Lagrangians for spinor fields
based on S-36

we want to find a suitable lagrangian for left- and right-handed spinor fields.

it should be:
¢ Lorentz invariant and hermitian

¢ quadratic in g and 'l/)l

equations of motion will be linear with plane wave solutions
(suitable for describing free particles)

terms with no derivative:
PP = Y, = Py, he

terms with derivatives:

O
would lead to a hamiltonian unbounded from below
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to get a bounded hamiltonian the kinetic term has to contain both Tpa
and 1/11 ,a candidate is:

T a+0,

is hermitian up to a total divergence

(ip'a 0,0) = (i) 3#*0,p.)!
= —i0,9! (3")" ¢
= —i0,P] 7",
GHe = (I,-3) / = i) 77,1, — 10, (] 5N,).
are hermitian _ i’l,ZJTc_r'”ap,’gb . iaﬂ('gbfa'”’gb) '

~

does not contribute to the action
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Our complete lagrangian is:

— s T = 1 1%
L =iy'ar0,y — Imypy — Im*ylyt
the phase of m can be absorbed into the definition of fields
%= e—ia/2 ,(/';

and so without loss of generality we can take m to be real and positive.

m = |m|e®

Equation of motion:
6S

0 = —iGH%Oy1he + myp'e
Taking hermitian conjugate: W v

g4 — (1,-5) 0 = +i(5")" Bupp! + my®

are hermitan 0 _ +i6‘“3“6u¢z + mayp*®
ab b =g 8;11/’76 +miq .
b

ot =¢
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0 = —igH%, b, + may'e
0 = —io%, 8, + mp,

( mdac _io'::c ap,) < "/)c ) 0
—ighcd,  mst, ) \yfe)

which we can write using 4x4 gamma matrices:

0 ot
b= ac
T (a“‘w 0)

and defining four-component Majorana field: 7

We can combine the two equations:

Ve
Yre

Dirac equation

197



oh. = (1,%)

using the sigma-matrix relations:
g4 = (I,-5)

(c#5” + 0¥5")a® = —2¢"8,°

(6Fc” + &% oH)%: = —2¢9" 6%

we see that e (° Tat
T \gHe 0

{7* 7"} = —2¢"

and we know that that we needed 4 such matrices;

recall:

z’h%ipa(m) . (—z’hc(ozj)abaj + m02(ﬁ)ab)¢b(z)

{ajs ak}ab = 25jk6ab 3 {aj’ﬂ}ab =0 ) (ﬂz)ab = (sab B=4°

aF = A0nk

(=iv"0, +m)¥ =0
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consider a theory of two left-handed spinor fields:
— dohT = 1 1
L = wp[aB,; — yrmpi; — srmaplo]
the lagrangian is invariant under the SO(2) transformation:
(¢1) ( cos sina) (1/)1>
o —sina  cosa o
it can be written in the form that is manifestly U(1) symmetric:
X = J5(W1 +1it)
€ = (11 —ithe)
L =ix'"0,x +i€16"0,6 — mx€ — me&' x|

X — e x
£ —etiag
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L = ix'a"8,x + €150, — mx€& — me&'x!

Equations of motion for this theory:

( mé.©  —iok, 3u) ( Xe ) 0
—igrcd, met; ) \&te)
Xe
we can define a four-component Dirac field: U= .
ghe
(—iy*8, +m)T = 0
Dirac equation
we want to write the lagrangian in terms of the Dirac field:

‘IIT = (XI‘:) ga) ( 0 5dé)

= 3 0
Let’s define: ¢
= _ numerically
T =08= (X)) g
but different spinor index structure
Then we find: T =ug= (¢ x)
T =¢° Lete =(x
=& "Xa + Xa€ v=|

U1, 0 = %%, 9,61 + x| 49° 8, x.

