
Perturbative Topological Field TheoryRobbert DijkgraafDepartment of Mathematics, University of Amsterdam,Plantage Muidergracht 241018 TV Amsterdam, The NetherlandsAbstractWe give a review of the application of perturbative techniques to topologi-cal quantum �eld theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give anintroduction to graph homology and homotopy algebras and the work ofVassiliev and Kontsevich on perturbative knot invariants.
1. IntroductionIn these lecture notes we will give a review of some recent mathematical devel-opments in topological �eld theory following the work of Kontsevich, Axelrod andSinger, Vassiliev, Bar-Natan, Witten and others. Quite remarkable these new ideasare all related to old-fashioned perturbative techniques in �eld theory. Indeed, it isan interesting comment on the development of the interaction between physics andmathematics that these days pure mathematicians are calculating Feynman diagramswhereas this skill is slowly disappearing among a large fraction of theoretical physicsstudents.Our starting point in all this will be mostly three-dimensional Chern-Simons-Witten gauge theory [2]. This topological �eld theory lends itself most convenientlyto a perturbative formulation. Actually, one can argue that the model is even moreelegant and symmetric in perturbation theory. The reason behind this phenomenonhas been pointed out be Witten: Chern-Simons is (an exact low-energy limit of) anopen string �eld theory [1].The perturbative aspects of Chern-Simons theory have been studied in manypapers, starting soon after the (non-perturbative) solution of Witten in [2], see e.g.



[3]. A very precise analysis aimed at mathematical rigor has been performed byAxelrod and Singer [4], and we will follow their work closely. The innovations andgeneralizations we will discuss, in particularly the relations with homotopy algebras,follow the beautiful ideas of Kontsevich [5]. The applications to knot invariants centeraround the work Vassiliev [6], which has been a great step forward in the classi�cationprogram of knots. The relation of the work of Vassiliev to perturbative �eld theorywas �rst pointed out by Bar-Natan [7]. The power of this approach is mainly due toa wonderful theorem proved by Kontsevich [8].It is well-known how the partition function of Chern-Simons-Witten gauge the-ory, when considered on a closed three-manifold M , produces a topological invariantZ(M). Although this quantity can be de�ned non-perturbatively, and the couplingconstant ~ = 1=k is quantized, the resulting expression is analytic in ~ and thus hasa well-de�ned perturbative expansionZ(M) � exp 1Xn=0Fn(M)~n! : (1.1)The coe�cients Fn(M) de�ne perturbative invariants that only depend on calculationsof connected Feynman diagrams up to n-loops. They can therefore be considered as�nite order invariants. This point of view has some interesting consequences andadvantages that we will develop in these notes.1. Finite order invariants can be calculated evaluating �nite-dimensional integrals.They therefore stand a greater chance of being rigorously de�ned. This is of coursea very familiar argument for particle physicists!2. A perturbative approach greatly facilitates classi�cation, since we now havea natural �ltration on the space of invariants by order in perturbation theory. Ifwe are lucky the space of invariants of a given order can turn out be �nite and canbe analyzed using combinatorical means. This turns out to be the case for knotinvariants as we will see in section 4.3. A perturbative framework can be used to generalize the concept of a topologicalinvariant. If we are somewhat pedantic we can call a (smooth) manifold invariant afunction Z(g) that is invariant under smooth changes in the Riemannian metric g,i.e. Z(g + �g) = Z(g); or �Z = 0; (1.2)where � is the exterior di�erential on the space of (isomorphism classes of) Rieman-nian manifolds B = Met(M)=Di�(M) = BDi�(M). Stated otherwise, Z is locallyconstant function on B Z 2 H0(B): (1.3)



This point of view leads to the natural generalization where topological invariants arehigher dimensional cohomology classes on the space of Riemannian structuresZ 2 Hk(B): (1.4)This idea is actually well-known from string theory, where the partition function Zof the underlying conformal �eld theory on a Riemann surface is a volume form onthe moduli space Mg. The string partition function is then obtained as RMg Z.4. Closely related to the previous remark is the fact that certain generalizationsof the action become possible once we have obtained a gauge �xed, perturbativeformulation in terms of Feynman diagrams. Stated simply, one can replace the cubicvertex in Chern-Simons theory by quartic, quintic etc. vertices. These higher ordervertices typically involve interactions where �elds, ghosts and anti�elds couple in anontrivial way. This leads to algebraic structures with multilinear operations, so-called homotopy algebras [9]. These structures have recently been described in a veryelegant way using the language of operads, see e.g. [10], a subject we will not touchupon in these notes.5. Finally many of the above remarks have a clear interpretation from the poin ofview of string (�eld) theory, where they help us understand the issues of backgroundindependence, space-time ghosts etc.2. Algebras and Feynman Diagrams2.1. Graph CohomologyIt is often stated that one of the elegant features of string theory is that one has toconsider only one diagram in the topological expansion: a Riemann surface of givengenus, this in contrast with ordinary point-particle �eld theory with its many di�erentFeynman diagrams. Of course, there still remains a very complicated integral to bedone over the moduli space Mg of such a surface.It is less appreciated that certain types of �eld theories can be formulated in a verysimilar 
avour [5]. Indeed, let us consider one-dimensional quantum gravity where our`space-time' is an arbitrary graph �. The space of metrics modulo di�eomorphismson such a singular space is parametrized by an assignment of lengths l1; : : : ; lE � 0 toall the edges of the graph. In 1D quantum gravity we want to sum over all graphs andintegrate over the lengths `i with some particular weights. Of course we can think ofthe lengths as the Schwinger parameters of the Feynman diagrams of quantum �eldtheory. As such they are completely equivalent to the moduli of Riemann surfacesthat appear in string theory. For example the usual �eld theory propagator takes the



form Z dl e�l(p2+m2) = 1p2 +m2 : (2.1)The Schwinger parameter spaces of the individual graphs can be glued together toform a space that is very analogous to the moduli spaceMg of Riemann surfaces. Toevery diagram � we can associate a cell c� �= RE+ where a point x 2 c� is parametrizedas x = (l1; : : : ; lE). These cells can be glued together in the following fashion. If oneof the lengths, say l1, becomes zero, the graph will change topology. If the particularpropagator connects two di�erent vertices of order n and m, the degenerated diagramwill have one vertex instead of two, now of order n+m� 2. For example in the caseof two cubic vertices we will create a quartic vertexliml!0 l = (2.2)In this process the number of loops will not change, the number of edges and thenumber of vertices are reduced by one.Another case is an edge that starts and ends at the same vertex, say of order n.In the limit where the lenth of the edge tends to zero, we are left with a diagram withone loop less and a vertex now of order n � 2. One veri�es that in both cases theEuler number of the graph is reduced by one.Clearly the boundary of the cell c� will consist of a sum of lower dimensional cells(with signs) associated to graphs �0 = �=e where one propagator e is contracted tozero @c� = Xedges e�c�=e: (2.3)We can write this more abstractly as @c� = cd� where we introduce the boundary ofa graph by d� = Xedges e�=e: (2.4)We can now make a moduli space Fg;s of all Feynman diagrams with g loops ands external lines by gluing together the cells that belong to graphs with only cubicvertices with appropriate symmetry factors such that the sum of the boundaries ofall cells is zero Fg;s = X� cubic c�#Aut � : (2.5)This space obviously has (real) dimensiondimFg;s = 3g � 3 + s: (2.6)



