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ABSTRACT

We give a review of the application of perturbative techniques to topologi-
cal quantum field theories, in particular three-dimensional Chern-Simons-
Witten theory and its various generalizations. To this end we give an
introduction to graph homology and homotopy algebras and the work of
Vassiliev and Kontsevich on perturbative knot invariants.

1. Introduction

In these lecture notes we will give a review of some recent mathematical devel-
opments in topological field theory following the work of Kontsevich, Axelrod and
Singer, Vassiliev, Bar-Natan, Witten and others. Quite remarkable these new ideas
are all related to old-fashioned perturbative techniques in field theory. Indeed, it is
an interesting comment on the development of the interaction between physics and
mathematics that these days pure mathematicians are calculating Feynman diagrams
whereas this skill is slowly disappearing among a large fraction of theoretical physics
students.

Our starting point in all this will be mostly three-dimensional Chern-Simons-
Witten gauge theory [2]. This topological field theory lends itself most conveniently
to a perturbative formulation. Actually, one can argue that the model is even more
elegant and symmetric in perturbation theory. The reason behind this phenomenon
has been pointed out be Witten: Chern-Simons is (an exact low-energy limit of) an
open string field theory [1].

The perturbative aspects of Chern-Simons theory have been studied in many
papers, starting soon after the (non-perturbative) solution of Witten in [2], see e.g.



[3]. A very precise analysis aimed at mathematical rigor has been performed by
Axelrod and Singer [4], and we will follow their work closely. The innovations and
generalizations we will discuss, in particularly the relations with homotopy algebras,
follow the beautiful ideas of Kontsevich [5]. The applications to knot invariants center
around the work Vassiliev [6], which has been a great step forward in the classification
program of knots. The relation of the work of Vassiliev to perturbative field theory
was first pointed out by Bar-Natan [7]. The power of this approach is mainly due to
a wonderful theorem proved by Kontsevich [8].

It is well-known how the partition function of Chern-Simons-Witten gauge the-
ory, when considered on a closed three-manifold M, produces a topological invariant
Z(M). Although this quantity can be defined non-perturbatively, and the coupling
constant A = 1/k is quantized, the resulting expression is analytic in A and thus has
a well-defined perturbative expansion

Z(M) ~ exp (iﬂ Fn(M)h”> . (1.1)

The coefficients F, (M) define perturbative invariants that only depend on calculations
of connected Feynman diagrams up to n-loops. They can therefore be considered as
finite order invariants. This point of view has some interesting consequences and
advantages that we will develop in these notes.

1. Finite order invariants can be calculated evaluating finite-dimensional integrals.
They therefore stand a greater chance of being rigorously defined. This is of course
a very familiar argument for particle physicists!

2. A perturbative approach greatly facilitates classification, since we now have
a natural filtration on the space of invariants by order in perturbation theory. If
we are lucky the space of invariants of a given order can turn out be finite and can
be analyzed using combinatorical means. This turns out to be the case for knot
invariants as we will see in section 4.

3. A perturbative framework can be used to generalize the concept of a topological
invariant. If we are somewhat pedantic we can call a (smooth) manifold invariant a
function Z(g) that is invariant under smooth changes in the Riemannian metric g,
i.e.

Z(g+dg9)=2Z(g), or §Z =0, (1.2)

where ¢ is the exterior differential on the space of (isomorphism classes of) Rieman-
nian manifolds B = Met(M)/Diff(M) = BDiff(M). Stated otherwise, Z is locally

constant function on B

7 € H(B). (1.3)



This point of view leads to the natural generalization where topological invariants are
higher dimensional cohomology classes on the space of Riemannian structures

7 € H*(B). (1.4)

This idea is actually well-known from string theory, where the partition function 7
of the underlying conformal field theory on a Riemann surface is a volume form on
the moduli space M,. The string partition function is then obtained as fMg Z.

4. Closely related to the previous remark is the fact that certain generalizations
of the action become possible once we have obtained a gauge fixed, perturbative
formulation in terms of Feynman diagrams. Stated simply, one can replace the cubic
vertex in Chern-Simons theory by quartic, quintic etc. vertices. These higher order
vertices typically involve interactions where fields, ghosts and antifields couple in a
nontrivial way. This leads to algebraic structures with multilinear operations, so-
called homotopy algebras [9]. These structures have recently been described in a very
elegant way using the language of operads, see e.g. [10], a subject we will not touch
upon in these notes.

5. Finally many of the above remarks have a clear interpretation from the poin of
view of string (field) theory, where they help us understand the issues of background
independence, space-time ghosts etc.

2. Algebras and Feynman Diagrams

2.1. Graph Cohomology

It is often stated that one of the elegant features of string theory is that one has to
consider only one diagram in the topological expansion: a Riemann surface of given
genus, this in contrast with ordinary point-particle field theory with its many different
Feynman diagrams. Of course, there still remains a very complicated integral to be
done over the moduli space M, of such a surface.

It is less appreciated that certain types of field theories can be formulated in a very
similar flavour [5]. Indeed, let us consider one-dimensional quantum gravity where our
‘space-time’ is an arbitrary graph I'. The space of metrics modulo diffeomorphisms
on such a singular space is parametrized by an assignment of lengths l1,...,lg > 0 to
all the edges of the graph. In 1D quantum gravity we want to sum over all graphs and
integrate over the lengths ¢; with some particular weights. Of course we can think of
the lengths as the Schwinger parameters of the Feynman diagrams of quantum field
theory. As such they are completely equivalent to the moduli of Riemann surfaces
that appear in string theory. For example the usual field theory propagator takes the



form

/dle’l(”2+m2) S (2.1)
' P2 + m2

The Schwinger parameter spaces of the individual graphs can be glued together to
form a space that is very analogous to the moduli space M, of Riemann surfaces. To
every diagram [ we can associate a cell cp = ]Rffr where a point z € cr is parametrized
as © = (l1,...,lg). These cells can be glued together in the following fashion. If one
of the lengths, say l;, becomes zero, the graph will change topology. If the particular
propagator connects two different vertices of order n and m, the degenerated diagram
will have one vertex instead of two, now of order n + m — 2. For example in the case
of two cubic vertices we will create a quartic vertex

i <= X 22

In this process the number of loops will not change, the number of edges and the
number of vertices are reduced by one.