AOB = —(9A)B + 6(AV

50"75& 3u§Té = —(8”5“)056 fTé + 3#(5“‘756 ffé)

N\

— (86" 0t €16 = +¢1%0H, 9,6% = +§Z G 0,
=paa _ .ab_ab_p
Thus we have: o =e ey

Ty 0, = X640, x + £16"0,& + 0(Ea™¢T)
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Thus the lagrangian can be written as: L = ix'5"9,x + ie' 50,6 — mx€ — me'x!

L =iUy*9,¥ —mUV
The U(1) symmetry is obvious:
U e v

U — ety

The Nether current associated with this symmetry is: oL(z)

H(z) = m&ﬂa(z)
GH = ﬁ,),#\p — XT(—,MX _ €T5u£

later we will see that this is the electromagnetic current
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L =ix'5"0,x + i'5#0,& — mx€e — me'x!
There is an additional discrete symmetry that exchanges the two fields,
C™xa()C = &4(2)

C_lga(x)c = Xa(a")
C1L(2)C = L(x)

we want to express it in terms of the Dirac field:
Let’s define the charge conjugation matrix:

then o (& 7= (€ x)
R ) v=(3)
and we have: Xa
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The charge conjugation matrix has following properties: <6 0 )

cr=Cl=ct=-

it can also be written as:

and then we find a useful identity:
g 0 0 U(l;c' €e O
0 e,/ \ate 0 0 e
sabo.g'éséé)

0
. Edbaﬂbcsce 0
FhHaa = Eab Ea.b 0'”-

W~ <_0 _a.uaé>.

CiyMC =

transposed form of

age 0 -1 T
CTAHC = —(v)
Majorana field is its own conjugate: Ye
U=
(Wé)

Ue =
similar to a real scalar field
ol =
X— Y
§—

L= sUy*9,¥ — ;mIV
does not incorporate the Majorana condition
T =Cu"
U =UTC

Following the same procedure with:

we get:

incorporating the Majorana condition, we get:

AT U — L@
L=3V Cy"o,¥ — ;mU C¥
lagrangian for a Majorana field
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If we want to go back from 4-component Dirac or Majorana fields to the
two-component Weyl fields, it is useful to define a projection matrix:

—0,° 0
’75\_ 0 +4%,

just a name

We can define left and right projection matrices:

0.5 0
PLE%(l_')’S):( )

0 O
Pp=3(1+15) = (0 ; )
0 6%
And for a Dirac field we find: Ye U= (XC)
e ( 0 ) ¢
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The gamma-5 matrix can be also written as:

15 = iyl

— _ 4 KnV m P A
= T248mwps VT €o123 = —1

Finally, let’s take a look at the Lorentz transformation of a Dirac or
Majorana field: U(A) o (z)U(A) = L(A)oC Ye(A 1)
UA) @)U A) = R(A): ¥l (A2)
UM (z)U(A) = D(A)T (A 2) ,
L(1+5w)ac =0+ %5‘0“1}(5{”)&0
D(1+6w) =1+ £bw,, S* R(1+6w)s® = 8:° + 50w (SK”)a°
(S£")a® = +i(0"0” — 0"5")a"

(Sgu)dé — —%(5“0" _ 5,ugu)dé

Xe
U= )
— _ ¢ (ﬁfc)

[

HVY ¢
st = <+(SL . X

0 —(88")%

compensates for € .
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Canonical quantization of spinor fields |
based on S-37

Consider the lagrangian for a left-handed Weyl field:

L = ih'a"dunp — tm(yp +pTyT)

the conjugate momentum to the left-handed field is: %(z) = 67[’
9(0oba(2))
= i} (x)a%
and the hamiltonian is simply given as:
H - Traao/dja - E
= W}5" "y — L
= 10" 0 + Fm(yy + YTy
the appropriate canonical anticommutation relations are:
{d)a.(xa t)"‘bc(y,t)} =0,
{Ya(x,t), 7(y, )} = id,° 53(){ -y)
o) = - O
or ~ 0(%0¢a(2))
= i} @)z

{ta(x, 1), ¥l (y,1)}6% = 6,° 8°(x — y)
using 3% =0%=1 we get

{Ya(x,t), 0l (y, 1)} = 0%, P (x — y)

or, equivalently,

{07 (x,0), 9" (y, 1)} = 5% 6°(x ~ )
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For a four-component Dirac field we found:
L= ixTc‘r“B,Lx + z’ET&“GME —m(x§ + ETXT)