We have to decide It is actually an orbifold space, since graphs typically have auto-morphisms. For example consider the graph
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(2.7)Whenever we degenerate one of the li = 0 we obtain the quartic diagram (2.8)So we have to identify the three faces li = 0.Graph cohomology can be de�ned as the cohomology of this moduli space F .Actually following Kontsevich we can formulate graph cohomology just in terms ofgraphs. First we build a vector space C with a basis spanned by all graphs. Wewill take these graphs to be closed and with vertices of order � 3. We furthergive them an orientation. We write �� for the graph with the opposite orientation.This immediately has important consequences, because some graphs are actuallyisomorphic to their opposite �� = � ) � = 0: (2.9)If we work over the complex numbers these graphs therefore vanish. An example ofsuch a graph is the quartic diagram above or the dumb-bell diagram (2.10)Of course the space of graphs is naturally gradedC = 1Mg=0Cg (2.11)where Cg are the graphs with g loops, i.e.#vertices �#edges = 1� g: (2.12)



Now the spaces Cg are actually complexes. We can writeCg = 3g�3Mk=0 Cgk ; (2.13)where k is the number of edges. We now have a natural boundary mapd : Cgk ! Cgk�1; �! d� = Xedge e�=e (2.14)where we sum over the contraction of edges. It is an interesting exercise to verify thatindeed d2 = 0: We can now de�ne chains as linear combination of graphsa =X� a��; a� 2 C (2.15)A closed chain will now be a chain that satis�es da = 0. An example of a closedgraph is the graph d = = 0: (2.16)We can also de�ne homology classes byda = 0; a �= a+ db: (2.17)Similarly graph cohomology classes are linear functions � : C ! C such that d� = 0,� �= � + d	, where we simply de�ned�(�) = �(d�) (2.18)Cohomology classes thus vanish on exact graphs. We should think of graph cohomol-ogy classes as very special Feynman rules, that respect the degeneration of graphs.That is, any combination of graphs that is a boundary of another graph vanishesaccording to these rules.2.2. Lie algebrasAn interesting example of such a set of Feynman rules that we will meet manytimes in these lectures is the one based on Lie algebras and, more general, homotopyLie algebras. Recall that a Lie algebra is nothing but a vector space V with a bilinearbracket [�; �] : V 
 V ! V; u; v ! [u; v]; (2.19)



that satis�es two conditions: symmetry[u; v] = �[v; u] (2.20)and the Jacobi relation [u; [v; w]] + [v; [w; u]] + [w; [u; v]] = 0: (2.21)If we choose an explicit basis ea, then we have structure coe�cients[ea; eb] =Xc fabcec: (2.22)If the Lie algebra is even (bosonic) and simple, it has a unique invariant inner product�ab, and we can introduce completely antisymmetric tensors fabc that we can use asvertices of Feynman graphs
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= fabc: (2.23)Since this vertex is antisymmetric we should orient it to make it well-de�ned, forexample using blackboard orientation. With this convention the Jacobi identityXe (fabefedc + fdaefebc + facefedb) = 0; (2.24)



reads pictorially

Xe = 0: (2.25)

We can now write an interesting graph homology class as follows. For every closedcubic graph � let I(�) be the weight associated to it by the above Feynman rules.We now de�ne the chain by a summation over all cubic g-loop diagramsag = Xcubic �2Cg I(�) � �#Aut � : (2.26)We now claim that dag = 0. This is actual a direct consequence of the Jacobi identity.The diagrams that appear in dag will have one (and only one) quartic vertex. Sucha diagram can be obtained as the boundary of three di�erent cubic graphs. That isto say, there are three inequivalent way to resolve the quartic vertex into two cubicvertices. These are of course the s, t and u-channel diagrams, which we will denoteas �s, �t and �u. So the total weight associated to this particular quartic diagramwill be I(�s) + I(�t) + I(�u) = 0; (2.27)



which vanishes precisely by the Jacobi identity. To produce other graph homologyclasses we have to go to homotopy algebras.2.3. Homotopy AlgebrasThe concept of a homotopy algebra is quite general and exists in many di�erentcontexts such as commutative, associate, Lie or di�erential graded algebras. Theunifying principle is that the algebraic operations are no longer restricted to be binary[9]. As such the most natural language to describe homotopy structures in algebra isthe formalism of operads or trees [10].However, here we will take a much more down to earth point of view. To be asconcrete as possible we also restrict ourselves �rst to homotopy Lie algebras. We willstart from the beginning with graded algebras. That is, our elements might be eithercommuting or anticommuting. So a Lie algebra can also be a super Lie algebra.For a homotopy Lie algebra we just introduce generalized brackets on N elementsu1; : : : ; uN 2 V ! [u1; : : : ; uN ] 2 V; (2.28)that again satisfy two relations: symmetry and Jacobi. The symmetry relation nowreads [u1; : : : ; ui; : : : ; uj; : : : ; uN ] = �[u1; : : : ; uj; : : : ; ui; : : : ; uN ]; (2.29)and the generalized Jacobi identity takes the formNXk=1�[u1; : : : ; uk[uk+1; : : : ; uN ]]� perm = 0; (2.30)where we refer to the literature [9] for the precise choices of signs. The latter relationcan be written much more clearly in terms of Feynman graphs. Hereto we assumethat the algebra V also has an invariant inner product by which we can raise andlower indices. We can than de�ne structure coe�cientsfa0a1:::aN =Xb �a0bfa1:::aN b (2.31)with [ea1 ; : : : ; eaN ] =Xb fa1:::aN bea (2.32)We can use these fully graded symmetric tensors as vertices of our Feynman rules.