Another case is an edge that starts and ends at the same vertex, say of order n.
In the limit where the lenth of the edge tends to zero, we are left with a diagram with
one loop less and a vertex now of order n — 2. One verifies that in both cases the
Euler number of the graph is reduced by one.

Clearly the boundary of the cell cr will consist of a sum of lower dimensional cells
(with signs) associated to graphs I" = I'/e where one propagator e is contracted to
7ero

der = Y *erye. (2.3)
edges e
We can write this more abstractly as dcr = ¢4 where we introduce the boundary of
a graph by
al = > T/e. (2.4)
edges e
We can now make a moduli space F,, of all Feynman diagrams with g loops and
s external lines by gluing together the cells that belong to graphs with only cubic
vertices with appropriate symmetry factors such that the sum of the boundaries of
all cells is zero

cr
Fos = —_— 2.5
7 Z #Aut I’ (25)

T cubic

This space obviously has (real) dimension

dimF,, =39 — 3 +s. (2.6)



We have to decide It is actually an orbifold space, since graphs typically have auto-
morphisms. For example consider the graph

Iy

12 N (2.7
N

Whenever we degenerate one of the I; = 0 we obtain the quartic diagram

<><> (2.8)

So we have to identify the three faces I; = 0.

Graph cohomology can be defined as the cohomology of this moduli space F.
Actually following Kontsevich we can formulate graph cohomology just in terms of
graphs. First we build a vector space C' with a basis spanned by all graphs. We
will take these graphs to be closed and with vertices of order > 3. We further
give them an orientation. We write —I" for the graph with the opposite orientation.
This immediately has important consequences, because some graphs are actually
isomorphic to their opposite

~I'=T = I'=0. (2.9)

If we work over the complex numbers these graphs therefore vanish. An example of
such a graph is the quartic diagram above or the dumb-bell diagram

Of course the space of graphs is naturally graded
c=gc (2.11)
g=0

where CY are the graphs with ¢ loops, i.e.

#vertices — #edges = 1 — g. (2.12)



Now the spaces C7 are actually complexes. We can write

39—3

CI =P . (2.13)
k=0
where k is the number of edges. We now have a natural boundary map

d:C} —-C}_,, T—=dl'= )Y T/e (2.14)

edge e

where we sum over the contraction of edges. It is an interesting exercise to verify that
indeed d*> = 0. We can now define chains as linear combination of graphs

a=Y arl, ar € C (2.15)
r

A closed chain will now be a chain that satisfies da = 0. An example of a closed

d—— = CxXD =o. (2.16)

We can also define homology classes by

graph is the graph

da =0, a=a+db. (2.17)

Similarly graph cohomology classes are linear functions ® : C' — C such that d® = 0,
® = ¢ 4 dV, where we simply define

d®(T) = &(dD) (2.18)

Cohomology classes thus vanish on exact graphs. We should think of graph cohomol-
ogy classes as very special Feynman rules, that respect the degeneration of graphs.
That is, any combination of graphs that is a boundary of another graph vanishes
according to these rules.

2.2. Lie algebras

An interesting example of such a set of Feynman rules that we will meet many
times in these lectures is the one based on Lie algebras and, more general, homotopy
Lie algebras. Recall that a Lie algebra is nothing but a vector space V with a bilinear
bracket

] VeV =V, u, v — [u, ], (2.19)



that satisfies two conditions: symmetry
0, 0) = —[o,u] (2.20)
and the Jacobi relation
. [, w]) + [o, [, ) + [0, [, 0]] = 0, (2.21)

If we choose an explicit basis e,, then we have structure coefficients

lea, e5] = far“ec. (2.22)

c

If the Lie algebra is even (bosonic) and simple, it has a unique invariant inner product
Nap, and we can introduce completely antisymmetric tensors fq;. that we can use as
vertices of Feynman graphs

D (2.23)

Cc

Since this vertex is antisymmetric we should orient it to make it well-defined, for
example using blackboard orientation. With this convention the Jacobi identity

Z(fabefedc + fdaefebc + facefedb) = 0; (224)

e



reads pictorially

> =0. (2.25)

We can now write an interesting graph homology class as follows. For every closed
cubic graph T' let I(T") be the weight associated to it by the above Feynman rules.
We now define the chain by a summation over all cubic g-loop diagrams

B I(T)-T
(],g = Z m

cubic T'eCy

(2.26)

We now claim that da, = 0. This is actual a direct consequence of the Jacobi identity.
The diagrams that appear in da, will have one (and only one) quartic vertex. Such
a diagram can be obtained as the boundary of three different cubic graphs. That is
to say, there are three inequivalent way to resolve the quartic vertex into two cubic
vertices. These are of course the s, t and u-channel diagrams, which we will denote
as ['y, I'y and T',. So the total weight associated to this particular quartic diagram

will be
I(Ty) + I(Ty) + I(T",) =0, (2.27)



which vanishes precisely by the Jacobi identity. To produce other graph homology
classes we have to go to homotopy algebras.

2.3. Homotopy Algebras

The concept of a homotopy algebra is quite general and exists in many different
contexts such as commutative, associate, Lie or differential graded algebras. The
unifying principle is that the algebraic operations are no longer restricted to be binary
[9]. As such the most natural language to describe homotopy structures in algebra is
the formalism of operads or trees [10].

However, here we will take a much more down to earth point of view. To be as
concrete as possible we also restrict ourselves first to homotopy Lie algebras. We will
start from the beginning with graded algebras. That is, our elements might be either
commuting or anticommuting. So a Lie algebra can also be a super Lie algebra.

For a homotopy Lie algebra we just introduce generalized brackets on N elements

Uty ...,uy €V = [ug, ..., uy| €V, (2.28)

that again satisfy two relations: symmetry and Jacobi. The symmetry relation now
reads

[y Wy Uy U] = Uy, Uy U U, (2.29)

and the generalized Jacobi identity takes the form
N
> dfur, . ug[tgga, - uy]] £ perm =0, (2.30)
k=1

where we refer to the literature [9] for the precise choices of signs. The latter relation
can be written much more clearly in terms of Feynman graphs. Hereto we assume
that the algebra V' also has an invariant inner product by which we can raise and
lower indices. We can than define structure coefficients

faoal...aN - Zn(lgb,fal...(l,]vb (231)
b

with
[eGH Tt ell]v] = Z fm...aNbea (232)
b

We can use these fully graded symmetric tensors as vertices of our Feynman rules.



