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THE MODEL

With the Einstein theory of gravitation there is a minimum size for a par-
ticle of given mass m, namely the radius 9 = 2m in the Schwarzschild system
of coordinates. The gravitational field can be extended to smaller radii con-
sistent with Einstein’s field equations for empty space, but the region r < 2m
is then physically inaccessible (it would need an infinite time to send in a signal
and get it out again), so it cannot be allowed in a physical theory.

Thus, to get a precise theory of the motion of a particle in the gravitational
field, one cannot take the particle to be a point singularity. One must take
it to have a finite size 9, such that Einstein’s equations for empty space hold
only for r > g and 9 must be 2 2m. It is awkward to work with the caseg = 2m,
because of the singular character of space-time at this radius. We shall here
consider the case of 9 > 2m.

One cannot very well take the particle to be a rigid sphere, because of the
ambiguity in the definition of a sphere in curved space-time. We therefore
assume the surface of the particle to be flxeible, so that the shape and size
can vary. The simplest assumptions will be made that lead to definite equations
of motion for such a particle, with stable equilibrium states.

In choosing these assumptions one can be guided by analogy with the
electromagnetic field. One can get a reasonable theory of a charged particle
of finite size in the electromagnetic field by assuming that the surface of the
particle is a perfect conductor carrying a distribution of electric charge, and
that there is a surface tension which counterbalances the electrostatic repul-
sion [1]. There is then no electromagnetic field inside the particle, and the
electromagnetic potentials are continuous at the surface while their first de-
rivatives are not.

We shall make analogous assumptions for our gravitational particle.
We assume it carries a surface distribution of mass, which adjusts itself so
that there is no gravitational field inside, i.e. space-time is flat inside. We
assume also a surface pressure to counterbalance the mutual attraction of
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the surface distribution of mass. If these are the only forces, one can have
a particle at rest in equilibrium, but it is unstable, in contradistinction to
the electromagnetic case. To bring in stability we need some further force,
and the simplest assumption is to take an additional energy term proportional
to the total volume inside the particle.

An extended particle in the combined gravitational and electromagnetic
fields has been considered by Lees [2]. His model differs from the present
one through having constraints on the size and shape of the particle.

THE ACTION PRINCIPLE

A comprehensive action principle will be set up, giving both the field
equations and the equations of motion of the particle. It will determine
the motion of each element of the surface, so it will give the motion of the
particle as a whole as well as the changes in its size and shape. The total
action is of the form

I = Io+Is+Ir
where [0 is the action for the space outside the particle, IS is the surface action
and II is the action for the space inside.

We take I0 to be the usual action for the Einstein field, namely the integral
of the total curvature density

10:]- gglw{(117wn_FZna)+F;a,v—FZV,CL} d4x

taken over the region outside the particle, where —92 is the determinant of
the g”. We may write it as

10:] (2+ma,.)d4x
where .12 does not involve any second derivatives of the g”. We have then

m“ = 9(g"“F$21—n11w) (1)
90 = ggflv(F$a-PZ»_FZ’F:U)_(ggM’)/VFZ0+ (gglfvxaFZv

= % 9g,w,9gap,a {g9°(g"“g’fi-g"'g“fi)+2g” (g”9g°5—g"“ggfl)}- (2)

We can now transform Io to
Io = ffid‘lx— fmadSa, (3)

where dSa is an element of the surface of the particle. In this form it does
not involve any second derivatives of the gm. We shall assume that IS and
IS likewise involve only the g,” and their first derivatives.

The condition that space-time is flat inside the particle is assumed as
a constraint of the action principle. We require (31 to be zero only for variations
of the g”, that preserve this flatness.
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Let the equation of the surface of the particle be

f(X) = 0-
This equation must not be varied in the variational procedure, because if
it were varied, 61 would not depend linearly on the parameters that specify
the variation of f, on account of the gravitational field being different just
outside the surface and just inside. Thus f(x) is kept fixed all through the
calculation. For convenience we take it to be

x1 = 0, with x1 > 0 outside. (4)
We suppose a continuous system of coordinates inside and outside the

particle, and we use the suflixes a, b, c, to take on the values 0, 2, 3 only.
Then the gab are continuous, and also their tangential derivatives gab,“ but
the derivatives gum need not be continuous. Also the g1” need not be con-
tinuous, and can be varied independently on both sides of the surface. Let

gmgl"#V— #v_
c _g g11 (5)

so that d" = 0 if u or v is one and c” is the reciprocal matrix to gab.
Is is an integral over the surface of the particle,

