Chapter 4

Operators on Hilbert space

In this chapter we first recall in section 4.1 some basic facts about matrix representions
of linear mappings defined on finite dimensional real Hilbert spaces. In section 4.2 their
immediate generalisation to finite dimensional complex Hilbert spaces is described. Lin-
ear mappings defined on infinite dimensional Hilbert spaces are introduced in section 4.3,
including some illustrative examples. As is usual, we generally use the name linear oper-
ator or just operator instead of linear mapping in the following. For the sake of technical
simplicity the main focus is on continuous (also called bounded) operators, although many
operators relevant in physics, such as differential operators, are actually not bounded.
The adjoint of an operator is defined and the basic properties of the adjoint opeation are
established. This allows the introduction of self-adjoint operators (corresonding to sym-
metric (or Hermitean matrices) which together with diagonalisable operators (corresonding
to diagonalisable matrices) are the subject of section 4.4. In section 4.5 we define unitary
operators (corresponding to orthogonal matrices) and discuss the Fourier transformation
as an important example. Finally, section 4.6 contains some remarks on Dirac notation.

4.1 Operators on finite dimensional real Hilbert spaces

In this section H denotes a real Hilbert space of dimension dimH = N < oo, and o =
(e1,...,en) denotes an orthonormal basis for H. For any given vector = € H its coordinates
w.r.t. « will be denoted by x1,...,xyN, that is x = x1e1 + ... + xnyen, and by z we denote
the corresponding coordinate clumn vector,

z1

TN

We first note that every linear mapping A : H — H’, where H' is a second Hilbert
space whose norm we denote by || - ||, is continuous. Indeed, for x = z1e1+...+xyeny € H,
we have

Ar = z1Ae1 + ...+ zyAen (4.1)



and therefore
|Az|" = ||x1der + ... + xnAen]||’

< |zl [Aea]" + .+ en] [|Aen ]
< ([Aex]" + ... + | Aen ) max{]as ..., [on[}
< (lAel + ... + [ Aen |l ,

where we have used the triangle inequality and
lall? = [o12 + ..+ [an? = (max{arl,..., Jon ]2
This shows that A is bounded in the sense that there exists a constant ¢ > 0, such that
|Az||' < c|lz|| forallz € H. (4.2)

The norm ||A|| of a bounded operator A : H — H' is by definition the smallest number ¢
for which eq. (4.2) holds. Equivalently,

[A]] = sup{ | Az | [l=]| =1}, (4.3)

see Exercise 5.

It is a general fact, shown in Exercise 6, that an operator A : H — H’, where H and
H' are arbitrary Hilbert spaces, is continuous if and only if it is bounded. Thus we have
shown that, if H is of finite dimension, then every operator A : H — H' is bounded and
hence continuous.

For the sake of simplicity we now assume that H = H’. As is well known from linear
algebra (see section 6.3 in [M]) a linear operator A : H — H is represented w.r.t. the basis
a by an N x N-matrix A in the sense that the relation between the coordinate set for a

vector x € H and its ima_ge y = Ax is given by

Y= (4.4)

HD>

Moreover, matrix multiplication is defined in such a way that, if the operators A and B on
H are represented by the matrices A og B w.r.t. «, then the composition AB is represented

by the product A B w.r.t. a (Theorem 6.13 in [M]).
The basis o being orthonormal, the matrix elements a;;, 1 < 4,7 < N, of A are given

by the formula

Qi = (Aej,ei) (45)
as a consequence of the following calculation:
yZ = (Axa ei)

= (z14e1 + ...+ xyAen, €;)
N
Z Aej, ei)x

Now let A* denote the operator on H represented by the transpose 4t of A. According

to eq. (4.5) we have
(Aei, ej) = aji = (A%¢j,ei) = (e, A”¢j)



where in the last step we have used the symmetry of the inner produkt. Since the inner

N N
product is linear in both variables, we get for x = ) z;e; and z = ) zje; in H that
i=1 j=1
N
(Azx, 2) Z xizj(Ae;, ej) = Z xizj(e;, A%ej) = (x, A%z2) . (4.6)

i,j=1 i,j=1

We claim that the validity of this identity for all z,z € H implies that A* is uniquely
determined by A and does not depend on the choice of orthonormal basis . Indeed, if the
operator B on H satisfies (Ax,z) = (x, Bz) for all x,z € H, then (z,A*z — Bz) = 0 for
all ,2 € H,i.e. A*2 — Bz € H+ = {0} for all z € H. This shows that A*z = Bz for all
z € H, that is A* = B. The operator A* is called the adjoint operator of A. If A = A*, we
say that A is self-adjoint. By the definition of A* we have that the self-adjoint operators
on a real finite dimensional Hilbert space are precisely those operators that are represented
by symmetric matrices w.r.t. an arbitrary orthonormal basis for H.