For a vertex of order n we write symbolically

(2.33)

.f(Lo(ll...(l,N

The Jacobi identity then takes the form

> =0 (2.34)

m+4n=N

It is now clear how to employ these homotopy algebras to produce graph cycles. We
simply sum over all graph of a given number of loops (not necessarily only the cubic
ones) and associate to each graph I' the above weight I(T"). The classes

I(D)-T
#AutT

%22

rec,

(2.35)

are easily seen to be closed. The above algebraic structure can be formulated a bit
more elegantly as follows: We will consider an algebra A with a multiplication

m € Hom(A ® A, A), (2.36)
that satisfy a quadratic relation that we will write symbolically as
mom = 0, (2.37)

with mom € Hom(A ® A® A, A). Familiar examples are: (1) Associative algebras
with a multiplication that we will write as

m(a,b) = a- b, (2.38)
and that satisfies the quadratic relation

(mom)(a,b,c)=(a-b)-c—a-(b-c)=0. (2.39)



(2) Commutative, associative algebras with the further constrained
m(a,b) = m(b,a). (2.40)

(3) Lie algebras, where
m(a,b) = [a,b] = —[b, al, (2.41)

and the quadratic condition is the Jacobi identity
(.o m)(a,b,¢) = [a, b, d]] + [b. ¢, a]] + [e,[a, ] = 0. (2.42)

We can now try to generalize the algebraic operation m to an operation on n elements
of A with n # 2.
The first nontrivial generalizations are differential graded algebras (DGAs), such
as the familiar example of the space Q*(M) of differential forms on a manifold M.
This is a (graded) commutative associative algebra, with multiplication the wedge
product
acQ" beQ" sanbe Q™ bAa=(—1)"aAb. (2.43)

This algebra also has a derivation d, the exterior differential,
d: Q" — Q" d(aANb) =daANb+ (—1)"a A db, (2.44)

that is nilpotent: d?> = 0. Generally a DGA has by definition a nilpotent linear
operator of degree one

d € Hom(A, A), d*> =0, (2.45)

that is a derivation
d(m(a,b)) = m(da,b) + (—)"m(a, db). (2.46)
Conditions (2.37), (2.45) and (2.46) can be combined in writing
popu=0, (2.47)
where p is now the non-homogeneous linear combination

p=d+m e Hom(A, A) ® Hom(A® A, A) (2.48)



and the operation o is defined in the obvious way. So we see that DGAs fit in the
same framework as ordinary algebras if we generalize the ‘multiplication’ operation
to involve both one and two elements.

Of course we can also take more than two elements which leads us to homotopy
algebras with an algebraic operation

ne P Hom(A%®* A), = (2.49)
k>0 k

with relation
pop=0. (2.50)

For example, p1 = d, po = m for differential graded algebras.

The relations encoded in the above relation actually make more sense if we write
them in components. To be concrete we will write them for homotopy Lie algebras
where p;, is denoted by the k-fold bracket. Of course we start in degree one with the
map p; = [-] = d : A — A that satisfies d> = 0. Then, in degree two, we find the
usual Lie bracket gy = [-,:]: A® A — A and the relation

dla,b] = [da, b] % [a, db], (2.51)

that expresses that d is a derivation of the Lie algebra. At degree three we see the
first occurrence of the ternary bracket ps = [-,-, ] : A®® — A. It actually modifies
the Jacobi relation by

[a, [b, c]] £[b, [c,a]] + [, [a,b]] = d[a,b,c] £ [da, b, c] £+ [a,db, c] + [a,b,dc]. (2.52)

So Jacobi only holds up to d-exact terms. This is the reason one calls these algebras
homotopy algebras. At the following degree we find a relation involving the 2 and
3-brackets that is again zero up to exact terms involving the 4-bracket. To find an
application of all this we will now turn to Chern-Simons-Witten theory.

3. Chern-Simons-Witten Theory

We will now apply the above ideas to Chern-Simons gauge theory. In this model
the fundamental field is a connection A on a three-manifold M. We choose a Lie group
GG with Lie algebra g and consider the gauge field as a Lie algebra valued one-form.
We will write

Ae QY (M, g)=: Q" (3.1)



Under gauge transformation A transforms as
A= g tdg+g tAg, g: M — G, (3.2)

or infinitesimally

SA = da€ = dE+ A, €], (3.3)

where £ is an element of the Lie algebra of the group of gauge transformations
£€ (M, g) = Q. (3.4)

Chern-Simons theory is concerned with flat connections, that is connections for which
the curvature

A =F=dA+ A c? (3.5)

vanishes. It is a particular feature of three dimensions that the equation of motion
F =0 can be seen as the variation of an action, namely

1 2
S = —/ Tr (AdA + 2 A%). (3.6)
M 3

™

This action is almost gauge invariant. Under gauge transformations it picks up a
term

1
S8 — / Tr (g~ 'dg)®. (3.7)
2 Jm

127 .

This last term is for topological reasons always 27 times an integer.
The quantum field theory is defined through the path-integral

Z - / [dA] &*S (3.8)

where one integrates over equivalence classes of connections. The coupling constant k,
which plays the role of 1/A, is required to be integer in order to make the path-integral
well-defined.

We can now consider this quantum field theory in an (asymptotic) expansion in
Planck’s constant 1/k. (Indeed, after a scaling A — A/+/k we have

1 9
kS:—/ Tr (AdA + ——
M ( 3\/E

4

A?), (3.9)



so this corresponds with the usual expansion of a field theory with cubic interaction.)

