C by similar means to 
the foregoing.  An (n−k)-chain cn−k defines a distribution on Λk by way of: 



168 Pre-metric electromagnetism 

cn−k[A] = #
n kc −
∫ A .    (VI.68) 

 
 A k-form α defines a distribution on Λk,C by way of: 
 

α[A] = ( )
M

α∫ A V = #
M

α ∧∫ A .   (VI.69) 

 
 We denote the topological vector spaces of distributions on Λk and Λk,C by (Λk)′ and 
(Λk,C)′, predictably. 
 The Poincaré duality isomorphism #: Λk → Λn−k can be transposed to a corresponding 
isomorphism #′: (Λn−k)′ → (Λk)′ in the obvious way: 
 

#′T[A] = T[#A].    (VI.70) 
 
 The exterior derivative operator d: (Λk)′ → (Λk+1)′ is basically the transpose of the 
divergence operator on Λk+1 : 

dτ[A] = − (−1)n−kτ [δA].   (VI.71) 
 

In order to verify this, it is simplest to use τ[A] in the form #
M

α ∧∫ A and apply the 

product rule for exterior derivatives, as before. 
 
 c. Vector-valued distributions.  It will prove necessary for us to extend our notion of 
a real-valued distribution on differential forms to that of a vector-valued distribution on 
differential forms.  We define a vector-valued distribution on differential forms to be a 
continuous linear functional on Λk or k

CΛ that takes its values in a topological vector 

space V, such as Rm, a specified fiber Ex of a vector bundle E → M, or the vector space 

Γ(E) of sections of that vector bundle. 
 One example of a vector-valued distribution on k-forms is the evaluation functional 
δx[] for x ∈ M, which takes any k-form α to its value at x: 
 

δx[α] = αx .     (VI.72) 
 
Hence, the vector space V is the fiber k

xΛ of the vector bundle ΛkM → M. 

 Another elementary example of a vector-valued distribution on k-forms is the identity 
map: 

I[α] = α .     (VI.73) 
 
The vector space V in this case is Λk itself. 
 A broad class of vector-valued distributions on differential forms is defined by 
integral operators, which take the form K: k

CΛ  → l
CΛ : 

 

K[α(y)] = β(x) = ( , ) ( )
M

K x y yα∧∫ .   (VI.74) 



Partial differential equations on manifolds                                            169 

in which the integration is over all y ∈ M.  (The fact that the notation for the independent 
variable changes is irrelevant to the fact that both x and y range over all of M.) 
 The kernel K(x, y) of the operator then takes its values in the vector space 

l n k
x y

−Λ ⊗ Λ for each pair (x, y) ∈ M × M; the integral operator K can then be regarded as a 

two-point distribution.  In local coordinate terms, the kernel will be expressible in the 
form: 

K(x, y) = 1 1

1 1,

1
( , )

!( )!
l n k

l n k

i ji j
i i j jK x y dx dx dy dy

l n k
−

−
∧ ∧ ⊗ ∧ ∧

− ⋯ ⋯
⋯ ⋯ . (VI.75) 

 
 The kernel will be called decomposable iff it takes the form K(x, y) = α(x) ⊗ β(y), 
which implies that the local component functions take the form: 
 

1 1, ( , )
l n ki i j jK x y

−⋯ ⋯
 =

1 1
( ) ( )

k li i j jK x K y′ ′′
⋯ ⋯

.  (VI.76) 

 
 It is commonplace to represent both the evaluation functional δx[.] and the identity 
operator I[.] in terms of integral operators, even though both operators are purely 
algebraic – hence, local – and not integral operators, which are global in character: 
 

 δx[α] = ( , ) ( )
M

x y yδ α∧∫ = α(x),   (VI.77a) 

I[α(x)] = ( , ) ( )
M

I x y yα∧∫ = α(x).       (VI.77b) 

 
The fictitious kernel for the former distribution is the Dirac delta function δ(x, y); the 
equally fictitious kernel I(x, y) is referred to as the reproducing kernel. 
 
 d.  Fredholm theory.  What Fredholm was originally concerned with was the solution 
of three basic classes of integral equations.  When expressed in terms of an integral 
operator K that is the right inverse to a differential operator D they take the forms: 
 

Kρ = f,      (VI.78a) 
(K – λI)ρ = f,     (VI.78b) 
(K – λI)ρ = 0.     (VI.78c) 

 
One then looks for solutions in the form of ρ. 
 Hence, we see that what he was concerned with were the solutions to the general 
inhomogeneous differential equation Df = ρ and two equations that grew out of the 
eigenvalue equation for K: 

Kρ = λρ .     (VI.79) 
 
The non-vanishing eigenvalues λ of K are easily seen to be inverses to the eigenvalues of 
D since one must have DK = I. 
 As for the zero eigenvalues, the corresponding eigenfunctions ρ belong to the kernel 
of the operator K.  Hence, since a linear operator is injective iff it has a vanishing kernel, 
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one deduces the Fredholm alternative:  Either (VI.78c) has a non-vanishing solution for 
λ = 0 or (VI.78a) has a unique solution for any f in the image of K. 
 
 
 7. Fundamental solutions [12-14, 18-20].  As we observed above, solving systems 
of linear differential equations, whether ordinary or partial, amounts to finding a right 
inverse to the linear differential operator that satisfies some boundary/initial-value 
problem that makes the solution exist uniquely.  Such a right inverse will then represent a 
linear integral operator on the vector space of functions or sections that the differential 
operator acts on.  In this section, we shall discuss the nature of this construction when one 
is concerned with functions and sections on more general manifolds than vector spaces. 
 
 a. General definitions.  When the integral operator in question is the right-inverse 
operator D−1 that is associated with the differential operator D, the two-point function γ(x, 
y) that represents the kernel of the integral operator is called a fundamental solution.  
Since the operator equation is DD−1 = I, the distributional equation that is associated with 
it is: 

Dγy(x, y) = − δ(x, y).    (VI.80) 
 
The subscript y indicates the independent variables that the differentiation affects. 
 Let us illustrate the representation of the solution of a boundary-value problem for a 
differential equation by fundamental solutions in the simplest possible case of solving: 
 

( )df x

dx
= ρ(x),  f(0) = f0 .   (VI.81) 

 
 A simple quadrature gives the solution as: 
 

f(x) = f0 +
0

( )
x

y d yρ∫ .    (VI.82) 

 
Note that the only definitive restrictions on f and ρ are that they be differentiable and 
integrable, respectively. 
 At this point, we can introduce the fundamental solution: 
 

G(x, y) =
1 ,

0 otherwise,

x y≤



    (VI.83) 

whose graph looks like: 
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Figure 6.  The fundamental solution for d/dx. 
 

 Note that both of the partial derivatives of G(x, y) are zero everywhere except for the 
diagonal subset ∆ ={(x, y) | x = y}, where they are undefined and essentially infinite: 
 

G

x

∂
∂

=
G

y

∂
∂

=
0

" " .

x y

x y

≠
 ∞ =

    (VI.84) 

 
(Our quotation marks around ∞ are there to suggest that it is more proper to say that the 
functions are simply undefined on the diagonal.) 
 Let us apply ∂G/∂y to f(y) as a distribution: 
 

  ∂G/∂y [f] =
1

0
( )

G
f y dy

y

∂
∂∫

=
1 1

0 0

( )
( , )

Gf df
dy G x y dy

y dy

∂ −
∂∫ ∫  

=
1 1

0 0
( ) ( , ) ( )d Gf G x y y dyρ−∫ ∫ .   (VI.85) 

 
 The first integral vanishes since it is equal to G(x, 1)f(1) – G(x, 0)f(0) and the second 
integral equals: 

− f(x) = −
1

0
( , ) ( )x y f y dyδ∫ .    (VI.86) 

 
 Hence, as a distributional equation, we have: 
 

( , )G x y

y

∂
∂

= − δ(x, y).     (VI.87) 

 
 One finds that generally fundamental solutions are undefined on the diagonal, and not 
merely discontinuous, as in the present case. 
 The fundamental solution γ(x, y) can also be used to construct solutions to boundary-
value problems for (VI.39).  One starts with Green’s formula as the definition of a self-
adjoint linear operator L: C∞(M) → C∞(M): 
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( )
M

uLv vLu−∫ V = ( )n n MM
uv vu ∂∂

−∫ V .   (VI.88) 

 
 Then, one applies this to the particular case in which the function v is the fundamental 
solution for L and u is a solution to the inhomogeneous equation Lu = ρ.  (VI.88) then 
takes the form: 
 

u(x) =
( , ) ( )

( , ) ( ) ( ) ( , )y M MM M M
y y

x y u y
x y y u y x y

n n

γγ ρ γ∂ ∂∂ ∂

∂ ∂+ −
∂ ∂∫ ∫ ∫V V V . (VI.89) 

  
 The first integral on the right-hand side is called the volume potential, and it 
represents the contribution to u that is due to the presence of a non-zero source ρ.  The 
second one is called the single-layer surface potential, and one sees that it is driven by 
the boundary values of u, while it is the normal derivative of γ that serves as the integral 
kernel.  The final term is referred to as the double-layer surface potential, and one sees 
that it is driven by the normal derivatives of u on ∂M. 
 In the homogeneous case, where ρ = 0, one can think of the boundary-value functions 
f and fn as the “source” of the field f inside of the boundary ∂M. 
 In the case where L is the Laplacian operator ∆, if one poses the Dirichlet problem for 
u then this implies the boundary condition on γ: 
 

γ|∂M = 0, 
( , )

y

x y

n

γ∂
∂

= G(x, y),   (VI.90) 

 
in which ∂/∂ny refers to the normal derivative in terms of the y variables.  The function 
G(x, y) is then referred to as the Green function 28 for this problem. 
 If one poses the Neumann problem then the corresponding boundary conditions for γ 
are: 
 

( , )

y M

x y

n

γ

∂

∂
∂

= 0, γ(x, y) = N(x, y),  (VI.91) 

 
and one refers to the function N(x, y) as the Neumann function for the problem. 
 The reader should be advised that it quite commonplace for the term “Green 
function” to be used as a generic reference to all integral operator kernels.  In particular, 
the usage of that term in quantum field theory is not specific to the Dirichlet problem, and 
indeed it is entirely possible for a Green function to represent something that is not even a 
differential operator, such as a pseudo-differential operator. 
 The method of Green functions can still be used in the case of hyperbolic linear 
second-order partial differential equations.  In particular, the construction of a solution to 
the Cauchy problem for a linear forced wave equation u□ = ρ  by means of (VI.89) is still 
                                                
 28 As pointed out by Jackson [18], Rohrlich [19], and others, the popular phrases “the Green’s function” 
and “a Green’s function” are ungrammatical, since one should not mix articles with possessive adjectives.  
After all, one does not say “the Laplace’s equation” or “a Bessel’s function.”  
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valid.  The main difference is that one must use “fractional hyperbolic potentials” in 
order to define the Green function, and this has the consequence that the character of the 
resulting wave solution depends upon whether the dimension of M is even or odd.  One 
can also compute the Green function for □by means of the Fourier transform, which we 
shall discuss below. 
 
 b. Topological integral operators 29.  Since we have already seen that the linear 
differential operators d and δ have topological significance, by way of de Rham 
cohomology and homology, respectively, it should come as no surprise that their 
operators also have topological significance. 
 A chain map f: C*(M) → C*(N) from one chain complex C*(M) to another one C*(N) 
is a linear map that commutes with the boundary operator ∂.  That is, if ck is a k-chain in 
M then the boundary of f(ck) is the image of ck under f; in other words, a chain map takes 
boundaries to boundaries. 
 A chain homotopy from one chain map f to another chain map g is a linear operator 
H: C*(M) → C*+1(N), such that: 

  ∂H + H∂ = f − g.    (VI.92) 
 
 When this is applied to a k-cycle zk the result is: 
 

  ∂Hzk = f(zk) − g(zk).    (VI.93) 
 

Since f and g are chain maps the images f(zk) and g(zk) will be cycles in some dimension 
and (VI.92) then says that they will also be homologous.  Hence, f and g induce the same 
map in homology since this means that f[zk] = g[zk]. 
 In particular, one might consider chain contractions, which are chain homotopies 
from the identity map to the zero map, which makes: 
 

  ∂H + H∂ = I.     (VI.94) 
 
 When applied to a specific k-chain ck this says: 
 

  ∂Hck + H∂ck = ck .    (VI.95) 
 
 In particular, when applied to a k-cycle zk , the result is: 
 

  ∂Hzk = zk .     (VI.96) 
 
 However, here we see the limitation on whether such an H can even exist, since 
(VI.96) says that the k-cycle zk must also be a k-boundary, namely, the boundary of the 
k+1-chain Hzk ; that is, zk must be homologous to zero.  If H is to be defined on all k-
cycles then one must have that they are all k-boundaries; i.e., Hk(Σ) must be trivial. 

                                                
 29 For the basic definitions in homology, see Vick, Rotman, or Greenberg, as cited in Chap. II.  The 
representation in terms of differential forms is given in de Rham[15] or Bott and Tu, also cited in Chap. II. 
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 We can represent this situation in de Rham homology, which pertains directly to 
static electric and magnetic fields.  Now, we represent a chain contraction by a map H: Λk 
→ Λk+1 such that: 

δH + Hδ = I.     (VI.97) 
 

 When applied to a k-cycle A this becomes: 
 

δHA = A,     (VI.98) 
 

which is to say that H is a right-inverse for the linear differential operator δ. 
 A local representation for the operator H can be defined about any point x0 ∈ M that 
is associated with a coordinate chart (U, xµ), which is associated with a radius vector field 
r : 

r(x) = xµ(x)
xµ
∂

∂
.    (VI.99) 

 

This vector field vanishes at the point x0 , which corresponds to the origin in Rn under the 

coordinate map. 
 By means of this vector field, one can define a differentiable curve x(λ) from x0 to 
any other x ∈ U by means of λr(x), where λ ∈ [0, 1], and we abbreviate the expression 
λr(x) to simply λx.  If we are given an arbitrary k-vector field A ∈ Λk then we can define 
a k+1-vector field along this curve by way of erA(λr) = r  ^ A(λr) and a k+1-vector-
valued 1-form λk−1 r  ^ A(λr) dλ.  By integration along the curve, this gives a k+1-vector 
at x: 

HA(x) =
1 1

0
( )k x dλ λ λ− ∧∫ r A .    (VI.100) 

 
 As for the exterior derivative operator d: Λk  → Λk+1, a cochain contraction operator 
for it will take the form H′ : Λk+1 → Λk such that: 
 

dH′ + H′d = I.     (VI.101) 
 
 Since the operator d is the transpose to the operator δ, the operator H′ is the transpose 
to the operator H above.  All that is actually necessary for the construction of H is to 
replace the operator er with its transpose ir.  Hence, if α ∈ Λk+1(U) then we can define a 
k-form by means of irα, and for every curve of the form x(l) we can then define a 1-form 
with values in Λk(U) out of λk irαλx dλ .  We then obtain our desired k-form H′α by 
integration: 

H′αx =
1

0

k
xi dλλ α λ∫ r .    (VI.102) 

 
 Although we have constructed integral operators that represent right-inverses to the 
divergence and exterior derivative operators, nevertheless, we can see that they are not 
presented in a form that would suggest a Green function for a kernel.  For one thing, we 
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are not integrating over M itself.  In order to define such Green functions, one generally 
needs to look at specific problems, such as radially-symmetric solutions, which we shall 
do in the next chapter, since we are getting back into the realm of traditional 
electromagnetism. 
 
 
 8. Fourier transforms [14, 16, 17, 21, 22].  Obviously, since entire books have 
been written on just the subject of Fourier analysis, not to mention its applications to 
physics, we cannot hope to make a very far-reaching discussion of it in a single section of 
a chapter.  However, since the ultimate objective of this book is to examine the aspects of 
electromagnetism that have a pre-metric character to them, we cannot avoid some 
discussion of Fourier analysis as it relates to such considerations. 
 
 a.  Linear theory.  Although sometimes Fourier transforms are defined in terms of 
scalar products, nevertheless, upon closer inspection one finds that as long as one regards 
a wave vector k as a covector the real issue is not one of scalar products but bilinear 
pairings of vectors and covectors.  The scalar product then makes its first appearance in 
the context of the inner product on the function space in question. 
 Just to make the discussion more specific, let us first examine the usual Fourier 
transform for a complex function f on an n-dimensional vector space V: 
 

ˆ ( )f k = Ff[k] = ( ) ( )ik x

V
e f x−
∫ V .   (VI.103) 

 

In this definition, k ∈ V*, so f̂  − or Ff – is a complex function on V*, and V is the 

volume element for V. 
 Following Duistermaat [21], we restrict ourselves to complex functions in the 
Schwartz spaces S and S′, which consist of complex functions on V and V*, respectively, 

that satisfy the constraint that the local functions xα(∂βf / ∂xβ) [kα( ˆ /f kβ
β∂ ∂ ), resp.] are 

bounded for all multi-indices α, β.  (A multi-index is a notation for abbreviating elaborate 
algebraic expressions, as one often encounters in multivariable analysis.  In the former 
expression, xα means a product 1 2 kx x xαα α

⋯ while ∂βf / ∂xβ refers to the mixed partial 
derivative of f(x1, …, xn) with respect to the multi-indexed variables, and analogously for 
the expressions in k and f̂ .)  The motivation for this constraint is to be found in the 
extension of Fourier transforms to distributions, namely, that it is not enough to be 
dealing with smooth functions of compact support, but one must restrict oneself to 
“tempered” distributions. 
 One then finds that the Fourier transform can be regarded as a linear isomorphism 
F: S → S′, f f̂֏ , whose inverse transform is: 

 

 1 ˆ[ ]f x−
F = ( )1 ˆ ( )

(2 )
ik x

kn V
e f k

π ∗∫ V ;   (VI.104) 

 
this time Vk is the volume element on V*. 
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 There are various ways of interpreting the preceding constructions in terms of other 
mathematical concepts.  For instance, one can think of the set B = {e−ik(x) | k ∈ V*} as an 
uncountable basis for the vector space S, and similarly, the set B′ = {eik(x) | x ∈ V} defines 

an uncountable basis for S′.  If one restricts the function f to some compact subset of V 

then the former basis can be reduced to a countable one. 
 The integrals: 
 

<f, g> = ( ) ( )
V

f x g x∫ V , ˆ ˆ,f g< > =
1 ˆ ˆ( ) ( )

(2 ) kn V
f k g k

π ∗∫ V  (VI.105) 

 
then define inner products on S and S′ that make them into Hilbert spaces.  One of the 

forms that Parseval’s identity takes is to say that the map F is also an isometry; i.e.: 

 
<f, g> = ˆ ˆ,f g< > .    (VI.106) 

 
 The integrands in the right-hand sides of (VI.103) and (VI.104) then represent the 
orthogonal projections of f ( f̂ , resp.) onto the orthonormal bases that are defined by the 

sets B and B′ , while the integrals themselves represent the orthogonal decompositions of 

f ( f̂ , resp.) with respect to the bases. 

 In this way of regarding Fourier transforms, the function f̂ is considered to be the 
spectral density of the function f.  In effect, it gives the probability density function 
(when suitably normalized) for the spectrum of wave numbers that contribute to the 
orthogonal decomposition of f. 
 One can also regard F as an integral operator whose kernel K(k, x) is the complex 

function K on V* ×V: 
K(k, x) = e−ik(x) .    (VI.107) 

 

The kernel of F−1 is then simply ( , )K k x . 

 One finds that the Fourier transform of ∂f / ∂xi is iki f̂ .  Hence, one can think of the 

linear operator on S′ that is defined by multiplication by iki as the Fourier transform of 

the operator of partial differentiation by xi on S. 
 This can be extended to linear differential operators with constant coefficients.  
Suppose the operator in question is D = aα ∂α / ∂xα and it has order m.  It Fourier 
transform – or symbol − is then the generally inhomogeneous polynomial of degree m in 
k: 

F[D](k) = aα(ikα).    (VI.108) 
 
 The homogeneous polynomial σ[D, k] of degree m in k that represents the highest-
degree terms in the symbol is called the principal symbol.  It agrees with the more 
abstract definition that we cited above, except for the factor of i before k. 
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 One can find the Green function for the linear differential operator D when it has 
constant coefficients by means of the Fourier transform.  However, one must take into 
account that the Fourier transform of the distributional equation DG = − δ is 

F[D](k) ˆ ( )G k = 1.  Hence, one can solve for the Fourier transform of the desired Green 

function: 

ˆ ( )G k =
1

[ ]( )D kF
.    (VI.109) 

 
 If one then takes the inverse Fourier transform, one obtains the Green function in the 
form: 

G(x, y) = G(x – y) =
( )1

(2 ) [ ]( )

ik

kn V

e

F D kπ ∗

−

∫
x y

V .  (VI.110) 

 
 One sees that the assumption that the coefficients of D are constant in space, which 
already implies some sort of affine structure in order to define homogeneity, manifests 
itself in the fact that the function G must also be translation invariant.  This is yet another 
fundamental limitation on the use of the Fourier transform in the eyes of the extension 
from vector spaces to manifolds. 
 Clearly, there will also be analytical problems with the convergence of the integral 
when the symbol of D has real roots k.  Customarily, physics deals with such poles in the 
integrand of (VI.110) by analytically continuing the integrand to a complex function and 
replacing the real integrations by complex ones along contours that avoid the poles.  
However, this generally alters the character of the resulting Green function accordingly. 
 Since the linear differential operator with constant coefficients D is associated with a 
polynomial F[D](k) of finite degree, one can envision a generalization of the integral 
operator G that involves replacing F[D](k) with a more general function σ[P, k] on V*; at 
the very least, one might extend to non-constant coefficients.  One might also assume that 
σ[P, k] is assumed to be analytic in k, which is like generalizing from finite degree 
polynomials to infinite degree ones, and if it is smooth, then one is generalizing to formal 
power series expansions in k. 
 The resulting integral operator P: S → S that is associated with the symbol σ[P, k] 

and kernel (VI.110) is then called a pseudo-differential operator.  It then takes the 
general form: 

Pf(x) =
( )1

( )
(2 ) [ , ]

ik x y

y kn V V

e
f y

P kπ σ∗

−

×∫ V V .   (VI.111) 

 
Actually, the concept of a Fourier integral operator can be generalized in such a way that 
a pseudo-differential operator is a special case of it (cf., Duistermaat [21]). 
 
 b.  Nonlinear extensions.  The first point at which one might wish to generalize the 
foregoing discussion is to adapt it to the demands of spatial or spacetime manifolds that 
are not vector spaces.  However, one finds that it is not enough to simply replace V with a 
more general n-dimensional differentiable manifold M. 
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 For one thing, although it is conceivable that one could generalize S to a Schwartz 

space of complex functions on M, nonetheless, when M is not a vector space it is absurd 
to speak of its dual space.  However, one does have vector spaces at each point of M in 
the form of tangent and cotangent spaces.  This means that wave covector k must be 
associated with some specified point x∈M, or perhaps a covector field on M, as opposed 
to its definition in the linear case, which is independent of x ∈ V. 
 When one considers the expression k(x) = ki x

i one sees that when x does not belong 

to a linear space one must consider a more general phase function θ: M → R.  We assume 

that θ is analytic, or at least locally approximated by a finite-degree Taylor polynomial 
about each point of M: 

θ(xi) = θ0 + dθ|0(x
i) + O2(xi).   (VI.112) 

 
 Hence, since the initial phase θ0 is essentially arbitrary, and can be neglected, we see 
that our previous phase function k(x) represents the leading term of this series; i.e.: 
 

k = dθ.     (VI.113) 
 
 If we substitute e−iθ(x) for the exponential in the Fourier transform then we obtain: 
 

F′f[k] =
2( ) ( ) ( )ik x i x

M
e e f x− − 

 ∫
O

V  = Ff′ [k],   (VI.114) 

where: 

f′ (x) = 
2 ( ) ( )i xe f x− O .    (VI.115) 

 
That is, we have deformed the function that is being transformed with the higher-degree 
terms of the phase function. 
 Another reasonable assumption concerning the generalization of Fourier transforms 
from vector spaces to manifolds is that the space V ×V* will undoubtedly be replaced by 
the cotangent bundle T*M, which looks like the latter vector space in any local 
trivialization. 
 Considerable progress has been made towards using the geometry of the cotangent 
bundle, especial its symplectic structure, to facilitate the generalization of Fourier 
integral operators, which take the form: 
 

Af(x) = ( , , ) ( , , ) ( )i x y k
y kV V

e a x y k f yφ
∗×∫ V V   (VI.116) 

 
in the case where M is a vector space V.  The function φ is a generalized phase function, 
which is assumed to be homogeneous of degree one in k, while the function a is a 
generalized amplitude function. 
 Of particular interest is the way that such expressions relate to asymptotic expansions, 
such as when a is a sum of terms aj , j = 0, 1, … that are homogeneous of positive degree 
µ – j, where µ is then called the order of the operator A, and go to zero asymptotically as 
some parameter, such as wave number or frequency, goes arbitrarily large.  Such 
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asymptotic expansions play a fundamental role in not only the extension of geometrical 
optics into diffraction phenomena, but quantum wave mechanics, as well. 
 Of course, we are rapidly going beyond the scope of the present discussion, so we 
simply refer the curious reader to the literature cited at the beginning of this section. 
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Chapter VII 
 
 

The interaction of fields and currents 
 

 One can argue that there is always something solipsistic about any discussion of free 
field solutions to field equations, since the only way that one knows about the very 
existence of a field in a region of spacetime is by its interaction with other physical 
phenomena, often in the form of the motion of matter.  However, this illustrates one of 
the subtle distinctions between linear field theories and nonlinear ones, since in a linear 
field theory as long as both fields that are present are solutions to the same field equations 
their combined field, which is obtained by summation, is also a solution, so the space of 
solutions is sufficiently rich to include combinations of fields.  By contrast, if the field 
equations are nonlinear then there is no guarantee that the sum of two fields will still be a 
solution.  However, this is not merely a technical nuisance, but also a statement about the 
nature of field interactions, since in the context of electromagnetic wave solutions linear 
superposition gives interference in the region of overlap without lasting changes to the 
fields, while nonlinear superposition can bring about lasting alterations to the form of the 
interacting waves, such as photon splitting. 
 Therefore, the purpose of this chapter will be to briefly explore the nature of the 
interactions between electromagnetic fields and electric currents, which can take the form 
of either the sources of electromagnetic fields or currents external to other fields.  One 
sees that there are basically four possible pairings to consider: current → field, field  → 
current, field → field, current → current, where the arrow suggests a cause-and-effect 
relationship. 
 In the first case, one must consider the way that source charges and currents generate 
electromagnetic fields.  One sees that in the rest frame of the measurer/observer there are 
three distinct types of fields that couple to the successive terms in the kinematical state of 
a charge distribution that is moving relative to the measurement devices:  Electrostatic 
fields couple to the relative position, magnetic fields couple to the relative velocity, and 
radiation fields couple to the relative acceleration. 
 Conversely, electromagnetic fields affect currents mostly by exerting forces on the 
currents.  The simplest force to consider, beyond the electrostatic force, is the Lorentz 
force, which couples to the velocity.  However, it is in attempting to account for the 
effects of radiation that one finds that the theory itself becomes questionable.  The 
problem seems to be in the fact that the way that the acceleration of a moving charge in 
an electromagnetic field couples to that field is by way of its radiation reaction – or 
radiation damping – which actually produces a third-order system of ordinary differential 
equations for the motion of a point charge in an electromagnetic field, namely, the 
Lorentz-Dirac equation.  This system admits various unphysical solutions that make one 
suspicious about whether the equations are more heuristic than definitive. 
 As mentioned above, the interaction of electromagnetic fields themselves has a very 
different character depending upon whether one considers linear constitutive laws or 
nonlinear ones.  It is in the phenomena of nonlinear optics and quantum electrodynamics 
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that one can gain some intuition as to the best way to proceed into the nonlinear realm of 
electromagnetism. 
 Finally, one can consider that two currents can interact in various ways.  The simplest 
way, beyond the electrostatic interaction of their charge distributions, is due to the fact 
that one current produces a magnetic field that exerts a force on the other current, and 
vice versa.  The result is a mutual magnetostatic force of attraction and repulsion between 
currents that basically has the opposite sign to the electrostatic one; i.e., like currents 
attract and unlike ones repel.  This sort of static “action-at-a-distance” is, of course, a 
non-relativistic oversimplification of a more involved interaction picture in which the 
currents can only propagate electromagnetic waves that effect the interaction in a more 
causal way. 
 
 
 1. Construction of fields from sources.  The most elementary, if not the most 
fundamental, interaction between fields and sources is the one that amounts to the 
statement that a field source must generate a field, in some sense.  Here again, one can 
distinguish the problem of the generation of static fields from the generation of dynamic 
fields since it will affect the type of boundary/initial-value problems that one can pose. 
 Generally, the association of a field φ with its source ρ follows from the solution of 
the inhomogeneous system of partial differential equations Dφ = ρ, where D is a 
differential operator.  One is basically looking for a left inverse operator D−1 for D that 
makes φ = D−1ρ.  Since a left inverse is not generally unique, one must then narrow down 
the set of possibilities by imposing boundary/initial-value conditions.  Furthermore, the 
source ρ must satisfy the integrability condition that it lie in the image of D. 
 Hence, one can immediately distinguish the problem of generating fields in linear 
media from generating ones in nonlinear media. 
 In the case of linear partial differential equations, such as δh = J, the association of a 

field with a source by the method of Green functions is preferred.  When the manifold in 
which the fields live is an affine space, or possibly a more general homogeneous space, 
such as a sphere, the method of the Fourier transform is also very powerful. 
 
 a.  Static fields. The linear differential operators that are most fundamental in 
electrostatics and magnetostatics are basically the exterior derivative operator d and the 
divergence operator δ.  One can absorb the constitutive law into the divergence operator 
so that one has two first-order differential equations in a single field – viz., E or H.  If one 
assumes the existence of a potential – whether local or global – then one can further 
reduce the system to a single second-order differential equation in the potential. 
 In the electrostatic case, the basic problem to be solved is the inhomogeneous partial 
differential equation δD = ρ, for D = ε(E), along with the constraint on E that dE = 0.  
One can define a pair of equations for E: 
 

dE = 0,  δεΕ = δ⋅ ε(E) = ρ.   (VII.1) 
  
Hence, the solution E to this pair of equations will involve an operator Gε : Λ0 → Λ1 such 
that: 
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E = Gε ρ = (ε−1 ⋅ Gδ)ρ,     (VII.2) 
 
where Gδ is a right-inverse to d. 
 When ε is linear, so is δε , as well as Gε , and as an integral operator it will have a 
Green function Gε (x, y) for its kernel that satisfies the distributional equations: 
 

dGε (x, y)  = 0,  δε Gε (x, y) = − δ(x, y).   (VII.3) 
 
However, actually solving this equation for Gε (x, y) is simply a special case of solving 
the inhomogeneous problem by assuming that ρ represents essentially a point source of 
unit charge. 
 If the constitutive law ε is not only linear, but homogeneous, which naturally assumes 
that the spatial manifold Σ is an affine space, then we can use the Fourier transform to 
solve for Gε (x, y) = Gε (x − y).  The Fourier-transformed equations that one obtains from 
(VII.3) are: 

k ^ ˆ ( )G kε = 0,  ik [ε( ˆ ( )G kε )] = − i .   (VII.4) 

 
 The first one can be solved, up to multiplication by a scalar function α(k), in the 
form: 

ˆ ( )G kε = α(k)k.     (VII.5) 

 
Substituting this in the second one gives: 
 

α(k) ε(k, k) = − i ,    (VII.6) 
 
which allows us to solve for α(k); in this expression ε(k, k) = εij ki kj represents the 
quadratic form that e defines on k.  We then find our fundamental solution in k-space to 
be: 

ˆ ( )G kε =
( , )

ik

k kε
−

.    (VII.7) 

 
 The inverse Fourier transform of this is: 
 

Gε(x) =
3

( )
3(2 ) ( , )

ik x
k

i k
e

k kπ ε∗

−
∫ℝ V .   (VII.8) 

 
 When ε is the Euclidian scalar product, we know that taking the inverse Fourier 
transform will give the usual Coulomb law expression for the Green function.  However, 
since ε is symmetric, non-degenerate, and positive-definite, one can just as well use ε in 
place of the Euclidian scalar product as long as one regards the expression εij ki kj as 
simply the form that it takes in a non-orthonormal frame. 
 As far as physics is concerned, there is another problem with using ε as a metric: it 
still has the units of electric permittivity.  Hence, we normalize it to a dimensionless 
metric: 
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gε  = (det ε)−1/3 ε,    (VII.9) 
so we can set: 

ε(k,k) = (det ε)1/3 gε (k,k),  k(x) = gε(k, x),  x ≡ ( )gε xɶ . (VII.10) 

 
 This puts the k-space Green function (VII.7) into the form: 
 

ˆ ( )G kε =
1/3

1

(det ) ( , )

ik

g k kεε
−

,    (VII.11) 

and the integral (VII.8) into the form: 
 

Gε(x) =
3

( , )
3 1/3(2 ) (det ) ( , )

ig k x
k

i k
e

g k k
ε

επ ε ∗

−
∫ℝ V .   (VII.12) 

 
 The integrand now takes the standard Euclidian form that makes the spatial Green 
function: 

Gε,i(x) =
1/3 3/2

( )1

4 (det ) [ ( , )]

g

g
ε

επ ε
x

x x

ɶ

ɶ
=

3/2

1 ( )

4 [ ( , )]gε

ε
π

x
x x

ɶ

ɶ
;  (VII.13) 

 
the tilde on the gε signifies that we are dealing the inverse metric on T(Σ) to the one that 
gε  defines on T*Σ. 
 One immediately verifies that when the medium is isotropic, as well as linear and 
homogeneous, so one has: 
 

 εij = ε δij,  εij = 1/ε δij,  det ε = ε3/2,   (VII.14) 
 
the form that the Green function takes is: 
 

Gε,i(x) = 3/2

1

4 || ||
ix

xπε
,    (VII.15) 

 
in which one uses the Euclidian components δij for the scalar product. 
 Given Gε(x), one obtains E by convolving Gε with ρ: 
 
   E(x) =

supp 
( ) ( ) yGερ

ρ−∫ x y y V  

= 1
3/2supp 

1 ( )
( )

4 [ ( , )] ygρ
ε

ρε
π

−  
− − − 

∫
y

x y
x y x yɶ

V . (VII.16) 

 
Note that the expression inside the brackets is nothing but the vector field D(x). 
 In the case of a linear, isotropic, homogeneous electrostatic medium with a point 
charge Q at the origin for a source one then arrives at Coulomb’s law: 
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D(x) = 
2

ˆ
4

Q

rπ
r , E(x) =

2

1
ˆ

4

Q
r

rπε
.   (VII.17) 

with: 

 r2 = x2 + y2 + z2,  r̂ =
i

i

x

r
∂ .   (VII.18) 

 
 The basic potential equation for electrostatics is ∆εφ = ρ, with ∆ε  = δ ⋅ ε ⋅ d: Λ0 → Λ0.  
When ε is linear, its symbol is the function: 
 

σ[∆ε ; k] = ik ⋅ ε ⋅ ek = ε(k, k).    (VII.19) 
 
Since ε is assumed to be positive definite, this function is always non-zero when k is non-
zero. 
 When the medium is electrically homogeneous, the Fourier transform for the Green 
function for ∆ε  is then: 

ˆ ( )G kε∆ =
( , )

i

k kε
−

=
1/3

1

(det ) ( , )

i

g k kεε
−

.   (VII.20) 

 
 Taking the inverse Fourier transform gives: 
 

G∆ε(x) =
1/3 1/ 2

1

4 (det ) [ ( , )]gεπ ε x xɶ
,   (VII.21) 

 
and in a linear, homogeneous medium that is isotropic, as well, this takes the Coulomb 
form: 

G∆ε(x) =
1

4 || ||πε x
.    (VII.22) 

 
 The solution to the inhomogeneous potential problem for a source charge density ρ in 
an electrostatically linear and homogeneous medium is then obtained by convolution: 
 

φ(x) =
1/3 1/2supp( )

1 ( )

4 (det ) [ ( , )] ygρ
ε

ρ
π ε − −∫

y
x y x yɶ

V . (VII.23) 

 
 In magnetostatics, the corresponding equations for the magnetic field B are: 
 

dB = 0,  δH = I,  H = µɶ (B),  (VII.24) 
 
which can be consolidated into: 

dB = 0,  δ ⋅ µɶ (B) = I .   (VII.25) 
 
The integrability condition for the source current I  is then: 
 



The interaction of fields and sources                                              185 

δI  = 0,     (VII.26) 
 
which also represents conservation of charge. 
 Now, let us examine the Fourier-transforms of equations (VII.25) in the linear 
homogeneous case: 

k ^ ˆ( )B k = 0,  ik ⋅ ˆ( )Bµɶ  = − i ˆ( )kI .  (VII.27) 
 
 One can solve the first one by means of: 
 

ˆ( )B k = k ^ ˆ( )A k ,    (VII.28) 
 

in which ˆ( )A k ∈ Λ1(R3*) is some 1-form on R3*, which we shall see in a bit represents the 

Fourier transform of a covector potential for B.  Hence,ˆ( )B k can only lie in a 2-

dimensional subspace of 2 3( )k
∗Λ ℝ at each k ∈ R3*, namely, the image of 1 3( )k

∗Λ ℝ under 

ek.  This subspace gets mapped isomorphically to a two-dimensional subspace of 

Λ2,k(R
3*) underµɶ . 

 When we attempt to solve the second equation in (VII.27) for ˆ( )B k we are 
immediately obstructed by the fact that the map ik is not invertible.  However, it does 

behave somewhat like a projection of the fibers of Λ2(R
3*) onto two-dimensional 

subspaces of the fibers of Λ1(R
3*) at each k ∈ R3*.  Hence, if we restrict ̂( )kI to these 

subspaces we can define a left-inverse to ik in the form of ek, where k is a vector field 
such that k(k) = 1.  This defines two problems: how to characterize the subspaces in 

Λ1(R
3*) and how to define the vector field k. 

 The solution to the first problem follows immediately from the fact that ik ⋅ ik = 0, 

namely, ˆ( )kI  must lie in the kernel of ik .  However, this follows naturally from the 
conservation of charge constraint on I , namely, (VII.26), which leads to the Fourier-

transformed constraint on ˆ( )kI that it must lie in the hyperplane defined by: 
 

0 = ˆ
ki I = ˆi

ik I .     (VII.29) 

 
 In order to solve the second problem, we must confront another subtle distinction 
between the magnetostatic case and the previous electrostatic one that is also related to 
the fact that we are dealing with bivector fields and 2-forms. It is the fact that the 
magnetic constitutive law µ: Λ2 → Λ2 not only “goes backwards,” but it also most 
naturally defines a scalar product on either Λ2 or Λ2

 : 
 

µ(A, B) = µ(A)(B), ( , )A Bµɶ ≡ ( )( )A Bµɶ .  (VII.30) 
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 What we ultimately need, though, is a scalar product on Λ1 or Λ1.  The solution to this 
problem is simply to use Poincaré duality to define the isomorphism: 
 

# ⋅ µ ⋅  #: Λ1 → Λ1, 
 
which then defines scalar products on the tangent and cotangent bundles, as desired.  At 
the risk of confusion, we denote them by the same letters that we used for the scalar 
products that µ defines directly. 
 Furthermore, we need to normalize the resulting metric to be dimensionless: 
 

gµ = (det µ)−1/3 µ .    (VII.31) 
 
In order to make k(k) = 1, we then divide k by gµ(k, k). 
 We find that the vector field k can be obtained from the covector field k by mapping k 
to a vector field using the normalized form of µ: 
 

k = gµ(k),     (VII.32) 
which then makes: 

k(k) = gµ(k, k).     (VII.33) 
 

 We can then solve the second equation in (VII.27) for ˆ( )B k : 
 

ˆ( )B k = − i µ ⋅ 
( , )

e

g k kµ

k ⋅ ˆ( )kI =  − i
1 ˆ( )
( , )

k
g k kµ

µ
 

∧ 
  

k I .  (VII.34) 

 
 We then obtain the k-space Green function: 
 

ˆ ( )G kµ = ( )
( , )

i

g k kµ

µ−
k ,   (VII.35) 

which is analogous to (VII.11). 
 Its inverse Fourier transform is: 
 

Gµ(x) =
3/2

1 1
( )

4 [ ( , )]gµ

µ
π

x
x xɶ

,  (VII.36) 

 
and the form that it takes in a magnetically isotropic medium is: 
 

Gµ,i(x) = 3/ 24 || ||
ixµ

π x
.    (VII.37) 

 
 If we express the integral operator whose kernel is Gµ(r) in the form: 
: 
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B(x) = 
supp 

( ) ( ) yGµ − ∧∫ I
x y I y V    (VII.38) 

 
then the solution for B that corresponds to (VII.16) is: 
 

B(x) = µ(H) =
3/2supp 

1 1
( ) ( )

4 [ ( , )] ygµ

µ
π

 
− ∧ − −  

∫ I
x y I y

x y x yɶ
V . (VII.39) 

 
 In the case of a magnetically isotropic medium, this solution takes the form of the 
Biot-Savart law: 

B(x) = 3supp 

1
( ) ( )

4 || || yx y I
µ
π

− ∧
−∫ I

y
x y

V ,  (VII.40) 

 
in which x, y, and I denote the covector fields that correspond to the vector fields x, y, 
and I  under the isomorphism that is defined by the Euclidian scalar product. 
 As for the magnetostatic potential problem ∆µ A = I , the analogy with electrostatics is 
also imprecise, since the magnetic Laplacian ∆µ = δ ⋅ µɶ  ⋅ d: Λ1 → Λ1 has a symbol: 
 

 σ[∆µ, k] = ik ⋅ µɶ  ⋅ ek ,    (VII.41) 
 

that is not invertible.  Not only does ik: Λ2(R
3*) → Λ1(R

3*) define a projection onto a two-

dimensional subspace of Λ1(R
3*), but the kernel of the map ek: Λ1(R3*) → Λ2(R3*) is one-

dimensional, namely, the line [k] in Λ1(R3*) that is generated by k. 

 This is where a choice of gauge for the potential 1-form A is useful.  If one imposes a 
generalized Coulomb condition on A: 
 

δ ⋅ µ(A) = 0     (VII.42) 
 

then the corresponding constraint on the Fourier transformˆ( )A k of A is: 
 

0 = ikµ( Â ) = µ(k, Â ).    (VII.43) 
 

 That is,Â  is confined to the orthogonal complement to [k].  When σ[∆µ, k] is 

restricted to this subspace of the domain space Λ1(R3*) and its image in the range space 

Λ1(R
3*) one finds that it is invertible.  Of course, this also means that the Fourier 

transform Î  of the current can only lie in the image, but that is a natural consequence of 
the conservation of charge, as before. 
 One finds that the inverse of σ[∆µ , k] then takes the form: 
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σ[∆µ, k]−1 =  − ˆ ( )G kµ = ik ⋅ µ ⋅ ek =
1

( , )g k kµ

µ ;  (VII.44) 

hence: 

ˆ ( )G kµ = − 1

( , )g k kµ

µ .    (VII.45) 

 
 In a magnetically homogeneous medium this takes the component form: 
 

ˆ ( )G kε∆ =
2 ijk

µ δ .    (VII.46) 

 
 The inverse Fourier transform of (VII.45) then becomes: 
 

G∆ε(x) =
1/2

1 1

4 [ ( , )]gµ

µ
π x xɶ

.   (VII.47) 

 
 In a magnetically isotropic medium, we then have: 
 

G∆ε(x) =
4 || || ij

µ δ
π x

.    (VII.48) 

 
 The covector potential A(x) that is produced by a source current density I  is then: 
 

Α(x) =
1/2supp( )

1 ( )

4 [ ( , )] ygρ
µ

µ
π

 
 − −  

∫
I y

x y x yɶ
V .  (VII.49) 

 
 One should compare the expressions that we have derived here with the 
corresponding ones in – say − Jackson [1] to see how much vector calculus takes for 
granted as a consequence of dealing with a three-dimensional Euclidian space.  For 
instance, it regards vectors, covectors, bivectors, and 2-forms as essentially the same, 
since one has isomorphisms of all four spaces.  As we saw, just dropping the assumption 
that the Euclidian structure is purely geometric in origin makes it necessary to reevaluate 
all of these isomorphisms. 
 
 b.  Dynamic fields.  In the case of dynamic fields, we must use the spacetime 
manifold M in place of the spatial manifold Σ and a source current density J on M in 
place of ρ or I . 
 However, the inhomogeneous problem that one poses for a given source current J is 
still essentially the same: one must solve the partial differential equations: 
 

dF = 0,  δκF = δ ⋅ κ(F) = J    (VII.50) 
 
for F, with the integrability condition for J that: 
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δJ = 0,      (VII.51) 
 
which still represents conservation of charge. 
 On the surface of things, this problem is no different from the one that we defined 
above for magnetostatics.  However, we shall see that the previous logic breaks down at a 
crucial point. 
 The Fourier-transformed equations that one obtains when κ is linear and 
homogeneous are: 

k ^ F̂ = 0,  ik ⋅ κ( F̂ ) = − i Ĵ .  (VII.52) 
 

 The solution to the first equation still takes the form: 
 

F̂ = k ^ Â      (VII.53) 
 
for a suitable 1-form̂A .  Hence, F̂ must lie in a three-dimensional subspace of the fiber 

of Λ2(R4*) at each point, and it gets mapped to a three-dimensional subspace in Λ2(R
4*). 

 Once again, ik not invertible unless we restrict ourselves to a hyperspace in Λ1(R
4*) 

that that takes the form of the kernel of ik: Λ1(R
4*) → Λ0(R

4*).  This again comes from 

the integrability condition on J that charge be conserved: 
 

0 = ˆ ( )ki kJ .     (VII.54) 

 
One can then invert ik when restricted to this subspace by means of ek when k is a vector 
field with k(k) = 1. 
 However, this is where things break down compared to the three-dimensional 
magnetostatic case.  Basically, Poincaré duality no longer takes vector fields to 2-forms, 
but to 3-forms; similarly, it now takes bivector fields to 2-forms, not 1-forms.  Hence, we 

can no longer use the # isomorphism to associate a scalar product on Λ1(R4*) with the 

scalar product on Λ2(R4*) that is defined by κ, and we will have to find some other way 

of obtaining k. 
 A further complication arises when one considers the inhomogeneous potential 
problem for a dynamic field, which is defined by substituting F = dA in the field equation 
for F to give κ□ A = J, where κ□ = δ ⋅ κ ⋅ d: Λ1 → Λ1 is the field operator for κ. 

 In the linear case, its symbol is: 
 

 σ[ κ□ , k] = ik ⋅ κ ⋅ ek  = Q(k, k).   (VII.55) 

 
 One finds that, in addition to the aforementioned restrictions, one must contend with 
the fact that if Q(k, k) is to behave like a generalization of the Lorentzian dispersion law 

then it will vanish not just at the origin, but on an algebraic hypersurface in Λ1(R4*). 
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 Since this is the starting point for any discussion of electromagnetic wave motion and 
the ultimate appearance of a Lorentzian structure as a consequence of the pre-metric 
electromagnetic structure of spacetime – i.e., its constitutive law and field equations – we 
shall simply return to the topic in the next chapter of this book. 
 
 c. Electromagnetic radiation.  We pause to observe that each of the successive terms 
in the kinematical state of a relatively moving electric charge distribution ρ(t, xi) seems to 
be associated with its own special field.  The relative position of the points of the 
distribution generates the electrostatic field and the relative velocity generates a magnetic 
field; if the relative velocity is “constant in time” then this magnetic field is static, as 
well. 
 Since historically the rigorous geometrical treatment of the concept of acceleration 
for motion in manifolds that have no natural affine structure opened up the subtleties of 
general relativity, and the consequent representation of gravity as a sort of “fictitious 
force,” it is not surprising that one of the most debatable extensions of Maxwellian 
electromagnetism regards the manner by which the relative acceleration of an electric 
charge distribution is associated with an electromagnetic field. 
 It is generally agreed that the electromagnetic field that is generated by a relative 
acceleration is a radiation field, which implies, among other things, that it will be a 
wavelike solution of the field equations.  It is not, however, generally agreed that such a 
radiation field will be observed by a comoving measure-observer; e.g., a static electron 
observed in a freely-falling laboratory.  Basically, the issue is that of the relativity of 
acceleration, which leads into the study of conformal Lorentzian geometry, since the 
transformations between frames that differ by a constant relative acceleration is related to 
a composition of translations and inversions.  Although the former class of 
transformations is contained in Poincaré group, the latter class is not.  Inversions are 
more projective-geometric in character, and relate to the conformal Lorentz group. 
 Although we shall make a more complete discussion of electromagnetic waves in the 
next chapter, including the manner by which a Lorentzian structure might emerge from 
the electromagnetic field equations, for now, we provisionally revert to the metric 
formulation of the Maxwell equations, namely: 
 

dF = 0,  δF = J,     (VII.56) 
 
in which δ is the codifferential operator that is associated with the Hodge dual 
isomorphism *, which is defined using a Lorentzian metric g on the T(M), and the 1-form 
J is associated with the source current density J by way of g; i.e.: 
 

 J = iJg = (gµνJ
ν) dxµ.     (VII.57) 

 
 If we take the codifferential of both sides of the first equation in (VII.56) and the 
exterior derivative of the second one then the result is: 
 

F□ = dJ,     (VII.58) 
 
in which □= δd + dδ is the d’Alembertian operator for g. 
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 Equation (VII.58) represents a forced linear wave equation for the 2-form F with a 
source term that consists of the 2-form dJ.  Its solution will then have a different 
character from an electromagnetic field that has J for its source, and we refer to a solution 
Frad to (VII.58) as a radiation field. 
 In order to get a better physical intuition for the nature of the forcing term, we assume 
that J takes the form ρu, where ρ is an electric charge density function and u = uµ dxµ is 
its associated covelocity 1-form; both ρ and u are assumed to have the same spatially 
compact support.  One sees that: 
 

dJ = dρ ^ u + ρ du.    (VII.59) 
 
 Hence, there are two essentially distinct sources of radiation fields: the non-constancy 
of ρ over its support and the “kinematical vorticity” du of its flow.  In time + space form, 
du looks like: 

du =  − dt ^ a − ω = − dt ^ a − #s    ωωωω.   (VII.60) 
 

in which the 1-form a and the 2-form ω have the local component forms: 
 

a = (ui, 0 – u0, i) dxi,  ω = 1
2 (ui, j – uj, i) dxi ^ dxj . (VII.61) 

 
 The 1-form a amounts to the spatial acceleration of the distribution ρ, with a 
correction for the spatial gradient of the Fitzgerald-Lorentz factor, which reverts to the 
spatial gradient of the spatial speed v = || us ||.  The 2-form ω defines the spatial vorticity 
of the covelocity u, which is essentially the curl of the spatial velocity vector field v. 
 If one has a Green function for the operator □ , which we now represent as G(x, y) ∈ 
Λ2 ⊗ Λ2, then the volume potential term in (VI.88) can be given the form: 
 

Frad(x) = ( , ) ( )
M

G x y dJ y∧∫ =
supp( )

( , ) ( )
J

G x y dJ y∧∫ . (VII.62) 

 
 We can then substitute from (VII.59) and (VII.60) to express Frad as the sum of three 
contributions: 

   Frad(x) = 
supp( )

( , ) ( )( )
J

G x y d u yρ∧ ∧∫  

 
supp( ) supp( )

( , ) ( )( ) ( , ) ( )
J J

G x y dt a y G x y yω− ∧ ∧ − ∧∫ ∫ . (VII.63) 

 
 It is important to point out that when one gets into the realm of interactions that must 
be moderated by the exchange of dynamic fields, such as photons, that move with finite 
speeds one must restrict the Green function accordingly.  That is, the support of G must 
be causal, which usually means that it can only be a subset of the past light cone at each 
point.  We shall not elaborate at the moment, as the theory of radiation, especially when 
one includes the quantum consideration, is a deep problem that requires further analysis. 
 Of the three contributions to Frad in (VII.63), the ones that seem to get the most 
attention in practice are the first two. 
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 The first one usually gets applied in the context of antenna theory, where it is not the 
spatial variation of the charge density ρ that is important, but the time variation.  One 
sees that since G defines a linear operator from 2-forms to 2-forms, it is meaningful and 
useful to speak of eigenvalues and eigenforms.  For instance, sinusoidal variations in the 
charge will produce sinusoidal variations in the radiation field. 
 The second contribution says that accelerating (or, of course, decelerating) charges 
generate radiation fields.  For instance, brehmstrahlung, or “braking radiation,” is an 
example of this situation.  Čerenkov radiation is the form of braking radiation that is 
produced when the speed of a charge is greater than the speed of light in the medium. 
 It is the fact that accelerating charges, such as charges confined to circular orbits, 
must radiate energy, and therefore lose energy, that defined one of the first unavoidable 
flaws in the Bohr planetary model for atomic electrons, since this classical radiation 
model would suggest that a planetary electron would only lose energy continuously and 
spiral down into the nucleus itself.  There were two problems with this picture in the eyes 
of experimental physics: 
 1. A continuous decay of energy would produce a continuous spectrum of 
frequencies for the radiated field, which contradicts the discrete nature of atomic spectra. 
 2. There is a non-zero ground state energy for atomic electrons that they reach 
before they are ever absorbed into the nucleus. 
 Although it is traditional to say that all discussion of the radiation of atomic electrons 
must necessarily fall within the purview of quantum electrodynamics, one must keep in 
mind that there is still a sizable gap between the field-theoretic formalism of Maxwellian 
electromagnetism and the formalism of the scattering approximation of quantum 
electrodynamics.  Hence, there is still some validity to posing the problem of extending 
the field-theoretic formalism into the realm that is usually treated in the scattering 
approximation.  Therefore, many of the generalizations that we shall consider in the name 
of pre-metric electromagnetism are guided by the hope that they will extend the field-
theoretic formalism further into the quantum – i.e., atomic-to-subatomic – domain. 
 
 
 2. Lorentz force.  In this section, we address the converse of the problem of the 
previous section:  That is, we now consider the effect of an electromagnetic field on a 
current that is not its source.  Of course, there is something unavoidably linear about 
assuming that an electromagnetic field can be “external” to an electric current, because 
the current will, of course, generate an electromagnetic field of its own.  It is only linear 
superposition that allows one to treat the combined effect as a simple addition of 2-forms. 
  
 a. Lorentz force on one current.  Suppose we have an electric current J = ρu = ρ∂t + 
ρv in an external electromagnetic field F = dt ^ E − #sB.  We have already discussed the 
force density that the electric field E exerts on the charge density ρ, namely: 
 

ρE = ρ i∂t(dt ^ E).    (VII.64) 
 
 We now address the force density that B exerts on ρv.  In the conventional 
formulation of electromagnetism in terms of vector analysis, it takes the form of the 
Lorentz force (density): 
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f = ρv × B = I  × B.    (VII.65) 
 

in which we have introduced I  = ρv as the spatial current density. 
 If we wish to put this into the language of exterior algebra then we need only 
represent f by a spatial 1-form, and we can rewrite (VII.65) in the form: 
 

f = ρ #s(v ^ B) = #s(I  ^ B).   (VII.66) 
 But: 

#s(v ^ B) = iv ^ BV = − iv(#sB) = − iu(#sB).  (VII.67) 

 
 We find that the combined Coulomb force on the charge density and the Lorentz 
force on the spatial current density, namely: 
 

f = ρ[E +  #s(v ^ B)] = ρ[i∂t(dt ^ E) − iv(#sB)], (VII.68) 
 
can be combined into the four-dimensional expression: 
 

f = iJF  = JµFµν dxν.    (VII.69) 
 
 However, the f of (VII.69) describes only the spatial force density, so there is one 
extra piece to iJF that is missing from (VII.68), namely, the temporal piece − ρ E(v) dt.  
Hence, we correct (VII.68) to: 
 

f = ρ [− E(v) dt + E +  #s(v ^ B)].   (VII.70) 
 
From a consideration of its basic units, the temporal contribution represents a power 
density. 
 Now, let us define the energy-momentum density associated with the vector field v to 
be: 

p = µu,      (VII.71) 
 
in which µ is the rest mass density, whose support is the same as for ρ and v, while the 1-
form u is a covelocity 1-form that relates to v by means of: 
 

u(v) = const.     (VII.72) 
 
 We define the proper-time derivative of something to be its Lie derivative along the 
flow of v: 

d

dτ
= Lv = ivd + div,    (VII.73) 

so: 
dp

dτ
= 

d du
u

d d

µ µ
τ τ

+ .    (VII.74) 

 
The first term vanishes iff mass is conserved along the flow of v. 
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 If we express v and u in time + space form as: 
 

v = v0∂t + vs ,  u = u0 dt + us     (VII.75) 
then: 

du

dτ
= ivdu + divu = ivdu = − as(vs) + [v0as + #s(vs ^ ωωωωs)],  (VII.76) 

 
where the term divu vanishes on account of (VII.72).  The spatial vector field ωωωωs and 1-
form as that we introduced are defined by (VII.59) and (VII.60). 
 Hence, we can regard as as the acceleration, in the sense of the convected derivative 
of the covelocity, and ωωωωs is the (kinematical) vorticity vector field. 
 Thus, if we consider the four-dimensional form of Newton’s second law of motion – 
i.e., conservation of energy-momentum: 

f =
dp

dτ
,      (VII.77) 

 
then we arrive at the following pair of equations: 
 

µas(vs) = ρE(vs),     (VII.78a) 
µ[v0as + #s(vs ^ ωωωωs)] = ρ[v0E + #s(vs ^ B)].  (VII.78b) 

 
 The first one is a statement about power, i.e., the rate at which energy is being added 
or subtracted from the motion of the charge cloud.  The second one is a generalization of 
the usual equation of motion defined by the combined Coulomb and Lorentz force that 
one encounters for pointlike charges, for which the vorticity ωωωωs vanishes.  It also vanishes 
for irrotational flows, such as ones for which vs is spatially uniform. 
 When E = 0 one finds that the power equation says simply that: 
 

as(vs) = 0.     (VII.79) 
 In the metric case, for which: 

as(vs) = g(as, vs) = 1
2

2
sdv

dτ
,    (VII.80) 

 
this says that the motion of a charge cloud in a magnetic field is uniform circular. 
  
 b.  Radiation reaction.  When an electromagnetic field exerts a force on a current – 
i.e., a moving charge distribution – that charge distribution will accelerate or decelerate.  
Consequently, since accelerating charges emit radiation fields, which carry energy and 
momentum, the charge distribution will also decelerate due to the fact that it is losing 
energy and momentum.  This loss of energy-momentum due to radiation, or rather, its 
proper time derivative, is referred to as the radiation reaction or radiation damping. 
 A full accounting of the equations of motion for a charge distribution in an external 
electromagnetic field must then include not only the Lorentz force but the radiation 
reaction, as well.  However, since a full accounting of the radiation reaction involves a 
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more detailed discussion of the problem of electromagnetic radiation, we shall defer that 
study to future research. 
 
 
 3. Interaction of fields.  The main issue that concerns the interaction of more than 
one field in a region of space is linearity versus nonlinearity.  In effect, the very 
assumption that there is interaction to begin with has a distinctly nonlinear sort of 
character, but there are still enough linear phenomena in nature to make a brief discussion 
of linear field interactions worthwhile.  Furthermore, what starts off as a linear 
combination in the field space might very well project to a nonlinear interaction in the 
measurement space. 
 Generally, there are three basic regimes in the name of linearity, which are 
parameterized by some appropriate magnitude: the linear regime, which is characterized 
by weak magnitudes, strong nonlinearity, which is usually characterized by the onset of 
some phase transition at a critical magnitude, and the regime of weak nonlinearity, which 
is an intermediate sort of realm between linearity and the onset of a phase transition. 
 For instance, in the response of elastic materials to applied stresses, one starts out 
with Hooke’s law for small strains, which is the linear regime.  Between linear response 
and the onset of plastic deformation, one is in the regime of nonlinear elasticity, which is 
what we are calling weak nonlinearity.  Once plastic deformation begins, a phase 
transition has taken place, and the concept of elastic deformation is no longer applicable. 
 Since the actual differential equations that we consider in pre-metric 
electromagnetism, namely, dF = 0, δh = J, are both linear, the only possible source of 

nonlinearity is in the constitutive law h = κ(F) that couples the excitation h of a medium 

to the presence of an electromagnetic field F.  We then see that for small field strengths 
the response of the medium is approximately linear, whereas for some high enough field 
strength, phase transitions can change the very nature of the medium.  For instance, one 
can get melting of solids, ionization of gases, the onset of ferromagnetism, and the 
formation of particle-anti-particle pairs. 
 
 a.  Linear constitutive laws.  When one is concerned with weak enough field strengths 
to remain well within the linear response regime for a medium, one is dealing with a vast 
variety of possible phenomena.  In particular, electronics, optics, and communications are 
mostly concerned with linear phenomena.  Indeed, most practical applications are greatly 
complicated by the onset of nonlinearity.  For instance, in the design of capacitors, the 
onset of a phase transition is clearly undesirable, since the phase transition that one has to 
contend with is the breakdown of the dielectric at high field strengths. 
 The equivalent statement to saying that one is in the linear response regime for a 
medium is the principle of superposition, which says, in effect, that if the constitutive 
map κ: Λ2  → Λ2 is linear on each fiber – hence, linear on sections – then the combined 
operator δ ⋅ κ: Λ2  → Λ1 , F ֏ δκ(F) is linear, as well.  Its kernel ker(δκ) = {F ∈ Λ2 
| δκ(F) = 0} is therefore a linear subspace of Λ2, and since an element of ker(δκ) is a 
solution to the first-order partial differential equation δκ(F) = 0 this implies that linear 
combinations of solution fields will be solution fields. 
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 One of the most far-reaching consequences of dealing with the linear regime of 
phenomena of any sort is the applicability of the methods of Fourier analysis when one is 
also dealing with a homogeneous medium.  Indeed, if one has a nonlinear operator from a 
Hilbert space of “input” fields to another Hilbert space of “output” fields, there is nothing 
to stop one from performing Fourier transforms of the inputs and outputs.  However, it is 
only in the case of a homogeneous linear operator that the relationship between the 
Fourier transformed fields is linear, as well.  One can see how this is immensely useful in 
the problem of modulating and demodulating information into carrier signals.  It is also 
the basis for most of the constructions of quantum field theory, in which one is chiefly 
concerned with constructing the Fourier transform of the integral kernel for a unitary map 
from a Hilbert space of “incoming” scattering states to a Hilbert space of “outgoing” ones 
that one thinks of as the scattering operator or S matrix for the interaction in question. 
 There is a subtle relationship between linear supposition and the optical phenomenon 
of interference, which leads to diffraction, which defines the most definitive difference 
between classical mechanics and wave mechanics.  Basically, one is dealing with a linear 
superposition of complex wave functions whose effect in the eyes of the 
measurer/observer is what we might call “pseudo-nonlinear.”  This takes the form of a 
nonlinear projection of a linear combination.  In the case of wave interference, the linear 

combination is formed in the complex vector space C, while the nonlinear projection 

maps C – {0} onto the non-negative real axis R+ by way of the transformation from 

Cartesian to polar coordinates C →  R+, x + iy ֏ 2 2x y+ = || z ||. 

 Although this map is homogeneous of degree one with respect to real scalar 

multiplication, since λ(x + iy) goes to λ 2 2x y+ , nevertheless, the sum of two complex 

numbers z1 = x1 + iy1 and z2 = x2 + iy2 goes to 2 2
1 2 1 2( ) ( )x x y y+ + + = || z1 + z2 ||, which 

differs from 2 2
1 1x y+ + 2 2

2 2x y+ = || z1 || + || z2 || .  Indeed, since we are dealing with a 

norm on C the sum satisfies the triangle inequality || z1 + z2 || ≤ || z1 || + || z2 ||.  Hence, the 

projection is nonlinear whenever strict integrability is obtained. 
 Another example of nonlinear superposition is given by the addition of velocities in 
special relativity, which originates in the fact that the projection of four-dimensional 
spacetime events into the rest space of a measure/observer is not a simple Cartesian 
projection of a four-tuple (v0, v1, v2, v3) of components onto a triple (v1, v2, v3) of 
components, but more like the projection of homogeneous coordinates (v0, v1, v2, v3)  for 

RP3 onto inhomogeneous coordinates (V1, V2, V3), which is a nonlinear projection, since 

Vi = vi/v0.  Since we shall have much more to say about the role of projective geometry in 
special relativity and electromagnetism later in Chapter XI, we shall suspend our 
discussion of the subject for now. 
 
 b.  Nonlinear constitutive laws.  When κ is a nonlinear map on the fibers, ker(δ ⋅ κ) is 
not generally a linear subspace, but a more elaborate nonlinear subspace of the vector 
space Λ2 that will generally be infinite-dimensional, as well.  Hence, if F1 and F2 are both 
solutions of δκ(F) = 0 then their sum is not another solution, in general.  One concludes 
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that the effect of superposing the two fields in a nonlinear medium will be to produce a 
field Σ(F1, F2) that is generally distinct from F1 + F2 , and satisfies δκ(Σ(F1, F2)) = 0. 
 Of course, since we dealing with a vector space we can always define a 2-form ∆(F1, 
F2) such that: 

Σ(F1, F2) = F1 + F2 + ∆(F1, F2).   (VII.81) 
 
However, unless there is some convenient way of characterizing the interaction term 
∆(F1, F2) one must realize that its utility is mostly in the weakly nonlinear regime. 
 Indeed, if we assume that Σ(F1, F2) can be approximated by a Taylor series: 
 

Σ(F1, F2) ≈ F1 + F2 + dΣ|0(F1 + F2) + 1
2 d2Σ|0(F1 + F2, F1 + F2) + …  (VII.82) 

 
then we see that: 

∆(F1, F2) ≈ dΣ|0(F1 + F2) + 1
2 d2Σ|0(F1 + F2, F1 + F2) + …  (VII.83) 

 
 Since dΣ|0 is linear and d2Σ|0 is bilinear, we can expand this into: 
 
   ∆(F1, F2) ≈ dΣ|0(F1) + dΣ|0(F2)  

+ 1
2 d2Σ|0(F1, F1) + d2Σ|0(F1, F2) + 1

2 d2Σ|0(F2, F2) + … (VII.84) 

 
 Of course, the problem now reverts to that of characterizing the nature of the 
successive derivatives in this expression in terms of something that pertains to the 
nonlinearity in κ.  One way of doing this is to note that since the operator δ ⋅ κ annihilates 
the left-hand side of (VII.81), one has: 
 

δ κ[F1 + F2 + ∆(F1, F2)] = 0.    (VII.85) 
 
 If one expands κ in terms of nonlinear susceptibilities then presumably one might 
arrive at successive levels of perturbation to the law of linear superposition, but that also 
appears to be a major undertaking in terms of computational complexity.  Of course, 
there might be useful parallels to the more established perturbational methods of quantum 
field theory that could prove heuristically probative. 
  
 
 4.   Interaction of currents.  Since all physical fields presumably have sources one 
can consider the interaction of fields as being, in a sense, dual to the problem of the 
interaction of the source currents themselves.  From that viewpoint, one regards the fields 
of the sources as being essentially intermediaries for the interaction of the sources 
themselves. 
 We see that there are two basic levels of complexity associated with the interaction of 
sources, which correspond to the non-relativistic and relativistic approximations, 
respectively.  Namely, when one is dealing with slowly-varying fields produced by 
closely-spaced sources, one can use the non-relativistic approximation of action-at-a-
distance.  By contrast, when the currents are rapidly varying or the sources are 
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sufficiently distant from each other, one must respect causality and regard the interaction 
of sources as only taking place by the intermediary of electromagnetic waves. 
 
 a. Force between two currents (linear case).  In the case of static – or at least, slowly-
varying – fields with neighboring sources J1 and J2, one can combine the coupling of – 
say − J1 to the field F1 that it generates with the Lorentz force density f12 = 

2 1i FJ  that the 

field F1 exerts on J2.  Since there is nothing, at this point, to distinguish J1 from J2, one 
could just as well consider the force density f21 =

1 2i FJ that the field F2, which is generated 

by J2 , exerts on J1.  By Newton’s third law of motion, one expects that f12 = − f21. 
 When the medium in which J1 and J2 are defined is linear in its response, one can use 
the method of Green functions to establish the map from each source to its corresponding 
field; i.e., one can obtain a linear function Fi = Fi(Ji), i = 1, 2.  As a consequence, one can 
define f12 as an anti-symmetric bilinear functional: 
 

f12(J1, J2) = − f12(J2, J1) = − f21(J1, J2).  (VII.86) 
 
 For instance, in the electrostatic case, Coulomb’s law (VII.17) associates an 
electrostatic field: 

E1(r) = 1
12

1

1
|| ||

4 || ||

Q
d

πε
−

−
r r

r r
   (VII.87) 

 

with a point charge Q1 that is located at r1 ∈ R3. 