It is known from linear algebra (see section 8.4 in [M]), that every symmetric N x N-
matrix A can be diagonalised by an orthognal matrix, that is there exists an orthogonal

N x N-matrix Q such that
-1

o
I
o

g

, (4.7)

where D = A(Aq,...,Ay) is an N x N diagonal matrix with the eigenvalues A1, ..., Ay of
A in the diagonal. That O is orthogonal means that the columns (and therefore also the

rows) of O form an orthonormal basis for RY, which is equivalent to

t

nQ

(@)
I

I~

: (4.8)

where I denotes the N x N identity matrix. Thus we have that O is orthogonal if and only
if O is invertible and

o'=0"". (4.9)

Qo

Eq. (4.7) expresses that the columns of O are eigenvectors for A. Therefore, we have shown
that for every symmetric matrix A there exists an orthonormal basis for RY consisting of
egenvectors for A.

Let now A rgpresent a self-adjoint operator A w.r.t. the basis « as above, and let the
orthogonal matrix O = (045) be chosen according to (4.7). We denote by O : H — H
the operator represe_nted by the matrix O w.r.t. «. Similarly, let D : H — H denote the

operator represented by D w.r.t. a, that is

Dei:)\iei, 221,,N (410)

Then eq. (4.7) is equivalent to
040 =D, (4.11)

since the matrix representing O~ 'AO w.r.t. « is o~ él

HQ



Similarly, egs. (4.8) and (4.9) are equivalent to
0*0=1 (4.12)

and
O*=0"1, (4.13)

respectively, where 1 denotes the identity operator on H. An operator O fulfilling (4.13) is
called an orthogonal operator. Thus orthogonal operators are precisely those operators that
are represented by orthogonal matrices w.r.t. an arbitrary orthonormal basis.
Setting
fi:Oei, ’L'Zl,...,N,
we get
(fi7fj) = (Oei,Oej) = (ei,O*Oej) = (ei,ej) = 51']‘ N (414)

which means that (f1,..., fn) is an orthonormal basis for H. In other words, orthogonal
operators map orthonormal bases to orthonormal bases.
It now follows from (4.10) and (4.11) that

Afz = AOei = ODGZ‘ = O(/\Zez) = )\iOei = )\le . (4.15)

A vector # € H \ {0} such that the image Az er proportional to x, i.e. such that there
exists a A € R, such that
Az = x| (4.16)

is called an eigenvector for A, and ) is called the corresponding eigenvalue. From (4.14)
and (4.15) we thus conclude that for every self-adjoint operator A on a finite dimensianal
real Hilbert space there exists an orthonormal basis consisting of eigenvctors for A. We say
that such a basis diagonalises A, since the matrix representing A w.r.t. this basis is the
diagonal matrix D, whose diagonal elements are the eigenvalues of A.

4.2 Operators on finite dimensional complex Hilbert spaces

In this section H denotes a finite dimensional complex Hilbert space and o = (eq, ..., en)
again denotes an orthonormal basis for H.

By the same argument as in the previous section (see (4.1)) every operator A : H — H
is bounded. And by the same calculations as those leading to (4.6) A is represented w.r.t.
a by the complex matrix A = (a;;), where

aij:(Aej,ei), 1§Z,j§N

Let A* denote the operator, which is represented w.r.t. a by the matrix A*, obtained
from A by transposition and complex conjugation. We say that A" is the Hermitean

conjugate of A. That is, we have
(Ael-,ej) = Qj; = (A*ej,ei) = (ei,A*ej) .

4



N N
For z = leiei and z = 21 zjej in H we then get
1= 7=

N N
(Ax, z) = Z x;iZj(Ae;, e5) = Z x;iZj(e;, A%ej) = (z, A%2) .
ij=1 Q=1

By a similar argument as in the previous section it follows that the operator A* is uniquely
determined by A. It is called the adjoint operator of A. If A = A*, we say that A is
self-adjoint. It follows, in particular, that if A is self-adjoint, then A* = A, and then the

matrix él is called Hermitean.

We note that addition and multiplication of comples matrices are defined in the same
way and satisfy the same baisc laws of calculation as for real matrices. Moreover, well
known concepts such as rank and determinant are defined in an analogous manner. Results
and proofs can be transported directly from the real to the complex case. It suffices here
to mention that a quadratic matriz is reqular, or invertible, if and only if its determinant
is different from zero. We note, moreover, that for a quadratic matrix A we have

det A" = det A,

which follows immediately from det élt = det A.

The complex counterpart of an o}togonalgperator is called a unitary operator. Thus,
we say that U : H — H is unitary, if it fulfills

UU =1, (4.17)

that is
Ur=u"". (4.18)

Letting U denote the matrix representing U w.r.t. o, eq. (4.17) is equivalent to

*

(R
(R
I
Il ~

(4.19)

A matrix U fulfilling (4.19), is called unitary. Evidently, a real unitary matrix is the same

thing as an orthogonal matrix. We also remark that (4.19) is equivalent to the statement
that the columns of U form an orthonormal basis for CV.