For the expansion we pick a classical solution A, satisfying, with dy = da,, the
classical equation of motion
d2 =0, (3.10)
and write
S(Ag+ A) = — / Tr (Ady A + =A%), (3.11)
A Jm 3

The discussion below greatly simplifies if we assume (not very realistically) that the
complex (Q*,dy) is acyclic, i.e. , all cohomology groups vanish

H*(M,g) = 0. (3.12)

This eliminates in particular the possibility of zero modes, 7.e. a family of classical so-
lutions, since deformations of a classical solution are infinitesimally given by solutions
to the equation

doa = 0, (3.13)

modulo gauge transformations

a = dyt. (3.14)

The gauge fixed action can be obtained very directly if one follows the BV quantization
scheme [11]. Here we need three ingredients

1. A (n|n)-dimensional X of fields and anti-fields with an odd symplectic form
w. This makes the function space H* = C>(X) into a so-called Batalin-Vilkovisky
algebra [12]. This is a generalization of a Poisson algebra. H* is a graded commutative
algebra and a Lie algebra with an odd Lie bracket, the so-called anti-bracket,

{0} H@H™ — H ™! (3.15)

which reads in local coordinates

Oa ,. Ob
{a,b} => 5" 37 (3.16)

0]

It satisfies the relations

{ab} = —(~1) D V{ba)

{a, {b.c}} = {{a,0},c} + (=)@ VDb {a,c}}
{a.bc} = {a,ble+ (=1)*®Valb, e} (3.17)



2. Furthermore there is an operator A (the BV-Laplacian) defined as

02
A= b H s H! 3.18
%j:w Ox'0x) & e ( )
that is nilpotent of order two
A* =0, (3.19)
and satisfies the compatibility relation
{a,b} = (—1)"(A(ab) — (Aa)b — aAb) (3.20)

(Actually this last relation defines the bracket in terms of the Laplacian, and can be
taken as the definition of the bracket.)
3. An action S : H — R that satisfies the master equation

{S,S}+ tRAS = 0. (3.21)

In the case of Chern-Simons theory the space of fields/antifields is taken to be the
space of functions on the total space of Lie algebra-valued differential forms.

X = Q* (M, g). (3.22)

Note that we consider the coordinates f € Q" to be odd/even depending on whether
n is even/odd. A general field 1) € Q* has decomposition

p=> ™ P eqn (3.23)

Of course 9(!) = A is the original physical gauge field. We will see that furthermore
(9 = ¢ is the usual ghost, 1 = A* is the anti-field of the connection and 9®) = ¢*
is the anti-field of the ghost (not to be confused with the anti-ghost!).

On H we define the anti-bracket as follows. With f, g € Q* we define their anti-
bracket as

{f.9}= [Tr(fng) (3.24)

The action is taken to be the original Chern-Simons action

2
S = /M Tr (o + 59°) (3.25)



where 9 is now an arbitrary differential form. The action S reduces to the classical
action we restrict ¢ € Q'. One checks that S satisfies separately the (classical) master

action
{S,5} = /Tr (doyp + 4?)? = /do(%d}dod) + %1[)3) =0 (3.26)

and the quantum correction AS = 0. The recipe is now completed by putting ‘half’
of the variables to zero. Hereto we impose the Lorentz gauge condition. We choose a
metric on M, this gives in particular a Hodge star

w0 QF 5 37k (3.27)
and an adjoint
di = xdox, (d})* = 0. (3.28)
The gauge condition is now
dyyp = 0. (3.29)

In case all cohomology vanishes (no harmonic forms) this precisely eliminates the
required degrees of freedom.

This description can also be derived using more conventional techniques, for ex-
ample as done by Axelrod and Singer [4]. If one chooses again Lorentz gauge

diA =0, (3.30)

we now have to introduce ghost, anti-ghosts, a Lagrange multiplier and a BRST
operator satisfying the usual relations

QA= —Dc, Qc= %[c, ¢ Qe=b, Qb=0. (3.31)
The gauge fixed action now reads
Syp = S(Ag+ A) +Q / T (ed:A) (3.32)
If we redefine variables as
A* = xdyc, OB = xdob € Q*(g) (3.33)
these two-forms satisfy by definition

diC =diB =0 (3.34)



If we introduce the combination

p=c+A+ A"+ €Q(g),

then we recover precisely the gauge-fixed action as written above.

The propagator dy ' can now be defined on ker d}; as
4yt = di/ o,

with
AO — [do, d;]

The propagator has a kernel

&) = [ L))

yeM

that is a differential form of total degree 2 on M x M,
L(z.y) € *(M*, g ® g),

and that satisfies
doL(z,y) = 6*(z,y).

This kernel has the nilpotency property

dg =0= / L(z,y)L(y,z) =0,

JyeM

and symmetry

L"’b(x, y) = Lb“(y, T).

The interactions are given by the three-points vertex
V20 - R,

with
V(AaBaC) = Z fabc /AaBbCC-

a,b,c

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)



Let us now present the argument of Axelrod and Singer why the n-loop contributions
to the partition function are topological invariants. The contribution will have a

typical form
I(T)
F, = E 3.45
g = #Aut '’ ( )

where we sum over all connected cubic diagrams [' with g loops, and I(T") is the
weight of the diagram I'. This consists of two contributions, a space-time factor I'(T")
and a group theory factor I”(T"). In case that the flat bundle is trivial these two
contributions factorizes,

I(T) = I'(T) - I"(D), (3.46)

which we will now assume for the sake of simplicity. We first concentrate on the
space-time factor. It has the general form

I'T) = L", (3.47)

JMV

where V' = 2g — 2 is the number of vertices and ¥ = 3g — 3 the number of edges.
Let us now consider a variation dg of the metric used in the gauge fixing and
definition of the propagator L. Since the propagator satisfies by definition

doL = 6*(z,y), (3.48)

and the delta-function does not depend on the choice of metric, the variation of the
propagator d L will satisfy

dy(5L) =0 = 6L = dyK, (3.49)

where we assumed acyclicity again. We can therefore write following Axelrod and
Singer

SI'T) = ¢ LF

JMV
= E | LF'(L)
JMV
= E | LP YdyK)
MV
— EB(E - 1)/ LE2(dyL)K
MV
— EB(E - 1)/ LE2K, (3.50)
MV—]



where in the last line we have used that dyL = 6*(z,y). This effectively shrinks the
propagator to zero, and so reduces our cubic Feynman diagram to a diagram with
one quartic vertex, precisely as in our discussion of graph homology. Actually we can
write the above manipulation as

SI'(T) = I'(dl). (3.51)

Of course to complete the argument we have to add the group theory factors 18(T).
But these are precisely the rules related to Lie algebras we were discussing in the
previous section. That is, the g-loop contribution to the Chern-Simons partition
function is

Fy=1I'(ay), (3.52)

with a, the class
]’H(F)
= E —T.
g #Aut I’

T'eCy, cubic

(3.53)

Therefore we now have the following elegant one line proof of the topological proper-
ties of perturbative Chern-Simons theory:

da, =0 = §F, = I'(da,) = 0. (3.54)

In light of our discussion above it is now obvious how to generalize this property.
Instead of cubic graphs weighted with Lie algebra symmetry factors we now take
arbitrary graphs weighted with homotopy Lie algebra Feynman rules. However, things
are a bit more complicated. In particular, cubic graphs are special in the following
respect. The number of edges is £ = 3g — 3 and the number of vertices V = 2g — 2.
So, since L is a differential form on M? of total degree 2, the integrand L3973 is a
differential form on M?29-2 of degree 6g — 6. This is a top degree form and can thus
be integrated to give a number: I'(T).