 The force that Q1 exerts on a point charge Q2 that is located at r2 is: 
 

f12(Q1, Q2) = Q2 E1(r2) = 1 2
2 12

2 1

1
|| ||

4 || ||

Q Q
d

πε
−

−
r r

r r
= − f12(Q2, Q1). (VII.88) 

 
(The sign change originates in the 1-form d|| r2 – r1 ||.) 
 Actually, the anti-symmetry in f12(Q1, Q2) is closely related to the fact that the charge 
distributions associated with Q1 and Q2 are pointlike.  If one replaced them with more 
general charge distributions ρ1 and ρ2 then f12(ρ1, ρ2) would become a force density that 
was distributed over the support of ρ2 , which would take the form: 
 

f12(ρ1, ρ2)(y) =
1

2 1supp 
( ) ( , ) ( ) xy G x y xερ

ρ ρ∫ V =
1

1 2supp 
( ) ( , ) ( ) xx G x y yερ

ρ ρ∫ V , (VII.89) 

 
while f12(ρ2, ρ1) would be a force density that was distributed over the support of ρ1 that 
would take the form: 

 f12(ρ2, ρ1)(x) =
2

1 2supp 
( ) ( , ) ( ) yx G x y yερ

ρ ρ∫ V   (VII.90) 

 
 Even with an anti-symmetric kernel Gε(x, y), it makes no sense to speak of the 
symmetry properties of f12(ρ1, ρ2)(x) with respect to f12(ρ2, ρ1)(y) since they have their 
supports on two different regions of space.  However, if one integrates each of them over 
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their respective supports then one obtains a total force of interaction between the two 
distributions: 

f12(ρ1, ρ2) =
1 2

1 2supp supp 
( ) ( , ) ( )x yx G x y yερ ρ

ρ ρ∫ ∫V V , (VII.91) 

 
which is anti-symmetric when Gε (x, y) is. 
 Of course, this process of reducing extended charge distributions to point distribution 
by integration is not entirely mathematically rigorous, since one obtains a 1-form that is 
not associated with any specific point of Σ in the general case.  Furthermore, the integral 
does not transform properly under frame changes that involve transition functions that are 
not constant.  However, one does see how the anti-symmetry of the integral kernel 
implies the anti-symmetry of the force between point charges as approximations to 
extended charges. 
 The situation with the magnetic forces of interaction between currents is similar, but 
complicated by various factors, mostly relating to the non-existence of point currents, 
except in the form of the transversal intersection of curves with surfaces, and the fact that 
the Green function for the interaction acts on a current density by the exterior product, 
not the scalar product. 
 The Lorentz force density f12 that a current I1 exerts at a point y of I2 is of the form: 
 
  f12(I1, I2)(y) = #s(ΙΙΙΙ2(y) ^ B(y; I1)  

     =
1

2 1supp 
# ( ) ( , ) ( )s xy G x y xµ
 ∧ ∧
  ∫ I
I I

�
V  

=
1

2 1supp 
# ( ) ( , ) ( )s xy G x y xµ
 ∧ ∧
  ∫ I

I I
�

V ,  (VII.92) 

 
and conversely, the force density that I2 exerts on a point x of I1 is: 
 

f12(I2, I1)(x) =
2

1 2supp 
# ( ) ( , ) ( )s yx G x y yµ
 ∧ ∧
  ∫ I

I I
�

V .  (VII.93) 

 
 If one then integrates over y or x, resp., then one obtains a total force of the form: 
 

f12(I1, I2) =
1 2

1 2supp supp 
# ( ) ( , ) ( )s x yx G x y yµ
 ∧ ∧
  ∫ ∫I I

I I
�

V V  = − f12(I2, I1) (VII.94) 

 
that is anti-symmetric. 
 Since the only way of reducing currents to points is by reducing three-dimensions to 
two dimensions, one can then think of this expression as something like the interaction of 
magnetic charges, except that there is a significant difference:  In the case of currents in 
parallel infinite wires, one knows, from elementary physics that like – i.e., parallel − 
currents attract, while unlike ones repel.  Hence, the magnetic interaction of currents 
behaves more like the Newtonian interaction of masses than the electrostatic interaction 
of charges. 
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 b.  Causal interactions between currents.  When the time variation of a current 
reaches the point that its second derivative is no longer negligible, or the spatial 
separation between two currents is appreciable, the approximation of action-at-a-distance 
breaks down and one sees that interactions between currents must be mediated by 
radiation fields and take into account the time lag that it takes for a photon to go from one 
source to the other. 
 Something else that must break down in the process is the anti-symmetry of the 
interaction, since one is essentially dealing with “signals” that travel from one place to 
another in a finite amount of time, so there will be a noticeable difference between a 
signal that is sent from point A at time tA to a point B at tB and one that is sent from B at 
time tA and arrives at A at time tB. 
 It is also reasonable to ask whether the response of the medium itself will depend 
upon the direction of travel, since there are such things as one-way mirrors.  If the 
constitutive law is invariant under such a replacement of signal source with receiver then 
one calls the medium reciprocal. 
 Once again, in order to do justice to the causal interactions of currents, one must 
discuss the theory of electromagnetic radiation in greater detail.  Hence, we content 
ourselves for the moment with only these cursory remarks. 
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Chapter VIII 
 

Electromagnetic waves 
 
 
In this chapter, we finally get to the most fundamental aspect of pre-metric 
electromagnetism, which is to account for the “emergence” of the Lorentzian structure on 
the spacetime manifold as a possible consequence of a more general set of possibilities. 
These possibilities follow from examining the dispersion law for the propagation of 
electromagnetic waves that one defines from the field equations and the constitutive law 
of the medium.  In particular, the quadratic nature of the characteristic hypersurfaces for 
the Maxwell field equations, as they are usually presented for isotropic media, is a 
degenerate case of the quartic dispersion law that appears in anisotropic media. 
 It is essential to understand that the process of reduction by which we obtain the 
dispersion law implicitly involves not only a linearization of a potentially nonlinear 
constitutive law, as well as the fact that dispersion laws are generally subordinate to the 
basic assumption that one makes about the form of the wavelike solutions to the field 
equations.  However, many of the common forms that wavelike solutions take produce 
the same dispersion equation.  This is closely related to the fact that when one passes 
from a differential operator to its symbol one loses a considerable amount of information, 
since the (principal) symbol really only tells one about the highest order of derivatives, 
and a quasi-linear differential operator will have the same principal symbol as a linear 
one. 
 Nevertheless, one thing that all of the common forms for wavelike solution have in 
common is the fact that they involve some sort of amplitude function, which defines the 
spatial shape of the wave envelope, and a phase function, which defines the spatial shape 
of the momentary wave fronts themselves.  Although the concept of a plane wave, for 
which the amplitude function is constant and the phase function is linear, is of limited 
utility in differentiable manifolds that are not affine spaces, one finds that the concepts of 
amplitude and phase function can be generalized to nonlinear manifolds. 
 The geometrical optics approximation that one makes into order to go from the 
propagation of electromagnetic waves to the behavior of null geodesics, which become 
light rays when one looks at their spatial projections, amounts to ignoring the 
contribution of the amplitude function to the wave and concentrating on the phase 
function as root of the essential information in the wave.  As we shall see, this is 
equivalent to considering only the dispersion law that follows from passing to the symbol 
of the second-order differential operator that defines the electromagnetic field equations.  
 Eventually, we intend to show that the geometry of wave motion, at least for 
characteristic waves, is best addressed in the framework of projective geometry.  In 
particular, both of the concepts of wave normal covector and group velocity vector are 
naturally defined in projective terms by means of inhomogeneous coordinates, as well as 
the relationship between them and the Fresnel surfaces for both.  Although we shall 
return to a more general discussion of the role of projective geometry in 
electromagnetism in Chapter XII, we mention these aspects of it in this chapter for the 
sake of motivating that more general study. 
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 1. Electromagnetic waves.  For the sake of completeness, we rewrite the pre-metric 
Maxwell equations here: 
 

dF = 0,  δh = J,  h = κ(F).   (VIII.1) 

 
 In gauge form, they are: 
 

F = dA, δh = J,  h = κ(F),   (VIII.2) 

 
which can be combined into a single second-order equation: 
 

Aκ□ = J,     (VIII.3) 

in which: 

κ□ = δ ⋅ κ ⋅ d: Λ1 → Λ1    (VIII.4) 

 
is the electromagnetic field operator. 
 In a local coordinate chart (U, xµ) on M, when the constitutive law is both 
inhomogeneous and nonlinear, so κ has local components κµναβ(x, F), the operator κ□  

takes the local form: 

να
κ□ =

2

x x x x

µναβ
µναβ

µ β µ β
κκ ∂ ∂ ∂+

∂ ∂ ∂ ∂
ɶ    (VIII.5) 

in which: 

 µναβκɶ = κµναβ +
A

F x

µναβ
κ
λ

κλ

κ ∂∂
∂ ∂

.   (VIII.6) 

 
 Although, as we shall see later when we discuss the dispersion law that follows from 
this operator, the operator κ□  is something like a “pre-metric d’Alembertian,” actually 

that is misleading.  In particular, the field equation (VIII.3) admits solutions that 
represent static electric and magnetic fields, as well as time-varying solutions that are not 
wavelike in character.  For instance, one can have fields that vary linearly or 
exponentially in time. 
 Hence, since the field equations (VIII.3) are more general than the usual wave 
equations of mathematics – whether linear or nonlinear – we must treat wavelike 
solutions as essentially subspaces of the (not necessarily linear) space of solutions A in 
Λ1.  Some of the common classes of solutions treated in conventional books on 
electromagnetic waves (e.g., [1-6]) are time-periodic electromagnetic fields, fields that 
are describable by the geometrical optics approximation, and waves as propagating 
discontinuities, so we show how these topics can be treated in the present formalism. 
 
 a.  Time-periodic electromagnetic fields.  Suppose the spacetime manifold M is 

space-time separable; i.e., expressible as a product R × Σ, with R playing the role of the 

time manifold and Σ, a three-dimensional manifold that plays the role of a spatial 
manifold.  From the previous discussion of space-time splittings of T(M) and its tensor 
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algebra, we then see that, in particular, all of the bundles of exterior differential forms on 
M will be decomposed into direct sums of temporal forms and spatial forms, and that the 
Poincaré duality isomorphism # permutes the temporal and spatial sub-bundles. 
 However, it is important to notice that the components of the spatial and temporal 
tensor fields are still functions on M, in general.  Hence, when M itself can be 
decomposed one can also distinguish temporal and spatial functions, as well; that is, a 

temporal function is a function on R and a spatial function is a function on Σ.  As a 

result, we can also distinguish purely temporal differential forms on M, which are forms 

on M that have components in C∞(R) − for some adapted coordinate system on M − from 

purely spatial forms on M, which only have components in C∞(Σ).  However, one must 
clearly distinguish the purely spatial k-forms on M, which can locally have terms 
involving dt, from the k-forms on Σ, which cannot.  We shall use the notation ( )k

s M′Λ for 

the bundle of purely spatial k-forms on M, which must be clearly distinguished from the 

bundle ( )k
s MΛ of spatial k-forms on M that is defined by the splitting T(M) = T(R) ⊕ 

T(Σ).  Locally, these k-forms look like: 
 
  purely temporal:  1/(k−1)! α0µ…ν(t) dt ^ dxµ ^ … ^ dxν, 
 
  purely spatial (a ∈ ( )k

s M′Λ ): 1/(k−1)! α0µ…ν(x1, …, xn) dt ^ dxµ ^ … ^ dxν, 

 
  α ∈ ΛkΣ:   1/k! αµ…ν(x1, …, xn) dxµ ^ … ^ dxν. 
 
 In this section, we shall be concerned with a special class of differential forms on M 
that we call stationary.  A stationary k-form α ∈ Λk(M) takes the form of  α(t, x) = 

T(t)α′(x) where T is a function on R that is the same for all such forms and α′ is a purely 

spatial k-form on M. 
 For instance, if an electromagnetic field F ∈ Λ2(M) on a space-time separable 

manifold M = R × Σ is stationary then it can be expressed in the form: 

 
F(t, x) = T(t)f(x),    (VIII.7) 

 

in which T(t) is a smooth function on R and f(x) ∈ ΛkΣ.  In particular, the components fij 

of f in any coordinate system (t, xi) on an open subset of M that is adapted to the product 
structure must be functions of only the xi: 
 

f(x) = 1
2 fij(x) dxi ^ dxj.    (VIII.8) 

 
From now on, we shall omit the explicit reference to x in the symbol f. 
 The exterior derivative of F then becomes: 
 

dF = dT ^ f + T df = T[d(ln T) ^ f + df] ≡ T[ϖ dt ^ f + df],  (VIII.9) 
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in which we have introduced the function: 
 

ϖ(t) = d(ln T).     (VIII.10) 
 
 This integrates immediately to: 

T(t) =
0

exp ( )
t

dϖ τ τ 
  ∫ ,   (VIII.11) 

 
in which we have suppressed the integration constant by setting t0 = 0. 
 Of course, in the usual case that is treated by geometrical optics, ϖ is a negative 
imaginary constant −iω so the function T(t) takes the form e−iωt ; from now on, we shall 
make that assumption.  When T takes that form, a stationary field on M is then called 
time-periodic. 
 In order to make sense of the multiplication by the imaginary i, we could assume that 
the constitutive law defines an almost complex structure * on Λ2(M), but, as it turns out, 
in order get agreement with the stationary form of the Maxwell equations, we must not 
use that structure to define multiplication by i.  For one thing, we shall need to multiply 
1-forms and 3-forms by i, as well.  Rather, we understand that if α is a k-form and X1, …, 
Xk are vector fields on M then iα(X1, …, Xk) is the imaginary number that is obtained by 
multiplying the real number α(X1, …, Xk) by i.  Hence, in this case we are passing to the 
complexification of Λ*(M). 
 For simplicity, we set * = # ⋅ κ, so the second Maxwell equation takes the form d*F = 
0 in the absence of sources.  Furthermore, we assume that *2 = − I, so it does, in fact, 
define an almost-complex structure. 
 Since *F will take the form T(t)* f(x), we see that a straightforward replacement of f 
with *f in (VIII.9), combined with aforementioned replacement of ϖ with the constant – 
iω, will give: 

dF = T[− iω dt ^ f + df].    (VIII.12a) 
d*F = T[− iω dt ^ *f + d* f].    (VIII.12b) 

 
 Maxwell’s sourceless equations then imply that: 
 

df = iω dt ^ f,  d* f = iω dt ^ *f.   (VIII.13) 
 
 To see that these indeed give the customary E-B form, substitute: 
 

F = dt ^ E − *(dt ^ B) = T[dt ^ u − *(dt ^ v)],   (VIII.14) 
 

in which we have assumed that the 1-forms E and B on M take the form: 
 

E(t, x) = T(t)u(x), B(t, x) = T(t)v(x),   (VIII.15) 
 
so u(x) and v(x) are 1-forms on Σ.  Hence, they will have the component form: 
 

u(x) = ui(x) dxi,  v(x) = vi(x) dxi,   (VIII.16) 



Electromagnetic waves                                          205 

in an adapted coordinate system. 
 From (VIII.14), we see that: 

*F = T[dt ^ v + *(dt ^ u)],   (VIII.17) 
 
 Hence, between (VIII.14) and (VIII.17), we see that: 
 

f = dt ^ u + *s v,  *f = dt ^ v − *s u.  (VIII.18) 
 
We have also replaced the expressions *(dt ^ u) and *(dt ^ v) with −* s u and −* s v, 
respectively. 
 It is physically illustrative to see what sort of matrix the map *s : Λ1Σ → Λ2Σ will 
have.  We use a basis {bi, i = 1, 2, 3} for a fiber of Λ1Σ that is adapted to a basis for Λ1M 
= Λ1L⊕ Λ1Σ, and the corresponding basis *bi for Λ2Σ that is a subset of the basis {dt ^ bi, 
*bi} for Λ2M.  The linear map *s = − *edt then has a 3×3 matrix relative to these bases that 
is the composition of the matrices [edt][*][ PIm], since the components of u = ui b

i are row 
matrices.  Here, the linear map PIm: Λ2M = 2 2

Re ImM MΛ ⊕ Λ is the canonical projection of 

any 2-form onto its imaginary or “magnetic” part.  If one recalls the discussion of almost-
complex media from Chapter V, and represents the 6×6 matrix [*] in the form of (V.34) 
then the product of matrices in question is: 
 

[* s] = − [ ]
0

0 TI
I

γ ε
µ γ

−   
   
   
ɶ

= [ε].   (VIII.19) 

 
This somewhat surprising result, that spatial duality is due solely to the electric 
permittivity of the medium, is actually subordinate to the assumption that we are 
considering an almost-complex medium, since (VIII.35) suggests that in order for an 
electromagnetic constitutive law to define such a structure, one must satisfy rather severe 
restrictions on the form of the submatrices of κ.  In particular, in the absence of 
electromagnetic couplings (γ = 0), one must have that ε is proportional to µ. 
 Exterior differentiation of the resulting expressions in (VIII.18) gives: 
 

df = − dt ^ du + d* sv = iω dt ^ f = iω dt ^ *s v,   (VIII.20a) 
  d* f = − dt ^ dv − d* su = iω dt ^ *f = − iω dt ^ *s u,  (VIII.20b) 

which gives: 
− dt ^ du + d* sv = dt ^ (iω* s v),       (VIII.21a) 

dt ^ dv + d* su = dt ^ (iω* s u).    (VIII.21b) 
 
 From (VIII.13), (VIII.18), and (VIII.20), and considering the temporal or spatial 
nature of the 3-forms in question, we deduce: 
 

du = − iω *sv,  d* su = 0,   (VIII.22a) 
dv = + iω *su,  d* sv = 0.   (VIII.22b) 
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 If we apply the *s operator to both sides of each equation then we see that they take 
the vector calculus form: 

∇×u = + iω v,  ∇⋅u = 0,   (VIII.23a) 
∇×v = − iωu,  ∇⋅v = 0,   (VIII.23b) 

 
that is more customary in geometrical optics (see Luneberg [6]). 
 
 b.  Stationary potential 1-forms.  Since Maxwell’s first equation suggests that the 2-
form F can be locally represented by dA for some non-unique potential 1-form A, we next 
look at what happens when this 1-form is also stationary: 
 

A(t, x) = T(t)a(x).    (VIII.24) 
 
 A change of gauge A ֏A + dλ must also contain T as a common factor in both 
terms.  In particular, λ(t, x) must take the form T(t)l(x).  As a consequence, a change of 
gauge for A implies a change of the form a ֏ a + dl – iωl dt for a. 
 One must be careful to note that this time, although we are assuming that the 
components of a(x) are functions on Σ, nevertheless, we are allowing it to take the form: 
 

a = φ(x) dt + ai(x)dxi ≡ φ dt + as ;   (VIII.25) 
 
hence, it is what we have been calling a purely spatial 1-form on M. 
 We then have: 

da = − dt ^ dφ + das .    (VIII.26) 
 
However, in optical problems it is customary to assume that the electrostatic field dφ is 
null. 
 This makes: 
 

F = dA = T(− iω dt ^ a + da) = T[− dt ^ (dφ  + iω as) + das].  (VIII.27) 
Hence: 

f =  − dt ^ (dφ  + iω as) + das .    (VIII.28) 
 

 By matching up temporal and spatial terms in (VIII.28) and the first of (VIII.18), we 
get: 

u = − dφ  − iω as, *sv = − das .   (VIII.29) 
 Since: 

* f =  − *[ dt ^ (dφ  + iω as)] + *das = *s dφ  + iω *s as + *das , (VIII.30a) 
d* f = d* s dφ  + iω d* s as + d*das ,     (VIII.30b) 

 
the remaining Maxwell equation for *F gets converted into the form: 
 
  0 = d* f – iω dt ^ *f 

 = [d*das + ω2 dt ^ *s as] + [d* s dφ  − iω dt ^ * s dφ ] + iω d* s as .  (VIII.31) 
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 With the choice of gauge: 
 

dφ = 0,  d* s as = 0,    (VIII.32) 
 
which is essentially the Coulomb gauge, equation (VIII.30) takes the form: 
 

0 = d*das + ω2 dt ^ *s as.    (VIII.33) 
 
 In order to put this into the customary Helmholtz form, first apply the * operator to 
both sides: 

0 = *d*das − ω2 as .     (VIII.34) 
 

 By following the sequence of operators d, *, d, * acting on the 1-form as ∈Λ1(Σ), one 
sees that *d*d  has the same effect as: 
 

 − *sd* sd = − ∆ + d* sd* s .   (VIII.35) 
 
However, with the choice of gauge (VIII.32) the second term on the right-hand side will 
vanish, and we finally obtain: 

0 = ∆as  + ω2as .    (VIII.36) 
 
 c.  Geometrical optics approximation.  The form that electromagnetic fields take in 
geometrical optics is a generalization of the aforementioned time-periodic form.  In 
particular, rather than factoring F(t, x) into a purely temporal part and a purely spatial 

part by way of the time function e−iωt, we now assume that M still takes the form R × Σ, 

but we factor F as: 
F(t, x) = e−iφ f(x),    (VIII.37) 

 
in which φ(t, x) is a smooth function on M that one calls the phase function.  Its level 
hypersurfaces in M are then referred to as isophases. 
 The most common form that φ takes is the plane-wave form: 
 

φ(t, x) = kµ xµ = ωt ± ki x
i ,   (VIII.38) 

 

which amounts to assuming that M = R4 and φ is linear in the coordinates xµ.  The 

isophases are then affine hyperplanes.  By means of other choices of coordinate system 
on M one can similarly define cylindrical and spherical isophases. 
 One sees that time-periodic electromagnetic fields are the special case of (VIII.38) for 
which ki = 0 for all i = 1, 2, 3.  However, one then refers to the isophases as isochrones, 
or simultaneity hypersurfaces.  Clearly, this notion demands a more relativistic treatment, 
but we shall only point the curious to the author’s work [7], and the references that were 
cited therein.  Furthermore, the spirit of pre-metric electromagnetism is that causality is a 
consequence of the manner by which electromagnetic waves propagate through 
spacetime, not a prerequisite for it. 
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 The physical significance of an isophase is that it represents the time evolution of a 
momentary wave surface in the space Σ.  That is, the projection of an isophase in M onto 
Σ will be, by definition, a momentary wave surface.  Hence, if f(x) represents the overall 
“shape” of the wave motion in Σ then each value f(x) will propagate in M on a fixed 
isophase.  In effect, an isophase is a higher-dimensional analogue of the world line of a 
point particle. 
 When F takes the form (VIII.1), one derives: 
 

dF = e−iφ(− ik ^ f + df),    (VIII.39) 
in which we have set: 

k = dφ.      (VIII.40) 
 
 Similarly, since *F = e−iφ* f, one has: 
 

d*F = e−iφ(− ik ^ *f + d* f).     (VIII.41) 
 
 Maxwell’s sourceless equations then give: 
 

df = ik ^ f, d* f = ik ^ *f.    (VIII.42) 
 
If we compare these equations with (VIII.13) then we see that we have essentially 
replaced ω dt with k = ω dt + ki dxi. 
 Note that, from Frobenius, the existence of such a k as in (VIII.42) implies that when 
f – hence, *f – is a decomposable (i.e., rank two) 2-form the exterior differential systems f 
= 0 and *f = 0 must be completely integrable. 
 Now, this is always the case for electromagnetic waves, due to the basic properties of 
wavelike solutions to the Maxwell equations: 
 

0 = f ^ f = f ^ *f.    (VIII.43) 
 
Hence, M will be doubly foliated by the two-dimensional leaves to each of these 
foliations.  At each point of M one leaf will be tangent to the characteristic variety of the 
field operator and the other one will be normal to it, and their intersection will be tangent 
to a generator of the characteristic variety; we shall discuss this situation in more detail 
shortly.  When projected into Σ, the leaf that is tangent will produce a momentary wave 
surface, while the leaf that is normal will produce the normal trajectory that is followed 
by a point on that surface in time. 
 This is the point at which geometrical optics makes an approximation.  One assumes 
that the spatial variation of the amplitude 2-form f is sufficiently slow compared to the 
variation of the phase function θ in time, which is referred to as either the high-frequency 
limit or the small-wavelength limit.  For wavelengths on the order of visible light and 
smaller, this approximation is generally more than sufficient, although for the purposes of 
radio waves, which can have wavelengths in meters, it is generally inadequate. 
 In order to make the statement of this approximation somewhat more precise, we 
introduce the following notation: 
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k = k̂ω , k̂ ≡ dt − ni dxi,  ni ≡ ki /ω.  (VIII.44) 
 
The components ni then amount to indices of refraction in the various spatial directions, 
as they are reciprocal to the phase velocities ω/ki , which we shall discuss below. 
 This allows us to rewrite (VIII.41) in the form: 
 

1/ω df = i k̂  ^ f, 1/ω d* f = i k̂  ^ *f.   (VIII.45) 
 
 If one takes the high-frequency limit of these expressions then the Maxwell equations 
reduce to the algebraic equations: 
 

0 = k̂  ^ f = k̂  ^ *f,     (VIII.46) 
 

along with the partial differential equation (VIII.40).  One can interpret equations 

(VIII.46) as saying that ̂k − or k, for that matter − is incident on both the annihilating 

plane of f and the annihilating plane of *f, which then implies that ̂k  generates their line 
of intersection. 
 Now, let us examine the 1+3 form of equations (VIII.46).  Thus, we let f = dt ^ u 

+ * sv and *f = dt ^ v − * s u, as before.  We further let k̂  = dt − n, which makes: 
 

k̂  ^ f = + dt ^ (*s v + n ̂  u) − n ^ *s v,  (VIII.47a) 

k̂  ^ *f = − dt ^ (*s u − n ^ v) + n ^ *s u.  (VIII.47b) 
 
 By considering the vanishing of the temporal and spatial parts independently, 
(VIII.47) gives: 

* s v = − n ^ u,  n ^ *s v = 0,   (VIII.48a) 
* s u = + n ^ v,  n ^ *s u = 0.   (VIII.48b) 

 
One sees that these equations are similar to (VIII.22a,b), except that now there is no 
differentiation involved, and we have absorbed the factor of ω into n. 
 Note that now the second equation in each set follows unavoidably from the first. 
 The effect of these equations can be better understood by relating them to the 
conventional forms that they take.  By operating on both sides of the first equations with 
* s , and taking advantage of the fact that *s(a ^ b) = a × b and a ^ *s b = (a ⋅⋅⋅⋅ b)Vs , we can 
put (VIII.48a, b) into the vector form: 
 

v = + n × u,  n ⋅ v = 0,   (VIII.49a) 
u = − n × v,  n ⋅ u = 0.   (VIII.49b) 

 
 Hence, given u one can deduce v, and vice versa.  Similarly, if one given u and v, 
which are basically the Cauchy data for the initial-value problem associated with the field 
equations, when expressed in space-time form, one can derive n by using the first 
equation in either (VIII.48a) or (VIII.48b).  One simply takes the interior product of both 
sides of (VIII.48a) with u, taking into account that u(u) = u2, n(u) = 0: 



210 Pre-metric Electromagnetism 

n = u−2 *s(u ^ v),    (VIII.50) 
  Since the vector form of this is: 

n = || u ||−2 u × v,    (VIII.51) 
 
we see that the 2-form u ^ v is essentially the Poincaré dual of the Poynting vector for the 
wave. 
 Furthermore, when one includes the space-time form of (VIII.43), namely: 
 

u ^ *sv = u ^ *su − v ^ *sv = 0,   (VIII.52) 
which has the vector form: 

u ⋅⋅⋅⋅ v = u2 – v2 = 0,    (VIII.53) 
 
one sees that the set {u, v, ks} represents a set of orthogonal, but not orthonormal, vectors 
at each point of Σ, relative to the spatial metric that is defined by <u, v> = Vs(u ^ *sv). 

 We can also substitute the values of *s u and *s v that we obtained from (VIII.47a, b) 
into the definitions of f and *f to deduce that: 
 

f = k̂  ^ u,  *f = k̂  ^ v.   (VIII.54) 
 
 This makes it clearer just what the nature of the 2-planes that are associated with f and 
* f amounts to.  The plane of f in a cotangent space is spanned by the orthogonal covectors 
k and u, while that of *f is spanned by k and v.  It is traditional to call the plane that is 
spanned by f the polarization plane. 
 
 d.  Propagating discontinuities. Although the Fourier conception of waves as being 
linear superpositions of elementary plane waves is quite mathematically powerful and 
pervasive in its practical applications, there are nonetheless several disadvantages to this 
approach as far as physics is concerned. 

 For one thing, the very concept of a plane wave in R3 is unphysical, since such a 

wave ends up having infinite total momentum and infinite total kinetic energy, due to the 
non-compactness of its support.  Of course, one almost always restricts one’s 

consideration to plane waves in a compact region of R3, but, strictly speaking, such a 

spatial truncation of the wave must necessarily introduce higher-wave-number 
contributions to the spectral density of the wave that imply that it is not really a plane 
wave.  Another disadvantage of planes waves is that they can only be defined globally in 
affine spaces, so their use in more general differentiable manifolds has a purely local 
character. 
 In the Hadamard approach to wave motion [8-12], a wave is defined to be a 
disturbance in a region of a medium that propagates through that medium.  In particular, 
the region of the disturbance is assumed to be bounded by a surface F that one can call a 

singular hypersurface or the wave front.  There might also be a bounding surface at the 
trailing edge of the wave, although generally one expects the shape of the wave envelope 
to decay smoothly from dissipative forces in the medium.  Indeed, waves in even-
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dimensional spaces (i.e., odd-dimensional spacetimes) will always be associated with 
such a decaying “tail.” 
 Across this surface, one expects that there is a finite jump discontinuity in the field 
under consideration or one of its normal derivatives at some order.  For instance, acoustic 
shock waves represent jump discontinuities in the covelocity 1-form u, which represents 
the exterior derivative of the velocity potential function.  One also thinks of the sources 
of mechanical waves as being due to jump discontinuities in the acceleration vector field 
that originate in the fact that the driving force that produces them is approximately time-
impulsive.  That is, as a function of time, it looks like a Dirac delta function about some 
initial time point. 
 For electromagnetic waves, a time-impulsive source current J will produce a jump 
discontinuity in the bivector field h, and we assume that the set of all points at which h is 

discontinuous is the wave front F.  Whether the jump discontinuity in h also produces a 

jump discontinuity in F depends upon the linearity of κ.  For the sake of progress, we 
assume for the rest of this section that F also has a jump discontinuity across F.  We 

denote the discontinuities in the fields in question by [J], [F] and [h], respectively.  They 

then represent a smooth vector field, a smooth 2-form, and a smooth bivector field on F, 

respectively. 
 In order to relate these discontinuities to the pre-metric Maxwell equations, one needs 
to first recognize that the most rigorous formalism in which to treat jump discontinuities 
analytically is in the language of distributions.  We must then reformulate the pre-metric 
Maxwell equations in terms of distributions on differential forms and multivector fields. 
 Since we described several ways of defining continuous linear functionals on Λ* and 
Λ*, we need to first specify which definition that we are using.  Because we are using the 
differential operators d and δ, the definition that is most convenient to our immediate 
purposes is the one that makes these operators adjoint to each other, namely: 
 

<F, A> = #
M

F ∧∫ A = ( )
M

F∫ A V ,   (VIII.55a) 

<h, α> = #
M

α∧∫ h = ( )
M

α∫ Vh ,   (VIII.55b) 

<J, β> = #
M

β∧∫ J = ( )
M

β∫ J V .   (VIII.55c) 

 
 In these expressions, A is an arbitrary smooth bivector field of compact support, α is 
a smooth 2-form of compact support, and β is a smooth 1-form of compact support. 
 The Green formula for d and δ is obtained by integrating the product rule for d(α ^ 
#A): 

<dα, A> + (−1)k <α, δA> = #
M

α
∂

∧∫ A ,  (VIII.56) 

 
which vanishes when M has no boundary or a boundary that is disjoint from the support 
of A.  In that event, the operators d and δ are adjoint with respect to this bilinear pairing. 
 Hence, we can define the exterior product of the distribution F and the divergence of 
the distribution h by way of: 
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<dF, A> = − <F, δA>, <δh, α> = − <h, dα>.  (VIII.57) 

 
Therefore, these definitions allow one to define the differentiation of fields with jump 
discontinuities by differentiating the test fields on which the distributions act. 
 Thus, in order to make sense of the pre-metric Maxwell equations as equations 
involving distributions, one then says that what they really mean is that for every smooth 
trivector field A of compact support and every smooth 3-form α of compact support, one 
has: 

<dF, A> = 0,  <δh, α> = <J, α>,  h = C(F), (VIII.58) 

or: 
<F, δA> = 0,  <h, dα> = − <J, α>,  h = C(F), (VIII.59) 

 
 One can then consolidate these equations into equations for F alone or h alone by 

using the third equation.  In the sourceless case, this gives: 
 

<F, δA> = 0,   <C(F), dα> = 0,  (VIII.60) 
or: 

<C−1(h), δA> = 0,  <h, dα> = 0,   (VIII.61) 

respectively. 
 If F has a jump discontinuity across a hypersurface φ(x) = 0 then we let F− represent 
the restriction of F to the half-space φ(x) < 0 and F+ represents its restriction to φ(x) > 0.  
By the notation [F] = F+ − F− , we intend to denote a smooth 2-form on the hypersurface 
itself that represents the actual jump itself. 
 
 e.  Polarization.  Upon closer inspection of most treatments of the polarization of 
electromagnetic fields [1-6], one sees that the fact that one is using complex electric and 
magnetic field vectors is largely irrelevant to the nature of the discussion.  In particular, 
one does not make use of either the electromagnetic constitutive laws of the medium or 
the Maxwell equations.  Indeed, the essence of the construction amounts to the 

description of how the orbit of U(1) on Euclidian C3, by way of scalar multiplication by 

the factor e−iωt, projects onto the real R3 subspace. 

 Clearly, since U(1) is a circle as a real manifold and its action on C
3 is faithful, the 

image of U(1) is diffeomorphic to a circle.  If a = aR + iaI ∈ C3 is an arbitrary non-zero 

vector then the orbit of a under the action of e−iωt takes the form: 
 
  e−iωta = cos(tω) a – i sin(ωt) a  

= [cos(tω) aR + sin(tω) aI] – i [sin(tω) aR − cos(tω) aI]  (VIII.62) 
 

 The projection of e−iωta onto the real R3 subspace is then: 
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Re[e−iωta] = cos(tω) aR + sin(tω) aI .    (VIII.63) 
 

 Although this is a loop in R3, one can perform a projection of R3 onto R2 (and 

possibly just R) by taking the vectors aR and aI to (aR, 0) and (0, aI), respectively, unless 

aR and aI are collinear as real vectors, in which case, they go to (aR, 0) and (aI, 0), 

respectively.  Hence, the image of Re[e−iωta] in R2 takes the form (aR cos(tω), aI sin(tω)), 

in the non-degenerate case, and (a cos ωt, 0), in the degenerate case, with a = max{aR, 
aI}.  In general, this curve takes the form of an ellipse with the given vectors as semi-
major and semi-minor axes, depending upon the relative magnitudes of the vectors.  As 
we have defined things, the vectors (aR, 0) and (0, aI) will be orthogonal even when aR 
and aI are not, which differs from the standard treatment of polarization.  However, one 
can still distinguish the same three polarization classes, as usual. 
 One can then classify the type of ellipse in terms of the relationship between the two 
real 3-vectors aR and aI. In the generic case, they are non-parallel and unequal in length; 
this is referred to as elliptical polarization.  When they are equal in length, this is called 
circular polarization.  The degenerate case, in which the ellipse flattens into a line 
segment, is called linear polarization. 
 Since a circle has two orientations – viz., clockwise and counter-clockwise – and the 
action of U(1) preserves orientation, we can also speak of the sense in which the orbit of 

a ∈ C3 is traversed.  Rather than using the word “orientation” to describe this situation, 

one uses the word helicity.  That quantity will have the value +1 or −1, depending upon 

the convention that one chooses for the orientation of circles in R3. 

 
 
 2. Characteristics.  For the purposes of this section, in order to avoid confusion we 
shall refer to the constitutive map by the notation C, instead of κ. 
 
 a.  Characteristic polynomial.  In order to find the symbol of the second order 
differential operator □C we need to replace C with its linearization DC if it is nonlinear to 

begin with; from now on, we simply assume that C is linear.  We then find that the 

symbol of the field operator □C is: 

σ[□C , k] = ik ⋅ C ⋅ ek .    (VIII.64). 

 
 From (VIII.5), we see that the components of the linear operator σ[□C , k] are: 

 

σµν[□C, k] = − Cµκλν kκ kλ .   (VIII.65) 

 

 It is illuminating to compute the 4×4 matrix σµν[□C, k] explicitly by regarding 

(VIII.64) as the product of the 4×6 matrix [ ]k I
i

µ
, the 6×6 matrix CIJ, and the 6×4 matrix 
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[ ]k J
e

ν
, respectively, when we choose the coframe θµ for Λ1M, the coframe{bi, #bi} for 

Λ2M, and the reciprocal frames {bi , #bi} and eµ for Λ1M and Λ2M, respectively.  As 
usual, we set bi = θ0 ^ θi and bi = e0 ^ ei .  By direct computation, one finds that: 
 

[ ]k I
i

µ
 = 

0 0 0

( )
i

i i
j j

k

ad kωδ
− 
 − 

, ( )i
jad k ≡ εijk kk =

2 3

2 1

3 1

0

0

0

k k

k k

k k

− 
 − 
 − 

. (VIII.66) 

 

The matrix [ ]k J
e

ν
is simply the transpose of the matrix [ ]k I

i
µ
 since the maps are adjoint to 

each other.  If we give CIJ the usual form that we discussed in Chapter V then the 
multiplication of the matrices gives: 
 

 σµν[□C, k] =  

2

( , ) ( )

ˆ ˆ( ) [ ( ) ( ) ] ( ) ( )

im m in
m m n

jm m jn ij ij im nj
m m n mn

k k k k ad k

k k ad k ad k ad k ad k ad k

ε ωε γ
ωε γ ω ε ω γ γ µ

 − −
 − + + ⋅ − ⋅ −  

ɶ
(VIII.67) 

 

 In general, the bundle map σ[□C , k]: T*(M) → T(M) does not have to be invertible, 

and this depends upon the choice of k.  As we discussed in the chapter on partial 
differential equations, the definition: 
 

P[k] ≡ det σ[□C , k]     (VIII.68) 

 
then defines a polynomial in k that one calls the characteristic polynomial of the 

differential operator □C .  It vanishes iff σ[□C , k] is not invertible, and the zero locus of 

P[k] is called the characteristic hypersurface (or variety) for □C ; we shall then call a k 

that lies in this hypersurface characteristic.  The algebraic equation in k that is thus 
defined: 

P[k] = 0     (VIII.69) 
 

 is then what we call the dispersion law for the wave medium in question. 
 From (VIII.68), one can see that since k appears twice in σ[□C , k] this implies that 

the polynomial P[k] will have a degree that is equal to 2n.  It is, moreover, homogeneous 
in k of degree 2n.  However, there are some traditional reductions that get applied to the 
degree. 
 First, one generally deals with the case of time-invariant constitutive laws on space-

time separable manifolds, so M takes the form R × Σ, where R plays the role of the time 

manifold and Σ is the spatial manifold.  This reduces our map σ[□C , k] to a map from 

T*Σ to T(Σ), and the degree of P[k] to 2(n−1); basically, one considers only the lower 
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right-hand sub-matrix in (VIII.67).  For instance, when n = 4 the polynomial in k that one 
considers is homogeneous and sextic. 
 Second, as we are dealing with the case of electromagnetic waves, the map ek: Λ1(Σ) 
→ Λ2(Σ), φ  ֏ k ^ φ is not invertible for any k, since its kernel is one-dimensional, 

namely, all φ that take the form λk for some scalar λ ∈ R.  This is related to the fact that 

electromagnetic waves have no longitudinal modes of vibration, but are confined to the 
Poynting plane, which is 2-plane in T*M that is spanned by E and H.  Hence, the 
characteristic polynomial reduces to a homogeneous quartic polynomial in k in the 
electromagnetic case: 

P[k] = Pκλµν kλ kκ kµ kν .   (VIII.70) 
 

 By the fact that any polynomial of degree d in the coordinates kµ of Rn* is associated 

with a completely symmetric covariant tensor of rank d, one can define a fourth-rank 
completely symmetric covariant tensor field on M that is associated with the polynomial 
P[k].  Locally, it looks like: 

P = Pκλµν ∂κ ∂λ ∂µ ∂ν .    (VIII.71) 
 
 In the book by Hehl and Obukhov [13], this tensor field is referred to as the Tamm-
Rubilar tensor, since it represents an enlargement of the scope of a tensor that was first 
defined by Tamm [14] in the early Twentieth Century that was defined by Rubilar [15].  
In particular, the latter author derived an expression for the components Pκλµν in terms of 
the components κκλµν of the constitutive law: 
 

Pκλµν = 
1

4!
εαβγδ ερστη καβρ (κ κλ |γδ |µ κν)στη .  (VIII.72) 

 
One sees that, like the polynomial that spawned it, the tensor field is also homogeneous 
of degree four. 
 
 b.  Propagation of discontinuities.  One of the many good reasons for representing 
waves as propagating discontinuities, besides their generality and independence of linear 
space structures, is the fact that if the Cauchy problem for a second-order partial 
differential equation is well-posed then a second-order jump discontinuity in the solution 
– i.e., an acceleration wave – can only be defined across a characteristic hypersurface.  
Hence, the second-order jump discontinuities can only represent wavelike solutions. 
 This result was something that Hadamard showed in his seminal work [8] on the basis 
of compatibility relations for the wave function ψ that followed from the assumption that 
the function [ψ] = ψ+ − ψ− , which is defined on  S, is continuously differentiable to at 
least second order.  The only potentially unresolved aspect of the behavior of ψ across S 
is then in its normal – i.e., time – derivatives.  Now, the first time derivative on S is 
assumed to be continuous, as part of the Cauchy problem, so the issue is whether one is 
free to specify the second time derivative of ψ on S or does it follow automatically by 
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specifying the Cauchy data and demanding that ψ satisfy the wave equation in question, 
viz., □C ψ = 0, everywhere. 

 It is in the process of resolving the latter question that one finds yet another way of 
passing to essentially the symbol of □C and obtaining the characteristic equation.  We 

exhibit this process in the form: 
 
Theorem: 
 
 If F is a weak solution of the sourceless pre-metric Maxwell equations that has a 
jump discontinuity [F] across the hypersurface φ(x) = 0 then that hypersurface is 
characteristic.  In particular: 
 

dφ ^ [F] = 0,  idφ [h] = 0, [h] = C([F]),  (VIII.73) 

so: 
F[dφ] = 0.    (VIII.74) 

Proof: 
 
 Suppose c = c− + c+ is a 4-cycle that intersects φ(x) = 0  such that c− lies in the half-
space φ(x) < 0, while c+ lies in the half-space φ(x) > 0; hence, one also has ∂c− = − ∂c+ .  
This situation is depicted in Fig. 7. 
 

 
φ < 0 

φ > 0 
 

φ = 0 

c+ 
c− ∂c+ ∂c− 

 
 

Figure 7.  A typical 4-cycle that intersects the hypersurface φ(x) = 0. 
 

 On c−  and c+ the adjointness relations take the form: 
 

<dF± , G> − <F± , δG> = #
c

F
±∂

∧∫ G , 

<δh± , α> − <h± , dα> = #
c

α
±∂

∧∫ h . 

 
 Since F± and h± are smooth solutions of the sourceless pre-metric Maxwell equations, 

the left-hand sides vanish.  As for the right-hand sides, by addition, we see that for every 
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smooth bivector field G of compact support and every smooth 1-form α of compact 
support one must have: 

    0 = #  + #
c c

F F
− +

− +∂ ∂
∧ ∧∫ ∫G G = [ ] #

c
F

+∂
∧∫ G , 

    0 = # #
c c

α α
− +

− −∂ ∂
∧ − ∧∫ ∫h h = #[ ]

c
α

+∂
∧∫ h . 

 
In particular, they are true when #G = α = dφ. 
 Since they are also true for any choice of c, one has: 
 

dφ ^ [F] = 0,  [#h] ^ dφ = 0,  [h] = C([F]), 

 
which is equivalent to (VIII.73). 
 By solving the first equation as [F] = dφ ^ [A], where [A] is a 1-form on the 
hypersurface, one can combine the equations into: 
 

(idφ ⋅ C ⋅ edφ)[A] = 0, 
which is the same as: 

σ[ C□ , dφ][A] = 0. 

 
 The condition for this to admit a non-trivial solution [A] is the vanishing of det(σ[ C□ , 

dφ]), which gives (VIII.74). 
 
 
 3.  Examples of dispersion laws.  In order to derive specific dispersion laws for 
specific constitutive laws, one finds that it is often easiest to start with the block matrix 
(VIII.67) and evaluate the determinant when one restricts the submatrices of the 
constitutive law accordingly. 
 
 a.  Isotropic media.  In the case of an isotropic medium, for which εij = ε(x)δij , µij = 
µ(x)δij, 

i
jγ = ˆ j

iγ  = 0, one finds that (VIII.67) takes the form: 

  σµν[□C, k] =
2

2 (1/ ) ( ) ( )

i

j ij im nj
mn

k k

k ad k ad k

ε εω
εω εω δ µ δ

 −
 − −  

 

=
2

2 (1/ )

i

j ij i j

k

k k k

κ ω
ε

ω ω δ εµ
 −
 − −  

,    (VIII.75) 

 
in which κ2 = δij ki kj takes the form of the square of the Euclidian spatial norm of the 
spatial wave number covector ki dxi. 
 Taking the determinant gives: 
 

det(σµν[□C, k]) = ε4 (ω2 – c2κ2) 2,    (VIII.76) 

 



218 Pre-metric Electromagnetism 

in which c2 = 1/εµ then becomes the speed of propagation. 
 The vanishing of the determinant then reduces to the vanishing of a quadratic 
polynomial – viz.: 

gµν kµ kν = ω2 – c2δij ki  kj ,    (VIII.86) 
 
which involves the constitutive properties of the spacetime only by way of c. 
 Since the resulting quadratic form on k that this equation defines has a normal 
hyperbolic signature type (+1, −1, …, −1), one sees that this is where the light cones 
finally originate, as well as the unit proper time hyperboloids and mass shells. 
 
 b.  Anisotropic optical media - Fresnel analysis.  In traditional geometrical optics [3-
6], one deals with electromagnetic constitutive laws κ of a very particular form, as we 
discussed in Chapter V.  Mostly, one assumes that the γ andγ̂  matrices vanish, while the 

magnetic properties of the medium are linear, homogeneous, and isotropic, so µij = µδij , 
and the dielectric tensor εij is symmetric.  One can then reduce the matrix (VIII.67) to: 
 

 σµν[□C, k] = 2

( , )

( ) ( )

im
m

jm ij i mj
m m

k k k

k ad k ad k

ε ωε
ωε ω ε

 −
 − −  

  (VIII.87) 

 
Next, one factors out the ω2, while keeping in mind that ni = ki/ω, and obtains: 
 

 σµν[□C, k] = 
( , )

( ) ( )

im
m

jm ij i mj
m m

n n n

n ad n ad n

ε ε
ε ε

 −
 − −  

   (VIII.88) 

 
 In the usual formulation, the matrix that one obtains from the algebraic form of the 
Maxwell equations – viz., v = cn × u, ε(u) = − cn × v – is: 
 

σιj = εij – (n2δij – ninj)     (VIII.89) 
 
However, we see that this matrix is precisely the spatial sub-matrix in (VIII.87). 
 We can then think of the polynomial in the components of the covector: 
 

Φ[n] = det σij      (VIII.90) 
 

as a polynomial in the inhomogeneous coordinates of RP3*, which we call the Fresnel 

polynomial. 
 If one further considers εij in its principal frame, which then gives ε ij the form diag[εx, 
εy, εz], then when one takes the determinant of σij one obtains a characteristic equation in 
the form: 
 
  0 = Φ[n] = 2 2 2 2[ ]x y y

x y yn n n nε ε ε+ +  
2 2 2[ ( ) ( ) ( )]x y z y x z z x y x y z
x y zn n nε ε ε ε ε ε ε ε ε ε ε ε− + + + + + + ,  (VIII.91) 
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which can be put into the more elegant forms: 
 

22 2

2 2 2

yx z
x y z

nn n

n n nε ε ε
+ +

− − −
=

2

1

n
   (VIII.92) 

or: 
22 2

2 2 2 2 2 2

1 1 1 1 1 1
yx z

p x p y p z

nn n

v v v v v v

+ +
− − −

,    (VIII.93) 

 
in which vp = ω/κ =1/n is the phase velocity of the wave whose normal is ni and we have 

introduced the principal velocities vi =1/ iε of the medium. 
 However, the form (VIII.91) makes it more explicit that one is dealing with a quartic 
polynomial in the inhomogeneous coordinates ni of the wave normal n. 

 The quartic hypersurface in RP3* that is defined by either (VIII.91), (VIII.92), or 

(VIII.93) is called the Fresnel normal hypersurface. 
 The general case of εx, εy, εz all distinct corresponds to the case of a biaxial medium.  
If we assume, without loss of generality that εx < εy < εz then one octant of the Fresnel 
normal hypersurface can be depicted as in Fig. 8, along with its intersections with the 
coordinate planes. 
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Figure 8.  The general Fresnel quartic (biaxial media). 

 
 As one can see from the figure, it is not unheard of for the Fresnel quartic to be self-
intersecting and the existence of such a singularity corresponds to the possibility of 
conical refraction.  That is, one incoming ray can produce a cone of outgoing ones. 
 A possible property of P[k] that is of considerable interest in electromagnetism is 
birefringence.  In optics, this is associated with a certain type of anisotropy that is found 
in “uniaxial” media (see Landau, et al. [3]).  For such media, two of the principal values 
of εij – say, εx and εy – are equal.  One refers to the two equal values as the ordinary 
values, while the third one is the extraordinary value, and one denotes them by εo and εe, 
respectively. 
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 Birefringence refers to the fact that when P[kµ] is quartic, if one fixes the spatial 
components ki of k then the remaining polynomial P[ω, ki] is quadratic in ω2, and its roots 
can be shown to be real.  This then implies that for any spatial direction of propagation 
there will generally be two distinct positive values of ω, and therefore two distinct values 
of the phase velocity ω/κ, where κ2 = δijki kj .  This leads to double refraction of a given 
light ray.  It is customary to refer to the resulting waves of the pair as the ordinary and 
extraordinary waves.  This phenomenon can be observed by placing a slab of calcite over 
a page of print, which produces double images of the letters.  The fainter image is then 
due to the extraordinary waves. 
 In terms of the Fresnel quartic, the effect of a uniaxial dielectic is to cause the quartic 
polynomial to factor into a product of quadratic ones: 
 

(n2 – εo) 2 0 2 2 0[ ( ) ]e e
z x yn n nε ε ε ε+ + −  = 0.  (VIII.94) 

 
The factorization of the polynomial then implies that the quartic consists of the union of a 
sphere and an ellipsoid that intersect at their North and South poles.  The sphere is 
indicative of an isotropic medium, so one sees why the corresponding principal value of 
εij would be referred to as ordinary. 
 There are two possibilities for the extraordinary ellipsoid corresponding to whether it 
is outside or inside the ordinary sphere.  In the former case, one says that the medium is 
positive, while in the latter case one refers to it as negative.  We depict these two 
possibilities in Fig. 9 by means of the x−z sections of the surfaces. 
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Figure 9.  Fresnel quartic (uniaxial media). 
 
 
 b.  Skewon contributions [16].  Although a purely skewonic medium would give a 
vanishing dispersion polynomial, which would imply the absence of wave modes, 
nonetheless, as a contribution to the principal part of a constitutive tensor field, it can 
have an effect. 
 According to the analysis that was given to the subject in [16, loc. cit.], one must 
distinguish between real and imaginary skewon contributions.  Furthermore, one can 
classify skewons in terms of a basic decomposition as having “electric Faraday,” 
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“magnetic Faraday,” and “magneto-electric optical activity” type.  (see, loc. cit. for all 
definitions involved). 
 A real skewon contribution amounts to a source of resistivity and energy absorption 
for waves.  For a skewon of “electric Faraday” type, the Fresnel wave surface can take on 
the character of a torus.  That is, it has changed its topology, as well as its shape.  When a 
real skewon has the “magneto-electric optical activity” type, the Fresnel surface can 
become two intersecting torii. 
 In the case of imaginary skewon contributions, one has to distinguish not only types 
of skewons, but also the ones that are “small,” “medium,” and “large” in magnitude when 
compared to the principal part.  Generally, they are associated with natural optical 
activity and the Faraday effects.  For the large ones of “magneto-electric optical activity 
type,” the Fresnel surface will become merely an oblate spheroid, while for small ones it 
will be two concentric spheroids.  For those of “magnetic Faraday” type, the large ones 
give intersecting hyperboloids, the small ones give intersecting spheroids, and in between 
one finds intersecting paraboloids. 
 
 c.  Axion contributions.  A direct verification using (VIII.67) shows that a axion part 
to a constitutive law does not contribute to the dispersion polynomial.  That is, it does not 
affect the propagation of waves in the geometrical optics approximation.  Perhaps that is 
why sometimes the vanishing of the axion part is a basic axion of electromagnetic 
constitutive laws that is referred to as the “Post constraint,” since it was Post [17] who 
advocated that axiom. 
 However, as Itin [18] observes, if one goes beyond that approximation and considers 
waves for which the amplitude function is not effectively constant then the first 
derivatives of that amplitude can couple to the axionic part in a non-trivial way.  In 
particular, one finds that dispersion polynomial is no longer a homogeneous polynomial 
in the wave covector, but an inhomogeneous one. 
 
 d.  Bi-metric media.  There often exists a factorization of the quartic polynomial P[k] 
into a product of quadratic polynomials (which is called bi-metricity by Barcello, 
Liberati, and Visser [19]): 

P[k] = g(k, k) ( , )g k k .    (VIII.95) 
 

Hence, the Tamm-Rubilar tensor field that is associated with P[k] takes the form of 
symmetrized tensor product of two Lorentzian metrics on T*(M): 
 

P = g gɶ⊙ .     (VIII.96) 
 

 The components of P are then obtained from those of g andgɶ  by way of: 
 

Pκλµν = 1
6 ( )g g g g g g g g g g g gκλ µν µλ κν νλ µκ κµ λν κν µλ µν κλ+ + + + +ɶ ɶ ɶ ɶ ɶ ɶ . (VIII.97) 

 
 Although fourth-degree polynomials in more than one real variable do not always 
have to factorize into products of quadratics, nonetheless, in the case of electromagnetic 
waves, it is widely known that as long as the Lagrangian for the electromagnetic field F 
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depends only upon the Lorentz invariants F ^ F and F ^ *F, the characteristic polynomial 
will  factorize, even in the nonlinear case.  (See [15].) 
 
 e.  One-loop effective vacua.  From the analysis that was given in Barcello, Liberati, 
and Visser [19], one sees that the dispersion laws for both the Heisenberg-Euler and 
Born-Infeld media take the general bimetric form: 
 

(ηµν + ε1Tµν)(ηµν + ε2Tµν) = 0.                                (VIII.98) 
 
In this equation, the components Tµν refer to the Faraday stress-energy-momentum tensor 
field for the background electromagnetic field, which we will discuss more thoroughly in 
Chapter X, while the scalar factors ε1 and ε2 depend upon the electromagnetic field 
strengths and would generally have units of 1/energy density.  Hence, in this case the 
geometry of spacetime is perturbed quite directly by the presence of a background 
electromagnetic field. 
  
 f.  Plasmas.  In plasmas, not only the constitutive laws can vary, but so can the field 
equations themselves, depending upon what degree of interaction (usually collisions) one 
is assuming.  Furthermore, plasmas are capable of propagating not only electromagnetic 
waves, but also mechanical – i.e., acoustic – ones.  Rather than derive the dispersion 
laws, which would take us quite far afield, we simply summarize some of them that one 
deals with in the linear case (cf., [20]). 
 In general, waves in plasmas can be either acoustic or electromagnetic, and can be 
concerned with the basic oscillations of either the electrons or the ions.  Furthermore, as 
we already saw in Chapter V, the presence or absence of a background magnetic field B0 
can affect whether the dielectric – hence, optical – properties of the plasma are isotropic 
or anisotropic.  They can also exhibit linear or nonlinear wave behavior, depending upon 
their amplitudes, even though often the actual number densities or temperatures involved 
can be relatively casual. 
 Electron waves can be electrostatic or electromagnetic and the dispersion laws for 
electrostatic electron waves are: 
 

ω2 – 2 23/ 2 thv k = 2
pω ,                    (B0 = 0 or k || B0)                  (VIII.99a) 

ω2            = 2
hω ≡ 2 2

p cω ω+       (k ⊥ B0)                                (VIII.99b) 

 
respectively.  In these expressions, vth = (2KTe/m)1/2 is the thermal velocity of the 
electrons, while ωp = (n0e

2/ε0m)1/2 is the plasma frequency of the electrons when their 
equilibrium number density is n0, and ωh is called the upper hybrid frequency.  The 
plasma oscillations come about due to the fact that the equilibrium configuration of the 
electrons is stable, so any perturbation of an electron from equilibrium will produce a 
counter-electric field that tends to restore the equilibrium, bur produces a characteristic 
oscillation about the equilibrium configuration. 
 Note that the second relation (VIII.99b) does not give an actual dispersion law, so no 
traveling wave actually propagates, only a stationary oscillation. 
 For electromagnetic electron waves, one has: 
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ω2 – c2 k2 = 2
pω ,                     (B0 = 0)                             (VIII.100a) 

 = 2
pω ,                     (k ⊥ B0, E1 || B0)              (VIII.100b) 

   =
2 2

2
2 2

p
p

h

ω ω
ω

ω ω
 −
  − 

,   (k ⊥ B0, E1 ⊥ B0)             (VIII.100c) 

 = 2
p

c

ωω
ω ω
 
 − 

,       (k || B0)                           (VIII.100d) 

= 2
p

c

ωω
ω ω
 
 + 

,        (k || B0),                         (VIII.100e) 

 
in which ωc = eB0/m is the cyclotron frequency of the electron in the magnetic field. 
 One sees that in the absence of a background magnetic field, the dispersion law has 
the same “Klein-Gordon” form as in the electrostatic case, but with a different speed of 
propagation, and in which the plasma frequency plays a role that is analogous to the 
Compton frequency of a massive wave in relativistic quantum wave mechanics.  In 
particular, the electromagnetic waves are not obtained from the vanishing of the 
characteristic polynomial – i.e., its zero locus – but from a non-zero locus.  Whether this 
analogy between plasma waves and matter waves proves to be a useful tool in 
understanding quantum physics clearly deserves more attention. 
 The presence of a background field, the dielectric tensor becomes anisotropic, which 
leads to a bi-metric situation.  When the background magnetic field is perpendicular to 
the wave vector, a wave that obeys (VIII.100b) is referred to as an ordinary wave, while 
(VIII.100c) describes the extraordinary wave, although the convention is reversed from 
the usual optical terminology.  When B0 is parallel to the wave vector, one has two types 
of waves: (VIII.100d) describes the whistler mode and (VIII.100e) describes L waves. 
 Ion waves also come in the two types according to electrostatic and electromagnetic, 
and these can be further classified according to the relationship between the wave vector 
k and the background magnetic field. 
 For the electrostatic waves, one has: 
 

 ω2 − 2 2
sv k = 0,                     (B0 = 0 or k || B0)          (VIII.101a) 

ω2 − 2 2
sv k = 2

cΩ ,                   (k ⊥ B0)                        (VIII.101b) 

ω2            = 2
lω .                                                         (VIII.101c) 

 
Now, the speed vs = [(γeKTe + γiKTi)/M]1/2 is the speed of sound in the plasma, when the 
number fraction of the electrons is γe and that of the ions is γi , since the first type of wave 
is acoustic in character.  Ωc = eB0/M is the cyclotron frequency of the ions in the 
magnetic field, and one calls the waves described by (VIII.101b) electrostatic ion 
cyclotron waves.  The last law (VIII.101c) does not describe a wave, but only a state of 
oscillation at the lower hybrid frequency ωl = (Ωcωc)

1/2. 
 As for electromagnetic ion waves, one first finds that there are no such things in the 
absence of B0, but when it is non-vanishing, there are two types: 
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ω2 − 2 2
Av k = 0,                     (k || B0)                           (VIII.102a) 

 

ω2 −
2 2

2 2
2 2
s A

A

v v
c k

c v

 +
 + 

= 0.         (k ⊥ B0)                        (VIII.102b) 

 
The first ones are called Alfvén waves, which are hydromagnetic in character and vA 

= 0 0 0/B n Mµ  is then their speed of propagation, while the second ones are called 

magnetosonic waves, and one sees that their speed of propagation is more involved. 
 One notes the following recurring aspects of these dispersion laws: 
 1.  The ubiquitous role that seems to be played by laws of the Klein-Gordon type. ω2 
− v2k2 = 2

0ω  for suitable choices of the parameters v and ω0 . 
 2.  The fact that longitudinal electromagnetic wave modes are possible in plasmas, as 
well as transverse ones. 
 These dispersion laws define certain characteristic frequencies namely cutoffs and 
resonances.  A cutoff frequency is defined by a frequency at which k (and therefore the 
index of refraction n = k/ω, as we shall see)) vanishes.  This is equivalent to saying that 
the phase velocity vp goes infinite.  Conversely, a resonance is a frequency at which 
either k or n goes infinite (i.e., vp goes to zero). 
 In the case of the extraordinary wave (VIII.100c), one has a resonance at the hybrid 
frequency and the cutoff frequencies are the roots of: 
 

2 2
c pω ω ω ω−∓ = 0,                                          (VIII.103) 

namely: 

ωR = 2 21
2 4c c pω ω ω + +
 

,         ωL =
2 21

2 4c c pω ω ω − + +
 

.              (VIII.104) 

 
 The propagation of transverse electromagnetic waves in the Earth’s ionosphere is 
limited by a cutoff frequency on the order of 10 MHz.  Hence, radio waves of lower 
frequency will not penetrate the ionosphere, but only reflect back.  Although this makes 
them useless as a means of communicating with spacecraft outside the ionosphere, 
nonetheless, it makes it possible for shortwave radio transmissions of low power to 
communicate with stations over the Earth’s horizon from the transmitting antenna by 
means of successive reflections. 
 An important aspect of plasma oscillations is that they are damped by what amounts 
to the interaction of the plasma particles with passing waves.  In effect, there is a 
resonance in this coupling when the particles have a velocity equal to the phase velocity 
vφ = ω/k of the wave.  When the velocities v are far from vφ , there is essentially no energy 
exchanged between the wave and the particle.  As v approaches vφ from below, a particle 
gains energy from the wave and as it approaches vφ from above it loses energy to the 
wave.  When the velocities agree there is no energy lost or gained and the particle is 
pushed along by the wave like a surfboard. 
 If one assumes that the number density function f(x, v) for the velocities of the 
particles is Maxwellian then this tends to favor slow particles, which implies a damping 
of the wave itself due to the energy that it is losing to the particles and this damping, 



Electromagnetic waves                                          225 

which is not associated with any actual collisions between particles, is called Landau 
damping. 
 If one linearizes the Vlasov equation for f, which is the form that the Boltzmann 
equation takes for plasma dynamics, around a Maxwellian equilibrium distribution f0(x, 
v) then the resulting dispersion law for plasma oscillations is: 
 

ω(k) =
2

0
2

1
2

p
p

v v

f
i

k v
φ

ωπω
=

 ∂ 
 +   ∂  

.                                    (VIII.105) 

 
The presence of damping in this expression derives from the fact that the imaginary part 
of ω(k) is negative. 
 Nonlinear wave phenomena are almost too numerous to mention.  We briefly mention 
some of them just to give an impression of how wide-ranging they are. 
 1. One finds that “drift waves,” in plasmas, whose amplitudes should grow 
exponentially in time, actually seem to reach a saturation limit, which is a symptom of 
nonlinearity in the dynamics of the wave. 
 2. Another common symptom of nonlinearity in the dynamics of waves is the 
changing of the shape of waves over time, although sometimes that can be accounted for 
by dispersion in a linear model.  For instance, the breaking of surface wave on the ocean 
as it approaches the shore is due to the fact that the speed of propagation depends upon 
the depth of the water, which is different for the leading and trailing edges. 
 3. Waves in fluid media of sufficient amplitude often give rise to turbulence, and 
plasma waves are no exception. 
 4. The Landau damping that first appears in the linear approximation for the 
diffusion equation (viz., the Vlasov equation) eventually takes on a nonlinear form when 
one gives the Vlasov equation its full nonlinear treatment. 
 5. One has interactions between the plasma waves and the particles of the plasmas, 
such as particle trapping and plasma echoes, as well as interactions between the waves, 
which are somewhat analogous to photon-photon scattering in quantum electrodynamics. 
 6. One finds that the same nonlinear Schrödinger equation that played a role in 
nonlinear optics also plays a role in nonlinear plasma waves, while the Koortweg-deVries 
(KdV) equations, which originally described one-dimensional waves in shallow water, 
also appears. 
 
 
 4.  Speed of wave propagation.  Although the speed c of electromagnetic wave 
propagation in vacuo is treated as a “fundamental constant” in the eyes of special 
relativity, as well as quantum electrodynamics, nonetheless, the very fact that vacuum 
polarization seems to be fundamental to almost all quantum electrodynamical effects 
suggests that it is better to regard c as a derived constant, namely: 
 

c = 0 01/ ε µ ,     (VIII.106) 

 
and to recognize that the constancy of c would only be a consequence of the constancy of 
ε0 and µ0, or at least their product. 
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 When one takes vacuum polarization into account, one must consider the possibility 
that both of these vacuum parameters are functions of the electromagnetic field strengths 
that are present in the region of space under consideration.  Hence, one might recover the 
classical definition of c as an asymptotic limit in the absence of fields: 
 

c = 
0

0 0

1
lim

( ) ( )F F Fε µ→
.   (VIII.107) 

 
 In full generality, however, since the parameters ε0 and µ0 are part of the constitutive 
law of the medium in question we should like to regard the speed of propagation of 
waves in a given medium as being a property of the medium that is derived from more 
fundamental assumptions about that constitutive law.  In fact, it is only in the case of 
isotropic media that one can give any meaning to the notion of a unique speed of 
propagation at each point, and only with the further restriction of homogeneity that one 
can speak of constancy.  In the general inhomogeneous, anisotropic medium the speed of 
propagation depends upon both position and direction, as well as possibly time and non-
local considerations. 
 In order to derive the speed of propagation of electromagnetic waves in a medium 
from the constitutive law, one first has to recognize that since there is more than one way 
of defining a “wave” in the first place there is also more than one way of defining its 
speed of propagation 1.  The two that we shall consider are the phase velocity and the 
group velocity. 
 First, assume that the tangent and cotangent bundle of the spacetime manifold have 
been given a specific choice of space-time splitting.  The phase velocity of propagation of 
a wave is a spatial vector field that is associated with the wave covector k = ω dt – ki dxi, 
namely: 

vp =
1 2 3( , , )p p pv v v , i

pv =
ik

ω
,  i = 1, 2, 3.  (VIII.108) 

 
Hence, vp depends only upon k and the choice of space-time splitting, and not on the 
constitutive law.  This basically accounts for the choice of the term “phase” in the 
definition, since it effectively amounts to the velocity that is associated with the isophase 
foliation defined by k itself when one chooses a space-time splitting. 
 One must note that there is something geometrically unnatural about taking the 
inverses of the components of vectors, since the operation is certainly not invariant under 
changes of frames.  However, if we form the triple of components: 
 

n = (n1, n2, n3),  ni = − ik

ω
    (VIII.109) 

 
then we see that the map from (ω, − ki) to (n1, n2, n3) makes perfect projective 
geometrical sense as the projection of the homogeneous coordinates for a chart on the 

                                                
 1 For a thorough treatment of the other definitions that we do not use, see the book by Brillouin [21].  
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projective space RP3 onto the inhomogeneous coordinates, as we pointed out in chapter 

II.   Hence, the normal covector n at each point x ∈ M that is so defined is really the line 
[k] through the origin in *

xT M  that is generated by the covector k.  It is important to note 

that this line is actually defined independently of any space-time splitting.  Hence, the 
three-dimensional “rest space” that is most appropriate to geometrical optics is really a 
projective space, not an affine one.  One then considers the notion of the projectivized 
cotangent bundle PT*M, whose fibers are the projective spaces*xPT M obtained from the 

cotangent spaces*xT M . 