For a vertex of order n we write symbolicallyfa0a1:::aN = n (2.33)The Jacobi identity then takes the formXm+n=N n m = 0 (2.34)It is now clear how to employ these homotopy algebras to produce graph cycles. Wesimply sum over all graph of a given number of loops (not necessarily only the cubicones) and associate to each graph � the above weight I(�). The classesag = X�2Cg I(�) � �#Aut � (2.35)are easily seen to be closed. The above algebraic structure can be formulated a bitmore elegantly as follows: We will consider an algebra A with a multiplicationm 2 Hom(A
 A;A); (2.36)that satisfy a quadratic relation that we will write symbolically asm �m = 0; (2.37)with m �m 2 Hom(A 
 A 
 A;A). Familiar examples are: (1) Associative algebraswith a multiplication that we will write asm(a; b) = a � b; (2.38)and that satis�es the quadratic relation(m �m)(a; b; c) = (a � b) � c� a � (b � c) = 0: (2.39)



(2) Commutative, associative algebras with the further constrainedm(a; b) = m(b; a): (2.40)(3) Lie algebras, where m(a; b) = [a; b] = �[b; a]; (2.41)and the quadratic condition is the Jacobi identity(m �m)(a; b; c) = [a; [b; c]] + [b; [c; a]] + [c; [a; b]] = 0: (2.42)We can now try to generalize the algebraic operationm to an operation on n elementsof A with n 6= 2.The �rst nontrivial generalizations are di�erential graded algebras (DGAs), suchas the familiar example of the space 
�(M) of di�erential forms on a manifold M .This is a (graded) commutative associative algebra, with multiplication the wedgeproduct a 2 
m; b 2 
n ! a ^ b 2 
m+n; b ^ a = (�1)aba ^ b: (2.43)This algebra also has a derivation d, the exterior di�erential,d : 
n ! 
n+1; d(a ^ b) = da ^ b+ (�1)aa ^ db; (2.44)that is nilpotent: d2 = 0. Generally a DGA has by de�nition a nilpotent linearoperator of degree one d 2 Hom(A;A); d2 = 0; (2.45)that is a derivation d(m(a; b)) = m(da; b) + (�)am(a; db): (2.46)Conditions (2.37), (2.45) and (2.46) can be combined in writing� � � = 0; (2.47)where � is now the non-homogeneous linear combination� = d+m 2 Hom(A;A)� Hom(A
 A;A) (2.48)



and the operation � is de�ned in the obvious way. So we see that DGAs �t in thesame framework as ordinary algebras if we generalize the `multiplication' operationto involve both one and two elements.Of course we can also take more than two elements which leads us to homotopyalgebras with an algebraic operation� 2Mk�0Hom(A
k; A); � =Xk �k (2.49)with relation � � � = 0: (2.50)For example, �1 = d, �2 = m for di�erential graded algebras.The relations encoded in the above relation actually make more sense if we writethem in components. To be concrete we will write them for homotopy Lie algebraswhere �k is denoted by the k-fold bracket. Of course we start in degree one with themap �1 = [�] = d : A ! A that satis�es d2 = 0. Then, in degree two, we �nd theusual Lie bracket �2 = [�; �] : A
 A! A and the relationd[a; b] = [da; b]� [a; db]; (2.51)that expresses that d is a derivation of the Lie algebra. At degree three we see the�rst occurrence of the ternary bracket �3 = [�; �; �] : A
3 ! A. It actually modi�esthe Jacobi relation by[a; [b; c]]� [b; [c; a]]� [c; [a; b]] = d[a; b; c]� [da; b; c]� [a; db; c]� [a; b; dc]: (2.52)So Jacobi only holds up to d-exact terms. This is the reason one calls these algebrashomotopy algebras. At the following degree we �nd a relation involving the 2 and3-brackets that is again zero up to exact terms involving the 4-bracket. To �nd anapplication of all this we will now turn to Chern-Simons-Witten theory.3. Chern-Simons-Witten TheoryWe will now apply the above ideas to Chern-Simons gauge theory. In this modelthe fundamental �eld is a connection A on a three-manifoldM . We choose a Lie groupG with Lie algebra g and consider the gauge �eld as a Lie algebra valued one-form.We will write A 2 
1(M; g) =: 
1: (3.1)



Under gauge transformation A transforms asA! g�1dg + g�1Ag; g :M ! G; (3.2)or in�nitesimally �A = dA� = d� + [A; �]; (3.3)where � is an element of the Lie algebra of the group of gauge transformations� 2 
0(M; g) =: 
0: (3.4)Chern-Simons theory is concerned with 
at connections, that is connections for whichthe curvature d2A = F = dA+ A2 2 
2 (3.5)vanishes. It is a particular feature of three dimensions that the equation of motionF = 0 can be seen as the variation of an action, namelyS = 14� ZM Tr (AdA+ 23A3): (3.6)This action is almost gauge invariant. Under gauge transformations it picks up aterm S ! S � 112� ZM Tr (g�1dg)3: (3.7)This last term is for topological reasons always 2� times an integer.The quantum �eld theory is de�ned through the path-integralZ = Z [dA] eikS; (3.8)where one integrates over equivalence classes of connections. The coupling constant k,which plays the role of 1=~, is required to be integer in order to make the path-integralwell-de�ned.We can now consider this quantum �eld theory in an (asymptotic) expansion inPlanck's constant 1=k. (Indeed, after a scaling A! A=pk we havekS = 14� ZM Tr (AdA+ 23pkA3); (3.9)



so this corresponds with the usual expansion of a �eld theory with cubic interaction.)For the expansion we pick a classical solution A0 satisfying, with d0 = dA0, theclassical equation of motion d20 = 0; (3.10)and write S(A0 + A) = 14� ZM Tr (Ad0A+ 23A3): (3.11)The discussion below greatly simpli�es if we assume (not very realistically) that thecomplex (
�; d0) is acyclic, i.e. , all cohomology groups vanishH�(M; g) = 0: (3.12)This eliminates in particular the possibility of zero modes, i.e. a family of classical so-lutions, since deformations of a classical solution are in�nitesimally given by solutionsto the equation d0a = 0; (3.13)modulo gauge transformations a = d0�: (3.14)The gauge �xed action can be obtained very directly if one follows the BV quantizationscheme [11]. Here we need three ingredients1. A (njn)-dimensional X of �elds and anti-�elds with an odd symplectic form!. This makes the function space H� = C1(X) into a so-called Batalin-Vilkoviskyalgebra [12]. This is a generalization of a Poisson algebra. H� is a graded commutativealgebra and a Lie algebra with an odd Lie bracket, the so-called anti-bracket,f�; �g : Hn 
Hm !Hn+m�1 (3.15)which reads in local coordinatesfa; bg =Xi;j @a@xi!ij @b@xj (3.16)It satis�es the relationsfa; bg = �(�1)(a�1)(b�1)fb; agfa; fb; cgg = ffa; bg; cg+ (�1)(a�1)(b�1)fb; fa; cggfa; bcg = fa; bgc+ (�1)a(b�1)afb; cg (3.17)