Eq. (4.17) implie:
(Uz,Uy) = (2,U"Uy) = (z,y), x,y€ H, (4.20)
i.e. any unitary operator U preserves the inner product. In particular, U is an isometry,
|Uzx|| = ||=|, reH. (4.21)

The following result shows, among other things, that (4.21) is in fact equivalent to U being
unitary.



Theorem 4.1 Let U : H — H be a linear operator. The following four statements are
equivalent.

a) U is unitary.
b) U preserves the inner product.
c) U is an isometry.

d) U maps an orthonormal basis into an orthonormal basis for H.

Proof. Above we have shown a) = b) = c).

¢) = b): This follows by using the polarisation identity for the two sesquilinear forms (z, y)
and (Ux,Uy). Indeed, if U is an isometry, we have

3
(Uz,Uy) = ;) &lU+i"y)l* = LLZ:ZVHILHLMJII2 (z,y)
v=0

for arbitrary z,y € H.

b) = a): We have that (Uz,Uy) = (z,y) for all z,y € H if and only if (z,U*Uy) = (x,y)
holds for all x,y € H, which is the case if and only if U*Uy = y for all y € H. This means
that U*U =1 as claimed.

We have now demonstrated that a), b) and c) are equivalent.

b) = d): Setting f; = Ue;, we get
(fzaf]):(Ue’LvUe]):(eZ?e]):5”7 1 Sl)j§N7

which shows that (f1,..., fy) is an orthonormal basis for H.
d) = ¢): For x = x1e1 + ...+ zyeny € H we have

|Uz||? = [|[z1Uer + ...+ znUen||? = |z1)* + ... + |zn]* = ||z?,
where we have used Pythagoras’ theorem twice. U

In relation to Theorem 4.1 we note that for any pair of orthonormal bases (eq, ..., en)
and (f1,..., fn) for H there is exactly one operator U, which maps the first basis onto the
second, i.e. such that

UeZ':fi, ’iIl,...,N,

and it is given by
U($1€1+...+$N€N):.Cvlfl—l-...—i-foN.

This operator is unitary by Theorem 4.1.

We define eigenvectors and eigenvalues for an operator A : H — H as in the previous
section (cf. (4.16)), except that the eigenvalue now may assume complex values instead of
real values only. We say that A is diagonalisable if there exists an orthonormal basis for H
consisting of eigenvectors for A. Equivalently, this means that there exists an orthonormal



basis (f1,..., fn) w.r.t. which A is represented by a diagonal matrix. Indeed, if (f1,..., fn)

is an orthonormal basis consisting of eigenvectors, such that Af; = A\, f;, i =1,..., N, then
al]:(Af]7fZ) <)\ fjafl)_ Z]7 1§7’7]§N7
and, conversely, if (fi1,..., fn) is an orthonormal basis, such that

aij = (Afj, fi) = Njoij,  1<i,j <N,
then

N
Af; = (Afj, fi)fi = ZA 8ijfi =
i=1

for1<j<N.

In view of the discussion in the previous section it is natural to ask if every self-adjoint
operator A on H is diagonalisable. The answer is yes, and the same holds for unitary
operators, as we shall see in section 4.4.

We end this section by looking at a couple of simple examples.

Example 4.2 a) Let H be a 2-dimensional complex Hilbert space and let a = (e, e2) be
an orthonormal basis for H. We consider the operator A on H, which is represented w.r.t.

a by the matrix
1 4
a= (1)

Then A is self-adjoint since A* = A. We determine the eigenvalues of A by solving the
characteristic equation det(A — AI) = 0, since this condition ensures (as in the case of

real matrices) that the system of linear equations (A — AI)z = 0 has a non-trivial solution

x = <i1> , which is equivalent to stating that the vector x = z1e1 + xoeq satisfies Az = Ax.
2

The characteristic equation is
1—A ) B 9 B
det<_i 1_)\>—(1—)\) —-1=0,

which gives A = 0 or A = 2. For A = 0 the equation (4 — )\D(g) = 0 is equivalent to

x1 41 xo = 0, whose solutions are of the form t(i) , teC.
For A = 2 we get similarly the solutions t(_ll) , teC.
Two normalized eigencolumns corresponding to A = 0 og A = 2, respectively, are then

a=50) ()

The matrix



is seen to be unitary, and we conclude that A is diagonalisable, since

e (00
—rav=(g 3) -

The unitary operator, represented by U w.r.t. a, maps the basis a onto the orthonormal

-1

s
S
-

basis (%(el +iea), %(el — ieg)) consisting of eigenvectors for A.

1 1

V2 V2
is seen at to be orthogonal by inspection. It has no real eigenvalues and is therefore not
diagonalisable over R.