 In order to define the group velocity, one must also consider the dispersion law P[k] = 
const. that follows from the constitutive law and field equations.  Although in elementary 
physics, one usually assumes that the dispersion law has been solved for ω as a function 
of ki , so one can define: 

i
gv =

ik

ω∂
∂

,     (VIII.110) 

 
since this implies that ∂P/∂ω is non-vanishing, one can also define: 
 

i
gv = − /

/
iP k

P ω
∂ ∂
∂ ∂

.    (VIII.111) 

 
 This definition has an interpretation in the language of projective geometry that is 
analogous to the previous interpretation of the normal covector.  As we shall see below, 
the partial derivatives in the quotient are all components of a velocity vector field v on 
T*M that represents part of the characteristic vector field XP that is associated with P[k]: 
 

vµ =
1

4

P

kµ

∂
∂

,     (VIII.112) 

which makes: 

i
gv = − 

0

iv

v
.     (VIII.113) 

 
 Hence, we see that the triple of group velocity components 1 2 3( , , )g g gv v v  is better 

regarded as the inhomogeneous coordinates of a line [v] in the projectivized tangent 
bundle PT(M), whose fibers are then the projective spaces PTxM associated with all lines 
through the origins of the tangent spaces, than as a section of the tangent bundle itself.  
Since we shall have much more to say about the role of projective geometry in spacetime 
structure in chapter XI, we suspend our discussion on that point. 
 We shall point out that there is a duality defined by P[k] that links k with v, such that 
the dispersion law P[k] = 0 becomes k(v) = 0, while the image of this in the projective 
spaces is n(vg) = 1.  Indeed, this sort of duality depends only upon the assumption of the 
homogeneity of the function P[k] and the invertibility of its Hessian, and not the 
assumption that it is a quadratic polynomial, as well. 
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 Naturally, it is illuminating to see how the foregoing constructions work in the 
familiar case of a quadratic – i.e., Lorentzian − dispersion law: 
 

P[k] = 1
2 (ω2 – c2 k2) = 21

02 ω ,  k2 = gij ki kj,  (VIII.114) 

 
in which ω0 is a constant that may or may not be zero and c has its usual meaning, 
although it is mostly being used to convert the spatial dimension to the time dimension. 
 This makes: 

v0 = ω,  vi = − c2 gij kj ,    (VIII.115) 
so: 

 i
gv =

2 ic k

ω
,     (VIII.116) 

 
and in the Euclidian case, in which ki = ki, one has: 
 

i
pv i

gv  = c2.          (VIII.117) 

 
One thus sees that generally the phase velocity and the group velocity are quite distinct 
from each other. 
  Let us compare the two velocities that one obtains in the lightlike case of ω0 = 0 
with the one that one obtains in the timelike case in which ω0 > 0.  In the former case, 
one can say that the dispersion law is simply: 
 

ω(k) = ck.     (VIII.118) 
This makes: 

i
pv =

i

ck

k
, i

gv =
ick

k
.    (VIII.119) 

 
 When one computes the spatial norms of these vectors relative to gij , which is inverse 
to gij, one gets: 

vp = vg = c.     (VIII.120) 
 
Thus, in this case either the phase velocity or the group velocity represents the most 
commonly-used way of referring to the speed of propagation of electromagnetic waves. 
 One also verifies that: 

ni
i
gv = 

2 i
ik c k

ω ω
=

2
ck

ω
 
 
 

= 1.    (VIII.121) 

 
 When ω0 > 0, one can rewrite the dispersion law as: 
 

ω =
2

01ck
ck

ω +  
 

.     (VIII.122) 
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This dispersion law approaches the lightlike one as k grows indefinitely large. 
 This time, we get: 

i
pv =

2

01
i

ck

k ck

ω +  
 

, i
gv =

2
01 ( / )

ick

k ckω+
,   (VIII.123) 

so: 

vp = 
2

01c
ck

ω +  
 

=
k

ω
, vg =

2
01 ( / )

c

ckω+
.  (VIII.124) 

 
From the facts that vg goes to zero as k goes to zero and that it goes to c as k grows 
indefinitely large, we then see that the group velocity behaves more like the conventional 
velocity of a massive particle than the phase velocity, which grows indefinitely large as k 
goes to zero. 
 An interesting consequence of the first of these equations is that: 
 

2

2
1 gv

c
− = 0ω

ω
,     (VIII.125) 

 
which shows that the Fitzgerald-Lorentz factor in special relativity can just as well be 
regarded in terms of the wave covector as in terms of the phase velocity vector. 
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CHAPTER IX 
 

Geometrical optics 
 

 
When one has obtained a dispersion polynomial P[k], which is a differentiable function 
on the cotangent bundle T*M to the spacetime manifold M, one can take advantage of its 
natural symplectic structure to obtain a characteristic vector field on T*M and a 
bicharacteristic flow whose integral curves project to generalized null geodesics in M.  
One obtains supplementary contributions to the geodesic equations, in addition to the 
generalized Levi-Civita contribution that one obtains for quadratic dispersion 
polynomials, which are based in the non-quadratic nature of the dispersion law.  Hence, if 
the origin of the non-quadratic nature of the dispersion law is vacuum polarization due to 
high field strengths then one is justified in thinking of the departure of the null geodesics 
from the curves that one obtains in the quadratic case as a form of “quantum fluctuations 
about classical extremals.” 
 Furthermore, since the derivation of a dispersion law follows only from the 
geometrical optics approximation, the deduction of null geodesics as the bicharacteristics 
of the field equations, which is so fundamental to the geometry of spacetime in the eyes 
of general relativity, is nevertheless a high-frequency (short-wavelength) approximation 
to a more involved geometrical picture that pertains to wave mechanics.  Hence, one must 
also regard the diffraction effects that geometrical optics overlooks as being another 
source of quantum fluctuations. 
 Since the role of projective geometry in pre-metric electromagnetism is so 
fundamental and pervasive, we shall return to address it more thoroughly in Chapter XII.  
However, since the topic appears naturally in the context of geometrical optics, we shall 
nonetheless mention it briefly before then.  At the root of the introduction of projective 
geometry is the fact that light rays have no preferred parameterization as curves so one 
must think in terms of tangent lines to the null geodesics, not tangent vectors.  Similar 
considerations also apply to the wave covector, namely, it defines the same tangent 
hyperplane as any other covector that differs by a non-zero scalar multiple.  Hence, one 
must pass from the tangent and cotangent bundles to their projectivizations in order to 
obtain the three-dimensional “rest spaces” in which geometrical optics takes place, rather 
than the usual space-time decompositions that conventional relativity considers. 
 We must also address the geometric nature of Huygens’s principle in the context of 
pre-metric electromagnetism.  As it turns out, the basic shift in emphasis that is required 
is from the arc-length functional that one obtains from a metric to the elapsed-time 
functional that is defined by the wave covector and the dispersion law.  One finds that the 
resulting propagation of phase– i.e., the envelope of a family of elementary hypersurfaces 
that all represent the same elapsed time along a null geodesic – has a natural 
interpretation in terms of contact geometry, while the usual propagation of amplitude by 
Green function techniques is only appropriate to linear wave equations.  However, one 
can consider more general “transport equations” for the propagation of amplitude. 
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 1.  The generalized eikonal equation.  So far, by means of the geometrical optics 
approximation, we have reduced the pre-metric Maxwell equations from a set of first-
order partial differential equations in the time-varying electric and magnetic fields to an 
algebraic equation involving the wave covector k = ω dt − ki dxi and a first-order linear 
partial differential equation for the phase function φ. 
 

P[k] = 0, k = dφ.     (IX.1) 
 
Hence, one can combine them to obtain the generalized eikonal equation in the form: 
 

P[dφ] = 0,     (IX.2) 
 
which will be nonlinear first-order partial differential equation for φ. 
 In order to obtain the spatial form of the eikonal equation one must first observe that, 
from what we said above, the three-dimensional “space” in question is really the 

projective space RP3*, in the form of the projective cotangent spaces, not the vector space 

R
3, as represented by hyperplanes in the cotangent spaces.  Hence, we must first look at 

the projection of the dispersion law P[k] = 0 onto PT*M. 
 We accomplish this by factoring k into ω(dt – n) with n = ni dxi, ni = ki / ω.  Since P[k] 
is a homogeneous quartic polynomial in k, this gives: 
 

0 = ω4P[n],     (IX.3) 
with: 

P[n] = P0 + P1[n] + P2[n] + P3[n] + P4[n],   (IX.4) 
 
in which Pk[n] refers to a homogeneous polynomial in n of degree k. 
 However, since P is also quadratic in ω2 one expects that the odd-degree polynomials 
will vanish, which leaves only: 
 

0 = P0 + P2[n] + P4[n],    (IX.5) 
as a spatial dispersion  law. 
 We must also replace the requirement that the spacetime 1-form k be exact with the 
requirement that spatial 1-form n = ni dxi be exact: 
 

n = dθ,      (IX.6) 
 

where θ(xi) is then a spatial phase function on RP3. 

 By combining the dispersion law Φ[n] = 0 with this differential expression for the 
wave normal n one obtains: 

0 = P0 + P2[dθ] + P4[dθ]    (IX.7) 
 
for the spatial form of the generalized eikonal equation. 
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 This equation represents a nonlinear first order partial differential equation for the 
spatial phase function θ, which takes the form of the time-invariant Hamilton-Jacobi 
equation when one regards the dispersion polynomial P[k] as a Hamiltonian function on 
the cotangent bundle of Σ. 
 It takes the component form: 
 

0 = P0000
 +

006 ij
i j

P
x x

θ θ∂ ∂
∂ ∂

+ ijkl
i j k l

P
x x x x

θ θ θ θ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 .  (IX.8) 

 
 At this point, it helps to look at the form that equation (IX.8) takes when P is the 
quadratic form η that defines Minkowski space: 
 

 0 = η(dt, dt) + 2η(dt, dθ) + η(dθ, dθ),   (IX.9) 
 
which then reduces to: 

0 = 1 – c2δij θ,i θ,j    (IX.10) 
by orthogonality. 
 Finally, this gives the partial differential equation for θ: 
 

ij
i jx x

θ θδ ∂ ∂
∂ ∂

= n2.    (IX.11) 

 
 Of course, (IX.8) is still considerably more complicated than (IX.11), so we consider 
the fact that for a broad class of electromagnetic constitutive laws, including most of the 
popular nonlinear ones, the dispersion relation factorizes into a product of quadratic 
relations, as in (VIII.72).  We see that it is not necessary to formulate a single quartic 
eikonal equation because it is sufficient to note that a polynomial P[k] of the form 
(VIII.72) vanishes iff either g(k, k) or ( , )g k k vanishes, independently of each other.  
Hence, one simply obtains the union of the solution sets for quadratic eikonal equations 
of the form (IX.7), when δij is replaced with either – gij or − ijg , and there will be 
different functions for n2. 
 A subtle point that one must consider in the foregoing is that since n =1/ω ks , with ks 
= φ,i dxi, unless one assumes that ω is spatially homogeneous, one has no guarantee that 
the resulting 1-form is exact, even when ks is.  A necessary integrability condition for this 
is that n must be closed, which gives: 
 

dks = dω ^ n = d lnω ^ ks .   (IX.12) 
 
From Frobenius, this is also the condition for the exterior differential system ks = 0 to be 
completely integrable. 
 
 
 2. Bicharacteristics – null geodesics.  Although the generalized eikonal equation 
(IX.2) is usually nonlinear, due to the polynomial character of the dispersion law, 
nevertheless, it is still a first-order partial differential equation in a single function φ.  
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Hence, one can solve it by Cauchy’s method of characteristics.  However, since we are 
already using the word “characteristic” in the context of the second-order system of 
partial differential equations in the potential 1-form A as a way of reducing it to a first-
order equation, it is traditional to refer to the characteristic curves of the eikonal equation 
as the bicharacteristics of the original second-order system. 
 Consider the case of electromagnetic waves whose dispersion law is (VIII.69), which 
we rewrite in the form: 

P(x)[k] = 0.    (IX.13) 
 
 The bicharacteristic equations are simply the Hamilton equations that one obtains by 
treating F = 1/4 P as a Hamiltonian: 
 

dx

d

µ

τ
=

F

kµ
∂
∂

= γµν(x, k) kν ,   (IX.14a) 

 
dk

d
µ

τ
= −−−− F

xµ
∂
∂

= −−−−
1

4
k k

x

κλ

κ λµ
γ∂

∂
,   (IX.14b) 

in which we have defined: 
γµν(x, k) = Pµνκλ(x) kκ kλ .   (IX.15) 

 
 Although the tensor field γ appears to define a second-rank covariant tensor field on 
M, actually, the fact that the local components are functions on T*M shows that we are 
really “lifting” T*M to the vertical sub-bundle V(T*M) of the tangent bundle T(T*M)) to 
T*M.  That is, under the differential of the projection T*M → M the tangent vectors in 
each V(x,k)(T

*M) project to 0 in each TxM. 
 As usual, there is no natural complementary “horizontal” bundle to V(T*M) in 
T(T*M).  However, from (IX.14a), we do have a natural algebraic correspondence 
between covectors on M and tangent vectors on M. 
 
 b.  Dimension-codimension duality.  If kx ∈ xT M∗ is a covector on M then one can 

associate k with the characteristic vector XP(kx) on xT M∗ that is defined by P and obtain a 

tangent vector ink xT T M∗ .  Under the projection π: T*M → M the vertical part of XP(kx) 

will vanish and one obtains a tangent vector dπ|(x, k) XP(kx) in TxM.  Hence, by 
composition, we obtain a map iP : T

*M → T(M), kx ֏  v(kx) = dπ|(x, k) XP(kx)  In local 
form, it simply looks like: 

vν(x, k) = Pµνκλ(x) kκ kλ kµ  = γνµ(x, k) kµ .  (IX.16) 
 
 If this system of homogeneous cubic equations is to replace the system of linear 
equations vν = gνµ vµ  that one customarily derives from a Lorentzian structure g then just 
as one usually postulates the invertibility of the linear system, we must also postulate that 
the cubic system is invertible, as well.  A necessary, but only locally sufficient, condition 
for this invertibility is given by the inverse function theorem, namely, the invertibility of 
the matrix: 
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v

k

ν

µ

∂
∂

=
2P

k kµ ν

∂
∂ ∂

= 3γµν(x, k)   (IX.17) 

 
for every (x, k) ∈ T*M.  Hence, if we only assume that the algebraic correspondence v = 
v(kx) satisfies (IX.16) then the correspondence might possibly be neither one-to-one nor 
onto; for example, one might have folds and cusps. 
 Another complicating factor associated with the cubic case is the fact that now, since 
the polynomial Pµνκλ(x) kκ kλ kµ  is homogeneous of degree three in k, the inverse 
algebraic relationship: 

kµ = kµ (x, v)     (IX.18) 
 
is homogeneous of degree 1/3 in v.  Hence, whereas in the case of a quadratic dispersion 
law the map ig and its inverse were both homogeneous of degree one, we now have a 
situation where the inverse map to iP is not even a polynomial map anymore. 
 Moreover, in the Lorentzian case of a quadratic P the corresponding function [ ]P v = 
P[k(v)] on T(M) would also be quadratic.  In other words, the light cones in the cotangent 
spaces would become light cones in the tangent spaces.  However, that situation no 
longer obtains in the present case, since the function P  does not have the same degree of 
homogeneity as the function P; in particular, it will have degree of homogeneity 4/3.  
One might consider [ ]P v  = (P[k(v)])3, which will have homogeneity degree four, but one 

is cautioned that this does not imply that P  represents a homogeneous quartic 
polynomial, since there are many non-polynomial functions, such as rational functions, 
which are quotients of polynomials, that can still be homogeneous of degree four. 
 The fact that the function [ ]P v  on T(M) is still homogeneous, but not generally a 

polynomial, implies that the hypersurface[ ]P v  = 0 projects to a surface in PT(M), which 
we will call the Fresnel ray surface, to be consistent with the literature on geometrical 
optics. 
 Due to the homogeneity of P, one finds that the normal surface in PT*M and the ray 
surface in PT(M) are related by a simple relationship that is true for any degree of 
homogeneity, even though it is usually established for only the quadratic case (cf., 
Kommerel [1]).  One starts with the fact that Euler’s formula for homogeneous functions 
of degree r, when combined with the dispersion law, gives us that: 
 

0 = rP[k] = 
P

k
kµ

µ

∂
∂

= kµ v
µ     (IX.19) 

for any r. 
 When one expresses k as ωdt − ki dxi, this becomes ωv0 = ki v

i or: 
 

niV
i = 1.     (IX.20) 

 
 In the case of optical media, one obtains an equations that are quite analogous to 
(VIII.102), (VIII.103), or (VIII.104) for the inhomogeneous coordinates (V1, V2, V3) of 
the ray.  These coordinates are obtained from the components vµ of any velocity vector by 
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the usual process of regarding them as homogeneous coordinates for the ray and setting 
Vi = vi/v0.  One also finds that the principal values εi of εij get replaced by their 
reciprocals, since it is the inverse matrix εij that now figures.  The optical equation that 
corresponds to (VIII.104) is then: 
 

2 2 2

2 2 2 2 2 2

( ) ( ) ( )
1 1 1 1 1 1

x y z

r x r y r z

V V V

v v v v v v

+ +
− − −

= 0.   (IX.21) 

 
In this equation, we are now using the ray velocity vr, which relates to the flow of energy 
in the direction of the Poynting vector, as opposed to the phase velocity vp, which only 
relates to the normal to the wave front.  The two are traditionally related by the relation: 
 

p

r

v

v
= ˆˆ( )n V ,     (IX.22) 

 

in which n = (1/vp) n̂and V = vr V̂ , so n̂andV̂ are the unit covector and vector in those 

directions, relative to the Euclidian metric, which then gives ˆˆ( )n V the interpretation of the 
cosine of the angle between the vectors n and V.  In particular, this means that the wave 
normal does not have to be collinear with the ray velocity.  Of course, in the pre-metric 
formulation of electromagnetism the very introduction of a metric onto the fibers of 
PT*M and PT(M) must be a consequence of the dispersion law for waves in the medium 
in question. 
 One can think of the “classical” – i.e., correspondence principle – limit of the quartic 
theory as being the degenerate case in which the metric γµν(x, k) degenerates to gµν(x) , so 
the cubic map iP goes to the linear map ig, because the dispersion polynomial P[k] 
degenerates to the square of a quadratic.  Hence, in general, the components of the metric 
γ we are using will depend on the covector k that we start with, as well as the point of M.  
This situation is sometimes referred to as a “rainbow metric” (cf., e.g., [2]). 
 It is important to understand that the linear map dπ ⋅ XP is only “generically” 
injective, since there is always the possibility that it might have projective singularities − 
i.e., points of T*M at which XP goes vertical, − which then depends upon the nature of P. 
One then has a second source of singularity in the association that did not appear in the 
linear isomorphism ig: T

*M → T(M) that one obtained from a Lorentzian structure g. 
 As we have seen, one can use the polynomial P[k] to define a corresponding map iP : 
Λ1M → Λ1M, k(x) ֏ v(k(x)).  In the invertible case, this association between covector 
fields and vector fields defines what one might call dimension-codimension duality, since 
the differential system that is defined by a covector field has a dimension that is 
complementary to the dimension of the differential system that is defined by a vector 
field.  One can eventually see that this is quite similar to the spirit of wave-particle 
duality if one understands that the isophase hypersurfaces that are defined by an 
integrable k represent the motion of wave surfaces and the integral curves of v represents 
the paths of the points of the wave surfaces when regarded as pointlike particles. 
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 This situation also points out that there is an essential physical difference between the 
map iP and the map ig in terms of the units and interpretation of the covectors kµ and vµ 
that result from applying the inverses of these two maps to the same velocity vector vµ..  
One sees that 1gi

−  does not change the units of velocity in mapping it to covelocity, while 
1

Pi
− essentially inverts the units of velocity (times time) into the corresponding units of 

frequency and wave number.  The best way to get around this is to express both velocity 
and frequency-wave number in dimensionless units by rescaling in terms of some 
characteristic value of each. 
  
 c.  Null geodesics.  If we “solve” (IX.14a) for kµ = γµν v

ν, where γµν is the inverse 
matrix of γµν , and substitute in (IX.14b) then, after various straightforward manipulations 
of the expressions, we ultimately obtain a first-order system of differential equations for 
vµ whenever k(x) has been chosen: 
 

( )
dv

k v v
d

µ
µ κ λ
κλτ

+ Γ = − ( ) ( )B k v v C k k vµ κ λ µκ λ
κλ λ κ− + ,  (IX.23) 

 
in which we have defined: 

( )kµ
κλΓ = 1

, , ,2 ( )µν
νλ κ νκ λ κλ νγ γ γ γ+ −    (IX.24a) 

( )B kµ
κλ = 1

4 x
µν κλ

ν
γγ ∂

∂
,     (IX.24b) 

( )C kµν
λ = 

k
µν νλ

κ

γγ ∂
∂

.     (IX.24c) 

 
 We recognize that for each choice of k the expressions ( )kµ

κλΓ  take the form of the 

components of the Levi-Civita connection for the metric γµν .  The differential equations 
for v then amount to perturbations of the conventional geodesic equations for the metric 
γµν  by the contributions on the right-hand side of (IX.23).  Furthermore, the fact that k is 
characteristic suggests that we are justified in calling the geodesics thus obtained null 
geodesics.  However, we must emphasize that this means that the “spectrum” of rainbow 
metrics γµν(x, k) that we obtain as k varies over the characteristic quartic is associated 
with a spectrum of connections and a spectrum of null geodesics, as well. 
 The expressions ( )B kµ

κλ and ( )C kµν
λ essentially embody the perturbations to geodesic 

motion, in the Levi-Civita sense, that originates in the possibility that the quartic form 
P[k] is not the square of a quadratic form of Lorentzian type.  In order to see this, when 
P[k] = (Q[k])2, with Q[k] = gµν kµ kν one must first replace the dispersion law with its 
square root: 

gµν(x) kµ kν  = 0.    (IX.25) 
 
One then finds that the bicharacteristic equations that result from using Q[k] in place of 
P[k] are the conventional geodesic equations for the Levi-Civita connection that is 
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defined by the metric gµν(x).  Hence, µ
κλΓ would no longer depend upon k, while 

( )B kµ
κλ and ( )C kµν

λ would vanish.  

 It is tempting to identify the spectrum of geodesics that originate in the quartic nature 
of P[k] as being, in some sense, “quantum fluctuations about the classical extremals;” for 
instance, one might have zitterbewegung in mind.  However, one must remember that the 
quartic nature of P[k] has more to do with the symmetry of constitutive laws of the 
medium, while quantum fluctuations are more commonly associated with going beyond 
the geometrical optics approximation that is implicit in the present discussion.  We shall 
return to this issue at the end of this chapter in our discussion of diffraction, but for now 
we simply point out that quartic dispersion laws can also constitute quantum corrections. 
 As an example of the foregoing, let us look at what happens to the geodesic equations 
in the bi-metric case where: 

 P[k] = 1
4 g(k, k) ( , )g k k .    (IX.26) 

 
 The bicharacteristic equations are then: 
 

dx

d

µ

τ
= 2 21

2 ( )g g kµν µν
νκ κ+ , 

dk

d
µ

τ
= − 2 21

, ,4 ( )g g k kκλ κλ
µ µ κ λκ κ+ , (IX.27) 

 
in which we have set: 

κ2 = g(k, k),  2κ = ( , )g k k .    (IX.28) 
 
 Although one can derive the corresponding geodesic equations that follow from 
setting: 

γµν = 2 21
2 ( )g gµν µνκ κ+ ,    (IX.29) 

 
nevertheless, since the process of inverting this matrix is not linear, a better way to 
understand the nature of the geodesic equations is by expressing the characteristic vector 
field in the form: 

XP = 2κ Xg + κ2
gX ,     (IX.30) 

with: 

Xg =( ) ( )1 1
,2 4g k g k k

x k
µν κλ

ν µ κ λµ
µ

∂ ∂−
∂ ∂

,   (IX.31) 

and an analogous expression for gX . 

 One sees that, in a sense, there are two competing dynamical systems that represent 
the geodesic vector fields Xg and gX on T*M for the individual Lorentzian metrics g and 

g coupled in a linear combination by means of κ2 and 2κ in a symmetric fashion.  As a 
consequence, whenever the covector field k makes either coefficient vanish, the 
characteristic vector field is proportional to the geodesic vector field of the other metric. 
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 3.  Parallel translation.  Since the bicharacteristic equations are apparently related to 
geodesic equations for the Levi-Civita connection that one obtains from the “metric” 
γµν(x, k), and indeed agree with them when the dispersion polynomial P[k] is quadratic, 
we naturally ought to examine how other geometric objects that just the velocity vectors 
to a geodesic congruence are translated along such curves. 
 
 a.  Translation of k.  First, let us return to the basic bicharacteristic equations (IX.14a, 
b).  Once again, we express the first one as vµ = γµν kν , with the usual notation.  When 
one “inverts” the matrix γµν this says kµ = γµν v

n, although when P[k] is not quadratic the 
inverse only makes sense when one chooses a wave covector field k.  When one 
substitutes this expression for one of the k’s in (IX.14b), that equation takes the form: 
 

0 = ,

1dk
v k

ds r
µ κλ ρ

κρ µ λγ γ+ = ,

1k
v k

x r
µκ ρλ

ρκ µ λρ γ γ
∂ 

+ ∂ 
.  (IX.32) 

 
We have also generalized the degree of homogeneity of P[k] in k to be r, although this 
will only equal 2 or 4 for our purposes. 
 By further manipulations, which include replacing ,

ρλ
ρκ µγ γ with − ,

ρλ
ρκ µγ γ and 

observing that: 

, ,( )v kρλ κ
µρ κ κµ ρ λγ γ γ− = , ,( )v vκ ρ

µρ κ κµ ργ γ− = 0,  (IX.33) 

 
which follows from the conflict of symmetries in the indices κ and ρ, one finds that 
equation (IX.14b) actually says: 
 

0 =
2k

v k
x r

µκ λ
κµ λκ

∂ 
− Γ ∂ 

,    (IX.34) 

 
with the same notation as above for the Christoffel symbols. 
 When P[k] is quadratic (r = 2) the form that (IX.34) takes is precisely the equation of 
parallel translation when one uses the Levi-Civita connection for γµν, which then 
represents the Lorentzian structure. However, when P[k] is a homogeneous quartic 
polynomial one sees that the connection that gives parallel translation associates 
infinitesimal Lorentz transformations that have half the magnitude of those in the 
quadratic case.  One can also express this in the form: 
 

∇vkµ = 
1
2

0 ( 2),

( 4).k

r

v k rλ
κµ λ

=
− Γ =

    (IX.35) 

 
 In either case, we conclude that the wave covector field k is parallel-translated along 
the null geodesics in manner that is even simpler than the way that the velocity vectors 
are subjected to.  Of course, if one substitutes kµ = γµν v

ν in (IX.34), one sees that it is the 
differentiation of γµν  by k that can make the resulting equations of parallel translation for 
v more complicated than the ones for k. 
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 b.  Translation of F and *F.  A immediate property of the bicharacteristic flow on M 
that is easy to verify is the fact that when the 2-forms F and *F – as well as f and *f – are 
associated with electromagnetic waves in the geometrical optics approximation in the 
geometrical optics approximation, they are constant along the flow of the geodesic vector 
field v that is associated with a given geodesic covector field k.  This follows from the 
fact that since: 

F = k ^ E *F = k ^ B,    (IX.36) 
 
in that approximation, one must have: 
 

ivF = k(v) E – E(v)k = 0,    (IX.37a) 
iv*F = k(v) B – B(v)k = 0,    (IX.37b) 

 
as v is transverse to the hyperplanes defined by E and B, for a suitable choice of E, B.  
We choose the E and B such that the triple {k, E, B} is linearly independent and spans the 
annihilating hyperplane of v in each cotangent space; i.e., E(v) = B(v) = 0. 
 From this, and the sourceless field equations, we find that the Lie derivatives of F and 
*F along the flow of v are: 

LvF = ivdF + divF = 0,     (IX.38a) 
Lv*F = ivd*F + div*F = 0,    (IX.38b) 

 
Hence, F and *F are, in a sense, convected by the flow of v. 
 Now, if we go back to the equations: 
 

divF = div*F = 0,    (IX.39) 
 
and expand them in local components then we get, for the first one: 
 

vµ dFµν ^ dxν + Fµν dvµ ^ dxν = 0,   (IX.40) 
 
 The first term in this becomes: 
 

vµ dFµν ^ dxν = 1
2 vµ Fκν, µ dxκ ^ dxν,   (IX.41) 

 
in which we have used the fact that dF = 0 in order to obtain this. 
 In the second term of (IX.40) we note that if vµ = γµλ kλ then we can have two 
possible forms of the resulting expression depending upon whether r = 2 or 4. 
 
 i.  Quadratic case (r = 2). In this case, γµλ is independent of k and we obtain: 
 

dvµ = kλ γµλ
,κ dxκ,       (IX.42)  

which makes: 
 

Fµν dvµ ^ dxν = 1
2 (Fµν kλ γµλ

,κ − Fµκ  kλ γµλ
,ν) dxκ ^ dxν.  (IX.43) 
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Substituting for kλ = γλρ v
ρ and rearranging puts the expression in parentheses into the 

form: 
γλρ γµλ

,κ v
ρ Fµν  + γλρ γµλ

,ν v
ρ Fκµ = − γµλ γλρ, κ v

ρ Fµν  − γµλ γλρ, ν  v
ρ Fκµ  . (IX.44) 

 
 One can verify directly that if one substitutes µ

ρκΓ for γµλ γλρ, κ  and similarly in the 

second term of the final expression in (IX.44) then the extra term that this introduces into 
the computations is symmetric in k and v, and therefore does not contribute to the 
components of the 2-form in (IX.43). 
 Ultimately, we find that when F has the form in question, v is the velocity vector field 
of a null geodesic congruence, and P[k] is homogeneous of degree 2, one must have: 
 

0 =
F

v F F
x

µνκ λ λ
κµ λν κν µλκ

∂ 
− Γ − Γ ∂ 

≡ ∇vFµν .   (IX.45) 

 
That is, the electromagnetic field strength 2-form is parallel-translated by the Levi-Civita 
connection of the Lorentzian metric that is defined by γµν. 
 We could also use the property of the operator ∇v that it is a derivation with respect to 
the tensor product to see that: 
 

∇vFµν = 1
2 ∇v(kµ Eν – kν Eµ) = 1

2 (kµ∇vEν – kν ∇vEµ),  (IX.46) 

 
when one keeps in mind that k is parallel-translated along v. 
 In order for ∇vFµν to vanish, we must have: 
 

∇vEµ = αkµ      (IX.47) 
for some real scalar α. 
 Hence, the 1-form E does not have to be parallel-translated, precisely, but its 
covariant derivative must be parallel to the wave covector field.  This has the effect of 
allowing for a rotation of the polarization plane in the cotangent spaces, which is spanned 
the 1-forms k and E. 
 One finds that analogous results are arrived at for *F = k ^ B; viz., *F is parallel-
translated along the null geodesics by means of the Levi-Civita connection, while B must 
have a covariant derivative that is parallel to k: 
 

∇v*Fµν = 0,  ∇vBµ = αkµ .   (IX.48) 
 
The fact that the proportionality constant is the same in either case follows from duality; 
in effect, E and B must remain perpendicular at all times. 
 The picture that emerges is that the 3-coframe {k, E, B} moves along a null geodesic 
in such a manner that k remains parallel to itself while the 2-coframe {E, B} can rotate in 
its plane.  One sees that this generalizes the argument of Kline and Kay [6] in the first 
Appendix to Chapter V, in which they established, by means of vector calculus, that the 
3-frame in question, or rather, its spatial projection, is parallel-translated along a null 
geodesic when the constitutive properties of the space are isotropic, but not necessarily 
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homogeneous, and the spatial metric that defines the connection is conformal to the 
Euclidian one, with a conformal factor that is the square of the index of refraction. 
 
 ii.  Quartic case (r = 4).  We return to (IX.42), only this time, we allow γµλ to also be 
a differentiable function of k, so: 
 

dvµ =γµλ
,κ  kλ dxκ + k dk

k

µλ
µκ

λ κ
κ

γ γ
 ∂ + ∂ 

,   (IX.49)  

 
before one pulls the dkk down to M. 
 The term in brackets can be simplified by routine calculations that involve the 
definition of γµλ and Euler’s formula, and one gets: 
 

dvµ = γµλ
,κ  kλ dxκ + 3γµκ dkκ ,     (IX.50)  

 
and after pulling the dkk down to M by means of a section kk = kk(x) − so dkκ = kκ,λ dxλ − 
one obtains the local 1-forms on M: 
 

    dvµ = , ,3k k dxµλ µλ κ
κ λ λ κγ γ +  .    (IX.51)  

 
 Since this differs from the expression in (IX.42) only by the second term in brackets, 
we see that (IX.42) becomes: 
 
  Fµν dvµ ^ dxν  

= (R.H.S. of IX.42) +3
2 γµλ (kλ,κ Fµν − kλ,ν Fµκ) dvκ ^ dxν.  (IX.52) 

 
However, from (IX.34) we can substitute 1/ 2 kρ

λκ ρΓ for kλ,κ , which makes the components 

of the supplementary term in (IX.52) become: 
 

3γκλ (kλ,µ Fκν − kλ,ν Fκµ) = − 3
2 γκλ ( ρ

λµΓ Fκν − ρ
λνΓ Fκµ) kρ  . (IX.53) 

 
The ultimate effect of the extra term is then to replace (IX.45) with: 
 

∇vFµν = 3
2 (γκλ ρ

λµΓ kρ Fκν +γκλ ρ
λνΓ kρ Fµκ) .   (IX.54) 

 
Hence, this is not parallel translation of F by means of the Levi-Civita connection of γµν, 
anymore. 
 In order to make more intuitive sense of the right-hand side of (IX.54), we introduce 
the notations: 

κρ
µΓ ≡ γκλ ρ

λµΓ ,  ( )kκ
µωɶ = κρ

µΓ kρ ,   (IX.55) 

 
and re-write (IX.54) as: 
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∇vFµν = 3
2 [ ( )kκ

µωɶ Fκν + ( )kκ
νωɶ Fµκ]  .   (IX.54′) 

 
 Replacing Fµν with kµ Eν – kν Eµ  puts this into the form: 
 

  ∇vFµν = 3
2 [ ( )kκ

µωɶ kκ Eν – ( )kκ
νωɶ kκ  Eµ + kµ ( )kκ

νωɶ Eκ – kν ( )kκ
µωɶ Eκ ] 

= 3
2 [ ( )kωɶ k ^ E + k ^ ( )kωɶ E]µν  ,   (IX.56) 

 
with some self-explanatory abbreviations. 
 If we apply ∇v to k ^ E and keep in mind (IX.35) then we also get: 
 

  ∇v(k  ^ E) = ∇vk ̂  E  + k ^ ∇vE = − 1
2 ω(v)k ^ E + k ^ ∇vE.   (IX.57) 

 
Hence, in order for this to be consistent with (IX.56), one must have: 
 

∇vEµ = αkµ + 3
2 ( )k Eκ

µ κωɶ , [3 ( )kκ
µωɶ + ( )κ

µω v ]kκ  = βEµ  (IX.58) 

 
for appropriate choices of real scalars α and β. 
 If we compare the first expression with the corresponding quadratic expression 
(IX.47) then we see that the net effect of the extension to a quartic dispersion polynomial 
is the addition of the second term on the right-hand side.  The condition expressed by the 
second equation in (IX.58) gives a restriction on the connection itself, and if it is to be 
true for any conceivable E one sees that the proportionality constant β must vanish: 
 

[3 ( )kκ
µωɶ + ( )κ

µω v ]kκ = 0.    (IX.59) 

 
This really just says that the effect of the infinitesimal transformation 3 ( )kκ

µωɶ + ( )κ
µω v on 

cotangent vectors should leave k fixed in any event. 
 The results for *F and B are obtained by analogous computations that essentially 
replace F with *F and E with B: 
 

∇v*Fµν = 3
2 [ ( )kωɶ k ^ B + k ^ ( )kωɶ B]µν ,   (IX.60) 

 
∇vBµ = αkµ + 3

2 ( )k Bκ
µ κω , [3 ( )kκ

µωɶ + ( )κ
µω v ]kκ = 0.  (IX.61) 

 
 
 4. Huygens’s principle.  Huygens’s principle is sufficiently fundamental and far-
reaching in scope that it is presented in many forms in the literature (cf., [3-11]).  The one 
that we shall first focus on is a modernization of the form that Huygens described 
graphically in his original treatise: Suppose we are given an initial hypersurface x0: N  → 
M, u ֏  x0(u), where N is an n−1-dimensional parameter manifold – e.g., hyperplane, 
sphere, ellipsoid, torus – and M is n-dimensional and path-connected.  The time-t evolute 
of that initial hypersurface when it is in a state of wave motion takes the form of the 
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envelope of the (n−1)-parameter family of elementary hypersurfaces that emanate from 
each point of x0(u) and have the same value of t when the hypersurfaces are level surfaces 
of the function t. 
 
 a.  The projectivized tangent bundle.  The first obstacle to reconciling the traditional 
literature is the fact that most of it is set in a spatial manifold Σ of dimension two or three, 
not a spacetime manifold M of dimension four.  Hence, as usual, one must proceed 
carefully in order to correctly account for the transition from spacetime to space.  Indeed, 
we again find that the physically fundamental process that seems to assert itself is the 
projection of homogeneous coordinates for a projective space onto inhomogeneous 
coordinates, not merely the Cartesian projection that omits the temporal component. 
 In particular, it is the projection of any cotangent space *

xT M onto its projectivized 

form *
xPT M that first suggests this fact, since we are looking at the projection of the 

components (ω, − ki) of any covector at x ∈ M to the coordinates (ni = − ki /ω).  One must 
then correctly account for the fact that although one regularly forms 1-forms such as: 
 

n = ni dxi      (IX.62) 
 
nevertheless, this is somewhat naïve since a local coordinate chart for PT*U over an open 
subset U ⊂ M would look like (t, xi, ni), in which the ni are inhomogeneous coordinates 

for the real projective space RP3 that models the fiber of PT*U at each point of U, not 

components in the vector space R3. 

 It so happens that when M takes the form of the product manifold R×Σ there is an 

accidental local equivalence of PT*M = PT*(R×Σ) with J1(Σ; R), which is the manifold of 

1-jets of differentiable functions on Σ; hence, such a construction has a distinctly non-
relativistic sort of character.  However, the use of functions of the form t(x, y, z) in 
geometrical optics is so commonplace in the classical literature that we must unavoidably 
comment on this situation. 

 Locally, the manifold J1(Σ; R) looks like (xi, f, fi) and it projects onto Σ, R, and Σ×R 

in the predictable ways: 

     J1(Σ; R) → Σ,  1
xj f ֏ x, 

     J1(Σ; R) → R,  1
xj f ֏ f, 

     J1(Σ; R) → Σ× R, 1
xj f ֏ (x, f), 

 
It is not a fiber bundle under these projections, but a fibered manifold whose fibers 

locally look like the R× R3, R3× R3, and R3, respectively. 

 The manifold J1(Σ; R) has a canonical 1-form θ = df – fi dxi that makes it a contact 

manifold.  The significance of θ is based on the fact that when one looks at sections s: Σ 
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→ J1(Σ; R), x ֏ (xi, f(x), fi(x)), such a section is integrable iff it is the 1-jet prolongation 

j1f of the differentiable function f.  Locally, this means that: 
 

fi = i

f

x

∂
∂

,     (IX.63) 

which is equivalent to requiring that: 
 

0 = s*θ = df – fi(x) dxi.     (IX.64) 
 

The contact structure on J1(Σ; R) then assigns each point of that manifold with the 

hyperplane θ = 0 in its tangent space. 
 The manifold PT*M also has a contact structure whose canonical 1-form [θ] we shall 
write in the form: 

[θ] = dt – ni dxi,    (IX.65) 
 
when the local coordinate charts take the form (t, xi, ni). 
 We note that under the projection T*M → PT*M, k ֏ [k], the canonical 1-form kµ dxµ 
= ω dt – ki dxi on T*M projects to ω(dt – ni dxi) on PT*M, which is proportional to the 
canonical 1-form, as long as one regards t as a function on Σ, not a coordinate of M.  
Hence, the vanishing of one of the canonical 1-forms is equivalent to the vanishing of the 
other. 
 Since ni = ki /ω, we see that an integrable section [k] of PT*M → M, i.e., an integrable 
line field on M, must satisfy the condition: 
 

ni = − 
/

/

ix

t

φ
φ

∂ ∂
∂ ∂

= 
i

t

x

∂
∂

    (IX.66) 

 
for some differentiable function φ on M and a differentiable function t on Σ.  Note that 
changing the function φ to some other function φ′ does not actually change the 

components ni, since a change of φ is equivalent to a re-parameterization of R. 

 The condition (IX.66) then leads to: 
 

dt = ni dxi     (IX.67) 
quite naturally. 
 We also find that if F is a differentiable function on T*M then as long as it is 
homogeneous of some degree r in the fiber – i.e., F[λk] = λrF[k] – it will project to a 
function [F] on PT*M.  Furthermore, this means that the characteristic vector field XF on 
T*M might be associated with a characteristic line field [XF] on PT*M. 
 One any contact manifold (see Arnol’d [11]), the line in question is defined by the 
intersection of the contact hyperplane and the hyperplane that is annihilated by the 1-
form d[F].  Hence, it will be a solution – up to a scalar multiple – of the equation: 
 

i [X]dθ = d[F],     (IX.68) 
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in which we have abbreviated slightly. 
 Locally, this becomes the system: 
 

[X] t = 0 =
[ ]F

t

∂
∂

, [X] i =
[ ]

i

F

x

∂
∂

, [X] i = − 
[ ]

i

F

n

∂
∂

.   (IX.69) 

 
 Hence, we see immediately that not every homogeneous function on T*M is 
projectable to something on PT*M that will give a characteristic line field, but only the 
ones that are “time-invariant,” in the sense that their first partial derivative with respect to 
t vanishes.  Of course, when F refers to the dispersion law for electromagnetic wave 
propagation, this is a common assumption, since it amounts to assuming that the optical 
properties – or more generally, constitutive properties – of the medium are constant in 
time. 
 However, if F is homogeneous and time-invariant then the characteristic line field 
[XF] on PT*M gives rise to a congruence of geodesics – up to parameterization – by 
integrating the system of ordinary differential equations that make [XF] a velocity vector 
field: 

idx

ds
=

[ ]

i

F

n

∂
∂

,  idn

ds
= − [ ]

i

F

n

∂
∂

,    (IX.70) 

 
in which the curve parameter is s, here. 

 Of course, when M = R×Σ, we see that essentially the same system of equations will 

come about by looking at the symplectic structure on T*Σ and the characteristic vector 
field that is defined by the analogous differentiable function [F] on T*Σ. 

 Furthermore, if we locally equate PT*(R×U) with J1(U; R) for some U ⊂ Σ, we see 

that we are also dealing with the system of bicharacteristic equations that follow from the 
first-order partial differential equation defined by: 
 

[F][n] = 0, n = dt,     (IX.71) 
 
which is the spatial version of the eikonal equation that one obtains from F, as we 
discussed in Section 1; however, we are now referring to the spatial phase function as t. 

 It is interesting that classical mechanics starts with objects in J1(R; Σ) – viz., 1-jets of 

differentiable curves in Σ – while classical geometrical optics should model wave motion 

in terms of the dual objects in J1(Σ; R), especially since quantum physics seems to favor 

the representation of matter by waves rather than points.  One can even define a form of 
conjugacy between curves in Σ and functions on Σ that is defined by the possibility that 

under composition of the curve γ: R → Σ with the function f: Σ → R, one might obtain 

the identity map on R: 

f(γ(t)) = t  (for all t ∈ R).   (IX.72) 
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Of course, given γ the choice of f is not unique, nor conversely, since one can see that a 
given curve in Σ can be embedded in many hypersurfaces, just as a given hypersurface 
admits many embedded curves. 

 Since the manifolds J1(R; Σ) and J1(Σ; R) are topologically the same as R × T(M) and 

T*M × R, respectively, one sees that this sort of conjugacy is another form of dimension-

codimension duality. 
 
 b.  Elapsed-time functional.  Now that we have made these prefatory remarks on the 
contact manifolds that we are concerned with, we see that some of the constructions of 
geometrical optics that lead to the principles of Huygens and Fermat follow quite 
naturally with no further restricting conditions. 
 For instance, given the spatial 1-form n = ni dxi on Σ, one sees that its integral along 
any curve segment γ: [0, 1] → Σ: 

∆t[γ] = n
γ∫      (IX.73) 

 
defines what we can call the elapsed-time functional, since in the case where n is exact 
and takes the form dt that is precisely what the integral will represent. 

 So far, our elapsed-time functional is a singular 1-cochain with coefficients in R.  If 

one is to resolve it to a two-point function on Σ that will represent a characteristic 
function for our geodesic flow on PT*M, we have two basic possibilities: 
 1.  If ∆t[γ] takes on the same values for any two homologous curves γ – i.e., ones that 
all have the same endpoints ∂γ = y – x – then one can define: 
 

∆t[x; y] = ∆t[γ]    (IX.74) 
unambiguously. 
 2. If there is some well-defined set of curves from x to y that all give the same value 
of ∆t[γ] then (IX.74) makes sense as long as γ is an element of that set. 
  
 In the first event, we must have the 1-form n is exact in order that the integral over 
curve reverts to the integral over its boundary, à la Stokes.  The 1-cochain ∆t then 
becomes a 1-coboundary. 
 In the second event, we see that we can take advantage of the fact that when one is 

given n: Σ → J1(Σ; R), x ֏ (x, t(x), ni(x)), one can take advantage of the fact that then we 

have been given a spatial dispersion function [F] on J1(Σ; R) there is a unique path from 

n(x) to n(y) in J1(Σ; R) − at least when they are sufficiently close − that is defined by the 

geodesic flow of [F].  The projection of this path onto Σ then gives the curve γ that we 
can integrate n over in order to make sense of (IX.74). 
 What makes ∆t[x; y] a characteristic function on Σ×Σ is the property that 
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n(x) = − [ ; ]t x y
x

∂ ∆
∂

,  n(y) = [ ; ]t x y
y

∂ ∆
∂

.  (IX.75) 

 
Later, when we have discussed contact transformations, we shall see that this property 
also makes it a “generating functional” for the contact transformation that takes (x, n(x)) 
to (y, n(y)). 
 
 c.  Elementary hypersurfaces.  Since our elapsed-time functional is really just a 
generalization of the arc-length functional that one obtains in the case where P[k] 
degenerates to the square of a quadratic polynomial, we can – at least for a sufficiently 
small elapsed time t – define a geodesic sphere about a given x∈Σ of radius t to be the set 
Sx(t) of all y ∈ M such that ∆t[x, y] exists and is equal to t . 
 In the elementary geometrical case of Euclidian spatial geometry, the vanishing of the 
curvature of the Euclidian metric guarantees that geodesic spheres will exist about each 
point and have arbitrarily large radius.  As long one considers only a constant speed of 
propagation for electromagnetic waves the elapsed time along any curve segment will be 
proportional to its arc length.  One can then define a differentiable one-parameter family 
of geodesic spheres about each point for every t > 0. 
 However, when the curvature of the spatial manifold Σ is non-vanishing there will 
generally be a finite “radius of injectivity” for the exponential map that the chosen 
connection defines; that is, there will be pairs of points that are connected by geodesics of 
unequal length, such as non-antipodal points on a sphere. 
 Since the role of the dispersion polynomial P[k] has been somewhat obscured by 
now, it is important to see that as long as one restricts oneself to only those 1-forms n on 
Σ that satisfy the requirement: 

[P][n] = 0     (IX.76) 
 

one will find that one is dealing with 1-forms k = ω(dt – n) on M = R×Σ, where ω is non-

zero, but arbitrary, that satisfy the requirement: 
 

P[k] = 0.     (IX.77) 
 
This means that elementary waves propagate in the characteristic hypersurfaces. 
 Hence, in the Minkowskian case, for instance, one sees that the elementary 
hypersurfaces in Σ are expanding spheres of radius t about each point x that lie on the 
light cone at the corresponding point (t, x) in Minkowski space. 
 
 d.  The propagation of phase. The traditional formulation of Huygens’s principle 
allows one to construct the time evolution of a momentary wave surface within its 
characteristic hypersurface from one moment to another by means of these elementary 
wave surfaces. 
 More precisely, let F0 ⊂ Σ be a momentary wave surface at time t = 0; i.e., the image 
of an embedded two-dimensional submanifold.  If one wishes to obtain the momentary 
wave front Ft at some later value of t then, as long as a geodesic sphere of radius t exists 
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about each x0 ∈ F0, if we represent such a sphere by an embedding ι(x0): S
2 → Σ then one 

can define a smooth two-parameter family of geodesic spheres of radius t by means of F0 

× S2 → Σ, (x0, y) ֏  ι(x0)(y). 
 Of course, the image of F0 × S2 in Σ under this map will generally be a three-

dimensional region.  In order to obtain the evolute of the initial momentary wave surface 
F0 for this particular time interval, we need to consider only the boundary of that region – 

viz., the envelope of the family.  A point y of this envelope Ft is characterized by the fact 

that if one moves along a curve through y whose tangent vector field is tangent to the 
envelope then the value of ∆t[x0, y] = t does not change in an infinitesimal neighborhood 
of y.  Hence, y ∈ Ft  iff there is an x0 ∈ F0 such that: 

 
∆t[x0, y] = t ,      (IX.78a) 

 

 0
0

[ , ]t x y
x

∂ ∆
∂

= n(x0) = 0.          (IX.78b) 

 
 Between these equations, we obtain three local component equations for the three 
spatial coordinates of y as a function of x0 .  For instance, in the conventional case where 

Σ is Euclidian R3, when one uses: 

 
∆t[x0, y] = [ 1 1 2 2 2 2 3 3 2

0 0 0( ) ( ) ( )y x y x y x− + − + − ]1/2/c,  (IX.79) 

  
with the points of F0 being parameterized by0

ix = 0( , )ix u v the equations take the form: 

 
1 1 2 2 2 2 3 3 2

0 0 0( ) ( ) ( )y x y x y x− + − + − = (ct)2,  (IX.80a) 

0
0( )

j
i i

ij

x
y x

u
δ ∂−

∂
= 0,     (IX.80b) 

0
0( )

j
i i

ij

x
y x

v
δ ∂−

∂
= 0.     (IX.80c) 

 

 The last two of these equations basically say that the line segment in R3 that goes 

from x0 to y will always be orthogonal to the surface F0 and the first one says that it will 

have a length equal to ct.  Since this defines a unique line segment (up to orientation) 
through each point of F0 there will be two well-defined endpoints ± y and thus two well-

defined evolutes of F0, one of them a “forward” evolute F+y and the other one F−y a 

“backward” evolute.  It was precisely this ambiguity in the solution that worried Huygens 
most.  As it turned out, when one looks at the propagation of amplitude, the ambiguity is 
resolved.  We illustrate the construction of the phase evolute by means of the envelope of 
geodesic phase spheres in Fig. 10. 
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Figure 10.  The construction of the evolved momentary 
wave surfaces by means of Huygens’s principle. 

 
 e.  Contact transformations.  If we examine the construction of the evolved 
momentary wave surfaces then we see that we are not only mapping each point x0 ∈ F0 

to a pair of points on F+t and F− t , but we also defining a map from the tangent space 

0 0xT F  to the tangent spaces T−yF− t  and T+yF+ t  . 

 Now, since the tangent planes to any momentary wave surface Ft are hyperplanes in 

the tangent spaces to Σ at each point of Ft, and a hyperplane in any tangent space TxΣ is 

associated with a unique 1-form nx (up to non-zero scalar multiplication), we see that a 
momentary wave surface Ft , along with its tangent spaces, defines a section [n]: Ft → 

PT*Σ, x ֏ [nx] of the projectivized cotangent bundle PT*Σ of Σ, that is, the bundle of 
lines through the origin in each fiber of T*Σ .  We can then extend this to a section n: 

R×Ft → PT*M by extending n to dt – n at each (t, x). 

 What we now find is that since we have a canonical congruence of geodesics on 
PT*M whenever [F] has been chosen, it is actually unnecessary to go the route of first 
defining a family of geodesic spheres parameterized by the points of F0 and then going to 

the envelope of this family since, as long as a unique curve goes through each n(x0) in 
PT*M over the points of F0 one can map the point x0 directly to a unique point y = x0(t) 

for each t in the domain of definition for the local flow of XF about n(x0). 
 One then sees that a basic property of the time evolution of momentary wave surfaces 
is that it must consist of a one-parameter family of contact transformations 1 whose 
parameter is t, in this case  More precisely, a contact transformation is a diffeomorphism 
of PT*M that preserves the hyperplanes in T(PT*M) that are annihilated by θ; note that 
this is not the same thing as preserving θ, as much as preserving θ up to multiplication by 

                                                
 1 In addition to the references to Lie and Vessiot that were given in the Introduction to this book, one 
might also confer Eisenhart [10] or Arnol’d [11] on the subject of contact transformations.. 
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a non-zero scalar function 2.  Hence, it will take a tangent plane at one point to a tangent 
plane at another point. 
 An immediate advantage of the use of contact transformations is that for a given t, 
one only produces one evolved momentary wave surface, namely, the one at +t, and not 
its somewhat unphysical twin at – t. 

 The elapsed-time function ∆t: Σ ×Σ → R, (x, y) ֏  ∆t[x, y] has a fundamental 

property in the eyes of contact transformations, namely that its partial derivatives at x and 
y define the 1-forms nx and ny when one is integrating n: 
 

nx = − ( )t

x

∂ ∆
∂

= − ( ) i
i

t
dx

x

∂ ∆
∂

,  ny =
( )t

y

∂ ∆
∂

=
( ) i

i

t
dy

y

∂ ∆
∂

; (IX.81) 

 
they also define the tangent planes to the momentary wave surfaces at each point.  One 
then calls the function ∆t a generating function for the contact transformation, since a 
given contact element (x, nx) will get mapped to the corresponding (y, ny) that one obtains 
from (IX.79). 
 
 f.  The propagation of amplitude – general case.  So far, we have only discussed 
Huygens’s principle as it relates to the propagation of momentary wave surfaces; i.e., the 
propagation of the phase function for the wave.  However, in elementary optics when one 
first encounters explanations for the phenomena of interference and diffraction one hears 
Huygens’s principle applied to the propagation of wave amplitudes, or equivalently, 
intensities. 
 In that context, one finds that what one is really dealing with is the fact that 
elementary solutions of wave equations involve both phase functions and amplitude 
functions.  We recall that the first step in the geometrical optics approximation was to 

consider only electromagnetic waves of the form F(t, xi) = ( , ) ( )
ii t x ie f xφ , in which φ 

∈C∞(M) is a phase function and f ∈ 2
sMΛ , so it takes the form 1/2 fµν(x

i) dxµ ^ dxν.  This 

then makes *F(t, xi) = ( , ) * ( )
ii t x ie f xφ . 

 Note that in order to make rigorous sense of the decomposition of F and *F, we have 
to explain how complex scalars act on real 2-forms.  As it turns out, and we shall discuss 
this in greater depth in a later chapter, if the * isomorphism behaves like a Hodge * for a 
Lorentzian metric, then one has *2 = − I, which means it defines an almost-complex 
structure on the real vector bundle Λ2M.  One can then define the action of complex 
scalars by treating multiplication by * as the same thing as multiplication by i and: 
 

(α + iβ)F = αF + β*F.    (IX.82) 
Hence: 

eiφ F = cos φ F + sin φ *F.    (IX.83) 
 

                                                
 2 According to Arnol’d [11], people who confuse the two conditions are “bad people,” and pure 
mathematics could always use another moral principle. 
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 One sees that the time evolution of the spatial amplitude f – or *f, for that matter – is 
confined to the orbit that it makes in the vector space Λ2M under this action.  Recall that 
this was precisely the issue that we discussed in the section of Chapter VIII on 
polarization, so we are again looking at duality rotations. 
 By exterior differentiation, the sourceless Maxwell equations dF = d*F = 0 give: 
 

df + ik ^ f = 0,  d* f + ik ^ *f = 0.   (IX.81) 
 
 The second step in the geometrical optics approximation is when one introduces the 
approximation that makes df and d* f effectively zero.  This would be like assuming that 
the spatial amplitudes f and *f are constant, which would make the right-hand sides of 
(IX.83a, b, c) all vanish.  Hence, one immediate way of going beyond the geometrical 
optics approximation, before one gets to the asymptotic series methods of diffraction 
theory, is to consider spatial 2-forms f and *f that satisfy the differential equations (IX.81) 
instead of the algebraic equations that follow from omitting their differential terms. 
 One finds that the previous results that F and *F are Lie-transported along the flow of 
v imply corresponding conditions on f and *f: 
 

0 = LvF = Lv(e
iφf) = eiφ(ik ^ f + Lvf),   (IX.82a) 

0 = Lv*F = Lv(e
iφ * f) = eiφ(ik ^ *f + Lv* f),  (IX.82b) 

which gives: 
 

 Lvf = − ik ^ f,  Lv* f = − ik ^ *f.  (IX.83) 
 
Hence, the spatial 2-forms are no longer convected by the flow of v. 
 
 d. The propagation of amplitude – linear case.  Usually the propagation of amplitude 
in geometrical optics is addressed in the case of the linear wave equation.  Since 
elementary wave solutions and fundamental solutions – in the Green function sense of the 
term – are closely-related concepts, one also finds that the basic construction associated 
with the propagation of amplitude functions from an initial wave surface F0 to some later 

surface Ft is essentially a graphical way of representing a linear operator 3 K(0,t) : L
1(F0) 

→ L1(Ft), ψ ֏K(0, t ) ψ as an integral operator with a kernel K(x, y): 

 

(K(0, t ) ψ)(x) =
0

( , ) ( ) yK x y yψ∫F V .   (IX.84) 

 
Hence, this sort of construction is only useful for linear wave equations. 

 Since the kernel K(0, t) : F0 × Ft → R of the integral operator is a two-point function 

on a subset of Σ×Σ, one naturally wonders how it relates to the elapsed-time ∆t(x, y).  
                                                
 3 Here, we are using the notation L1(N) to mean Lebesgue-integrable real functions on the manifold N.  

The Lebesgue measure on any manifold starts off on R
n in the coordinate charts and eventually defines the 

volume element V more globally. 
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One finds that, in practice, the kernel function is usually a function of the elapsed-time 

function, which usually takes the form of the geodesic distance function r: Σ×Σ  → R, (x, 

y) ֏  r(x, y) between pairs of points in Σ, as long as r = ct. 
 For example, consider the fundamental solutions K(x, y) of the stationary linear wave 
equation, which takes the form of Helmholtz’s equation: 
 

(∆ + k2)ψ = 0,     (IX.85) 
 
which one generally uses in the construction of interference patterns. 
 They take the form of expanding spherical wave solutions: 
 

K(y − x) =
( )

4 ( )

ik y xe

r y xπ

−

−
,   (IX.86) 

 
which implies that one must be dealing with a manifold Σ that has an affine structure, 

such as R3 if one is to make sense of the expression y – x.  The distance function r is then 

the conventional Euclidian one. 
 It is important to note that K(x – y) is not defined on the diagonal of Σ×Σ (i.e., all 
points of the form (x, x)).  For this reason, fundamental solutions are often referred to as 
fundamental singularities (of the pole type). 
 The propagation of amplitude functions from a closed (= compact, without boundary) 
initial surface F0 to F t is then given by Helmholtz’s theorem:  Let: 

 

(K(0, t ) ψ)(y) =
0

( ) ( )
( ) ( ) y

K y x y
y K y x

n n

ψψ∂ − ∂ − − ∂ ∂ 
∫F V . (IX.87) 

 
with the kernel K(y – x) defined as in (IX.86).  One then has that: 
 

(K(0, t ) ψ)(y) = 0

0

( )  outside ,

0  inside .

x x

x

ψ



F

F
   (IX.88) 

 
 The fact that this integral vanishes for points inside the surface F0 accounts for the 

fact that the secondary solution F− t to the propagation of the momentary wave surfaces is 

essentially physically irrelevant.  That is, since the propagated wave surface F− t lies 

inside the initial surface F0 the propagated amplitude of ψ will vanish on that surface. 

 This is the resolution of the dilemma that Huygens was worried about, since the 
existence of a secondary, inward-propagating wave front would not be physically 
significant if the amplitude of the wave on it was identically zero. 
 In order to restore the time evolution, one needs only to recall the separation of 
variables that produced the stationary solution: 
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Ψ(t, x) = T(t)ψ(x) = e−iωtψ(x).    (IX.89) 
 
 However, there is an important subtlety associated with this reduction: By assuming 
that the time variation is governed by a single frequency ω, one is considering only 
monochromatic solutions of the full linear wave equation.  Of course, as long as one is 
only concerned with the linear case, one can express the more general solutions in terms 
of a Fourier integral over all frequencies.  However, the reduction does have the effect of 
converting a hyperbolic Cauchy problem into an elliptic boundary value problem.  Hence, 
the values of ψ and its normal derivative on F0 are no longer independent of each and 

cannot be specified independently, as they would be in the hyperbolic Cauchy problem.   
 The reduction to a monochromatic stationary wave also implies that the solution 
space has been reduced from infinite-dimensional to finite-dimensional by essentially 
projecting onto the subspace that is singled out by a choice of ω.  One can see that if each 
ω is associated with a distinct finite-dimensional vector space of solutions to the 
Helmholtz equation then clearly the generalized Cartesian product of this one-parameter 
family of vector spaces gives an infinite-dimensional vector space. 
 
 
 5. Diffraction.   The foregoing discussion has been subordinate to the geometrical 
optics approximation, in which one regards the wave number (or frequency) of the wave 
in question as sufficiently large in comparison to the gradients of the electromagnetic 
field amplitudes that one can ignore those gradients and consider only a set of algebraic 
equations for the field amplitudes that amount to the passage from the field operator κ□ to 

its symbol.  As a consequence, one finds that the usual machinery of spacetime geometry 
– e.g., its Lorentzian metric, its geodesics, etc – are natural constructions that follow from 
the dispersion law, which gives to the characteristic hypersurfaces in the cotangent 
spaces.  We have also seen that even within the geometrical optics approximation there is 
room for expansion in the geometry of spacetime when one considers birefringence and 
nonlinearity. 
 It is only natural to wonder how the geometry of spacetime would be further affected 
by eliminating, or at least weakening, the approximation that gave us this geometrical 
machinery.  In particular, the system of linear, first-order, partial differential equations 
for f that we obtained in (VIII.35) would not reduce to algebraic equations if the 
differential contributions df and d* f were no longer negligible compared to ω. 
 So far, the most definitive progress towards bridging the gap between wave optics 
and geometrical optics has been in the theory of diffraction.  Since the original intent of 
wave mechanics was to make the transition from wave mechanics to classical mechanics 
analogous to the transition from wave optics to geometrical optics, there is also a close 
parallel between the methods of diffraction optics and the loop expansions of quantum 
field theory. 
 The starting point for most optical diffraction theory 4 is essentially the Cauchy 
problem for the Helmholtz equation for some C2 function u on the spatial manifold Σ. As 
we saw, such a function gives the shape of stationary or time-harmonic waves.  The 
                                                
 4 The standard references on the subject of diffraction theory include Kline and Kay [6], Born and Wolf 
[7], Luneburg [8], and Baker and Copson [9].  
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Cauchy data u0, ∂u/∂n are defined on some compact, possibly bounded, surface S in 
space, such as a rectangular slit or circular aperture in an opaque screen.  Although it is 
usually emphasized that the waves propagating up to the slit or aperture are plane waves, 
actually, if the Cauchy problem is well-posed then that condition is irrelevant to the time 
evolution of the wave fronts past the opening.  One must also keep in mind that since one 
is dealing with the elliptic equation that follows from the hyperbolic wave equation that 
the spatial Cauchy data are no longer independent of each other, but must satisfy a 
compatibility condition. 
 Since the Helmholtz operator ∆ + k2 is linear and self-adjoint, one then solves the 
Cauchy problem for the Helmholtz equation by way of: 
 

u(y) = −
( ) ( )

0
0

( )1
( )

4 || || || ||

ik y x ik y x

xS

u xe e
u x

n y x n y xπ

− −    ∂∂ −    ∂ − ∂ −    
∫ V .  (IX.90) 

 
 However, like most integrals, this integral cannot generally be evaluated directly.  
Hence, one either goes the route of numerical integration or series approximations.  The 
series approximation that is customarily employed is particularly difficult to fully 
comprehend, namely, the asymptotic series approximation (see, e.g., [6-8, 12-15]).  The 
justification for the use of such a series follows from the assumption that the Cauchy data 
was rapidly oscillating on the initial surface S, which amounts to the large ω 
approximation.  In physics, this usually implies that the methods of diffraction theory are 
not useful until at least the microwave part of the electromagnetic wavelength spectrum, 
since the spatial dimensions of S can be quite appreciable for radio wave lengths, which 
might be in meters, or even kilometers. 
 Unlike the usual power series expansions of elementary calculus, an asymptotic series 
expansion is not presumed to converge in general; that is, it starts out as a formal power 
series.  Furthermore, the series is also assumed to depend upon some parameter, such as 
k, in such a way that the series becomes an increasingly accurate approximation in the 
asymptotic limit as k grows arbitrarily large.  One also frequently encounters the 
possibility that going to higher-order terms in the series might improve the approximation 
up some order, but then reduce the accuracy as the order goes beyond that point. 
 For the function u(x), the expansion takes the form: 
 

u(x) = ( )

0

( )

( )
ik x n

n
n

U x
e

ik
ψ

∞

=
∑ .    (IX.91) 

 
Note that we have implicitly factored our phase function θ(x) into the product kψ(x), 
which assumes that we actually can define some characteristic wave number k, such as 
the Euclidian norm of the spatial wave number 1-form. 
 In order to get the functions Un(x) one can then substitute (IX.91) into (IX.90) and 
obtain a sequence of recurrence relations.  However, in practice, one performs other 
transformations on the basic integral (IX.90) in order to obtain more manageable results.  
A further approximation that is often imposed is to assume that the dimensions of S are 
large compared to the wavelength of the waves passing though it, although diffraction 
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usually does not become noticeable until the dimensions of S are comparable to several 
wavelengths. 
 Generally, one expects that the series will start with the geometrical optics field u*(x) 
= eikψ(x)U0(x).  The subsequent contributions to the series then represent successive orders 
of correction to the geometrical optics approximation.  One can then regard the field u – 
u*, which represents the terms of the asymptotic series beyond zeroth order, as the 
diffracted field. 
 The methods of asymptotic approximations get applied to quantum wave mechanics 
by using 1/ℏ in place of k as the large parameter.  Presumably, one retrieves classical 
mechanics in the asymptotic limit as ℏ  goes to zero, which is like saying that the wave 
associated with a moving mass, such as an electron, ceases to diffract when passing 
though an opening.  In fact, it has long since been established that low-energy electrons 
diffract in a wavelike manner when passing through openings whose dimensions are 
comparable to atomic spacings in crystal lattices, or about 1 Å, which was seen as a 
definitive proof of the de Broglie hypothesis of matter waves. 
 When one goes to first order in the asymptotic expansion, one obtains the WKB 5 
approximation of quantum mechanics.  This approximation has the advantage of being 
precise for the hydrogen spectrum, which also follows from the largely heuristic Bohr-
Sommerfeld rules.  In the eyes of quantum field theory, which uses asymptotic 
expansions for the evaluation of momentum-space Green functions for particle scattering 
operators, the powers ofℏ represent the number of loops in the Feynman diagram for the 
scattering process, so the WKB approximation is regarded as a “one-loop” approximation 
to the Green function, while the classical scattering process is described by the zero-loop 
or “tree-level” diagrams. 
 From a geometrical standpoint, the most important question is that of what happens to 
the geodesics of spacetime – or even just space – as one goes to successive orders of 
diffraction.  That is, can one still think in terms of transverse trajectories to the 
momentary wave surfaces, and, if so, how do the diffracted trajectories differ from the 
classical ones that represent the geometrical optics approximation?  Here, one must 
clearly distinguish between the effect of diffraction on the propagation of phase, which is 
what the geodesics relate to, and its effect on the propagation of amplitude, which is what 
produces the diffraction patterns by way of interference patterns.  We illustrate the 
situation that we have in mind in Fig. 11. 
 
 

                                                
 5  The acronym WKB stands for Wentzel-Kramers-Brillouin.  Sometimes one finds it referred to as the 
WKBJ approximation, where the J stands for Jeffreys. 
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Figure 11.  Geodesics in the geometrical optics approximation and in the diffracted case. 
 

 We shall conclude our discussion of the topic of diffraction with only these foregoing 
cursory observations, and the idea that since the spirit of pre-metric electromagnetism is 
to exhibit the manner by which spacetime geometry emerges from the way that 
electromagnetic waves propagate in that manifold, it appears that the most promising 
direction of further exploration in the eyes of understanding quantum physics is the 
examination of how diffraction affects the structure of geodesics. 
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Chapter X 
 

The calculus of variations and electromagnetism 
 
 
 One of the most established, accepted, and far-reaching foundations for theoretical 
physics – whether one is concerned with mechanics or field theories – takes the form of 
Hamilton’s least action principle.  In essence, it says that what characterizes the state of a 
system that represents its “natural” state is the fact that that the state in question is an 
extremum of some performance index on the state space that one calls the “action 
functional.”  It is a principle that resonates with even the most intuitive and elementary 
concepts in natural philosophy, such as the Panglossian belief that we live in the best of 
all possible worlds.  Of course, to the scientist that is not a sufficient justification, since 
Ptolemy’s conception of the place of the Earth in the cosmos had a high degree of 
intuitive appeal in its day, but one still prefers to believe that the most fundamental laws 
of nature should have that sort of basis in intuitive concepts that one sees manifested in 
all common phenomena. 
 To be sure, there is a considerable degree of ambiguity in the concept of “action” that 
probably accounts for the generality of its applications, just as Newton’s second law of 
motion needs to be made more specific as far as the nature of the forces are concerned if 
one is to use it in practice.  One finds that although the most common definition of action 
in physics gives it the units of energy-time, nevertheless, one also finds it used to 
describe things with the units of length, as in the geodesic problem, or time, as in 
Fermat’s principle, which is the basis for Hamiltonian optics.  Indeed, in more general 
optimization problems, the performance index can take almost any imaginable form. 
 One must also be advised that one of the recurring themes of Twentieth Century 
quantum physics, besides the ubiquitous role of vacuum polarization and the existence of 
non-zero ground states, is the idea that the classical least-action principle may represent 
essentially a first-order approximation to something more involved in nature.  That is, in 
addition to considering the extremal states, which are analogous to the equilibrium or 
ground states of thermodynamics, one must consider the non-extremal states in the 
neighborhood of the extremals, as well.  This is then analogous to the consideration of 
fluctuations about equilibrium states in non-equilibrium thermodynamics, which are then 
referred to in the quantum context as “quantum fluctuations about vacuum ground 
states.”  One can even consider global topological issues, such as phase transitions under 
large perturbations. 
 As an analogy, it is conceptually useful to view the calculus of variations as being 
something like “the calculus of infinity variables.”  Indeed, if the action functional 
represents a “differentiable” function on an infinite-dimensional “differentiable 
manifold” of system states then its first variation functional would represent its 
differential map and the extremal states would be the critical points of the function.  
Although there is a considerable body of mathematical literature that explore this 
possibility, generally under the mantle of “global analysis,” one finds that even some 
pure mathematicians agree that this approach is not generally the most useful when it 
comes to the application of the calculus of variations to more tangible problems than the 
ones that global analysis poses.  Hence, although we shall occasionally employ the 



Calculus of variations and electromagnetism 259 

analogy as a heuristic device, we shall present the actual calculus in terms of local 
expressions. 
 Since the most natural mathematical formalism for the definitions of the calculus of 
variations seems to be the methods of jet manifolds 1 that we have already introduced to a 
limited extent, we shall add to the previous definitions with ones that are more specific to 
the present discussion.  Although it might seem more conceptually logical to start with 
variational mechanics and then generalize to variational field theory, we shall present the 
topics in the opposite order, since our primary object under scrutiny is the pre-metric 
formulation of electromagnetic field theory, and we introduce mechanics only in the 
context of coupling the energy of an electromagnetic field to an “external” current. 
 One will also observe that the introduction of a metric into the field theory is 
generally unnecessary from the variational perspective since the only possible role it 
would play is in the association of field strengths with excitations.  Since we have 
repeatedly emphasized that this sort of duality is best defined by the electromagnetic 
constitutive law of the medium, it is reassuring that we shall find that the introduction of 
a spacetime metric does not seem to be unavoidable until we discuss the notion of kinetic 
energy for point particles.  Indeed, even in the case of extended matter, one must 
introduce a mechanical constitutive law in order to effect the association, and not 
necessarily a metric. 
 In the first section of this chapter, we shall discuss the energetics of electromagnetic 
fields.  After that, we formulate the calculus of variations, first for sections of vector 
bundles in general and then for differential forms and multivector fields, more 
specifically.  We then specialize the general expressions to the cases of electrostatics, 
magnetostatics, and electromagnetic fields, with particular attention to the case of 
electromagnetic waves.  In that section, we also discuss how one makes a variational 
formulation of the problem of a charge distribution moving in an external 
electromagnetic field.  Finally, we discuss the variational formulation of geometrical 
optics using Fermat’s principle. 
 