2. Furthermore there is an operator � (the BV-Laplacian) de�ned as� =Xi;j !ij @2@xi@xj : Hn !Hn�1; (3.18)that is nilpotent of order two �2 = 0; (3.19)and satis�es the compatibility relationfa; bg = (�1)a(�(ab)� (�a)b� a�b) (3.20)(Actually this last relation de�nes the bracket in terms of the Laplacian, and can betaken as the de�nition of the bracket.)3. An action S : H ! R that satis�es the master equationfS; Sg+ 12~�S = 0: (3.21)In the case of Chern-Simons theory the space of �elds/anti�elds is taken to be thespace of functions on the total space of Lie algebra-valued di�erential forms.X = 
�(M; g): (3.22)Note that we consider the coordinates f 2 
n to be odd/even depending on whethern is even/odd. A general �eld  2 
� has decomposition = 3Xn=0 (n);  (n) 2 
n: (3.23)Of course  (1) = A is the original physical gauge �eld. We will see that furthermore (0) = c is the usual ghost,  (2) = A� is the anti-�eld of the connection and  (3) = c�is the anti-�eld of the ghost (not to be confused with the anti-ghost!).On H we de�ne the anti-bracket as follows. With f; g 2 
� we de�ne their anti-bracket as ff; gg = Z Tr (f ^ g) (3.24)The action is taken to be the original Chern-Simons actionS = ZM Tr ( d0 + 23 3) (3.25)



where  is now an arbitrary di�erential form. The action S reduces to the classicalaction we restrict  2 
1. One checks that S satis�es separately the (classical) masteraction fS; Sg = Z Tr (d0 +  2)2 = Z d0(12 d0 + 13 3) = 0 (3.26)and the quantum correction �S = 0. The recipe is now completed by putting `half'of the variables to zero. Hereto we impose the Lorentz gauge condition. We choose ametric on M , this gives in particular a Hodge star� : 
k ! 
3�k; (3.27)and an adjoint d�0 = �d0�; (d�o)2 = 0: (3.28)The gauge condition is now d�0 = 0: (3.29)In case all cohomology vanishes (no harmonic forms) this precisely eliminates therequired degrees of freedom.This description can also be derived using more conventional techniques, for ex-ample as done by Axelrod and Singer [4]. If one chooses again Lorentz gauged�0A = 0; (3.30)we now have to introduce ghost, anti-ghosts, a Lagrange multiplier and a BRSToperator satisfying the usual relationsQA = �Dc; Qc = 12 [c; c] Qc = b; Qb = 0: (3.31)The gauge �xed action now readsSgf = S(A0 + A) +Q Z Tr (cd�0A) (3.32)If we rede�ne variables as A� = �d0c; �B = �d0b 2 
2(g) (3.33)these two-forms satisfy by de�nitiond�0C = d�0B = 0 (3.34)



If we introduce the combination = c+ A+ A� + c� 2 
�(g); (3.35)then we recover precisely the gauge-�xed action as written above.The propagator d�10 can now be de�ned on ker d�0 asd�10 = d�0=�0; (3.36)with �0 = [d0; d�0]: (3.37)The propagator has a kerneld�10  (x) = Zy2M L(x; y) (y) (3.38)that is a di�erential form of total degree 2 on M �M ,L(x; y) 2 
2(M2; g
 g); (3.39)and that satis�es d0L(x; y) = �3(x; y): (3.40)This kernel has the nilpotency propertyd20 = 0) Zy2M L(x; y)L(y; z) = 0; (3.41)and symmetry Lab(x; y) = Lba(y; x): (3.42)The interactions are given by the three-points vertexV : 
� 
 
� 
 
� ! R; (3.43)with V (A;B;C) = Xa;b;c fabc Z AaBbCc: (3.44)



Let us now present the argument of Axelrod and Singer why the n-loop contributionsto the partition function are topological invariants. The contribution will have atypical form Fg =X� I(�)#Aut � ; (3.45)where we sum over all connected cubic diagrams � with g loops, and I(�) is theweight of the diagram �. This consists of two contributions, a space-time factor I 0(�)and a group theory factor I 00(�). In case that the 
at bundle is trivial these twocontributions factorizes, I(�) = I 0(�) � I 00(�); (3.46)which we will now assume for the sake of simplicity. We �rst concentrate on thespace-time factor. It has the general formI 0(�) = ZMV LE; (3.47)where V = 2g � 2 is the number of vertices and E = 3g � 3 the number of edges.Let us now consider a variation �g of the metric used in the gauge �xing andde�nition of the propagator L. Since the propagator satis�es by de�nitiond0L = �3(x; y); (3.48)and the delta-function does not depend on the choice of metric, the variation of thepropagator �L will satisfy d0(�L) = 0 ) �L = d0K; (3.49)where we assumed acyclicity again. We can therefore write following Axelrod andSinger �I 0(�) = � ZMV LE= E ZMV LE�1(�L)= E ZMV LE�1(d0K)= E(E � 1) ZMV LE�2(d0L)K= E(E � 1) ZMV�1 LE�2K; (3.50)



