Light-cone sum rules for $B \to K\pi$ form factors and applications to rare decays

Sébastien Descotes-Genon

based on arXiv:1908.02267 with A. Khodjamirian and J. Virto

Laboratoire de Physique Théorique CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France

7th workshop on rare semileptonic B Decays, Lyon, 4/9/19

$B \rightarrow K\pi\ell\ell$

Generally discussed in term of $B \to K^* \ell \ell$ (+ S-wave contribution)

- K* identified in a narrow experimental window
- treated as an (infinitely) narrow resonance in most LCSR and in lattice computations

Reasonable approximation as a start, but not enough at the level reached by current analyses

- What about the width of the K*?
- What impact from heavier resonances like K*(1430)?

Issues already tackled in $B \to \pi\pi\ell\nu$ through $B \to \pi\pi$ form factors analysed using Light-Cone sum rules

[Cheng, Khodjamirian, Virto]

 \implies Extension and application to $B \to K\pi\ell\ell$

[SDG, Khodjamirian, Virto]

$B \rightarrow K\pi$ form factors

$$i\langle K^{-}(k_{1})\pi^{+}(k_{2})|ar{s}\gamma^{\mu}(1-\gamma_{5})b|ar{B}^{0}(q+k)\rangle = F_{\perp}k_{\perp}^{\mu} + F_{t}k_{t}^{\mu} + F_{0}k_{0}^{\mu} + F_{\parallel}k_{\parallel}^{\mu}$$

 $\langle K^{-}(k_{1})\pi^{+}(k_{2})|ar{s}\sigma^{\mu\nu}q_{\nu}(1+\gamma_{5})b|ar{B}^{0}(q+k)\rangle = F_{\perp}^{T}k_{\perp}^{\mu} + F_{0}^{T}k_{0}^{\mu} + F_{\parallel}^{T}k_{\parallel}^{\mu}$
with $k_{t}^{\mu} \propto q^{\mu}$ and $k_{0}^{\mu}, k_{\parallel}^{\mu}, k_{\parallel}^{\mu}$ orthogonal basis

Partial-wave expansion where we focus on P wave $(\ell=1)$ using θ_K angle between \vec{p}_{π} and \vec{p}_{B} in $K\pi$ rest frame

$$F_{0,t}(k^2, q^2, q \cdot \bar{k}) = \sum_{\ell=0}^{\infty} \sqrt{2\ell+1} F_{0,t}^{(\ell)}(k^2, q^2) P_{\ell}^{(0)}(\cos \theta_{K})$$

$$F_{\perp, \parallel}(k^2, q^2, q \cdot \bar{k}) = \sum_{\ell=1}^{\infty} \sqrt{2\ell+1} F_{\perp, \parallel}^{(\ell)}(k^2, q^2) \frac{P_{\ell}^{(1)}(\cos \theta_{K})}{\sin \theta_{K}}$$

where
$$ar{k}^{\mu}=(k_1-k_2)^{\mu}-(k_1+k_2)^{\mu} imes(m_K^2-m_\pi^2)/k^2$$

$$\mathcal{P}_{ab}(k,q) = i \int d^4x \, e^{ik\cdot x} \langle 0| \mathrm{T}\{j_a(x),j_b(0)\} | \bar{B}^0(q+k) \rangle$$

where j_a interpolating current for $K\pi$ and j_b quark transition current

$$\mathcal{P}_{ab}^{\mathsf{OPE}}(\mathit{k}^2,\mathit{q}^2) = rac{1}{\pi} \int_{\mathit{s}_{\mathsf{th}}}^{\infty} \mathit{ds} \, rac{\mathrm{Im} \mathcal{P}_{ab}(\mathit{s},\mathit{q}^2)}{\mathit{s}-\mathit{k}^2} \; .$$

• Hadronic ($k^2 > 0$): Im part from unitarity, by inserting set of states

$$2\operatorname{Im}\mathcal{P}_{ab}(k,q) = \sum_{h} \int d\tau_{h} \langle 0|j_{a}|h(k)\rangle\langle h(k)|j_{b}|\bar{B}^{0}(q+k)\rangle.$$

• OPE ($k^2 \ll 0$): Expansion near the light cone, with q^2 , k^2 below hadronic thresholds

$$\mathcal{P}_{ab}(k^2, q^2) \simeq \mathcal{P}_{ab}^{\mathsf{OPE}}(k^2, q^2)$$

with B-meson Distribution Amplitudes of various twists (dim-spin)