Is = fnadSa =fn1dx°dx2dx3

with the equation (4) for the surface. We must choose n1 to be a three-
dimensional scalar density with respect to the coordinates x0, x2, x3 of the
surface, and to be invariant under any transformation of coordinates which
does not alter the surface x1 = 0 and the coordinates x0, x2, x3 in it. The basic
quantities that have this invariance property, and can,therefore,enter into 111,
are the gab and their tangential derivatives gab,” and also the quantities 9113b.
The latter have different values just outside the surface and just inside, on
account of the discontinuity in g1], and gum. Either value for 9 3,, has the
necessary invariance property and can enter into n1. To distinguish the two
values, we shall denote the inside one by 9*Ffb1.

We shall now assume

n1 =’ —29c”bP},b+2wC77Z, (6)

where w is a constant and Cm2 is the determinant of the gab. The first term in
(6) is connected with the outside gravitational field, and is needed for a purpose-
that will become clear later. The second term gives the surface pressure.

Finally, we assume the stabilizing term in the action

I, = 21f9d4x

taken over the space inside the particle, A being a constant.
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THE VARIATION OF L,+I,1

We have from (3)

[0+1s = f £d4x+f(n1-—m1)dx°dx2dx3,

the four-dimensional integral being taken over the region x1 > 0 and the
three-dimensional integral over the surface x1 = 0. Hence,

an 3.9 .61,, 1,: —.——— a d4H fiaga (all gr x .
3—9 “"1— m‘) ("ml—ml)

_ + r —— + 7 6
+ f”: agafiJ (gal? ( (3.4.15.1: )Ic] gafi ji—

r: 1__ t+M agap,1}dx°dx2dx3. (7)
r ‘(guru

In the region x1 > 0, 6gafl is arbitrary, so the coeflicient of 6&5 in the first
term of (7) must vanish. This gives Einstein’s equations for empty space,
holding in the region outside the particle.

The 6ga5,1 in the second term of (7) means the value of this field quantity
ust outside the surface, and this value is arbitrary. Hence, its coefficient in
(7) must vanish. In order not to have too many equations of motion coming
from the action principle, we must arrange that this coefficient shall vanish
identically. The first term for n1 in (6) produces the desired effect, since from (1)

m1+29c“"I‘},, = 9g19{1‘ga+ (2C”'—g"')F,i.a)}
l 2 " " 1

= 9g19{3 guvguv,9+ (8M— %1_) (gue,v—’ E grime”

1 V_ 95,11 u._ g ”g1 )— g g“ gnaw

= lecnbgaeJn (8)

which does not involve any derivatives gam.
We are left with

6(I,+I,) = f {yéfiagafidxf’dd (9)
where

afi: _—_+ fi ,. r

9/ agaflJ (gm? Cgurkc

From (2), the first term of y” has the value

8.8 r':('nl—m‘)_ _ ( ("(‘nl—ml) ) (10)

1c

1 a V V a-- 3 9gpv,g{(g“ g Lg" gap)g19+g""g 5g” +

+2:t 9—2gwgfiegl'} (11)
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This expression is written in a form not symmetrical between a and ,6, for
brevity, but it should be understood as symmetrized. The same applies to the
following expression. We have from (8)

3W+29€Lfllbl _ (“'EEJE) _
[c

.agafi

951m (5‘ g°tg1ect'figlagetcwlgmwac'fi)—(9ghcfi¢).c. (12)
Subtracting (12), from (11), we get after some reduction

(c‘mc'fi— ewe”) 9F;
The surface pressure term 2w 1% in It1 gives as its contribution to 9/“

8%2w
agal?

= wcmca”.

So altogether we get for SW”
9/13 = (c"“c’fi—c"”c°”)9f}l, +wcmca". (13)

We see that ‘yafl vanishes when a or ,6 is one, which expresses that the sur-
face part of [0+1s is independent of the g1“. Thus we may write (9) as

6(I0+Is) = f fy””6g,,,,dx°dx2dx3. (14)

THE EQUATIONS OF MOTION
The space inside the particle has to be flat, so the gab at the surface are

not arbitrary. They must specify a three-dimensional surface that can be
embedded in a four—dimensional flat space. Any variation of the g“, inside the
particle and of the g,,, on the surface must be of the kind that comes merely
from a change of the coordinate system. Thus for x1 < 0,

6g [1' = guv,9 £9+guggg|v+gmglw (15)

where 69 is infinitesimal and gives the change in the coordinates.
We now get from (14)

6(10 + Is) =f (yab(gfb’ggg+Zgreéglb)dx0dx2dx3

= _2 f (W’FZ‘be +W7n9)§9dx°dx2dx3.
The * is attached to field quantities at points just inside the surface when
there would otherwise be ambiguity ,through the corresponding field quanti-
ties just outside being different.