 
 1. Electromagnetic energy.  As a prelude to the discussion of the action functionals 
for electromagnetic fields, we first discuss the way that one associates potential energy 
with distributions of field sources, as well as the fields themselves, in the cases of 
electostatics, magnetostatics, and electromagnetic fields, more generally. 
 
 a.  Electrostatic energy.  One immediately recognizes that for static fields the only 
kind of energy that would be relevant is potential energy, or − more precisely − work.  
However, one has a choice of two directions to follow in this regard: the work done 
configuring a distribution of electric charges, electric dipoles, or magnetic dipoles, and 
the work done establishing the field that they generate as sources. 
 Of course, one expects that the total work done in one case should equal the total 
work done in the other, but the difference is that one generally desires that the total work 

                                                
 1 For a good general treatment of the geometry of jet manifolds, one might confer Saunders [1].  Its 
application to physical field theories has been discussed to a considerable extent by Sardanashvily [2] and 
his colleagues. 
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done establishing the field be distributed over space as an energy density.  Hence, there 
are more subtle issues to address in that case. 
 Since we are talking about work, we must immediately restrict our scope by requiring 
that the path functional in question be path-independent; i.e., the force in question must 
be conservative.  This suggests that we are considering mostly “elementary” systems of 
charges or dipoles, since it is commonplace for dissipative forces to exist in the 
“complex” systems found in macroscopic matter, such as the heating of magnetic 
armatures exposed to time-varying magnetic fields.  Indeed, a more comprehensive 
discussion of the non-conservative case brings one unavoidably to the issues of 
thermodynamics, which is beyond the scope of our present analysis. 
 The most elementary case in which one can define the potential energy of an 
electrostatic system consists of one point charge Q in an external field E, which we 
assume to be conservative.  The force of interaction that Q experiences at a point x ∈ Σ is 
then QE(x), with the usual caveat about the validity of the test-charge/external-field 
approximation; i.e., one also assumes that the field E is independent of Q. 
 The differential change in potential energy when Q goes from x to another point x + 
dx – along any path l(s) – is then: 
 

dU(x) = “F(x)⋅ dl” = QEi(x) dxi = QEi(s) v
i(s) ds .  (X.1) 

 
in which vi(s) = dxi/ds|s is the velocity of the parameterization for the chosen curve. 
 The reason for the quotation marks is to emphasize the fact that the introduction of 
the dot product is unnecessary if one regards the force as a 1-form to begin with.  Instead 
of a scalar product of vectors one is then dealing with either the components Fi of a 1-
form and the elements of a local coframe field dxi or the bilinear pairing of a covector 
field Fi(s) dxi along a curve with a vector field vi(s) ∂/∂xi along it. 
 By integration along any curve γ from x to y, the change in potential energy of the 
charge-field system is then: 
 

∆U[x, y] = ( ( ))Q E x s
γ∫ =

1

0
( ) ( )i

iQ E s v s ds∫ = Q(U(y) – U(x)).  (X.2) 

 
 If one brings Q in “from infinity” to y and expects that U(y) is a finite number then 
this change in potential energy is finite iff U(x) approaches a finite value as x goes to 
infinity.  (Customarily, one lets this asymptotic value be zero, although any value of a 
potential function is ambiguous up to an arbitrary additive constant.)  It is worth pointing 
out that if the external field is “constant” in space – assuming that the concept of 
constancy means something for the space in question – then the potential energy of the 
charge/field system is infinite no matter where you put Q, since it is proportional to the 
distance from any point “to infinity.” 
 The second most elementary electrostatic system consists of two point charges Q1 and 
Q2 separated by a distance d.  The essential difference between this case and the previous 
one is due to the fact that one cannot always regard the system as Q1 in the external field 
due to Q2, or vice versa, unless the test-charge/external-field approximation applies; i.e., 
the presence of Q1 does not change the field of Q2, or conversely.  Hence, this assumption 
is more justifiable in the case of linear electrostatics than in the nonlinear case. 
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 From the anti-symmetry of the electrostatic force F12(d) between the two charges, 
combined with the change in sign when the line element dl = v(s) ds for one direction 
changes to the opposite direction, one has the symmetry of the differential element of 
work done while changing their separation distance: 
 

dF12 = “F12 ⋅ dl” = Fi(l) dli = Fi(s) v
i(s) ds .   (X.3) 

 
 If one brings them together at a distance d by starting with one of them “at infinity” 
then the total work done is: 
 

∆U12[∞, d] = 
0

0lim[ , ]
d

d d
→∞

= ( )
d i

iF l dl
∞∫ = ( ) ( )

d i
iF s v s ds

∞∫ .  (X.4) 

 
 If one uses the Coulomb expression for the force between them then the integration is 
immediate and one finds that the total potential energy associated with the configuration 
of Q1 and Q2 at a separation distance d is: 
 

∆U12[∞, d] = 1 2
2

0

1

4

Q Q

dπε
.    (X.5) 

 
One sees that, in principle, the potential energy of the system grows without bound as the 
separation distance grows vanishingly small. 
 Implicit in all of this is the assumption that ε0 is actually a constant and not a function 
of possibly Q1, Q2, and d, or simply the strength of the combined E field at each point.  
Hence, the aforementioned calculation has a distinctly linear field-theoretic character to 
it.  In the nonlinear realm the total potential energy would involve a more complicated 
integration. 
 In order to extend the elementary case of two point charges at a distance d to N point 
charges Qi, i = 1, …, N at points xi ∈ Σ, we essentially use an inductive argument that 
assumes that if Qk is any chosen one of the set of charges and E(xk) represents the field of 
the remaining N – 1 charges at the point xk then the total potential energy of the system 
when one brings all of the charges in from infinity is simply: 
 

Utot = ( ( ))
kx

kQ E x s
∞∫ = Qk φk(xk).   (X.6) 

 
Of course, this is based on the assumption that any of the possible choices for Qk will 
produce the same value of the total energy by this process, which represents a 
consistency requirement. 
 When linear superposition is in effect, such as in the case of the Coulomb field, the 
total potential energy then takes the form of one-half the sum of all pairwise contributions 
over all pairs of charges: 

Utot = 1
2

1

( )
N

i i i
i

Q xφ
=
∑ .    (X.7) 
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For each i, φi(xi) represents the electric potential at xi due to the remaining N – 1 charges, 
excluding Qi ; the factor of ½ accounts for the fact the sum counts each pair of charges 
twice. 
 In order to extend this to a continuous distribution of charges that is described by a 
charge density ρ(x), one basically replaces the finite charge Qk with the infinitesimal 
charge ρ(x)V, the electric potential at x due to the rest of the charge distribution by φ(x), 

and the summation by an integration over the support of ρ: 
 

Utot = 1
2 supp ρ

ρφ∫ V .    (X.8) 

 
 If one wishes to deduce the manner in which the total potential energy gets distributed 
through space as an energy density, one now imagines that the region described by supp 
ρ is dielectric in character.  Hence, the electric field E = − dφ produces a response in the 
form of the electric excitation D, which couples to the charge density ρ by way of the 
fundamental equation: 

δD = ρ,     (X.9) 
which we also express in the form: 

d#D = ρV.     (X.10) 

 
 Hence, the integrand in (X.8) becomes: 
 

ρφV = φ d#D = d(φ#V) – dφ ^ #D = d(φ#V) + E ^ #D .  (X.11) 

 
 This makes: 
 

Utot = 1 1
2 2(supp ) supp 

# #E
ρ ρ

φ
∂

+ ∧∫ ∫D D = 1
2 supp 

#E
ρ

∧∫ D ,  (X.12) 

 
if we assume that the support of ρ has vanishing boundary. 
 From the form of this resulting expression, we see that we can define the energy 
density in supp ρ to be the 3-form: 
 

wE = 1
2 E ^ #D = 1

2 E(D) V.    (X.13) 

 
 In terms of local components, we have that: 
 

E(D) = Ei D
i = εijEi Ej = ijεɶ Di Dj .   (X.14) 

 
 We can also express this as a Euclidian scalar product: 
 

E(D) = ε(E, E) = εɶ (D, D).    (X.15) 
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Of course, the symbolεɶ  represents the scalar product on the tangent spaces that is inverse 
to the one that ε defines on the cotangent spaces. 
 Although we have defined wE only on the support of ρ, where, by definition, ρ is non-
vanishing, nevertheless, it is conventional to simply generalize the resulting expression 
for energy density (X.13) to the case of the classical vacuum, in which ρ vanishes, so one 
has: 

wE = 1
2 ε0E

2 V.     (X.16) 

 
 Apparently, the notion of energy being distributed throughout space according to the 
square of the field strength, and not simply a total value that was associated with the 
charge configuration was not always regarded as indisputably meaningful.  According to 
Stratton [3], in a 1929 text on electromagnetic theory by Mayer and Weaver the authors 
argued that distributing the energy of a charge configuration throughout space made as 
much sense as distributing the beauty of a painting across the canvas!  However, Stratton 
counters that certainly one distributes the energy of deformation in an elastic medium 
throughout the medium according to the distribution of strain, but he also admits that the 
continuum-mechanical analogy for electromagnetism was losing favor as a consequence 
of relativity. 
 Perhaps the best way to reconcile the distribution of energy with the notion of work 
done is to recall that each point is associated with an electric dipole moment by way of 
ε and it takes work to create an electric dipole.  Of course, the formation of an electric 
dipole in vacuo only seems relevant for electric fields whose field strength approaches 
the critical value.  However, the fact that ε0 is not identically zero suggests that even the 
electric dipoles that eventually polarize into electron-positron pairs have a non-zero 
vacuum ground state, just as the space of electromagnetic fields does in the form of the 
zero-point field(s), and for sub-critical field strengths the change in the electric dipole 
moment is negligible. 
 
 b.  Magnetostatic energy.  The process of deriving the energy density of a static 
magnetic field is similar to the foregoing, although there is a fundamental difference: 
Since a current must be distributed over a chain that is at least 1-dimensional, instead of 
zero-dimensional, one cannot start with the work done moving a point in from infinity.  
Indeed, since a steady-state current can exist only in a closed circuit – i.e., a 1-cycle – one 
must first deal with the work done bringing a 1-cycle c1 in from infinity when it carries a 
current vector field I  when it moves in an external static magnetic field B distributed 
throughout space Σ. 
 First, look at the work done by the Lorentz force f = #(I  ^ B) on the current in c1 when 
one displaces it by a finite amount.  We represent this displacement by the 2-chain [−l, 0] 
× c1, by which we really mean the embedding of the formal sum of squares formed from 
the products [−l, 0] × [0, 1]a , where a ranges through the intervals that define c1.  We 
represent the situation in Fig. 12: 
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δr 
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“∞” 

I 
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Figure 12.  Bringing a current loop in from infinity in an external magnetic field. 
 
 First one must recall that actually f is a linear force density on c1, not a force.  Hence, 
the scalar function δW = f(δr) on [−l, 0] × c1, which represents the linear work density 
due to the displacement δr , must be integrated over c1, as well as [−l, 0].  Hence, we must 
multiply it by the area element #n = inV.  Now: 

 
f(δr) = #(I  ^ B)(δr) = V(B ^ I  ^δr).   (X.17) 

  
 We define the linear frame field {s, dr , n} on [−l, 0] × c1, which we normalize to 
make: 

V = ds ^ dr ^ dn,    (X.18) 

 
where {ds, dr, dn} is the reciprocal coframe field. 
 In this frame: 

B = Bs s + Br δr  + Bn n, I  = I s,   (X.19) 
so: 

f(δr) =  IBn     (X.20) 
and: 

f(δr) #n = I #B.    (X.21) 
 
 Hence, one ultimately finds that the total work done on c1 by the displacement is: 
 

W[−l, 0] = 
1[ ,0]

( ) #
l c

f δ
− ×∫ r n =

1[ ,0]
#

l c
I

− ×∫ B = I ΦB[−l, 0], (X.22) 

 
in which ΦB[−l, 0] represents the total magnetic flux through the 2-chain [−l, 0] × c1. 
 As long as the limit exists, we can then define the total work done bringing c1 in from 
infinity as: 

Wtot[c1] = I ΦB[c1] = I lim [ ,0]B
l

l
→∞

Φ − .   (X.23) 

 
 Hence, the current couples to the total flux of the external field through the tube to 
infinity in the same way that charge couples to electric potential.  Since the field B is 
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assumed to be conservative, the total flux will be the same for all homotopic tubes to 
infinity when c1 is given as an initial loop. 
 For a configuration of N currents I i, i = 1, …, N, and only under the assumption of 
linear superposition, one then has: 

Wtot = 1
2

1

[ ]
N

i i i
i

I c
=

Φ∑ ,    (X.24) 

 
In this expression, Φi[ci] refers to the total magnetic flux linking the tube to infinity that 
has the current loop ci as its initial loop and I i as its current, as result of the magnetic field 
that is generated by the remaining N – 1 current loops. 
 We can also express the total work done in terms of the magnetic potential 1-form A 
(B = #B = dA) since: 

ΦB[−l, 0] = 
1[ ,0]l c
dA

− ×∫  =
1 1{0} { }c l c
A A

× − ×
−∫ ∫ ,  (X.25) 

and: 

ΦB[c1] =
1{0} c
A

×∫  = M[c1],    (X.26) 

 
assuming that A goes to zero at infinity.  Hence, the total flux linking the tube to infinity 
is the magnetomotive force around the loop c1 . 
 In order to extend (X.24) to the continuum limit, we first point out that along any 
curve whose velocity vector field is v, one has: 
 

I A = I A(v) ds = A(I ) ds.   (X.27)  
 
 However, if I  is a current density that is distributed through space then we can also 
form a 3-form: 

A(I ) V = A ^ #I  = A ^ #δH = A ^ d#H,  (X.28) 

and since: 
d(A ^ #H) = dA ^ #H – A ^ d#H = B ^ #H − A ^ d#H, (X.29) 

 
when one forms the integral that corresponds to (X.24): 
 

Wtot = 1
2 supp 

( )A∫ I
I V  = 1

2 supp 
#A∧∫ I

I ,   (X.30) 

 
an integration by parts puts this into the form: 
 

Wtot = 1
2 supp 

#B ∧∫ I
H .    (X.31) 

 
 Hence, the magnetostatic energy density takes the form: 
 

wB = 1
2 B ^ #H = 1

2 B(H) V,   (X.32) 

and in component form one has: 
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B(H) = Bi H
i = ij

i jB Bµɶ = µij H
i Hj,  (X.33) 

which we can also express as: 
B(H) = ( , )B Bµɶ = µ(H, H).   (X.34) 

 
 One again, we see that the potential energy density takes the form of a quadratic form 
in either the field strengths or excitations whose components are defined by the magnetic 
constitutive law in effect. 
 
 c.  Electromagnetic energy.  Since the energy densities for both the electric field 
strength 1-form E and the magnetic field strength 2-form B are defined by quadratic 
expressions involving their respective constitutive laws, we naturally wish to examine the 
character of the quadratic expression κ(F, F) when κ is the electromagnetic constitutive 
law for the four-dimensional spacetime manifold M, and F is the electromagnetic field 
strength 2-form. 
 We first assume that T(M) = L(M) ⊕ Σ(M) is a time-space splitting of the tangent 
bundle and that Λ2 = 2

ReΛ ⊕ 2
ImΛ is the corresponding time-space splitting of the bundle of 

2-forms.  We can then express F as dt ^ E + #B, where dt ^ E ∈ 2
ReΛ and #B ∈ 2

ImΛ .  This 
allows us to write: 
 

κ(F, F) = κ(dt ^ E, dt ^ E) + κ(dt ^ E, #B) + κ(#B, dt ̂  E) + κ(#B, #B) . (X.35) 
 
 If we revert the six-dimensional basis {bi, #bi, i = 1, 2, 3} for Λ2 so that κ can be 
expressed as a 6×6 block matrix: 

κIJ =
ˆ

ij j
i

i
j ij

ε γ
γ µ

 −
 
  

ɶ
    (X.36) 

then: 
κ(F, F) = − ε(E, E) + (γ +γ̂ )(E, B) + ( , )µ B Bɶ ,  (X.37) 

 
in which ε(E, E) and ( , )µ B Bɶ represent the same quadratic expressions that we discussed 
in the static case while the middle term has the local expression: 
 

(γ +γ̂ )(E, B) = ˆ( )i j i
j i iE Bγ γ+ .    (X.38) 

 
 One can similarly decompose the expression F ^ #h, with h = ∂t ^ D + #−1H, into: 

 
F ^ #h = dt ^ E ^ #(∂t ^ D) + dt ^ E ^ H + #B ^ #(∂t ^ D) + #B ^ H,  (X.38) 

 
which then becomes: 

F ^ #h =  − [E(D) − (γ + ˆTγ )(E, B) − H(B)] V,  (X.39) 

 
which equals κ(F, F) V. 
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 When the medium in question is not in a state of motion relative to the 
measurer/observer, and does not exhibit optical activity, the cross-term in the sum 
vanishes, and the remaining expression is: 
 

F ^ #h = − [E(D) − H(B)] V.    (X.40) 

 
 For an isotropic medium, this takes the form: 
 

F ^ #h = − [εE2 − (1/µ)B2] V.    (X.41) 

 
 We then recognize the expressions in (X.39) as minus two times the usual 
electromagnetic Lagrangian density 4-form: 
 

Lem = − 1
2 F ^ #h = − 1

4 Fµν H
µν dx0 ^ dx1 ^ dx2 ^ dx3.  (X.42) 

 
 Interestingly, one can also account for the usual electromagnetic Hamiltonian using 
the quadratic form that is defined by κ.  However, one must form the “complex 
conjugate” of F, namely: 

F = dt ^ E − #B.    (X.42) 
 
 Note that, this operation of conjugation is meaningful only for a given choice of time-
space splitting.  Indeed, this is consistent with the idea that energy itself is not a 
relativistic invariant except in the context of rest energy. 
 We now find that: 

( , )F Fκ = − [ε(E, E) + ( , )µ B Bɶ ] + (γ − ˆTγ )(E, B),  (X.43) 
 
and when the last term vanishes, we see that we are again dealing with minus two times 
the usual electromagnetic field Hamiltonian. 
 
 
 2. The calculus of variations in terms of vector bundles.  Although we have been 
assuming a certain familiarity with variational field theory all along, since we are mostly 
concerned with fields that take the specific form of multivector fields and exterior 
differential forms, it is necessary to show how one can define the basic notions and carry 
out the basic computations of the variational calculus using such fields, in particular. 
 
 a.  Extremal fields.  When one is given a particular class of fields, the starting point 
for the calculus of variations is the definition of an action functional on the space of fields 
in question.  When the fields are all sections φ: M → E of a vector bundle over M it is 
somewhat convenient that the space of fields Γ(E) is a linear space, so the action 
functional becomes a function on that vector space.  However, one is nonetheless dealing 
with an infinite-dimensional vector space that is not necessarily separable, so putting a 
topology and a differentiable manifold structure on the space becomes problematic 
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enough that it is usually only heuristically useful to imagine that the action functional is a 
differentiable function on an infinite-dimensional manifold. 
 A first-order action functional S[.] on Γ(E) is defined by a first-order Lagrangian 

density L: J1(M, E) → R, which is at least C2, and such a functional takes the form: 

 

S[φ] = 1( )
M

j φ∫ L V .    (X.44) 

 
 Let us briefly recall the terminology that we introduced in Chapter VI concerning the 
geometry of jet manifolds in the form that it takes in the present context: 
 The notation J1(M, E) refers to the manifold of 1-jets of sections of the vector bundle 
E → M, and it has local coordinate systems that take the form (xµ, φA, φA

µ).  In the present 
case, the projection π1,0 : J

1(M, E) → E, 1
xj φ ֏ φ defines a vector bundle over E in its 

own right.  The vector spaces that comprise its fibers have the φA
µ for coordinates, so they 

are nN-dimensional (n = dim M, N = rank E). 
 A section s of the projection J1(M, E) → M takes the local form (xµ, sA(x), sA

µ(x)).  It 
is integrable iff s is the 1-jet prolongation j1φ of some section φ of E → M, in which case, 
it takes the local form (xµ, sA(x), sA

,µ(x)).  Hence, s is integrable iff one locally has: 
 

sA
µ(x) = sA

,µ(x).    (X.45) 
 
 A first-order field Lagrangian can then be expressed in the local form L = L(xµ, φA, 

φA
,µ) that is so established in the physics literature. 

 One now sees that in order for the integral in (X.44) to converge one must restrict  
either the class of sections that one uses or the topology of the manifold M.  Indeed, 
requiring the sections to vanish smoothly “at infinity” is equivalent to saying that if 
“infinity” is a point that one uses to compactify M then such a section can be smoothly 
extended to the one-point compactification of M by setting its value at infinity equal to 
zero. 
 The most-discussed one-point compactification in elementary mathematics is 

probably the compactification of R2 into a 2-sphere by stereographic projection.  

However, we hasten to point out that the way that one compactifies a topological space is 
usually determined by the type of geometry that one is doing, in addition to topology.  
One-point compactification mostly relates to conformal Euclidian geometry, in which 
spheres play the same fundamental role as points do in affine geometry.  In projective 
geometry, one compactifies the affine n-plane by the addition of a “hyperplane at 
infinity,” and in conformal Lorentzian geometry, one adds a “light-cone at infinity.” 
 We shall tacitly assume that suitable conditions are imposed on M or the field φ such 
that the action functional always exists. 
 The first variation δS of the action functional amounts to a linear functional on the 
(infinite-dimensional) vector space of vector fields on J1(M, E) that can be represented in 
the form of an integrated Lie derivative: 
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δS[X] = ( )XM
L∫ LV = [( ) ]X XM

i d di+∫ L V L V�.   (X.47) 

 
 A (substantial) variation of a section φ is a vertical vector field δφ on the manifold E.  
That is, one varies values the of the field without varying the points of M that they are 
associated with.  If a local trivialization U × V of E over U ⊂ M has the local coordinates 
(xµ, φA) then a general vector field on E will look like: 
 

X = A
A

X X
x

µ
µ φ

∂ ∂+
∂ ∂

,    (X.48) 

 
in which the component functions Xµ and XA are all smooth functions on E; i.e., Xµ = 
Xµ(xµ, φA), XΑ = XΑ(xµ, φA). 
 Hence, a vertical vector field, such as δφ, will look like: 
 

δφ = A
A

δφ
φ
∂

∂
.    (X.49) 

 
 One prolongs δφ to a vector field δ1φ  on J1(M, E) by differentiation.  Locally, it looks 
like: 

δ1φ  = 
( )A

A
A Axµ

µ

δφδφ
φ φ
∂ ∂ ∂+

∂ ∂ ∂
.   (X.50) 

 
 The fundamental problem of the calculus of variations is to find the extremal sections 
2 of the first variation functional under such first prolongations of substantial variations of 
the fields.  This basically means that one is looking for all φ ∈ Γ(E) such that δS[δ1φ] 
vanishes for all δ1φ that represent first prolongations of variations of φ.  This means: 
 

0 = δS[δ1φ] = 1( )
M

i d
δ φ∫ L V     (X.51) 

 
for all vertical δφ since the second term in the integrand in (X.47) vanishes for all 
prolongations of vertical vector fields. 
 In order to perform the traditional “integration by parts,” we revert to the local 
formulation.  One has: 

dL = A A
A A

dx d d
x

µ
µµ

µ

φ φ
φ φ

∂ ∂ ∂+ +
∂ ∂ ∂
L L L

,  (X.52) 

so: 

1i dδ φ L  = ,
A A

A A µ
µ

δφ δφ
φ φ

∂ ∂+
∂ ∂
L L

= A A
A Axµ

δ δφ δφ
δφ φ

 ∂ ∂+  ∂ ∂ 

L L
, (X.53) 

 

                                                
 2  We avoid the term “extremal fields” because this has a completely distinct, but established, meaning in 
Hamilton-Jacobi theory, namely, geodesic congruences. 
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in which we have introduced the variational derivative of L with respect to φ: 

 

A

δ
δφ
L

=
A Axµ

µφ φ
∂ ∂ ∂−
∂ ∂ ∂
L L

.    (X.54) 

 One can then say that: 

δS[δ1φ] = ( )#A A
AAM M

δ δφ δφ
δφ ∂

  + 
 

∫ ∫
L

V ΠΠΠΠ ,   (X.55) 

 
in which we have introduced the generalized momentum density vector fields: 
 

ΠΠΠΠA = A xµ
µφ

∂ ∂
∂ ∂
L

.     (X.56) 

 
 When one restricts oneself to either variations of φ that vanish on the boundary of M 
or variations that satisfy the transversality condition ΠΠΠΠAδφA = 0, the necessary and 
sufficient condition for an extremum is that: 
 

A

δ
δφ
L

= 0,     (X.57) 

 
which represents the Euler-Lagrange equations. 
 These are generally N nonlinear partial differential equations for the components φA 
of the extremal fields.  Hence, in order specify such fields uniquely one will generally 
have to pose boundary-value problems, in the elliptic case, or Cauchy problems, in the 
hyperbolic case. 
 If one introduces the generalized force densities fA , along with the aforementioned 
generalized momentum density vector fields ΠA , on E by way of: 
 

fA =
Aφ

∂
∂
L

,     (X.58) 

 
then the Euler-Lagrange equations can be put into the form: 
 

δΠA  = fA .     (X.59) 
 
 b.  Case of differential forms.  Since a k-vector field on a manifold M is a section of 
the vector bundle ΛkM → M and a differential k-form on M is a section of the vector 
bundle ΛkM → M, one sees that all one needs to do in order to focus on the variational 
formulation of electromagnetism is to specialize the general results that were derived 
above. 
 One thing that needs to be addressed immediately is the fact that when considers the 
bundle J1(Λk) of 1-jets of exterior differential k-forms on M one sees that it is the 
differential of any section φ: M → ΛkM that seems to factor most fundamentally in the 
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calculus of variations, whereas in the calculus of exterior differential forms, it is the 
completely antisymmetrized differential – viz., the exterior derivative – that plays the 
fundamental role.  This suggests that one might wish to define a notion of “exterior 1-jet” 
in the predictable way – i.e., equivalence classes of k-forms that are defined in some 
neighborhood of a point x ∈ M and have the same values at k as k-forms, along with the 
same exterior derivatives – but one eventually comes to see that this is basically 
unnecessary. 
 The real issue is differentiation with respect to fiber coordinates, and one finds that 
since components of k-forms are completely antisymmetrized sums a differentiation with 
respect to field components invariably singles out just one member of the sum.  For 
instance, if Fµν = Aµ,ν – Aν,µ then: 
 

,

F

A
µν

µ ν

∂
∂

= µ ν ν µ
µ ν µ νδ δ δ δ− = 1,    (X.60) 

since µ ≠ν, by anti-symmetry. 
 As a consequence, one has, in particular: 
 

Fµν

∂
∂
L

=
Aµν

∂
∂
L

.     (X.61) 

 
Hence, whether one differentiates with respect to Fµν or Aµν is irrelevant. 
 We shall primarily be concerned with 1-forms A as the fundamental fields, so the 
relevant jet bundle is J1(Λ1) → M.  Local coordinate charts on the total space J1(Λ1) take 
the form (xµ, Aµ , Aµν).  A section s: M → J1(Λ1)  of this bundle then looks like (xµ, 
Aµ (x

µ), Aµν(x
µ)) and it is integrable iff s = j1A, which implies that: 

 
Aµν = Aµ, ν .     (X.62) 

 
 A Lagrangian density on J1(Λ1) locally looks like L(xµ, Aµ , Aµν) and for the 

prolongation of a 1-form A it takes the form L(xµ, Aµ (x), Aµ, ν(x)).  The Euler-Lagrange 

equations then are expressed as: 
 

0 =
Aµ

δ
δ
L

=
A x Aν

µ µν

∂ ∂ ∂−
∂ ∂ ∂
L L

.    (X.63) 

 
 By introducing the notations: 
 

Jµ =
Aµ

∂
∂
L

, h
µν =

Aµν

∂
∂
L

    (X.64) 

 
the fundamental equations for the field Aµ become: 
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∂ν hµν = Jµ.     (X.65) 

 
 From (X.61), we see that it amounts to the same thing to define L as a function of 

Fµν , instead of Aµν .  Hence, if we combine the integrability condition for Fµν with the 
Euler-Lagrange equations in the latter form, and the second of equations (X.64), we get 
the system: 

Fµν  = Aµ,ν – Aν,µ , ∂ν hµν = Jµ,  hµν =
Fµν

∂
∂
L

.  (X.66) 

 
 We can just as well express these equations in index-free form as equations in the 2-
form F, the 1-form A, the bivector field h, and the vector field J: 

 

F = dA, δh = J,  h =
F

∂
∂
L

.  (X.67) 

 
 As long as one can regard the last of these equations as essentially the constitutive 
law that relates F to h, these equations are formally identical with the pre-metric 

Maxwell equations.  In the following sections, we shall pursue the extent to which this is 
a valid assumption. 
 
 
 3. Variational formulation of electromagnetic problems.  Since the main issues in 
the variational formulation of the field equations for electromagnetism are the definition 
of a Lagrangian density and its relationship to the constitutive laws of the medium, we 
shall examine the specific form these matters take in the cases of static electric, static 
magnetic, and dynamic electromagnetic fields.  We shall then discuss the variational 
formulation of the mechanical problem of determining the motion of charged mass 
distributions in external electromagnetic fields.  (For some other treatments of the same 
basic topics, one might confer [4-6].) 
 
 a.  Electrostatics.  Whether one is dealing with linear or nonlinear electrostatics, one 
generally begins by defining a Lagrangian that is quadratic in the field strength E ∈ Λ1Σ: 
 

L(xi, Ei) = 1
2 ( , )E Eε = 1

2
ij

i jE Eε  .   (X.68) 

 
 For an integrable section, one has: 
 

E = dφ,  (Ei = φ, i)    (X.69) 
 
for some smooth function φ on Σ that is unique only up to an additive constant. 
 Note that even though we originally developed the formalism of calculus of variations 
by defining a Lagrangian density as a differentiable function L on J1(E), we see that as 
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long as we deal with gauge-invariant field Lagrangians – i.e., ones that do not depend 
upon φ explicitly − we can just as well define L on Λ1Σ itself. 

 When one derives the vector field D that is canonically conjugate to E, one obtains 
the electrostatic constitutive law in the form: 
 

#D =
E

∂
∂
L

= #(εij Ej ∂i ),     (X.70) 

in which: 

εij(xi, Ej) = 1
2

kj
ij

k
i

E
E

εε ∂+
∂

.    (X.71) 

 
 Hence, one sees that when one is concerned with nonlinear electrostatics there is a 
fundamental difference between the quadratic tensor field ε  and the actual electrostatic 
constitutive tensor field ε; of course, they will coincide in the case of linear electrostatics. 
 The field equations that result from this choice of Lagrangian density are then: 
 

E = dφ,  δD = 0, D = ε(E),   (X.72) 
 
which can be combined into a single equation for φ: 
 

∆εφ = (δ ⋅ ε ⋅ d)φ = 0.     (X.73) 
 
It is important to remember that we are really varying φ, not E, even though φ no longer 
figures explicitly in the Lagrangian density.  Had we merely varied E directly, the only 
resulting field equation would be simply D = 0, which is a trivial outcome. 
 In order to include the source of the field, one must add another term to the 
Lagrangian density that couples the charge density ρ to the electric potential φ by way of 
  

L(xi, φ,  φi) = 1
2 E ^ #D + ρφ V = 1

2[ ( , ) ]E Eε ρφ+ V .  (X.74) 

 
 This makes the field equations take the form: 
 

E = dφ,  δD = J, D = ε(E),  (X.75) 
or: 

∆εφ = (δ ⋅ ε ⋅ d)φ = J,    (X.76) 
 
which is of the generalized Poisson type. 
 
 b. Magnetostatics.  Although the variational formulation of magnetostatics is 
analogous to that of electrostatics, nonetheless, there are significant differences that must 
be addressed.  For one thing, the fundamental field A is a 1-form, not a 0-form, so the 
field strength B = dA that it defines is a 2-form, not a 1-form.  However, because the 
vector space A2V of 2-forms over a three-dimensional vector space V is isomorphic to the 
vector space V, by means of Poincaré duality for a choice of volume element, it is more 
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conventional in classical magnetism to represent the 2-form B = #B by the components Bi 
of the corresponding vector field B, and similarly, the bivector field H = #−1H gets 
represented by the components Hi of the 1-form H. 
 This also means that the magnetic constitutive law µɶ  = µ−1: Λ2Σ → Λ2Σ for the 
medium intrinsically couples 2-forms to bivector fields, although it is usually expressed 
by the matrix of a linear isomorphism µɶ : Λ1Σ → Λ1Σ between their dual spaces.  In 
effect, one is using: 

µɶ (B, B) =µɶ (#B, #B) = (#µɶ #)(B, B),  (X.77) 
 
so the four-index componentsijklµɶ of µɶ  go to the two-index components of #µɶ #: 
 

ijµɶ  = klmn
ikl jmnε ε µɶ .    (X.78) 

 

 From this, one defines the sourceless magnetostatic field Lagrangian density for the 
potential 1-form A by a quadratic form on B that then reverts to a quadratic form on B: 
 

L(xi, Bij) = 1
2 ( , )µ B B = 1

2
i j

ij B Bµ = 1
2 ( , )B Bµ = 1

4
ijkl

ij klB Bµ , (X.79) 

in which: 
Bi = 1

2 εijkBjk = 1
2 εijk(Aj,k – Ak,j) = εijkAj,k = (∇ × A)i.  (X.80) 

 
 As before, we must emphasize that the second tensor field µ  that appears in this 
expression does not have to represent the magnetostatic constitutive law of the medium 
directly.  Similarly, one sees that in the absence of sources, the Lagrangian density is 
independent of A – i.e., gauge-invariant – and can thus be defined as a differentiable 
function on Λ2Σ, instead of J1(Λ2Σ). 
 In order to derive the field equations for magnetostatics from this Lagrangian density, 
one needs only to take (X.78) into account in order to convert the partial derivative of L 

with respect to Aij into a partial derivative with respect to Bi: 
 

Hij =
ijA

∂
∂
L

=
k

mn
k

ij mn

B B

A B B

∂ ∂ ∂
∂ ∂ ∂

L
= εijk

kB

∂
∂
L

= ijk l
kl Bε µɶ = (#−1H)ij,  (X.81) 

in which: 
H = j i

ij B dxµɶ      (X.82) 

 
represents the magnetic excitation 1-form that is Poincaré dual to the bivector field H = 
1
2 Hij ∂i ^ ∂j and: 

ijµɶ = ij k
ij k

B
B

µ
µ

∂
+

∂
,    (X.83) 

 
which, as one sees, agrees with ijµ  only in the case of a linear constitutive law. 
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 The sourceless field equations for A that one derives from the given Lagrangian 
density take the form: 

B = dA, δH = 0, H = ( )Bµɶ ,  (X.84) 
 
if one uses the 2-form B and the bivector field H, or: 
 

B = δ#−1A, dH = 0, H = ( )µ Bɶ ,  (X.85) 
 
if one uses the vector field B and the 1-form H. 
 One can also combine these equations into a single second-order system of partial 
differential equations for A: 

∆µ A = (δ ⋅ µɶ  ⋅ d)A = 0,   (X.86) 
 
which is of a generalized Laplace type. 
 If one includes the coupling of the energy in the field H to the energy in the source 
current density I  then one must add another term to the Lagrangian density to account for 
it: 

L(xµ, Aµ , Bµν) = 1
2 ( , ) ( )B B Aµ + I = 1

2
i j i

ij iB B A Iµ + ;  (X.87) 

 
one can also express the field-source coupling term in the form: 
 

A ^ #I  = A(I ) V.    (X.88) 
 
 The field equations now include a contribution from: 
 

A

∂
∂
L

= I ,    (X.89) 

namely: 
B = dA, δH = I ,  H = ( )Bµɶ ,  (X.90) 

or: 
B = δA, dH = #I , H = ( )µ Bɶ .  (X.91) 

 
 The first set consolidates into a second-order equation for A: 
 

∆µ A = I    (X.92) 
that has a generalized Poisson type. 
 
 c. Electromagnetism.  When one puts electricity and magnetism together into a four-
dimensional object, namely a 2-form F, the predictable form for a sourceless quadratic 
Lagrangian density is: 

L(xµ, Fµν) = 1
2 ( , )F Fκ = 1

4 F Fκλµν
κλ µνκ .  (X.93) 

 
 The excitation bivector field h that is canonically conjugate to the 2-form F is then: 
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h = κ(F),  (hκλ = 1
2 κκλµνFµν)  (X.94) 

in which: 

κκλµν = F
F

κλµν
κλµν

αβ
αβ

κκ ∂+
∂

.   (X.95) 

 
As usual, this means that κ coincides withκ only in the case of a linear constitutive law. 
 The resulting field equations are then: 
 

B = dA, δh = 0,  h = κ(F),  (X.96) 

 
which consolidate into a second-order equation for A: 
 

Aκ□ = (δ ⋅ κ ⋅ d)A = 0    (X.97) 

 
that represents a generalized wave equation. 
 The coupling of a source current J = ρ∂t + I  to the field A proceeds in a manner that is 
analogous to the previous discussions in the electrostatic and magnetostatic cases.  That 
is, the extra term in the Lagrangian that couples the energy of the source current to the 
energy of the field takes the form: 
 

A ^ #J = A(J) V = ρφ V + As ^ #I  = (ρφ + As(I ))V,  (X.98) 

 
which is then simply the sum of the electrostatic and magnetostatic terms. 
 The generalized force that appears in the field equations as a forcing term is then the 
charge flux 3-form: 

( # )A

A

∂ ∧
∂

J
= #J ,    (X.99) 

 
which makes the field equations take the form: 
 

F = dA, δh = J,  h = κ(F),   (X.100) 

 
or, in second-order form: 

κ□ A = J,     (X.101) 

 
which is then a forced wave equation. 
 
 
 4. Motion of a charge in an electromagnetic field.  The problem of determining 
the motion of a massive charge distribution ρ in the presence of an external 
electromagnetic field F brings one into the domain of mechanics rather than field theory.  
However, the formulation of the calculus of variations in terms of jet manifolds is 
sufficiently general in its application that one can adapt the methodology that was 
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presented above in the context of field theory to the context of mechanics.  Indeed, one 
can treat both pointlike matter and continuously-extended matter within that formalism. 
 The basis for the external field approximation in this case is the assumption that the 
presence of ρ, which necessarily represents the source for a field of its own, does not 
affect the field F, except by linear superposition.  Some situations in which this would 
break down might take the form of either nonlinear superposition, such as the combined 
field having a super-critical field strength in the eyes of the polarization of the medium or 
the cases in which the source J of the field F changes state, in some sense (e.g., position, 
shape, total charge) as a result of the presence of ρ. 
 First, we shall formulate the mechanical model for pointlike charged matter and then 
we shall discuss the issues that are associated extending the formalism to extended 
charged matter. 
 When a charge distribution is pointlike its support is along a smooth curve x: [0, 1] → 
M.  For the moment, rather than representing the distribution as a Dirac delta distribution 
centered on the points of x, we shall think of it as simply a real number q that is 
associated with γ; this also reduces the scope of the discussion to time-invariant charges.  
Similarly, we think of the rest mass of the point-particle as a positive real number m0, 
rather than another delta distribution, and restrict the scope to the time-invariant case. 
 
 a.  Variational formulation of point mechanics.  Just as 1-jets of sections of vector 
bundles over M were the fundamental objects in the variational formulation of field 
theory, the 1-jets of curves in M are the fundamental objects in the variational 
formulation of point mechanics.  However, one should note that there is certain 
simplification associated with point matter in the fact that the definition of the 1-jet 1j xτ  

of a curve x(τ) in M at a point x ∈ M reads the same way that the definition of the tangent 
vector to the curve at that point did, namely, the equivalence class of all differentiable 
curves though x that have the same first derivative – i.e., velocity – at that point. 

 We denote the manifold of all 1-jets of differentiable curves in M by J1(R, M).  Its 

source projection is J1(R, M) → R, 1j xτ ֏ τ,  its target projection is J1(R, M) → M, 

1j xτ ֏ x, and the projection J1(R, M) → R×M, 1j xτ ֏ (τ, x)  plays a role that is analogous 

to the projection J1E → E in the case of vector bundle.  Indeed, one can regard a curve as 

a section of the (trivial) projection R×M → R, (τ, x) ֏ τ and then regard mechanics in 

general as a special case of a field theory. 

 Since the manifold R is contractible, the manifold J1(R, M) is diffeomorphic to 

R×T(M).  Hence, a local coordinate chart on J1(R, M) takes the form (τ, xµ, vµ), so a local 

section s: R → J1(R, M) of the projection J1(R, M) → R, takes the local form (τ, xµ(τ), 

vµ(τ)).  One can also think of such a section as a differentiable curve in T(M) that projects 
to the curve x(τ). 
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 A section s of the latter projection is integrable iff it is the 1-jet prolongation j1x of a 
differentiable curve in M.  In that case, it locally looks like (τ, xµ(τ), vµ(τ)), in which the 
integrability condition is: 

vµ(τ) =
dx

d

µ

ττ
.     (X.102) 

 

 A (first-order) Lagrangian is a differentiable function L on J1(R, M), which then 

takes the local form L(τ, xµ, vµ).  It defines an action functional on differentiable curves 

in M in the predictable way: 
 

S[γ] = 1( )j d
γ

γ τ∫ L = ( , ( ), ( ))x x dµ µ

γ
τ τ τ τ∫ ɺL .   (X.103) 

 
 A variation δx of a curve x: [0, 1] → M is a vector field δx: [0, 1] → T(M), τ  
֏ δx(x(τ)) along that curve.  One can think of it as the restriction to x of a vector field 
that is defined by differentiating a differentiable homotopy – i.e., a finite variation – of x 

in M.  Its prolongation to a vector field δ1x: [0, 1] → J1(R, M) has the local form: 

 

δ1x(τ) =
( )

( )
d x

x
x d v

µ
µ

µ µ
τ

δδ τ
τ

∂ ∂+
∂ ∂

.   (X.104) 

 
Note, in particular, that it does not have a component in the direction ∂/∂τ, which would 
amount to a variation of the curve parameterization. 

 The first variation of S[.] is a linear functional δS[X] on vector fields X on J1(R, M) 

that is defined by: 

δS[X] = L ( )X d
γ

τ∫ L = [( ) ]X Xi d d di d
γ

τ τ+∫ L L ,  (X.105) 

 
analogously to (X.47). 
 Now: 

dL = d dx dv
x v

µ µ
µ µτ

τ
∂ ∂ ∂+ +
∂ ∂ ∂
L L L

,   (X.106) 

so when X = δ1x, one has: 

1x
i d
δ
L=

( )d x
x

x v d

µ
µ

µ µ
δδ
τ

∂ ∂+
∂ ∂
L L

.   (X.107) 

 
 By the usual product rule (“integration by parts”) trick, this takes the form: 
 

1x
i d
δ
L= ( )d

x x
x d

µ µ
µµ

δ δ π δ
δ τ

+L
,   (X.108) 

in which: 
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xµ
δ
δ
L

=
d

x d xµ µτ
∂ ∂−
∂ ∂
L L

     (X.109) 

 
are the components of the variational derivative of L with respect to xµ and: 

 

πµ = 
vµ

∂
∂
L

     (X.110) 

 
are the components of the generalized momentum 1-form that is canonically conjugate to 
the velocity vector field. 
 Hence, by an application of Stokes’s theorem, the first variation of S[.] in the 
direction δx becomes: 

δS[δx] =
1

0
x d x

x

τµ µ
µµ τγ

δ δ τ π δ
δ

=

=

   +    
∫

L
.   (X.111) 

 
 There are two basic variational problems in which the bracketed term vanishes: 
 1.  Fixed endpoint problems:  One considers only those differentiable curves between 
two fixed endpoints A and B, which then implies that δx(A) and δx(B) vanish. 
 2. Variable endpoint-problems.  In this case, in order for the bracketed term to 
vanish one must restrict oneself to variations δx that satisfy the transversality condition 
that πµ δxµ = 0 at the endpoints of the curves considered. 
 In either case, the necessary and sufficient condition that a given curve γ be an 
extremum of the action functional – i.e., that δS[δx] vanish for all allowable variations δx 
of γ − is that it satisfy the Euler-Lagrange equations: 
 

xµ
δ
δ
L

= 0.     (X.112) 

 
Although this condition is necessary for the extremum to be a local minimum of the 
action function, it is not sufficient.  In order to find sufficient conditions, one must 
consider of the second variation of L, which we shall not go into here. 

 Since the manifold R is one-dimensional, the Euler-Lagrange equations for point 

mechanics represent a system of ordinary differential equations for the curve γ.  If one 

introduces the generalized force 1-form f on J1(R, M): 

 

f = dx
x

µ
µ

∂
∂
L

     (X.113) 

 
and sets π = πµ dxµ then the Euler-Lagrange equations take the generalized Newtonian 
form: 

f =
d

d

π
τ

,     (X.114) 
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which can also be regarded as the “strong” form of the conservation law for linear 
momentum.  (The “weak” form is Newton’s first law, which says that when f vanishes π 
is constant along the extremal.) 
 
 b.  Legendre transform.  Since we have already defined equations of motion in terms 
of the dispersion polynomial P[k] on the cotangent bundle, namely, the bicharacteristic 
equations, we need to relate those equations to the equations of motion for points that we 
just obtained for an arbitrary Lagrangian L on the tangent bundle.  This is what the 

Legendre transformation accomplishes, although, as we shall see, when one does not use 
a quadratic dispersion polynomial, the form of the resulting Lagrangian is not quite as 
convenient. 
 Although we could have introduced the present topic above in the more general 
context of variational field theory, the resulting formalism seems more intuitively 
appealing in the context of point mechanics, in which the base manifold of the bundle in 

question is simply R, so the bundle becomes the trivial one R × M  → R, and the jet 

manifolds J1(R, M) and J1(M, R) reduce to R × T(M) and T*M × R. 

 The first step in defining this transformation is to return to the association of tangent 
covectors with tangent vectors that one obtains from starting with a Hamiltonian function 

H: T*M → R, which we assume to be continuously differentiable, and which was 

described in Chapter VIII in the section bicharacteristics.  The differential dH defines a 
characteristic (i.e., Hamiltonian) vector field XH by the process that was described in 
Chapter VIII.  Any covector kx ∈ T*M is then associated with a tangent vector XH(kx) on 
T*M, which then projects to a tangent vector vx to M.  This association of each kx ∈ T*M 
with a corresponding vx ∈ T(M) then defines a map ιH : T*M → T(M), which we assume 
to be a diffeomorphism of each fiber of T*M over x ∈ M to the corresponding fiber TxM.  
By the inverse function theorem, this implies that the differential map dιH |(x, k) must be 
invertible at every point of T*M. 
 Locally, the fiber map takes the form: 
 

vµ(kν) = 
( , )x k

H

kµ

∂
∂

     (X.115) 

 
at each x, so the local diffeomorphism constraint says that: 
 

v

k

µ

ν

∂
∂

=
2

( , )x k

H

k kµ ν

∂
∂ ∂

     (X.116) 

 
must be an invertible matrix at each x. 
 By assumption, one can invert the relationship (X.115) to obtain k = k(v), and one 
defines a Lagrangian on T(M) by means of the classical Legendre transformation: 
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L(x, v) = k(v)(v) − Hx(k(v));    (X.117) 

 
in local coordinate form this is: 
 

L(xµ, vµ) = kµ (v) vµ − H(k(v)).   (X.118) 

  
 The variational derivative of L with respect to x takes the local form: 

 

xµ
δ
δ
L

= fµ − 
d

d
µπ

τ
,    (X.119) 

in which: 

fµ =
xµ

∂
∂
L

= − H

xµ
∂
∂

, πµ = kµ +
k H

v
x k

νν
µ

ν

 ∂ ∂− ∂ ∂ 
.  (X.120) 

  
 Hence, when one assumes the validity of the canonical equations for H, one finds 
that: 

πµ = kµ , 
xµ

δ
δ
L

= 0,   (X.121) 

 
and conversely; i.e., the Hamiltonian equations for H are equivalent to the Euler-
Lagrange equations for L with the constraint that πµ = kµ . 

 Now, let us examine the form that the Legendre transformation takes when our 
Hamiltonian is defined by a homogeneous quartic polynomial: 
 

P[k] = 1
4 Pκλµν kκ kλ kµ kν .   (X.122) 

 
 The map ιP : T

*M → T(M), k ֏ v(k), then has the local form: 
 

  vν(k) =
P

kν

∂
∂

= Pκλµν kκ kλ kµ .   (X.123). 

 
 As we pointed out in the previous chapter, whereas this system of algebraic equations 
would be merely linear in the case of a quadratic P[k], we see that we are presently 
concerned with a system of cubic equations, which implies that the very business of 
inverting them, which is unavoidable if one is to pull P over from T*M to T(M), is likely 
to be considerably more computationally involved than a simple matrix inversion. In 
particular, the inverse map 1Pi

− , which we assume exists, must be homogeneous of degree 

1/3, so it is not a polynomial map. 
 Locally, the invertibility of iP means that the matrix: 
 

v

x

ν

µ
∂
∂

= 3Pκλµν kκ kλ  ≡ 3 γµν(x, k)   (X.124) 
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must be invertible for each (x, k).  One sees that this matrix also represents the local 
components ∂2P / ∂kµ ∂kν . 
 Once the invertibility assumption has been made, it is a simple matter to define a 

function Q: T(M) → R by means of the inverse map 1
Pι− : T*M → T(M), v ֏  k(v) by way 

of: 
Q[v] = P[k(v)];    (X.125) 

 
however, the specific nature of the resulting function is more involved than in the case 
where ιP is linear on the fibers. 
 In particular, since the map ιP is homogeneous of degree three, its inverse is 
homogeneous of degree 1/3. As the degree of P is four, this means that the degree of 
homogeneity of Q is 4/3: 
 

Q[λv] = P[k(λv)] = P[λ1/3k(v)] = λ4/3 P[k(v)] = λ4/3 Q[v]. (X.126) 
 
 c.  Variational formulation of the moving point charge problem.  It is in attempting to 
define a Lagrangian for the motion of a charged mass point in an external 
electromagnetic field F that we find that reconsidering the role of a spacetime metric is 
also a crucial issue in mechanics, as well as electromagnetism.  The key question is 
whether one can define the kinetic energy of motion in the absence of a metric.  This is 
equivalent to the problem of how to associate a momentum 1-form p(τ) with the velocity 
vector field v(τ) along a curve, since the kinetic energy will be proportional to p(v). 
 Ultimately, the issue is again one of duality, in which the velocity and momentum 
have to be related to each other by a mechanical constitutive law in the same way that F 
and h are related by an electromagnetic one and stress is related to strain by a different 

sort of mechanical constitutive law. 
 As long one deals with canonical momentum π the fact that its components are 
functions πµ(τ, xµ, vµ) suggests that the mechanical constitutive law is built into the form 
of π, or equivalently, the Lagrangian L that defines it.  This is analogous to the way that 

one could define the constitutive law that coupled F to h directly or indirectly by way of 

the Lagrangian density for F. 
 However, for the sake of computations in particular cases one still needs to be more 
specific about the form of either L or π and if one does not introduce a way of associating 

tangent vectors with covectors at some point then one gets into a vicious logical cycle by 
trying to avoid it.  Hence, we shall assume that our manifold M is associated with an 
electromagnetic constitutive law, with a corresponding dispersion polynomial P[k], and 
use the invertible map iP: T

*M → T(M), k ֏ v(k) that it defines to facilitate the definition 
of a Legendre transformation. 
 Under this transformation, the Hamiltonian H(x, p) on T*M will go to the Lagrangian: 
 

L(x, v) = p(v)(v) – H(x, p(v)).    (X.127) 
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 Previously, we associated frequency-wave number 1-forms with velocity vector 
fields.  However, in order to discuss point mechanics, we must associate velocity fields 
along curves with energy-momentum 1-forms along those curves.  Since we are dealing 
with the motion of a point particle the main problem conceptually is how to associate a 
frequency-wave number 1-form k with the particle when the electromagnetic field, being 
external, is essentially passive to the problem.  We then see that, in a sense, the point 
particle approximation is too much of an approximation to suggest a notion of an 
associated wave covector field, in much the same way that point particles make the 
definition of angular momentum more involved than when one is dealing with extended 
matter. 
 Since the point particle concept is essentially classical – i.e., pre-quantum – we shall 
resolve the issue by assuming that the basic classical data of a rest energy E0 and an 
energy-momentum covector field p are given and have their support on the curve of the 
particle.  The wave covector k is then related to the energy-momentum covector field p 
by the de Broglie relation p = kℏ , while the rest energy is related to a rest frequency ω0 
by E0 = 0ωℏ .  Furthermore, the energy-momentum covector field p satisfies the 

inhomogeneous characteristic equation: 
 

P[p] = 4 [ ]P kℏ = 4
0E = 4 4

0ωℏ ;    (X.128) 

hence, k satisfies: 
P[k] = 4

0ω .     (X.129) 

 
In effect, the fact that the rest energy is non-vanishing has changed the nature of the 
dispersion law from the homogeneous one that relates to photons into the inhomogeneous 
one that relates to massive matter. 
 From the fact that the form of H is algebraically simpler than that of L when one is 

not dealing with quadratic polynomials – viz., P[k] is a polynomial, while Q[v] is not, −  
one finds that it is mathematically more straightforward to deal with the Hamiltonian 
form of the geodesic equations, rather than their Lagrangian form. 
 We start with the fact that a pre-metric way of expressing kinetic energy is: 
 

T = 1
d p(v),     (X.130) 

 
in which d represents the degree of homogeneity of the function p(x, v) in v. 
 This expression can be interpreted in either the Lagrangian formalism or the 
Hamiltonian one. 
 In the Lagrangian formalism one must solve for the 1-form p as a function of the 
vector field v: 

T(x, v) = 1
d p(v)(v) = 1

d pµ(x, v)vµ.   (X.131) 

 
However, since it is v = v(p) that is given by the elementary expression − namely, a 
system of homogeneous cubic equations − one sees that the inverse system will not 
generally admit such an elementary form. 
 Conversely, in the Hamiltonian formalism one must solve v for p: 
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T(x, p) = 1
d p(v(p)) = 1

d pµ v
µ(x, p).   (X.132) 

 
Hence, since the equations that take p to v have the more elementary form in this case, 
one would regard the Hamiltonian formalism as being computationally preferable. 
 Now, let us contrast that with the situation regarding potential energy, which has the 
general form: 

U = A(J) = qA(v).    (X.133) 
 
 One immediately sees that this expression has a distinctly Lagrangian character, since 
it depends most directly upon the velocity vector field.  The local functional 
dependencies are then: 

U(x, v) = qAµ(x) vµ(x).    (X.134) 
 
 In the Hamiltonian formalism, however, one must solve v for p: 
 

U(x, p) = qAµ(x) vµ(x, p).   (X.135) 
 
 Although the map that takes v to p is not as conveniently represented as the inverse 
map, we shall present the derivation of the equations of motion for a charged mass point 
in an external electromagnetic field in both of the aforementioned formalisms in order to 
see how the change from a quadratic dispersion law to a quartic one affects the equations 
of motion. 
 In Lagrangian formalism, the Lagrangian has the form L = T – U and the equations of 

motion take the form: 

 
T

xµ
δ
δ

=
U

xµ
δ
δ

.    (X.136) 

 
By substituting for T as in (X.131) and U as in (X.134), this becomes: 
 

2 21 dp p p p pdv dv
v v v v

d d x x v v v d v d

κ ν
µ ν κ ν νν ν ν ν

µ κ µ κ µ µτ τ τ
 ∂ ∂ ∂ ∂− + + + ∂ ∂ ∂ ∂ ∂ ∂ 

= Fµν J
ν . (X.137) 

 
 In the quadratic case, for which d = 2 and pµ = m0 gµν v

ν, one has: 
 

p

x
ν
µ

∂
∂

= m0 gκν,µ vκ, 
p

v
ν
µ

∂
∂

= m0 gµν ,    
2 p

x v
ν

κ µ
∂

∂ ∂
= m0 gκν,µ , 

2 p

v v
ν

κ µ
∂

∂ ∂
= 0, (X.138) 

 
and one finds that the equations of motion can be put into the form: 
 

∇v pµ = Fµν J
ν .     (X.139) 

 
 As we pointed out, when one chooses a quartic polynomial for P[p], so p(x, v) is 
homogeneous of degree 1/3 in v, there is no simplification of the left-hand side of 
(X.137). 
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 Under a Legendre transform, a Lagrangian of the form T(x, v) − U(x, v) does not 
generally go to a Hamiltonian of the form T(x, p) + U(x, p), so in order to get some idea 
of how to incorporate the coupling of the charge to the external field, we first look at the 
result of applying a Legendre transform to the quadratic Lagrangian of that form that 
pertains to a Lorentzian manifold, namely: 
 

L(x, v) = 1
2 m0 gκλ(x) vκ vλ − qAν(x) vν.  (X.140) 

 
 We first find that the canonical momentum takes the form: 
 

pµ =
vµ

∂
∂
L

= m0 gµν v
λ − qAµ .   (X.141) 

 
 Hence, the Legendre transformation produces a Hamiltonian of the form: 
 

H(x, p) = 
0

1
2m gµν(x)(pµ + qAµ)(pν + qAν).  (X.142) 

 
This exhibits the “minimal electromagnetic coupling” aspect of energy-momentum, 
namely, that in the Hamiltonian formalism the coupling of the free charge to the external 
field is by way of replacing the free particle energy-momentum 1-form p with ( , )p x pµɶ = 

p + qA.  One can also think of this as the Fourier transform of the replacement of the 
partial derivative ∂µ with the covariant derivative ∂µ − iqAµ , in which A plays the role of 
the U(1) connection form. 
 One then verifies that the canonical equations for this H can be reduced to the form: 
 

m0 gµν ∇vv
ν = Fµν v

ν.    (X.143) 
 
 In the quartic case, a minimal coupling of A to the energy-momentum of the particle 
by the replacement of pµ with ( , )p x pµɶ  gives the Hamiltonian: 

 
H(x, p) = 1

4 ( )P x p p p pκλρσ
κ λ ρ σɶ ɶ ɶ ɶ .  (X.144) 

 
 The canonical equations initially take the form: 
 

dx

d

µ

τ
= vν = P p p pκλρµ

κ λ ρɶ ɶ ɶ ,     (X.145a) 

dp

d
µ

τ
= ,

1

4

P
p p p p qA P p p p

x

κλρσ
κλρσ

κ λ ρ σ κ µ λ ρ σµ
∂− −

∂
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ,  (X.145b) 

 
although with the substitution p = pɶ  − qA the second equation becomes: 
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,

1

4

dp
P p qF P p p p

d
µ κλρσ κλρν

µ σ µν κ λ ρτ
 + − 
 

ɶ
ɶ ɶ ɶ ɶ = 0,  (X.146) 

 
and the substitution of (X.145a) in (X.145b) gives: 
 

,

1

4

dp
P p p p p

d
µ κλρσ

µ κ λ ρ στ
+

ɶ
ɶ ɶ ɶ ɶ = qFµν v

ν .   (X.147) 

 
 Although presenting the equations of motion in this form allows us to see how the 
introduction of an external electromagnetic field affects the free-particle equations of 
motion, nonetheless, if one wishes to solve forpɶ (if only numerically), which then allows 
one to derive p and v directly, then one must use the form (X.146). 
 
 d.  Radiation damping.  One finds that attempting to include the effects of the 
radiation reaction on the motion of a point charge in an electromagnetic field is met with 
the same obstacles as in attempting to account for viscous drag forces in the medium 
(indeed, some refer to the reaction as radiation damping).  That is, one is no longer 
considering a conservative mechanical system, so the very applicability of either 
Lagrangian or Hamiltonian methods is no longer justified.  Basically, it comes down to a 
question of completeness in the model for the state space of the particle-field system, 
since the field itself potentially contributes an infinite number of degrees of freedom, 
which include the radiative modes, just as accounting for the energy that gets dissipated 
by friction in a mechanical system would imply adding an enormous number of 
dimensions to the state space to account for the internal motion of the molecules that are 
absorbing the energy that gets lost. 
 When one considers an extended charge distribution instead of a pointlike one, one 
also adds a potential infinitude of degrees of freedom to the state space in the form of the 
internal degrees of freedom that pertain to the distribution, such as the various 
deformations, and – more to the immediate point – the wavelike modes.  Indeed, the very 
fact that elementary charges, such as electrons, are associated with a characteristic 
frequency ω0 = 2 /em c ℏ  or wave number, in the form of the Compton wave number k0 = 

ω0/c (which assumes the Lorentzian dispersion law), suggests that there is some 
fundamental internal motion going on, probably of the standing-wave variety.  The fact 
that massless waves can only exist as traveling waves with a characteristic speed is 
undoubtedly closely relevant to that fact. 
 
 e.  The motion of extended charge distributions.  Although it is certainly possible to 
treat continuum mechanics in general, and continuous distributions of charges, more 
specifically (see, e.g., [7, 8]), within the framework of the calculus of variations and the 
geometry of jet manifolds, nevertheless, since our primary focus in this book is on 
examining the various topics in electromagnetism that can be formulated in a pre-metric 
manner, we shall not go further in that direction at the moment.  Suffice it to say that, 
rather dealing with anti-symmetric second-rank tensor fields, such as F and h, one is 

dealing with symmetric ones, such stress σ and strain e, respectively.  However, the 
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equations of motion can still be put into a form that is analogous to the pre-metric 
Maxwell equations, by postulating the integrability of the strain, the conservation of 
energy-momentum for stress, and a mechanical constitutive law that relates stress to 
strain: 

ei
j = 1

2 (ui
, j + uj

,i), σi
j
,j = fi , σi

j = C(ei
j).  (X.138) 

 
 In these equations, the displacement vector field u = ui∂i , which describes an 
infinitesimal deformation of a region in a medium, plays a role that is analogous to the 
potential 1-form in electromagnetism, except that one is symmetrizing the derivative, 
instead of anti-symmetrizing it.  Indeed, although the symmetry of the strain tensor field 
is based in the symmetry of the metric tensor field in the medium (both deformed and 
undeformed), the assumption of symmetry of the stress tensor field can be weakened, 
since it is based in the absence of internal torques or moments existing in the medium.  
Media in which such internal torques exist are called Cosserat media (see, [9, 10]), and 
constitute an intriguing possibility for modeling the structure of spacetime by analogy, 
since one is basically looking at objects that are embedded in the bundle of orthonormal 
frames over a (pseudo-) Riemannian manifold, instead of the manifold itself. 
 
 
 5.  Fermat’s principle.  No discussion of the application of the calculus of variations 
to electromagnetism is complete without a discussion of Fermat’s principle as a basis for 
geometrical optics [11-15].  This is especially true in the present context of pre-metric 
electromagnetism, since the action functional that Fermat defined for the light rays in an 
optical medium is crucially related to its electromagnetic constitutive properties, and thus 
represents a simplification of the problem in its full generality. 
 Since the space Σ of geometrical optics is two-or-three-dimensional, in order to define 
the variational formulation of light rays in the manner of Fermat, one must consider the 

1-jets of curves in Σ; we denote this fibered manifold by J1(R, Σ).  Fermat’s principle is 

based on the specialization of Hamilton’s principle that takes the form of saying that a 
light ray from point A in Σ to point B is a curve from A to B that minimizes the elapsed 
time dt along the curve.  (Note that since light rays cannot be parameterized by proper 
time, this must be understood to represent an affine parameterization.) 
 A key to making the transition from spacetime to space, along with the expected 
Legendre transformation from a Hamiltonian function to a Lagrangian function is to note 

the local equivalence of J1(R, Σ) with PT(M) and J1(Σ, R) with PT*(M).  This is easily 

seen by defining local coordinate systems for each pair of manifolds in the form of (t, xi, 
Vi) for the former pair and (xi, t, ni) for the latter.  Of course, in the latter case the time 
coordinate t must now be regarded as a differentiable function on an open subset of Σ, not 
an open subset of M. 
 We have previously encountered the elapsed-time functional in our discussion of 
Huygens’s principle, where we found that it comes about naturally when one treats the 
components kµ of the wave covector k = ωdt − ki dxi at any point x ∈ M of spacetime as 
the homogeneous coordinates of a point [k] in the projectivized cotangent space*

xPT M , 
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such that the inhomogeneous coordinates are ni = ki /ω.  When M = R×Σ, these 

inhomogeneous coordinates then define a spatial 1-form on Σ by way of: 
n = ni dxi,     (X.139) 

 
and if k were exact – i.e., k = dφ = ∂φ / ∂t dt + ∂φ / ∂xi dxi –then this would mean that: 
 

n = − /

/

ix

t

φ
φ

∂ ∂
∂ ∂

dxi = i
i

t
dx

x

∂
∂

= dt.   (X.140) 

 
Hence, the integral of n along any curve segment γ will represent the elapsed time that it 
takes to go from one endpoint to the other. 
 However, in order to obtain Fermat’s principle one must use this spatial path 
functional to define an action functional on curve segments.  This then reverts to the 
problem of defining a Lagrangian function on the jets of curve segments, which would 
then take the form of a differentiable function L(t, xi, Vi), while so far we only have a 

section of T*Σ → Σ, namely, n.  What is missing is the input from the dispersion law P[k] 
on T*M, which, as we saw, becomes an inhomogeneous polynomial [P][n] on PT*M that 
takes the form: 

[P][n] = P4[n] + P2[n] + P0    (X.141) 
 
for electromagnetic waves when one factors the ω out of P[k]; of course, the polynomial 
[P][n] is no longer homogeneous in its independent variables ni . 
 Since the Hamiltonian H(x, k) = 1/4P(x)[k] on T*M is supposed to vanish for the 
physically meaningful wave covectors, as well as [P][n], any multiplicative factors are 
superfluous, and we define the Hamiltonian on PT*M to be: 
 

H(xi, t, ni) = 1
4 [P](x)[n].    (X.142) 

 
 In order to make the transition from a Hamiltonian on the contact manifold PT*M to a 

Lagrangian on J1(R, Σ), at least locally, we first perform a Legendre transformation on H, 

as it is defined on T*M, to a Lagrangian L on T(M): 

 
L(xµ, vµ) = kµ (v)vµ – H(xµ, kµ (v)).   (X.143) 

 
Since H is homogeneous in k of degree four, kµ

 vµ = 4H and one can say: 
 

L(xµ, vµ) = 3
4 kµ (v)vµ.    (X.144) 

 
The projection of this onto PT(M) is 3

4 ωv0[1 – ni(V)Vi], and since it must vanish for 

physically meaningful velocity vectors, the leading scalar factor can be omitted.  
Similarly, differentiation to obtain the equations of motion makes the unity term 
irrelevant and the fact that the variational derivative is set to zero also makes the sign of 
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the second term irrelevant.  Ultimately, there is no loss in generality in defining the 
Lagrangian on PT(M) to be: 
 

L(t, xi, Vi) = 3
4 ni(x, V)Vi.   (X.145) 

 
 When one forms the action functional for differentiable curves in Σ, under the 
assumption that ni(x, V) is independent of t, one first finds that if the curve parameter is s 
then Vi = dxi / ds and: 

L(t, xi, Vi) ds = ni dxi,    (X.146) 

 
which equals the elapsed-time differential in the integrable case, where t = t(xi) and ni = 
∂t / ∂xi. 
 One notes that is it equivalent to first project the Hamiltonian H(xµ, kµ) on T*M to a 
Hamiltonian H(xi, t, ni) = 1/4niV

i(n) on PT*M and then perform a Legendre 
transformation: 

L(t, xi, Vi) = ni(V
i)Vi – H(xi, t, ni) = 3

4 ni(V
i)Vi. (X.147) 

 
 This can be summarized in a commutative diagram: 

 

T*M T(M) 

PT*M 
 

PT(M) 

 
in which the horizontal arrows are the Legendre transforms and the vertical ones are the 
projectivizations. 
 Although we have succeeded in deriving the elapsed-time path functional from the 
dispersion law in a more general manner than one usually obtains for the quadratic 
polynomial that gives a Lorentzian metric on spacetime, nonetheless, one immediately 
finds that it practical calculations, the advantage of this expansion of scope is diminished 
by the disadvantage that the functions kµ(v) and ni(V) are no longer elementary linear 
isomorphisms, as they would be for the quadratic case, but a set of four homogeneous 
functions of degree 1/3 in the former case, and a set of three functions that are not even 
homogeneous in the latter.  Hence, these functions are easier to work with in theory than 
they are in practice. 
 The inevitable conclusion seems to be that the formulation of geometrical optics is 
much more natural and straightforward when one deals with cotangent objects instead of 
tangent ones.  In other words, the wave optics of Huygens is more straightforward than 
the ray optics of Fermat when one is concerned with dispersion laws that are not 
quadratic in nature. 
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CHAPTER XI 
 

Symmetry and electromagnetism 
 
 One of the most fundamental – some would say, the most fundamental − ways of 
formulating the first principles of physics is in terms of conservation laws.  One can say 
that conservation laws can be phrased in a weak form and a strong form, where the weak 
form is simply an approximate version of the strong form. 
 The weak form of a conservation law pertains to a system that is closed in the sense 
of complete – i.e., having no well-defined “external” environment, or, at least no 
exchange of the physical quantity in question with the external environment.  One must 
understand, though, that the “external” environment might very well be “internal” in 
nature, such as the unmodeled system modes due to the molecular structure of a material 
medium.  The weak form of the conservation of the physical quantity in question states 
that its total value over the system is constant in time. 
 The strong form of a conservation law assumes that there is a well-defined distinction 
between the internal and external states of the system and an exchange of the physical 
quantity in question between the two.  The strong form of the conservation law then 
states that the time derivative of the total value of the quantity over the internal states 
equals the total rate of transfer across the boundary between the internal and external 
systems.  The weak form then represents the approximate form of the strong that one 
obtains by assuming that the system exterior is negligible, or, at least, the transfer of the 
physical quantity between the internal and external systems is negative. 
 In engineering mechanics, the strong form of a conservation law is called a balance 
law.  One sees that a conservation law then represents a complete accounting of the total 
amount of something while a balance law represents a complete accounting of its time 
rate of change. 
 As an example of these two forms of a conservation law, consider Newton’s first law 
of motion, which amounts to the weak form of the conservation of linear momentum: 
when the total of the external forces that act on a physical system vanishes, its total linear 
momentum remains constant in time.  The second law of motion, by comparison, says 
that when the total external forces are non-vanishing the time derivative of the total linear 
momentum equals that resultant of the external forces, which then represents its strong 
form, namely the balance of linear momentum. 
 One of the most profound advances to the first principles of theoretical physics was 
made in the early Twentieth Century by Emmy Noether, who showed that the calculus of 
variations provides a direct way of associating transformations of the states of physical 
systems that preserve the action functional for the system with conserved currents – i.e., 
vector fields with vanishing divergence.  The transformations are generally regarded as 
symmetries of the basic dynamical laws that govern the states of the system.  For 
instance, symmetry under spatial translations is correlated with the conservation of linear 
momentum, or the vanishing of external forces.  Conversely, the breaking of a symmetry 
of the action functional is then associated with the non-conservation of the quantity it is 
associated with, and implies a non-vanishing divergence of the vector field; for instance, 
there would be non-vanishing forces, in the case of linear momentum. 
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 In the context of the sourceless Maxwell equations for electromagnetism, in their 
metric form, the problem of determining the Noether symmetries, when one formulates 
the field equations in Lagrangian form, was addressed by Lorentz and Poincaré, who 
found that the symmetries included the Poincaré group.  This result was advanced in a 
crucial way by Bateman [1] and Cunningham [2], who found that the complete symmetry 
group of the action functional was the conformal Lorentz group.  The extra symmetries 
that expansion of scope entailed were the homotheties, which are the non-zero scalar 
multiplications of the vectors in Minkowski space, and the inversions through the unit 
proper-time hyperboloid. 
 However, it was also becoming apparent from the work of Lie, Cartan, Vessiot, 
Riquier, Janet, and others1, that not only were there systems of differential equations that 
could not be given a variational formulation – e.g., any non-conservative system – but 
there were also symmetries of systems of differential equations that were distinct from 
the symmetries of an action functional, should it exist.  These symmetries came to play 
an increasingly fundamental role in modern mathematics and physics, especially in the 
context of nonlinear wave equations. 
 One of the more definitive applications of this methodology to the case of 
Maxwellian electromagnetism, in its metric form, was made by Harrison and Estabrook 
and [4]. As far as the author of this book is aware, to date, the only attempt to extend the 
Harrison-Estabrook results to pre-metric electromagnetism was his own effort [5].  
Hence, this chapter will amount to an extended treatment of that earlier work, in one 
sense, while referring some of the details to the previous paper. 
 In the first section of this chapter, we discuss the basic terminology of Lie groups, Lie 
algebras, and the action of Lie groups on manifolds, for the sake of conceptual 
completeness.  Then, we show how these notions can be applied to the calculus of 
variations to deduce Noether’s theorem, and give several examples of physical interest.  
After that, we discuss the broader problem of the symmetries of systems of differential 
equations, which we finally specialize to the equations of pre-metric electromagnetism. 
 