On the other hand, considering it as a complex matrix representing an operator O on

a 2-dimensional complex Hilbert space H w.r.t. an orthonormal basis a = (e, e3), then O
is unitary. We find its eigenvalues by solving

1y L
det <\/§1 1\15)\> =0.

b) The real matrix

e}

V2 V2
This gives A = —( i) . Corresponding eigencolumns for O are as in the previous example
_1qn A
L1 = ﬁ(z) and 25 = ﬁ(ﬂ)
Since

IIQJe
(l®)
IR

1412
_ (ﬁ 10.> |
V2

1 1

0
we conclude that O is diagonalisable and that ( (e1+ies), 7(61 —262)) is an orthonormal

l\)

basis for H, that diagonalises O.

4.3 Operators on Hilbert space. Adjoint operators.

In the remainder of this chapter H, Hy and Hy denote arbitrary separable Hilbert spaces
over L, where L denotes either R or C. Results are mostly formulated for the case where
the Hilbert spaces are infinite dimensional, but all results hold with obvious modifications
for finite dimensional Hilbert spaces as well.

We shall use the notation B(H;, Hs) for the set of bounded operators from H; to Hs
and set B(H) = B(H, H). See (4.2) for the definition af a bounded operator. In Exercise
1 it is shown that B(Hi, H2) is a vector space and that the norm defined by (4.3) fulfills
the standard requirements (see eqs. (3.3-5)).



Given an operator A € B(H) and an orthonormal basis (e;);en for H we define the
matrix
app -+ Qlp

(alj) = anl e ann PPN (422)

that represents A w.r.t. (e;);en by the same formula as in the finite dimensional case

aij = (Aej, ei) . (4.23)

o0
For x = ) xzje; € H we then have
j=1

o0
ALU = § Yi€i ,
i=1
where

(Azx,e;) = Zx]Aej,el :ij(Aej,ei). (4.24)

In the second step we have used hnearlty and continuity of A to obtain

N
hm Zx]ej = lim A(ijej)
j=1

N~>oo N—oo
N (4.25)
=1 A Ae;
NEHOOZQC] e; = Z;:cj €,
j:

and in the last step we have similarly used linearity and continuity of the map = — (z, €;).
From (4.23) and (4.24) it is seen that

00
Yi = E QijTj
J=1

which is the infinite dimensional version of (4.4) and, in particular, shows that the matrix
(4.22) determines the operator A uniquely.

In the infinite dimensional case matrix representations are generally of rather limited use
since calculations involve infinite series and can only rarely can be performed explicitely.
Moreover, the notion of determinant is not immediately generalisable to the infinite di-
mensional case, which implies that the standard method for determining eigenvalues and
eigenvectors is not available any more. The coordinate independent operator point of view
to be developed in the following will turn out more advantageous. First we shall consider
a few imortant examples of operators on infinite dimensional Hilbert spaces.

Example 4.3 a) Let H = (5(N). For x = (x5,)nen € ¢2(N) we define

1



Since

0 1 %)
> Sleal” < lenf* = 2l (4.27)
n=1 n=1

it follows that Az € ¢5(N). We conclude that eq. (4.26) defines a mapping A from H to H.
It is easily seen that A is linear (verify this!), and from (4.27) it then follows that ||A]| < 1.
In fact, ||A|| = 1, because equality holds in (4.27) for the sequence (1,0,0,...).

More generelly, let a = (a,)nen be a bounded (complekx) sequence of numbers and set
llall, = sup{|a,| | n € N}. For & = ()nen € ¢2(N) we define

Myx = (an®n)nen - (4.28)

Noting that

oo

> lanaal? < Jlall2lje]2,

n=1
it follows that M,z € ¢2(N). and we may conclude that eq. (4.28) deines a mapping M,
from H to H. It is easily seen that M, is linear and the previous inequality then shows
that | Mg|| < |la|lu. In fact, ||My| = ||all., because Mye, = anen, where e, denotes the
n’th vector in the canonical orthonormal basis for /3(N), and as a consequence we get
| M| > || Mgen|| = |an| for all n € N, which yields || M| > ||al|w-

Viewing (an)nen and = (2, )nen in (4.28) as functions on N, the operator M, is defined
by multiplication by the funkcion (a,)nen. For this reason it is called the multiplication
operator defined by the sequence (an)nen. Note, that w.r.t. the canonical basis the operator
M, is represented by the diagonal matrix A(aj,as,...) (verify this!).

b) Let H = Ls([a,b]), where [a,b] is a closed bounded interval, and let f : [a,b] — C
be a continuous function and set

Mig=f-g, geH. (4.29)
Since f is continuous, it is bounded. We define

[fllw = max{|f(z)| |z € [a, b]}

and call || f||, the uniform norm of f. For g € H we then have

b b
/ F(@)g(e) 2z < |12 / l9(2)[2dz;, (4.30)

from which we conclude that f-g € H, such that (4.29) defines a mapping M from H
into H. Clearly this is a linear mapping and (4.30) then shows that M; € B(H) and that
| Ms|| < || fllu- In fact, we have |[Mf|| = || f||l. (see Exercise 7). The operator My is called
the multiplication operator defined by the function f.