This is clearly a very special property of cubic vertices and three-dimensional
manifolds. In the general case the graph I' has E' edges and V = Y77 s v vertices,
where v;, denotes the number of vertices of valency k. If the space-time manifold M
has dimension d, the degree of the weight I'(T") will formally be

< -1
k=(d=1)E—dV =3 (——k—duv. >0. (3.55)
k=3

So how to interpret a weight that is not a number but a differential form of positive
degreel’ The idea is to consider not one manifold M but a family of manifolds M;,



where ¢ ranges over some subspace C' C B, the space of Riemannian manifolds. The
weight It now has a natural interpretation as a differential form on B of degree k.
Furthermore if we repeat our calculation of the metric dependence of It we find again

§1(I) = I(dI), (3.56)

where § now has the interpretation of being the exterior differential on B. The g-loop
partition function is now closed, and thus gives a cohomology class on B

§F, =0 = &, ¢ H*(B). (3.57)

4. Perturbative Knot Invariants

It is quite natural to extend the above ideas of perturbative topological gauge
theories to include observables, in particular Wilson loops. This is already very
interesting for the usual Chern-Simons-Witten model, and we will consequently not
discuss generalizations to homotopy structures.

For an embedding K : S' — M and a representation R Wilson loop averages are

defined as
(Wa(K)) = % [1441 ST (P exp . A) | (4.1)

As is well-known these expectation values lead directly to the famous knot polyno-
mials of Jones [16] and their generalizations [17]. These invariants again are analytic
in A =1/(k + h) and consequently have a perturbative expansion

(Wr(K)) = i an(K)h". (4.2)

In this way we are naturally led to also consider knot theory in perturbation theory
[3]. Remarkably this perturbative approach to knot invariants was developed more
or less independent from physics by Vassiliev [6]. In our exposition we will follow
mainly the beautiful and extensive review of Bar-Natan [7] and the seminal paper by
Kontsevich [8]. See also the interesting papers [13, 14].

For our purposes a knot will be an embedding of a circle in Euclidean three-space

K:S' >R, O—> C@ (4.3)



and, more generally, a link will be an embedding of a collection of circles

L:S'x ... xS 5 R, @@—)Q@ (4.4)

The important restriction is of course the absence of self-intersection in these maps.

Two knots K1, K5 are said to have the same knot type, K; ~ Ks, if there exists
an isotopy of R® mapping K; into K». The fundamental problem in knot theory is to
make sense of the classification of knot types. A knot or link invariant ®(K') depends
by definition only on the knot type

Ky ~ Ky = ®(K;) = O(K>). (4.5)

It is clear that a classifications of knot invariants is dual to a classification of knots.

4.1. Vassiliev invariants

A fruitful way to think about knot invariants is to consider the space B of all
embeddings. This is a very nontrivial infinite-dimensional space, with the topolog-
ical complications coming from the fact that we have to excluded self-intersections.
In particular B is not connected, and the connected components of B correspond
precisely to the different knot classes. From this point of view a knot invariant is a
locally constant function on B

® € H'(B). (4.6)

We can think of B as a subspace of the space of all (smooth) maps S* — R®. In this
space we have different strata B, of codimension n, where we allow n distinct normal
intersections, and By = B. We can inductively extend ® to these singular knots in
B,, through the local definition

® <><) - (X) —® (X) . (4.7)
Vo (X) =& <><> . (4.8)

This defines the ‘derivative’ of a knot invariant. Notice it is a ‘partial derivative’ since

We will also write

its definition depends on which crossing we have picked in a particular blackboard
projection of the knot. It is the wonderful idea of Vassiliev that this point of view
produces a natural filtration on the space of knot invariants. This is best explained
by an analogy:



Consider the space A of analytic functions in z. We have a natural filtration
PcPC---CP,C---CA, (4.9)

where P, is the space of polynomials of degree n,

n

z
pEPn:>p(z):an—'+...+alz+a0, a; € C. (4.10)
n!

With V = d/dz, we have
pe P, & V'ip=0. (4.11)

Furthermore the quotient spaces P,/P, 1 = C are one-dimensional and correspond
to the leading coefficient of p € P,

V'p=a, € P,/P, 1. (4.12)

With this analogy in mind, we now try to define ‘polynomial’ knot invariants (not to
be confused with knot polynomials!). These will be the invariants satisfying V¥® = 0
for large enough k.

More precisely, we call a knot invariant a Vassiliev invariant of order n, and we
will write ® € V,,, if ® vanishes on B, ;. (and consequently on all B, with k& > n.)
Stated otherwise, ® is a Vassiliev invariant of order n if all (n = 1)th derivatives
vanish

Ve = 0, (4.13)

or, equivalently

—_—————
n+

o | > | =o. (4.14)

We will see in a moment that
dimV,,/V,, 1 < oo, (4.15)
and that the ‘leading coefficient’

Vo eV, /V, (4.16)



has a natural interpretation in terms of (Feynman) diagrams. Actually this relation
makes the description of the spaces V,, algorithmically speaking completely straight-
forward. There is now a universal classification of Vassiliev invariants. The classifi-
cation of all knot invariants can only differ from this by ‘nonperturbative’ terms.