= iUy, ¥ —mUV . (Xc)
U=

and the corresponding canonical anticommutation relations are:

{Wa(x,1), ¥l(y, )} = 05: 8°(x — y)
{d’a(x’ t)f‘/)l(y’t)} = 02& 53()( - y)
{‘Ija(x, t)a \Ijﬂ(y, t)} =0 3

{Ta(x,1), Ts(y,1)} = (1))ap 0’ (x — )
can be also derived directly from 8£/8(8p¥) = i¥~° , ...
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For a four-component Majorana field we found: ( e )
Yt
L = ip'a"9,yp — m(yy + vlyl)
= LUy"9,¥ — smUT

= LUTCHH9, ¥ — ImUTCY .

]
I1l

T=0lg= (v ¢f)
T = UC

—gac 0
C= ( )
0 —eac

and the corresponding canonical anticommutation relations are:
{Ta(x,), ¥s(y,1)} = (€1°)ap 8’ (x —¥) ,
{Ta(x,0), Us(y, )} = (1")ap 8°(x ~¥) ,
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Now we want to find solutions to the Dirac equation:
(—i@ +m)¥ =0
— K
¢ = au”y
dd = auau’)’“’)’u
= auau(%{'yﬂ,’yu} + %[’7“77y])
= aﬂau(—gw + %[7”,’YV])

= —aua,9" +0

=—a2.

where we used the Feynman slash:

then we find:
0 = (i@ + m)(—i@ + m)¥
= (PP +m?*)¥
_ 2 2
= (-0"+m)¥. the Dirac (or Majorana) field satisfies
the Klein-Gordon equation and so
the Dirac equation has plane-wave solutions!
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Consider a solution of the form:
U(z) = u(p)e’?” + v(p)e”?*

pO - w = (p2 +m2)1/2

plugging it into the Dirac equation gives: (=i +m)¥ =0

(# + m)u(p)e™®® + (—f + m)v(p)e % =0

that requires:

(—#+m)v(p) =0
(later)
The general solution of the Dirac equation is:
‘IJ(-’L') = Z /EI; [bs(p)us(p)eipm +d};(p)vs(p)e_ipm]
s=+
d’p

P = 2w
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Spinor technology

The four-component spinors obey equations:

(# +m)us(p) =0
(—# +m)vs(p) = 0

In the rest frame, p = 0 we can choose:

1 0
w@=vmn|{l,  w@=va|]
0 1
0 -1
1 0
v4(0) = v/m o |’ v_(0) = m 1
-1 0

Sau+(0) = £3u+(0)

S.v+(0) = F5v+(0)
this choice results in (we will see it later):
[72,(0)] = £3bL(0)
72, d1.(0)] = £3dL(0)

based on S-38

form # 0
p=-my

I 0

2
=]
Il
VS
o
~
N——
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us(p) = UE(P),B 0 I
7.(p) = vl(p)8 - (z o)
we get: pr=pl=p=p
ﬂ+(0) = \/7% (]-a 0, 1, O) )
E—(0) = \/E (0’ L, 0, 1) )
54—(0) = \/E (0’ 17 0’ 1) ’
ﬁ_(O) = \/’r_n (1, 0, —1, 0)
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We can find spinors at arbitrary 3-momentum by applying the matrix that
corresponds to the boost: U(A) (@)U (A) = D(A)U (A z)

D(A) = exp(inp-K)
o homgw?rk
K7 = 1[y,7°] = §797°
SH = L[yH, "]
n = sinh ™! (|p|/m)
we find:

us(p) = exp(in p-K)us(0)
vs(p) = exp(in p-K)vs(0)

and similarly:

us(p) = us(0) exp(—in p-K)
Us(p) = vs(0) exp(—inp-K)



For any combination of gamma matrices we define:

A=BAT8
It is straightforward to show:

=,
SHY — GHV s = "]
’ Ki = K

Y5 = 175,

— ~H
Vs =Y
’l:’}’5S“'V = ?:’)’55”1/ .

homework

218

For barred spinors we get: (#+m)u(p) =0

(=g +m)v(p) =0
u,(p) = ul(p)B
vs(p) = v{(p)B

It is straightforward to derive explicit formulas for spinors, but will will not
need them; all we will need are products of spinors of the form:

Uy (P)us(P) = Uy (0)us(0)

us(P)(# +m) =

0
vs(P)(=# +m) =0

us(p) = exp(in p-K)u,(0)
'US(P) = eXP(i"Y f)~K)'v3(0)

which do not depend on p! ngz; ZZSES))Z,’:((:ZZ;’E;
we find:

Ug (p)us(p) = +2m 53’3 3

5s’(p)vs(p) = _2m63’s ’

ﬂs’(p)vs(p) =0,

Ug(p)us(p) = 0.
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Useful identities
2my (p' )y us(p) = Ty (P') (¢ + p)* — 215" (o' — P)y |us(P)
—2muy (p' ) vs(p) = vy (P') [(p' +p)t — 205" (p' - p)u] vs(P)
Proof:
= 300" ) + M, #) = - - 28",
Pt =30 - s = P+ 280

. . . {¥*7"} = —2¢"
add the two equations, and sandwich them between spinors, .

S = v, 9"]
and use:
(#+m)u(p) =0 us(p)(f+m) =0
(—#+m)v(p) =0 T5(p)(—p+m) =0
An p=p :
Ug (p)')"uus(p) = 2pHéys
Vs (P)YHvs(P) = 2p"0s/s
One can also show:
Ug! (p)’Yovs(_p) =0
Uy (p)Y us(—p) = 0
homework

with gamma-5:

@y (p) (¢ + P — 28" (0 — p)u | v5us (P) = O
vy (B) (¢ + )" — 28" (0 — p)u ] 50s(p) = 0

homework

221



We will find very useful the spin sums of the form:

Es=ﬂ: Us (p)ﬂs (p)

can be directly calculated but we will find the correct for by the following argument:
the sum over spin removes all the memory of the spin-quantization axis, and the
result can depend only on the momentum four-vector and gamma matrices with all
indices contracted.

In the rest frame, § = —m~° , we have:
Py u4(0)7,(0) = m’YO +m
P eet V5(0)T4(0) = my°? —m

Thus we conclude:

222

if instead of the spin sum we need just a specific spin product, e.g.

uy(p)u(p)

we can get it using appropriate spin projection matrices:

in the rest frame we have S,us(0) = :l:%ui(O)

1+ 28000(0) = b 10(0)  501(0) = £hes(0)

3(1—258,)vy(0) = 65 vy (0)
the spin matrix S, = £y!42 can be written as:

-1 0
= inOnyln2a3 —
Vs =177V 0 I

1 3.0
Sz = —377Y

. : 0 3
in the rest frame we can write 7Y~ as —g/m and 7" as # and so we have:

5. = st * L

frame independent
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Boosting to a different frame we get:

%(1+2352)usr(0) = 05 Us (0)
l(1-2 S2)vg(0) = dss vs (0
1(1 - 2sS.)vy(0) vs(0) us(p) = exp(in p-K)us(0)

vs(p) = exp(in p-K)vs(0)

Sz = ﬁ'y‘ﬁi’ﬂ
(#+m)u(p) =0
(—If+ m)’U(p) =0 %(1 - 375¢)us’(p) = 633’ Uy (p)
%(1 - s’YS#)”s'(p) = Ogg’ Vgt (p)

> us(P)us(p) = —f+m

s=%

évs(p)ﬁs(p) =—g-m
us(P)us(p) = 5(1 — s75¢)(—§ +m)
vs(P)Ts(p) = 3(1 — 575¢)(—§ — m)
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us(P)us(p) = 5(1 — s754)(—p+m)
vs(P)Us(p) = (1 — s75¢)(—# — m)
Let’s look at the situation with 3-momentum in the z-direction:

The component of the spin in the direction of the 3-momentum is called
the helicity (a fermion with helicity +1/2 is called right-handed, a fermion
with helicity -1/2 is called left-handed.