c) Let H = l5(N) and set
T(£1,SL‘2,$3, .. ) == (0,1‘1,332,333, . )
for (x1,x9,x3,...) € lo(N). It is evident that T'(x1, z2,x3,...) € £5(N) and that

HT($17$27$37' . )H = H(O,IL’l,l’Q,fL’?,, . )H :

10



Furthermore, it is easily verified that the mapping 7' : H — H so defined is linear. Hence,
T is a bounded operator on H with norm 1, in fact an isometry. 7T is sometimes called the
right shift operator on f3(N).

d) Let H = Lo([—m,7]) with the standard inner product normalised by the factor 5= as
in section 3.6, and let (e,)nez denote the orthonormal basis, where e, (f) = €. Setting
D= —id%, we have

De,, = ne,, , (4.31)

and D acts, of course, linearly on the subspace span{e, | n € Z}, whose closure is
Lo([—m, ]). However, D is not a bounded operator on this space, since | D|| > || De,| = |n|
for all n € Z. As a consequence, D cannot be extended to a bounded operator on the whole
space H. This is a general feature of so-called differential operators. As will be discussed
later, D has an extension to a self-adjoint operator (see section 4.4), which is of great
importance in quantum mechanics.

e) Let again H = La(I) where I = [a, b] is a closed bounded interval and let ¢ : IxI — C
be continuous. For z € I and f € H we define

(6)(x) = / (@, y) Fy)dy (4.32)

In order to see that (¢f)(z) is well defined by this formula we note that the continuous
function ¢, : y — ¢(z,y) belongs to Ly(I) for every x € I, and that the righhand side of
(4.32) is the inner product of ¢, and f in H. Applying Cauchy-Schwarz we get

(6 (@)]? < / o)y - |12 (4.33)

which implies that (4.32) defines a bounded funktion ¢f on I.
We now show that ¢f is continuous. We may assume f # o since otherwise (¢ f)(z) =
0,z € I, which is continuous. First we note that f integrable, since

/|f Jlda < ( —a%(/ e |dw)

by Cauchy-Schwarz. We set K = [;|f(x)|dz. Let now e > 0. Since ¢ is uniformly
continuous there exists a § > 0, such that |¢(z,y) — ¢(2',y")| < & for all (z,y), (2',y) €
I x I fulfilling |z — /|, |y — /| < d. In particular, [p(z,y) — p(2,y)| < & for all y € I and
all z, 2" € I, such that |z — 2’| < §. From this we infer

[(8f) (@) = (of)()] < /1 (o, y) — (', y)) f (y)ldy < ;{/Ilf(ﬂ?)ldw =€,

when |z — 2’| < 0. This shows that, ¢f is continuous.
It now follows from (4.33), that ¢f € H , and that

lofI? < /1 /I ol y) Pydz - | ]2 (4.34)

11



Since ¢f clearly depends linearly on f, we have shown that (4.32) defines a bounded
operator ¢ on Lo(I), whose norm fulfills

ol = ([ [ letw)Payas)?

In general, equality does not hold here.
The operator ¢ is called an integral operator and the function ¢ is called its kernel.
Operators of this kind play an important role in the theory of differential equations.

We now aim at defining, for an arbitrary operator A € B(H;, Hs), the adjoint operator
A* € B(Hz, Hy). It is not convenient to make use of a matrix representation of A, since it
is not clear in the infinite dimensional case that the Hermitean conjugate matrix represents
a bounded every where defined operator. Instead, we take (4.6) as the defining equation
for A* (se Theorem 4.5 below). We need, however, some preparation first.

The dual space to the Hilbert space H, which is denoted by H*, is defined as

H* = B(H,L).

The elements of H* are thus continuous linear functions from H to L. These are also called
continuous linear forms on H. Let us define, for y € H, the function ¢, : H — L by

ty(z) = (z,9), (4.35)
where (-, -) is the inner product on H. Then ¢, is linear. By Cauchy-Schwarz
[y @) <zl lyll, yeH,
from which it follows that ¢, € H* and that
1€yll < NIyl - (4.36)

The Riesz representation theorem that follows tells us that all continuous linear forms on
H are of the form (4.35).

Theorem 4.4 Let H be a Hilbert space over .. The mapping y — £, where £, € H* 1s
given by (4.35), is a bijective isometry from H onto H*, that is for every { € H* there
exists exactly one vector y € H, such that ¢ = {,, and we have

1€yl = 1yl - (4.37)

Proof. We have already seen that y — £, is a well defined mapping from H into H*.
By (4.35) B
lyp, =Ly + L, og Ly, = Ny (4.38)

for y,z € H and A € L, i.e. the mapping y — ¢, is conjugate linear.
That it is isometric can be seen as follows. If y = 0 then ¢, = 0, so |4yl = ||y|| = 0.
For y # 0 we set = ||y|| "'y, such that ||z| = 1. Since

[y ()| = [(lyl "y, 9)] = llyl

12



it follows that ||¢,|| > ||y||. Together with (4.36) this proves (4.37). That (4.37) is equivalent
to the isometry of y — ¢, now follows from (4.38), since

1y = L[l = 11y = [ly — 2|

fory,z € H.