The simplest examples of Vassiliev invariants are the coefficients of the Conway-
Alexander polynomial ¢(K) [15]. Recall that this famous knot invariant associates to
each knot a polynomial in the formal variable z

c(K) = co(K) + er(K)z + ...+ en(K) 2", (4.17)

C(Q) =1, (4.18)
C(X>C(X> —z-c(><>. (4.19)

The first few nontrivial examples are

c OO = 0, if n>1,
c C@ = 1+42°,

c @ = 1-2%

It is an easy exercise to verify that the coefficients ¢, are Vassiliev invariants of order

defined recursively through

and the skein relation

n
cn € V. (4.20)

We simply use the skein relation

Ve (X) —z-c O O (4.21)



n + 1 times, which implies that
Vit = 2" (4.22)

and consequently
Vv™tie, = 0. (4.23)

The invariants ¢y and ¢; have an elementary interpretation

co(K) = (4.24)

1, if K has one component,
0, otherwise.

and
Ik(K), if K has two components,

o (K) = { (4.25)

0, otherwise.

where [k is the linking number. The higher order invariants are much more mysterious.
Analogous results hold for the Jones, HOMFLY and Kauffman polynomials. For
example, the HOMFLY polynomial H,,, n € 7Z, is defined through the skein relation

() ()= (O0) .

(The Jones invariant is given by n = —3.) If we substitute ¢ = e*, and expand

Hn - Z hn,kzka (427)

one verifies that Vassiliev invariants are produced: h,; € Vj.

4.2. Weight systems and chord diagrams

The relation with perturbative field theory emerges in the following remarkable
way. To each Vassiliev invariant we can associate a so-called weight system. Weight
systems are basically generalizations of Feynman rules.

Consider a Vassiliev invariant ® € V,, and its derivative V" ®. The latter is a knot
invariant for knots with n distinct normal self-intersections. It has the important
property that it vanishes as soon as we create another intersection, since by definition



V"1® = 0. So we can assume that this knot is unknotted except for the n self-
intersections. An example would be the following knot with three self-intersections

K: (4.28)

To such a configuration we can associate in a unique way a graph, a so-called chord
diagram. For convenience let us assume that our knot has only one component. The
map K : S' — R? is one-to-one apart from 2n special points on the circle where the
knot intersects itself. Let us label these points consecutively P, ..., P, € S'. The
points P; and P; are pairwise related if K(P;) = K(P;) € R®. In the corresponding
diagram the points P, and P; will be connected with a (dashed) line. A diagram T
with n of these internal lines will be called a chord diagram of order n. In our example
we obtain the graph

(4.29)

where the intersections of the dashed lines are meaningless.

In physical terminology chord diagrams are just fermion loops with exchange of
gauge bosons. These interactions are ‘abelian’, we ignore the self-interactions of the
bosons for the moment. In this intuitive physical picture the above procedure can
be regarded as replacing an effective four-fermion (self)interaction by a propagating
intermediate gauge boson

(W) = T Ay + A% - (4.30)

Clearly a knot invariant ® € V, leads to a function V"® on the space of chord
diagrams. The question is now what are the conditions that the functions V"® that
come from knot invariants satisfy. There are two rather obvious constraints that we
will discuss in a moment, but it is a powerful result of Kontsevich (which we will
describe in the next section) that these two conditions are sufficiently characterize all
the Vassiliev invariants.



The first condition states that ® vanishes whenever there is an isolated chord

condition (1): @ (4.31)

This relation is easily proved by inspection of the following figure

since the two terms on the RHS are simply related by a 27 rotation of one of the two
‘blobs.” We do remark though that in the case of knot invariants that are framing
dependent, such as is the case with many invariants coming from conformal field
theory, this identity will not be satisfied. That is why in actual quantum field theory
realizations we will sometimes discard condition (1).

Condition (2) can be explained best by considering a diagram with an internal
vertex of valency three

(4.33)

where we did not indicate all other chords that are of the usual type, i.e. just con-
necting two boundary points. Note that at present this is not a well-defined chord
diagram. We can now ‘resolve’ this third order vertex using the rule

----------- _ - (4.34)

This resolution can now be done in three inequivalent ways, depending on which of
the three edges emanating from the vertex we choose. Condition (2) says that all
three are equivalent. Diagrammatically this gives a relation with four terms

condition (2): ‘- = - ‘ (4.35)



and therefore this relation has been baptized the four-term relation. The topolog-
ical proof of this relation follows quite naturally by considering a degenerated self-
intersection where three points P, P;, P, € S are mapped to one point in R3

K(P) = K(P;) = K(P,) (4.36)

and the various resolutions in two distinct crossings, see [8, 7].
Before we continue our discussion of knot invariants, let us first make some further
remarks about the space of chord diagrams. We will write

C=pc, (4.37)
n=0

for the free graded module of all chord diagrams factored by the relations (1) and
(2). That is, we consider linear combinations of chord diagrams, identify combinations
through the four-term relation and put all diagrams with an isolated chords identically
to zero. A weight system is now simply a map C,, — C. One should think of such a
map as a very special set of Feynman rules. To every diagram we assign a number
respecting the relations (1) and (2). The beautiful result of Kontsevich is that

V)V 1 2 CE. (4.38)

n

That is, every chord diagram of order n determines a Vassiliev invariant of order n
and does so uniquely up to terms of lower order. This is a very nontrivial result. In
the original work of Vassiliev it was not immediately clear that no other conditions
than (1) and (2) would emerge by considerations of higher codimension. In particular
the space V,, is finite-dimensional.