The variation of I, gives

a], = ,1f Qg"'(5gfl,d4x
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= Zlfgguv(%guv,ggg+gnggelf d4x

= 21f (9|9£9+9£9,9)d4x = 2/1 f 9* £1dx°dx2dx3.
The integral here is, of course, merely the change of the four—dimensional
volume inside the particle produced by the change 59 in the coordinate system,
with the equation of the surface maintained as x1 = 0.

The 59 can be arbitrary at each point of the surface, so the action prin-
ciple 6(I0+IS+II) = 0 gives

Cy""F:bg+QJ""Ibg22—19*g$ = 0- (16)
There are four equations here. For three of them, those with Q = 0,2

or 3, we may drop the *’s, so that they appear as

Cy“bFabc+@”"ibgac = 0- (17)
These three must hold identically, as they merely express that the action
is invariant under a change in the coordinates x0, x2, x3 in the surface. One
can easily check the identities with the help of Einstein’s field equations just
outside the surface. '

We are left with just one equation, which we have in its most convenient
form if we multiply (16) by g*19; thus,

WwF’fi—lmgm = 0- (18)
We may also write it

Cyab9*F’§,§—AQ7Z2 = 0 (19)
when it is expressed in terms of invariants with respect to coordinate transfor-
mations which do not alter the surface x1 = 0 and the coordinates x0, x2, x3
in it.

Equation (18) or (l9),with Q ”b given by (13), is the equation of motion
for the surface. It is produced, together with the field equations for the outside
space, by the action principle.

THE SPHERICALLY SYMMETRIC SOLUTION

We shall apply the theory to a spherically symmetric particle with its
centre at rest and its radius varying with the time. The field outside the particle
is then just the Schwarzschild solution of the Einstein equations, there being
no possibility of gravitational waves consistent with spherical symmetry.

Let g be the radius of the particle, a function of the time t. In terms of the
Schwarzschild coordinates r, 6, (p, t, we take x1 = 7—9, x2 = 0, x3 = (p,
x0 = I, so that the equation of the surface is x1 = 0. Then for x1 > 0,

l I 2

ds2 = ydtz— -(dx_:9(h)— —r2a'02—r2 sin2 0q2, (20)
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where y = l—2m/r. Thus,
'29 Q 1

g — — __’ g — — _, — _ __00 —7 10 — ‘ $11 —

g22 = —7'2a gss = —r2 sin2 0

with the other components of gm, vanishing.
We find

L32 1/2
9: r2 sin 0, 9% = (y— ?) r2 sin 0,

@2 ‘1 , 1 1oo_ __ 22=___ 33=_
c _(y y) ’ c 7/2, c rzsin26’

with c“ vanishing for (1 7E b. We find further

Filo = §+myr‘2(1—3é27‘2),
132 = —yr, IE3 = —yr sin2 0

With Th, vanishing for a aé b. From (13) we now get, making the approxi-
mation of neglecting {)2 but not 6, and using yo to denote the value of y when

x1 = 0 (namely 'yo =1—— 2%”):

{1/00 = —c°°(c229F%2+ c339PQ3—wcm)
= — sin 6(29rwy31’292),

{2/22 = —c22(c°°QP30+c339F§3—wcm)

= sin 0(éya‘+9‘1-m9‘2wyo"2),
- 9/33 = —c33(c°°QF%fic229F§2—wcm)

Y22

— sin2 0’
with C2/” vanishing for a 75 b.

The metric inside the particle must be chosen so that it describes a flat
space with the same gab as (20) at x1 = 0. The solution is easily seen to be

ds'2 = {n+0—yo‘1)é2}.dt2—(dx1+édt)2—r2d02—r2 sin? Mp? (21)
with r = 9+ 351 as before and now —9 < x1 < 0. The metric (21) gives

92 .
goo=70‘ ,—” glo;—Q, gu=—1,

7’0

gm 2 —r2, g33 = —r2 sin2 0

with the other components of g], vanishing.
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We find for x1 =0, with neglect of éz but not @,

9* =yfi’292 sin 0, g*11 = —1,

F3$=é3 Fé‘2‘=—e, P§%=—esin20.
Substituting these results into (18), we get as the equation of motion for
small é,

(29 —w70‘1’292)'é+2 (éyo‘1+e‘1—me‘2—wy%’2)e—1V%’292 = 0- (22)
It is of the form

A(Q)§+B(9) = 0
with

A(9) = 2y33’2(e"1—m9‘2)— %wy‘%,

3(9) = y51’2(e‘2—me‘3)—we‘1— % 1-
The equilibrium radius 9 = R is given by

B (R) = 0.
We may choose any value for R greater than 2m and any to, and then
choose A to fit this equation.