 
 1.  Transformation groups [6-9].  Since the most important role that groups play in 
physics seems to be in the context of groups of transformations that act on the various 
configuration manifolds of physics as motions, as well as acting on the fibers of bundles 
over them as internal symmetries – i.e., changes of gauge – we shall briefly discuss the 
subject of transformation groups for the sake of completeness in the presentation. 
 
 a.  Lie groups.  Many – but not all – of the groups of interest to physics consist of 
point sets that are associated with topologies and differential structures that are more 
interesting than merely the discrete topology and zero-dimensional manifolds.  
Counterexamples to this claim include the various finite groups that figure in the 
discussion of crystalline structures, as well as symmetries such as parity reversal, time 
reversal, and charge conjugation. 
 When the set underlying a group G is given a topology that is compatible with the 
group structure, in the sense that the group multiplication and inversion operations are 

                                                
 1 For a historical survey of contributions to the theory of symmetries of systems of differential equations, 
one might read the introductory chapter of Pommaret [3]. 
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both continuous maps, one calls G a topological group.  When a topological group G is 
also given a differential structure – i.e., an atlas of charts with diffeomorphisms for 
coordinate transformations – that is compatible with the group structure, in the sense that 
the group operations are now required to differentiable, as well as continuous, that 
topological group is then called a Lie group. 
 Interestingly, the structures that the Norwegian mathematician Marius Sophus Lie 
was originally defining were not, in fact, Lie groups, in the sense that we just defined, but 
Lie pseudogroups, which have the more general properties that the multiplication of 
elements is not always defined, just as the composition of maps is defined only when the 
image of the first map is a subset of the domain of the second one, and furthermore there 
is usually more than identity.  Actually, this sort of consideration becomes unavoidable 
when one is dealing with symmetries of systems of differential equations, which we shall 
touch upon later in this chapter, but for now we shall deal with the more elementary case 
of Lie groups. 
 Examples of Lie groups that are of interest to physics usually take the form of 

subgroups of the general linear group GL(n; R), which consists of all invertible n×n real 

matrices or GL(n; C), which consists of all invertible n×n complex matrices.  In either 

case, the group multiplication is defined by matrix multiplication.  When the scalar field 
is not ambiguous, we shall use the common abbreviation GL(n). 

 As a topological space, GL(n; R) is neither compact nor connected.  Rather, it has two 

connected components, which correspond to the fact that a non-zero real determinant 
must be either positive or negative.  However, this is no longer true for a non-zero 

complex determinant, so GL(n; C) is non-compact, but connected. 

 The way that one defines subgroups of interest to physics is by imposing a condition 
on the matrices that often takes the form of a set of algebraic equations.  Such groups are 
then referred to as linear algebraic groups.  Topologically, they will all be closed subsets 
of GL(n). 
 When one requires that a matrix A must satisfy the nth degree polynomial equation det 
A = 1, the subgroup that this defines is the special linear group, which is denoted SL(n; 

R) or SL(n, C), depending upon the field of scalars one is using. Such matrices represent 

linear transformations of Rn or Cn that preserve a choice of volume element.  More 

briefly, one employs the notation SL(n), when there is no risk of confusion.  One sees that 
by demanding that the determinant of A be unity, one selects the identity component of 
GL(n), so SL(n) is a connected, but non-compact, topological space. 
 When the algebraic condition is the set of quadratic equations ATA = AAT = I, where T 

refers to matrix transposition, one defines either O(n; R) or O(n, C), which are the real 

and complex orthogonal groups, respectively.  Such transformations preserve a choice of 

Euclidian scalar product on Rn or Cn, resp.  Topologically, the manifolds O(n) have two 

components, since (det A)2 = 1 for orthogonal A, which makes the two components 
correspond to the two possibilities det A = ±1.  They are, moreover, compact in the real 
case and locally compact in the complex case. 
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 When the scalar product is the Minkowski scalar product on R4, the orthogonal group 

that it defines is the Lorentz group O(3, 1).  As a topological space, O(3, 1) has four 
components, one of which contains the identity matrix I.  The other three components can 

be obtained by using the non-trivial elements of the finite Abelian group Z2 × Z2 = {I, P, 

T, PT}, where P(x0, xi) = (x0, −xi) represents spatial parity inversion, T(x0, xi) = (−x0, xi) 
represents the inversion of time orientation, and PT(x0, xi) = (−x0, −xi) = − (x0, xi) then 
represents total parity inversion.  The Lorentz group is not compact, but only locally 
compact.  Indeed, as we shall discuss in more detail in a later chapter, the identity 

component of O(3, 1) is isomorphic to SL(2; C), as well as SO(3; C). 

 By combining the set of equations that define O(n) with det A = 0, one defines the 
subgroup SO(n), which is the special orthogonal group.  Such transformations preserve 
both the scalar product and the volume element.  In the case of Minkowski space, the 
resulting group is the special Lorentz group SO(3, 1).  Since this Lie group still has two 
connected components as a topological space, one can restrict oneself to the component 
SO0(3, 1) that contains the identity matrix by further requiring that the transformations 

preserve the time orientation of a vector in R
4; i.e., the sign of its time component.  This 

subgroup is often called the proper orthochronous Lorentz group. 
 In the case of complex scalars, one can also consider complex conjugation of matrix 
elements, in addition to transposition, and one then defines the Hermitian conjugate of a 

matrix A ∈ GL(n; C) by A† = (AT)* = (A*)T, where * refers to the complex conjugation 

operator.  The subgroup of GL(n; C) that consists of invertible complex n×n matrices that 

satisfy the set of quadratic equations A†A = AA† = I is then called the unitary group and is 

denoted by U(n).  These transformations of Cn preserve a Hermitian inner product, which 

differs from the Euclidian one by complex conjugation: 
 

(zi, wj) = i j
ij z wδ .     (XI.1) 

 
One of the properties of this inner product is the fact that (zi, zj) is always real, since each 
term i iz z = || z ||2 in the sum is real. 
 The unitary groups are all compact connected topological groups. 
 The determinant of any unitary matrix has unit modulus since 1 = det(A†A) = (det 
A)*(det A) = || det A ||2.  When one combines unitarity with the requirement that an 

element of U(n) must also preserve the volume element on C
n – i.e., have unit 

determinant – one defines the subgroup SU(n), which one calls the special unitary group.  
Interestingly, although one starts out by using complex matrices, the resulting differential 
manifold underlying SU(n) is not a complex manifold, but a real one.  In particular, SU(2) 
is diffeomorphic to a real three-dimensional sphere. 
 An example of a Lie group that is of interest to physics, but not initially defined as a 
linear algebraic group, is the conformal Lorentz group CO(3, 1), which consists of all 
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diffeomorphisms of Minkowski space that preserve the scalar product only up to a 
positive conformal factor Ω2: 
 

g(Av, Aw) = Ω2 g(v. w) = g(Ωv, Ωw).   (XI.2) 
 
 Although this group contains a linear subgroup – sometimes called the Weyl group – 
that consists of Lorentz transformations multiplied by dilatations, it also includes 

nonlinear transformations, such as the four-dimensional translation group R4, which act 

as affine transformations (but not linear ones), and transformations that represent 
inversion through the unit hyperboloid g(v, v) = 1.  They take any vector v that does not 
lie on the light cone and map it to g(v, v)−1v.  Hence, it will lie on the same line through 
the origin, although its length will be contracted or expanded to the reciprocal of its 
length, except for vectors on the unit hyperboloid, which remain fixed. 
 One can represent the conformal Lorentz group as a linear group by taking advantage 

of the fact that the set of all light cones at all points of R4 (i.e., their defining coefficients) 

can be made into a six-dimensional real vector space that can be given a pseudo-
Euclidian structure of signature type (−, −, +, +, +, +).  One then finds that CO(3, 1) can 
be represented by the linear algebraic group O(2, 4). 
 Because Lie groups are manifolds, among other things, they have tangent spaces at 
each point, and the tangent bundle T(G) to any Lie group G has the important property 
that it is always parallelizable; that is, there is always a global frame field on any Lie 
group.  This fact follows the fact that if one chooses a frame {ei, i = 1, …, n} in any 
tangent space – say, the tangent space TeG to the identity element e ∈ G – then one can 
left-translate that frame to every other point g ∈ G in such a manner that the resulting 
frame field on G is a differentiable section of the bundle GL(G) → G of linear frames in 
T(G).  Such a global frame field then allows one to express T(G) as the trivial bundle G × 

R
n → G and GL(G) → G as the trivial bundle G × GL(n) → G. 

 
 b.  Lie algebras.  The tangent space TeG at the identity plays a special role in the 
study of Lie groups since one can left-translate (or right translate, for that matter) not 
only tangent frames, but tangent vectors themselves.  The result of choosing a tangent 
vector to a point of G – say, v ∈ TeG – and left-translating it to every other point g ∈ G is 
a left-invariant vector field on G: 

v(g) = dLg|e(v).    (XI.3) 
 
Hence, the components of v relative to a left-invariant frame field will be constant 
functions of g ∈ G.  This means that the vector space of left-invariant vector fields on G 

is linearly isomorphic to Rn, in general, and TeG, in particular. 

 Similarly, one defines right-invariant vector fields on G by right-translation. 
 Since the vector space of vector fields on any differentiable manifold always has a 
Lie algebra structure that is defined by the Lie bracket of vector fields, one naturally 
wishes to examine how the constraint of left-invariance relates to that structure.  In fact, it 
is preserved; i.e., the Lie bracket of left-invariant vector fields is left-invariant.  One calls 
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this resulting Lie subalgebra G of X(G) the Lie algebra of G; it has the same dimension 

as a vector space as the dimension of G as a manifold.  Hence, under the association of 
left-invariant vector fields with tangent vectors in TeG one can define a Lie algebra on 
TeG, as well. 

 We use the notations gl(n; R), gl(n; C), sl(n; R), sl(n; C), so(n; R), so(n; C), so(3, 1), 

su(n), co(3, 1) to denote the Lie algebras that are associated with the Lie groups that were 

defined above, in an obvious way. 
 One can, of course, define differentiable curves in any Lie group G, and there is a 
particular class of curves through the identity element e that plays an essential role in 

understanding the relationship of G to its Lie algebra G.  A differentiable curve g: R → 

G, s ֏ g(s), through e – say, g(0) = e – is called a one-parameter subgroup of G iff g(s1 

+ s2) = g(s1)g(s2) for all s1, s2 ∈ R.  That is, the map g is a homomorphism of the group 

(R, +) with its image in G.  Such a subgroup of G will be one-dimensional, and therefore 

Abelian.  As a consequence, it can only be diffeomorphic to S1, when it is compact, or R, 

when it is not.  Merely starting with a compact Lie group G is not sufficient to restrict 

this choice, since there are subgroups of the 2-torus S1×S1 that are diffeomorphic to R, 

namely, ones that give “irrational flows.” 
 When one differentiates the curve g(s) at e one obtains a tangent vector in TeG: 
 

g =
0s

dg

ds =

.     (XI.4) 

 
 When g(s) satisfies a set of algebraic conditions that define the subgroup of GL(n) 
that it lies in this differentiation along curves through the identity also allows us to obtain 
a corresponding set of algebraic conditions on g that defines the Lie subalgebra of gl(n) 

that it lies in.  For instance, if g(s) ∈SL(n) for all s then det g(s) = 1, so, by differentiation: 
 

0

(det ( ))

s

d g s

ds =

= Tr g = 0.    (XI.5) 

 
That is, the elements of the Lie algebra sl(n) consist of traceless n×n matrices (regardless 

of the choice of scalar field). 
 One obtains the algebraic condition for elements of so(n) by differentiating the 

condition ATA = I, which gives: 
ωT + ω = 0,     (XI.6) 

 
in which we represent the tangent vector to the identity by ω, this time.  This means that 
the matrices in so(n) are all anti-symmetric.  This is one reason why it is unnecessary to 
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distinguish between o(n) and so(n), since all anti-symmetric matrices have trace zero.  

One can also recall that SO(n) is the connected component of the identity in O(n). 
 Similarly, the condition A†A = I on unitary matrices differentiates to the condition: 
 

ω† + ω = 0,     (XI.7) 
 

on elements of su(n); that is, they must be skew-hermitian. 

 A skew-hermitian matrix does not need to have a vanishing trace, since in general its 
trace will be imaginary.  Hence, one must clearly distinguish the Lie algebra u(n) from 

the Lie algebra su(n). 

 One can also take each tangent vector sg along the line through the origin of G that is 

generated by g and associate it with a group element g(s).  The map exp: G → G, g 

֏ exp(g) = g(1), is called the exponential map for G.  It does not have to be either one-

to-one or onto.  In the former case, when a line through the origin of G maps to a circle, 

the map exp will “wrap around” an infinite number of times, while, in the latter case, one 
finds that the image of exp can only be contained in the identity component of G.  Hence, 
it cannot be surjective on a non-connected Lie group, such as O(3, 1).  It is, however, 
surjective on the identity component, which follows from its path-connectedness. 
 Because of the existence of this exponential map, one can think of the elements of 
any Lie algebra G = TeG as being the infinitesimal generators of one-parameter 

subgroups of G.  Specifically, g ∈ G generates the one-parameter subgroup exp(sg) ∈ G. 

 When g is represented by a matrix, one can use the power series expansion for the 

function ex to define the matrix exp(g): 

 

exp(g) =
0

1

!
n

n n

∞

=
∑ g ,     (XI.8) 

 
in which the product is matrix multiplication.  Just as it does for real or complex 
numbers, this series converges for all g;  

 
 c.  Group actions [10, 11].  A Lie group G is said to be a (differentiable) 
transformation group for a differentiable manifold M iff there is a differentiable map G × 
M → M, (g, x) ֏ gx, such that: 
 i) ex = x for all x. 
 ii ) g(g′x) = (gg′)x, for all g, g′ ∈ G, x ∈ M. 
 
One also says that G acts on M differentiably. 
 As a consequence of the definition, for each g ∈ G, the map Lg: M → M, x֏ gx is 
differentiable and invertible with a differentiable inverse; hence, it is a diffeomorphism.  
One calls this map Lg left-translation by g.  From conditions i) and ii ) above, the map L: 
G → Diff( M), g ֏ Lg is a group homomorphism.  It does not have to be faithful, since, 
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for instance, if the action of G on M fixes every point of M, G will map to the identity 
diffeomorphism.  The question of whether it is a Lie group homomorphism reverts to the 
question of whether Diff(M) is a Lie group.  Since Diff(M) is infinite-dimensional, this is 
not always true, and one must be more careful about the vector space on which infinite-
dimensional manifolds are modeled.  One can say that when M is compact Diff(M) is a 
Banach Lie group; i.e., the manifold charts map to a Banach space and the coordinate 
transitions are Banach space diffeomorphisms.  We shall not elaborate on this, however 2. 
 If one fixes x ∈ M then there is a differentiable map G → M, g ֏  gx whose image 
G(x) is called the orbit of x under the action of G.  Again, this map does not have to be 
one-to-one – i.e., an embedding since more than one element of G might take a give x∈M 
to the same element.  Due to the group structure on G, the question of how many 
elements of G take a given point x to the same point y = gx reverts to the question of how 
many elements of G take x to itself.  The set Gx = {g∈G| gx = x} of all elements of G that 
fix a given x∈M is called the isotropy subgroup 3 of x under the given group action.  One 
finds that the coset space G/Gx with the quotient topology can be given a manifold 
structure that makes it diffeomorphic to the orbit G(x) of x under the action of G.  An 
important example of an isotropy subgroup is Gx = G, in which case x is a fixed point of 
the group action. 
 When the map G/Gx → M is a diffeomorphism, one calls the manifold M a 
homogeneous space.  Since this means that any pair of points (x, y) in M × M are 
associated with at least one g ∈ G such that y = gx, one also says that such an action is 
(multiply) transitive. 
 If Gx = e − i.e., g is unique − then one sometimes hears the action referred to as 
simply transitive.  For such a group action, the manifold M must be diffeomorphic to the 
manifold underlying the Lie group G. 
 In the multiply transitive case, one sees, by composition, that if g ∈G takes x to y = gx 
then the set of all g′ ∈ G that take x to y is in one-to-one correspondence with either Gx or 
Gy .  In particular, Gx and Gy must be isomorphic as Lie groups. 
 An elementary example of a homogeneous space is any affine space An, which has a 

simply transitive action of the translation group Rn on it.  The (real or complex) n-sphere 

is diffeomorphic to the homogeneous space SO(n+1)/SO(n), and the n-torus Tn = S1× …× 

S1 is the homogeneous space Rn / Zn; in particular, S1 = R/Z. 

 Isotropy subgroups at different points do not have to be isomorphic, although this is 
true for points on the same orbit.  Conversely, if all isotropy subgroups are isomorphic 
then it does not have to be the case that there only one orbit; one refers to the set of all 
x∈M that have the same isotropy subgroup, up to isomorphism, as the stratum of Gx .  If 

one considers the example of SO(n) acting on Rn – {0} then one sees that all of the 

isotropy subgroups are isomorphic to SO(n – 1), but the orbits are n – 1-spheres of 
differing radii.  In this example, the stratum of a given isotropy subgroup defines a 
manifold. 

                                                
 2 One might confer such references as [12] on this matter. 
 
 3 It is also called the stability subgroup and the little subgroup.  
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 An important example of a group action that is perhaps the best understood case in 
the theory of transformation groups, while also being quite pervasive in its application to 
physics, is that of a linear representation.  In that case, the manifold is a vector space V 
and the action G×V → V is required to be linear, in that the left-translation operator Lg: V 
→ V is an invertible linear map for every g∈G.  As a consequence, the image of the 
group homomorphism L: G → Diff( V) is going to be a subgroup of GL(V).  When the 
kernel of this homomorphism is the identity element in G one calls the representation 
faithful, since the map L then becomes an isomorphism of G with its image in GL(V). 
 By differentiation at the identity, a representation D: G → GL(V) gives a 
representation D: G → gl(V) of the Lie algebra of G in the Lie algebra of GL(V).  Hence, 

if a, b ∈ G then: 
[D(a), D(b)] = D[a, b].    (XI.9) 

 
 When G acts on two differentiable manifolds M and N and one has a differentiable 
map f: M → N, one might wish to compare the two group actions.  The actions are said to 
be equivariant iff f takes every orbit of G in M to a subset of an orbit of G in N.  One also 
says that f commutes with the group actions, since equivariance is equivalent to the 
condition that gf(x) = f(gx) for every g ∈G and x∈M.  Of particular interest is the case in 
which N = V is a vector space and the action of G on N is linear, so one is considering 
actions of G on a manifold M that are equivariant to a linear action on some vector space.  
Actually, there is an equivariant embedding theorem that says that this is always possible 
if one goes to a large enough dimension of V. 
 Suppose that g: (−ε, +ε) → G, s ֏ g(s) is a smooth curve through the identity, and its 
tangent vector at the identity is g ∈ G.  If G acts on M then there is a smooth curve g(s)x 

through each point x ∈ M such that g(0)x = x. 
 By differentiation, there is then a tangent vector to x: 
 

( )xɶg =
0

( ( ) )

s

d g s x

ds =

,    (XI.10) 

 
and the association of x with ( )xɶg defines a vector field on M that one calls the 

fundamental vector field that is associated with g.  In fact, the association of g with 

ɶg defines a Lie algebra homomorphism G → X(M).  That is, in any case, one has: 

 
	[ , ]a b = [ , ]ɶɶa b .     (XI.11) 

 
Hence, the group action defines a representation of the Lie algebra G in the Lie algebra 

X(M).  If this representation is faithful then each generator of G – i.e., each member ei, i 

= 1, …, dim(G) of a basis for G – is associated with a fundamental vector field ieɶ  on E 

and the elements of the set {ieɶ } are linearly independent. 
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 d.  Groups acting on vector bundles.  Suppose that a Lie group G acts smoothly on 
the total space to a vector bundle E from the left and commutes with the projection p: E 
→ M.  To say that the action commutes with the projection is to say that for each x ∈ M it 
takes every element of a given fiber Ex to elements of the same fiber Ey.  Hence, there is a 
well-defined action of G on M by projection: G × M → M, (g, x) ֏  p(gφ(x)), where φ is 
any element of ExM; since the action of G on E commutes with projection, the choice of φ 
is immaterial.  One can then express the condition of commutativity in either of the forms 
gp = pg or gφ(x) = φ(gx). 
 There are essentially two types of actions of G on E: vertical actions and motions, 
depending upon whether g takes φ ∈ ExM to another element gφ of the same fiber or to an 
element of another fiber EyM, respectively.  The vertical actions then project to the 
identity on M, while the motions project to non-trivial diffeomorphisms of M. 
 Since the fibers have a linear structure, one can also further classify vertical actions as 
linear or nonlinear.  In the linear case, one must always have: 
 

g(αφ + βψ) = α g(φ) + βg(ψ)    (XI.12) 
 
for all scalars α, β and elements φ, ψ of any fiber of E.  This then implies that there is an 
action of G on the vector space Γ(E): 

g(φ(x)) = (gφ)(x).    (XI.13) 
 
 One sees that a linear action of G on a fiber Ex of a vector bundle will be the same 
thing as a representation of G in GL(Ex).  Indeed, the vector bundle E is usually defined 
in physical applications by first starting with a representation of G in a vector space V and 
a G-principal bundle P → M that defines the G-gauge structure on M and obtaining E as 
the associated vector bundle to that G-principal bundle and representation of V.  This 
means that one first forms the manifold P×V and lets G act on it by taking (p, x) to (pg−1, 
gx) and defining E to be the orbit space of this action; i.e., each point of E is an orbit of 
the action of G on P×V.  Although this sounds somewhat abstruse, actually, if one lets G 

be GL(n), P be the bundle GL(M) of linear frames on M, and V be Rn then the orbits of 

the action of GL(n) on GL(M)×Rn consist of pairs (ei, vi) that all describe the same 

tangent vector vi ei ; i.e., the associated vector bundle to GL(M) and Rn is simply T(M). 

 A typical fundamental vector field for an action of G on E will have the local form: 
 

 ɶg= A
A

X X
x

µ
µ φ

∂ ∂+
∂ ∂g g .   (XI.14) 

 
 
 2.  Symmetries of the action functional.  Now let us apply some of the 
aforementioned concepts regarding group actions on manifolds and vector bundles to the 
problems of the calculus of variations. 
 Let E → M be a vector bundle upon which the Lie group G acts on the left, so J1E is 
the manifold of all 1-jets of sections of E.  Although it is possible to define the 
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prolongation of the action of G on E to an action of G on J1E, for our purposes it will be 
sufficient to deal with the infinitesimal case, since we are only dealing with variations of 
fields 4. 
 If g∈G then there is a fundamental vector field ɶg  on E defined by the group action. 

One can prolong ɶg  to a vector field 1j ɶg  on J1(M, E) by differentiation.  Ifɶg has the local 

form that is given by (XI.14) then1j ɶg  has the local form: 
 

1j ɶg  = 
A

A
A A

X
X X

x x
µ

µ µ
µφ φ

∂∂ ∂ ∂+ +
∂ ∂ ∂ ∂

g

g g
.  (XI.15) 

 
 Furthermore, let there be given an action functional S[φ] on E that is defined by a 
Lagrangian density L on J1E.  Its first variation functional then takes the form: 

 

δS[X] =
supp 

[ ( ) ( )]
MX Xi d di

φ
+∫ LV LV  =

supp 
[ ( ) div( )]Md X X

φ
+∫ L L V ,  (XI.16) 

 
in which XM refers to the part of X ∈ X(J1E) that projects onto T(M) in a non-trivial way, 

and we now use the notation div for #−1d#, so as not to be confused with the symbol for 
variation. 
 Locally it then looks like: 

XM = X
x

µ
µ

∂
∂

.     (XI.17) 

 
Previously, the variations δφ that we considered for the sake of deriving the Euler-
Lagrange equations were necessarily vertical, so this part of X would be zero in such a 
case. 
 Now, let us apply the first-variation functional δS[.] to the vector field1j ɶg  as in 
(XI.15). 
 When one evaluates the integrand in (XI.16) on this vector field, one obtains, with 
some tedious manipulation: 
 

dL(X) + L div XM = A A
A A

X X X
x

µ
µ

µ

δ
δφ φ

 ∂ ∂+ +  ∂ ∂ 

L L
Lg g g .  (XI.18) 

 
 If the section φ on which δS[ 1j ɶg ] is being evaluated is extremal, moreover, then the 

first term vanishes and when the first variation functional is evaluated on 1j ɶg  for an 

extremal field φ one ultimately obtains: 
 

  δS[ 1j ɶg ] =
supp 

#div[ ( )]
φ∫ J g =

 supp 
# ( )

φ∂∫ J g ,  (XI.19) 

                                                
 4 More generally, one can confer Saunders [13].  
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in which we have defined the vector field on supp φ: 
 

J(g) = A
A

X X
x

µ
µ

µφ
 ∂ ∂+  ∂ ∂ 

L
L g g .   (XI.20) 

 
 An element g ∈ G is said to be an infinitesimal symmetry of the action functional S[.] 

iff δS[ 1j ɶg ] vanishes for every extremal section φ.  Note that this does not imply that the 

integrand in (XI.19) must vanish identically, since one can also add an exact n-form dΛ 
such that Λ vanishes on ∂(supp φ) to it without changing value of the integral. 
 We finally arrive that one of the most pervasive theorems of the variational calculus 
from the standpoint of modern physics.  (Confer any of the variational treatments of 
electromagnetism, such as [14-17].) 
 
 Noether’s theorem: 
 
 If g ∈ G is an infinitesimal symmetry of an action functional for an extremal field φ 

then the vector field on M: 

J(g) = A
A

X X
x

µ
µ

µφ
 ∂ ∂+  ∂ ∂ 

L
L g g    (XI.21) 

has vanishing divergence. 
 
 Such a vector field on M is called the Noether current that is associated with g.  When 

every element of G is associated with a Noether current, one has a Lie algebra 

homomorphism G → X(M), g ֏  J(g).  That is, [J(g1), J(g2)] = J([g1, g2]). 

 Now, suppose that G acts on M, as well as on E.  Hence, one has a homomorphism L: 
G  → Diff( M), g ֏ Lg of the Lie group G and a homomorphism  σ: G → X(M), g ֏  

σ(g) = ɶg  of the Lie algebra G.  If we assume, moreover, that the representation is linear 

then we can represent the fundamental vector field ɶg in local form as: 
 

ɶg  = ( )a
a
µ

µσ ∂g ,    (XI.22) 

 
in which the components of the n×dim(G) matrices a

µσ are smooth function on U ⊂ M. 

 When the vector field Xg on E is the push-forward dφ( ɶg ) of a fundamental vector 

field ɶg  on M by a section φ: M → E, it takes the local form: 
 

Xg =( )
A

a a
a a Ax x
µ µ

µ µ
φσ σ

φ
 ∂ ∂ ∂+  ∂ ∂ ∂ 

g g ;   (XI.23) 

i.e.: 
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X µ
g

= a
a
µσ g ,  AX

g
= 

A

X
x

µ
µ

φ∂
∂ g = ,

A a
a
µ

µφ σ g .  (XI.24) 

 
 More generally, the componentsAX

g
also include a purely vertical contributionAX

g
 

when G acts linearly on the fibers of E as a structure – or gauge − group.  There is then a 
representation D: G  → GL(V), g ֏D(g) and a corresponding representation D: G → 

gl(V), g ֏D(g).  The purely vertical contribution then takes the form: 

 
AX
g

= A a
aD g = ,

A AX Xµ
µφ+

g g
,    (XI.25) 

 
 When we substitute this, along with (XI.24), into (XI.21), we see that the Noether 
current that is associated with g ∈ G has the local form: 

 

Jµ(g) = a
a aT Sµ ν µ

ν σ +  g ,    (XI.26) 

in which: 

T µ
ν  =

A

A x
µ

ν ν
µ

φδ
φ
∂ ∂−

∂ ∂
L

L = ,
A

A
µ µ

ν νδ φ− ΠL .   (XI.27) 

 
define the components of the canonical energy-momentum tensor on M, and the 
remaining term in the bracket: 

aSµ  = − A
A a
µΠ D       (XI.28) 

is referred to as the spin tensor. 
 Hence, we can say that the matrix components of the Noether homomorphism J: G → 

X(U), g ֏ J(g), relative to the bases for both vector spaces that have been using, are: 

 

aJ µ  = a aT Sµ ν µ
ν σ + .     (XI.29) 

 
 
 3.  Examples of Noether symmetries.  We shall examine some examples of the 
Noether representation for various groups of motions that might act on a manifold M and 
gauge groups that act on the fibers of a vector bundle E. 
 
 a.  Translations.  The first example of the Noether representation that we examine is 
the case of the translation group acting on M.  Of course, when M is not an affine space, 
one must keep in mind that the very concept of translation has a largely local and 
approximate character on such a manifold, and that it is more natural to start with local 
convections, which are local diffeomorphisms about its points.  This is equivalent to 
regarding extended matter distributions as physically fundamental, while regarding 
pointlike matter as an asymptotic approximation that implies a high degree of rigidity to 
the distribution. 
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 That notwithstanding, let G = Rn.  The representation σ: Rn → X(U) simply takes εµ 

to the local vector field εµ ∂µ  on U ⊂ M: hence, µ
νσ = µ

νδ .  One generally does not have 

the translation group for a manifold acting on the fibers of a vector bundle, although it is 
reasonable in the case of an affine bundle.  Hence, one lets A

µD  = 0. 

 These substitutions reduce the matrix aJ µ  of the Noether homomorphism to 

simplyT µ
ν .  At each point x ∈ U, the vector field Jµ(εν) = T µ

ν εν is then proportional to the 

stress that acts on a unit area tangent plane to x whose normal points in the direction 
specified by εν.  In the case of a four-dimensional spacetime manifold M, one can also 
interpret: 

0
0T = L − 0

,0
A

A φΠ  = − H   (XI.30) 

as an energy density and: 

0
iT = − ,0

i A
A φΠ  =  − pi    (XI.31) 

as a spatial momentum flux. 
 This equivalence of components comes about due to the somewhat coincidental 
equality of the units for energy density, momentum flux, and stress (i.e., pressure), 
despite the fact that they describe a 3-form and two 2-forms with values in a vector space, 
respectively. 
 The fact that J(ε) has vanishing divergence for any ε and the fact that ε represents a 
constant gives the consequence that: 

,T µ
ν µ = 0,    (XI.32) 

 
which often serves as one of the fundamental sets of partial differential equations for 
continuum mechanics.  Since the divergence on the left-hand side represents a 
generalized force density, one sees that the invariance of the action functional under 
translations implies the vanishing of all forces in spacetime.  By contraposition, one can 
then say that presence of a force field fν in M “breaks” the translation invariance of the 
action; hence, ,T µ

ν µ = fν , in that case. 

 It is traditional at this point to note that since the component matrixT µ
ν  is not 

generally symmetric one can obtain a symmetric stress-energy-momentum tensor field by 
the Belinfante-Rosenfeld process.  However, as we have defined things, it becomes clear 
that in a pre-metric formalism, it is meaningless to discuss the symmetry of a second-rank 
tensor that is of mixed type except as a component matrix when one chooses a frame, but 
the resulting definition of symmetry is not frame-invariant.  One could only define 
symmetry in a frame-invariant manner by raising or lowering one index, and without a 
metric to define the isomorphism, the process of raising or lowering indices becomes ill-
defined. 
 It is important to realize that the matrixT µ

ν does not, by any means, have to be 

invertible.  Indeed, its only non-zero component might very well be a rest energy density 
for 0

0T .  Hence, it does not define a linear isomorphism of tangent vectors at each point, 

but something more like an infinitesimal deformation of tangent vectors. 
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 Of course, one cannot avoid mentioning that the expression for 0
0T in (XI.30) bears a 

less-than-coincidental resemblance to the Legendre transformation by which one 
associates a Hamiltonian density H with a Lagrangian density L.  Once again, the only 

way that can single out a specific component of T µ
ν  to represent an energy density is by 

choosing a time-space splitting of T(M), which is a recurring theme in any relativistic 
treatment of energy, in general. 
 
 b.  Rotations.  Now suppose we consider only the three-dimensional spatial manifold 
Σ, with G = SO(3), and we use the basis for so(3) that is defined by [ ] j

i ke = εijk , i, j, k = 1, 

2, 3.  Hence, an element ω ∈ so(3) can be represented in the form of the matrix ωiεijk . 

 For any coordinate chart (U, xi), one can represent the basis elements of so(3) by the 

three fundamental vector fields: 
Lk = εijk x

i ∂j ,     (XI.33) 
which look like: 
 

Lx = y∂z  − z∂y ,  Ly = z∂x  − x∂z ,  Lz = x∂y  − y∂x ,  (XI.34) 
explicitly. 
 Hence, the fundamental vector field that corresponds to ω is: 
 
   ωɶ = ωk Lk = εijk ωk xi ∂j  

= (ωy z – ωz y) ∂x + (ωz x – ωx z) ∂y + (ωx y – ωy x) ∂z ,  (XI.35) 
 
which has the same form as ωωωω × r  from classical rotational mechanics.  Hence, the 
fundamental vector field associated with ω represents the tangential velocity to the circle 
through each point of U that represents one of the orbits of the one-parameter family of 
rotations g(t) = exp(ωt) that is generated by ω. 
 From (XI.33), we see that the matrix of the representation σ: so(3) → X(U) that we 

are using is: 
i
jσ = εijk x

k .     (XI.36) 

 
 As for the action of SO(3) on the fibers of E, we assume only that it is non-trivial, so 
the matrix A

jD is non-vanishing.  By substituting (XI.36) into (XI.29), we see that the 

matrix i
jJ of the Noether homomorphism J: so(3) → X(U) takes the form: 

 
i
jJ  = i k i

k j jT Sσ +  = ( )i l i
k kjl jT x Sε + = i i

j jL S+ ,   (XI.37) 

in which: 
i
jL = 1

2 ( )i l i k
jkl k lT x T xε− −     (XI.38) 

 
represents the orbital angular momentum part of the homomorphism and: 
 

i
jS = − i A

A jΠ D      (XI.40) 
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represents the intrinsic angular momentum – or spin – part of the homomorphism. 
 It is important to see that the spin does not generally represent a contribution from 
“internal” orbital angular momenta, such as the rotation of the Earth as it orbits around 
the Sun, but a contribution that is more related to the nature of the action of the group in 
question on the fibers of E.  In general, when the action is linear, so one is dealing with a 
representation of the Lie group in the typical fiber of E, the eigenvalues of the first-order 
differential operators Sj = i

jS ∂i will be closely related to the “weight” of the 

representation.  In particular, when φ is a scalar field, the weight is zero and i
jS must 

vanish. 
 The extension from SO(3) acting on Σ locally to the special Lorentz group SO(3, 1) 
acting on M locally is straightforward.  In addition to extending the coordinate indices to 
µ = 0, …, 3, etc., one must add three more generators (i.e., basis elements) Ki, i = 1, 2, 3 
to the Lie algebra of so(3) that represent the infinitesimal boosts in the spatial coordinate 

directions.  Hence, if we index the generators of so(3, 1) by a = 1, …, 6 then we have to 

express the matrix of the Noether homomorphism J: so(3, 1) → X(U) in the form aJ µ  that 

we defined in (XI.29). 
 
 c.  Homotheties.  The group of homotheties – or dilatations, as they are called in 
continuum mechanics – is a one-dimensional subgroup of GL(n) for any n that is 

isomorphic to the multiplicative group (R+, ×) of positive real numbers, so all of its 

elements take the form λI, λ > 0.  Hence, any non-trivial representation of it acting 
locally on U ⊂ M would also have to be one-dimensional. 
 In effect, any vector field v might serve as a choice for that representation, which 
means that one can use the intuition gained from the geometrical representation of 
systems of ordinary differential equations and their singularities narrow down the choice.  
For one thing, as long as v has no zeroes, the integral curves of λv will describe the same 
points in M; the only possible difference will be in the parameterization.  Hence, the 
interesting case is when v has zeroes, especially isolated zeroes, such as sources and 
sinks. 
 For the representation of homotheties, the single infinitesimal generator of a dilatation 
centered on x0 ∈U, which is a zero of “source” type, is the radius vector field that (U, xµ) 
defines: 

r(x) = xµ ∂µ .     (XI.41) 
 
The one-parameter family of dilatations that r  defines on U is then: 
 

exp(λr(x)) = eλ xµ .    (XI.42) 
 
Since G is one-dimensional in this case, the representation matrix σ takes the form σµ = 

xµ. 

 The action of (R+, ×) on the fibers of any real vector bundle is by scalar 

multiplication.  The fundamental vector field that it generates is a vertical vector field R 
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on E – (zero section) that is sometimes called the Liouville vector field and assigns the 
radius vector R(v) – within the fiber – to each v ∈ E; i.e., the displacement in the fiber 
that takes the origin to v.  For a local trivialization U × V of E(U) it then takes the form: 
 

R(x, v) = A
A

v
v

∂
∂

.    (XI.43) 

 
Hence, the matrix of D takes the form DA = vA, and the spin tensor becomes: 

 

Sµ = − A
A

L
v

vµ

∂
∂

.     (XI.44) 

 

 The Noether homomorphism J: R → X(U), λ ֏ J(λ) that is associated with 

infinitesimal spacetime dilatations then has the components: 
 

 Jµ(λ) = T x Sµ ν µ
ν + .    (XI.45)  

 
 The vanishing of its divergence implies that: 
 

T µ
µ = 0.      (XI.46) 

 
Hence, when the action functional for a field theory is invariant under dilatation the trace 
of the energy-momentum tensor must vanish.  Since this trace amounts to the rest energy 
density, the conservation law is basically conservation of mass-energy. 
 
 d.  Gauge transformations.  Now, let us consider a purely vertical action of a group G 
on the fibers of E, which makes G essentially a gauge group.  More precisely, one 
usually has a right action of G on the “associated principal bundle” to E, namely, the 
bundle GL(E) of all linear frames in the fibers of E.  For instance, one often considers the 
bundles GL(M) of all linear frames in T(M) and GL*(M), which consists of linear frames 
in T*M. 
 The right action then comes about, in most cases, by representing G as a subgroup of 
GL(V), where V is the model vector space for the typical fiber of E.  That is, one 
represents g ∈ G by a matrix A

Bg in GL(V) and its action on a frame eA in any fiber of E 

gives the linear frame A
A Be gɶ , where the tilde again represents the inverse of the matrx.  

 The action of G on the components of any vector v = vA eA in E is then a left action 
that takes vA to B A

Ag v .  This “contragredient” action of G on frames and components is 

necessary to insure that the vector v remains an invariant object in the process. 
 Hence, we shall think of the representation D: G → gl(V) as being more relevant to 

the action of G on GL(E) than on E itself.  However, due to the linear structure on each 

fiber one can still speak of the direct action of R
+ by scalar multiplication and each fiber 
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acts on itself by translations; also, there are often various finite groups that can act 

naturally, such as Z2 acting as multiplication by ±1. 

 When E is a complex vector bundle – so its fibers are complex vector spaces – one 
can also think of a natural action of U(1) on the fibers as part of complex scalar 

multiplication, since the multiplicative group C* of non-zero complex numbers is 

isomorphic to R+ × U(1) by polar representation.  The subgroup U(1) then consists of the 

points of the unit circle in C, which are usually represented in the form eiθ. 

 If the action of G on E is the vertical action of a gauge group on the fibers then the 
matrix of the Noether homomorphism J: G → X(U) reduces to: 

 

aJ µ  = aSµ .     (XI.47) 

 
 In the case of a one-dimensional G, the DA represent the components of some section 

of E → M and the single conserved current associated with any λ ∈ G is the vector field 

whose local components are: 
λ Jµ = −λ A

A
µΠ D .    (XI.48) 

 
 One generally thinks of the conserved quantities that are described by the gauge 
symmetries of an action functional as “charges.”  When we treat the case of 
electromagnetic actions, in particular, we shall see that this interpretation is indeed 
appropriate, although in the case of gauge groups of dimension greater than one, one 
must be careful to note that the charge in question does not have to be electric in 
character.  For instance, in quantum chromodynamics, which is regarded as an SU(3) 
gauge field theory, the charges associated with the eight generators of the Lie algebra of 
su(3) are regarded as “colors.” 

 
 
 4.  Symmetries of electromagnetic action functionals.  We now apply the general 
methods that we just described to the case of electrostatics, magnetostatics, and 
electromagnetism, more generally.  In each case, we start with the field Lagrangian and 
compute the resulting matrices in the Noether homomorphism.  We particularly examine 
the eigenvectors and eigenvalues of the energy-momentum-stress tensor. 
 
 a.  Electrostatics.  The Lagrangian density for electrostatics takes the form: 
 

L(x, E) = 1
2 DiEi = 1

2 εijEi Ej .    (XI.49) 

 
 The matrix of the Noether homomorphism for this particular Lagrangian density is: 
 

i
aJ = i j i

j a aT Sσ + ,    (XI.50) 

with: 
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i
jT = ,

,

i
j j

i

δ φ
φ

∂−
∂
L

L = 1
2 ( )k i i

k j jD E D Eδ − , i
aS = − Di Da .  (XI.51) 

 
 One can express this construction in basis-free form as: 
 

T = LI – D ⊗ E,  S = − D ⊗ D.  (XI.51) 

 
in which I represents the identity transformation that acts on tangent vectors. 
 If one thinks of T as an infinitesimal transformation of tangent vectors then its effect, 
when applied to a tangent vector n can be expressed as: 
 

T(n) = Ln – E(n)D,    (XI.53) 

 
 Since ε defines a scalar product on tangent vectors, we can express n as: 
 

n = 
( , )

( , )

ε
ε

n D
D

D D
+ n⊥ =

2
( )E n D

L
+ n⊥,   (XI.54) 

 
where n⊥ represents the part of n that is orthogonal to D under ε.  One recalls that the 
planes that are orthogonal to the vector field D will be tangent to the equipotential 
surfaces of φ since they will be annihilated by the 1-form E. 
 This makes (XI.53) take the form: 

T(n) = Ln⊥ – 1
2 E(n)D.    (XI.55) 

 
Note that D, as well as any vector field n⊥ that is tangent to the equipotential surfaces, is 
an eigenvector of T.  In the former case, the corresponding eigenvalue is – L, while in the 

latter case it is + L.  Indeed, from the form (XI.52) of T the eigenvectors of T are the 

same as the eigenvectors of D ⊗ E, while the eigenvalues of T are L – λ, with λ = 0 or 

E(D) = 2L. 

 Generally, the matrix i
jT is not symmetric, and its polarization into a symmetric and 

an anti-symmetric part is: 

i
jT

+

= 1
2 ( )i j

j iT T+ = 1
2 [( ) ]k i i j

k j j iD E D E D Eδ − − , (XI.56a) 

i
jT

−

= 1
2 ( )i j

j iT T− = − 1
2 (DiEj – DjEi).   (XI.56b) 

 
 A necessary and sufficient condition for i

jT to be symmetric is that there be a non-zero 

real number α such that Di = αEi, which is equivalent to saying that the dielectric is 
isotropic.  (Sufficiency is obvious.  To see necessity, contract both sides of DiEj = DjEi 
with Dj, and note that both DjDj = δijD

iDj and EjD
j = E(D) are non-vanishing when D is.  
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Although the introduction of an auxiliary Euclidian metric has no physical meaning, it 
does serve to prove the theorem.) 
 The trace of i

jT  is: 
i

iT = 1
2 DiEi = L,    (XI.57)  

 
which is consistent with the sum of the eigenvalues, including multiplicity.  Hence, the 
one-parameter family of transformations that i

iT  generates does not consist of volume-

preserving transformations. 
 
 b.  Magnetostatics.  The Lagrangian for magnetostatics takes the form: 
 

L(x, B) = 1
4 HijBij = 1

4
ijkl

ij klB Bµɶ ,   (XI.58) 

 
when expressed in terms of the 2-form B and the bivector field H, or: 
 

L(x, B) = 1
2 HiBi = 1

2
ij

i jB Bµɶ     (XI.59) 

 
in terms of the vector field B and the 1-form H. 
 The Noether homomorphism for this particular Lagrangian density takes the form: 
 

i
aJ = i j i

j a aT Sσ +      (XI.60) 

with: 
i
jT = ,

i
j k j

ki

A
A

δ ∂−
∂
L

L = 1
4 ( )kl i ki

kl j kjH B H Bδ − ,   (XI.61a) 

i
aS = Hij Dja .       (XI.61b) 

in terms of B and H or: 
i
jT = i jkm n

j ikn m
B

B
δ ε ε ∂−

∂
L

L = 1
2 ( )k i i

k j jB H B Hδ− + ,  (XI.62a) 

i
aS  = ij

j aH D ( ij
aD ≡ ijk

kaε D )      (XI.62b) 

in terms of B and H. 
 The basis-free representation of the tensor field T is now: 
 

T = − L I + B ⊗ H,    (XI.63) 

 
which has the same form as minus the result (XI.52) that we obtained above for the 
electrostatic case.  Hence, the eigenspaces are the same as before, except that the signs of 
the eigenvalues are switched.  Of course, the tangent planes that are orthogonal to B 
under the scalar product that is defined byµɶ are no longer tangent to equipotential 
surfaces, since the potentials for B are 1-forms, not 0-forms. 
 As before in the electrostatic case, the matrix T is not usually symmetric, and its 
polarization into a symmetric and an anti-symmetric part is: 
 



Symmetries and electromagnetism                                  311 

i
jT

+

= 1
2 [ ( ) ]k i i j

k j j iB H B H B Hδ− + + ,  (XI.64a) 

i
jT

−

= 1
2 (BiHj – BjHi),    (XI.64b) 

and its trace is: 
i

iT = − 1
2 BiHi = − L,    (XI.65)  

 
so the one-parameter family of transformations that it generates does not consist of 
volume-preserving transformations in this case either.  As before in the electrostatic case, 
symmetry is equivalent to the isotropy of the magnetic material. 
 
 c.  Electromagnetism.  The electromagnetic field Lagrangian has the form: 
 

L(x, F) = 1
4 HµνFµν = 1

4 κκλµνFκλ Fµν .   (XI.66) 

 
 The matrix of the Noether homomorphism is then: 
 

aJ µ = a aT Sµ ν µ
ν σ +     (XI.67) 

with: 

T µ
ν = ,A

A
µ

ν κ ν
κµ

δ ∂−
∂
L

L = 1
4 ( )F Fκλ µ κµ

κλ ν κνδ −h h  ,  (XI.68a) 

aSµ  = − Hµν Dνa .      (XI.68b) 

  
 One can use the local frame field ∂µ and its reciprocal coframe field dxµ to define four 
vector fields hκ (κ = 0, …, 3) and four 1-forms Fκ  by way of: 

 
hκ = hκµ ∂µ ,  Fκ  = Fκν dxν,   (XI.69) 

 
Of course, these quadruples of vectors and covectors do not, by any means, have to be 
linearly independent, and some of them might very well vanish. 
 We can now express the stress-energy-momentum tensor T as: 
 

T = LI − hκ ⊗ Fκ.    (XI.70) 

 
 As far as eigenvectors and eigenvalues are concerned, one immediately sees that the 
eigenvectors of T are identical with those of hκ ⊗ Fκ, although the eigenvalues λ of T will 

differ from those λ′ of hκ ⊗ Fκ
  by the relation: 

 
λ = L – λ′.     (XI.71) 

 
Hence, one can redirect one’s attention to the eigenvectors of hκ ⊗ Fκ

 . 
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 Here, it helps to keep in mind that on a four-dimensional vector space V a non-zero 2-
form F – hence, a bivector h − can have a rank that equals either two or four, but nothing 

else.  That is, in the rank-two case they can be expressed in the form: 
 

F = α ^ β,  h = a ^ b,   (XI.72) 

 
but not uniquely, and in the rank-four case, one has: 
 

F = α ^ β + γ ^ δ, h = a ^ b + c ^ d.  (XI.73) 

 
 In both cases, all of the 1-forms and vectors in question are linearly independent.  
Hence, a rank-two 2-form defines a 2-frame {a, b} in V and a 2-coframe {α, β} in V*, 
neither of which are unique.  Similarly, a rank-four 2-form defines a 4-frame {a, b, c, d} 
– i.e., a basis – for V and a 4-coframe {α, β, γ , δ} in V*.  We shall refer to their elements 
generically as ea and θa, respectively, with the understanding that the range of indices is 
defined by the nature of the problem at hand. 
 In the rank-2 case, one has: 
 

ha = ai
θ
h= θa(e1) e2 − θa(e2) e1,   (XI.74a) 

Fa = 
a

i F∂ = θa(e1) θ2 − θa(e2) θ1.   (XI.74b) 

 
 One finds that it is particularly convenient if the 2-frame and the 2-coframe are 
projectively reciprocal, in the sense that: 
 

θa(eb) =
0 ,

0 .

a b

a b

≠ =
= ≠

    (XI.75) 

 This makes: 
 

h1 = γ2 e2, h2 = − γ1 e1, F1 = γ2 θ2, F2 = − γ1 θ1,  (XI.76) 

 
in which we have defined: 

γ1 = θ2(e2),  γ2 = θ1(e1).   (XI.77) 
 One now has: 
 

F1(h1) = (γ2)
2γ1, F 2(h2) = (γ1)

2γ2, F1(h2) = F2(h1) = 0. (XI.78) 

 
 In this case, one finds that: 
 

T = h1 ⊗ F1+ h2 ⊗F2,     (XI.79) 

 
and its eigenvectors are h1 and h2, with associated eigenvalues F1(h1) and F2(h2), resp. 



Symmetries and electromagnetism                                  313 

 One has a similar situation in the rank-four case, although generally one must deal 
with it in terms of special situations since it admits many possibilities. 
 Let us look at the two rank-2 cases that we already examined above, namely, 
electrostatics and magnetostatics.  In the former case, one has: 
 

F = dt ^ E, h = ∂t ^ D,    (XI.80) 

which makes: 
 h0 = D, h1 = − ∂t, F0 = E,  F1 = − E(D) dt, (XI.81) 

 
since one sees that the 2-frame {∂t, D} is projectively reciprocal to the 2-coframe {dt, E}. 
 This makes: 
 
   T = 1

2 E(D)I − D ⊗ E – E(D) ∂t ⊗dt  

= – 1
2 E(D) ∂t ⊗dt + 1

2 E(D) ∂i ⊗ dxi – D ⊗ E.   (XI.82) 

 
 We express this in space-time block matrix form: 
 

T =
0

0 ( )
E

i
jT E

− 
 
 

L
,    (XI.83) 

 
in which ( )i

jT E the 3×3 electrostatic stress matrix (XI.49) that we derived above. 

 One notes that the trace of T is now zero, whereas the trace of the spatial part was 
found to be LE. 

 The magnetostatic case is similar, but still requires special treatment, since the role of 
E and B are actually played by B and H, respectively, not vice versa.  One starts with: 
 

F = − #B = − Bi #∂i ,  h = − #−1H = − Hi #
−1dxi ,  (XI.84) 

 
from which it follows that: 

Fi = εijk B
j dxk,  hi = εijk Hj ∂k ,   (XI.85) 

which makes: 
hi ⊗ Fi = H(B) ∂i ⊗ dxi – B ⊗ H.   (XI.86) 

and: 
   T = 1

2 H(B) ∂µ ⊗ dxµ  − H(B) ∂i ⊗ dxi + B ⊗ H 

= 1
2 H(B) ∂t  ⊗ dt  − 1

2 H(B) ∂i ⊗ dxi + B ⊗ H.                (XI.87) 

 
 We express this in space-time block matrix form as: 
 

T =
0

0 ( )
B

i
jT B

 
 
 

L
,    (XI.88) 
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in which ( )i
jT B represents the spatial magnetostatic stress tensor (XI.61a) or (XI.62a) that 

we derived previously.  Once again, the trace comes out to zero. 
 In the generic case of a rank-four 2-form, one has: 
 

F = dt ^ E − #B, h = ∂t ^ D − #−1H.  (XI.89) 

 This makes: 
 

F0 = 
t

i F∂ = E,  Fi =
i

i F∂ = − Ei dt − #
i

i∂ B = − Ei dt + #(∂i ^ B), (XI.90a) 

h0 = idth = D,  hi = − Di ∂t − 1#idx
i H− = − Di ∂t + #−1(dxi ^ H). (XI.90b) 

 
 We can then compute the components of T: 
 

0
0T = Lem – E(D),  0

iT = − #−1(E ^ H)j ,  (XI.91a) 
0
jT = #(D ^ B)j ,  i

jT = em
i
jδL − DiEj + BiHj . (XI.91b) 

 
 When the constitutive law has vanishing couplings between E and B, so Lem = 
1
2 [E(D) – H(B)], these components take the form: 

 
0

0T = − 1
2 [E(D) + H(B)], 0

iT = − #−1(E ^ H)j ,  (XI.92a) 
0
jT = #(D ^ B)j ,  i

jT = ( ) ( )i i
j jT E T+ B .  (XI.92b) 

 
 One sees that the time-space and space-time components of the stress-energy-
momentum tensor field take the form of the elementary Poynting vector E × B.  
However, two points must be made concerning this: First, it is clear that when one does 
not identify vectors and covectors, as in elementary electromagnetism, the vector field 
#−1(E ^ H) is quite distinct from the covector field #(D ^ B), even when one identifies 
components using a Euclidian metric.  Second, it is only in the case of propagating waves 
that it is physically meaningful to identify these terms with energy flux or momentum 
flux.  Of course, in order to convert the energy flux to a momentum flux, one must divide 
by a propagation speed.  One sees that in the general case, for which this speed is not a 
universal constant, it would probably make the most sense to divide by the speed of 
propagation in the direction of wave motion. 
 This brings us to the fact that one of the most important rank-2 cases, namely, the 
fields of electromagnetic waves, is probably better treated within the general framework 
of the rank-4 case that we just described.  The relevant 2-form and bivector field take the 
form: 

F = k ^ A,  h = k ^ A = κ(k ^ A),   (XI.93) 

 
in which A is defined up to a gauge transformation of the form A ֏  A + λk for some λ; 
similarly A can be replaced by A + λ′ k for some λ′. 
 In order for F to be wavelike it is necessary, but not sufficient, that one have: 
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F ^ F = F ^ #h = 0.    (XI.94) 

 
 If we put everything in time-space form, with: 
 

k = ω dt – ks,   k = ω ∂t + ks ,   (XI.95) 
then we have: 

F = ω dt ^ A – ks ^ A,  h = ω ∂t ^A + ks ^ A .  (XI.96) 

 
 This allows us to identify the E, D, H, and B that are necessary in order to identify 
terms in (XI.92a, b): 
 

E = ωA, #B = ks ^ A, D = ωA, H = #(ks ^ A).  (XI.97) 
 

 One verifies directly – with an appropriate choice of gauge – that the triples {ks, E, 
H} and {ks, D, B} are projectively reciprocal.  That is, ks(ks), E(B), and H(B) are non-
zero, while all of the cross terms are already zero or can be made zero by a choice of 
gauge for A and A.  In particular, one chooses λ and λ′ such that: 
 

 ks(A) = A(ks) = 0.     (XI.98) 
 
 By substitution of (XI.98) into (XI.92a, b), we obtain more specific forms for the 
time-space and space-time components: 
 

0
iT = ω A(A) ki, 0

jT = − ω A(A) kj .   (XI.99) 

 
Hence, we see the direction of flow of the energy in the wave is defined by the wave 
vector or covector. 
 In the case of a constitutive law with no cross couplings, the energy density takes the 
form: 

0
0T = 1

2 [ω2 + ks(ks)] A(A).    (XI.100) 

 
 Here, one can point out that k must satisfy the dispersion relation P[k] = 0 that is 
associated with the constitutive law.  Hence, in the simplest – viz., quadratic – case, 
where ω2 = ks(ks), one can express the energy density as ω2A(A).  This provides another 
opportunity for specifying A and A; recall that so far we have only specified the spatial 
parts. 
 
 
 5.  Symmetries of systems of differential equations [18-20].  In addition to 
considering the symmetries of the action functional for a system of differential equations, 
one can also consider the symmetries of that system itself.  Indeed, the latter class of 
symmetries is potentially richer than the former one since not every system of differential 
equations can be represented as the Euler-Lagrange equations for some action functional.  
In physics, this is especially true when one is considering non-conservative forces in 
mechanical systems, but even when one is still considering systems that follow from a 
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variational principle, one can often find symmetries beyond the ones that follow from 
Noether’s theorem. 
 Loosely speaking, a transformation is said to be a symmetry of a system of differential 
equations if it takes every solution of the system to another solution of the system.  Of 
course, in order to make this concept precise in the language of transformation groups 
that was discussed above one must first be more precise about how one represents the 
system of differential equations and its space of solutions.  Of the various ways of 
representing such things that we discussed in Chapter VI the ones that are most naturally 
adapted to the problem of finding symmetries of systems of differential equations seem to 
be the methods of jet manifolds and exterior differential systems, so we first present the 
general notions in both forms and then apply them to the specific problem of the system 
of differential equations that is associated with pre-metric electromagnetism. 
 It is worth pointing out that the problem that first motivated Lie to develop his theory 
of differentiable transformation groups was the problem of how to adapt the methods of 
Galois theory, which involved associating finite groups of transformations with the 
solutions of systems of algebraic equations, to the problem of investigating the solutions 
of systems of differential equations by means of continuously infinite groups of 
transformations of those solutions.  It is for that reason that one must recognize that the 
problem and methodology that he was first introducing was actually more involved than 
the simpler problems of Lie groups acting globally as transformations on manifolds, 
namely the problems of Lie pseudogroups and Lie groupoids acting locally.  The 
obstruction to the extension of the local methods to the global ones generally involves the 
limits of the existence and uniqueness of the solutions to the differential equations. 
 
 a.  Symmetries in terms of jets.  If we recall the definitions associated with the 
manifold J1(M, N) of 1-jets of differentiable maps from a manifold M to a manifold N 
that were discussed in Chapter VI then we see that the formalism is naturally adapted to 
the problem of describing symmetries of systems of differential equations since both the 
system of equations and its solutions can be represented as submanifolds in one sense or 
the other. 
 If M is m-dimensional and N has dimension n then a system of m first-order partial 
differential equations for n unknown functions can be described implicitly by a 
submanifold in J1(M, N) of codimension one – i.e., a hypersurface – by means of some 

differentiable function F: J1(M, N) → R.  The equation then takes the local form of a 

level hypersurface of F: 
F(xi, ya, a

iy ) = const.    (XI.101) 

 
 One generally expects that one can solve F for the derivatives a

iy , at least in principle: 

 
a
iy = f(xi, ya),     (XI.102) 

 
 so this implies that one restricts F by means of the implicit function theorem to satisfy: 
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a
i

F

y

∂
∂

≠ 0,    (XI.103) 

 
by which we mean that not all of the derivatives vanish identically. 

 One might also define a differentiable function F: J1(M, N) → Rk that would define a 

system of k implicit differential equations. 
 A solution to the differential equation defined by such an F is then a continuously-
differentiable function φ: M → N such that its 1-jet prolongation j1φ, which locally looks 
like (xi, ya(x), ( )i

ay x ), satisfies the equation (XI.101): 

 
F(j1φ) = F(xi, ya(x), ( )i

ay x ) = const.   (XI.104) 

  
Hence, one can regard a solution φ as a submanifold of M that also defines a submanifold 
j1φ: M → J1(M, N) of J1(M, N). 
 One calls a section s: M → J1(M, N) integrable iff s = j1φ for some C1 map φ: M → N.  
A necessary and sufficient condition for this is that when one pulls back the contact 
forms: 

θa = dya − a i
iy dx     (XI.105) 

 
by means of s the result is a set of n vanishing 1-forms: 
 

0 = s*θa(x) = ,( )a a i
i iy y dx− .    (XI.106) 

 
That is, s is integrable iff its components satisfy the compatibility condition: 
 

a

i

y

x

∂
∂

= a
iy .     (XI.107) 

 
 The vanishing of θa(X) for all a = 1, …, n when X is a tangent vector to s ∈ J1(M, N) 
defines n hypersurfaces in the tangent space TsJ

1, whose intersection then defines a linear 
subspace CsJ

1 of TsJ
1 of dimension m + n + mn – n = m(n + 1); i.e., of codimension n.  

The set of all such linear subspaces CsJ
1 defines a vector sub-bundle C(J1) of T(J1) that 

we shall call the contact bundle to J1(M, N). 
 Since any vector sub-bundle of a tangent bundle can be regarded as a differential 
system on the manifold in question, one must naturally inquire about the integrability of 
the sub-bundle.  From Frobenius’s theorem, this is equivalent to asking whether there are 
1-forms a

bη on J1(M, N) such that: 

− Ωa = dθa = a
bη ^ θb.    (XI.108) 

By substituting (XI.105), we first get: 
 

Ωa = a i
idy dx∧ ,    (XI.109) 

and (XI.108) takes the form: 
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0 = ( )a b a i
i i bdy y dxη− ∧ + a

bη ^ dyb.   (XI.110) 

 
Since this is not generally the case, we must conclude that in general the contact sub-
bundle is not integrable. 
 We then call a diffeomorphism Φ: J1(M, N) → J1(M, N) a contact transformation iff 
its differential map at each point dΦ|s : TsJ

1 → TΦ(s)J
1 takes each CsJ

1 to CΦ(s)J
1 

isomorphically.  Note that this is not equivalent to saying that it preserves the contact 1-

forms, except up to a linear isomorphismabA of Rn that may vary from point to point: 

 

Φ*θa|Φ(s) = ( )a b
b s

A sθ ,  (some a
bA : J1(M, N) → GL(n)). (XI.111) 

  
 It now becomes clear that a diffeomorphism of J1(M, N) that takes solutions of a 
differential equation that is defined by a level hypersurface of a C1 function F on J1(M, 
N) must be, at the very least, a contact transformation, since it must take integrable 
sections to other integrable sections.  A symmetry of the differential equation that is 
defined by F is then defined to be a contact transformation of J1(M, N) that also takes 
points of the level hypersurface to other points of the level hypersurface.  Hence, it must 
also preserve F: 

Φ*F = F,     (XI.112) 
which has the local form: 

F(xi, ya, a
iy ) = F(Φi, Φa, a

iΦ ),   (XI.113) 

 
in which each of the coordinate functions on the right-hand side is a function of (xi, ya, 

a
iy ), in general. 

 A one-parameter family of contact transformations Φσ , σ ∈ (−ε, +ε) of F will be 
called differentiable iff for each s ∈ J1(M, N) the curve Φσ(s) in J1(M, N) is a 
differentiable function of σ.  By differentiation, one can then define a vector field on 
J1(M, N): 

X(s) =
0

( )d s

d
σ

σσ =

Φ
.    (XI.114) 

 
 However, since each Φσ(s) must preserve each θa only up to ( )a

bA s , as in (XI.108), we 

see that by Lie derivation the infinitesimal condition takes the form: 
 

LXθa = ( )a b
ba s θ ,    (XI.115) 

 
in which a

ba : J1(M, N) → gl(n), this time. 

 When a vector field X on J1(M, N) satisfies this condition we shall it an infinitesimal 
contact transformation. 
 By an application of Cartan’s formula for LX, we see that (XI.115) also takes the 
form: 
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diXθa + iXdθa = ( )a b
ba s θ ,   (XI.116) 

 
and by substitution of (XI.105), this gives the following set of equations for the 
components of X: 

a
a
ii

X
X

x

∂ −
∂

=
j

a b a
j j bi

X
y y a

x

∂ −
∂

,   (XI.117a) 

a i
a
ib b

X X
y

y y

∂ ∂−
∂ ∂

= a
ba ,    (XI.117b) 

a

j
b

X

y

∂
∂

=
i

a
i b

j

X
y

y

∂
∂

.    (XI.117c) 

 
 By substituting (XI.117b) into (XI.117a), the arbitrary matrix a

ba ceases to play any 

role and the equations for the components of X become: 
 

a

b
i

X

y

∂
∂

=  
j

a
j b

i

X
y

y

∂
∂

,    (XI.118a) 

a
iX = Di X

a − a j
j iy D X ,    (XI.118b) 

 
in which the operator Di takes the form of a total derivative: 
 

Di =
a
ii a

y
x y

∂ ∂+
∂ ∂

.    (XI.119) 

 
Hence, from (XI.118b) we see that only the components Xi and Xa remain undetermined, 
except as solutions to the system of partial differential equations (XI.118a). 
 If X is the prolongation j1ξ of a vector field ξ on M × N then (XI.118b) gets replaced 
by: 

a
iX = Xa

,i      (XI.120a) 

,
b a
i by X = a j

j iy D X .    (XI.120b) 

 
 It is illuminating to see what happens to vector fields that are annihilated by the θa; 
i.e., vector fields that are tangent to the integrable sections of J1(M, N) → M.  If iXθa = 0 
then iXΩa = − a b

ba θ (although the minus sign is unnecessary, since the matrix a
ba  is 

ambiguous), and upon expanding this into component equations, one gets: 
 

a i i a
i iX dx X dy− + = a b i a b

b i ba y dx a dy− + ,   (XI.121) 

 
which implies that a

ba = 0, which then makes X itself identically zero. 