where in the last line we have used that d0L = �3(x; y). This e�ectively shrinks thepropagator to zero, and so reduces our cubic Feynman diagram to a diagram withone quartic vertex, precisely as in our discussion of graph homology. Actually we canwrite the above manipulation as �I 0(�) = I 0(d�): (3.51)Of course to complete the argument we have to add the group theory factors Ig(�).But these are precisely the rules related to Lie algebras we were discussing in theprevious section. That is, the g-loop contribution to the Chern-Simons partitionfunction is Fg = I 0(ag); (3.52)with ag the class ag = X�2Cg ; cubic I 00(�)#Aut ��: (3.53)Therefore we now have the following elegant one line proof of the topological proper-ties of perturbative Chern-Simons theory:dag = 0 ) �Fg = I 0(dag) = 0: (3.54)In light of our discussion above it is now obvious how to generalize this property.Instead of cubic graphs weighted with Lie algebra symmetry factors we now takearbitrary graphs weighted with homotopy Lie algebra Feynman rules. However, thingsare a bit more complicated. In particular, cubic graphs are special in the followingrespect. The number of edges is E = 3g � 3 and the number of vertices V = 2g � 2.So, since L is a di�erential form on M2 of total degree 2, the integrand L3g�3 is adi�erential form on M2g�2 of degree 6g � 6. This is a top degree form and can thusbe integrated to give a number: I 0(�).This is clearly a very special property of cubic vertices and three-dimensionalmanifolds. In the general case the graph � has E edges and V = P1k=3 vk vertices,where vk denotes the number of vertices of valency k. If the space-time manifold Mhas dimension d, the degree of the weight I 0(�) will formally bek = (d� 1)E � dV = 1Xk=3(d� 12 k � d)vk � 0: (3.55)So how to interpret a weight that is not a number but a di�erential form of positivedegree? The idea is to consider not one manifold M but a family of manifolds Mt,



where t ranges over some subspace C � B, the space of Riemannian manifolds. Theweight I� now has a natural interpretation as a di�erential form on B of degree k.Furthermore if we repeat our calculation of the metric dependence of I� we �nd again�I(�) = I(d�); (3.56)where � now has the interpretation of being the exterior di�erential on B. The g-looppartition function is now closed, and thus gives a cohomology class on B�Fg = 0 ) �g 2 Hk(B): (3.57)4. Perturbative Knot InvariantsIt is quite natural to extend the above ideas of perturbative topological gaugetheories to include observables, in particular Wilson loops. This is already veryinteresting for the usual Chern-Simons-Witten model, and we will consequently notdiscuss generalizations to homotopy structures.For an embedding K : S1 !M and a representation R Wilson loop averages arede�ned as hWR(K)i = 1Z(M) Z [dA] eikS(A)TrR �P exp IK A� : (4.1)As is well-known these expectation values lead directly to the famous knot polyno-mials of Jones [16] and their generalizations [17]. These invariants again are analyticin ~ = 1=(k + h) and consequently have a perturbative expansionhWR(K)i = 1Xn=0 an(K)~n: (4.2)In this way we are naturally led to also consider knot theory in perturbation theory[3]. Remarkably this perturbative approach to knot invariants was developed moreor less independent from physics by Vassiliev [6]. In our exposition we will followmainly the beautiful and extensive review of Bar-Natan [7] and the seminal paper byKontsevich [8]. See also the interesting papers [13, 14].For our purposes a knot will be an embedding of a circle in Euclidean three-spaceK : S1 ! R3 ; ! (4.3)



and, more generally, a link will be an embedding of a collection of circlesL : S1 � : : :� S1 ! R3 ; ! (4.4)The important restriction is of course the absence of self-intersection in these maps.Two knots K1, K2 are said to have the same knot type, K1 � K2, if there existsan isotopy of R3 mapping K1 into K2. The fundamental problem in knot theory is tomake sense of the classi�cation of knot types. A knot or link invariant �(K) dependsby de�nition only on the knot typeK1 � K2 ) �(K1) = �(K2): (4.5)It is clear that a classi�cations of knot invariants is dual to a classi�cation of knots.4.1. Vassiliev invariantsA fruitful way to think about knot invariants is to consider the space B of allembeddings. This is a very nontrivial in�nite-dimensional space, with the topolog-ical complications coming from the fact that we have to excluded self-intersections.In particular B is not connected, and the connected components of B correspondprecisely to the di�erent knot classes. From this point of view a knot invariant is alocally constant function on B � 2 H0(B): (4.6)We can think of B as a subspace of the space of all (smooth) maps S1 ! R3 . In thisspace we have di�erent strata Bn of codimension n, where we allow n distinct normalintersections, and B0 = B. We can inductively extend � to these singular knots inBn through the local de�nition�� � = �� �� �� � : (4.7)We will also write r�� � := �� � : (4.8)This de�nes the `derivative' of a knot invariant. Notice it is a `partial derivative' sinceits de�nition depends on which crossing we have picked in a particular blackboardprojection of the knot. It is the wonderful idea of Vassiliev that this point of viewproduces a natural �ltration on the space of knot invariants. This is best explainedby an analogy:



Consider the space A of analytic functions in z. We have a natural �ltrationP0 � P1 � � � � � Pn � � � � � A; (4.9)where Pn is the space of polynomials of degree n,p 2 Pn ) p(z) = an znn! + : : :+ a1z + a0; ai 2 C : (4.10)With r = d=dz, we have p 2 Pn , rn+1p = 0: (4.11)Furthermore the quotient spaces Pn=Pn�1 �= C are one-dimensional and correspondto the leading coe�cient of p 2 Pnrnp = an 2 Pn=Pn�1: (4.12)With this analogy in mind, we now try to de�ne `polynomial' knot invariants (not tobe confused with knot polynomials!). These will be the invariants satisfying rk� = 0for large enough k.More precisely, we call a knot invariant a Vassiliev invariant of order n, and wewill write � 2 Vn, if � vanishes on Bn+1. (and consequently on all Bk with k > n.)Stated otherwise, � is a Vassiliev invariant of order n if all (n = 1)th derivativesvanish rn+1� = 0; (4.13)or, equivalently �0BBB@ � � �| {z }n+1 1CCCA = 0: (4.14)We will see in a moment that dimVn=Vn�1 <1; (4.15)and that the `leading coe�cient' rn� 2 Vn=Vn�1 (4.16)



has a natural interpretation in terms of (Feynman) diagrams. Actually this relationmakes the description of the spaces Vn algorithmically speaking completely straight-forward. There is now a universal classi�cation of Vassiliev invariants. The classi�-cation of all knot invariants can only di�er from this by `nonperturbative' terms.The simplest examples of Vassiliev invariants are the coe�cients of the Conway-Alexander polynomial c(K) [15]. Recall that this famous knot invariant associates toeach knot a polynomial in the formal variable zc(K) = c0(K) + c1(K)z + : : :+ cn(K)zn; (4.17)de�ned recursively through c( ) = 1; (4.18)and the skein relation c� �� c� � = z � c� � : (4.19)The �rst few nontrivial examples arec0BBB@ : : :| {z }n 1CCCA = 0; if n > 1;c ! = z;c0BBB@ 1CCCA = 1 + z2;c0BB@ 1CCA = 1� z2:It is an easy exercise to verify that the coe�cients cn are Vassiliev invariants of ordern cn 2 Vn: (4.20)We simply use the skein relationrc� � = z � c� � (4.21)