The equilibrium is stable if

dBAE>O

for g = R. This leads to

4 1 m 1 2 6m 5m2
w— R R2(1 2m)“2 (E T F _‘” (1 2m)3/2

R R

F) >0.

We can satisfy this condition by choosing an to lie between the two quan-
tities

74* *1 ._ m l 2 6m 5m2

_3m‘ R R) v; f‘F + F ’
(1— R) (‘1‘?)

except in the case when the two quantities coincide. This case occurs when

R 1 _E: 7 (3+1/3 ), (24)

which gives a value for R just a little greater than the Schwarzschild radius
2 m.
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CONCLUSION

We may choose any value for R greater than 2m, excluding the value
(24), and then choose a) and Z to fit the conditions. We then have a theory
for the motion of a particle with the radius R. The particle is stable for
small disturbances that preserve its spherical symmetry. Further work would
be needed to check whether it is still stable if the spherical symmetry is dis-
turbed.
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DISCUSSION

A. SCHILD:
Would you wish to put conditions on the particle that make the .mass

surface density always positive?

P. A. M. DIRAc:

I would like to have a Hamiltonian which is positive definite. That would
be the natural way of securing that the motion is always stable and that you
don’t get runaway solutions. I have big doubts as to whether it is possible
to have a positive definite Hamiltonian, because the Newtonian energy is
negative; but one should have the aim of getting a positive definite Hamil-
tonian. If that cannot be satisfied, then I would like to have, at any rate,
a positive definite surface energy.

H. BONDI:

I’ll abuse my position as chairman to ask a question myself. I am rather
worried about the assumption of the vanishing field inside. When one con-
siders any extended body, then clearly the motion of that body will depend
on the equation of state one assumes for the material. We know this in
fact from the effect of the tidal friction of the earth on the motion of the moon.
Now, the type of equation of state one wants should definitely be what in
electrical network theory is called passive, that is to say, that no energy from
other sources of energy is fed in, but that it is a natural response, purely
reactive, or, perhaps, dissipative, as in the case of tidal friction. Now in
electrical theory we know that a purely reactive network, namely a perfectly
conducting shell, will so distribute its charges as to give zero field inside.
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But in gravitation, precisely the opposite is the case. If we assume, for example,
the earth to be a shell, moving in the field of the sun, the earth falling freely;
then, of course, the residual forces on the earth are the tidal forces. And if

this were a shell with particles in it, that could move freely, then these par-
ticles which congregate here would make tides, which would increase the

field inside, and would not abolish it. So, in the natural motion, and, pro-
bably, in any passive situation, we would get something much closer to pa-

ramagnetic behaviour, where we get an increase of the field inside, than to

shielding which corresponds to electrostatics.

P. A. M. DIRAC:
Those remarks of yours would rather suggest that my particle would not

be stable for disturbances which are not spherically symmetrical. I think
that would be the natural interpretation of your remarks.

H. BONDI:

Actual instability would depend on the properties of the material, but
an enhancement of the inhomogeneity of the field would certainly occur.

P. A. M. DIRAC:
But in the way that the theory is at present formulated there has to be no

field inside, no matter what disturbances occur outside.

H. BONDI:
Well, I fear that this is in some sense unphysical.

P. A. M. DIRAC:

Yes. You could get a more physical theory by bringing in an action for
the internal region corresponding to some physical conditions. That would
complicate the theory, but make it more physical.

V. A. FOCK:
I should like to ask the following question. You are considering very

small particles, because they are nearly point particles and their mass m is
very small.

P. A. M. DIRAC:
They need not be very small.

V. A. FOCK:
What kind of particles are these? Are they quantum particles or classical

particles? I cannot imagine particles of such small size that are not quantum
particles. And if so, how are quantum-mechanical considerations to be intro-
duced in your theory?
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P. A. M. DIRAC:

I would like to answer first that these particles do not have to be small.
I have not anywhere made the assumption that they are small. We have
exact equations of motion which would also apply if the particles are very
far from being small. If they are small, I would agree that we ought to bring
in quantum theory; and that brings in very many new problems.