It is actually more convenient to (temporarily) forget about condition (1) and only
restrict ourselves to condition (2)  the 4-term relation. Let

F=@QF, (4.39)

denote the module of chord diagrams where we only imposed the condition (2). Re-
markably the space of such diagrams forms a Hopf algebra. That is, we can both
multiply and comultiply such diagrams. The multiplication

. FQF > F (4.40)



is essentially the connected sum of the two graphs. If ', € F,, and I'y € F,, then
[y Ty € Flyp is defined as

(4.41)

It is a remarkable application of condition (2) that this connected sum is independent
of the points on the graphs I', and I'y that we choose to connected the two. The
comultiplication is a map

A:F—SFQF (4.42)
defined as
Al,) = > Iyl (4.43)
bUc=a

where we partition the set of chords a into two subsets b and ¢. For example
- Ee(O+(De
e (DO aw

With unit O and counit ¢(I') = 0r ¢ one shows that the above defines a (co)commutative,
(co)associative Hopf algebra. Such simple Hopf algebras have a very canonical struc-
ture. They are always a free polynomial algebra generated by the primitive elements.
A primitive element x satisfies by definition

Alz) =z®@1+1® . (4.45)
If we denote these elements as x1, x5, ... then we consequently have
F = C[$1, Lo, L3,y .. ] (446)

The most important example of a primitive element is the generator

This is typically the diagram that we should put to zero if we also impose condition
(1), i.e. go from F to C. Actually it is enough to just put z; = 0 in the ring generated
by the primitive elements of F. That is, we have

C= (C[.’I?Q, s, . . ] (448)



The (co)multiplicative structure on the space of chord diagrams is also interesting
from the point of Feynman rules or knot invariants. Since we can comultiply diagrams,

we can multiply invariants using

(1 @2)(a) = (F1 ® F)(A(T)) = 3 @1(Is)Po(T). (4.49)

bUc=a

4.5. Lie algebras

There are a natural set of Feynman rules coming from Lie algebras that realize
the weight systems in F™*. Let g be a semi-simple Lie algebra. We will write e, for

an orthonormal basis for g, and have structure coefficients
6,,, eb Z fab('e(' (450)

with fup. fully antisymmetric. Let R be a representation R : g — End(V). We write
R, = R(e,) and clearly have by definition

Ra;Rb Zfabc c: (451)

If we now introduce the Feynman rules

i i =4, a b _
L 0, & Sabs (4.52)
| b
------ R = szjv a = fabca (453)
i c

then equation (4.51) corresponds precisely to the relation (4.34). Condition (2) is
therefore satisfied.
In general condition (1) will not be satisfied in these Lie algebra Feynman rules.

In fact, one easily computes that

(4.54)




with cg the value of the quadratic Casimir
C=> e, (4.55)

in the representation R. We obtain real (framing independent) knot invariants from
these rules by factoring out the ideal generated by x;. One may wonder whether all
weight systems are related to (classical) Lie algebras. Numerical calculations have
not yet lead to the opposite conclusion.

Actually the structure of Lie algebras with their cubic vertex is quite naturally
as becomes clear from a third description of the space F' that is much closer related
to Chern-Simons perturbation theory and that also includes the cubic gauge boson
vertex. Let

D= D, (4.56)
n=0

be the space of chord diagrams where we also allow cubic interactions of the gauge
fields. That is we have one fermion loop, a fermion-boson interaction, plus the cubic
vertex. We further impose the relation (4.34). One can now show that (1) D = F,
and the graphical representations of (2) antisymmetry of the structure coefficients
and (3) the Jacobi relation

......... _ . ’ (457)

Of course to show that Lie algebras exhaust the set of knot invariants it remains to
be shown that the weight systems in D* are actually Feynman rules, i.e. based on
the composition principle where general weights are built out of elementary weights
of the individual trivalent vertices.

The space D is a Hopf algebra too. In this formulation there is a simple criterion
whether an element is primitive or not, a € D is primitive iff a is connected. This



allows us to write down easily the first three primitive elements

= - (4.58)
This shows in particular
dim CO = 1, dim Cl = 0,

We are now left with the task to present the proof of Kontsevich that the space of
chord diagrams C,, is dual to the quotient space V,,/V,, ;1. Hereto we have to integrate
a weight system U = V"® € C? to a knot invariant ® € V,,. The idea is based on
our experience with conformal field theory, or if one wishes with the Hamiltonian
formulation of Chern-Simons theory.

5. The Knizhnik-Zamolodchikov connection

In conformal field theory knot invariant naturally are constructed out of braid
group representation. Recall that the braid group By is generated by the elements

01,...,0n_1 with the relations
0i0; = 0505, |i—j| =2,
0;0;410; = 0;410;0;41. (51)

Given a braid on N strands, b € By, we can produce a knot out of it by identifying



the ends

be By = K ="Trb (5.2)

Given a braid group representation

R: By — End(V), (5.3)
we can try to define a knot invariant by

O(Trb) = Tr R(b). (5.4)

This knot invariant is only well-defined, i.e. only depends on the knot type, if the
trace is invariant under the (second) Markov move

Tr R(onb) = Tr R(b), be By,on € Byya. (5.5)

(The first Markov move Tr R(b1by) = Tr R(baby) is obvious.) The above property
is indeed satisfied by the braid matrices of conformal field theory. A good concep-
tual explanation of this remarkable fact was given by Witten’s proof that the CFT
braid representations are identical to the representations that appear in the canoni-
cal quantization of Chern-Simons theory, which is a truly covariant three-dimensional
relativistic field theory.

The CF'T braid matrices are typically obtained as holonomies of a connection €2,
the Khnizhik-Zamolodchikov connection [18], on the configuration space Cy of N
distinct unmarked points zq, ..., zy in the complex plane. Let us briefly recall the
origin of the Khnizhik-Zamolodchikov equation in conformal field theory.

The Wess-Zumino-Witten model for compact Lie group GG with Lie algebra g has
(chiral) primary fields

é(2) € V. (5.6)



that carries a representation R : g — End(V). Consider the chiral correlation func-
tions or holomorphic blocks

£=(d(z) - d(zn)) € VEV, (5.7)

As is well-known these are holomorphic sections of a holomorphic vector bundle over
configuration space. They have an alternative interpretation as the wave-functions of
Chern-Simons theory in the presence of external charges.