Correlator Full information

Correlator Full information

Im part: $k^2 \ge 0$ Hadronic ff

Correlator Full information

Im part: $k^2 \ge 0$ Hadronic ff

OPE: $k^2 \ll 0$ Hard $s \times B$ -DA

Correlator Full information

Im part: $k^2 \ge 0$ Hadronic ff OPE: $k^2 \ll 0$ Hard $s \times B$ -DA

- Quark-hadron duality: $\int_{s_0}^{\infty} OPE = sum over (many) states$
- ullet Borel tf: suppress $s \geq M^2$ to keep lightest state contribution

$$\frac{1}{\pi} \int_{s_{\text{th}}}^{s_0} ds \, e^{-s/M^2} \operatorname{Im} \mathcal{P}_{ab}(s, q^2) = \mathcal{P}_{ab}^{\mathsf{OPE}}(q^2, \sigma_0(s_0), M^2)$$

B-meson LCSR for $B \to K\pi$ form factors

Correlator Full information

Im part: $k^2 \ge 0$ Hadronic ff OPE: $k^2 \ll 0$ Hard $s \times B$ -DA

$$\int_{s_{th}}^{s_0} ds \ e^{-s/M^2} \omega_i(s, q^2) \, f_+^{\star}(s) \, F_i^{(T)(\ell=1)}(s, q^2) = \mathcal{P}_i^{(T), \mathsf{OPE}}(q^2, \sigma_0, M^2)$$

- $i = \{t, \perp, \parallel, -\}$; F_{-} comb of F_{\parallel} and F_{0} , ω_{i} kinematic functions
- ullet convolution of $B o K\pi$ form factor F and $K\pi$ form factor f_+
- model to describe them with a few parameters to be fixed by LCSR

Model for the $K\pi$ form factor

$$\langle \textit{K}(\textit{k}_1)\pi(\textit{k}_2)|\bar{\textit{s}}\gamma^{\mu}\textit{d}|0\rangle = \sum_{\textit{R},\eta}\textit{BW}_\textit{R}(\textit{k}^2)\langle \textit{K}\pi|\textit{R}(\textit{k},\eta)\rangle\langle \textit{R}(\textit{k},\eta)|\bar{\textit{s}}\gamma^{\mu}\textit{d}|0\rangle$$

with two resonances $R = K^*(892), K^*(1410)$ of polarisation η

$$f_{+}(s) = -\sum_{R} rac{m_{R} f_{R} g_{RK\pi} e^{i\phi_{R}(s)}}{m_{R}^{2} - s - i\sqrt{s} \Gamma_{R}(s)}$$

with a phase ϕ_R chosen so that all resonances yield the $K\pi$ phase

$$an\left[\delta_{K\pi}(s)-\phi_{R}(s)
ight]=rac{\sqrt{s}\,\Gamma_{R}(s)}{m_{R}^{2}-s}\qquad f_{+}(s)=|f_{+}(s)|e^{i\delta_{K\pi}(s)}$$

Two models

From Belle analysis of $au o K_S \pi
u_ au$

[0706.2231]

- Model 1: K*(890) only
- Model 2: $K^*(890) + K^*(1430)$
- + model for scalar contribution (used for Belle fit, not used here)

Model for the $B \to K\pi$ form factor

$$\langle K(k_1)\pi(k_2)|\bar{s}\Gamma b|B(q+k)\rangle = \sum_{R,\eta} BW_R(k^2)\langle K\pi|R(k,\eta)\rangle\langle R(k,\eta)|\bar{s}\Gamma b|B\rangle$$

$$F_i^{(T),(\ell=1)}(s,q^2) = \sum_R \frac{Y_{R,i}^{(T)}(s,q^2) \, g_{RK\pi} \, \mathcal{F}_{R,i}^{(T)}(q^2) \, e^{i\phi_R(s)}}{m_R^2 - s - i\sqrt{s} \, \Gamma_R(s)}$$

- $i = \{t, \perp, \parallel, -\}$, $Y(s, q^2)$ and d kinematic form factors
- same ϕ_R as f_+ , obeying unitarity $\operatorname{Im}[F_i^{(T),(\ell=1)}(s,q^2)f_+^*(s)]=0$