Knowing that the mapping y — ¢, is isometric and conjugate linear, it is obviously
also injective. It remains to show that it is surjective. For this purpose let £ € H*. We
wish to find y € H, such that £ = ¢,. If { = 0 we can evidently choose y = 0. Suppose
therefore £ # 0. Then X = ¢~1({0}) # H, and since {0} is a closed subspace of L and / is
continuous, it follows that X is a closed subspace of H. Hence H = X @& X+ by Theorem
3.15 and X+ # {0}.

In fact X+ is a one-dimensional subspace of H: Choose e € X \ {0} with |le] = 1,
and let z € X be arbitrary. Then ¢(e) # 0 and

Uz) = 6235(6) =/ (%e)

and hence ¢ (z— %e) =0, ie. z— %e € X. But since z,e € X1 we also have

z— %e € X*. Using X N X+ = {0}, we conclude that z = fE ge which shows that e is a
basis for X .

Every vector in H can therefore be written in the form x + e, where x € X and A € L.

We then have L
Uz 4+ Xe) = L(z) + M(e) = M(e) = (z + Ae, l(e)e) ,

)
such that ¢ = ¢, hvor y = {(e)e. Here we have used linearity of ¢ and that x_Le. O
Note that (4.37) is equivalent to

]l = sup{|(z, y)| [ lyll <1} (4.39)

for z € H. For later use we remark that, as a consequence, we have for A € B(H;, H2)
that
| Al = sup{[(Az,y)| | x € H1,y € Ha, ||z, ||yl <1} . (4.40)

We are now ready to introduce the adjoint operator.

Theorem 4.5 Let A € B(Hy, H2). There exists a unique operator A* € B(Ha, Hy) which

fulfills
(Az,y) = (v,A"y), x€Hi,y€Hy. (4.41)

Moreover,
[A]l = [|A™]] - (4.42)

Proof. For any given y € Hy the mapping x — (Ax,y) belongs to Hf, being a compo-
sition of A and /,. By Theorem 4.4 there exists a unique vector z € Hy, such that

(A.’B,y)z([E,Z), erl'
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Since z depends only on y for the given operator A, a mappping A* : Hy — H; is defined
by setting A*y = z. Obviously, this mapping satisfies (4.41).
That A* is a linear mapping can be seen as follows. For given y, z € Hy we have on the

one hand
(Az,y+2)=(x,A"(y+2)), z€H, (4.43)

and on the other hand

— (3, A%y) + (1, A"2) (4.44)
=(z,A'y+ A%2), z€H.

Since A* is uniquely determined by (4.41), it follows by comparing (4.43) and (4.44), that
A*(y+z2)=Ay+ Az .

Similarly,
A" (Ay) = A"y

for A € L and y € H; follows from
(Az, \y) = (2, A*(\y))

and

(Az, Ay) = (Az,y) = (z, A*y) = (2, \A"y)

for x € H;.
That A* is bounded and that ||A|| = ||A*|| follows immediately from (4.40) and (4.41).
U

In case Hy = Hy = H we say that an operator A € B(H) is self-adjoint if A = A*,
which by (4.41) means that

(Az,y) = (¢, Ay), =x,y€ H.

Self-adjoint operators play a particularly important role in operator theory, similar to that
of symmetric matrices in linear algebra, as will be further discussed in the next section.

Example 4.6 a) Let M, be the multiplication operator on ¢5(N) defined in Example 4.3
a). For x = (zp)neny and y = (Yn)nen we have

o) 0
(Maxay) = Zanivny? = Zl‘n@yn = ($; Mﬁy) s
n=1 n=1

where @ = (Gy,)nen. Hence
M* - Ma .

a

In particular, M, is self-adjoint if and only if a is a real sequence.
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b) Let My be the multiplication operator on La([a,b]) defined in Example 4.3 b). For
g, h € Ly([a, b]) we have

b -
(Mg, h) / f(@)g(a) (@) de = / 9(@) F@)h(z)dz = (g, Mzh)

from which it follows that
M} = M,
and, in particular, that M} is self-adjoint if and only if f is a real function.

c) Let ¢ be the integral operator on Lo(I) defined in Example 4.3 e). For f,g € Lo(I)
we have

(6f.9 _/‘/¢$y Jowida = | [ 1wota.nadua
//f )da:dy—/ /¢ T dy)das

where we have interchanged the order of integrations (Fubini’s theorem) at one stage. From
this calculation we read off the action of ¢*:

— /I 5 2)g()dy

Hence ¢* is the integral operator on Lo(I), whose kernel is ¢(y, ).
d) Let T denote the right shift operator on f3(N) defined in Example 4.4 ¢). For
T = ($n)neN and y = (yn)neN we have

(T.%',y) = I’l%-ﬁ*[]}g%—f—xgyj. = (1’, (y27y3ay47 .- )) )

from which we get
T*y = (Y2, Y3, Y1, - - ) -

We call T* the left shift operator on f5(N).

e) Consider the differential operator D defined in Example 4.4 d). By partial integration
one gets for functions f, g € span{e, | n € Z} (with notation as in Example 4.4)

(0f.9) =5 [ —z% (@)do

—T

= [-is0a@) +ix- [ 50 %0 7.09),

where we have used that the first term after the second equality sign vanishes since f and
g are periodic with period 2. It is possible to define the adjoint for unbounded operators,
such as D, in general. We shall, however, refrain from doing that at this stage. Suffice to
mention here that despite the identity above, D is not self-adjoint, but it can be extended
to an operator D, such that D = D*, as will be further discussed is the next section.
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We note the following useful properties of adjoint operators:
(i
(i

(iii

) (A+B)* = A* + B*, for A,B e B(H,, H)

) (ANA)* = NA*, for A€ B(Hi, Hy)

) (BA)* = A*B*, for A€ B(Hy,H,),B € B(Hy, Hs)
(iv) A** = A, for A€ B(Hy, H),

where Hy, Hy and Hs are (separable) Hilbert spaces. Properties i) and ii) can be shown in
a way similar to the linearity of A* in the proof of Theorem 4.5 and are left for the reader.
Property (iii) follows similarly by comparing

(BAz,y) = (z,(BA)"y)

and
(BAz,y) = (B(Az),y) = (Az, B*y) = (z, A"(B"y)) = (=, A"B"y)

for x € Hy, y € Hs.
By complex conjugation of both sides of (4.41) we obtain

(A*y,z) = (y,Az), ye€ Hy,z € Hy.
Comparison with (4.41) finally shows that A* = A.

We end this section with a brief discussion of adjoints of unbounded operators. With
the exception of the operator D in Example 4.3 d) we have up to now discussed operators
defined everywhere on a Hilbert space. An operator A from H; into Hs is called densely
defined if its domain of definition D(A) is a subspace whose closure equals Hy or, equiv-
alently, whose orthogonal complement is {o}. If A is densely defined and bounded, i.e.
fulfills (4.2) for all x € D(A), then it can be extended uniquely to a bounded operator
defined everywhere on Hip, see Exercise 16. In this case we may define the adjoint of A
simply as the adjoint of its extension to H;. For unbounded densely defined operators,
such as D in Example 4.3 d), this method is not applicable. Nevertheless, we can define
the adjoint A* as follows.

As the domain of A* we take the subspace

D(A*) ={y € Hy | x — (Az,y) is a bounded linear form on D(A)} .

If y € D(A*) the extension result quoted above implies that the linear form = — (Ax,y)
has a unique extension to a bounded linear form on H;. Hence, by Theorem 4.4, there
exists a unique vector A*y in H; such that

(AX,y) = (z,A%y), =€ D(A). (4.45)

This defines A* on D(A*). That D(A*) is a subspace of Hy and that A* is linear on this
subspace is shown in the same way as for bounded operators. Note that it may happen
that A* is not densely defined.
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With this definition we say that a densely defined operator A from H into H is self-
adjoint if A = A*, that is if

D(A*) =D(A) and (Az,y) = (x,Ay) for x,y € D(A).

As seen in Example 4.6 e) the operator D with domain span{e,, | n € Z} satisfies the
latter of thee requirements, which we express by saying that D is symmetric. However, it
does not satisfy the first requirement concerning domains. Although, D is densely defined,
since {ey, | n € Z} is an orthonormal basis for La([—m,7]), the domain of D* is bigger, as
will be further discussed in Example 4.19. Thus D is symmetric but not self-adjoint. It
can, however, be extended to a self-adjoint operator, see Example 4.19.

4.4 Diagonalisable operators and self-adjoint operators.

In this section we discuss some basic notions and results relating to diagonalisable opera-
tors on sepabable Hilbert spaces. We use a rather straight-foreward generalisation of the
finite dimensional version of the notion of a diagonalisable operator already discussed in
sections 4.1 and 4.2. It is a basic result from linear algebra (see Theorem 8.24 in [M])
that every self-adjoint operator on a finite dimensional real Hilbert space is diagonalisable.
The corresponding result for the infinite dimensional case (the spectral theorem) requires
a further extension of the notion of a diagonalisable operator then we offer in these notes.
In technical terms we focus attention on operators with discrete spectrum (consisting of
the eigenvalues of the operator), although examples of operators with continuous spectrum
will also occur.