We denote such a correlator or wave function by a graphical representation

(5.8)

The holomorphic blocks satisfy the famous Knizhnik-Zamolodchikov equation, which
can be elegantly written as

(d— hQ)E =0, (5.9)
with 5
d = —dz;, 5.10
ZL-: 821- Zi ( )
and €2 the KZ connection
dz; — dz;
0=Y ¢, (5.11)
iz A
Here
Cij = Y RVRY, (5.12)

and R denotes the action of g on the i factor in V®Y. We will write symbolically

Cij =] o (5.13)

Let us briefly consider the derivation of this equation. One starts with an insertion
of the stress tensor

dz

. Z]' 27TZ

(T(2)¢p(=1) -~ p(2n)), (5.14)



then uses the OPE
hR¢(w) 4 8¢(w)

T ~ 5.15
(@otw) ~ I+ 20, (5.15)
and
R,o(w
Tu(2)g(w) ~ Zefl) (5.16)
z—w
together with the Sugawara construction
T=hrY J.J B (5.17)
= . JaJday - L + h :

In this way one finds

i <¢(21) e '¢(ZN)> - f; £<T(z)¢(zl) ) "¢(ZN)>

a—zj 271

& S 2 u(2)6() b))

= Zh&@ﬁ(zl) - p(2n)). (5.18)

it A

In the abelian case, g = C", all representations are one-dimensional, R[(f) =p; € C",
and the sections are given by the familiar vertex operator correlation functions

E=1](z - z;)pipi), (5.19)

i<j

One of the beautiful characteristic properties of the KZ connection D = d — hf) is
that it is flat (for all values of A). More precisely, one has D? = 0 or

dQ=QAQ=0. (5.20)

For the proof of this statement it is convenient to write

Q=73 Q, (5.21)
i<j
with
dz; — dz;
Q= Oy = Cydlog(z — 2) (5.22)



(no summation). We clearly have by the above relation d2;; = 0, so we only have to
prove [, Q] = 0. Hereto we have to distinguish three separate cases.
(1) First the obvious result
[€2i, 5] = 0, (5.23)

with corresponding picture

= (5.24)

(2) Secondly, the equally obvious case

with a pictorial interpretation

________________________ (5.26)
i j k i j k
(3) The interesting case is however
dz; —dz; dz; —dz,
Qi Q| = [Cy5,C - N
[ s ]k] [ Ve Jk] 2% — 2 2 — 2
dz; —dz; dz; —d
o A Ry N By (5.27)
Zi — %5 Z; — Zg
The important observation is now that the prefactor
C.ir. = Z fabcR(z)R(J)R(k) (5 28)
ijk — a b c .

a,b,c

is completely anti-symmetric in 4, 7, k. Therefore we can use Arnol’d’s identity [20]

dz; —dz; dz; —d ,
z AN Bl cyclic = 0, (5.29)

ZZ'—Z]' Zj—Zk



to show that
(5, Q] + cyclic = 0. (5.30)

Of course again we can draw a picture (as symmetric as possible)

(5.31)

1

1
S e
!

From this last picture it will be clear that the abstract K7 connection is flat precisely
when we consider weight diagrams that satisfy the four-term relation. Indeed the
only thing that we needed were the relations

[C,-j,C'kl] == 0, 'I,] 75 ]{',I (532)

which are the infinitesimal pure braid relations of Kohno [19]. The last relation is
certainly equivalent to the four-term relation, now applied to strands instead of knots,
and so will be valid in our formalism of chord diagrams.

Given the integrable KZ connection the braid representations are obtained as
follows. For a closed path in s : [0,1] — Cy we define the holonomy

1
b=b(1) = Pexp/ ds Q, (5.34)
0

by the equation
db
=
(We write Q(t) as an abbreviation for s*Q(s(¢)).) This can be integrated perturba-
tively using Dyson’s formula as

Q- b, (5.35)

b=1+Y / dty - dt Q1) - Qt). (5.36)

M= 0<t<<tm <1

We will now take this definition of knot invariants and generalize it the setting of
chord diagrams. More precisely, if K = Trb is a knot obtained from a braid, we can
define an nth order knot invariant as

B(K) = / dty - dt, Qty) - - Q(t,) € O™, (5.37)

0<ty <. <tn <1



with the diagrammatic K7 connection

P ISV S
o= Y =28 b F , (5.38)

1<i<j<N %~ %j

and with the obvious graphical definition of the trace as in (5.2). Equivalently,

" dw; — dw!
O(K) = / dty--dt, S AN pLec, (5.39)
- . w; — Ww;
0<t1<...<tn <1 pairings P i=1 ?
where we sum over all choices of pairs w;, w! € {z1,..., 2y} and where I'p is the chord

diagram that corresponds to the pairing P. Proving that this defines a knot invariant
uses of course the fact that the KZ connection € is flat. Therefore we can smoothly
deform the braid.

The above definition is however not general enough, since we can also have knots
that are not traces of braids. (Every knot class can be written as a trace of a braid,
but that is not the same.) In that case we cannot a priori apply the above prescription.
Kontsevich’s formula basically takes a leap of faith and applies it anyhow! To give
the formula we have to use a time direction and parametrize the space-time points
r € R asz = (t,2) € R x C, t being time and z space. Now our knot K we will be
‘created’ at time ¢t = a and ‘disappear’ at t = b, i.e. the time slices X, = {t = s} 2 C
satisfy K N X, # < s € [a,b]. Now for such a time ¢ € [a,b] the set K N X, will
consist of a number of points. We can define with the following picture in mind

chord diagram

(5.40)



the perturbative knot invariant

- " dw, — duw!
®(K) = / dty--dt, Y (CDFANTT Tpec,.  (5.41)

£ : w; — w.
a<t1<..<tn<b pairings P i=1 v

Here # indicates the number of down-going strands after a choice of orientation of
the knot. (A new feature that we didn’t have to deal with in the case of braid knots.)

It turns out that as it stands this is not yet a true knot invariant. There is
a correction due to the fact that a (Morse) knot can have critical points, and the
deformation argument that follows from the flatness of the KZ connection can never
change the number of critical points. This effect is already observed for the figure
eight (un)knot which gives the expression

@(C@)—©+--- (5.42)

This gives a corrective factor for each critical point. So the final formula for the
Universal Vassiliev Invariant of the knot K with ¢ critical points reads [8]

eC, (5.43)

This is a universal invariant in the sense that it takes value in the module of chord
diagrams. We can thus pair it with a weight system ¥ € C} to produce a number
(U, ®(k)) € C.

We will not be in a position to proof here in full detail the fact that this invariant
is well-defined and indeed independent of smooth deformations, see e.g. [7]. Tt is also
clear that many questions abound: How to generalize these invariants along the lines
of the Chern-Simons-Witten theoryl' How to describe non-perturbative effectsI’ Are
Lie algebras, or even just the classical Lie algebras sufficient to exhaust the Vassiliev
invariants[’ if anything, I hope to have given the reader at least the idea that these
questions might not be as hopeless as one might think at first sight!
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