n+ 1 times, which implies that rn+1c = zn+1(: : :) (4.22)and consequently rn+1cn = 0: (4.23)The invariants c0 and c1 have an elementary interpretationc0(K) = 8<: 1; if K has one component;0; otherwise: (4.24)and c1(K) = 8<: lk(K); if K has two components;0; otherwise: (4.25)where lk is the linking number. The higher order invariants are much more mysterious.Analogous results hold for the Jones, HOMFLY and Kau�man polynomials. Forexample, the HOMFLY polynomial Hn, n 2 Z, is de�ned through the skein relationtn+12 Hn � �� t�n+12 Hn � � = (t 12 � t� 12 )Hn � � : (4.26)(The Jones invariant is given by n = �3.) If we substitute t = ez, and expandHn =Xhn;kzk; (4.27)one veri�es that Vassiliev invariants are produced: hn;k 2 Vk.4.2. Weight systems and chord diagramsThe relation with perturbative �eld theory emerges in the following remarkableway. To each Vassiliev invariant we can associate a so-called weight system. Weightsystems are basically generalizations of Feynman rules.Consider a Vassiliev invariant � 2 Vn and its derivative rn�. The latter is a knotinvariant for knots with n distinct normal self-intersections. It has the importantproperty that it vanishes as soon as we create another intersection, since by de�nition



rn+1� = 0. So we can assume that this knot is unknotted except for the n self-intersections. An example would be the following knot with three self-intersections
K : (4.28)

To such a con�guration we can associate in a unique way a graph, a so-called chorddiagram. For convenience let us assume that our knot has only one component. Themap K : S1 ! R3 is one-to-one apart from 2n special points on the circle where theknot intersects itself. Let us label these points consecutively P1; : : : ; P2n 2 S1. Thepoints Pj and Pj are pairwise related if K(Pi) = K(Pj) 2 R3 . In the correspondingdiagram the points Pi and Pj will be connected with a (dashed) line. A diagram �with n of these internal lines will be called a chord diagram of order n. In our examplewe obtain the graph � : (4.29)where the intersections of the dashed lines are meaningless.In physical terminology chord diagrams are just fermion loops with exchange ofgauge bosons. These interactions are `abelian', we ignore the self-interactions of thebosons for the moment. In this intuitive physical picture the above procedure canbe regarded as replacing an e�ective four-fermion (self)interaction by a propagatingintermediate gauge boson( y )2 !  yA + A2 : (4.30)Clearly a knot invariant � 2 Vn leads to a function rn� on the space of chorddiagrams. The question is now what are the conditions that the functions rn� thatcome from knot invariants satisfy. There are two rather obvious constraints that wewill discuss in a moment, but it is a powerful result of Kontsevich (which we willdescribe in the next section) that these two conditions are su�ciently characterize allthe Vassiliev invariants.



The �rst condition states that � vanishes whenever there is an isolated chordcondition (1): �0BB@ 1CCA = 0 (4.31)This relation is easily proved by inspection of the following �gure= - = 0 (4.32)since the two terms on the RHS are simply related by a 2� rotation of one of the two`blobs.' We do remark though that in the case of knot invariants that are framingdependent, such as is the case with many invariants coming from conformal �eldtheory, this identity will not be satis�ed. That is why in actual quantum �eld theoryrealizations we will sometimes discard condition (1).Condition (2) can be explained best by considering a diagram with an internalvertex of valency three (4.33)where we did not indicate all other chords that are of the usual type, i.e. just con-necting two boundary points. Note that at present this is not a well-de�ned chorddiagram. We can now `resolve' this third order vertex using the rule= � (4.34)This resolution can now be done in three inequivalent ways, depending on which ofthe three edges emanating from the vertex we choose. Condition (2) says that allthree are equivalent. Diagrammatically this gives a relation with four termscondition (2): = -- (4.35)



and therefore this relation has been baptized the four-term relation. The topolog-ical proof of this relation follows quite naturally by considering a degenerated self-intersection where three points Pi; Pj; Pk 2 S1 are mapped to one point in R3K(Pi) = K(Pj) = K(Pk) (4.36)and the various resolutions in two distinct crossings, see [8, 7].Before we continue our discussion of knot invariants, let us �rst make some furtherremarks about the space of chord diagrams. We will writeC = 1Mn=0Cn (4.37)for the free graded module of all chord diagrams factored by the relations (1) and(2). That is, we consider linear combinations of chord diagrams, identify combinationsthrough the four-term relation and put all diagrams with an isolated chords identicallyto zero. A weight system is now simply a map Cn ! C . One should think of such amap as a very special set of Feynman rules. To every diagram we assign a numberrespecting the relations (1) and (2). The beautiful result of Kontsevich is thatVn=Vn�1 �= C�n: (4.38)That is, every chord diagram of order n determines a Vassiliev invariant of order nand does so uniquely up to terms of lower order. This is a very nontrivial result. Inthe original work of Vassiliev it was not immediately clear that no other conditionsthan (1) and (2) would emerge by considerations of higher codimension. In particularthe space Vn is �nite-dimensional.It is actually more convenient to (temporarily) forget about condition (1) and onlyrestrict ourselves to condition (2) | the 4-term relation. LetF = 1Mn=0Fn (4.39)denote the module of chord diagrams where we only imposed the condition (2). Re-markably the space of such diagrams forms a Hopf algebra. That is, we can bothmultiply and comultiply such diagrams. The multiplication� : F 
 F ! F (4.40)



is essentially the connected sum of the two graphs. If �a 2 Fn and �b 2 Fm then�a � �b 2 Fn+m is de�ned as
. = a bba (4.41)It is a remarkable application of condition (2) that this connected sum is independentof the points on the graphs �a and �b that we choose to connected the two. Thecomultiplication is a map � : F ! F 
 F (4.42)de�ned as �(�a) = Xb[c=a�b 
 �c (4.43)where we partition the set of chords a into two subsets b and c. For example� = 
 + 
+ 
 + 
 (4.44)With unitO and counit �(�) = ��;O one shows that the above de�nes a (co)commutative,(co)associative Hopf algebra. Such simple Hopf algebras have a very canonical struc-ture. They are always a free polynomial algebra generated by the primitive elements.A primitive element x satis�es by de�nition�(x) = x
 1 + 1
 x: (4.45)If we denote these elements as x1; x2; : : : then we consequently haveF = C [x1 ; x2; x3; : : :]: (4.46)The most important example of a primitive element is the generatorx1 = 2 F1: (4.47)This is typically the diagram that we should put to zero if we also impose condition(1), i.e. go from F to C. Actually it is enough to just put x1 = 0 in the ring generatedby the primitive elements of F . That is, we haveC = C [x2 ; x3; : : :]: (4.48)