Model for the $B \to K\pi$ form factor

$$\langle K(k_1)\pi(k_2)|\bar{s}\Gamma b|B(q+k)\rangle = \sum_{R,\eta} BW_R(k^2)\langle K\pi|R(k,\eta)\rangle\langle R(k,\eta)|\bar{s}\Gamma b|B\rangle$$

$$F_i^{(T),(\ell=1)}(s,q^2) = \sum_{R} \frac{Y_{R,i}^{(T)}(s,q^2) \, g_{RK\pi} \, \mathcal{F}_{R,i}^{(T)}(q^2) \, e^{i\phi_R(s)}}{m_R^2 - s - i\sqrt{s} \, \Gamma_R(s)}$$

- $i = \{t, \perp, \parallel, -\}$, $Y(s, q^2)$ and d kinematic form factors
- same ϕ_R as f_+ , obeying unitarity $\operatorname{Im}[F_i^{(T),(\ell=1)}(s,q^2)f_+^*(s)]=0$

LCSR can be rewritten to constrain $\mathcal{F}_{R,i}^{(T)}(q^2)$

$$\sum_{R} d_{R,i}^{(T)} \mathcal{F}_{R,i}^{(T)}(q^2) I_R(s_0, M^2) = \mathcal{P}_i^{(T),OPE}(q^2, \sigma_0, M^2)$$

with the overlap integral

$$I_R(s_0,M^2) = rac{m_R}{16\,\pi^2} \int_{s_{
m th}}^{s_0} ds \; e^{-s/M^2} \; rac{g_{RK\pi}\,\lambda_{K\pi}^{3/2}(s)\,|f_+(s)|}{s^{5/2}\sqrt{(m_R^2-s)^2+s\,\Gamma_R^2(s)}}$$

Hadronic and OPE parameters

- B-meson LCDAs 2- and 3-particle, up to twist 4
 - ullet OPE (including m_s) in agreement with [Gubernari, Kokulu, van Dyk]
 - 3 different models [Braun, Ji, Manashov]
 - ϕ_+ parametrised in term of $\lambda_B = 460 \pm 110 \text{ MeV}$
 - higher twist models involve $R = \lambda_E^2/\lambda_H^2 = 0.4^{+0.5}_{-0.3}$

Hadronic and OPE parameters

- B-meson LCDAs 2- and 3-particle, up to twist 4
 - ullet OPE (including m_s) in agreement with [Gubernari, Kokulu, van Dyk]
 - 3 different models [Braun, Ji, Manashov]
 - ullet ϕ_+ parametrised in term of $\lambda_B=460\pm110~{
 m MeV}$
 - higher twist models involve $R = \lambda_E^2/\lambda_H^2 = 0.4^{+0.5}_{-0.3}$
- ullet quark-hadron duality threshold \underline{s}_0 [Khodjamirian, Mannel, Offen]
 - from QCD sum rule for $\langle 0|T(\bar{d}\gamma_{\mu}s)(\bar{s}\gamma_{\nu}d)|0\rangle$
 - \bullet around 1.3 GeV², lower than earlier estimates for $K^*~(\simeq 1.7~\text{GeV}^2)$
 - above s_0 , contrib from states with higher multiplicity $(K\pi\pi, K3\pi...)$

Hadronic and OPE parameters

- B-meson LCDAs 2- and 3-particle, up to twist 4
 - ullet OPE (including m_s) in agreement with [Gubernari, Kokulu, van Dyk]
 - 3 different models [Braun, Ji, Manashov]
 - ullet ϕ_+ parametrised in term of $\lambda_B=460\pm110~{
 m MeV}$
 - higher twist models involve $R = \lambda_E^2/\lambda_H^2 = 0.4^{+0.5}_{-0.3}$
- ullet quark-hadron duality threshold \underline{s}_0 [Khodjamirian, Mannel, Offen]
 - from QCD sum rule for $\langle 0|T(\bar{d}\gamma_{\mu}s)(\bar{s}\gamma_{\nu}d)|0\rangle$
 - around 1.3 GeV², lower than earlier estimates for K^* ($\simeq 1.7 \text{ GeV}^2$)
 - above s_0 , contrib from states with higher multiplicity $(K\pi\pi, K3\pi...)$
- Borel parameter M^2 : 1-1.5 GeV² [Cheng, Khodjamirian, Virto] to limit in OPE
 - 3-particle contributions (less than 15% of 2-particle)
 - impact of quark-had duality (subtracted $\geq s_0$ less than 40% total)