 One concludes that any non-zero contact transformation must be transversal to any 
integrable section. 
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 When we also have a differential equation defined by a C1 function F on J1(M, N), we 
call the infinitesimal contact transformation X an infinitesimal symmetry of the 
differential equation that is defined by F if the local one-parameter family of contact 
transformations Φσ of J1(M, N) that it generates by integration all lie within the level 
hypersurface of F that defines the equation.  Since each Φσ preserves F, by differentiating 
along the curves Φσ(s), we see that the Lie derivative of F with respect to X must vanish: 
 

0 = LXF = XF = i a a
ii a a

i

F F F
X X X

x y y

∂ ∂ ∂+ +
∂ ∂ ∂

.   (XI.122) 

 
 b.  Symmetries in terms of exterior differential systems [18-21].  Now, let us consider 
a system of partial differential equations that is defined by a finite set {θκ, κ = 1, …, k} of 
exterior differential forms on a manifold N of varying degrees as an exterior differential 
system: 

θκ = 0  (all κ).    (XI.123) 
 
 A solution to this system is a differentiable map y: M → N such that: 
 

y*θκ = 0 (all κ).     (XI.124) 
 
 If the forms θκ take the local form: 
 

θκ = 1

1

1
( )

!
r

r

a a
a a y dy dy

r
κα ∧ ∧
⋯

⋯    (XI.125) 

 
then the pull-backs to M (with local coordinates xi) take the form: 
 

y*θκ = 1 1

1 1

1
( ( ))

!
r r

r r

a a i i
a a i iy x y y dx dx

r
κα ∧ ∧
⋯

⋯ ⋯ .   (XI.126) 

 
 A (finite) symmetry of the exterior differential system is a diffeomorphism f: N → N 
that takes solutions to other solutions.  Note that this does not imply that it takes the θκ to 
themselves – i.e., f*θκ = θκ  − only that y*(f*θκ ) = 0 iff y*θκ = 0.  This means that there is 
an invertible matrixAκ

ν ∈ GL(k) such that: 

 
f*θκ = Aκ

ν θν.     (XI.127) 

 
 An infinitesimal symmetry of the exterior differential system is then a vector field X ∈ 
X(N) such that for some matrix aκ

ν ∈ gl(k) one has: 

 
LX θκ = diXθκ + iX dθκ = aκ

ν θν .   (XI.128) 

 



Symmetries and electromagnetism                                  321 

 Hence, the vector field X will be a solution to a system of linear first-order partial 
differential equations of a type that one calls Lie equations, since their solutions represent 
infinitesimal symmetries.  In fact, since Lie himself was not using the global, basis-free 
formalism of modern Lie groups, he was more concerned with algebraic structures that 
were defined by solving such local systems of partial differential equations.  To this day, 
the study of Lie pseudogroups and Lie equations still represents a class of problems that 
are considerably more complicated to address than those of finite-dimensional Lie groups 
and Lie algebras, which are certainly non-trivial, in their own right 5. 
 When the solutions to an exterior differential system are to take the form of sections 
s: M → E of a vector bundle E → M over a manifold M, the exterior differential system 
will be defined by a set of differential forms on E.  If a local trivialization has coordinates 
of the form (xi, ya) then differential forms on E will be exterior products of factors of both 
the 1-forms dxi and the 1-forms dya, while vector fields on E will have the local form: 
 

X = i a
i a

X X
x y

∂ ∂+
∂ ∂

.     (XI.129) 

 
 c.  Symmetries of the equations of pre-metric electromagnetism [5].  Since the 
equations of pre-metric electromagnetism are concerned with differential forms on the 
space or spacetime manifold, it seems clear that representing them as an exterior 
differential system on a vector bundle would be the most straightforward path to take.  
However, one must note that the form that we have been addressing them relates to 
differential operators on sections of vector bundles, not an exterior differential system.  
Hence, we must convert them to such a system.  For the sake of specificity, we shall 
consider the case of spacetime. 
 Since the field that we are solving for is a section F: M → Λ2M, we see that what we 
need to do first is to define the pre-metric Maxwell equations in terms of a set of 
differential forms on Λ2M that pull down to the previous equations on M by way of a 
section.  The way that we do this is to start with the local expression for the 2-form F as 
1
2 Fµν dxµ ^ dxν and regard the components Fµν , not as functions on M, but as coordinate 

functions on Λ2M.  We then have the local expression for a 2-form F on the total space 
Λ2M of the bundle that becomes a 2-form on M when we pull it down by way of the 
section F; i.e., when one replaces the components Fµν with functions Fµν (x) on M. 
 Hence, when we form the 3-form on Λ2M: 
 

Θ1 = 2dF = dFµν ^ dxµ ^ dxν     (XI.130) 
 
we see that the first of the Maxwell equations can be represented by the exterior 
differential system on Λ2M: 

Θ1 = 0.      (XI.131) 
 

                                                
 5 For some idea of the possible role of Lie pseudogroups and Lie groupoids in physics, see Pommaret 
[3].  



322 Pre-metric electromagnetism 

 We absorb the algebraic constitutive law h = κ(F) into the differential equation for h 

in the absence of sources, which we express in the form d*F = 0, in which *F = (κ ⋅ #)F; 
i.e., * = κ ⋅ #.  We have not yet normalized the * diffeomorphism, so we only assume that 
* 2 = − λ2I. 
 If * F then takes the form12 *Fµν dxµ ^ dxν then we see that the differential equation for 

*F can be expressed by the vanishing of the 3-form on Λ2M: 
 

Θ2 = 2d*F = d*Fµν  dxλ ^ dxµ ^ dxν,    (XI.132) 
that is: 

Θ2 = 0.      (XI.133) 
 

 Since the coordinate functions on Λ2M involve Fµν , not *Fµν , we see that next we 
must expand the differentiation: 
 

d*Fµν  = d(κ ⋅ #)F = 1
4 d(κκλαβ εαβµν)Fµν .   (XI.134) 

 
 Here, we see that the representation of the pre-metric Maxwell equations as an 
exterior differential system on Λ2M has one natural advantage in the eyes of constitutive 
laws: nonlinear constitutive laws are simply the ones for which the component functions 
κκλαβ = κκλαβ(x, F) are fully general, while linear laws have components of the form κκλαβ 
= κκλαβ(x).  This suggests that nonlinear electrodynamics is more conveniently addressed 
in the present form. 
 As a further simplification, we combine the components of κ and # into the 
components: 

κκλ
µν = 1

2 κκλαβ εαβµν,     (XI.135) 

of *. 
 Since: 

dκκλ
µν = κκλ

 µν
, ρ  dxρ + 1

2 κκλ
 µν, ρσ dFρσ ,   (XI.136) 

we get: 
   d*Fµν  = 1

2 (dκµν
κλ Fκλ + κµν

κλ dFκλ) 

= 1
2 κµν

κλ
, ρ  Fκλ dxρ + 1

2 (κµν
 κλ + 1

2 κµν
ρσ

 
, κλ Fρσ ) dFκλ .  (XI.137) 

 
 As usual, we introduce the notation: 
 

κλ
µνκɶ = κµν

 κλ + 1
2 κµν

ρσ
 
, κλ Fρσ ,   (XI.138) 

 
and put (XI.137) into the form: 
 

d*Fµν  = 1
2 (κµν

κλ
, ρ  Fκλ dxρ + κλ

µνκɶ dFκλ ).   (XI.139) 

 
 This allows us to set: 
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  Θ2 = κµν
κλ

, ρ  Fκλ  dxρ ^ dxµ ^ dxν  + κλ
µνκɶ dFκλ ^ dxµ ^ dxν  .  (XI.140) 

 
 We next address the infinitesimal symmetries of the exterior differential system: 
 

Θa = 0,  a = 1, 2,    (XI.141) 
 
which will then be solutions X of the system of Lie equations: 
 

LX Θa = diX Θa = a b
ba Θ .    (XI.142) 

 
 Since Θ1 = dF and Θ2 = d*F are both exact forms, this takes the form: 
 

diXdF = 1 1
1 2a dF a d F+ ∗ , diXd*F = 1 1

1 2a dF a d F+ ∗ . (XI.143) 

 
 The possible solutions of these equations include the possibility that the 
underdetermined functionsaba are constants, in which case, the exterior derivative operator 

commutes with them in the right-hand sides of (XI.143), and we are left with the 
equations: 

diXdF = 1 1
1 2( * )d a F a F+ , diXd*F = 2 2

1 2( * )d a F a F+ ,  (XI.144) 

 
which can be solved by: 
 

iXdF = 1 1
1 2 *a F a F µνε+ + , iXd*F = 2 2

1 2 * *a F a F µνε+ + ,  (XI.145) 

 
in which εµν and *εµν are the components of closed 2-forms ε and *ε on Λ2M. 
 If we expand the left-hand sides in latter equations in components we get the 
following algebraic equations for the components Xµ and Xµν : 
 

Xµν dxµ ^ dxν – 2Xµ dFµν ^ dxν = 1 1
1 2( *)a a F dx dxµ ν

µν+ ∧ ,  (XI.146a) 

  ,(3 ) 2F X X dx dx X dF dxκλ λ κλ µ ν κλ µ ν
µν ρ κρ µν κλ µν κλκ κ κ+ ∧ − ∧ɶ ɶ  

= 2 2
1 2( *)a a F dx dxµ ν

µν+ ∧ .  (XI.146b) 

 From the first one we deduce: 
 

Xµ = 0,  Xµν =
1 1
1 2( *)a a Fµν+ + εµν ,  (XI.147) 

 
and when we substitute these results in the second equation of (XI.146b), we get: 
 

Xκλ
µν κλκɶ = 1 1

1 2( *)a a Fκλ
µν µνκ+ ɶ + κλ

µνκɶ εµν =
2 2
1 2( *)a a Fµν+ + *εµν . (XI.148) 
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 Hence, the only remaining issue to be resolved in order to conclude that (XI.147) 
represents a class of infinitesimal symmetries is whether one can find suitable 
constants a

ba , and components *εµν of a closed 2-form that make: 

 
1 1
1 2( *)a a κ+ ɶ = 2 2

1 2 *a a+ , *ε = κɶ ε,  (XI.148) 

 
in which we have reverted to the component-free expressions for the operators in 
question.  Of course, the second of these equations gives us *εµν directly. 
 In the linear case, we find that κɶ = κ = *, and the first equation says simply: 
 

2 1 1
2 1 *a aλ− + = 2 2

1 2 *a a+ ,    (XI.149) 

 
which admits a two-parameter family of solutions: 
 

2
1a = − λ2 1

2a ,  1
1a = 2

2a .   (XI.150) 

 
 From (XI.147), the symmetries that we have been describing represent vertical 
transformations of Λ2M.  More precisely, when the constitutive law described by κ 
defines a complex structure on each fiber of the real vector bundle Λ2M (which is then an 
almost-complex structure on Λ2M), as long as the field equations are complex-linear the 
solution space is a complex vector space in its own right, and the symmetries of the 
solution space will include complex affine transformations.  This follows directly from 
the fact that if F is a solution to dF = d*F = 0 then so is αF + β*F + ε = (α + iβ)F + ε for 
any constant real scalars α and β and any closed 2-form ε.  Since any non-zero complex 
number can be expressed in polar form the multiplication of F by the complex scalar α + 
iβ involves a rotation in the plane of F and *F that one calls a duality rotation. 
 Of course, in the nonlinear case (κɶ ≠ κ = *) one does not expect the space of solutions 
to be a vector space of any sort, in general.  Hence,  the question of the extent to which 
the pre-metric Maxwell equations admit the aforementioned class of symmetries must be 
dealt with in terms of specific cases of nonlinear constitutive laws. 
 Returning to the general case (XI.142), let us first examine the form of the general 
element on the right-hand side: 
 
 a b

ba Θ  

= [ ]
1 2 2 ,( )a a aa a dF dx dx a F dx dx dxκ λ κλ µ ν κλ λ µ ν

µ ν µν κλ µν λ κλδ δ κ κ+ ∧ ∧ + ∧ ∧ɶ . (XI.151) 

  
 Our first clue as to how we can reduce the results of expanding the left-hand side of 
(XI.142) is to note that only 3-forms involving at most one factor of dFκλ can appear with 
a non-zero coefficient.  Furthermore, we see that the coefficients of dFκλ ^ dxµ ^ dxν take 
the general form of complex scalar multiplication, as long as the nonlinear-modified 
constitutive lawκɶ defines an almost complex structure, although, so far, we have only 
defined that operation on 2-forms over M, not 3-forms over Λ2M. 
 Taking a = 1, we find: 
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  LXΘ1 = Xµν,λ dxλ ^ dxµ ^ dxν + ( ), [ ]1
,2 X Xκλ κ λ

µν µ νδ+ dFκλ ^ dxµ ^ dxν  

− Xµ,κλ dFκλ ^ dFµν ^ dxν .      (XI.152) 
 
 Hence, the first general conclusion we can infer about infinitesimal symmetries of the 
pre-metric electromagnetic field equations is the fact that: 
 

X

F

µ

κλ

∂
∂

= 0,     (XI.153) 

 
which says that the Xµ must be functions of only position, but not field strength.  
Therefore, they are the lifts of infinitesimal generators of spacetime diffeomorphisms; 
i.e., motions. 
 The other equations that follow from (XI.142), (XI.151), and (XI.152) are: 
 

X

x
µν
λ

∂
∂

= 1
2 ,a Fκρ

µν λ κσκ ,  [ ]
,

X
X

F
µν κ λ

µ ν
κλ

δ
∂

+
∂

= 1 [ ] 1
1 2a aκ λ κλ

µ ν µνδ δ κ+ ɶ .  (XI.154) 

 
 When one chooses the arbitrary function1

2a to be a function of only F, the first set of 

equations can be solved by: 
Xµν = 1

2a Fκλ
µν κλκ + εµν ,    (XI.155) 

 
which is already included on the infinitesimal generators of complex affine 
transformations of the fibers of Λ2M, so it tells us nothing new.  However, if one 
considers a homogeneous medium then the right-hand side of the first equations in 
(XI.154) vanishes, and this says that in such a case Xµν must be functions εµν(F) of only 
F; i.e., it is the infinitesimal generator of purely vertical translations.  Between this and 
the previous observation about the character of Xµ , we see that the infinitesimal 
symmetries of the field equations for a homogeneous medium are the sums of 
infinitesimal generators of pure motions and pure vertical transformations; i.e.: 
 

X(x, F) = ( ) ( )X x X F
x F

µ
µνµ

µν

∂ ∂+
∂ ∂

.   (XI.156) 

 
 As for the second set of equations in (XI.154), it clear that it requires deeper analysis.  
It includes the special cases of pure motions and pure vertical transformations.  The pure 
vertical transformations again give us complex scalar multiplication and translation in the 
fibers, but the pure motions give the equation: 
 

[ ]
,X κ λ
µ νδ = 1 [ ] 1

1 2a aκ λ κλ
µ ν µνδ δ κ+ ɶ .    (XI.157) 

 
 The solutions to it include the possibility that1

2a = 0 and 1
1a is a constant, which then 

gives the class of solutions: 
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Xµ(x) = αxµ + εµ ,    (XI.158) 
 
in which the εµ  are constants.  These vector fields represent infinitesimal spacetime 
dilatations and translations. 
 When 1

2a  is non-vanishing, the motions thus defined are harder to interpret, unless 

κɶ is expressible as an anti-symmetrized tensor product, such as in the Lorentzian case, 
where κ takes the form g ^ g, so when one raises one index on the components of each g, 
the resulting components are simply[ ]κ λ

µ νδ δ , which gives the previous transformation. 

 It is in addressing (XI.142) for a = 2 that we find the most complexity arising, since 
we are differentiating the constitutive law in the process.  The equations for the 
components of X that we obtain consist of three basic types: equations for the coefficients 
of dFαβ ^ dFκλ ^ dxµ, equations for the coefficients of dxλ ^ dxµ ^ dxν, and equations for 
the coefficients of dFκλ ^ dxµ ^ dxν. 
 The first type of coefficients must vanish, which gives the equations: 
 

0 = ,X µ κλ αβ
µνκɶ = ( )X

F
µ κλ

µν
αβ

κ∂
∂

ɶ ,   (XI.159) 

 
which says that X µ κλ

µνκɶ must be a function of only x.  Although this is always true when 

κ describes a linear medium, it must imply thatκɶ is a function of only x in the nonlinear 
case.  Hence, if we differentiate (XI.138) with respect to Fγδ, while suppressing the 
irrelevant indices, we get the following condition on κ: 
 

,

F
F

δγ

αβ
αβ

κ∂
∂

= −3κ,γδ,    (XI.160) 

 
which says that κ ,γδ is homogeneous of degree – 3 in F. 
 If κ does not have this property then one must have Xµ = 0, which means that the 
general nonlinear medium will have no symmetries due to spacetime motions. 
 The second type of coefficients gives equations of the form: 
 

3(Xσ κµν
κρ

,σ Fκρ),λ + Xκρ κµν
κρ

,λ  = 2
1a (κµν

κρ Fκρ ) ,λ .  (XI.161) 

 
Of course, for homogeneous media these equations become trivial. 
 In the inhomogeneous case, when we consider Xκρ that are purely vertical – i.e., 
functions of only F – these equations reduce to the form: 
 

3Xσ κµν
κρ

,σ Fκρ + Xκρ κµν
κρ  = 2

1a κµν
κρ Fκρ + εµν(F).  (XI.162) 

 
 This includes the possibility: 
 

Xσ κµν
κρ

,σ = 21
13 a κµν

κρ,  Xκρ = κµν
κρ εµν ,  (XI.163) 
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in which we have made use of the invertibility of κ. 
 Since the εµν  are arbitrary functions of F, the second set of equations says that Xκρ 
depend on x only by way of κ. 
 The first set of equations is somewhat more intriguing, since it says that the 
components of κ must be eigenfunctions of the first-order differential operator defined by 
X.  This related to the more general condition: 
 

LXκ = λκ,     (XI.164) 
which we shall return to shortly. 
 The third type of coefficients gives the equations: 
 
 (3κµν

κρ
,λ

,αβ Fαβ + 3κµν
αβ

,λ + ,
αβ

λν µκɶ )Xλ + 2Xλ
,µ κλν

αβ + ,( )X κλ αβ
κλ µνκɶ  

 = 2 [ ] 2
1 2a aκ λ αβ

µ ν µνδ δ κ+ .    (XI.165) 

 
 Once again, in a homogeneous medium, we see that the motions include dilatations 
and translations, as expected.  The inhomogeneous case is clearly more involved, and 
requires further analysis. 
 The purely vertical transformations that satisfy these equations amount to complex 
scalar multiplications and complex translations of the fibers of Λ2M. 
 One can get more of an intuition for some of the symmetries of the field equations if 
one applies the Lie derivative operator LX to the expressions dF and d*F, which then give 
dLXF and dLX*F, respectively.  The 3-forms dF and d*F are eigenforms of the first-order 
differential operator LX iff: 

 dLXF = λ′dF,  dLX*F = λ″d*F  (XI.166) 
 
for some real constants λ′, λ″. 
 These conditions become: 
 

LXF = λ′F + (closed 2-form), LX*F = λ″*F + (another closed 2-form). (XI.167) 
 

Hence, F and *F are eigenforms of LX, modulo a closed 2-form. 
 One sees that these conditions are equivalent iff: 
 

LX* = λ*.     (XI.168) 
for some real function λ. 
 Since * = # ⋅ κ, this becomes: 
 

LX # ⋅ κ  + # ⋅ LXκ = λ # ⋅ κ ,    (XI.169) 
which then demands that: 

LX # = α#, LXκ = βκ,    (XI.170) 
 
for suitable real functions α, β. 
 The first equation is equivalent to: 
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LXV = (δX)V = αV,     (XI.171) 

 
for some a, which is always satisfied by setting α = δX.  Hence, it is not necessary for 
one to restrict oneself to volume-preserving diffeomorphisms. 
 The second equation in (XI.171) is a generalization of the conformal Killing equation 
for the Lorentzian metric g: 

LXg = Ω2g,     (XI.172) 
 
as one can see by expressing κ in the form g ^ g. 
 Since that equation gives infinitesimal generators of diffeomorphisms of Minkowski 
space that preserve the light cone, it appears that the corresponding group for the more 

general case of pre-metric electromagnetism is defined by diffeomorphisms of R4 that 

preserve the characteristic hypersurface that is defined by the dispersion law.  This would 
include a subgroup that preserves the characteristic polynomial itself, which would then 
be analogous to the Lorentz group in the quadratic case.  The deeper nature of these two 
groups then merits further study, since its role in physics is possibly as fundamental as 
that of the Lorentz group. 
 One finds that in practice the study of symmetries of the pre-metric field equations 
involves first choosing a specific constitutive law κ, or at least a specific class of them, 
such as homogeneous linear, inhomogeneous linear, homogeneous nonlinear, etc.  For 
some progress in this direction, one might confer Delphenich [5]. 
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CHAPTER XII 
 

PROJECTIVE GEOMETRY AND ELECTROMAGNETISM  
 
 

 One of the lasting contributions that general relativity made to the foundations of 
physics was the idea that such an everyday natural phenomenon as gravitation could 
nonetheless ultimately be a manifestation of something as abstract as the geometric 
structure of the spacetime manifold itself.  Up until Einstein succeeded in showing the 
link between the distribution of matter in that manifold and its curvature, the study of 
non-Euclidian geometries had been of interest primarily to pure mathematicians, some of 
whom, such as William Kingdon Clifford and Henri Poincaré, had already speculated on 
the possibility of such a link. 
 A predictable consequence of the revelation that spacetime geometry was at the root 
of gravitation was that theoretical physics devoted more attention to the “geometrization” 
of all of its other fundamental principles.  Mechanics drifted further into the geometry of 
contact and symplectic manifolds, gauge field theory focused more on the description of 
gauge structures for field theories in terms of connections on principal bundles, and the 
conjecture emerged that perhaps one could generalize spacetime geometry in some way 
that would encompass the other fundamental forces (or fundamental interactions, to the 
quantum field theorists). 
 In the original form of the field unification problem, Einstein conjectured that there 
was such a broadening of the scope of spacetime geometry that would subsume both 
gravitation and electromagnetism.  He made many attempts along these lines, along with 
Mayer, Cartan, Oskar Klein, Kaluza, Jordan, Schrödinger, Veblen, Vranceanu, and others 
1.  However, the most common results of these theories were either elegant mathematical 
theories that nevertheless admitted unphysical solutions or consistent unifications of 
gravitation and electromagnetism that said nothing new about either; one might call such 
a theory a “concatenation” of the two field theories. 
 The scope of the unification problem eventually expanded to include all of the 
fundamental interactions, presumably in a gauge theory for a suitably large gauge group, 
but the new obstacle emerged that the mathematical formalism of quantum field theories 
was mostly oriented towards describing the interaction of matter in the scattering 
approximation, not the specific details of the time evolution of the system during the 
actual time interval in which the interaction takes place.  Hence, since general relativity 
does not spend much time addressing the scattering of gravitating bodies, any more than 
most quantum field theories address the Cauchy problem for field solutions, simply 
trying to reconcile the mathematical methodologies become a complex problem, in its 
own right 2. 

                                                
 1 A good historical discussion of some of these attempts can be found in the book by Vizgin [1], and a 
more mathematically detailed discussion of two them – viz., the Kaluza-Klein and Einstein-Schrödinger 
theories – can be found in Part II of Lichnerowicz [2]. 
 
 2 An illuminating insight into the difference between the general relativistic approach to fundamental 
interactions and the quantum field theoretic approach can be gleaned from reading the Feynman lectures on 
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 We have seen how the theory of electromagnetism can be formulated in the absence 
of a background spacetime metric, since the Lorentzian structure eventually “emerges” as 
a consequence of the dispersion law that follows from the constitutive law, by way of the 
field equations.  This suggests that perhaps the unification problem that Einstein posed, 
although reasonable by analogy to the unification of electricity and magnetism into 
electromagnetism, might still be the wrong problem to pose.  Indeed, we already have a 
definitive link between the two theories by way of the fact that the Lorentzian structure 
that accounts for gravitation consists of light cones, not gravity cones; i.e., cones that 
pertain to the propagation of electromagnetic waves, not merely the propagation of 
gravitational waves. 
 The question then arises of how one might still geometrize pre-metric 
electromagnetism in the absence of a spacetime metric.  In order to address this question, 
one might consider the geometrical hierarchy that was proposed by Felix Klein, who once 
decreed that “projective geometry is all geometry.”  From that level of generality, one 
could then reduce one’s scope to affine geometry or metric geometry by considering the 
hyperplane at infinity or introducing a metric on the projective space, respectively.  One 
could also introduce the metric on an affine space, which is more akin to the approach of 
Riemannian geometry and general relativity.  The resulting hierarchy can then be 
schematically described as in Fig. 13. 
 

 Projective 

Affine Metric 

Metric 
 

 
Figure 13.  Klein’s hierarchy of geometries. 

 
 What we shall attempt to do in this chapter is establish that projective geometry plays 
a role at the fundamental level of physics in both mechanics and field theories.  We begin 
by summarizing some of the relevant notions of projective analytic geometry [4-7], and 
then show how some of these notions play a role in mechanics.  We then go on to discuss 
the use of the algebra of exterior forms and multivector fields to represent projective 
geometric situations by way of the Plücker-Klein embedding, and then apply that to the 
exterior forms and multivector fields that are of interest in electromagnetism. 
 It is our hope that by establishing the role of projective geometry in physics at the 
fundamental level, this might bring about a shift of emphasis in physics from the 
Riemannian geometry defined by a metric on the tangent bundle to the Kleinian geometry 
of subspaces in the tangent spaces, as they are represented by the exterior algebras over 
the tangent and cotangent bundles.  The fundamental physical concept that supplants the 

                                                                                                                                            
gravitation [3], in which he attempts to extend the methodology of quantum field theory to imply the 
Einstein equations by regarding the graviton as an elementary particle like any other, while avoiding the 
necessity of differential geometry, which he apparently regarded as “fancy-schmancy mathematics.” 
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distribution of massive matter is then the electromagnetic constitutive law, which might 
itself be determined by the distribution of charged matter, by way of polarization.  It is 
entirely reasonable, considering the relative magnitudes of the coupling constants, that 
gravity is then simply the shadow cast by electromagnetism. 
 
 
 1.  Elementary projective geometry.  Something else that Klein once said, which 
has received considerably more attention by the mathematics community at large, was the 
suggestion that he made in his Erlangen Programme that geometries could be best 
characterized by the invariants of group of transformations that were distinctive to the 
class of problems at hand.  For instance, the fundamental concept in affine geometry is 
parallelism, so the relevant group is the group of transformations of affine space that 
preserve the parallelism of lines, which is then the group of translations.  In metric 
geometry, the key concept is that of the distance between points of the space, which 
implies that the relevant group is the group of isometries of the space; in conformal 
geometry, distance is replaced by angle, and the isometry group is then enlarged to the 
conformal isometry group.  Note that in order to make sense of an angle one requires the 
presence of two lines, which then suggests that one is implicitly considering the points of 
a projective space; i.e., and angle between two lines through a point in an affine space is 
equivalent to a distance between two points in the corresponding projective space. 
 As Hilbert and Cohn-Vossen envisioned the situation [8], the key concept in 
projective geometry was that of incidence, which refers to the way that subspaces of 
projective space intersect.  Hence, the relevant group that pertains to projective geometry 
should be the group of transformations of a projective space that preserve the incidence 
of subspaces.  We shall then begin by clarifying the concepts of projective subspaces and 
incidence. 
  
 a.  Projective subspaces and incidence.  For the sake of (physically useful) generality, 

we first assume our field K of scalars is either R or C, since many of the definitions and 

results of projective geometry work the same in either case.  In most cases, the 
differences do not appear until one starts looking at solving algebraic equations or 
making use of the conjugation operator. 

 Although a projective space, such as KPn, is defined by a process of projectivization, 

i.e., projecting from a vector space, such as K
n+1, to the set of all lines through its origin, 

for the purposes of projective geometry it is better to regard the elements of that set as 
points of a projective space, not lines in a vector space.  Similarly, under the projection  

K
n+1 − {0} →  KPn, a 2-plane through the origin projects to a line in a projective space, 

and, more generally, a k+1-plane through the origin of Kn+1 projects to a k-plane in KPn.  

We shall then call a subset of KPn that is the image of a a k+1-plane through the origin of 

K
n+1 under this projection a k-dimensional (projective) subspace of KPn. 
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 As subsets, projective subspaces can be partially ordered by inclusion; i.e., one can 
speak of a subspace as being a subspace of some other subspace or not.  However, this is 
not precisely the relation of incidence, which, unlike a partial ordering, is symmetric.  In 
particular, two subspaces are incident iff one of them is a subspace of the other one 3.  For 
instance, a point and a line are incident iff the point in question is one of the points of the 
line, while two lines are incident iff they coincide.  One then sees that it is possible for 
two subspaces to be neither incident nor disjoint, such as when a line intersects a plane 
without being contained in it. 
 One of the binary operations that pertain to the partial ordering of subsets that carries 
over to the partial ordering of subspaces is that of intersection.  However, one refers to 
the intersection of two subspaces S1 and S2 as their meet and denotes it by S1 ^ S2.  Under 

the defining projection of Kn+1 – {0} onto KPn, the meet of two projective subspaces will 

be the image of the intersection of the linear subspaces that projected onto them.  One 
also sees that −1 ≤ dim(S1 ^ S2) ≤ min{dim(S1), dim(S2)}; by convention, dim{∅} = −1. 

 For example, the intersection of a line and a plane in KP3 can be either a point or a 

line, in which case, the line is incident on the plane.  The intersection of two planes can 

be a line or a plane since they are projections of 3-planes in K4, which can intersect in a 

2-plane or a 3-plane.  The only pairs of projective subspaces of KP3 that can intersect 

vacuously are a point and some subspaces of any dimension and some pairs of lines. 
 One sees why the concept of parallelism is not as useful in the context of projective 

geometry by considering the intersection of two lines in KP2.  Since they both represent 

the projections of 2-planes through the origin of K
3, and all such 2-planes must intersect 

in a linear subspace of dimension one or two the projection of their intersection will be 

either a point or a line in KP2, but a non-vacuous subset, in either event.  In other words, 

any two lines in KP2 must intersect, so no lines can be parallel to each other.  However, 

as we shall discuss below, if one regards a projective space as an affine space plus a 
hyperplane “at infinity” then one is saying that all of the parallel lines in the affine space 
will intersect at points in the hyperplane at infinity.  Hence, one sees how projective 
spaces can be regarded as the completions of affine spaces, in one sense.  This makes the 
claim of Klein about the level of generality that projective geometry represents seem 
more reasonable. 
 By contrast, one does not usually consider the union of two subspaces, as much as 
their join, which is denoted by S1 ∨ S2.  This is then the smallest subspace (with respect to 
inclusion) that contains both subspaces.  Under the defining projection, the join of two 
projective subspaces will be the projection of the join of the linear subspaces that 
projected onto them, in the sense of the smallest linear subspace that contained both of 
them.  This join will then be generated by all finite linear combinations of vectors from 
both spaces.  Hence, max{dim(S1), dim(S2)} ≤ dim(S1 ∨ S2) ≤ dim(S1) + dim(S2).  In fact: 
 
                                                
 3 More elaborate axioms for incidence than the ones give here can be found in Van der Waerden [9].  
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dim(S1 ∨ S2) = dim(S1) + dim(S2) – dim(S1 ^ S2).  (XII.1) 
 
 For example, the join of two distinct points is a line and the join of a line and a point 

not on that line is a plane.  When two linear subspaces V1 and V2 of Kn+1 are 

transversal, in the sense that V1 ^ V2 = 0 and V1 ∨ V2 = Kn+1 the corresponding condition 

on projective subspaces S1 and S2 of KPn is that S1 ^ S2 = ∅ and S1 ∨ S2 = KPn.  That is, 

they are disjoint and their join is the entire space. 

 Although one cannot speak of linear combinations of elements in KPn, and 

consequently, bases for subspaces, one can speak of “projective frames.”  A set {p0, …, 

pk} of k+1 elements pi ∈ KPn is said to be a projective frame 4 for the k-dimensional 

subspace Sk iff Sk is the join p0 ∨ …∨ pk of all its elements  (one can define that notion by 
recursion since the join operation is associative) and no proper subset of that set will span 
Sk.  Hence, two distinct points frame a line, three non-collinear points frame a plane, and 
so on.  The pre-images of the points in a projective frame then define a linear frame for 
the pre-image of Sk . 
 When given the meet and the join operations, the partially ordered set of projective 

subspaces of KPn becomes a lattice (see, e.g., Birkhoff [10]).  It also has a greatest 

element and a least element in the form of KPn and ∅, respectively.  Hence, every 

subspace is a subspace of KPn and ∅ is a subspace of every subspace. 

 This lattice is, moreover, a complemented lattice in the sense that for every subspace 

S there is a subspace S′ such that S ∨ S′ = KPn.  However, this complement is by no 

means unique, which would be the case for an orthocomplemented lattice.  An example 
of such a lattice is given by the linear subspaces of an orthogonal space, since one can 
uniquely specify an orthogonal complement to any subspace in that event. 
 In one sense, we can regard projective geometry as being primarily concerned with 

transformations of KPn that preserve its lattice of projective subspaces, in the sense that 

meets go to meets and joins go to joins.  Consequently, such a transformation will also 
preserve incidence. 
 

 b.  Duality.  One can just as well define the projectivization of K
n* = (Kn)* by looking 

at all of the lines through its origin.  The resulting projective space will then be denoted 

by KPn*, although it will be projectively equivalent to KPn, in a sense that we shall define 

shortly.  We shall refer to KPn* as the dual of the projective space KPn. 

                                                
 4 The classical term for a projective frame was a “reference simplex,” or “reference tetrahedron,” in the 
three-dimensional case.  We shall not use that terminology since the concept of a frame is closer to the 
group-theoretic methods of geometry. 
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 The lattice of projective subspaces of KPn* will be in one-to-one correspondence with 

that of KPn, except that a k-dimensional projective subspace of KPn* will define an n−k-

dimensional projective subspace of KPn, by annihilation.  That is, all of the elements of 

the linear subspace Vk+1 of Kn+1 that is the pre-image of some k-dimensional projective 

subspace Sk of KPn will be annihilated by all of the elements of some unique 

subspacen kV ∗
− of (Kn+1)* that is the pre-image of a unique n−k-dimensional subspace n kS∗

−  

of KPn*.  As we shall see, the fact that any k-dimensional subspace in KPn is associated 

with a unique n−k-dimensional subspace in KPn* is at the root of the Poincaré duality 

between k-vectors and n−k-forms that we have been using all along. 

 The one-to-one correspondence between subspaces of KPn and subspaces of KPn* 

does not, however, preserve the operations of meet and join.  Rather, it inverts them, just 
as subset complementation inverts the operations of intersection and union.  That is, the 

dual of the meet of two subspaces in KPn is the join of the duals of the subspaces, and 

conversely. 
 One must be cautioned at this point not to assume that the one-to-one correspondence 

between subspaces in KPn and subspaces of its dual implies that there is an actual one-to-

one correspondence between the points of these spaces.  Indeed, under the present 
duality, a point in one space is associated with a hyperplane in the other.  Such an 
association of points would be called a “correlation,” which we shall discuss below. 
 

 c.  Hyperplane at infinity.  As we pointed out in chapter II, the projective spaces KPn 

cannot be covered by a single coordinate chart, since they are all compact, while Kn is 

not.  However, it is in examining the homogeneous coordinate charts for KPn that we 

gain a deeper insight into the relationship between affine and projective spaces. 
 Let (x0, x1, …, xn) be one such chart that projects onto the corresponding 
inhomogeneous chart (X1, …, Xn) by the prescription Xi = xi/x0.  For each x0 ≠ 0, this map 

is a diffeomorphism of the affine subspace of Kn+1 that is parameterized by setting x0 

equal to a constant and allowing the remaining coordinates to vary arbitrarily in the 

vector space Kn. 

 However, as x0 goes to 0 the inhomogeneous coordinates all become indefinitely 

large.  Hence, none of the points of Kn+1 that take the form (0, x1, …, xn) project to 

inhomogeneous coordinates.  One refers to the points of this hyperplane as the 

hyperplane at infinity.  Nevertheless, they still describe points of KPn, even though they 
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do not define inhomogeneous coordinates.  Indeed, one can regard KPn as consisting of 

the affine space Kn completed by the addition of the hyperplane at infinity, which also 

renders the resulting space compact. 

 For instance, if one looks at KP1, which consists of lines through the origin of the 

plane, in terms of the homogeneous coordinates (x0, x1) and represents the 
inhomogeneous coordinates by (1, X) with X = x1/x0 then it becomes clear that the point 

of KP1 that gets left out by the omission of x0 = 0 is the vertical line in the plane.  The 

inhomogeneous coordinate X is, in fact, the tangent of the angle between the line through 
the point (x0, x1) and the x0 axis.  Hence, to completely describe all of the lines through 
the origin, one must add the “point at infinity” that is described by the vertical line.  We 
illustrate this situation in Fig. 14.  One should also notice that since all of the lines 
through the origin in this case are described by either homogeneous coordinates with x0 > 

0 or x0 < 0 individually, the projection of K2 – (0, x1) onto KP1 is two-to-one and thus 

represents a double covering map.  This fact is at the root of the spin representations of 
the orthogonal groups. 

 

x0 

x1 

1 

X 

−1 

− X 

 
 

Figure 14.  The projective line as an affine line plus a point at infinity. 
 

 d. Projective transformations.  We shall call a map f: KPn → KPm of an n-

dimensional projective space to an m-dimensional one a projective transformation iff it 

maps the lattice of projective subspaces of KPn into the lattice of projective subspaces of 

KPm consistently.  That is, if S ⊂ S′ in KPn then f(S) ⊂ f(S′), and for any subspaces S1, S2 

one has f(S1 ^ S2) ⊂ f(S1) ^ f(S2), f(S1 ∨ S2) ⊂ f(S1) ∨ f(S2). 

 Under the projectivization Kn+1 – {0} → KPn, linear subspaces of Kn+1 go to 

projective subspaces of KPn, and one finds that a projective transformation of KPn to 

KPm is covered by a map of Kn+1 to Km+1 that takes linear subspaces of Kn+1 to linear 

subspaces of Km+1 in a manner that preserves the lattice of linear subspaces. 
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 This way of characterizing projective transformations subsumes the classical concept 

of a collineation, which takes lines in Kn+1 to other lines in Kn+1, hence, points of KPn to 

other points.  However, since a projective transformation must, among other things, 
preserve all joins, and any k-dimensional projective subspace can be expressed as the join 
of k+1 points, one sees that it is sufficient to specify the effect on points. 
 Of course, in order to preserve the dimension of subspaces, one must be dealing with 
invertible projective transformations.  We call such invertible projective transformations 
projective equivalences. 
 When one considers how a projective transformation must take projective frames to 
projective frames, hence, it must be covered by a map that takes linear frames to linear 
frames, one sees that projective transformations must be covered by linear 
transformations.  Of course, they are not unique, but are only defined up to scalar 
multiplication.  The usual way of representing these linear transformations is: 
 

ρya = a i
iA x , ρ ≠ 0.    (XII.2) 

 

 One then sees that a projective transformation of KPn to KPm corresponds to a line 

through the origin in the vector space L(n+1, m+1) of linear maps from Kn+1 to Km+1.  

That is, it defines a point in the projective space that is defined by that vector space. 
 In the invertible case, one must have n = m to begin with, and the image of a 
projective k-frame under the map must be a projective k-frame for all 0 < k ≤ n. As for the 
linear transformation that covers the projective transformation, the determinant of the 

matrix i
jA must be non-vanishing (for any linear frame on K

n+1).  Hence, one is looking at 

the intersection of a line through the origin in the gl(n+1; K) with the elements of the 

group GL(n+1; K).  One finds that this set PGL(n; K) of line intersections is a group 

under the multiplication of matrices since invertible matrices that are defined up to a 
multiplicative scalar constant will multiply to produce another invertible matrix that is 
also defined up to a multiplicative scalar constant.  This group is referred to as the 
projective linear group in dimension n. 

 One sees that each of these equivalence classes contains an element of SL(n+1; K) 

that is unique, up to sign, since: 
 

det(−A) = (−1)n+1det A.    (XII.3) 
  
Hence, when n+1 is even – i.e., when n is odd – a change of sign will make no change in 
the determinant.  One can then say that: 
 

PGL(n; K) ≅ 
2

( 1; ),  even,

( 1; ) / ,  odd.

SL n n

SL n n

+
 +

K

K Z
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 These invertible projective 
transformations are called, variously, 
homographies, collineations, and 
projectivities in the literature.  They are 
ultimately generated by finite products of 
elementary transformations called 
perspectivities, which show us how 
projective geometry relates to the older 
study of perspective in visual perception.  
A typical example of how a perspectivity, 
relative to a point P, takes a projective 3- 
frame ABC for a projective plane to 
another projective 3-frame A′ B′ C′ is 
illustrated in Fig. 15.  One can think of the 
three-dimensional space in which the connecting lines PAA′, PBB′, PCC′ exist as the 
space of homogeneous coordinates. 
 It is important to see how the linear transformations of homogeneous coordinates 
relate to transformations of inhomogeneous coordinates because one finds that generally 
they will not be linear, but rational transformations.  In particular, let (x0, x1, …, xn) be 

homogeneous coordinates on KPn with corresponding inhomogeneous coordinates (X1, 

…, Xn), and similarly one has (y0, y1, …, ym)  and (Y1, …, Ym) for KPm.  For convenience, 

we assume that x0 and y0 are non-zero, so Xi = xi/x0 and Ya = ya/y0. 

 If a linear map A: Kn+1 → Km+1 is represented by a matrixAα
µ then the transformation 

of Xi into Ya that is induced by A is: 
 

Ya = yi/y0 =
0

0
0 0 0
0

a a i
i

i
i

A x A x

A x A x

+
+

= 0
0 0
0

a a i
i

i
i

A A X

A A X

+
+

.   (XII.4) 

 
 In the invertible case, for which m = n, these transformations, which are sometimes 
called fractional bilinear transformations, then fall into four elementary categories: 
 1) Homotheties:  In this case, the only non-zero submatrices ofAµ

ν are 0
0A and i

jA , 

which equals i
jδ , so Xi goes to 0

0
iA X . 

 2) Translations:  For these, the non-zero matrices are0
0A = 1, i

jA = i
jδ , and at least 

one component of0
iA .  The transform of Xi is then Xi + 0

iA . 

 3) Inversions:  Now, 0
0A = 0

iA = 0, i
jA = i

jδ , and at least one0
jA  is non-vanishing.  

These transformations take Xi to 0/i j
jX A X , as long as Xi does not live in the hyperplane 

0 j
jA X = 0.  One sees that points of the affine hyperplane 0 j

jA X = 1 will be fixed by these 

transformations.  Hence, the inversion in question is an inversion through the affine 
hyperplane 0 j

jA X = 1. 

 4) Linear transformations: 0
0A = 1 and i

jA are the only non-zero submatrices. 

 

P 

A 

B 

C 

A′ 
B′ 

C′ 

Figure 15.  An example of a perspectivity in 
the projective plane. 
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 In general, one can expressAµ
ν in block matrix form as: 

 

Aµ
ν =

0 0
0

0

j

i i
j

A A

A A

 
 
  

.     (XII.5) 

 

 The direct sum decomposition of Kn+1 that this corresponds to is K⊕ Kn, in which the 

first summand consists of all (x0, 0, …, 0) while the second summand represents all (0, x1, 
…, xn), which is the hyperplane at infinity.  One then sees that the affine subgroup A(n; 

K) of SL(n+1; K) consists of those elements that take the hyperplane at infinity to itself, 

which will then have 0
jA = 0; the stray factor of0

0A can be eliminated by the constraint that 

the determinant of Aµ
ν is unity.  The affine group in n dimensions can also be represented 

by the transformations that take the affine hyperplane x0 = 1 to itself, which implies 
that 0

0A must be set to unity. 

 
 e.  Correlations.  As pointed out above, the duality that associates each k-plane in 

KPn with a unique n−k-plane in KPn* is not sufficiently fine-grained to also associate a 

point of KPn with a point of KPn*.  Such an invertible map [C]: KPn → KPn*, is called a 

correlation.  Under projectivization, it will be covered by an invertible linear map C: 

K
n+1 → (Kn+1)*, which is unique up to a non-zero scalar multiple. 

 Even though the points of KPn* no longer represent linear functionals, as the elements 

of (Kn+1)* do, nonetheless one can still speak of the evaluation of an element [α] ∈ KPn* 

on an element [v] ∈KPn.  The trick is to understand that the “field of projective scalars” 

associated with K consists of 0 and “≠ 0.”  That is, the only issue in the eyes of projective 

geometry is whether the number α(v) is zero or not.  Since any choices of representive 
non-zero vectors and covectors v and α for the points [v] and [α] will differ by non-zero 

scalar multiples, so will all possible values of the number α(v) ∈ K.  Hence, α(v) will 

either be zero for all representatives or non-zero for all representatives and the evaluation 
[a][v] will either be zero or non-zero unambiguously. 
 The geometric interpretation for the vanishing or non-vanishing of [α][v] is then 
based in incidence: [α][v] = 0 iff the point [v] is incident on the hyperplane [α]. 

 One can then define the evaluation [C][v][w] of [C][v] ∈ KPn* on the point [w] ∈ 

KPn, which allows one to define the “projectively bilinear” functional on KPn: 

 
[C]([v], [w]) = [C][v][w],    (XII.6) 
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whose value will either be zero or not.  Geometrically, one sees that [C]([v], [w]) will 
vanish iff the line [w] is incident on the hyperplane [C][v]. 

 This functional on KPn will be covered by a bilinear functional on Kn+1: 

 
C(v, w) = C(v)(w).     (XII.7) 

 

 Since the linear map C: Kn+1 → (Kn+1)* is defined only up to a nonzero scalar 

multiple, so is the bilinear functional that it defines.  Hence, we are now dealing with a 

point in the projective space that is obtained from the vector space (Kn+1)*⊗ (Kn+1)*. 

 One can then consider the symmetry of the bilinear form [C].  When the functional 
[C] is symmetric one calls the map [C] itself a polarity.  Hence, [v] is incident on [C][w] 

iff [ w] is incident on [C][v].  Furthermore, if a point [v] ∈ KPn is regarded as the pole of 

a polarity then the point [C][v] ∈ KPn* is then regarded as its polar, in classical 

terminology. 
 The bilinear map C that projects to [C] can be either symmetric or anti-symmetric.  
Either are called involutions since the expression [C]([v], [w]) will not have a sign, and 
will then be sensitive to the symmetry of C only by means of the absolute value; i.e., 
[C]([v], [w]) is symmetric iff |C(v, w)| = |C(w, v)| for any representative non-zero vectors 

v, w ∈ Kn+1. When C is anti-symmetric, the map [C] is called a null correlation. 

 Of particular interest is the case where [C][v][v] vanishes, since this means that [v] is 
incident on the hyperplane [C][v]; such a point will be called isotropic, since it is the 

projection of a non-zero vector v ∈ Kn+1 such that C(v, v) = 0.  Clearly, when C is anti-

symmetric this will always be the case.  The set of all isotropic vectors in Kn+1 is 

therefore a quadric hypersurface.  If all v are isotropic then C must be anti-symmetric 
since: 

 0 = C(v – w, v – w) = – [C(w, v) + C(v, w)]   (X.8) 
 
when all vectors are isotropic. 
 
 f.  Homogeneous functions.  The usage of the words “homogeneous” and 
“inhomogeneous” in the context of coordinates for projective space is actually quite 
consistent with their usage in the context of functions.  This is due to the fact that any 

homogeneous function on Kn+1 is associated with a unique inhomogeneous function on 

KPn and conversely, since if f(x) is homogeneous of degree r on Kn+1 then, by definition: 

 
 f(λx) = λrf(x)      (X.9) 
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for all scalars λ ∈K.  This implies that f(x) = 0 iff f(λx) = 0 for all λ.  Hence, f has the 

same value as a projective scalar (viz., 0 or ≠ 0) for all representatives x of the point [x] 

∈KPn.  This means that the level hypersurface f(x) = 0 in Kn+1 projects to a level 

hypersurface [f][x] = 0 in KPn. 

 The case in which r = 0 defines a class of homogeneous functions that one calls ray 

functions, since they are constant on the lines generated by the  non-zero x in Kn+1.  They 

therefore define functions on KPn by the association [f][x] = f(x) for any x that generates 

[x]. 

 The way that one defines the inhomogeneous function [f] on KPn, when it is 

described by inhomogeneous coordinates Xi = xi/x0 is: 
 

[f](X1, …, Xn) = f(x0, xi) = (x0)r f(1, Xi),   (X.10) 
 

when one has chosen a non-zero value of x0; of course, if f is a ray function then this 
choice is immaterial. 
 Conversely, when one is given [f] one can define the homogeneous function f by 
means of: 

f(x0, xi) = [f](xi/x0),     (X.11) 
as long as x0 is non-vanishing. 

 One finds that a polynomial function of degree d on Kn+1 is homogeneous iff it is the 

sum of monomials of degree d.  In particular, quadratic forms are homogeneous of degree 
two. 

 Of particular interest in classical geometry are the quadratic functions.  If K 

represents the space of inhomogeneous coordinates X for KP1 then an inhomogeneous 

quadratic polynomial: 
[P][X] = aX2 + bX + c     (X.12) 

 

corresponds to the homogeneous polynomial on K
2: 

 
P[x, y] = ax2 + bxy + cy2    (X.13) 

 
when one omits the factor 1/y2; as long as the only issue is the vanishing of the 
polynomials, this is permissible.  If the level hypersurface [P] = 0 consists of two points 

X1 and X2 in KP1 – viz., the roots of the polynomial − then the level hypersurface P = 0 

consists of two lines in K2 that are generated by any points (x1, y1) and (x2, y2) such that 

Xi = yi/ xi , i = 1, 2. 

  Going to the next dimension, an inhomogeneous polynomial on KP2: 
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[P][X, Y] = aX2 + bXY + cY2 + dX + eY + f    (X.14) 
 
becomes, when one sets X = x/z and Y = y/z: 
 

 P[x, y, z] = ax2 + bxy + cy2 + dxz + eyz + fz2;   (X.15) 
 
again, we have eliminated the irrelevant multiplicative factor 1/z2. 
 We now see that the quadratic polynomials in two variables, which describe conic 

sections, also correspond to quadratic forms on K
3.  Indeed, that is the space in which the 

cone is defined, and a section of the cone is defined by a choice of intersecting affine 

plane in K3.  The fact that one is dealing with a cone is due to the fact that the 

homogeneity of the function [P] implies that the level hypersurface [P] = 0 contains the 

lines through each of its points and the origin.  When K = R, one sees that the quadratic 

form [P] must be hyperbolic in order for [P] = 0 to consist of anything but the origin. 

 We shall discuss the case K = R, n = 3 in the section since it is directly relevant to 

special relativity. 
 
 
 2.  Projective geometry and mechanics.  In order to justify the importance of a 
purely mathematical concept or technique in physics, one must show its point of 
application.  Furthermore, that point of application can be either specialized or 
fundamental in character, where a specialized application of a mathematical technique is 
generally of no interest outside of some particular problem.  For instance, a trick that 
makes an integral more manageable would fall into this category. 
 The purpose of this chapter is to show that projective geometry can be applied to the 
mathematical modeling of physical phenomena in many contexts, including at the most 
fundamental level of mechanics and field theories.  In effect, in this section we will be 
going beyond the scope of pre-metric electromagnetism into “pre-metric mechanics” to 
show that the issues in physics that touch upon the methods and concepts of projective 
geometry are found at the very root level of physics itself, namely, the process of 
measurement that serves as the empirical, phenomenological basis for the theories that 
emerge eventually. 
 
 a. The geometry of measurement.  The simplest level at which relativistic physics 
and quantum physics overlap seems to be at the level of physical measurements and 
observations.  Indeed, one can think of an observation as a special kind of measurement, 
namely, a passive measurement.  By this, we mean that the measurer/observer is not 
interacting with the source of the information that is being measured, only the 
information that is being received.  The obvious example of such measurements would be 
the ones that are made by astronomers concerning the photons that are emitted by distant 
stars. 
 By contrast, an active measurement involves the measurer emitting information that is 
intended to interact with the system in question so that the measurement will involve the 
way that the information that comes back from the system has been altered by the state of 
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the system.  This is the spirit of elementary particle physics, which depends upon 
collisions of test particles with target particles to deduce information about the structure 
of the state space – i.e., the field space – in which the particle/fields live.  It also accounts 
for most of the measurements of geophysics that are used to construct models for the 
Earth’s interior, although the mere act of recording an unprovoked earthquake would 
constitute a passive measurement. 
 Of course, in the eyes of quantum mechanics, or rather, the statistical interpretation of 
wave mechanics (see, e.g., Dirac [11]), the concept of a measurement includes both 
types.  Hence, although it is absurd to say that observing a distant star through a telescope 
has changed the state of the star since the event being observed is outside of your causal 
future, nonetheless, it is correct to say that the state of the star changed as a result of the 
emission of the photons that are being observed, however slightly.  Indeed, the necessity 
of passing from classical to quantum physics seems to be most unavoidable when one can 
no longer justify the existence of “test” particles, in the sense of particles whose 
interaction with the system in question will not change its state appreciably.  For instance, 
a collision with a microwave photon from a traffic policemen’s radar gun will not change 
the state (e.g., position and momentum) of an oncoming motor vehicle appreciably, but it 
might very well change the state of an atomic electron. 
 In order to see how this all relates to projective geometry, one must start with the 
observation of Max Born that all measurements are carried out in the rest space of the 
measuring device.  One must then take a closer look at the very nature of a rest space, 
along with the process of measurement itself, which is where projective geometry 
becomes applicable, because, in a sense, it is the geometry of perception.  The recurring 
theme in what follows is that geometrically a rest space is not an affine space, but a 
projective space, so the affine spaces of conventional physics represent either the 
hyperplane at infinity in the projective space or the vector space that it projects onto it in 
its definition; i.e., the space of homogeneous coordinates. 
 First, let us examine the geometry of 
vision, which amounts to the statement 
that the effect of a converging lens on 
light rays is analogous to the effect of 
projecting from homogeneous to 
inhomogeneous coordinates.  We refer to 
Fig. 16 in our explanation. 
 The key geometrical attribute of a 
converging lens is the fact that it bends 
parallel lines into lines that all intersect in 
a single point, which is called the focal 
point.  One can see that, for all practical 
purposes, the parallel lines “live” in the 

affine space R2, while the lines through the focal point “live” in the projective line RP1.  

Furthermore, the projection of points in R2 to points in RP1 that is implied by the process 

of refraction is precisely the projection of homogeneous coordinates for RP1 onto 

inhomogeneous coordinates.  For instance, if one considers the sequence of points P1, P2, 

 

Figure 16.  The effect of a converging lens 
on parallel lines. 
 

x1 

x0 

Focal 
point 

X → 0 

P1 P2 P3 Pn 
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… along the top incoming light ray in the diagram then one sees that their homogeneous 
coordinates (x0, x1) will all have the same value of x1 and increasing values of x0, while 
the corresponding sequence of inhomogeneous coordinates X1, 2 … with X = x1/x0 will be 
converging to zero.  Indeed, this same fact would be true for any other light ray that is 
parallel to the one considered.  In effect, they all converge to a “point at infinity” – the 
vanishing point, as they say in the language of perspective – in the same way that the 
refracted rays intersect at the focal point.  Indeed, in terms of homogeneous coordinates 

the x1 axis becomes the point at infinity relative to the projection of R2 – {0} onto RP1 

and the focal point is the ideal point {0} that is not projected.  Hence, the way that the 
scene to the right of the lens appears to the observer at the focal point is like an inversion 
through the vertical line through the center of the lens that maps the focal point to the 
vanishing point. 

 As an example of the analogous 
situation in a three-dimensional affine 
space projecting onto a two-
dimensional projective space, consider 
the way that a cylindrical helix about 

the z-axis in R3 , which we rename the 

θ axis, appears when viewed along 
that axis, namely, as a spiral.  We 
illustrate this in Fig. 17. 
 

 b.  Special relativity.  Certainly no one would deny the applicability of projective 
geometric concepts to the problem of measurement/observation in the purely optical 
sense that we just described.  However, the somewhat surprising fact is that one can also 
apply precisely the same considerations to the problem of projecting events in a four-
dimensional spacetime manifold M into the three-dimensional rest space Σ of a 
measurer/observer. 
 The key to understanding this is in understanding the difference between the proper 
time parameter τ of a worldline x(τ) in M and the time coordinate t = x0/c associated with 
a coordinate chart (x0, …, x3) on an open subset U in M.  One must understand that proper 
time is valid only in the rest space of a measurer/observer.  Hence, the parameter τ refers 
to the rest space of the point whose worldline is described by x(τ).  One must then think 
of the time coordinate t as simply being the proper time parameter for another 
measurer/observer whose rest space involves the coordinates of the chart as 
measurements. 
 Since: 

dt

dτ
=

1/ 22

2
1

v

c

 
− 

 
    (XII.16) 

 
one sees that the parameter τ and the coordinate t will differ iff the measurer/observer 
that is described by the coordinate chart is not comoving with the object that is described 
by the worldline x(τ), which would make the relative speed v vanish. 
 As a result of this, if: 

 

(cos θ, sin θ, θ) 
cos sin

,
θ θ

θ θ
 
 
 

 

Figure 17.  The projection of a helix from 
homogeneous to inhomogeneous coordinates.   
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 v(τ) = ( )v
x

µ
µτ ∂

∂
 [g(v, v) = c2]    (XII.17) 

 
is the velocity vector field along x(τ) then if one wishes to describe how it will appear in 
the rest space of the coordinates, one cannot simply project (v0, …, v3) onto its spatial 
components (v1, v2, v3), which would be appropriate if the tangent spaces to M looked like 

R⊕Σ, but one must also change from the proper-time parameter τ to the time coordinate t 

as a parameter.  (In (XII.17), we have assumed a Lorentzian metric g so the constraint on 
v that we make corresponds to the constraint that x(τ) is parameterized by proper time.) 
 By the chain rule for differentiation, this means that the spatial components of v, as 
seen by the measurer/observer that defines the chart will be: 
 

Vi(t) =
idx

dt
=

id dx

dt d

τ
τ

=
0

iv

v
.    (XII.18) 

 
Hence, the projection of (v0, …, v3) onto the rest space described by the chart gives the 
inhomogeneous coordinates (V1, V2, V3), instead of the homogeneous ones (v1, v2, v3). 
 We then conclude that, at least as far as velocity is concerned, rest spaces are 
projective spaces, not affine ones.  The affine space that usually gets employed to 
describe the projection of velocity four-vectors onto three-vectors amounts to the plane at 

infinity in RP3, which corresponds to the hyperplane v0 = 0 in the space of homogeneous 

coordinates. 
 One can give this situation a coordinate-free description by defining the projectivized 
tangent bundle PT(M) to M to be set of all lines through the origins of the tangent spaces 
in T(M).  Hence, there will be a map T(M) – Z(M) → PT(M), v ֏  [v] that takes each 
non-zero tangent vector to the line through the origin in its tangent space that it generates; 
we are, of course, using the notation Z(M) to refer to the zero section of T(M). 
 Since we have established the result above only for velocity vectors, it is illuminating 
to examine the form that it takes for other four-dimensional measurements.  In particular, 
one must examine the effect of projecting the coordinates (x0, …, x3) themselves onto the 
corresponding inhomogeneous coordinates Xi = xi/x0, under the assumption that x0 = ct is 
non-null.  One sees that the only thing that has changed is to rescale the distance 
measurements xi into dimensionless units, such as light-seconds.  This amounts to using 
light rays as one’s universal yardsticks for the measurement of distance.  Hence, 
geometry again emerges from the propagation of electromagnetic waves. 
 We naturally need to examine the effect of a coordinate transformation xµ  
= ( )x xµ ν on the inhomogeneous coordinates Vi of the velocity four-vector v.  As one 
knows, from the chain rule for differentiation the homogeneous coordinates transform as: 
 

v µ =
dx

d

µ

τ
=

x dx

x d

µ ν

ν τ
∂
∂

= A vµ ν
ν ,    (XII.19) 

 



346 Pre-metric electromagnetism 

in which we have abbreviated the matrix /x xµ ν∂ ∂ of the differential of the coordinate 
transformation byAµ

ν . 

 We then see that the resulting effect on the inhomogeneous coordinates is to take Vi = 
vi/v0 to: 

iV = 0

0 0
0

i i j
j

j
j

A A V

A A V

+
+

.    (XII.19) 

 
 We recover the conventional Galilean transformations of velocity 3-vectors by setting 

0
iA equal to the components i

rV of the relative velocity of the measurer/observers 

described by the two charts, and gettingi
jA = i

jδ , 0
0A = 1, and 0

jA = 0. 

 Of course, there is a relative speed limit in spacetime that originates in the fact that if 
two measurer/observers were moving with a relative speed greater than that of light there 
would be no way for them to communicate information anymore.  In conventional 
relativity, this means that one must erect light cones in the tangent spaces of M and 
restrict oneself to relative velocities vectors that lie inside them.  Of course, as we have 
seen, when the dispersion law for electromagnetic waves is quartic, not quadratic, the 
light cones become more involved as algebraic manifolds. 
 In the quadratic case, one introduces the light cone: 
 

 c2(v0) 2 – gij v
i vj = 0    (XII.20) 

 
in the space of homogeneous coordinates for velocity four-vectors.  One can also write 
this in the form: 

v0 = 1/ 21
( )i j

ijg v v
c

,    (XII.21) 

 
which shows that in the Galilean limit as c grows infinite the coordinate v0 goes to 0.  
Hence, in the Galilean limit the light cone for a finite c converges to the hyperplane at 

infinity for RP3.  Perhaps for this reason, the light cone is referred to as the absolute 

quadric in projective geometry.  In a sense, it represents a deformation of the hyperplane 
at infinity into a quadric hypersurface “at infinity.” 
 Now, let us absorb the factor of c into the units of the homogeneous coordinate x0 so 
that the components gµν are dimensionless.  Under projection, the homogeneous quadratic 

polynomial P[xµ] = gµν x
µ xν in R4 goes to the inhomogeneous polynomial in RP3: 

 
[P][Xi] = g00 + 2g0i X

i + gij X
i Xj.   (XII.22) 

 

 One finds that there is always a frame (indeed, an infinitude of frames) in R4 that 

makes g0i disappear, since this is the case for any orthonormal frame relative to g, and 
therefore any frame that is obtained from it by an invertible spatial transformation, which 
does not have to be orthogonal.  Furthermore, we rescale the components of the [P][X] by 
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factoring out the g00 and absorbing it, too, into the coordinates Xi.  We now have [P][X] 
in the form: 

[P][Xi] = 1 + Gij X
i Xj  (Gij = gij / g00).  (XII.22) 

 
 Since our transformation from P[x] to [P][X] has involved only non-zero scalar 

multiplications, we see that the hypersurface P[x] = 0 in R4 corresponds to the 

hypersurface [P][X] = 0 in RP3.  In particular, the light cone: 

 
 P[x] = g00(x

0)2 – gij x
i xj = 0    (XII.23) 

 

in R4 corresponds to the unit sphere in RP3: 

 
Gij X

i Xj = 1.     (XII.22) 
 
 Hence, we can just as well regard the transition from introducing a Euclidian metric 

on R3 to introducing a Minkowski metric on R4 as being like replacing the affine space 

R
3 with the projective space RP3 and introducing the Euclidian metric on RP3 directly. 

 It is also essential to understand what happens to Lorentz transformations of R4 when 

they are projected to fractional bilinear transformations of RP3.  In fact, one can just as 

well extend to the Weyl group R*×O(3, 1), by including the non-zero scalar factor ρ; as 

we mentioned before, this is the linear subgroup of the conformal Lorentz group.  We 

think of the elements of this group as being invertible linear transformations of R4 that 

preserve the light cone, in the sense that if xµ = A xµ ν
ν are the transforms of the xµ 

then [ ]P xµ = 0 iff P[x] = 0.  Hence, the corresponding transformations of RP3 are 

invertible fractional bilinear transformations that preserve the unit sphere defined by G. 
 It is important to note that this does not mean that they preserve the metric G itself.  It 
means that G(AX, AX) = 1 iff G(X, X) = 1.  Indeed, only the O(3) subgroup ( 0

0A = 0, 
0
jA = 0

iA = 0, i
jA ∈ O(3)) will preserve the metric G for all X  ∈ RP3. 

 As for the Lorentz boosts, it is illuminating to see what they become when 

represented as collineations of RP3.  For instance, a boost along the x1 axis takes the 

following form in homogeneous coordinates (x0 = ct): 
 

0x = γ(x0 − v/c x1), 1x = γ(− v/c x0 + x1), ix = xi (i = 1, 2), (XII.23) 
 
in which we have introduced the Fitzgerald-Lorentz contraction factor: 
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γ =
1/ 22

2
1

v

c

−
 

− 
 

.     (XII.24) 

 

 The matrix of this as a linear transformation of R
4 is then: 

 

Aµ
ν  =

/ / 0 0

/ 0 0

0 0 1 0

0 0 0 1

c v c

v c

γ γ
γ γ

− 
 − 
 
 
 

.    (XII.25) 

 
In terms of projective transformations, such a boost is then going to involve all four types 
of transformations, namely, homotheties, inversions, spatial translations, and linear 
transformations. 

 The corresponding fractional bilinear transformation of RP3 is: 

 

1X =
1

0

x

x
=

1

11 ( / )

v cX

v c X

− +
−

, iX =
0

ix

x
=

1

11 ( / )

iX

v c X

γ −

−
  (i = 2, 3). (XII.26) 

 
Note, in particular, that the coordinates X2 and X3 are altered, even though the coordinates 
x2 and x3 were not.  Moreover, although the factor γ has dropped out of1X , it appears in 
the other two coordinates. 
 These transformations admit an immediate physical interpretation when the Xi = Vi/c 
represent the components of a spatial velocity vector in dimensionless units.  They then 
take the form: 

1V =
21 /

v V

vV c

+
+

, iV =
1

2

( )

1 /

ic V

vV c

γ −

+
.  (XII.27) 

 
 The first expression is, of course, nothing but the usual relativistic rule for the 
addition of spatial velocities, which we now see to be projective-geometric in its origin 5. 
 

 c.  The SL(2; C) representation of the Lorentz group.  One of the fundamental 

refinements that quantum wave mechanics, both relativistic and non-relativistic, 
introduced into special relativity was the fact that the empirically-verified existence of 
electron spin suggested that there was something more fundamental about the 

representation of the Lorentz group as the group SL(2; C), since the two-to-one 

homomorphism of that group with the identity component of the Lorentz group seemed 

                                                
 5 Many of these associations between special relativity and projective geometry were made in the early 
years of relativity when projective geometry was more mainstream in mathematics than it seems to be 
nowadays.  One might confer the treatment it is given in Kommerell [5], for instance.  More recently, it has 
been discussed by Gschwind [12] and, of course, the author of the present work [13]. 
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to account for the existence of up and down spin states in electron wavefunctions.  Since 

we now see that the groups SL(n+1; R) describe the groups of collineations of the 

projective spaces RPn, we should now examine the fact that SL(2; C) has a similar 

significance in terms of the complex projective space CP1. 

 The complex projective space CP1 is, of course, defined by the set of all complex 

lines through the origin of C2.  That is, if the complex vector v ∈ C2 is represented by the 

pair (z1, z2) then the corresponding point [v] ∈ CP1 that it defines is the set of all complex 

scalar multiples λ(z1, z2) = (λz1, λz2), λ ∈ C. 

 Now, a complex line can also be regarded as a real plane, just as C2 can be regarded 

as the real vector space R4 = R2 ⊕ iR2.  (Here, we use the symbol i more as an identifier 

than anything else).  However, not every real plane in R
4 represents a complex line, since 

the complex line spanned by any (z1, z2) = (x1, x2) + i(y1, y2) is the orbit of the action of all 
scalar multiples by scalars of the form λ = α + iβ : 
 

λ(z1, z2) = (αx1 – βy1, αx2 – βy2) + i(αy1 + βx1, αy2 + βx2).  (XII.28) 
 
For instance, the real plane spanned by all points of the form (x, y) + i(0, 0) is not a 

complex line in R4.  Hence, there is a difference between the real manifold CP1 and the 

Grassmanian manifold 42V of all planes through the origin in R4. 

 In fact, one easily sees that the real dimension of CP1 is two, since the complex 

dimension is one.  One simply regards an element (z1, z2) of C2 − {0} as the 

homogeneous coordinates of a complex line through the origin while the single 
inhomogeneous coordinate is then either: 
 

Z = z2 / z1     (XII.29) 
 
when z1 is non-zero or the reciprocal when it is zero. 
 In real form, (XII.29) looks like: 
 

X + iY = 1 2 1 2 1 2 1 2
2 2

1 1| | | |

x x y y x y y x
i

z z

+ −+  = 2

1

z

z
(cos ψ + i sin ψ),  (XII.30) 

 
in which ψ is the angle between the real lines through (x1, x2) and (y1, y2). 
 Since the only point that is being omitted by the set of all inhomogeneous coordinates 
corresponds to z1 = 0, and the completion of the complex line by a point is the Riemann 
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sphere, one sees how the two-dimensional real manifold that describes CP1 is actually the 

2-sphere. 
 Physically, one can think of this 2-sphere as the celestial sphere; i.e., a sphere in 

“space” at infinity.  Under the projection of C2 – {0} onto CP1, one also sees that each 

point of the celestial sphere gets associated with a complex line – i.e., a real plane – as a 

fiber in C2 – {0}.  In fact, this complex line bundle is sometimes referred to as the 

canonical line bundle on CP1. 

 As we observed above, the 2-sphere also shows up in special relativity as the 

projection of the light cone in Minkowski space onto RP3, although in that case, the 

resulting radius was finite (viz., unity).  However, since the points of the hyperplane at 
infinity (x0 = 0) are in one-to-one (perspective) correspondence with the points of the 
hyperplane at x0 = 1, one can see how the celestial sphere is essentially the same as the 
light sphere. 
 
 d.  Time-space splittings.  The concept of a time-space splitting [t](M) ⊕ Σ(M) of the 
tangent bundle T(M) to a manifold M or an analogous splitting [τ](M) ⊕ Σ*(M) of T*M is 
deeply rooted in projective-geometric notions.  For the sake of simplicity, we confine 
ourselves to a (finite-dimensional) vector space V and its dual V*, in general, rather than 
the tangent spaces to a particular manifold; however, the transition from vector spaces to 
vector bundles is entirely straightforward. 
 If one is given a direct sum decomposition of V into [t] ⊕ Σ, where [t] is the line 
generated by a non-zero vector t ∈ V and Σ is a complementary hyperplane, then since 
any hyperplane, such as Σ, in V defines a unique element [τ] = #−1Σ ∈ PV*, we see that in 
order to complete [τ] to a direct sum decomposition [τ] ⊕ Σ* of V*, we need only to 
specify the complementary hyperplane Σ*.  However, Σ* = #[v] is dual to a unique 
element [v] in PV, which we then choose to be [t].  Hence, one can either uniquely 
characterize the splitting [t] ⊕ Σ by means of the pair ([t], [τ]) ∈ PV × PV* or the pair (Σ, 
Σ*) ∈ PV* × PV. 
 The transversality requirements on the aforementioned two splittings of V and V* can 
be written in terms of the bilinear pairings of vectors and covectors as: 
 

τ(t) ≠ 0, τ(v) = v(t) = 0,  v ∈ Σ, v ∈ Σ*.  (XII.31) 
 
Since the conditions only pertain to zero, it is immaterial which representative vector one 
uses from the subspaces involved.  However, in practice, one might choose τ and t to 
make τ(t) = 1. 
 The physical process by which a splitting comes about generally begins with the 
selection of t to be a velocity vector field on the spacetime manifold M, whose 
congruence of integral curves represents the motion of a particular measurer/observer.  
Hence, for practical reasons, one does not generally expect the support of t to be all of M, 
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but only some proper subset, such as the diffeomorphic image of a world tube of the form 

R×O, where O is a three-dimensional “object” such as a 3-chain or compact 3-manifold. 