The (co)multiplicative structure on the space of chord diagrams is also interestingfrom the point of Feynman rules or knot invariants. Since we can comultiply diagrams,we can multiply invariants using(�1 � �2)(a) = (F1 
 F2)(�(�a)) = Xb[c=a�1(�b)�2(�c): (4.49)4.3. Lie algebrasThere are a natural set of Feynman rules coming from Lie algebras that realizethe weight systems in F �. Let g be a semi-simple Lie algebra. We will write ea foran orthonormal basis for g, and have structure coe�cients[ea; eb] =Xc fabcec (4.50)with fabc fully antisymmetric. Let R be a representation R : g! End(V ). We writeRa = R(ea) and clearly have by de�nition[Ra; Rb] =Xc fabcRc: (4.51)If we now introduce the Feynman rules
i j = �ij; a b = �ab; (4.52)

i

j

a = Rija ; a
b

c

= fabc; (4.53)then equation (4.51) corresponds precisely to the relation (4.34). Condition (2) istherefore satis�ed.In general condition (1) will not be satis�ed in these Lie algebra Feynman rules.In fact, one easily computes that = cR � (4.54)



with cR the value of the quadratic CasimirC =Xa eaea (4.55)in the representation R. We obtain real (framing independent) knot invariants fromthese rules by factoring out the ideal generated by x1. One may wonder whether allweight systems are related to (classical) Lie algebras. Numerical calculations havenot yet lead to the opposite conclusion.Actually the structure of Lie algebras with their cubic vertex is quite naturallyas becomes clear from a third description of the space F that is much closer relatedto Chern-Simons perturbation theory and that also includes the cubic gauge bosonvertex. Let D = 1Mn=0Dn (4.56)be the space of chord diagrams where we also allow cubic interactions of the gauge�elds. That is we have one fermion loop, a fermion-boson interaction, plus the cubicvertex. We further impose the relation (4.34). One can now show that (1) D �= F ,and the graphical representations of (2) antisymmetry of the structure coe�cientsand (3) the Jacobi relation = �= + (4.57)Of course to show that Lie algebras exhaust the set of knot invariants it remains tobe shown that the weight systems in D� are actually Feynman rules, i.e. based onthe composition principle where general weights are built out of elementary weightsof the individual trivalent vertices.The space D is a Hopf algebra too. In this formulation there is a simple criterionwhether an element is primitive or not, a 2 D is primitive i� a is connected. This



allows us to write down easily the �rst three primitive elements
=

=

-

- - +

(4.58)
This shows in particular dimC0 = 1; dimC1 = 0;dimC2 = 1; dimC3 = 1: (4.59)We are now left with the task to present the proof of Kontsevich that the space ofchord diagrams Cn is dual to the quotient space Vn=Vn�1. Hereto we have to integratea weight system 	 = rn� 2 C�n to a knot invariant � 2 Vn. The idea is based onour experience with conformal �eld theory, or if one wishes with the Hamiltonianformulation of Chern-Simons theory.5. The Knizhnik-Zamolodchikov connectionIn conformal �eld theory knot invariant naturally are constructed out of braidgroup representation. Recall that the braid group BN is generated by the elements�1; : : : ; �N�1 with the relations�i�j = �j�i; ji� jj � 2;�i�i+1�i = �i+1�i�i+1: (5.1)Given a braid on N strands, b 2 BN , we can produce a knot out of it by identifying



the ends
b 2 BN ) K = Tr b (5.2)

Given a braid group representationR : BN ! End(V ); (5.3)we can try to de�ne a knot invariant by�(Tr b) = TrR(b): (5.4)This knot invariant is only well-de�ned, i.e. only depends on the knot type, if thetrace is invariant under the (second) Markov moveTrR(�Nb) = TrR(b); b 2 BN ; �N 2 BN+1: (5.5)(The �rst Markov move TrR(b1b2) = TrR(b2b1) is obvious.) The above propertyis indeed satis�ed by the braid matrices of conformal �eld theory. A good concep-tual explanation of this remarkable fact was given by Witten's proof that the CFTbraid representations are identical to the representations that appear in the canoni-cal quantization of Chern-Simons theory, which is a truly covariant three-dimensionalrelativistic �eld theory.The CFT braid matrices are typically obtained as holonomies of a connection 
,the Khnizhik-Zamolodchikov connection [18], on the con�guration space C N of Ndistinct unmarked points z1; : : : ; zN in the complex plane. Let us brie
y recall theorigin of the Khnizhik-Zamolodchikov equation in conformal �eld theory.The Wess-Zumino-Witten model for compact Lie group G with Lie algebra g has(chiral) primary �elds �(z) 2 V: (5.6)



that carries a representation R : g ! End(V ). Consider the chiral correlation func-tions or holomorphic blocks� = h�(z1) � � ��(zN )i 2 V 
N : (5.7)As is well-known these are holomorphic sections of a holomorphic vector bundle overcon�guration space. They have an alternative interpretation as the wave-functions ofChern-Simons theory in the presence of external charges.We denote such a correlator or wave function by a graphical representation�(z1; : : : ; zN) = . . . . .

z z
1 N

(5.8)The holomorphic blocks satisfy the famous Knizhnik-Zamolodchikov equation, whichcan be elegantly written as (d� ~
)� = 0; (5.9)with d =Xi @@zi dzi; (5.10)and 
 the KZ connection 
 =Xi6=j Cij dzi � dzjzi � zj : (5.11)Here Cij =Xa R(i)a R(j)a ; (5.12)and R(i) denotes the action of g on the ith factor in V 
N . We will write symbolicallyCij = . . . . .