Narrow-width limit

In the narrow width limit, the overlap integrals yield

$$I_R(s_0,M^2) \xrightarrow{\Gamma_R^{\mathrm{tot}} o 0} 3 \, m_R f_R \, \mathcal{B}(R o K^+ \pi^-) \, e^{-m_R^2/M^2} \; .$$

leading well-known expression for narrow-K* form factors

$$3 \, m_{K^*} f_{K^*} \, d_{K^*,i}^{(T)} \, \mathcal{F}_{K^*,i}^{(T)}(q^2) \, e^{-m_{K^*}^2/M^2} \, \mathcal{B}(K^* \to K^+\pi^-) = \mathcal{P}_i^{(T),\mathrm{OPE}}(q^2,\sigma_0,M^2) \, .$$

[This work]	[Khodj'06]	[Khodj'10]	[Gubernari'18]	[Straub'15]
0.26(15)	0.39(11)	0.36(18)	0.32(11)	0.34(4)
0.20(12)	0.30(8)	0.25(13)	0.26(8)	0.27(3)
0.14(13)	0.26(8)	0.23(15)	0.24(9)	0.23(5)
0.30(7)	_	0.29(8)	0.31(7)	0.36(5)
0.22(13)	0.33(10)	0.31(14)	0.29(10)	0.28(3)
0.22(13)	0.33(10)	0.31(14)	0.29(10)	0.28(3)
0.13(12)	-	0.22(14)	0.20(8)	0.18(3)
	0.26(15) 0.20(12) 0.14(13) 0.30(7) 0.22(13) 0.22(13)	0.26(15) 0.39(11) 0.20(12) 0.30(8) 0.14(13) 0.26(8) 0.30(7) - 0.22(13) 0.33(10) 0.22(13) 0.33(10)	0.26(15) 0.39(11) 0.36(18) 0.20(12) 0.30(8) 0.25(13) 0.14(13) 0.26(8) 0.23(15) 0.30(7) - 0.29(8) 0.22(13) 0.33(10) 0.31(14) 0.22(13) 0.33(10) 0.31(14)	0.26(15) 0.39(11) 0.36(18) 0.32(11) 0.20(12) 0.30(8) 0.25(13) 0.26(8) 0.14(13) 0.26(8) 0.23(15) 0.24(9) 0.30(7) - 0.29(8) 0.31(7) 0.22(13) 0.33(10) 0.31(14) 0.29(10) 0.22(13) 0.33(10) 0.31(14) 0.29(10)

Results consistent within uncertainties, but our result is lower

- numerical inputs (decay constants...)
- lower value for the effective threshold s_0
- three-particle contributions
- twist-four two-particle contributions (in particular from g_+)

$\mathcal{F}^{BK^*}(q^2=0)$	V ^{BK∗}	$A_1^{BK^*}$	$A_2^{BK^*}$	$A_0^{BK^*}$	$T_{1,2}^{BK^*}$	$T_3^{BK^*}$
[Khodjamirian'06]	0.39	0.30	0.26	_	0.33	_
[Khodjamirian'06] inputs, no g_+ [Khodjamirian'06] inputs, with g_+ Our inputs, $s_0=1.7\mathrm{GeV}^2$ Our inputs, our s_0 , no g_+ Our inputs, our s_0 , with g_+	0.38 0.27 0.33 0.36 0.26	0.29 0.21 0.26 0.28 0.20	0.26 0.14 0.17 0.25 0.14	0.31 0.31 0.38 0.30 0.30	0.33 0.24 0.29 0.31 0.22	0.25 0.14 0.17 0.23 0.13

Beyond the narrow-width approximation for K^*

LCSR with
$$K^*$$
 only: $\mathcal{F}_{K^*,i}^{(T)}(q^2) \; d_{K^*,i}^{(T)} \; I_{K^*}(s_0,\mathit{M}^2) = \mathcal{P}_i^{(T)\mathrm{OPE}}(q^2,\sigma_0,\mathit{M}^2) \; .$