V. A. FOCK:

But in the case that they are not small, they must have a very large
density; so large that perhaps the notion of density is no more applicable
in this case.

P. A. M. DIRAC:

I do not think the density would have to be large. The density could
very well be small also. With large particles you get into the difficulty
that two of them may collide, and then you would need some new equations
of motion to describe that situation.

J. A. WHEELER:

The work here is in line With the old Lorentz model of the electron which,
however, ran into difficulty. And it’s very nice to see that if one goes into
general relativity one has possibilities to construct objects that do not have
that difliculty. In this connection it might be mentioned that there are also
two other kinds of objects that one can construct within the framework of
general relativity, namely geons and topological objects—handles or worm-
holes. In those two cases one has examined the question of stability.
And the questions which you have brought up in such an interesting way
here have also been looked at in those two cases; namely the scattering of
radiation by such objects; and the interaction of such objects With other
fields. However, of course, for all three objects (the problem that you speak
of here, and in the case of the geon and in the case of the wormhole) one
is talking of things that have not the slightest connection with particles of
the real physical world, but speaking rather of models which are of great
interest in understanding the nature and implications of relativity. However,
it is abit puzzling to me to understand why one would introduce a new
physical phenomenon like surface tension here, when already in the framework
of well-established general relativity and electromagnetism one has the tools
at hand with which to construct model objects of considerable interest in
their own right. I raise this issue of this new physical term particularly be-
cause I myself do not understand what governs the law of aggregation of this
substance that causes the surface tension. What decides into how many
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spheres it will collect? What decides — if it wants to break up into pieces —
whether this is allowed or forbidden? This is why it would seem to me sim-
pler not to bring in the surface tension to construct such models.

P. A. M. DIRAC:

You made reference to the difliculties of Lorentz. He could have avoided
these difliculties if he had used an action principle. And the only way that
I have succeeded in avoiding these Lorentz difliculties is by using an action
principle, all the way through. Now, this introduction of the surface tension,
or rather surface pressure, enables one to have particles of any size. They
could be small particles, not much bigger than the Schwarzschild particle,
or they could be very large. I don’t think you could have the small particles
without bringing in something like this surface pressure, or some other
non-Einstein terms. I suppose your geons are extremely large, aren’t they?

J. A. WHEELER:

Comparable in size to the sun or larger if they are to be analyzed
without getting into the important problems of quantizing general relativity.

P. A. M. DIRAC:

Yes. I would agree that this model is rather remote from physical re-
ality, but I wish to say again that we are working in a new field and we make
the simplest assumptions which lead to a physically sensible theory. We
can add on further terms to the action later on if we want them.

B. S. DEWITT:

I should like to make a comment about amatter of principle, and this
is also in answer to Prof. Wheeler. I think the example Prof. Dirac has shown
us is a very excellent example of the intimate relation which exists between
the physical description of the geometry of space-time and the dynamical
behaviour of bodies which occupy space-time. I should like to suggest that
instead of pushing 100% in the direction of examining only empty space, we
should study more, perhaps, the actual description of material objects which
occupy space-time. This, for example, I found very useful in the analysis of
the Bohr—Rosenfeld problem: to really describe the elastic test bodies that
one uses. One learns very interesting new things this way. After all, our
original ideas of distance and Riemannian geometry, are based on our
experience with physical objects like rods and clocks. And, the effort to de-
scribe these objects in manifestly covariant language and to learn how they
behave is worth it, I think.

P. A. M. DIRAC:

I agree completely.
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C. MoLLER:

May I ask if there is in this model a definite relation between the mass,the constant in the Schwarzshild solution outside, and the radius of thisobject.

P. A. M. DIRAC:
No. You can have it independent by suitably choosing the surface pres-sure.

A. LICHNEROWICZ:
En 1946 ou 1947 j’ai fabriqué un modéle de l’e'lectron avec de la ma-tiére a l’intérieur et une densité superficielle correspondante. 11 y a certains

rapports avec ce modele; mais dans mon modéle i1 y a de la matiere fluide
a l’intérieur au lieu du Vide.

P. A. M. DrRAc:
Do you have the gravitational field taken into account?

A. LICHNEROWICZ:
Yes, in the interior. But also a tensor, a repulsive tensor on the surface.

P. A. M. DIRAC:
Do you have an action principle?

A. LICHNEROWICZ:
Yes, it consists of two parts.