i j

. . . . .. . . . . (5.13)Let us brie
y consider the derivation of this equation. One starts with an insertionof the stress tensor Izj dz2�ihT (z)�(z1) � � ��(zN)i; (5.14)



then uses the OPE T (z)�(w) � hR�(w)(z � w)2 + @�(w)z � w ; (5.15)and Ja(z)�(w) � Ra�(w)z � w ; (5.16)together with the Sugawara constructionT = ~Xa JaJa; ~ = 1k + h: (5.17)In this way one �nds@@zj h�(z1) � � ��(zN )i = Izj dz2�ihT (z)�(z1) � � ��(zN)i= Izj dz2�ih~Xa Ja(z)Ja(z)�(z1) � � ��(zN)i= Xi6=j ~ Cijzi � zj h�(z1) � � ��(zN)i: (5.18)In the abelian case, g = C n , all representations are one-dimensional, R(i)a = pi 2 C n ,and the sections are given by the familiar vertex operator correlation functions� =Yi<j(zi � zj)~(pi�pj): (5.19)One of the beautiful characteristic properties of the KZ connection D = d � ~
 isthat it is 
at (for all values of ~). More precisely, one has D2 = 0 ord
 = 
 ^ 
 = 0: (5.20)For the proof of this statement it is convenient to write
 =Xi<j 
ij; (5.21)with 
ij = Cij dzi � dzjzi � zj = Cijd log(zi � zj) (5.22)



(no summation). We clearly have by the above relation d
ij = 0, so we only have toprove [
;
] = 0. Hereto we have to distinguish three separate cases.(1) First the obvious result [
ij;
ij] = 0; (5.23)with corresponding picture
i ji j

 = (5.24)
(2) Secondly, the equally obvious case[
ij;
kl] = 0; i; j 6= k; l; (5.25)with a pictorial interpretation

i j k li j k l

 = (5.26)(3) The interesting case is however[
ij;
jk] = [Cij; Cjk]dzi � dzjzi � zj ^ dzj � dzkzj � zk= Cijkdzi � dzjzi � zj ^ dzj � dzkzj � zk : (5.27)The important observation is now that the prefactorCijk = Xa;b;c fabcR(i)a R(j)b R(k)c (5.28)is completely anti-symmetric in i; j; k. Therefore we can use Arnol'd's identity [20]dzi � dzjzi � zj ^ dzj � dzkzj � zk + cyclic = 0; (5.29)



to show that [
ij;
jk] + cyclic = 0: (5.30)Of course again we can draw a picture (as symmetric as possible)
i j k i j k

- =

i

j

k

(5.31)
From this last picture it will be clear that the abstract KZ connection is 
at preciselywhen we consider weight diagrams that satisfy the four-term relation. Indeed theonly thing that we needed were the relations[Cij; Ckl] = 0; i; j 6= k; l (5.32)[Cij; Cik + Cjk] = 0; (5.33)which are the in�nitesimal pure braid relations of Kohno [19]. The last relation iscertainly equivalent to the four-term relation, now applied to strands instead of knots,and so will be valid in our formalism of chord diagrams.Given the integrable KZ connection the braid representations are obtained asfollows. For a closed path in s : [0; 1]! C N we de�ne the holonomyb = b(1) = P exp Z 10 ds
; (5.34)by the equation dbdt = 
 � b: (5.35)(We write 
(t) as an abbreviation for s�
(s(t)).) This can be integrated perturba-tively using Dyson's formula asb = 1 + 1Xm=1 Z0�t1�:::�tm�1dt1 � � �dtm 
(t1) � � �
(tm): (5.36)We will now take this de�nition of knot invariants and generalize it the setting ofchord diagrams. More precisely, if K = Tr b is a knot obtained from a braid, we cande�ne an nth order knot invariant as�(K) = Z0�t1�:::�tn�1dt1 � � �dtn
(t1) � � �
(tn) 2 Cn; (5.37)



with the diagrammatic KZ connection
 = X1�i<j�N dzi � dzjzi � zj � . . . . .

i j

. . . . .. . . . . ; (5.38)and with the obvious graphical de�nition of the trace as in (5.2). Equivalently,�(K) = Z0�t1�:::�tn�1 dt1 � � �dtn Xpairings P n̂i=1 dwi � dw0iwi � w0i � �P 2 Cn; (5.39)where we sum over all choices of pairs wi; w0i 2 fz1; : : : ; zNg and where �P is the chorddiagram that corresponds to the pairing P . Proving that this de�nes a knot invariantuses of course the fact that the KZ connection 
 is 
at. Therefore we can smoothlydeform the braid.The above de�nition is however not general enough, since we can also have knotsthat are not traces of braids. (Every knot class can be written as a trace of a braid,but that is not the same.) In that case we cannot a priori apply the above prescription.Kontsevich's formula basically takes a leap of faith and applies it anyhow! To givethe formula we have to use a time direction and parametrize the space-time pointsx 2 R3 as x = (t; z) 2 R � C , t being time and z space. Now our knot K we will be`created' at time t = a and `disappear' at t = b, i.e. the time slices Xs = ft = sg �= Csatisfy K \ Xs 6= , s 2 [a; b]. Now for such a time t 2 [a; b] the set K \ Xt willconsist of a number of points. We can de�ne with the following picture in mind
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knot chord diagram(5.40)



the perturbative knot invariantb�(K) = Za�t1�:::�tn�b dt1 � � �dtn Xpairings P(�1)# n̂i=1 dwi � dw0iwi � w0i � �P 2 Cn: (5.41)Here # indicates the number of down-going strands after a choice of orientation ofthe knot. (A new feature that we didn't have to deal with in the case of braid knots.)It turns out that as it stands this is not yet a true knot invariant. There isa correction due to the fact that a (Morse) knot can have critical points, and thedeformation argument that follows from the 
atness of the KZ connection can neverchange the number of critical points. This e�ect is already observed for the �gureeight (un)knot which gives the expressionb�( ) = + � � � (5.42)This gives a corrective factor for each critical point. So the �nal formula for theUniversal Vassiliev Invariant of the knot K with c critical points reads [8]�(K) = b�(K)b�( ) c2�1 2 Cn (5.43)This is a universal invariant in the sense that it takes value in the module of chorddiagrams. We can thus pair it with a weight system 	 2 C�n to produce a numberh	;�(k)i 2 C .We will not be in a position to proof here in full detail the fact that this invariantis well-de�ned and indeed independent of smooth deformations, see e.g. [7]. It is alsoclear that many questions abound: How to generalize these invariants along the linesof the Chern-Simons-Witten theory? How to describe non-perturbative e�ects? AreLie algebras, or even just the classical Lie algebras su�cient to exhaust the Vassilievinvariants? if anything, I hope to have given the reader at least the idea that thesequestions might not be as hopeless as one might think at �rst sight!References[1] E. Witten, Chern-Simons gauge theory as a string theory,, IASSNS-HEP-92-45,hep-th/9207094.[2] E. Witten, Quantum �eld theory and the Jones polynomial, Commun. Math.Phys. 121 (1989) 351.
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