Width induces universal shift in normalisation from overlap integral I_{K^*}

(effect depending mainly on s_0 , M^2 and Γ_{K^*})

$$\mathcal{W}_{K^*} \equiv \frac{\mathcal{F}_{K^*,i}^{(T)}(q^2)}{\mathcal{F}_{K^*,i}^{(T)}(q^2)_{\rm NWL}} = \frac{I_{K^*}(s_0,M^2)\big|_{\Gamma_{K^*}\to 0}}{I_{K^*}(s_0,M^2)} \simeq 1 + 1.9 \, \frac{\Gamma_{K^*}}{m_{K^*}}$$

Correction \simeq 10 % (increasing the discrepancy data-SM for $B \to K^* \mu \mu$)

Role of higher resonances in LCSR

- LCSRs mostly sensitive to $B o K\pi$ form factors for $s \simeq m_{K^*} \pm \Gamma_{K^*}$
- But constrain combination of $K^*(892)$ and $K^*(1410)$ contributions with relative weights from $I_{K^*(1410)}/I_{K^*(892)} \simeq 0.03$
- $K^*(1410)$ with significant weight if its contribution $\mathcal{F}_{K^*(1410)}$ at least an order or magnitude larger than $\mathcal{F}_{K^*(892)}$

Impact ? assume

$$\mathcal{F}_{K^*(1410)} = \alpha \, \mathcal{F}_{K^*(892)}$$

- For $\alpha = 1$, $\mathcal{F}_{K^*,\perp}(0) = 0.28$ (\simeq narrow width)
- (Much) larger α OK with LCSR, but reduce $\mathcal{F}_{K^*,\perp}(0)$

$B \to K\pi\ell\ell$ differential decay rate

Compute with $B \rightarrow K\pi$ factors

- Same angular structure as $B \to K^*(\to K\pi)\ell\ell$ decay rate (obvious since $K\pi$ in P-wave only)
- Angular coefficients J_i expressed as interferences among helicity amplitudes \widehat{A} defined through

$$\begin{split} \widehat{A}_{\perp}^{L,R} &= \frac{\sqrt{\lambda_{K\pi}}}{k^2} \mathcal{A}_{\perp}^{L,R(\ell=1)} \;, \qquad \quad \widehat{A}_{\parallel}^{L,R} &= \frac{\sqrt{\lambda_{K\pi}}}{k^2} \mathcal{A}_{\parallel}^{L,R(\ell=1)} \;, \\ \widehat{A}_{0}^{L,R} &= -\mathcal{A}_{0}^{L,R(\ell=1)}/\sqrt{2} \;, \qquad \qquad \widehat{A}_{t} &= -\mathcal{A}_{t}^{(\ell=1)}/\sqrt{2} \;. \end{split}$$

with the *P*-wave of amplitudes involving $B \to K\pi$ form factors $F^{(T)}$

$$\mathcal{A}_{i}^{L,R} = \mathcal{N}\left[(C_9 \mp C_{10})F_i + \frac{2m_b}{q^2} \left\{ C_7 F_i^T - i \frac{16\pi^2}{m_b} \mathcal{H}_i \right\} \right], \quad i = \{ \bot, \|, 0, t \}$$

 \Longrightarrow Can be evaluated, neglecting non-local $c\bar{c}$ contribution \mathcal{H}_i

Comparison with LHCb results (1609.04736)

- $B \to K\pi\ell\ell$ decay around $K^*(1430)$, for $\sqrt{k^2} \in [1.33, 1.53] \, \text{GeV}$
- Angular coefficients for $q^2 \in [1.1, 6] \, \text{GeV}^2$, BR in several other bins
- 4 combinations of angular coefficients only sensitive to P-wave
- BR sum of squares of partial waves, thus bound the *P*-wave part

 \Longrightarrow upper bounds for α (here for combination of ang coeff), from 3 to 18 (still room for a decrease by \sim 10% of the K^* contribution)

Outlook

$B \to K\pi$ form factors interesting tool to describe hadronic dynamics

- LCSR based on B-meson distribution amplitudes
- Recover structure of earlier narrow-width results for K* only

Several applications of the LCSRs for $B \to K\pi$ form factors

- Numerical differences coming from nonperturbative inputs
- Universal effect from K* width, enhancing form factors by 10%
- $K^*(1430)$ contribution bound by LHCb results, but not negligible
- Caution with systematic uncertainties in LCSR

Open questions

- Better understanding of numerical impact of twist-4 contribution
- Impact of other models for f_+ and $B \to K\pi$ form factors
- Inclusion of S wave (dedicated LCSR and form factors)

[SDG, Khodjamirian, Virto, Vos] in progress