Lp# = (coshn,0,0,sinh 7)

z# = (sinhn, 0,0, cosh n) — 22—
zp=0
In the limit of large rapidity

2= Tpt+O0(e")
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(1 —sv#)(—#+m)

us(p)us(p) = v
(1—-sv8)(—¢—m)

vs(P)Vs(P) =

B D=

In the limit of large rapidity

¢ = %p"‘ +0(e™ )

us(p)s(p) — 3(1+ 575)(—9)
vs(P)s(P) — 3(1 — 575)(—P)

dropped m, small relative to p

In the extreme relativistic limit the right-handed fermion (helicity +1/2)
(described by spinors u+ for b-type particle and v- for d-type particle) is
projected onto the lower two components only (part of the Dirac field
that corresponds to the right-handed Weyl field). Similarly left-handed
fermions are projected onto upper two components (right-handed Weyl
field.
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Formulas relevant for massless particles can be obtained from considering
the extreme relativistic limit of a massive particle; in particular the
following formulas are valid when setting m = 0 :

ﬂs’(p)')”uus(p) = 2p#5s’s
Uy (P)Y vs(P) = 20" 056

(# +m)us(p) = 0
(—#+m)vs(p) =0

us(p)(# +m) =0
Us(p)(—#+m) =0

g (p)Y’vs(—p) = 0
Uy ()7 us(—p) = 0

'L_"s'(p)us(p) = +2m 53’3 3 us — _Zj_|_ m
vs’(p)vs(p) = —2mdyy , 32;3
us’(p)vs(p) =0, vs(p)ﬂs(p) = _Zj_ m
Uy (p)us(p) = 0. s=+

us(p)us(p) — 3(1+575)(—P)
vs(p)s(p) — 5(1 — 575)(—P)

becomes exact
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Canonical quantization of spinor fields Il
based on S-39

Lagrangian for a Dirac field:
L =i0gl — mUT
canonical anticommutation relations:

{¥a(x,1), ¥y, )} = 0,
{Ta(x,1), Uy, 1)} = (1°)ap 8 (x — y)

The general solution to the Dirac equation: (=i +m)¥ =0

¥@) = 3 [ d [ @ue)e™ + diphes@le ]

——

creation and annihilation operators
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¢* + d}(p)vs (p)e "]

Z/dp [bs(P)u

We want to find formulas for creation and annihilation operator:

[t e m8@) = ¥ [£bs(0)us(p) + e dl, (~p)vy (-p)]

s'=% \

Ty (p)y vs(—p) = 0

multiply by ﬁs(p)’)’ on the lgft:

Uy (p)’y"us(p) = 2pHéys

b(p) = [ d' & ,(p)1° ()

for the hermigfan conjugate we get: .
[@,(0)°¥(@)] = T} u,(p)

p) = [ d% €7 T(@)yu,(p)

b’s are time mdependent'
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:B s ipT T —ipz
¥(@)= 3 [ [lo)usto)e™ + dlp)es(pre ]

similarly for d:

/d3:r ePo(z) = Z [% “2th g (—p)us (—P) + gw s,(p)vs (P)]

s§'=%

multiply by Ts(p)Y° on the left:

g (P)7 us(—p) = 0
58'([’)'7#”8([)) = 2pHdys

di (p) /d

for the hermitian conjugate we get:

)= [ de e T
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bs(p) = / d’*z e P uy(p)y°¥(x)

di(p) = [ d% 75, (p) ¥ (z)

4,(p) = [ d's e 7 D)0, (p)
bi(p) = [ d' €7 T(w)r us(p)
we can easily\work out the anticommutation relations for b and

OperatorS: {\I'a(x, t), ‘I/ﬁ(y, t)} -0,
{\IJQ(X: t)a Eﬁ(y7 t)} = (70)aﬁ & (X - y)