 In the absence of a Lorentzian structure, one cannot choose the complementary 
spatial sub-bundle Σ(M) of T(M) uniquely, but in the Lorentzian case, one can choose it 
to be the orthocomplement of [t].  Since Σ(M) is dual to a line field [τ] in T*M – i.e., a 
section of PT*M → M – we can also choose the line field [τ] arbitrarily, except for the 
transversality conditions in (XII.31), when one defines Σ to be #−1[τ] and Σ* to be #[t]; 
hence, only the first condition is not automatic.  We shall then refer to the pair ([t], [τ]) as 
a (pre-metric) choice of measurer/observer. 
 A choice of measurer/observer ([t], [τ]) defines a splitting ΛkV = Re Im

k kΛ ⊕ Λ  (ΛkV = 

Re Im
k kΛ ⊕ Λ , resp.) into time-space k-vectors (k-forms, resp.) and purely spatial ones.  In 

the former case, one can factor out t (τ, resp.) as an exterior factor, while in the latter 
case, one has ImkΛ = ΛkΣ ( Im

kΛ = ΛkΣ, resp.) (see Delphenich [14] for more discussion of 

this subject).  The reason that there are no time-time-space, etc. summands in ΛkV or its 
dual is because subspaces [t] or [τ] are one-dimensional, so only one exterior factor of t 
or τ can appear without driving the resulting expression to zero identically. 
 By now, we are getting some inkling that whenever our perception of space is based 
in local – i.e., tangential – objects, we should really be thinking of the space we perceive 
as a projective space, not an affine one.  Indeed, to enlarge the scope of Max Born’s 
observation, one should think of all measurements as local measurements that are carried 
out in the rest space of the measuring device, and the appropriate representation for the 
rest space of the measurer/observer at a point of spacetime is the projectivization of the 
tangent space at that point.  The actual splitting of the manifold itself is a deeper matter 
that involves subtle question of integrability. 
 
 e.  Wave motion.  If we regard the wave covector field k = ω dt − ki dxi as the 
fundamental kinematical object in wave mechanics that is analogous to the velocity 
vector field v in continuum mechanics then we find that wave motion is dual to point 
motion in the sense of the word “duality” that projective geometry recognizes.  That is, a 
non-zero tangent vector v defines a point [v] in the projectivized tangent bundle PT(M), 
while a non-zero cotangent vector k defines a point [k] in the projectivized cotangent 
bundle PT*M.  Hence, whereas a non-zero tangent vector generates a tangent line, a non-
zero cotangent vector generates a tangent hyperplane. 
 We have already observed in Chapter VIII that the effect of projecting the four-
dimensional components kµ of the wave covector k as if they were homogeneous 
coordinates projecting onto inhomogeneous coordinates is to produce components that 
have the dimensions of 1/ (phase) velocity: 
 

Ki = ik

ω
 =

1
i
pv

,     (XII.32) 

 
although the dimensionless numbers cKi are not necessarily the principal indices of 
refraction ni that one obtains from Fresnel analysis. 
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 Note that if one defines the energy-momentum 1-form p as kℏ then this has no effect 
on the corresponding inhomogeneous coordinates. 
 If we look at the vector field v = (∂P[k(x)] / ∂kµ) ∂/∂xµ then we see that, although we 
have previously identified the components as belonging to a four-velocity vector field, 
nonetheless its components actually have the dimensions of time (period) and distance 
(wavelength).  However, the inhomogeneous coordinates that it defines are the 
components of group velocity, up to sign: 
 

Vi = 
/

/
iP k

P ω
∂ ∂
∂ ∂

= − i
gv .    (XII.33) 

 
 Hence, we see that whereas the components Ki describe a point in PT*M the 
components Vi describe a point in PT(M). 
 Since the characteristic polynomial P[k] is homogeneous of degree four in k, under 
the projection of the kµ onto the Ki , it will define a inhomogeneous polynomial [P][K] of 

degree four on RP3.  The characteristic hypersurface that P[k] defines by its vanishing 

will then produce a corresponding hypersurface in RP3.  Of course, the geometry of this 

situation will be more complicated to describe than the projection of a cone onto a sphere. 
 Furthermore, by homogeneity, we have: 
 

P[k] = 1
4 ( )

P
k

k

∂
∂

= 1
4 ( )k v    (XII.34) 

 
so we see that the effect of the dispersion law P[k] = 0 is to make k(v) vanish, as well.  
That is, the vectors v(x) are incident on the tangent hyperplanes that are annihilated by k.  
However, we shall still regard v as the dual vector field to k, even though we do not have 
the transversality that would make k(v) non-vanishing, as we assumed for τ(t), above.  
This “isotropy” condition is based in the physical reality that there is no rest space for 
electromagnetic wave motion. 
 We recall the important property of a homogeneous function P[k] – of any degree r – 
that since Euler’s formula takes the form: 
 

kµ vµ = rP[k],     (XII.35) 
 

the hypersurface P[k] = 0 in R4* corresponds to the hypersurface: 

 
kµ vµ = 0     (XII.36) 

in R4*× R4 and the hypersurface: 

KiV
i = 1     (XII.37) 

 

in RP3* × RP3 (Here, the components km are of the form (ω, − ki)). 
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 We previously encountered this situation in the context of the Fresnel normal surface 
and ray surface in the context of geometrical optics. 
 
  
 3.  The Plücker-Klein embedding.  Although projective geometry begins by dealing 

with lines through the origin in a vector space – say, K
n+1 − nonetheless, as we saw 

above, it is also concerned with 2-planes, 3-planes, and so on up to hyperplanes in Kn+1.  

In the case of dimension four, one is then concerned with points, lines, and planes in KP3.  

Furthermore, by duality, they will also be represented by planes, lines, and points in 

KP3*, respectively. 

 
 a.  Plücker-Klein embedding.  The connection between projective geometry and 
electromagnetism comes about once one discovers that one can represent any k-plane 

through the origin in Kn by either a decomposable k-vector in Λk(K
n) or a decomposable 

n−k-form in Λn−k(Kn); both are unique up to a non-zero scalar factor.  Hence, the 

representation of a k-plane by a point in the projective spaces PΛk(K
n) or PΛn−k(Kn) is 

unique.  Furthermore, the operations of exterior and interior multiplication are closely 
related to the meet and join operations, although not isomorphically. 

 Suppose Vk is a k–plane through the origin in Kn.  Let ei, i = 1, …, k be a k-frame that 

spans it.  Since the members of any frame are linearly independent, the k-vector e1 ^ … ^ 
ek is non-zero.  Now, observe the effect of changing to another frame fi for Vk that is 
related to the first one by the formula fi =

j
i jA e .  When one forms the new k-vector f1 ^ … 

^ fk , one finds: 
f1 ^ … ^ fk = (det A) e1 ^ … ^ ek .   (XII.38) 

 
That is, the two k-vectors differ only by a non-zero scalar multiple. 

 We define the Grassmanian manifold Vk,n(K) to be set of all k-planes through the 

origin in Kn.  (Previously, we encountered this concept in the more specific context of 2-

planes in R4.)  When K = C (R, resp.) it can be given the topology of a complex (real, 

resp.) differentiable manifold of dimension equal to kn.  Indeed, the most direct way of 

representing the coordinates of chart is by choosing a basis ea , a = 1, …, n  for Kn, such 

as the canonical basis, and noting that since the members of any k-frame, such as fi, can 
be represented as linear combinations of the basis elements ea as f i =

a
i aA e , the most direct 

way of associating the k-plane spanned by the fi as a set of coordinates is to associate it 
with the matrix a

iA . 
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 The map Vk,n+1(K) → PΛk(K
n), span{f i} ֏ [f1 ^ … ^ fk] is not only one-to-one, it is, in 

fact an embedding that one calls the Plücker-Klein embedding 6.  The aforementioned 
image of this embedding consists of all decomposable k-vectors.  If one defines a basis ei 

for Kn and expresses the decomposable k-vector f1 ^ … ^ fk in terms of the basis ei : 

 

f1 ^ … ^ fk = 1

1

1

!
k

k

i i
i iV

k
∧ ∧e e⋯
⋯    (XII.39) 

 
then the components of the 1 ki iV ⋯ can be regarded as the homogeneous coordinates of the 

corresponding point in PΛk(K
n); they are usually called the Plücker coordinates of the k-

plane. 

 Dually, one can also represent k-planes through the origin of Kn*, which collectively 

define a manifold that we denote by , ( )n k nV ∗
− K , by k-forms, up to a non-zero scalar 

multiple.  Let kV ∗ be such a k-plane and let θi, i = 1, …, k be a k-frame that spans it.  The k-

form θ1 ^ … θk is then unique up to a non-zero scalar factor, as before, and we also have 

an embedding of , ( )n k nV ∗
− K in PΛk(Kn) that takes span{θi} to [θ1 ^ … θk]. 

 By duality, since one has both the diffeomorphism of Vk,n(K) with , ( )n k nV ∗
− K and the 

projective equivalence of PΛk(K
n) with PΛn−k(Kn), one can either represent a k-plane 

through the origin of Kn as a projective equivalence class of either k-vectors or n−k-forms 

over the vector space Kn. 

 

 b.  Line geometry.  In the case of 2-planes in Kn, one sees that they will be 

represented by either decomposable 2-vectors on K
n or decomposable n−2-forms.  Since 

a 2-plane in Kn projects to a line in KPn−1, the study of 2-planes by their representation as 

2-vectors is sometimes referred to as line geometry [18]. 
 One can further characterize the decomposable 2-vectors by the fact that their rank 

equals two.  The rank of a k-vector A on Kn can be defined, equivalently, as the minimum 

number of linearly independent vectors in that it takes K
n to express A as a linear 

combination of k-fold exterior products of vectors or as the minimum integer r ≥ 0 such 
that A ^ …^ A = 0. 
 In the case of 2-vectors, the rank must be an even integer, and the set of all 2-vectors 
A of rank 2 is then characterized by the quadratic equation: 

                                                
 6 In addition to the mathematical references on projective geometry one might also confer [16, 17] for 
applications to physics.  
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A ^ A = 0.     (XII.40) 
 

Hence, the set of all decomposable 2-vectors in the vector space Λ2(K
n) is a quadric 

hypersurface that one calls the Klein quadric. 
 The exterior product is actually closely related to the question of incidence of 
projective subspaces, although, unfortunately, it does not give an isomorphic 
representation of the lattice of projective subspaces in the sense of representing the meet 

and join operations precisely.  What one can say is that if a k-plane Vk in Kn is 

represented by a decomposable k-vector A and an m-plane Vm is represented by a 
decomposable m-vector B then A ^ B = 0 iff the meet (i.e., intersection) of Vk and Vm has 
a dimension that is greater than zero.  For instance, when 2-planes are represented by 2-
vectors the vanishing of their exterior product is equivalent to the statement that the 2-

planes intersect in a line.  Hence, when regarded as projective subspaces in KPn−1, one is 

describing two lines that intersect at a point. 
 Since the (exterior) polynomial that (XII.40) defines is homogeneous of degree two, it 

also defines a quadric hypersurface in the associated projective space PΛ2(K
n). 

 
 
 4.  Projective geometry and electromagnetism.  As we have seen from the outset, 
the mathematics of electromagnetism, in its most general formulation, involves bivector 
fields and 2-forms.  In the previous section, we pointed out that the exterior algebra over 
any vector space has a close relationship with the lattice of linear subspaces of that 
vectors space, as well as the lattice of projective subspaces of its associated projective 
space.  Therefore, in this section we shall apply the one result to the other to establish the 
extent to which projective geometry relates to pre-metric electromagnetism as metric 
geometry relates to gravitation. 

 When n = 4 and the field of scalars is R, the basic vector space is R4, and its 

associated projective space is RP3.  The only linear subspaces of R4 that one needs to 

consider are lines, planes, and hyperplanes.  These, in turn, correspond to points, lines, 

and planes in RP3.  We have already seen that representation of lines and hyperplanes is 

natural to Λ1(R
4) and Λ1(R4), respectively, so we see that the only remaining k-vectors 

and k-forms that produce projective subspaces are bivectors and 2-forms, which represent 

2-planes in R4 or lines in RP3, in the decomposable case. 

 Hence, in order to be sure that the projective geometry – in fact, line geometry − of 
spacetime is rooted in the physics of electromagnetism, one must first gain an intuition 
for the physical nature of electromagnetic fields that can be described by a decomposable 
2-form F and a decomposable bivector h.  What one finds is that they generally represent 

the “elementary” fields, while the electromagnetic fields that are described by 2-forms 
and bivector fields of rank four are more elaborate linear superpositions of elementary 
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fields.  For instance, any static electric field is described by a 2-form F = dt ^ E and a 
bivector field h = ∂t ^ D, any static magnetic field is represented by a 2-form F = #sB and 

a bivector field h = 1#s H− , and an electromagnetic wave field has F = k ^ u, h = k ^ u.

 The best way to distinguish between static electric, static magnetic, and wavelike 2-
forms is given by the constitutive law κ: Λ2M → Λ2M, F ֏  h = κ(F), at least in the 

linear case.  In that case, one can define a bilinear pairing on Λ2M by means of: 
 

(F, G) ≡ κ(F)(G) = 1
4 κκλµνFκλ Gµν .    (XII.41) 

 
 In general, this pairing is non-degenerate, but not symmetric, so in order to obtain a 
symmetric, non-degenerate, bilinear pairing – i.e., a scalar product − one must either 
restrict κ to its symmetric part or assume that the constitutive law has the property of 
symmetry to begin with.  We shall call a κ with the property: 
 

(F, G) = (G, F)     (XII.42) 
self-adjoint. 
 If one wishes to consider only the quadratic form (F, F) then it is unnecessary to 
make such a restriction, since only the symmetric part of κ will be involved; i.e., the 
skewon part plays no role. 
 Furthermore, as we pointed out in the discussion of constitutive laws, there is another 
non-degenerate bilinear pairing on Λ2M that is defined by any volume element ε ∈ Λ4M, 
namely: 

<F, G> ≡ #(F)(G) = 1
4 εκλµνFκλ Gµν .   (XII.43) 

 
As we have seen, the following are equivalent: 
 1. <F, F> = 0, 
 2. F is decomposable, 
 3. F has rank two, 
 4. F lies on the Klein quadric. 
 This pairing is always symmetric, and therefore defines a scalar product on Λ2M.  
Hence, in order to properly separate the effects of κ from those of #, one must use only 
the principal part of κ in the definition (XII.41).  We shall assume that this is the case 
from now on. 
 One sees that scalar products can just as well be defined on Λ2M using the inverse 
isomorphisms to # and κ: 

<A, B> = #−1(A)(B) = 1
4 εκλµν A

κλ Bµν .  (XII.44a) 

(A, B) = κ−1(A)(B) = 1
4 κκλµν A

κλ Bµν .   (XII.44b) 

 
 One can also express the scalar products <F, G> and (F, G) as the Poincaré duals of 
the 4-forms F ^ G and F ^ #κ(G): 
 

<F, G>ε = F ^ G, (F, G)ε = F ^ #κ(G).  (XII.45) 
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 One can now distinguish three distinct type of 2-forms F, according to the quadratic 
form (F,F): 
 1. Electric: (F,F) > 0, 
 2. Isotropic: (F,F) = 0, 
 3. Magnetic: (F,F) < 0. 
 
The reason that we did not call the isotropic 2-forms “wavelike” is because it is 
conceivable that an isotropic 2-form might represent a superposition of static electric and 
magnetic fields. 
 Now suppose we have a measurer/observer (t, τ) that defines a time-space splitting of 
T(M) and T*M, with corresponding splittings Λ2 =

Re Im
2 2Λ ⊕ Λ , Λ2 =

2 2
Re Im Λ ⊕ Λ .  We see 

that when F = τ  ^ E + #sB, h = t ^ D + 1#s H− the quadratic forms take the form 7: 

 
 <F, F> = 2V(τ ^ E, #sB) = − 2EiB

i ,     (XII.47a) 
 

 <h, h> = 2V(t ^ D, 1#s H− ) = − 2HiD
i ,     (XII.47b) 

 
  (F, F)  = κ(τ  ^ E, dt ^ E) + 2κ(τ  ^ E, #sB) + κ(#sB, #sB) 
   = ε(E, E) + 2γ(E, B) − µ−1(B, B), 

= εij
 Ei Ej + 2 i j i j

j i ijE B B Bγ µ− ɶ ,     (XII.48c) 

 
  (h, h)  = κ−1(t ^ D, ∂t ^ D) + 2κ−1(t ^ D, 1#s H− ) − κ−1( 1#s H− , 1#s H− ) 

   = ε−1(D, D) + 2γ−1(D, H) − µ(H, H), 
  = 2i j i j ij

ij j i i jD D H D H Hε γ µ+ −ɶ .     (XII.48d) 

 
 In the isotropic case, the last two take the form: 
 

(F, F)  = ε0 E
2 – 1/µ0 B

2, (h, h)  = 1/ε0 D
2 – µ0H

2,  (XII.49) 

  
which is the form that gets the most attention from theoreticians. 
 One sees that the quadratic forms (F, F) and <F, F> are proportional to the Lorentz-
invariant field invariants F and G, resp., that were introduced by Mie [19] and currently 

play such a crucial role in phenomenological Lagrangians, such as the Born-Infeld and 
Heisenberg-Euler ones. 
 In the rank-two case, we see that the 2-form F and the bivector field h define 2-

planes, which we denote by [F] and [h], in the tangent spaces of the spacetime manifold.  

The main issue in the eyes of projective geometry is how they intersect.  Naively, they 
can intersect transversally ([F] ^ [h] = 0), in a line ([F] ^ [h] = [k]), or they can be 

                                                
 7 We now represent our volume elements by V ∈ Λ4 and V  ∈ Λ4 to avoid confusion with the electric 
part of κ,  
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concurrent ([F] = [h]).  However, the last possibility is not realized, which follows from 

the fact that h = κ(F).  Hence, the ultimate question is whether or not: 

 
 F ^ #h = κ(F, F) V      (XII.50) 

 
vanishes; i.e., whether the scalar product (F, F) vanishes.  Its vanishing is, in turn, 
equivalent to the possibility that the intersection is a line. 
 We then see that the homogeneous quadratic equation on Λ2M: 
 

(F, F) = 0     (XII.51) 
 
defines not only a second quartic hypersurface in each fiber, in addition to the Klein 
quadric, but also a hypersurface in each projectivized tangent space PTx(M), namely, the 
set of all points [k] that are defined by the intersections of the lines [F] and [h] in each 

projective tangent space. 
 Now, let us try to get a better physical intuition for the nature of the 2-planes [F] and 
[h] by examining the form that they take in various elementary cases. 

 In the electrostatic case, they are of the form [τ ^ E] and [t ^ D] and they intersect 
transversally.  Hence, if D = Dx ∂x, while E = Ex dx then the plane of [τ ^ E] is the yz-
plane, while the plane of [t ^ D] is the tx-plane.  When one intersects them with the 
spatial subspaces Σ(M) of T(M), for the relevant choice of measurer/observer, the plane of 
[t ^ D] becomes the line generated by D, when it is non-zero, and the plane [τ ^ E] is 
tangent to the equipotential surfaces for E = dφ. 
 In the magnetostatic case, the situation is reversed.  If F = #sB, h = 1#s H− , where B = 

Bx ∂x and H = Hx dx then #sB = Bx dy ^ dz, 1#s H− = Hx ∂y ^ ∂z , and the plane of [#sB] is the 

tx-plane while the plane of [ 1#s H− ] is the yz-plane.  The spatial intersections are then the 

line generated by B, when it is non-zero, and the plane that is annihilated by the 1-form 
H, when it is non-zero. 
 If B = δsA = 1# #s s sd− A , where A ∈ Λ2(Σ) is the magnetic potential bivector field 

then A spans a plane in each tangent space when it is non-zero, but the resulting rank-two 
sub-bundle of Σ(M) does not have to be integrable, as a differential system, since the 
issue at stake, from Frobenius, is whether the 3-form: 
 

A ^ dsA = A ^ B    (XII.52) 
 
vanishes, in which we have set A = #sA, B = #sB, which are then a 1-form and a 2-form, 
respectively.  We see that this 3-form is of Chern-Simons type, if one regards A as a u(1) 

connection form. 
 Of course, A is defined only up to the addition of a closed 1-form α, so A ^ B is 
defined only up to the addition of a 3-form α ^ B.  Hence, the question of whether the 
rank-two sub-bundle defined by A is integrable into magnetostatic equipotential surfaces 
is equivalent to the question of whether a suitable choice of gauge A will make A ^ B 
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vanish.  All uniform magnetic fields have this property, as one verifies in the example A 
= − B0y dx + B0x dy, B = B0 dx ^ dy, where B0 is a non-zero constant.  An example of a 
non-integrable B is given by starting with a potential 1-form A of the form Ax(y, z) dx + 
Ay(x, z) dy, which then makes A ^ dA = (AxAy,z – AyAx,z) dx ^ dy ^ dz, which does not have 
to vanish. 
 When F = k ^ u and h = k ^ u are isotropic, one has: 

 
0 = F ^ #h = k(k)u(u) – k(u)u(k) = – k(u)u(k);  (XII.53) 

 
the vanishing of the first term follows from the dispersion law for k.  Hence, either k(u) 
vanishes or u(k) vanishes. 
 As a consequence of (XII.53), the planes [k ^ u] and [k ^ u] intersect in a line [l], 
where one can express the vector l as αk + βu for appropriate scalars α, β.  Since l is 
incident on the plane [k ^ u], one must have: 
 

0 = i l(k ^ u) = βk(u) u – [αu(k) + βu(u)]k   (XII.54) 
 
after one includes the dispersion law for k(k).  This gives the conditions: 
 

0 =βk(u) = αu(k) + βu(u).    (XII.55) 
 
 Now, since the vector field u is defined only up to the addition of a scalar multiple of 
k, one can choose it to be any vector in [k ^ u] except k.  Similarly, the 1-form u can be 
replaced with any 1-form in the plane spanned by k and u, except k itself.  However, these 
choices of gauge are not independent, since F and h are connected by the constitutive law 

κ.  We then choose u and u to make: 
 

 0 = k(u) = u(k), u(u) ≠ 1,   (XII.56) 
 
which then forces β to vanish.  Hence, with this choice of “gauge” for u and u, one must 
have [l] = [k].  That is, the line of intersection of the planes [k ^ u] and [k ^ u] is the 
direction of motion for the electromagnetic wave fronts, when the field in question is 
wavelike. 
 Since the planes [k ^ u] and [k ^ u] are not identical, but only intersect in the line [k], 
their join is three-dimensional.  In order to find a third linearly-independent vector field v 
and covector field v, we consider the bivector field #−1F, which is also decomposable, and 
defines a plane that intersects [h] in a line since: 

 
  #−1F ^ h = F(h)V = 0.    (XII.57) 

 
 Since the line of intersection is also the line [k], one can express #−1F and #h in the 

form: 
#−1F = k ^ v, #h = k ^ v    (XII.58) 
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for a suitable vector field v and covector field v. 
 The vector field v must be non-collinear with both k and u, and must span the three-
dimensional space [k ^ u] ∨ [k ^ v].  Hence, k ^ u, k ^ v, and u ^ v must all be non-
vanishing, as well as k ^ u ^ v; one derives analogous statements for k, u, and v. 
 In order to see how the 3-frame {k, u, v} relates to the 3-coframe {k, u, v}, we note 
that the vanishing of the expressions F ^ F, h ^ h, F ^ h, and #−1F ^ h implies that: 

 
0 = k(v) u(k) = k(u) v(k) = k(u) u(k) = k(v) v(k),  (XII.59) 

 
which have the solution: 

0 = k(v) = u(k) = k(u) = v(k).    (XII.60) 
 
 Hence, although the 3-frame {k, 
u, v} and the 3-coframe{k, u, v} are 
not projectively reciprocal, since 
k(k) vanishes, due to the dispersion 
law, they are dual, in the three-
dimensional sense that the plane [k 
^ u] is the intersection of the 
hyperplane [v] with the three-
dimensional space that is spanned 
by {k, u, v}, with analogous 
statements for [k ^ v] and [u ^ v].  
We illustrate this situation in Fig. 
18. 
 Note that so far we have characterized [u ^ v] as only the intersection of the 
hyperplane [k] with the three-dimensional space that is spanned by {k, u, v}, but not in 
terms of the Poincaré dual of a 2-form.  This is where we must notice a geometric 
subtlety: whereas the planes [k ^ u] and [k ^ v] are uniquely defined by F and h, 

nevertheless, the choice of u and v, as well as the plane that they spanned, was an 
arbitrary gauge choice, except that neither could be collinear with k.  Hence, the Poincaré 
dual to the plane [u ^ v] also becomes open to a choice of gauge, in the form of a choice 
of measurer/observer, as defined by the pair (t, τ), where we choose τ(t) = 1.  The pair (t, 
τ) allows us to decompose k into ωτ – ks and k into ω′ t + ks, (k(k) = 0) which then 
makes: 

F = ωτ ^ u − ks ^ u = ωτ ^ u + #(ω′ t ^ v),   (XII.61a) 
h = ω′ t ^ u + ks ^ u =  ω′ t ^ u + #−1(ωτ ^ v).  (XII.61b) 

 
 The “electric” parts of the F and h are then proportional to u and u, respectively: 

 
E = i tF = ωu,   D = iτh = ω′ u,  (XII.62) 

 
and we can consistently define v and v by their “magnetic” parts: 
 

 

[u  ̂v] 

u 

k v 

[k ^ v] = [k  ̂u] 

[k ^ u] = [k  ̂v] 

Figure. 18.  The planes defined by an isotropic F. 
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  B = iτ#
−1F = −ω′ v,  H = i t#h = ωv.   (XII.63) 

 
That is, u is in the direction of D, v is in the direction of B, u is in the direction of E, and 
v is in the direction of H, relative to this measurer/observer. 
 Since u, v, u, and v follow naturally when one chooses (t, τ), we see that the choice of 
a gauge for an isotropic electromagnetic field F is closely related to a choice of 
measurer/observer.  We also see that the bivector u ^ v is proportional to the Poynting 
bivector field D ^ B, while the 2-form u ^ v is proportional to the Poynting 2-form E ^ H. 
 By contrast, the 2-planes [k ^ u] and [k ^ u] are defined independently of this choice 
of gauge or measurer/observer.  One calls either the polarization plane for the 
electromagnetic wave in question. 
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CHAPTER XIII 
 

COMPLEX RELATIVITY AND LINE GEOMETRY 
 
 

 Since the primary focus of this work has been to investigate the mathematical and 
physical considerations that strictly precede the introduction of a spacetime metric, the 
subject of the present chapter may seem out of place.  However, since a recurring theme 
all along has been that is it is necessary to shift one’s geometric intuition from the tangent 
bundle to the bundle of 2-forms on spacetime, it is important to see how the geometry 
that follows from the definition of a Lorentzian structure can be represented in terms of 
things that are more closely associated with the bundle of 2-forms. 
 The key to making the transition from T(M) to Λ2(M) is in the isomorphism of the 

identity component of the Lorentz group with the Lie group SO(3; C).  It has the effect of 

saying that there is a one-to-one correspondence between oriented, time-oriented 

Lorentzian frames on Minkowski space and complex orthogonal frames in C3 that have 

unit volume.  As long as one gives the real vector bundle Λ2(M) an almost-complex 
structure, which turns its fibers into three-dimensional complex vector spaces, any choice 
of complex frame in the fiber will define a complex-linear isomorphism of the fiber with 

C
3.  If one introduces a complex orthogonal structure on the fiber, which follows 

naturally from the introduction of a complex structure, then any complex orthogonal 

frame in a fiber defines an isometry of the fiber with C
3, when it is given the complex 

Euclidian inner product.  If one further introduces a complex volume element on the 
bundle Λ2(M) – which is not to be confused with a real volume element on T(M) – then 

one can represent the Lie group SO(3; C) by its action on complex orthogonal frames in 

Λ2(M) that have unit volume. 
 One can associate a principal fiber bundle with any vector bundle, and its elements 
are the linear frames in the fibers of that vector bundle.  When the vector bundle is the 
tangent bundle T(M) to a manifold, the associated bundle is the bundle GL(M) of linear 
frames.  One can reduce this bundle to various sub-bundles whose structure groups G are 
subgroups of GL(n), and are called “G-structures,” in general.  For instance, unit-volume 
frames correspond to G = SL(n), orthonormal frames, to G = O(p, q), if the signature type 
of the metric is (p, q), and a global frame field would correspond to a complete reduction 
to G = {e}. 
 If one starts with the associated principal bundle to Λ2(M), which we denote by 

GL(Λ2), and whose structure group is GL(6; R), then one can carry out similar reductions 

of this bundle by examining the frames that correspond to the various subgroups of GL(6; 

R).  These subgroups include GL(3; C) and SO(3; C), which correspond to the complex 

linear frames in the fibers of Λ2(M) and the complex orthogonal ones with unit complex 
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volume, respectively.  It is in this latter reduction that we find the representation of 
Lorentzian relativity as something that also lives in the structure of the bundle  Λ2(M). 
 In section 1 we first discuss the elementary concepts that we shall be applying to the 
context of vector bundles that first appear in complex linear algebra.  Then, in section 2 
we show how this relates to the representations of the Lorentz group by complex 
orthogonal transformations with unit determinant. 
 Since the literature of general relativity only occasionally presents the differential 
geometry that it uses in the language of connection 1-forms on the bundle of linear 
frames over spacetime, in section 3 we provide a section of this chapter that serves that 
purpose.  The transition to expressing the same concepts in terms of the bundle of 
complex linear frames in Λ2(M) then becomes more natural. 
 Finally, in section 4 we bring the various elementary pieces together into the 
representation of general relativity in terms of the geometry of Λ2(M).  Along the way, 
we point out that when this bundle has been given an almost-complex structure it is 
actually unnecessary to further complexify it, as is commonly done in complex relativity, 
and upon closer inspection, one sees that one is using only half of the resulting six-
complex-dimensional vector space. 
 Once one has recast the geometry of gravitation as a sub-geometry of the geometry of 
electromagnetism, it is only natural to ponder the question of whether there is as much 
ultimate physical significance to better understanding the geometry of electromagnetism 
as their seems to be in the geometry of gravitation.  Since pre-metric electromagnetism 
seems to be most relevant to the realm of strong electromagnetic fields, this also suggests 
possible inroads into the realm of quantum electrodynamics, which has always been 
obscured from geometry by its phenomenological formalism that deals with interactions 
and scattering amplitudes more that it deals with electromagnetic fields or spacetime 
structures directly. 
 
 
 1.  Complex structures on real vector spaces [1, 2].  Although sometimes it is 
simpler to merely deal with complex scalars from the outset and consider complex vector 

spaces as being modeled on C
n, nevertheless, it is sometimes more illuminating to regard 

the field C of complex numbers as an algebra over the real vector space R2 and then treat 

complex vector spaces as real vector spaces that have been given a “complex structure,” 
when suitably defined.  In order to motivate the concept of a complex structure on a real 

vector space, we first show how one exhibits C as an algebra over R2. 

 Recall that a K-algebra over a vector space V (for some specified field of scalars K) 

is a bilinear map V × V → V, (a, b) ֏ ab; that is, it is a binary operation that respects the 
linear structure on each factor.  Hence, since V already has an Abelian group structure 
defined by vector addition, and bilinearity amounts to the statement that the algebra 
multiplication (left and right) distributes over addition: 
 

a(b + c) = ab + ac,  (a + b)c = ac + bc,  (XIII.1) 
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we see that any algebra can also be regarded as a ring in the eyes of abstract algebra. 
 As a ring, an algebra does not need to be multiplicatively commutative, or even 
associative.  Lie algebras are the primary example of a non-associative algebra, as far as 

physics is concerned, but the Cayley algebra over R
8 has this property, as well.  

Similarly, an algebra does not need to have a unity – i.e., a multiplicative identity – and 
elements of an algebra do not need to possess multiplicative inverses.  In the event that 
they do, they are called units, and if all non-zero elements of an algebra are units then one 
calls it a division algebra.  In the extreme case where the multiplicative structure defines 
a group structure on the non-zero elements of the algebra, one calls it a field. 

 When the field is R and the vector space is R2, we can define a bilinear multiplication 

by imitating the effect of complex multiplication.  Since: 
 

(x + iy)(u + iv) = (xu – yv) + i(xv + yu)  (XIII.2) 
 

we define the product of two elements (x, y), (u, v) ∈ R2 to be: 

 
(x, y)(u, v) = (xu – yv, xv + yu).   (XIII.3) 

 

 As an R-algebra, the complex numbers represent a commutative field.  The 

multiplicative identity is 1 = (1, 0), and if z = a + ib ≠ 0 then its inverse is z−1 = 1/z = 
2/ || ||z z , in which we have introduced the complex conjugatez of z and its modulus || z || 

in the usual fashion.  In its real representation, this says: 
 

(a, b)−1 =
2 2

1
( , )a b

a b
−

+
.    (XIII.4) 

 

  Hence, if we regard C as a real vector space (by restricting the scalars to real 

numbers) then the map C → R2, x + iy ֏ (x, y) is not only a linear isomorphism of real 

vector spaces, which we describe by saying that the map is an R-linear isomorphism, but, 

from (XIII.2), it also an isomorphism of R-algebras. 

 Since the algebra product is bilinear when one fixes one of its factors – say the left 

factor a – the remaining map La: V → V, b ֏ ab is K-linear.  One calls this map left 

multiplication by a; one can define right multiplication by a analogously.  In the event 
that the algebra product is commutative, it is unnecessary to distinguish between left and 
right multiplication. From (XIII.3), if a = x + iy then the matrix of left (or right) 

multiplication by a, relative to the canonical basis on R2, is: 
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[La] =
x y

y x

− 
 
 

= xI + yJ,    (XIII.5) 

 
in which I is the 2×2 identity matrix and: 
 

J =
0 1

1 0

− 
 
 

     (XIII.6) 

 
represents multiplication by the imaginary i. 
 One sees that: 

 det La = x2 + y2 = || a ||2.    (XIII.7) 
 
Hence, as long as a ≠ 0, La will be invertible.  We pause to note how the Euclidian 

quadratic form on R2 has been replaced by a determinant on a matrix algebra. 

 Since the product La Lb of the matrices associated with a, b ∈ C is Lab, we have a 

homomorphism La: C
* → GL(2; R) of the group (C*, ×) of non-zero complex numbers 

under multiplication in the group of invertible real 2×2 matrices under matrix 

multiplication.  As the only element in C* that goes to the identity element I is 1, the 

homomorphism is injective and we can call La a faithful representation of the group (C*, 

×) in GL(2; R).  Since not all matrices in GL(2; R) can be represented in the form 

(XIII.5), the representation is not an isomorphism, except onto its image, which is a two-
dimensional Abelian Lie subgroup of the four-dimensional non-Abelian Lie group GL(2; 

R). 

 Now, one can generalize (XIII.5) to define the action of the real algebra C on V×V for 

any K-vector space 1 V by defining La: V×V →V×V to have a matrix of the form: 

 

[La] =
xI yI

yI xI

− 
 
 

= xI + yJ,    (XIII.8) 

 
in which I now represents the 2n×2n identity matrix and: 
 

J =
0

0

I

I

− 
 
 

     (XIII.9) 

                                                
 1 We are tacitly assuming that R is a sub-field of K and the injection is by way of a ֏  a1, where 1 ∈ 

K is the unity element; as long as the only other field of interest to us is K = C, this is no problem. 
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has replaced the multiplication by i.  In particular, J: V×V →V×V is a linear isomorphism 
such that: 

J2 = −I.      (XIII.10) 
 
 We shall call the vector space V×V, together with a J that has this property a 
complexification of V.  One can define such a structure for any V×V by making J(v, w) = 
(−w, v). 

 By contrast, when J: V → V is an R-linear isomorphism such that (XIII.10) is valid 

one says that J defines a complex structure on V.  However, whereas any real vector 
space can be complexified, not every real vector space admits a complex structure.  In 
particular, in order such a J will exist iff dim V is even.  Clearly, V×V will always admit a 
complex structure 
 When a real vector space V has a complex structure J one can define complex scalar 
multiplication on V by: 

(a + ib)v = av + bJv.    (XIII.11) 
  
 If V has dimension 2n as a real vector space then a basis {ei, i = 1, …, 2n} for V is 
called a complex basis iff it is compatible with J: 
 

ei+n = Jei , i = 1, …, n.   (XIII.12) 
 
 Hence, if v = vi ei + vi+n ei+n with real components vi, vi+n we can also say that: 
 

v = (vi + ivi+n)ei     (XIII.13) 
 

in which the components vi + ivi+n are now complex numbers. 

 Hence, whereas the set {ei, i = 1, …, 2n}defines an R-linear isomorphism V  → R2n, 

as long as this set satisfies (XIII.12), the set {ei, i = 1, …, n} defines a C-linear 

isomorphism V → Cn.  This justifies our terminology in calling the set a complex basis 

on V. 
 Another way of defining the complexification of a real vector space is by defining the 

complex scalar multiplication on elements of VC = V⊗C, which one regards as the real 

vector space of R-linear maps of V into the real vector space C = R2; strictly speaking, 

we should probably use V*⊗C for this purpose, but it seems to be convention that one 

always sees the present notation. 

 One then defines complex scalar multiplication on the elements of VC by: 

 
    (a + ib) v⊗z = v⊗(a + ib)z = v⊗az + v⊗ibz  

= αv⊗z + βv⊗iz.    (XIII.14) 
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 We can then see that the complex structure on V⊗C also comes from: 

 
J(v⊗z) = v⊗iz .    (XIII.15) 

 

 If V has real dimension n then VC has complex dimension n and real dimension 2n. 

 One can define an R-linear isomorphism of V⊗C with V×V that takes v⊗(a + ib) to 

(av̧  bv).  Since, from (XIII.16), J(v⊗(a + ib)) = v⊗(− b + ia) one can then define J(v, w) 
= (−w, v), as before, and see that the two ways of complexifying a real vector space are 
equivalent. 

 Some elementary examples of complexification are given by RC = C and (Rn)C = Cn.  

A somewhat more confusing example is given by C
C = C2, which only makes sense if 

one regards C as a real vector space of real dimension 2 and C
2 as a complex vector 

space of complex dimension two.  The element (x + iy)⊗(u + iv) in CC goes to (x + iy, u 

+ iv) in C2 or (x, y, u, v) in R4.  Note that the complex vector space of C-linear maps 

from C to itself has complex dimension one, which means real dimension two; hence, the 

possible confusion. 

 Elements of CC can also be represented by 2×2 real matrices, and, in fact, the 

representation is an R-linear isomorphism that takes the basis elements 1⊗1, i⊗1, 1⊗i, 

i⊗i to the basis elements: 
1 0

0 0

 
 
 

, 
0 1

0 0

 
 
 

, 
0 0

1 0

 
 
 

, 
0 0

0 1

 
 
 

, 

resp. 
 
 
 2. Complex orthogonal representations of the Lorentz group [3].  When it comes 
to alternative ways of representing the Lorentz group, most of the attention to date has 

been focused on the two-to-one homomorphism from SL(2; C) to SO0(3, 1), which, you 

will recall, denotes the identity component of the Lorentz; viz., the proper orthochronous 
Lorentz group.  Most of the justification for the popularity of that representation comes 
from its use in the representation of the relativistic quantum-mechanical wave equation, 
namely, the Dirac equation. 
 In the previous chapter, we discussed the projective-geometric significance of the 

group SL(2; C) as the group of projective transformations of CP1, which is diffeomorphic 

to the two-sphere as a real manifold.  In this section, we shall discuss another isomorphic 



368 Pre-metric electromagnetism 

representation of SO0(3, 1) that is quite naturally suggested by the representation of 2-

planes in R4 by decomposable bivectors and 2-forms. 

 

 a.  Isomorphism of SO0(3, 1) and SO(3; C). In addition to the isomorphism SO0(3, 1) 

and SL(2; C) there is also an isomorphism of Lie groups between SO0(3, 1), SL(2; C), and 

SO(3; C).  The latter group is the subgroup of complex invertible matrices in GL(3; C) 

that not only preserve a volume element but also the complex Euclidian scalar product: 
 

<α, β> = δij αi βi, (α, β ∈ C3, αi, βj ∈ C).  (XIII.16) 

 

Hence, the only difference between the geometry of C
3 with this metric and R3 with the 

same metric is in the field to which the scalars and vector components belong.  In 
particular, a matrix A ∈ SO(3; C) satisfies: 
 

det A = 1, AAT = ATA = I.    (XIII.17) 
 

 One sees that the Lie algebra so(3; C) of SO(3; C) then consists of complex 3×3 

matrices ω that satisfy: 
Tr ω = 0, ωT + ω = 0;    (XIII.18) 

 
although the scalars are complex, the first requirement follows automatically from the 

anti-symmetry that is implied by the second one.  A matrix ω ∈ so(3; C) is then the 

infinitesimal generator of a one-parameter subgroup of complex rotations in C3; namely, 

etω. 

 It follows immediately that so(3; C) = so(3; R)⊗C; i.e., so(3; C) is the 

complexification of so(3; R).  Hence, if I i, i = 1, 2, 3 is the basis for so(3; R) that consists 

of the elementary anti-symmetric matrices [I i] jk = εijk : 
 

 I1 = 

0 0 0

0 0 1

0 1 0

 
 − 
  

,  I2 =

0 0 1

0 0 0

1 0 0

 
 
 
 − 

, I3 =

0 1 0

1 0 0

0 0 0

− 
 
 
  

 (XIII.19) 

 

then these matrices also define a basis for so(3; C).  Note that these matrices also give the 

adjoint representation of the Lie algebras so(3; R) and so(3; C). 
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 Since we defined so(3; C) as a matrix Lie algebra – i.e., a sub-algebra of gl(3; C) – 

we observe that the isomorphism of so(3; R) with R3, when it is given the vector cross 

product, also complexifies to an isomorphism of so(3; C) with C3, when it is given the 

same cross product.  This is really somewhat amusing since one of the selling points of 
using the exterior product in place of the cross product is the fact that the exterior product 
generalizes to vector spaces of any dimension, while the cross product is only defined in 
the vector spaces of dimension three.  However, we now see that the transition from non-
relativistic physics to relativistic physics does not have to define the transition from a real 
three-dimensional Euclidian space to a real four-dimensional Minkowski space, but 
simply to a complex three-dimensional Euclidian space.  In that sense, relativistic physics 
is the complexification of non-relativistic physics. 

 We then see that if z = zi ei ∈ (C3, ×) then its representation by a complex 3×3 matrix 

in so(3; C) is: 

ad(z) = zi ad(ei) = zi I i     (XIII.20) 
since: 

ad(z)(v) = [z, v] = (εijk z
j vk) ei = z × v.  (XIII.21) 

 
This makes the components of the 3×3 complex matrix ad(z) equal to: 
 

[ad(z)] ij = εijk z
k .    (XIII.22) 

 

 The isomorphism of SO0(3, 1) with SO(3; C) is easiest to see by first defining the 

isomorphism of the corresponding Lie algebras, which implies that so(3; C) must be 

regarded as a real Lie algebra, not a complex one, and exponentiating them.  The 
isomorphism of Lie algebras is then simplest to describe in terms of real bases for both. 
 We use the basis {Ji, Ki, i = 1, 2, 3} for so(3, 1), where the Ji are of the form: 

 

Ji =
0 0

0 iI

 
 
 

, i = 1, 2, 3,   (XIII.23) 

 
and the Ki are the elementary infinitesimal boosts: 
 

K1 =

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

, K2 =

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 
 
 
 
 
 

, K3 =

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 
 
 
 
 
 

.  (XIII.24) 

 
 By direct computation, the structure constants of this Lie algebra are obtained from: 
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[Ji, Jj] = εijk Jk ,  [Ji, Kj] = εijk Kk , [Ki, Kj] = − εijk  Jk . (XIII.25) 
 

 Notice that the last of these commutation relations implies that the three-dimensional 
vector subspace of so(3, 1) that is spanned by the infinitesimal boosts is not a Lie 

subalgebra.  It indirectly leads to Thomas precession, since it says, in effect, that the 
composition of boosts along different axes will produce a rotation in addition to the 

combined boost.  However, the first set does imply that the Lie algebra so(3; R) is 

included in so(3, 1) by the replacement of the I i with the Ji . 

 By complexification, the I i also define a complex basis for the complex Lie algebra 

so(3; C).  The commutation rules for this basis are then identical to those of so(3; R): 

 
[I i, I j] = εijk Ik ,     (XIII.26) 

 
 The simplest way to expand this into a real basis is by way of {I i, iI i, i = 1, 2, 3}.  

From the C-bilinearity of the Lie bracket, the commutation rules for this real basis are 

then: 
[I i, I j] = εijk Ik ,  [I i, iI j] = iεijk Ik , [iI i, iI k] = − εijk Ik , (XIII.26) 

 

which are formally the same as (XIII.25).  Hence, the R-isomorphism of so(3, 1) with 

so(3; C) is then effected by the association of the Ji with the I i and the Ki with the iI i . 

 This amounts to regarding a boost as essentially a rotation through an imaginary 
angle.  Of course, this is really the opposite of what one should think, as one sees in the 

elementary case of the isomorphism of R⊕ so(2; R) with C (= R2), when one represents 

the R summand by matrices of the form αK with: 

 

K =
0 1

1 0

 
 
 

.     (XIII.27) 

 
 The isomorphism simply takes αK + βJ to α + iβ.  Under exponentiation, since the 
Lie algebra is Abelian, one has: 
 

exp(αK + βJ) = exp(αK)exp(βJ) =
cosh sinh cos sin

sinh cosh sin cos

α α β β
α α β β

−   
   
   

 (XIII.28) 

and: 
eα + iβ = eα eiβ = eα(cos β + i sin β).   (XIII.29) 

 
Hence, it is more precise to say that rotations are the imaginary entities. 
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 The isomorphism of the Lie group SO0(3, 1) with SO(3; C) is then obtained by 

exponentiation of the isomorphism of Lie algebras.  The actual association of a 4×4 real 
matrix with a complex 3×3 matrix is more involved at the group level than it was at the 
algebra level, though.  Although one first exponentiates the basis matrices to obtain 
generators of the group, the remaining elements of the group are obtained by taking 
matrix products, not matrix sums. 
 

 b.  The representation of SO(3, 1) in Λ2(R
4) or Λ2(R4).  Both Λ2(R

4) and Λ2(R4) are 

real vector spaces that are isomorphic to R
6 by a choice of frame or coframe, resp.  

Hence, the set of all real linear frames for either vector space is described by the elements 

of the Lie group GL(6; R). 

 However, this set of frames ignores the fact that both vector spaces have an additional 
structure that is defined by the fact that both of them are exterior products of four-

dimensional real vector spaces: Λ2(R
4) = R4 ^ R4, Λ2(R4) = R4* ^ R4*.  Hence, we can 

identify a subgroup of GL(6; R) that amounts to the image of GL(4; R) under the anti-

symmetrized tensor product representation. 

 We describe this representation by starting with a 4-frame {eµ , µ = 0, …, 3} on R4 

and associating it with the 6-frame {EI, I = 1, …, 6} on Λ2(R
4) that we defined 

previously: 
Ei = e0 ^ ei , Ei+3 = 1

2 εijk ej ^ ek .   (XIII.30) 

 
 When eµ is subjected to a linear frame change toµe = Aν

µ νe , the resulting 

transformation of EI is obtained from expanding: 
 

iE = 0 i∧e e = 0 iA Aµ ν
µ ν∧e e , 3i+E = 1

2 ijk j kε ∧e e = 1
2 ijk j kA Aµ ν

µ νε ∧e e  (XIII.31) 

 
and identifying submatrices. 

 If D: GL(4; R) → GL(6; R), A֏D(A) is the resulting representation and the matrices 

of GL(6; R) are represented in the block matrix form: 

 

D(A) =
( ) ( )

( ) ( )

i i
tt j ts j

i i
st j ss j

D A D A

D A D A

 
 
  

    (XIII.32) 

 
then the submatrices take the form: 
 

( )i
tt jD A  = 0 0

0 0
i i
j jA A A A− , ( )i

ts jD A  = 0 i
jkl k lA Aε ,  (XIII.33a) 
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( )i
st jD A  = 0

k l
ikl jA Aε ,  ( )i

ss jD A  = 1
2

k l
ikl jmn m nA Aε ε . (XIII.33b) 

 
 It is instructive to examine the form that these matrices take for various subgroups of 

GL(4; R). 

 For the homotheties, one will have00A = λ ≠ 0, 0
jA = 0

iA = 0, i
jA = i

jδ , and the 

corresponding matrix for D(A) will take the form: 
 

0

0

i
j

i
j

λδ
δ

 
 
  

. 

 

 For the GL(3; R) subgroup that is represented by00A = 1, 0
jA = 0

iA = 0, i
jA ∈ GL(3; R), 

one has a matrix of the form: 

0

0

i
j

i
j

A

A

 
 
  

. 

 

Naturally, any subgroup of GL(3; R), such as SO(3; R), will be represented in this form, 

as well. 

 For the translations of R3, with 0
0A = 1, 0

jA = 0, 0
iA = ai, i

jA = i
jδ the matrix looks like: 

 

0i
j

k i
ijk ja

δ
ε δ

 
 −  

. 

 

 For the inversions of R3 that are described by 00A = 1, 0
jA = bi, 0

iA = 0, i
jA = i

jδ , it looks 

like: 

0

i k
j ijk

i
j

bδ ε
δ

 −
 
  

. 

 
 Of particular interest in relativistic electromagnetism is the representation of a boost 
along the x axis.  If the 4×4 matrix takes the form: 
 

A =

cosh sinh 0 0

sinh cosh 0 0

0 0 1 0

0 0 0 1

ζ ζ
ζ ζ

− 
 − 
 
 
 

=

/ 0 0

/ 0 0

0 0 1 0

0 0 0 1

v c

v c

γ γ
γ γ

− 
 − 
 
 
 

,  (XIII.34) 
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in which γ = (1 – v2/c2)−1/2 is the Fitzgerald-Lorentz contraction factor, then its image 
under the exterior product representation is: 
 

D(A) =

1 0 0 0 0 0

0 cosh 0 0 0 sinh

0 0 cosh 0 sinh 0

0 0 0 1 0 0

0 0 sinh 0 cosh 0

0 sinh 0 0 0 cosh

ζ ζ
ζ ζ

ζ ζ
ζ ζ

 
 
 
 −
 
 
 −
 
 

.  (XIII.35) 

 
 In order to transform the components bI of a bivector b = bI EI, one must use the 
inverse matrix to D(A), which is: 
 

D(A−1) = 

1 0 0 0 0 0

0 cosh 0 0 0 sinh

0 0 cosh 0 sinh 0

0 0 0 1 0 0

0 0 sinh 0 cosh 0

0 sinh 0 0 0 cosh

ζ ζ
ζ ζ

ζ ζ
ζ ζ

 
 − 
 
 
 
 
 

− 

.  (XIII.36) 

 
 When one applies this matrix to h = [Di, Hi]T the new components are: 

 
1D = D1, iD = γ[D + 1/c(v × H)] i, i = 2, 3,  (XIII.37a) 
1H = H1, iH = γ[−D + 1/c(v × H)] i, i = 2, 3,  (XIII.37b) 

 
which agrees with the usual formulae, as one might find in Jackson [4]. 

 The representation of GL(4; R) in Λ2(R4) is contragredient to the one in Λ2(R
4) that 

we just described.  That is, if eµ transforms by way ofAµ
ν then if θµ is the reciprocal 

coframe to eµ , in order to preserve the relation θµ(eν) =
µ

νδ the coframe θµ must transform 

by means of the inverse matrixAµ
ν
ɶ .  Thus, θµ ^ θν must transform as: 

 
µ νθ ∧ θ = A Aµ ν κ λ

κ λ θ ∧ θɶ ɶ .    (XIII.38) 

 

 Since we are defining our 6-coframe for Λ2(R4) by means of: 

 
Ei = θ0 ^ θi, Ei+3 = 1

2 εijk θj ^ θk,   (XIII.39) 

 



374 Pre-metric electromagnetism 

this serves to define the representation, which is then D′: GL(4; R) → GL(6, R), A 

֏D(A−1).  Hence, the matrix of D′(A) = D(A−1) is similar to (XIII.32), except that the 
components of A are replaced by the components of A−1.  The transformation of the 
components of a 2-form b = bI E

I is then by way of D′(A−1) = D(A), whose matrix is then 
given by (XIII.32) directly.  
 The transformation of F = [Ei, Bi] is then entirely analogous to (XIII.37a, b), except 
that one right-multiplies by D(A), instead of left-multiplying  by D(A−1).  However, the 
end result is a similar set of equations to (XIII.37a, b), with the symbols for the 
components of h replaced with those of F. 

 

 c.  The representation of SO(3; C) in Λ2(R
4) or Λ2(R4).  Another structure that one 

can impose on the six-dimensional real vector space Λ2(R
4) is a complex structure, since 

its dimension is even.  This time, we denote the complex structure by an R-linear 

isomorphism *: Λ2(R
4) → Λ2(R

4), b ֏ *b, such that: 

 
* 2 = − I.     (XIII.40) 

 
 We can then define complex scalar multiplication by the usual means: 
 

(α + iβ)b = αb + β*b.    (XIII.41) 
 

 An R-linear frame{EI , I =1 , …., 6} is complex iff: 

 
 Ei+3 = *Ei = iEi , i = 1, 2, 3.   (XIII.42) 

 
This terminology is then consistent with (XIII.41) and one can regard {Ei , i =1 , 2, 3} as 

a complex 3-frame on the complex vector space Λ2(R
4), so any b ∈ Λ2(R

4) can be 

expressed in the form: 
b = bi Ei = αi Ei + βi *Ei , i = 1, 2, 3,  (XIII.43) 

 
in which the components bi = αi + iβi are generally complex numbers. 

 Not all R-linear frames on Λ2(R
4) will have the property (XIII.42) that makes them 

complex. This is simple enough to show if one considers the transformation from one 

complex 3-frame {Ei , i =1 , 2, 3} on Λ2(R
4) to another one { iE , i =1 , 2, 3}.  Since the 

former set defines a complex frame, one must have a 3×3 complex matrix i
jA of 

components that makesiE = j
i jA E .  Since iE is another complex 3-frame, the matrixijA  

will be invertible.  Hence, the matrixi
jA is an element of the Lie group GL(3; C).  One can 
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then see that the set of real 6-frames on Λ2(R
4) is in one-to-one correspondence with the 

elements of GL(6; R), while the set of complex 3-frames is one-to-one correspondence 

with the elements of GL(3; C).  As the real dimension of GL(6; R) is 36 and that of GL(3; 

C) is 18 (complex dimension = 9), it is clear that there are “more” real frames than 

complex ones. 

 In order for an R-linear map A: V → V on a real vector space V that has been given a 

complex structure *: V → V to behave like a C-linear map, it must commute with * in the 

same way that A(iv) = iAv when v belongs to a complex vector space; i.e.: 
 

A* = *A.     (XIII.44) 
 

 In fact, this is not only necessary, but sufficient for a real 6×6 matrix A ∈ GL(6; R) to 

be associated with a complex 3×3 matrix C ∈ GL(3; C).  The association of the one with 

the other is quite straightforward:  If i
jC = i i

j jiα β+ is the matrix of C then the 

corresponding A has a matrix that is given in block form by: 
 

I
JA =

i i
j j

i i
j j

α β
β α
 −
 
  

=
0 0

*
0 0

i i
j j

i i
j j

α β
α β

   
+   

      
.   (XIII.45) 

 
with respect to a complex basis. 
 If one goes back to (XIII.5) then one sees that the way that one constructs a real 6×6 
matrix that represents a complex 3×3 matrix is closely analogous to the way that one 
makes a real 2×2 matrix out of a complex number.  In particular, the identity map and * 
take the block matrix form: 

I = 
0

0

i
j

i
j

δ
δ

 
 
  

,  * =
0

0

i
j

i
j

δ
δ
 −
 
  

.  (XIII.46) 

 

 If { EI, I = 1, …, 6} is a complex frame for Λ2(R
4) then one can also decompose 

Λ2(R
4) into a direct sum Re Im

2 2Λ ⊕ Λ of 3-dimensional subspaces that are spanned by the 

frames {Ei , i = 1, 2, 3} and {*Ei , i = 1, 2, 3}, respectively, since they then have the 
property: 

Re
2*Λ = Im

2Λ , Im
2*Λ = Re

2Λ . 

 
More precisely, if bR ∈ Re

2Λ and bI ∈ Im
2Λ then *bR ∈ Im

2Λ and *bI ∈ Re
2Λ . 

 This situation seems to justify our terminology of “Re” and “Im” since these 
subspaces correspond to real and imaginary subspaces under the complex structure.  
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However, it is important to understand that when one is given a complex structure * on a 
vector space V the decomposition of V into real and imaginary subspaces is not generally 

canonical, as it is when V = Rn, so one must choose a real+imaginary splitting in the same 

way that one might choose a frame. 

 If [ t] ⊕ Σ is a time+space splitting of R4 then one has an induced splitting 2 of Λ2(R
4) 

into [t] ^ Σ ⊕ Λ2(Σ), in which the subspace [t] ^ Σ is spanned by all elements of the form 
t ^ v, where v ∈ Σ and the subspace Λ2(Σ) is spanned by all elements of the form v ^ w 
with v, w ∈ Σ.  Whether the splitting is an actual real+imaginary decomposition will 
depend upon the choice of time+space splitting, since not all of them will induce a 
splitting with the property *([t] ^ Σ) = Λ2(Σ), *(Λ2(Σ)) = [t] ^ Σ. 
 Previously, we decomposed an electromagnetic bivector field into an electric part and 
a magnetic part.  Now, we can now see that this latter decomposition is closely related to 

imposing a complex structure on Λ2(R
4).  It is amusing to regard electric bivectors as real 

and magnetic ones as imaginary, since one knows that elementary magnetic fields are, in 
a sense, “fictitious” fields that appear as a result of the choice of rest space in much the 
same way that Coriolis and centripetal forces appear. 

 Conversely, it is not true that any real+imaginary splitting of Λ2(R
4) will imply a 

corresponding time+space splitting of R4.  The main issue is an algebraic one: in order 

for a three-dimensional subspace of Λ2(R
4) to take the form [t] ^ Σ all of the elements 

must have a common exterior factor that is a scalar multiple of some t ∈ R4, which is not 

always the case.  Moreover, it is not the case that if Λ2(R
4) is decomposed into a pair of 

three-dimensional summands then at least one of then must be of the form [t] ^ Σ for 

some [t] ∈ R4. 

 As we have seen before, if R4 has been given a volume element V ∈ Λ4 then one can 

define a scalar product on Λ2(R
4) by way of <A, B> = V(A ^ B).  Furthermore, if one also 

has a complex structure * then one can define a second scalar product by means of (A, B) 
= <A, *B> = V(A ^ *B), as long as * is self-adjoint; i.e., A ^ *B = *A ^ B for all A, B ∈ 

Λ2(R
4). 

 One can define a complex orthogonal structure on Λ2(R
4) by means of: 

 

<A, B>C = (A, B) + i<A, B>.    (XIII.47) 

 

                                                
 2 The details of this statement are discussed in greater rigor in Delphenich [1].  
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Actually, one could also define such a structure by means of <A, B> + i(A, B), but it is 

clear that this is equal to the complex conjugate of –i<A, B>C , which is not 

fundamentally different.  This amounts to the observation that complex orthogonal 
quadratic forms all have the Euclidian signature type. 

 One can then further reduce the set of complex 3-frames on Λ2(R
4) to the set of 

complex orthogonal 3-frames, which then satisfy: 
 

<Ei, Ej>C = δij .    (XIII.48) 

 
 A 3×3 complex matrix i

jA  that relates a complex orthogonal 3-frameiE to another one 

Ei by way of iE = j
i jA E will then be an element of O(3; C).  Hence, <Aa, Ab>C = <a, b>C 

for any elements a, b ∈Λ2(R
4) and, as a result, A−1 = AT. 

 In order reduce this set of complex orthogonal frames further to a subset of complex 
orthogonal 3-frames with unit-volume one must define a volume element on the complex 

vector space Λ2(R
4).  Here, we must be careful not to confuse this with a volume element 

on R4, since a volume element on the three-dimensional complex vector space Λ2(R
4) 

will be a non-zero complex 3-form on Λ2(R
4) itself, not a non-zero 4-form on R4.  Hence, 

if Ei is a complex 3-frame on Λ2(R
4) and Ei is its reciprocal 3-frame on Λ2(R

4) then one 

can define such a volume element by means of: 
 

V = E1 ⊥ E2⊥ E3 = 
1

3!
εijk E

i ⊥ Ej⊥ Ek,   (XIII.49) 

 
in which the symbol ⊥ is used to denote the exterior product in the exterior algebra over 

the complex vector space Λ2(R
4) in order to minimize the confusion with the exterior 

algebra over R4.  Since the complex dimension of the vector space Λ2(R
4) is three, its 

exterior algebra will consist of complex scalars, vectors, bivectors, and trivectors.  The 
volume of the parallelepiped spanned by a complex linear 3-frame Fi =

j
i jA E  is then: 

 
V(F1 , F2 , F3) = det A V(E1 , E2 , E3) = det A.  (XIII.50) 

 
Hence, the transformation preserves the volume of the 3-frame iff det A = 1. 

 This allows us to associate complex unit-volume 3-frames with elements of SL(3; C) 

and complex unit-volume orthogonal 3-frames with elements of SO(3; C).  Hence, we 

have finally arrived at a representation of the proper orthochronous Lorentz group SO0(3; 



378 Pre-metric electromagnetism 

1) as an isomorphic subgroup of the group that is responsible for the transformations of 

frames in the vector space of bivectors on R
4. 

 Since we made no mention of defining a Lorentzian structure on R4 that would induce 

the complex orthogonal structure on Λ2(R
4) the question arises whether the complex 

orthogonal structure on Λ2(R
4) will induce a Lorentzian structure on R4. 

 We have already seen that a complex orthogonal structure on Λ2(R
4) will allow us to 

construct a light cone out of the lines of intersection of all isotropic decomposable 
bivectors and their duals under *, which then determines a conformal class of Lorentzian 

metrics.  We now see that since SO(3; C) is isomorphic to SO0(3, 1) every unit-volume 

complex orthogonal 3-frame on Λ2(R
4) is associated with a unique time-oriented unit-

volume Lorentzian frame on R4, as long as one has agreed on the way that 4-frames in R
4 

relate to complex 3-frames in Λ2(R
4); the one that we have been using all along would 

suffice, as long as the 6-frame defined by eµ ^ eν is complex under *.  Hence, the 

isomorphism of SO(3; C) and SO0(3, 1), together with one 4-frame eµ on R4 whose 

corresponding 6-frame EI on Λ2(R
4) is complex orthogonal will define the set of all time-

oriented unit-volume Lorentzian frames on R4, which is equivalent to a choice of 

Lorentzian structure. 
 Of course, analogous constructions to the foregoing ones can be made for the vector 

space Λ2(R4) that is dual to Λ2(R
4).  One must use the transpose of * to define a complex 

structure on Λ2(R4) in order to make *A(A) = A(*A) for every A ∈ Λ2(R4) and A ∈ 

Λ2(R
4). 

 

 d.  Hermitian structures on Λ2(R
4) and Λ2(R4).  Since we are starting with such a 

large group of frame transformations on Λ2(R
4) – namely, GL(6; R) − we have 

potentially more subgroups to consider than when we start with GL(4; R), which pertains 

to frames in R4 itself.  This is especially true when one puts a complex structure on either 

of the vector spaces Λ2(R
4) or R4, which allows one to consider complex frames and the 

groups GL(3; C) and GL(2; C), respectively.  Of course, the physical significance of such 

a complex structure is more established in the case of Λ2(R
4) than it seems to be in the 

case of R4. 
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 One of the intriguing consequences of introducing a complex structure * on Λ2(R
4) is 

that in addition to the complex orthogonal structure that such an isomorphism defines one 
can also define a Hermitian structure, as long as one also has a choice of real+imaginary 

decomposition of Λ2(R
4), as well.  Furthermore, the physical significance of the 

construction is actually quite fundamental to electromagnetism. 
 The reason that one needs to choose a real+imaginary decomposition Re Im

2 2Λ ⊕ Λ of 

Λ2(R
4) is because otherwise there is no unambiguous way to define the operator of 

complex conjugation.  However, when one is given such a decomposition the definition 
is immediate.  If a = aR + *aI with aR, aI ∈ Re

2Λ then its complex conjugate relative to this 

splitting is: 
a  = aR − *aI ,     (XIII.51) 

 
 We now examine what happens to the complex Euclidian structure when we include 
the effect of conjugation.  We define: 
 

(a, b)C = ,< >a b
C

= ( , ) ,i+ < >a b a b .  (XIII.52) 

 

 Suppose bi, i = 1, 2, 3 is a complex orthonormal frame for Λ2(R
4), so we assume: 

 

<bi, bj>C = δij,     (XIII.53) 

 
and define the bilinear form associated with the complex Euclidian structure to be: 
 

δ = δij b
i ⊗ bj,     (XIII.54) 

 
where bi, i = 1, 2, 3 is the reciprocal coframe to bi. As long as we understand the 

notation ib to mean the composition of the C-linear functional bi with the complex 

conjugation operation on C then we should have: 

(bi, bj)C = ,i j< >b b
C

 = <bi, bj>C = δij ,  (XIII.55) 

since bi is “real.” 
 This allows us to set the bilinear form h that is associated with the new inner product 
equal to: 

h = i j
ijb bδ ⊗ ,     (XIII.56) 

in this frame and: 
h = i j

ijh β β⊗ ,     (XIII.57) 

for a general frame. 
 Hence, when A = Aibi and B = Bjbj the value of the inner product is: 
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(A, B)C = h(A, B) = i j
ij A Bδ .    (XIII.58) 

 
 This shows that what we have defined is indeed a Hermitian structure on the complex 

vector space Λ2(R
4), and the C-linear isomorphism of Λ2(R

4) with C3 that is defined by a 

Hermitian frame becomes a unitary isomorphism when one gives C3 the usual Hermitian 

structure i j
ijδ θ θ⊗ with θi being the canonical coframe. 

 Due to the assumption of the self-adjointness of *, when one computes (a, a)C , one 

obtains: 
 

(a, a)C = [(aR, aR) + (aI, aI)] + i[<aR, aR> + <aI, aI>] = (aR, aR) + (aI, aI). (XIII.59) 

 
 The vanishing of the imaginary part follows from the fact that aR and aI belong to a 
three-dimensional (real) vector space, while <aR, aR> and <aI, aI> are both defined by 4-
vectors, which must vanish identically, since aR, aI belong to three-dimensional vector 
spaces. 
 If we apply this to the case of the electromagnetic excitation bivector h = t ^ D + *(t 

^ H) then we see that: 
 

   (h, h)C = (D, D) + 2(D, H) + (H, H)  

= ε−1(D, D) + 2γ−1(D, H) + µ(H, H).   (XIII.60) 
 
 In the case where the electromagnetic couplings (= γ) vanish this becomes: 
 

(h, h)C = ε−1(D, D) + µ (H, H) = E(D) + H(B),  (XIII.61) 

 
and in the isotropic case: 

(h, h)C = 1/εD2 + µH2 = εE2 + 1/µB2.   (XIII.62) 

 
 Hence, we see that the Hermitian structure that we defined is intimately related to the 
energy density of the electromagnetic field.  The fact that it can only be defined after one 
has made a choice of real+imaginary decomposition is entirely consistent with the fact 
that one cannot speak of energy in relativistic mechanics until one has made a choice of 
time+space splitting of spacetime. 
 As is well-known, quadratic expressions such as (XIII.62) are associated with the 
Hamiltonian of the simple harmonic oscillator in mechanics, and electromagnetic wave 
motion is envisioned to involve a continuous distribution of simple harmonic oscillators 
throughout space.  Hence, the generalization defined by (XIII.60) shows that one can 
generalize the oscillators accordingly to three-dimensional anisotropic harmonic 
oscillators. 
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 What is truly intriguing about the appearance of a Hermitian structure on the 
(complex) three-dimensional vector spaces of interest to electromagnetism is that this 

naturally allows one to reduce the group GL(3; C) of complex linear frame 

transformations to the group U(3) of unitary frame transformations, and further to SU(3), 
if one requires that they preserve the volume element, as well.  Ordinarily, the group 
SU(3) does not begin to figure in physics until one is dealing with strong interactions, but 
now we see that it is clearly relevant to the energetics of electromagnetism, as well.  
Since the strong interaction was introduced into physics in order to account for the 
stability of most nuclei in the face of the mutual electrostatic repulsion of their 
constituent protons, this makes one wonder if there is some natural transition from the 
theory of electromagnetism into the theory of the strong interaction within the pre-metric 
formalism.  After all, we have already seen that it affords a natural transition from 
electromagnetism into gravitation by way of the electromagnetic dispersion law for the 
medium. 
 For more musings along these lines, the reader is invited to peruse the author’s paper 
[5] 
 
 
 3. General relativity in terms of Lorentzian frames.  In order to facilitate the 
transition from conventional Lorentzian general relativity, which deals with Lorentzian 
frames in the tangent bundle, to the form that things take in the context of complex 
orthogonal frames in the bundle of 2-forms, we briefly summarize the formulation of 
general relativity using the formalism of connection 1-forms on the bundle of oriented, 
time-oriented, Lorentzian frames on spacetime.  The approach to differential geometry 
that involves defining connection 1-forms on principal bundles is quite commonplace in 
gauge field theories, but apparently still not completely accepted in general relativity and 
gravitation theory 3. 
 
 a.  Reductions of the bundle of linear frames.  In order to define an oriented, time-
oriented, Lorentzian frame in a tangent space TxM to a point x in real four-dimensional 
spacetime manifold M, one will clearly need three things: a volume element V ∈ Λ4, a 
time+space splitting of T(M) into [t]⊕Σ, and a Lorentzian metric g. 
 The presence of a volume element allows one to reduce from the bundle GL(M) → M 
of linear frames in T(M) to the bundle GL+(M) → M of oriented frames to the bundle 
SL(M)  → M of unit-volume frames.  Of course, one must assume that M – or rather, 
T(M) – is orientable to begin with, which we will. 