{bi(p), bl (p")} =0
{di(p),d.,(p")} =0
{bl(p),ds(p")} = 0

{bs(p), by (pl)} =0
{ds(p), ds (P)} = 0
{bs(p), dL,(p")} = 0
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bs(p) = / d*z e P uy(p)y°¥(z)
bi(p) = /d " T(z)y us(p)

we can easily work out the anticommutation relations for b and
operators:
P {\Ifa(x, t),‘Ifﬁ(y,t)} =0,
{Ta(x,1), Us(y, )} = (1°)ap 8°(x —y)

{bs(p), bl (P")} = / &’z d*ye PPV g, (p)y{ T (), T(y) 1 us (D)
= / d*z e PP 5, (p)y%7 "4 %uy (p')
= (2m)*6*(p — p') Us(P)y us (D)
= (277)363(13 - pl) 2“]655' .

0 =1

Us (P)"/OUS’ (P) = 2wiss
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p) = [ d' e # T(@)u,(p)
di(p) = [ d% 75,0 ¥(z)
similarly:

{¥a(x,1), Us(y, 1)} =0,
{\IJQ(X: t)a Eﬁ(y7 t)} = (70)aﬁ & (X - y)

{dl(p),ds(p")} = / d’r d% eP* =P V1, (p)y°{ T (), T(y) 1 Ovs (D)
. / &z P07, (p)y07%7 vy (P')
= (2m)%6%(p —
= (2m)*6°(p —

') 7:(p)7 vy (P)
p) 2wl .
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bp) = [ ' e, ()1 U () p) = [ d'a e ¥ () ,(p)

and finally:
{\Ira(xa t)a \Ijﬁ(yvt)} =0 3

{Ta(x,), Us(y, 1)} = (1")ag 0°(x ~y)

b)) = [ dodye Y, (2(@), Tw) v (P)
= / d*z e P2 g, (D)7 04 vy (p)
= (2m)°6°(p + ') %s(p)7 vy (—D)

=0. ~_

Ty (p)y vs(—p) = 0
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pr—i—df(p) ( ) ip:t]

U(z) = Z/dp [bs(P)u

We want to calculate the hamiltonian in terms of the b and
the four-component notation we would find:

operators;in

H= / d* U (—iy'; + m)¥
let’s start with:
(—in' 0 +m)T = 3 / dp (=i7'0; + m)( bs(p)us(p)e™
s==
+ di(p)vs(p)e )
= ¥ [ [b®)rp+ myus(@)e
s==
+ di(p)(—'pi + m)vs(p)e 7|
= dp by 0w)u,(p)e®
;/ p [ 5:(0) (1))

+ d(p) (=1 w)vs(p)e #* |.

(# +m)us(p) = 0
(—=#+m)vs(p) =0
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p)e™” + dj(p)us(p)e ]

U(z) = Z/dp [bs(P)u

0= / &3 T(—iv'8; +m)T
(70, +m)¥T = 2/ dp [ b,(P) (7°w)us(p)e™

t _ Ow —ipx
thus we have: +d}(p)(—1°w)v, (p)e |

H= Z/dpdp d% (

v (bS(P)‘VOus(p)ei”’” — di(p)y"vs(p)e )

b (0 () + (0 ()72

N Z/dp dp’ &’ bT( ")bs(p) Ty (P')y us(p) e~ P)"
— b, (p')d1 (D) Ty (D)7 0vs (p) €~ +P)=
"
)Y

+dy( ,)b (p) Es,(p O’LL ( e +i(p’ +p)x
— dy (p')d}(p) Tw (D' ) vs(p) €"1F P |
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H= / &% T(—ir'6; + m)T

—Z/dpdp &

bT (P")bs(p) uy(p )'y us(p) e —i(p'—p)z

(
—bT (p')di(p) wy ()7 vs(p) €' +P)
+dy (9)bs(P) Ty ()7 s (p) 71 TP
— dy (p)d}(p) Ty ()1 vs(p) 7777 |

+2iwt

)7 us(p) 2!