 One can also regard a volume element as a real-valued function V: GL(M) → R, eµ  

֏V(eµ) = V(e0, e1, e2, e3), where we are abusing the notation by using the same symbol 
for the function and the non-zero 4-form.  It is, moreover, required to be equivariant 

under the right action of GL(4; R) on GL(M) and its action on R by way of the 

determinant.  That is, when the frame eµ is changed to Aν
ν µe the numerical value of V(e0, 

                                                
 3 Some of the references on general relativity that use this formalism to a greater or lesser degree are [6-
12].  
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e1, e2, e3) is changed to det(A)V(e0, e1, e2, e3).  One can then reconstruct the 4-form at x∈ 
M by means of: 

Vx = θ0 ^ θ1 ^ θ2 ^ θ2 = 
1

4!
εκλµν θκ ^ θλ ^ θµ ^ θν.  (XIII.63) 

 
 The actual reduction of GL(M) to GL+(M) then follows from considering the subset of 
GL(M) that consists of linear frames for which V(e0, e1, e2, e3) is positive.  Since each 
fiber of GL(M) consists of two components – namely, V(e0, e1, e2, e3) < 0 and V(e0, e1, e2, 
e3) > 0 – one can see that the homogeneous space Ox = GLxM / xGL+  consists of two 

points, up to homotopy equivalence.  We can then regard the bundle O(M) → M as the 

orientation bundle over M, so an orientation on M is a global section of this bundle.  
Hence, the manifold O(M) is diffeomorphic to the orientable covering manifold of M. 

 The reduction from GL+(M) to SL(M) follows from looking at the level hypersurface 
of unity for the function V.  That is, one chooses a set of oriented frames at each point 
that one wishes to call unit-volume frames.  Since the homogeneous space xGL+ / SLx is 

homotopically equivalent to R (by way of the determinant), which is contractible, this 

reduction is never obstructed by homotopy. 
 The time+space splitting allows one to further reduce from SL(M) to the bundle 
SL0(M) → M of time-oriented unit-volume frames.  Again, one must assume that the line 
bundle [t](M) → M is orientable, which amounts to the existence of a non-zero vector 
field t ∈ X(M) that generates the line [t](x) at each x ∈ M.  If M is compact then it is 

necessary that its Euler-Poincaré characteristic vanish in order for this to be possible.  
However, requiring that a given line field admit a non-zero section is a stronger condition 
than requiring that the tangent bundle admit a non-zero section, so it is not a sufficient 
condition in this case. 
 The equivariant maps on SL(M) and its dual SL*(M) – which is then the bundle of 
unit-volume coframes on M – that define the time+space splitting of T(M) are then the 

maps t: SL(M) → R4, eµ ֏ t(eµ) = tµ and τ: SL*(M) → R4*, θµ ֏ τ(θµ) = τµ , which are 

equivariant under the right action of SL(4; R) on the bundles and its left action on R4 and 

its dual in a manner that is consistent with regarding t as a vector field and τ as a covector 
field.  As usual, we assume that τ(t) ≠ 0. 
 The Lorentzian metric g then allows one to reduce SL0(M) to the bundle SO0(3, 1)(M)  
M of oriented, time-oriented, Lorentzian frames in T(M).  When M is compact the 
introduction of a Lorentzian metric is also obstructed by the non-vanishing of the Euler-
Poincaré characteristic, but for a non-compact M, such a metric always exists 4. 
 One can regard the metric g as also defining a map g: GL(M) → Lor(4), eµ ֏  g(eµ) = 
gµν(x), which takes any linear frame eµ in TxM to the matrix gµν(x) of components of g 

with respect to this frame.  The manifold Lor(4) = GL(4; R)/O(3, 1) is the homogeneous 

                                                
 4  See the paper of Markus [13] on the subject of the obstructions to the existence of Lorentzian metrics.  
Some general remarks were also made in Steenrod [14]. 
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space of all invertible 4×4 real matrices that can serve as the component matrices of 
Lorentzian metrics.  That is, in addition to their invertibility they must also be symmetric 
and congruent to the matrix ηµν = diag[+1, −1, −1, −1].  Furthermore, one requires that 

the map g, as just defined, must be equivariant under the right action of GL(4; R) on 

GL(M) and the left action on Lor(4).  This is really just the usual tensorial transformation 
law of the metric components, since it says that when the frame eµ is changed to Aν

ν µe the 

component matrix gµν goes toA A gκ λ
µ ν κλ . 

 If θµ is reciprocal coframe to eµ then one can reconstruct the metric g(x) at the point x 
M by means of: 

g(x) = gµν(x) θµ ⊗θν .    (XIII.64) 
 
Since g is equivariant under frame changes, this construction will be unambiguous at 
each point of M even when no global frame field on M exists. 
 The actual reduction from GL(M) to O(3, 1)(M) then comes about by defining O(3, 
1)(M) to be the level hypersurface of ηµν under the map g.  Since the map g is not unique, 
neither is this reduction.  Another way of seeing this is to observe that any linear frame eµ 
in TxM can be regarded as orthonormal for some Lorentzian metric; i.e.: 
 

g(eµ , eν) = ηµν  .    (XIII.65) 
 
In fact, one simply defines that metric by means of: 
 

g = ηµν θµ ⊗θν.    (XIII.66) 
 

 The frame eµ defines an orbit in the manifold GLxM under the action of O(3, 1), but 
not all linear frames in GLxM will belong to a common orbit.  For instance, frames that 
differ by a non-trivial dilatation will not be on the same orbit.  Hence, one can see that a 
choice of Lorentzian metric on M is also equivalent to a global section of the fiber bundle 
Lor(M) → M whose fibers are diffeomorphic to the orbit spaces we just described.  The 
fact that a global section does not have to exist follows from the fact this orbit space is 

not contractible; in fact, it is homotopically equivalent to RP3.  More precisely, LorxM is 

homotopically equivalent to PTxM.  Hence, the existence of a Lorentzian metric is 
homotopically equivalent to the existence of a global line field. 
 
 b.  Canonical 1-forms on frame bundles.  The bundle π: GL(M) → M has a canonical 

1-form θµ with values in R4 that is defined on it.  If x ∈ M and e ∈ GLxM then for any 

tangent vector v ∈TeGLx(M) the numbers θµ(v) are the components vµ of the tangent 
vector π*v in TxM: 

θµ(v) = θµ(π*v) = vµ   (so π*v = vµ eµ).  (XIII.67) 
 
Again, we are abusing notation on the grounds that the 1-forms θµ on GLxM are 
associated with the reciprocal coframe field in TxM. 
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 The canonical 1-form θµ on GL(M) has a predictable variance under the action of 

GL(4; R) on GL(M) to the right, if one looks at the parenthetical comment in (XIII.66).  

That is, when the linear frame eµ goes to Aν
ν µe , since the components vµ of the tangent 

vector π*v must go toA vµ ν
ν
ɶ (tilde = matrix inverse) and vµ = θµ(v), one must have that  

θµ goes toAµ ν
ν θɶ in order to be consistent. 

 Although this probably sounds devilishly esoteric and confusing to many relativity 
theorists, who, to this day, seem to prefer the local component formulation of differential 
geometry to the exclusion of its modern formulation, it is really quite elementary when 
one goes to local components, since when one has a local frame field e: U → GL(U), x  
֏ eµ(x) the 1-forms θµ on GL(U) pull down to the reciprocal coframe field θµ(x) to eµ(x). 
 The canonical 1-form θµ on GL(M) also defines a canonical 1-form on all of its 

reductions by restriction.  The only thing that changes is the subgroup of GL(4; R) that 

one uses to make the frame changes. 
 Since so many important geometric constructions can be associated with reductions 
of the bundle GL(M) → M that are defined by reductions of the structure group to a 

subgroup G ⊂ GL(4; R), differential geometry long since evolved a general notion for 

this process.  When G is a Lie subgroup of GL(n) a reduction of the bundle GL(M) → M 
of linear frames on an n-dimensional differentiable manifold M to a bundle G(M) → M is 
called a G-structure.  In addition to being fundamental in the purely geometric context 
(cf., e.g., [15-17]), this notion is also quite fundamental in physics, as well (cf., [18]). 
 In general, it relates to a particular form of the general process of the spontaneous 
breaking of gauge symmetries in gauge field theories, which has been emerging over the 
years as a natural process that is more general than simply its application to elementary 
particle physics would suggest.  Indeed, its application in condensed matter physics is 
just as important, since many of the phenomena of that branch of physics are more 
intuitively tractable than those of the sub-visible microcosmos. 
 
 c.  Connections on frame bundles.  There are many ways of introducing a connection 
on a fiber bundle, depending upon which ultimate class of problems one intends upon 
addressing, and they almost all relate to each other at varying levels of generality.  When 
the bundle in question is a frame bundle – i.e., a G-structure G(M) → M – over a 
manifold M, some of them are more natural than others.  Since we mostly wish to define 
a connection 1-form ω on G(M) that will allow us to define the parallel translation of 
frames along curves in M, at least locally, we shall start with that as the definition. 

 If G is a Lie subgroup of GL(4; R) and g is its Lie algebra then a g-connection on a 

G-structure G(M) → M is a 1-form ω: T(G(M)) → g, v ֏ ( )µ
νω v such that its restriction 

to the vertical 5 sub-bundle V(G(M)) is a linear isomorphism of each Ve with the vector 

                                                
 5 Recall that a tangent vector to any fiber bundle π:B → M is vertical iff it projects to zero under the 
differential map dπ.  Such a tangent vector will also be tangent to some fiber of B.  In the case of GL(M) 
vertical tangent vector fields generate one-parameter families of linear frame transformations with the 
fibers of GL(M). 
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space on which g is defined, and when the frame eµ is changed to Aν
ν µe the components of 

the matrix µ
νω go toA Aµ κ λ

κ λ νωɶ . 

 This last requirement eventually leads to the usual transformation law for a 
connection matrix when one chooses a local G-frame field e: U → G(U) and pulls the 1-
form ω on G(U) down to a g-valued 1-form on U that we also denote by µνω .  In such a 

case, a change of local frame field involves a smooth transition function A: U → G, x 
֏ ( )A xµ

ν .  If one considers how the differential map De to the frame field e relates to the 

differential mapDe to the frame field e  = eA then one finds that: 
 

De = D(eA) = (De)A + e⊗dA = [De + e⊗(dAA−1)]A.  (XIII.68) 
 
 That is, the transformation of the differential is not covariant – i.e., effected by means 
of A alone.  Hence, one must replace the differential operator D with the covariant 
differential operator: 

∇eµ = Deµ + ν
ν µω⊗e .    (XIII.69) 

 One now has: 
 

µ∇e = D ν
µ ν µω+ ⊗e e  = [ ( )]D dA A A A Aκ λ κ λ ρ ν

ν κ λ ν λ ρ ν µω+ ⊗ +e e ɶ ɶ .  (XIII.70) 

 
Hence, as long as: 

ν
µω = A A dA Aν κ λ ν κ

κ λ µ κ µω +ɶ ɶ     (XIII.71) 

one will have 

µ∇e = ∇eν Aν
µ ;    (XIII.72) 

 
i.e., the covariant differential will indeed be covariant. 
 Thus, the local version of the Ad−1-equivariance of the 1-form ω on G(M) will take 
the form: 

ω = 1 1A A dAAω − −+ .    (XIII.73) 
 
 The matrix of local 1-forms µ

νω  on U can be related to the coframe θµ that is 

reciprocal to the chosen frame field eµ by means of: 
 

µ
νω = µ κ

κνΓ θ      (XIII.74) 
 
for a unique set of smooth functionsµκνΓ  on U that are analogous to the Riemann-

Christoffel symbols of the Levi-Civita connection, which we shall discuss shortly. 
 The introduction of the covariant derivative allows us to introduce the notation of 
parallel translation along a curve γ(t) in U.  The local frame field eµ on U is parallel 
along the curve γ(t) iff the covariant derivative of eµ in the direction of v = dγ /dt 
vanishes; i.e.: 
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0 = ∇veµ = iv(∇eµ ) = v v
x

µν ν κ
κµ νν

∂
+ Γ

∂
e

e .   (XIII.75) 

 
 If w is a vector field on U then one can say that if eµ is parallel along γ(τ) then w is 
parallel along γ(τ) iff its components wµ relative to eµ are constant.  More generally, we 
define the covariant derivative of w along v to be: 
 

∇vw = ( )v w
µ

µ ν
ν∇e e  = ( )v w w

µ

µ ν ν
µ ν+ ∇ee e  = ( )v w wµ ν ν κ

µ µκ ν+ Γe e   (XIII.76) 

 
for an arbitrary G-frame field eµ on U.  In these computations, we have set: 
 

µ ν∇e e = κ
µν κΓ e .     (XIII.77) 

 
 This means that the components of ∇vw with respect to this local frame field are: 
 

(∇vw)µ =v w v wν µ µ κ ν
ν κν+ Γe .    (XIII.78) 

 
 The vector field w is then parallel along the curve γ(τ) iff ∇vw vanishes. 
 If the local frame field in question is the natural frame field ∂µ for a local coordinate 
system (U, xµ), with reciprocal coframe field dxµ  then (XIII.78) will take the form: 
 

(∇vw)µ =
w

v v w
x

µ
ν µ κ ν

κνν
∂ + Γ
∂

=
dw

v w
d

µ
µ κ ν
κντ

+ Γ .   (XIII.79) 

 
 Of particular interest are geodesics, which are curves along which the velocity vector 
v(t) is itself parallel-translated.  One will then have the vanishing of the proper 
acceleration of the curve: 

a(τ) = ∇vv,     (XIII.80) 
 
which has the component form: 

0 = v v v vν µ µ κ ν
ν κν+ Γe     (XIII.81) 

 
with respect to an arbitrary local frame field and: 
 

0 =
dv

v v
d

µ
µ κ ν
κντ

+ Γ .    (XIII.82) 

with respect to a natural one. 
 The map that takes any G-frame eµ to its reciprocal G-coframe θµ defines a canonical 
isomorphism of the bundle G(M) → M of G-frames on M with the bundle G*(M) → M of 

G-coframes on M.  It too has a canonical 1-form with values in R
4 that we also denote by 

θµ, because for a local coframe field θ: U → G*(M), x ֏ x
µθ  the canonical 1-form pulls 

down to the coframe field θµ itself. 
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 This isomorphism also allows one to map the connection ω on G(M) over to a 
corresponding g-connection on G*(M).  The covariant derivative of a local frame field θµ 

on U ⊂ M along a curve γ(τ) in U whose velocity vector field is v(τ) is defined to be: 
 

∇vθµ = ivDθµ − ( )µ ν
νω θv ;    (XIII.83) 

 
Hence, this coframe field is parallel along the curve in question iff this covariant 
derivative vanishes. 
 The covariant derivative of a covector field α = αµ θµ is then defined to have 
components with respect to θµ that are equal to: 
 

(∇vα)µ = vαµ − ( )ν
µ νω αv     (XIII.84) 

 
with respect to an arbitrary coframe field and: 
 

(∇vα)µ =
d

v
d

µ ν κ
κµ µ

α
α

τ
− Γ     (XIII.85) 

with respect to a natural one. 
 One can define a stronger condition on vector fields, frame fields, and the like by 
eliminating the requirement that the field in question be parallel only along a specified 
curve and generalizing it to the requirement that the field itself be parallel; i.e., parallel 
along all curves.  If one wishes that a local frame field eµ on U ⊂ M be parallel then it is 
necessary and sufficient that its covariant differential: 
 

∇eµ = Deµ + ν
µ νω ⊗ e      (XIII.86) 

 
must vanish at all points of U.  That is: 
 

Deµ  = − ν
µ νω ⊗ e .     (XIII.87) 

 
 This condition amounts to a system of partial differential equations for the members 
of the local frame field while the condition that it be parallel along a specified curve gave 
a system of ordinary differential equations for the restriction of those members to the 
curve in question.  Hence, the question of the integrability of the system of differential 
equations is more involved in the present case.  In fact, one finds that a connection cannot 
admit parallel local frame fields unless its curvature vanishes; we shall discuss curvature 
in the next subsection, but, for now, we simply characterize it as an obstruction to the 
integrability of the equation (XIII.87). 
 One can also say that a vector field v = vµ eµ on U is parallel on U if its covariant 
differential, which we define by: 
 

∇v = dvµ ⊗eµ + vµ ∇eµ  = (dvµ  + vµ ν
νω ) ⊗eµ  + vµ Deµ ,  (XIII.88) 
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vanishes at all points of U. 
 In the case of a natural frame, for which Deµ = 0, we find that the covariant 
differential of v takes the form: 
 

∇v =
v

v dx
x

µ
µ κ ν
κν µν

 ∂ + Γ ⊗ ∂ ∂ 
.    (XIII.89) 

 
 To clarify what we mean by the expression Deµ , let ∂µ be a natural frame field on U, 
so we can represent eµ as ( )e xν

µ ν∂ for some unique invertible matrix of smooth 

functions ( )e xν
µ .  We then define: 

 
Deµ  = deν

µ ν⊗ ∂ = ,e dxν κ
µ κ ν⊗ ∂ .   (XIII.90) 

 
Hence, the vanishing of Deµ  means that eµ differs from a natural frame field only by a 
constant transition function on U.  In other words, the local frame field eµ could be called 
integrable, or, in physics terminology, holonomic; the non-integrable local frame fields 
are then anholonomic. 
 One can similarly define the covariant differential of a local coframe field θµ : 
 

∇θµ = Dθµ − µ
νω ⊗θν ,     (XIII.91) 

 
and a covector field α = αµ θµ : 
 

∇α = dαµ ⊗ θµ  + αµ ∇θµ  = (dαµ  − ν
µω αν)⊗θµ  + αµ Dθµ.  (XIII.92) 

 
 In a natural frame (Dθµ = 0), we then have: 
 

∇α = dx dx
x

µ κ µ ν
µν κν

α
α

∂ 
− Γ ⊗ ∂ 

.   (XIII.93) 

 
 As above, if dxµ is a natural coframe field on U and θµ  = ( )x dxµ ν

νθ then we are 

defining: 
Dθµ =d dxµ ν

νθ ⊗ = , dx dxµ κ ν
ν κθ ⊗ .   (XIII.94) 

 
There is then an analogous notion of integrability and anholonomity that is associated 
with local coframe fields. 
 The corresponding notion of parallelism in the above cases is also the vanishing of 
the various covariant differentials. 
 The relationship between the covariant differential and the covariant derivative along 
a curve – or, more generally, a vector field v on U – is simply that of the relationship of a 
differential to a directional derivative; i.e.: 
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∇v = iv∇.     (XIII.95) 
 
 Since every possible tensor field on U can be expressed as a finite linear combination 
of tensor products of frame fields and coframe fields on U, the covariant differential 
operator can be extended to the full tensor algebra over T(U) and T*M by requiring that it 
behave like a derivation.  That is, if T = a ⊗ b then: 
 

∇T = ∇a ⊗ b + a ⊗∇b.    (XIII.96) 
 
 d.  Torsion and curvature.  In addition to the covariant form of the differential 
operator on tensor fields there is also a covariant form of the exterior derivative operator 
on differential forms, at least when the forms take their values in vector spaces. 
 For this situation, it becomes more convenient to represent a tensor field of rank r+s 
on a manifold M as a smooth map: 
 

T: G(M) → Rn* ⊗…⊗ Rn* ⊗ Rn ⊗…⊗ Rn, e ֏ T(e) = 1

1
( )r

s
T xµ µ

ν ν
⋯

⋯
 

 
that is equivariant under the right action of G on frames and the tensor product 

representation of G in GL(Rn* ⊗…⊗ Rn* ⊗ Rn ⊗…⊗ Rn).  That is, T associates a G-

frame eµ at x∈M with the components 1

1
( )r

s
T xµ µ

ν ν
⋯

⋯
of a tensor field on M with respect to that 

frame in a manner that obeys the usual rules of transformation for the components of a 
tensor field: 
 The tensor field on M is then defined globally, even in the absence of a global frame 
field, by the construction rule: 
 

T(x) = 1

1
( )r

s
T xµ µ

ν ν
⋯

⋯ 1µe ⊗ …
rµe ⊗ 1νθ ⊗ …⊗ sνθ .  (XIII.97) 

 

 As an example, suppose G = GL(n; R).  One can then represent a metric tensor field g 

on M as a smooth function g: GL(M) → Rn ⊗ Rn, e ֏ g(e) = gµν(x) and reconstruct the 

tensor field g by way of: 
g(x) = gµν(x) θµ ⊗ θν.    (XIII.98) 

 
 Although a smooth map is essentially a 0-form, this definition of a tensor field 
generalizes immediately to the case of k-forms on M with values in vector spaces, and, in 
particular, the vector spaces that are expressible as the tensor product of other vector 
spaces.  For instance, we can regard the canonical 1-form θµ on G(M) as a 1-form on 

G(M) with values in Rn and a connection form ω is a 1-form on G(M) with values in g. 

 The exterior derivative operator that acts on elements of Λ*(G(M)) can be extended to 
an exterior covariant derivative operator on Λ*(G(M))⊗V, which is how we generically 
represent equivariant differential forms on G(M) with values in a vector space V on which 
G acts linearly.  Since the definition will depend upon the choice of action, rather than 
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define the general case, we simply define the way that it works for the cases of immediate 
interest to us. 

 In the case of the canonical 1-form θµ, as we observed above, V = Rn, and when G is 

represented as a subgroup of GL(n; R) the action of G on Rn is simply the defining 

representation; viz., the multiplication of a matrix and a vector or covector.  We then 

define the exterior covariant derivative of the Rn-valued 1-form θµ on G(M) to be the Rn-

valued torsion 2-form on G(M): 
 

Θµ =∇^θµ = dθµ + µ ν
νω ∧ θ .    (XIII.99) 

 
 We clarify that the second term on the right-hand side of this definition takes any pair 

of vector field v, w on G(M) to the vector in Rn: 

 
 µ ν

νω ∧ θ (v, w) = 1
2 [ ( ) ( ) ( ) ( )]µ ν µ ν

ν νω ωθ − θv w w v = 1
2 ( )v wµ µ κ ν

κν νκΓ − Γ .  (XIII.100) 
 
 When one defines a local G-frame field e: U → G(M), one can pull all of the 
differential forms in (XIII.99) down to forms on U that we denote by the same symbols.  
In particular, θµ  represents the reciprocal local coframe field to eµ on U. 
 The first term on the right-hand side of (XIII.99) is the anholonomity of the local 
coframe field θµ.  Since all k-forms on U can be represented in terms of θµ we have: 
 

dθµ = − 1
2 cµ

κλ  θκ ^ θλ,    (XIII.101) 

 
for a set of functionscµ

κλ on U that we call the structure functions of θµ; the reason for the 

minus sign is rooted in the fact that one also has: 
 

[eκ , eλ] = cµ
κλ eµ .    (XIII.102) 

 
 One sees that the anholonomity amounts to an obstruction to the integrability of the 
local system of differential equations θµ = dxµ on U, since its vanishing is a necessary and 
sufficient condition for such functions xµ to exist. 
 If θµ =h dxµ ν

ν for some natural coframe field then we can represent thecµ
κλ by: 

 
cµ

κλ = , ,h hµ µ
κ λ λ κ− .    (XIII.103) 

 
 If we represent µ

νω as µ κ
κνΓ θ then the torsion 2-form takes the form: 

Θµ  = 1
2 Sµ

κλ θκ ^ θλ,    (XIII.104) 

with: 
Sµ

κλ = cµ µ µ
κλ κλ λκ− + Γ − Γ .   (XIII.105) 
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 In a holonomic local frame field, the cµ
κλ vanish and the torsion 2-form then represents 

the “anti-symmetric part” of the connection.  In such a frame field, the vanishing of 
torsion is equivalent to the symmetry of the connection components µ

κνΓ in their lower 

indices. 
 Although (XIII.104) and (XIII.105) were defined on G(M), they take the same form 
when pulled down to U ⊂ M by means of a local G-frame field. 
 Another way of looking at torsion is that when it vanishes the equation: 
 

dθκ = − µ ν
νω ∧ θ     (XIII.106) 

 
says that the exterior differential system θκ = 0 on G(M) is completely integrable.  As the 
1-form θκ vanishes precisely when evaluated on vertical tangent vectors one sees that 
connections with vanishing torsion will always exist since the integral submanifolds to 
this exterior differential system will be the fibers of G, which always exist.  Hence, non-
vanishing torsion is only weakly an obstruction to the integrability of this exterior 
differential system. 
 Since the action of G on the Lie algebra g is the adjoint action, we define the exterior 

covariant derivative of the g-valued connection 1-form ω to be the g-valued curvature 2-

form: 
µ
νΩ  = µ

νω∧∇  = d µ µ κ
ν κ νω ω ω+ ∧ .   (XIII.107) 

 
In the right-hand side of this expression, we clarify that the term µ κ

κ νω ω∧ , when evaluated 

on two vector fields v, w on G(M), will have the value: 
 

µ κ
κ νω ω∧ (v, w) = 1

2 [ ( ) ( ) ( ) ( )]µ κ µ κ
κ ν κ νω ω ω ω−v w w v  = − 1

2 [ω(v), ω(w)]. (XIII.108) 

 
 When µ

νω is expressed as µ κ
κνΓ θ , the curvature 2-form can be expressed as: 

 
µ
νΩ  = 1

2 Rµ κ λ
κλν θ ∧ θ ,    (XIII.109) 

in which: 
Rµ

κλν = , ,
µ µ µ σ µ σ
λν κ κν λ κσ λν λσ κνΓ − Γ + Γ Γ − Γ Γ   (XIII.110) 

 
gives the components of the curvature tensor field in its conventional local form. 
 One can regard the curvature 2-form as an obstruction to the complete integrability of 
the exterior differential system µνω = 0 since its vanishing would make: 

 
d µ

νω  = − µ κ
κ νω ω∧ .    (XIII.111) 

The 1-forms µ
νω vanish precisely when they are evaluated on tangent vectors to G(M) that 

are, by definition, horizontal.  if one denotes the vector space of all horizontal tangent 
vectors at e ∈ G(M) by He(G(M)) and the resulting horizontal sub-bundle of T(G(M)) by 
H(G(M)) then one will have a Whitney sum decomposition: 
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T(G(M)) = H(G(M)) ⊕ V(G(M)). 
 
 However, unlike the vertical sub-bundle V(G(M)), which is always integrable, the 
horizontal sub-bundle H(G(M)) does not always have to be integrable.  Since its fibers 
have dimension n, and, in fact, the 1-form θµ defines a linear isomorphism of each 

horizontal tangent space with Rn, the integral submanifolds of the sub-bundle H(G(M)) 

would have to represent diffeomorphic copies of M in G(M) that are transverse to the 
fibers; i.e., global sections of the fibration G(M) → M.  This possibility is obstructed by 
topology, though, so the existence of a g-connection with vanishing curvature is 

necessary for the triviality of G(M); viz., its parallelizability. 
 Often (see, e.g., [7, 9, 10, 12, 15, 16]), equations (XIII.99) and (XIII.106) are 
collectively referred to as the Cartan structure equations for the connection ω.  As we 
have presented them, they are simply the definitions of the torsion and curvature of the 
connection, but if one starts with a more general definition of a g-connection, such as a 

complementary horizontal sub-bundle to the vertical sub-bundle of T(G(M)), then one can 
derive the equations as a consequence. 

 If one is given an Rn-valued 2-form Θµ on G(M) and a g-valued 2-form µ
νΩ  that have 

the same transformation properties as the torsion and curvature 2-forms then the 
integrability conditions for the systems of partial differential equations for a connection 
1-form µ

νω  that the structure equations represent are given by computing the square of the 

exterior covariant derivative operator, which we express generically as: 
 

∇^∇^α = d(dα + ω ^ α) + ω ^ (dα + ω ^ α) = Ω ^ α.  (XIII.112) 
 
 When this formula is applied to the canonical 1-form and the connection 1-form, one 
derives the Bianchi identities: 
 

∇^Θµ = µ
νΩ ^ θν, ∇^ µ

νΩ = 0.   (XIII.113) 

 
 One can associate the curvature 2-form µ

νΩ on G(M) with a 1-form Rµ that takes its 

values in Rn*, which we shall the Ricci curvature tensor, even though that tensor usually 

gets defined in the context of metric connections.  It takes the G-frame eµ ∈ G(M) to the 
1-form: 

Rµ  = i
ν

ν
µΩe = Rµν θν,    (XIII.114) 

in which: 
Rµν = Rκ

µκν .     (XIII.115) 
 
In the general case of a g-connection, these components do not have to be symmetric, 

though. 
 An aspect of the definition of a g-connection on G(M) that is important to the 

structure of the spacetime manifold is the fact that even though the manifold M does not 
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have to be parallelizable, nonetheless, the manifold GL(M) is always parallelizable.  This 
is because the 1-form θµ defines a linear isomorphism of each horizontal subspace on 

GL(M) with Rn, while the connection 1-form µ
νω  defines a linear isomorphism of each 

vertical subspace with gl(n; R).  Collectively, the set {θµ, µ
νω } defines a linear 

isomorphism of each tangent space to GL(M) with the vector space Rn ⊕ gl(n; R).  If one 

also chooses a basis for gl(n; R) then one can think of the set {θµ, µ
νω } as defining a 

linear isomorphism of each TeG(M) with Rn(n+1); i.e., a global coframe field on GL(M).  

By restriction, the same is true for any reduction of GL(M), as well, with a suitable 
adjustment to the dimension. 

 The set {θµ, µ
νω } can be thought of as a 1-formaθɶ , a = 1, …, n + dim g on G(M) with 

values in the vector space Rn+dim g.  Hence, one can represent aθɶ in block matrix form as: 

 

aθɶ =
µ

µ
νω

 θ
 
  

,    (XIII.116) 

 
although it would be more precise to denote the elements of the matrix µ

νω as a singly-

indexed column vector by choosing a basis Eα , α = 1, …, dim g, so that ω gets expressed 

in the form ωα Eα . 

 We define the connection on GL(G(M)) = G(M) × Rn+dim g that makes the global 

frame field aθɶ parallel; one calls such a connection either a teleparallelism connection, in 
general, or a Cartan connection, in the present case. 
 It is no longer necessary to specify both the torsion and curvature of such a 
connection 1-form, since both the torsion and the curvature 2-forms of µ

νω  get absorbed 

into the torsion 2-form aΘɶ : 

aΘɶ = d aθɶ  =
µ

µ
ν

 Θ
 Ω  

,    (XIII.117) 

 
while the curvature vanishes identically, due to parallelizability. 
 In physics, teleparallelism usually refers to making the assumption that the spacetime 
manifold M is parallelizable and working with the geometry of such manifolds in the 
hopes of unifying the theories of gravitation and electromagnetism, since the manifold 

GL(4; R) has the same dimension – viz., sixteen – as the sum of the dimensions of the 

manifold of Lorentzian structures Lor(4), namely, ten, and the vector space Λ2(R4), 

which has dimension six.  Interestingly, when Einstein, Mayer, and others [19] were 
doing this work in the late 1920’s, they were using purely local expressions for frame 
fields and made no mention of the global topological obstructions to parallelizability.  
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Indeed, the first definitive work on topology and teleparallelism, which was published by 
Stiefel [20], did not appear until 1935.  Hence, one can only wonder whether a more 
topologically thorough analysis of the situation might extend the physical theory 
accordingly, especially since the obstruction to parallelizability involves non-vanishing 
curvature, which is bound to contribute to the physics when it could not in the 
parallelizable case. 
 
 e.  Metric connections.  Now that we have defined the covariant differential of tensor 
fields in general, we can apply it to the various fundamental tensor fields that relate to the 
reduction of the bundle of linear frames to its various G-structures. 
 The first reduction that we encountered was from GL(M) to GL+(M), but that did not 
involve a fundamental tensor field, only a choice of orientation.  It was in the next 
reduction to SL(M) that we had to introduce a tensor field in order to define this 
reduction, in the form of a volume element V on T(M).  Hence, a connection ω on GL(M) 
that is compatible with this reduction must preserve the volume of a linear frame under 
parallel translation along a curve.  In order for this to happen it is necessary and sufficient 

that ω must be Ad−1-equivariant under the action of SL(n; R) on SL(M), which is 

equivalent to saying that ω must take its values in the Lie algebra sl(n; R). 

 Now, we can draw upon a general result from the geometry of G-structures [15-17] 
that when a reduction from GL(M) to a G-structure G(M) is effected by means of a 
fundamental tensor field τ: GL(M) → V the necessary and sufficient condition for a gl(n)-

connection 1-form ω on GL(M) to be reducible to a g-connection on G(M) is that τ be 

covariantly constant with respect to the connection ω; i.e.: 
 

0 = ∇^τ  = dτ + ω ^ τ .    (XIII.118) 
 
 In the case of V, we regard it, not as a 4-form on GL(M), but as a 0-form with values 

in Λ4(R4).  This makes dV vanish by dimensionality, and the remaining condition on ω is 

derived from: 
 

  0 = ω ^ τ  = 
1

(
4!

κ α λ µ ν µ λ α µ ν
κλµν α αε ω ωθ ∧ θ ∧ θ ∧ θ + θ ∧ θ ∧ θ ∧ θ  

     )κ λ µ α ν κ λ µ ν α
α αω ω+ θ ∧ θ ∧ θ ∧ θ + θ ∧ θ ∧ θ ∧ θ  

  = 4 Tr(ω) V.        (XIII.119) 
 
The last step follows from the fact that: 
 

1

4!
κ α λ µ ν

κλµν αε ω θ ∧ θ ∧ θ ∧ θ  = 
1

4!
α κ λ µ ν
α κλµνω ε θ ∧ θ ∧ θ ∧ θ , etc. (XIII.120) 

 
 Hence, since V is, by assumption, non-vanishing, one must have: 
 



Complex relativity                               395 

0 = Tr ω = µ
µω .     (XIII.121) 

 

This is, of course, the condition for the matrix ω to have membership in sl(n; R). 

 In the case of spacetime, the next reduction is from SL(M) to SO(3, 1)(M), which is 
associated with the fundamental tensor field g: GL(M) → SL(4)/SO(3,1); i.e., the 
Lorentzian metric on T(M).  From (XIII.118), the necessary and sufficient condition that 

an sl(4; R)-connection be reducible to an so(3;1)-connection is then: 

 
0 = ∇gµν = dgµν  + g gκ κ

µ κν ν µκω ω+ .   (XIII.122) 

 
One often finds the 1-form Qµν = ∇gµν  on GL(M) with values in Lor(4) = SL(4)/SO(3,1) 
referred to as the non-metricity tensor of ω (cf., e.g., [11]). 
 When g is restricted to the bundle SO(3,1)(M) of Lorentzian frames, gµν = ηµν , and 
the compatibility condition for ω to be a metric connection is: 
 

0 = κ κ
µ κν ν µκω η ω η+ = ωµν + ωνµ  .   (XIII.123) 

 
Again, this is simply the condition that ω take its values in so(3, 1). 

 If we wish to further reduce to SO0(3, 1)(M) then we need a global timelike vector 
field t.  However, this is not a fundamental tensor field for the reduction from SO(3,1)(M) 
to SO0(3,1)(M) since the homogeneous space SO(3,1)/SO0(3, 1) consists of two points.  
We note that when one has such a vector field t, it does represent the fundamental tensor 
field for the reduction from SO(3,1)(M) to SO(3)(M) since the homogeneous space 

SO(3,1)/SO(3) is diffeomorphic to R3.   Hence, we can regard t as an SO(3,1)-equivariant 

map t: SO(3,1)(M) → R3, eµ  ֏ t(eµ) = ti, where the ti represent the spatial components of 

t relative to eµ .  Hence, the reduction from SO(3,1)(M) to SO(3)(M) is defined by ti = 0, 
which means all oriented Lorentzian frames with e0 = t.  This means that one is reducing 
to the rest space of a measurer/observer that is defined by t and its g-orthogonal 
complementary hyperspace, which has the 1-form τ  = i tg = tµ θµ . 
 The compatibility condition for this latter reduction of ω is that t be a parallel vector 
field for ω: 

0 = ∇t = ∇tµ ⊗ eµ .    (XIII.124) 
 

As a consequence, its flow must be geodesic. 
 Even though all gl(n)-connection 1-forms take their values in a vector space – 

namely, gl(n) – nonetheless, the set Γ(GL(M)) of all gl(n)-connections on GL(M) is not a 

vector space, but only an affine space.  This is because for any two gl(n)-connection 1-

forms ω and ω′ the sum of the connections does not have to be a connection.  However, 
their difference 1-form: 

τ = ω′ – ω ,     (XIII.125) 
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is tensorial.  Hence, the vector space on which the affine space Γ(GL(M)) is modeled is 
the space of equivariant 1-forms on GL(M) that take their values in gl(n), which is, as one 

sees, an infinite-dimensional vector space. 
 One of the big differences between affine spaces and vector spaces is that in an affine 
space there is usually no distinguished point that could serve as a canonical choice of 
origin.  In the case of connections, one finds that the set of connections with vanishing 
torsion can sometimes define such a distinguished point in Γ(GL(M)).  Although the set 
of torsionless connections on GL(M) and SL(M) is of dimension higher than zero, one 
finds that the space of so(3, 1)-connections does have a distinguished element, which one 

calls the Levi-Civita connection.  By definition, it will be the unique connection ω that 
has both vanishing torsion and metricity: 
 

0 = Θµ,  0 = Qµν .    (XIII.126) 
 
 The local component equations for these conditions are then: 
 

κ
µνΓ = κ

νµΓ , gµν, κ  = − Γµνκ – Γκνµ .   (XIII.127) 

 
in a holonomic local frame field. 
 The components of the Levi-Civita connection – viz., the Riemann-Christoffel 
symbols − are then: 

κ
µνΓ = 1

2 gκα( gµα, ν  + gαν, µ  − gµν, α ).   (XIII.128) 

 
 The Riemann curvature tensor µνΩ  = µ

νω∇  that is obtained from the Levi-Civita 

connection differs from the general curvature 2-form for a linear connection mostly by 
the fact that it takes its values in so(3, 1). 

 However, the Ricci curvature 1-form Rµ = Rµνθν that we defined above is now 

symmetric: 
Rµν = Rνµ ,     (XIII.129) 

 
and one can also associate µ

νΩ  with a scalar curvature: 

 
R(eµ) =g i

µ

µν
νe R = gµνRµν .   (XIII.130) 

 
From equivariance, this function on G(M) is associated with a corresponding function 
R(x) on M. 
 When Einstein was first looking for a way of coupling the spacetime curvature to the 
symmetric energy-momentum tensor τµ = Tµν dxν, he had to take into account that, 
whereas the conservation of energy-momentum would dictate that the covariant 
divergence of τµ = gµν τν should vanish: 
 

0 = ∇µ τµ = Tµ
ν; µ  dxν  (Tµ

ν = gµκ Tκν)  (XIII.131) 
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nonetheless, from the Bianchi identities, one should have: 
 

∇µ R
µ = Rµ

ν; µ  dxν = 1
2 R,ν dxν  (Rµ

ν = gµκ Rκν)  (XIII.132) 

 
Hence, the divergenceless part of the Ricci curvature tensor is called the Einstein tensor, 

which we can represent as an equivariant 1-form E
µ on GL(M) with values in R4: 

 
E

µ(e) = (Rµ
ν − 1

2 R µ
νδ ) θν .   (XIII.133) 

 
 The Einstein field equations for gravitation then express the idea that Eµ should be 

proportional to τµ: 
E

µ = 8πκτµ,    (XIII.134) 

or: 
Rµ

ν − 1
2 R µ

νδ  = 8πκ Tµ
ν ,   (XIII.135) 

which also implies: 
R = − 8πκ Tµ

µ  .   (XIII.136) 
 
Hence, the scalar curvature is directly proportional to minus the trace of the energy-
momentum tensor.  This is particularly relevant to the case of an energy distribution that 
is purely due to electromagnetic radiation, since the Faraday energy-momentum tensor 
then has that property.  In one of the early stages of the Big Bang, the matter in the 
universe was assumed to be purely radiation-dominated. 
 This implies that (XIII.135) can also be written in the form: 
 

Rµ
ν = 8πκ (Tµ

ν  − 1
2 Tµ

µ 
µ

νδ ).   (XIII.137) 

 
 Hence, the sourceless field equations for g are simply the vanishing of the Ricci 
curvature tensor: 

Rµ
ν = 0.    (XIII.138) 

That this is consistent with the equations: 
Rµ

ν = − 1
2 R µ

νδ     (XIII.139) 

 
then follows from the vanishing of scalar curvature with the vanishing of Tµ

ν , as one sees 
from (XIII.136). 
 In differential geometry, the condition for a manifold with a metric g to be an Einstein 
space is usually weakened slightly to the condition that Rµν be proportional to gµν . 
 One can give the definition of the Einstein tensor Eµ and the scalar curvature R a 

somewhat more concise and elegant formulation by means of the curvature 3-form Eµ on 

GL(M), which takes a frame eµ to: 
 

Eµ(e) = − θν ^ *Ωµν = − εµνκλ θν ^ Ωκλ ,  (XIII.140) 
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in which we have defined: 
 

Ωµν  = gµν κ
νΩ , Ωκλ  =gκα λ

αΩ  = 1
4 Rκλ

αβ θα ^ θβ. (XIII.141) 

 
 Substituting (XIII.141) into (XIII.140) gives: 
 
 Eµ(e) = − 1

4 εµνκλ R
κλ

αβ θν ^ θα ^ θβ = − 1
4 εµνκλ εναβρ Rκλ

αβ #eρ  

= − 1
4

αβρ
κλµδ Rκλ

αβ #eρ = 1
2( )R Rν ν

µ µδ− #eν = #( )Eν
µ νe   (XIII.142) 

 
In these computations, we have made use of the fact that the identity map on 3-forms has 
the components: 

αβρ
κλµδ = α β ρ β ρ α ρ α β

κ λ µ κ λ µ κ λ µδ δ δ δ δ δ δ δ δ+ + .   (XIII.143) 

 

 Hence, the curvature 3-form Eµ(e), which takes its values in R4, is Poincaré dual to a 

set of four vector fields: 
Eµ =Eν

µ νe      (XIII.144) 

 
that describe the Einstein tensor for this choice of frame.  They are not generally linearly 
independent, though, so they do not usually define a 4-frame. 
 If we form the 4-form on GL(M): 
 

θµ ^ Eµ(e) = − θµ ^ θν ^ *Ωµν     (XIII.145) 

 
then we find that since θµ is reciprocal to eµ (XIII.142) gives: 
 

θµ ^ θν ^ *Ωµν = − 1
2( )R Rµ µ

µ µδ− V = R V,   (XIII.146) 

 
which is precisely the Einstein-Hilbert Lagrangian for the gravitational field that is 
described by the Lorentzian metric g. 
 Thus, we see that much of the geometric information that pertains to the physics of 
gravity is concisely summarized in the formsµνΩ , θµ ^ *Ωµν , and θµ ^ θν ^ *Ωµν . 

 
 

 4. General relativity in terms of complex orthogonal frames [1, 21, 22].  Now 

that we have discussed the isomorphism of SO0(3, 1) with SO(3; C) and the 

corresponding association of oriented, time-oriented, Lorenztian frames in T(M) with 
oriented, complex, orthogonal frames in Λ2(M), and presented general relativity in terms 
of connection 1-forms on the bundle SO0(3,1)(M) → M, it will be relatively 

straightforward to recast it in terms of the bundle SO(3; C)(Λ) → M. 
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 a.  The isomorphism of SO0(3,1)(M) with SO(3; C)(Λ).  Since the Lie groups SO0(3,1) 

and SO(3; C) are diffeomorphic as manifolds, the principal bundles SO0(3,1)(M) and 

SO(3; C)(Λ) have diffeomorphic fibers; in fact, the bundles themselves are also 

isomorphic.  The diffeomorphism of the fibers at a given x ∈ M is not canonical, but 
simply takes an oriented, time-oriented, Lorentzian 4-frame eµ to an oriented, complex, 
orthogonal 3-frame Zi .  When both objects are local frame fields on U ⊂ M, one has: 
 

Zi = 1
2 ( )iZ xµν

µ ν∧e e .    (XIII.147) 

 
For instance, the choice that we have been making all along has: 
 

0 j
iZ = j

iδ ,  jk
iZ = εijk.   (XIII.148) 

 
 There is a corresponding isomorphism of the bundles of coframes, SO0(3,1)*(M) and 

SO(3; C)*(Λ), that takes a coframe θµ to a coframe Zi with: 

 
Zi = 1

2 ( )iZ x µ ν
µν θ ∧ θ     (XIII.149) 

locally. 
 Since the bundle SO0(3,1)(M) is isomorphic to the bundle SO0(3,1)*(M) by the 
association of any frame with its reciprocal coframe, and similarly for the bundles SO(3; 

C)(Λ) and SO(3; C)*(Λ), one has the isomorphism of all four bundles. 

 

 b.  Canonical 1-form on SO(3; C)(Λ).  Just as the frame bundle GL(M) has a 

canonical real-valued 1-form θµ defined on it, the complex frame bundle GLC(Λ
2) has a 

canonical complex-valued 1-form Zi defined on it.  One finds that the origin of either 
canonical form is based in the idea that one can regard a frame Ei , i = 1, …, n in a vector 

space V over a field of scalars K as a linear isomorphism Ei : K
n → V, (v1, …, vn) ֏ viEi, 

while a coframe is a linear isomorphism Ei: V → Kn, v֏ vi = Ei(v).  Hence, a frame and 

a coframe are reciprocal iff these isomorphisms are inverse to each other. 

 If E → M is a vector bundle over M whose fiber is isomorphic to Kn then any frame 

Ei in Ex is associated with a set of set of n 1-forms Ei in 1 ( )x MΛ .  The canonical 1-form Ei 

on the bundle π: GL(E) → M of E-frames is obtained by pulling back the Ei along π: 
 

Ei(v) = π*Ei(v) = Ei(π*v).   (XIII.150) 
  



400 Pre-metric electromagnetism 

Again, the reason that we are abusing notation by denoting both the canonical 1-form and 
the coframe with the same symbol is because when one chooses a local E-frame field 
over U ⊂ M the canonical 1-form pulls down to the local reciprocal coframe field. 
 In the case where the elements of E are complex 3-frames in Λ2M, the canonical 

complex-valued 1-form Zi on GLC(Λ2) pulls down to a set of three local real 2-forms Zi on 

U ⊂ M by way of a local section Zi: U → GLC(Λ2).  The 2-forms Zi can then be expressed 

with respect to a local coframe field on U by expressions of the form (XIII.149). One way 

of seeing how the 1-form on GLC(Λ2) turns into a 2-form on U is to note that the vectors 

of the fibers of Λ2M are actually bivectors to begin with.  Hence, linear functionals on 
such vectors are 2-forms. 

 The canonical 1-form Zi on GLC(Λ2) restricts to a canonical 1-form on any G-

reduction of GLC(Λ2) where G is a Lie subgroup of GL(3; C).  Similarly, it induces a 

corresponding canonical 1-form on the coframe bundle GL*(3; C) by the isomorphism of 

those two bundles. 
 

 c.  Connections on GLC(M) and its reductions.  The reason for introducing a 

connection on the bundle GLC(M) → M is analogous to the reason for introducing one on 

GL(M) → M.  That is, if F(x(τ)) = Fi Zi is a complex 3-vector along a differentiable curve 
x(τ) in U ⊂ M one wishes to give some precise sense to the condition that this complex 3-
vector be “parallel” along the curve.  By differentiating with respect to τ, we get, with 
v(τ) = dx/dτ: 

d

dτ
F

= ( )
i

i
i i

dF
Z F i dZ

dτ
+ v = ( )

i
j i

j i

dF
F Z

d
ϖ

τ
 

+ 
 

v ,  (XIII.151) 

in which: 
i
jϖ = dZj ⊗C Z

i     (XIII.152) 

 
represents the generalized complex “angular velocity” of the 3-frame Zi along the curve 

in question; here, we use the notation ⊗C to indicate that we are concerned with the tensor 

product over the complex vector space that Zi lives in, not the real vector space of 2-
forms that it is associated with.   One can see that it represents a 1-form on U with values 

in the Lie algebra gl(3; C).  Although one could propose to say that F is constant along 

x(τ) if this derivative vanishes, the condition would not be true for all choices of local 
frame field Zi. 
 In order to make the vanishing of the derivative covariant under all changes of local 
frame fields, including ones for which the transition function is non-constant, one must 
replace the ordinary derivative with a covariant derivative that is defined by making a 
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choice of gl(3; C)-connection 1-form i
jσ  on the bundle GLC(M) → M.  Hence, this will 

be a 1-form on GLC(M) with values in gl(3; C) that is Ad−1-equivariant under the right 

action of GL(3; C) on complex 3-frames: 

 

k

i
j Z A

σ = 1( )
iZ

A Aσ −     (XIII.153) 

 

and defines a linear isomorphism of each vertical tangent space on GLC(M) with gl(3; C) 

in such a way that if a ∈ gl(3; C) and aɶ is the fundamental vector field on GLC(M) that is 

associated with a then one has: 
( )aσ ɶ = a     (XIII.154) 

under this linear isomorphism. 

 If Zi: U → GLCU is a local complex 3-frame field over U and Zi is its reciprocal 

complex coframe field then σ can be expressed as a 1-form on U with values in gl(3; C) 

by way of: 
i
jσ = i

j
µ

µσ θ ,     (XIII.155) 

 
in which the i

jµσ  are smooth functions on U.  Note that in general the choice of Zi does 

not imply an unambiguous choice of θµ, although this will be true in the reduced case of 
oriented, complex orthonormal frames and oriented, time-oriented, Lorentzian frames. 
 The 1-forms i

jσ transform to another coframe field iZ = i j
jA Z by way of: 

 
i
jσ = i k m i k

k m j k jA A A dAσ +ɶ ɶ .    (XIII.156) 

  

 One can reduce the bundle GLC(Λ2) to the bundle SLC(Λ2) by defining a complex 

volume element V on Λ2 M, which can also be defined as the 3-form on GLC(Λ2): 

 

V =
1

3!
εijk Z

i ⊥ Zj ⊥ Zk,     (XIII.157) 

 
in which Zi is the canonical 2-form; again, the notation ⊥ is used to distinguish the 
exterior algebra over the complex vector space in which one finds Zi, not the real vector 
space of 2-forms that the Zi are associated with. 

 A gl(3; C)-connection σ on GLC(Λ2) is reducible to an sl(3; C)-connection iff the 

exterior covariant derivative of V using σ vanishes: 
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∇V = dV + σV = Tr(σ)V.    (XIII.158) 

 
Hence, the connection is reducible iff the trace of the matrix i

jσ vanishes identically. 

 One can define a complex orthogonal structure γ on Λ2 M by means of an equivariant 

0-form γij on GLC(Λ2) with values in the homogeneous space GL(3; C)/O(3; C): 

 

γ(Zi) = γij Z
i ⊗C Z

j.    (XIII.159) 

 
The reduction is then achieved by restricting to all complex orthonormal 3-forms, which 
will then have γij = δij . 

 The gl(3; C)-connection σ  is reducible to an o(3; C)-connection iff the tensor field γ 

is covariantly constant: 
0 = ∇γij = dγij − k k

i kj j kiσ γ σ γ− .   (XIII.160) 

 
 For a complex orthonormal frame, this says that: 
 

0 = σij + σji ;     (XIII.161) 
i.e., σij is anti-symmetric. 

 Of course, in order for σ to be an so(3; C)-connection, the matrix σ must satisfy both 

conditions that it have vanishing trace and satisfy (XIII.160). 
 

 c.  Curvature and torsion.  Now let G be a Lie subgroup of GL(3; C) and let g be its 

Lie algebra.  Suppose furthermore that σ is a g-connection on GLC(Λ
2). 

 Since Zi can be interpreted as either a 1-form on GLC(Λ
2) with values in C3 or a local 

2-form on some U ⊂ M, we need to clarify what it means to define the torsion of a g-

connection σ on GLC(Λ
2) to be the “exterior covariant derivative” of the canonical 1-

form: 
Ψi = ∇^Zi = dZi + i j

j Zσ ∧ .   (XIII.162) 

 
In particular, one needs to explain what its two terms represent. 
 It seems simplest to use the local interpretation, since it is inevitable that physics will 
require the necessity of going to local expressions.  Hence, we shall regard Zi as a 2-form 

on U with values in C3 that is given by (XIII.149), so Ψi will be a 3-form with values in 

C
3, along with both of the terms in its definition.  This makes: 

 
dZi = 1

2 [ ]i idZ Z cκ λ µ ν
µν κν λµ− θ ∧ θ ∧ θ ,   (XIII.163) 
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in which we have substituted the appropriate expression for dθµ, and: 
 

i j
j Zσ ∧ = 1

[ ]2
i j

j Z
κ µ ν

κ µνσ θ ∧ θ ∧ θ ,   (XIII.164) 

 
in which the [.] notation implies that we have completely anti-symmetrized the 
components κµν: 

[ ]
i j

j Zκ µνσ = 1
3 ( )i j i j i j

j j jZ Z Zκ µν µ νκ ν µκσ σ σ+ + .  (XIII.165) 

 
 Combining expressions, we see that the local form of the torsion 3-form is: 
 

Ψi = 1
[ ]2 [ ]i i j i

jZ Z Z cλ κ µ ν
κ µν κ µν λν κµσ+ − θ ∧ θ ∧ θe ; (XIII.166) 

 
that is, its components with respect to this local coframe field are: 
 

i
κµνΨ = [ ]

i i j i
jZ Z Z cλ

κ µν κ µν λν κµσ+ −e .   (XIII.167) 

 
Hence, the vanishing of torsion becomes an algebraic condition on σ. 
 Two simplifying special cases present themselves: local coframe fields in which the 

iZµν are constant, which we call canonical coframe fields, and anholonomic coframe 

fields, for which the structure functionscκ
µν vanish.  In a holonomic canonical coframe 

field the vanishing of torsion takes the form of the algebraic identity: 
 

0 = [ ]
i j

j Zκ µνσ .     (XIII.168) 

 
 In the case of curvature, since only σ is involved, if we express it locally as a 1-form 
on U with values in g then the definition of its exterior covariant derivative is more 

conventional.  It is a 2-form on U with values in g: 

 
i
jΣ = i

jσ∧∇  = i i k
j k jdσ σ σ+ ∧ ,    (XIII.169) 

which has the components: 
i
jµνΣ = i i i k i k

j j k j k jµ ν ν µ µ ν ν µσ σ σ σ σ σ− + −e e .  (XIII.170) 

 
 The Bianchi identities work the same way as before: 

∇^Ψi = ∇^∇^Zi = i
jΣ ^ Zj,    (XIII.171a) 

i
j

∧∇ Σ = ∇^ i
jσ∧∇ = 0.     (XIII.171b) 

 
Of course, the expression ∇^Ψi is locally a 4-form, this time. 
 
 d.  Penrose-Debever decomposition of the Riemann curvature tensor.  The curvature 
2-form i

jΣ , at least when it is considered locally, can be regarded as a linear map Σx : 
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(Λ2)xM → so(3; C), a ^ b ֏ [ ] ( , )i
x jΣ a b , from one real vector space of dimension six to 

another; hence, Σx ∈ 2
xMΛ ⊗R so(3; C).  Furthermore, both real vector spaces are assumed 

to be given complex structures, which are defined by * in the case of 2
xMΛ and i in the 

case of so(3; C). 

 
 i.  The space of curvature tensors.  The basis for the Penrose-Debever decomposition 

of the Riemann curvature tensor is that since 2
xMΛ and so(3; C) have the same dimension 

as vector spaces – whether real or complex – one can identify their elements by choosing 
a basis for each.  Of course, this is somewhat naïve, as far as the algebraic structures on 
the two vector spaces are concerned, and comes down to the fact that one can associate 
any element µ

νω ∈ so(p, q) in a matrix representation of an orthogonal Lie algebra with an 

anti-symmetric matrix ωµν = g κ
µκ νω , regardless of the signature type (p, q) of the metric 

gµν . 
 In particular, since the Riemann curvature tensor µ

νΩ  takes its values in so(3, 1) in the 

case of general relativity, one can associate its value ( , )x x
µ
νΩ v w when applied to tangent 

vectors vx, wx at a point x ∈ M with a 2-form: 
 

Ω(vx, wx) = 1
2 Ωµν(vx, wx) dxµ ^ dxν,   (XIII.172) 

by setting: 
Ωµν(vx, wx) = gµν(x) ( , )x x

µ
νΩ v w .   (XIII.173) 

 
 Since µ

νΩ  is a 2-form to begin with, this means that we can regard Ω as defining 

linear maps from each vector space Λ2,xM to the corresponding vector space2xMΛ ; i.e., Ω 

is a section of  Λ2M ⊗Λ2M  → M that one can locally represent as: 
 

Ω = 1
4 ( ) ( )R dx dx dx dxκ λ µ ν

κλµν ∧ ⊗ ∧ .  (XIII.174) 

 
In fact, from the symmetry of Rκλµν in the first and last index pairs, one can write this as: 
 

Ω = 1
4 Rκλµν (dxκ ^ dxλ)(dxµ ^ dxν),   (XIII.175) 

 
with the symmetrized tensor product implied by the absence of a multiplication symbol. 

 If one goes the route of the other isomorphic copy of both 2
xMΛ and so(3; C) − 

namely, C3 − by way of the isomorphisms Zi, then one can represent the Riemann 

curvature tensor (or really its value at any point x∈M) by means of an element Σ of 

C
3
⊙C

3: 
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Σ = Σij Z
i Zj,  Σij = γik

k
jΣ .   (XIII.176) 

 

 Here, we can pause to point out that even though the Euclidian metric on C3 that is 

defined by γij can be obtained by first defining a Lorentzian structure gµν on T(M), 
actually, that definition is not necessary.  It is sufficient to define a linear electromagnetic 
constitutive tensor κ ∈ Λ2M ⊗Λ2M and then obtain the Euclidian scalar product by 
means of the association: 

γij = 1
4 κκλµν i jZ Zκλ µν .    (XIII.177) 

 
Note that under symmetrization the skewon part of κ will not contribute to γij . 
 Therefore, just as the observation that the Lorentzian metric contributed to the 
Maxwell equations only by way of the isomorphism * represented the starting point for 
pre-metric electromagnetism, so does this latter association represent the starting point 
for “pre-metric gravitation.”  Of course, what this would really mean is not that there is 
no metric on anything involved, but only that the more fundamental metric is a complex 
Euclidian metric on the bundle of 2-forms over spacetime, not a Lorentzian metric on the 
bundle of tangent vectors.  Moreover, the fundamental character of the metric γij is then 
purely electromagnetic in origin. 
 
 ii.  The double dual operator.  When one is given two real vector spaces V and W that 
have complex structures * and *   defined on them, a natural problem to investigate is the 
way that a given real-linear map, such as Σx , affects the two complex structures. 

 Indeed, the basic question is whether an R-linear map A: V → W between two real 

vector spaces V and W that have been given complex structures * and *  also defines a C-

linear map.  The necessary and sufficient condition for this is that A must commute with 
both the isomorphisms * and * : 
 

A* = * A.     (XIII.178) 
 

 We can then define an R-linear map ( )⋅ : HomR(V, W) → HomR(V, W), A A֏ , 

where: 
 A= * A*,     (XIII.179) 

  
which we refer to as the double dual operator. 

 Since *2 = − I and 2* = − I, one sees that this map ( )⋅  is then an involutory 

isomorphism on HomR(V, W): 

A= A.      (XIII.180) 
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 This also says that the eigenvalues of the map( )⋅ are ± 1.  Indeed, the real vector space 

HomR(V, W) splits into a direct sum Hom+ ⊕ Hom− of two subspaces of equal dimension 

that correspond to the positive and negative eigenvalues, respectively.  In fact, the map 

that takes A to A+ + A- is just polarization using the involution( )⋅ : 
 

A+ = 1
2 ( )A A+ ,  A- = 1

2 ( )A A− .   (XIII.181) 

 
 It is traditional to call the elements of the subspaces Hom+ and Hom− self-dual and 
anti-self-dual, resp., but we can see from (XIII.178) that the elements of Hom− represent 

C-linear maps, while the elements of Hom+ are C-antilinear.  One must note that the 

signs behave in the opposite manner to one’s intuition regarding C-linearity. 

 The way this double dual map is defined in most of the literature of complex 
relativity is to consider the space of curvature tensors as sections of the vector bundle 

Λ2M ⊗ so(3; C) → M and give the fibers of the factors Λ2M and so(3; C) the complex 

structures defined by * and i, respectively. 
 One then defines: 

iZ = i*Zi, (so *Zi = − i iZ )   (XIII.182) 
 
which can be interpreted as meaning that * takes the 2-form Zi to its dual 2-form and i 

takes its value Zi(b) in so(3; C), when evaluated on a bivector b to the complex 3-vector 

iZi(b).  When iZ = ± Zi one has *Zi = ∓ iZi, which makes the self-dual (anti-self-dual, 
resp.) 2-forms take the form of eigenvectors of * with eigenvalue – i (+i, resp.). 
 
 iii.  The Einstein equations.  In order to account for the symmetry of Rκλµν in its first 
last index pairs, we see that it becomes more convenient to represent Riemann curvature 

tensors as elements of either Λ2M⊙Λ2M or C3
⊙C

3, which we then refer to as the real 

and complex representations, respectively. 
 In the complex representation, the decomposition into self-dual and anti-self-dual 
parts allows one to express Σ in the form: 
 

Σ = i j i j
ij ijC Z Z iE Z Z′ + .    (XII.183) 

 
This means that the complex matrix ijC′ is symmetric and Eij is Hermitian. 

 Furthermore, since we already have a symmetric second rank tensor on C3 that is 

defined by γ, which we express in the form: 
 

γ = γij Z
i Zj,     (XII.184) 
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we can project Σ onto that one-dimensional subspace of C
3
⊙C

3 by taking its trace: 

 
Tr(Σ) = i

iΣ = γikΣki = Tr(C′).    (XII.185) 

 
 The traceless part ofijC′ is then denoted by: 

 
Cij = ijC′  − 1

3 Tr( )Σ γij .     (XII.186) 

 
 Therefore, we have the complex representation of the Penrose-Debever 
decomposition of Σ into: 

Σ = C + E + 1
2 (Tr Σ)γ.     (XII.187) 

 
 This can be given a corresponding real form as a decomposition of Rκλµν by means of 
the isomorphisms defined by Zi. It can be shown (cf., e.g., [21, 22]) that: 
 

Tr Σ = 1
4 R,     (XII.188) 

 
where R is the scalar curvature of Ω, and Eij corresponds to: 
 

Eµν = Rµν − 1
4 Rgµν ,    (XII.189) 

 
which is the traceless part of the Ricci curvature tensor. 
 Hence, although this differs from the Einstein tensor by a term equal to − 1

4 Rgµν , 

nevertheless, since the vacuum Einstein equations implied that R had to vanish, we see 
that the vacuum Einstein equations are equivalent to the equations: 
 

Eij = 0.      (XII.190) 
 
 The remaining part of Σ that is defined by C corresponds to the Weyl curvature tensor 
of the connection ω, which is also called the conformal curvature tensor.  Its vanishing 
implies that the metric g is conformal to the Minkowskian one: 
 

gµν = α2ηµν ,     (XII.191) 
 
with α2 as the conformal factor. 
 One should observe that so far we have obtained the complex form of only the 
vacuum Einstein equations.  Hence, we need to extend the analysis give to the complex 
form of the Einstein equations with sources.  This step then depends upon first finding the 
complex form of the energy-momentum tensor. 
 As pointed out by Krasnov [23], in the Plebanski [24] formulation of complex 
relativity one can define the complex form of the energy-momentum tensor T µ

ν  by first 

splitting it into its trace T = T µ
µ and its traceless part T µ

ν
ɶ = T µ

ν − 1
4 T µ

νδ   and then defining: 
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i
jTɶ = 1

4
i jT Z Zκ µν

µ νκ
ɶ , iZ µν = ij

jZ µνγ .   (XIII.192) 

 
Note that since the T µ

ν  form of the energy-momentum tensor is pre-metric in its 

definition, and involves a mechanical constitutive law as the mechanism for associating 
tangent objects with cotangent ones, the metric is not introduced into the definitions until 
one uses γij, which, as we pointed out above, can be defined by the electromagnetic 
constitutive law alone. 
 The Einstein equations, with the source term included then take the form: 
 

Eij = − 2πG ijTɶ , Tr(Σ) = − 1
4 Λ – 2πGT,   (XIII.193) 

 
if one includes the cosmological constant Λ. 
 In order to make the comparison more immediate, one should use following real form 
of the Einstein equations: 

1
4R Rµ µ

ν νδ− = 8πGT µ
ν
ɶ ,  R = − Λ – 8πGT, (XIII.194) 

 
in place of the usual formulation in terms of the divergenceless part of the Ricci tensor. 
 
 
 5.  Discussion.  In its conventional formulation (e.g., [21, 22]), complex relativity 
generally involves a slight redundancy in its basic definitions.  In particular, although one 
assumes an almost-complex structure on Λ2M, in the form of *, one also complexifies 

this bundle to Λ2M⊗C in order to treat the mathematical expression *F = ± iF as an 

eigenvalue equation that allows one to define a decomposition of Λ2M⊗C into a direct 

sum of self-dual and anti-self-dual 2-forms, which then correspond to the positive and 
negative imaginary eigenvalues, respectively. 
 However, since * defines an almost-complex structure on Λ2M it would seem 
unnecessary to complexify it again.  One need only regard the expression *F = ± iF as 
giving two possible definitions of how the imaginary unit i acts on the fibers of Λ2M, and 
thus complex scalars, more generally. 
 The concept of self-duality reasserts itself in the context of the Debever-Penrose 
decomposition of the curvature 2-form.  However, at that point one can observe that an 

R-linear map from Λ2M to either so(3; C) or C3 can commute with the complex 

structures on both or not.  Hence, we can define a (double) duality operator on Λ2M 

⊗so(3; C) − or Λ2M ⊗ Λ2M, for that matter – that allows one to define the 

aforementioned decomposition, just the same.  One then finds that the anti-self-dual R-

linear maps are precisely the C-linear maps. 

 Since the theme of this book all along has been that the electromagnetic structure of 
the spacetime manifold, as encoded in the constitutive map κ, implies the Lorentzian 
geometry as a consequence of the dispersion law that follows from κ by way of the field 
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equations, we first observe that even the primary emphasis in the relativistic theory of 
gravitation can be shifted from the Lorentzian metric gµν on tangent vectors to the 
complex Euclidian metric γij in 2-forms.  Since this metric can be defined in terms of only 
κ, one sees that in a sense one can also define a sort of “pre-metric gravitation” as well as 
pre-metric electromagnetism.  Of course, as we have observed a number of times, there is 
a difference between the algebraic sort of metric structure that comes from κ directly and 
the differential sort that comes from defining field equations that involve κ and passing to 
the symbol of the differential operator κ□  that defines them. 

 A deep question then arises whether perhaps the field κ, which is like a generalization 
of the metric tensor, might be itself subject to field equations.  One sees that in order to 
make physical sense of this coupling one would have to go into deeper detail about the 
nature of the medium in question and how electric polarizability and magnetization can 
come about in it.  If one is dealing with macroscopic media, such as optical ones, this 
resolution of the macroscopic picture to a microscopic one is generally more 
straightforward – e.g., crystal lattices, electron orbitals – than when one is addressing the 
electromagnetic vacuum state of quantum electrodynamics.  In that case, one must mostly 
rely upon effective models, such as the Heisenberg-Euler model. 
 Of course, if one is attempting to account for the gravitational fields of astronomical 
bodies then one must realize that the energy, momentum, and stress that couple to the 
spacetime metric in the form of κ must be essentially affecting the state of electric and 
magnetic polarization of the vacuum of space, at least in the immediate neighborhood of 
elementary massive matter, in order to produce a spacetime metric that is not merely 
obtained from a linear, isotropic, homogeneous electromagnetic constitutive law that is 
based on the constants ε0 and µ0 .  Of course, this is precisely what one gets from the 
Heisenberg-Euler dispersion law, which attributes the perturbation of the Minkowski 
metric in a region of spacetime to the Faraday stress-energy-momentum tensor of an 
electromagnetic field that permeates it.  Although the electric and magnetic field 
strengths are generally close to the critical values only in the small neighborhoods of 
elementary charge distributions, nevertheless, one can still think of those distributions as 
the ultimate sources of gravitational fields, as well.  Perhaps the gravitational field of a 
star or planet is then best viewed as the macroscopic effect of a large number of 
microscopic perturbations to the metric at the elementary level due to vacuum 
polarization. 
 The main objective of this chapter was therefore to embed the usual Lorentzian 
geometry of general relativity in the framework of the geometry that pertains to the 
bundle of 2-forms instead of the tangent bundle.  At this point, one can only speculate on 
what form the field equations of κ might take, although undoubtedly the answer to that 
problem will probably follow from a better understanding of the role that connections on 
the bundle of frames in Λ2M and its reductions and their curvatures take in physics. 
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