(
—bl,(- p)dl(p) gy (—p)y vs(p) €
(-p
( Es(p)’yous/ (P) = 2wy
1y (p)Y’vs(—p) = 0
7y (p)7’us(—p) = 0

= Z/Zi{; w [bl(p)bs(p) - ds(p)dl(p)].
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H=Y [0 w 6@ ) - d.(p)di )]

{dl(p), ds (P")} = (2m)*6°(p — P') 20,y

finally, we find:

H=3Y" ffivp w | B(p)bs(p) + di(p)ds(p) | — 4V
s==%

V = (2m)36%(0) = [ d%
E=12n)3fd% w

opposite sign!

we will assume that the zero-point energy is cancelled by a constant term
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spin-1/2 states:

vacuum:
0)
bs(p)|0) = ds(p)/0) =0
b-type particle with momentum p ,energy w = (p? + m?)!/2 ,and
Spin S, = 3s :

[p, s, +) = bl(p)|0)

labels the charge of a particle

d-type particle with momentum P , energyw = (p? + m?)/2 | and

Spin S, = 3s:
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b- and d-type particles are distinguished by the value of the charge:

— 3 40
Q=Jdzj

Gt = @,),nq;

U — e o, ¥ — ety
very similar calculation as for the hamiltonian; we get:
Q= [da Ty
= 3 [ [tl@)es(e) + ds(P)di(P) ]
s=%

= dp | b} —df constan
> [ [BL0):(0) ~ (e )] + constant

counts the number of b-type particles - the number of d-type particles

(later, the electron will be a b-type particle and the positron a d-type particle)
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For a Majorana field: ‘
L=21V"CPY — ImT"CY

U(z) = ;:/;l; [bs(p)us(p)eipz +d§(p)vs(p)e_im]

we need to incorporate the Majorana condition:

¥ =CU"

@)= % [ [ple)ua(e)e ™ +d.(p)o.(o)e”

CT'(z) =) / dp [b}(p) Cal (p)e ™" + d,(p) CTL (p)e”
Cus(p)" = vs(p) =
Cos(p)" = us(p)
next page

CO@)= 3 [ [lm)s(ple 7 + d(p)us(p)e™]
s==+

N

ds(p) = bs(p)
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we have just used: Cis(p)” = vs(p)

Cus(p)" = us(p)

Proof:

=)

+

=)

[SIS]] Iﬁl <
CICICIC)
o

AN

+
=]

Cts(0)" = us(0)
boosting to any frame we get:
(p) = 1s(0) exp(—in p-K)
s(p) = 5(0) exp(—in p-K)

Bc =—cp
CTIHC = ()"

Ki = {7 = §79°

us(p) = exp(in p-K)us(0) C—lKjC _ _(Kj)'l‘

lp) = ePB KO g ()7 — y,(p)

Cs(p)" = us(p)
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We have found that a Majorana field can be written:

‘IJ(IE) = Z::t/a}; [bs(p)’us(p)eipz + bz(p)vs(p)e—ipz]

canonical anticommutation relations:
{\pa(x:t)aq’ﬂ(y’ t)} = (C’Yo)aﬂ 63()( - Y) 3
{\pa(xat)awﬂ(Y1t)} = (7O)Ozﬁ Ja(x_y) 3

translate into:
{bs(p),bs (")} =0,
{bs(p), bL,(P')} = (2m)°8%(p — P') 2wl ,

calculation the same as for the Dirac field
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The hamiltonian for the Majorana field is:
H=1 / &z UTC(—in'0; + m)T
-1 / & T(—in'd; +m)¥
and repeating the same manipulations as for the Dirac field we would find:

H=3y, /?15 w [ BL(p)bs(p) — bs(P)b(P) |
s==%
{bs(p), 8L, (®")} = (2m)*6*(p — P') w60 ,
H=Y [dpwbi@h®) - 26V,
s==%
V = (2m)36%(0) = [d%
& = 1@2m) [ d% w
opposite sign!

we will assume that the zero-point energy is cancelled by a constant term
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