Definition 4.7 Let A € B(H). A scalar A € L is called an eigenvalue of A, if there exists
a vector x # 0 in H, such that
Az = Mz . (4.46)

A vector x # 0 fulfilling (4.46) is called an eigenvector for A corresponding to the eigenvalue
A, and the subspace of all vectors fulfilling (4.46), (that is the set of eigenvectors and the
null-vector) is called the eigenspace corresponding to A and is denoted by Ey(A).

The kernel or null-space N(A) for an operator A € B(Hy, H) is defined as
N(A)={zx € H | Az =0} .

By continuity of A it follows that N(A) = A~1({0}) is a closed subspace of Hy, since {0}
is a closed subspace of Hy. This also follows from

N(A) = (A*(H2))™

which is a direct consequence of the definitionen of A*.
In particular, it follows that A € L is an eigenvalue of A € B(H) if and only if

and the eigenspace E)(A) = N(A — )) is a closed subspace of H.
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Definition 4.8 An operator A € B(H) is called (unitarily) diagonalisable, if there exists
an orthonormal basis (f;);en for H consisting of eigenvectors for A. Equivalently, this
means that A is represented by a diagonal matrix w.r.t. (f;);en (which can be seen as in
the previous section). The basis (f;)icn is then said to diagonalise A.

The following characterisation of bounded diagonalisable operators is useful.

Theorem 4.9 An operator A € B(H) is diagonalisable if and only if there exists an ortho-
normal basis (f;)ien for H and a bounded sequence (\;)ien in L, such that

Az =) Nz, fi)fi, z€H. (4.47)
=1

In that case A1, A2, A3, ... are exactly the eigenvalues of A (possibly with repetitions) and
the etgenspace corresponding to a given eigenvalue A € L is given by

E\(A) = span{f; | i e N, \; = A} . (4.48)

Moreover,
| All = sup{|Ai| | i € N} . (4.49)

Proof. Suppose A € B(H) is diagonalisable and let (f;);cny be an orthonormal basis

o0

consisting of eigenvectors for A, such that Af; = \ifi;, i € N. For x = > (x, f;)fi € H we
i=1
then have (see (4.25))
Az = (2, f)Afi = Ni(w, fi) fi

i=1 i=1

as desired. Since
[Ail = lIXifill = ALl < (AN {f:ll = [[Al

for ¢ € N, we also have

sup{|Ai| | i € N} <Al . (4.50)

Assume, conversely, that A is given by (4.47), where (f;);en is an orthonormal basis,
and the sequence (\;);en is bounded, such that

sup{|Ai| | i e N} = M < 400 .

Then -
JAz]? = " |Ni(a, £i)? < MP|z|)?
=1

which shows that
JAll < M = sup{|ni| | i € N} | (4.51)

Inserting « = f; into (4.47) it is seen that
Afi=Xifi -
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Hence A1, A, ... are eigenvalues of A.
That there are no other eigenvalues is seen as follows. Suppose

Ax = \x

where A € L and « € H \ {0}. Then

Do Nila, fi)fi=Ar =Y Nz, fi)fi s

i=1 i=1

which impies
)‘1(:6>fl):)\(x>fl)7 1€ N.

Since = # 0 there exists ig € N, such that (z, f;,) # 0, and this implies A = \;, and that
(z, fi) = 0 for A\; # \;,. This proves (4.48).
Finally, (4.49) follows from (4.50) and (4.51). O

Example 4.10 Let Hy be a closed subspace of H and let P denote the orthogonal pro-
jection onto Hy, that is Pz € Hy is determined by z — Pz = (1 — P)x € Hy for x € H.

Let (fi)icr be an orthonormal basis for Hy and let (f;);es be an orthonormal basis for
Hol. Then the two orthonormal bases together form an orthonormal basis (f;);crus for H
(and since H is separable we can assume that I UJ = N). We have

Pe=N (0 f)fi, el (4.52)
el
cf. the remark after Theorem 3.15.
This shhows that P has the form (4.47) with \; = 1 for i € I and \; = 0 for i € J.
in particular, the only eigenvalues of P are 1 and 0, provided I # () and J # (), and the

corresonding eigenspaces are Hy and Hd‘, respectively. (For I = () we have P = 0 whereas
P=1for J=10).

Considering again the diagonalisable operator A given by (4.47) we have, in particular,
according to Example 4.10 that the orthogonal projektion P; onto the finite dimensional
subspace H; = span{ f;} is given by

szz(xﬂfl)fla r€eH, (453)

such that (4.47) can be written in the form

Az = Z NPz, reH, (4.54)
i=1
which is expressed by writing
A=>"\D; . (4.55)
=1
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It is worth noting that the series (4.55) does generally not converge w.r.t. the norm on
B(H), i.e. the operator norm. In fact, this is the case only if \; — 0 for i — co. Otherwise,
(4.55) only makes sense when interpreted as (4.54).

The operator A given by (4.55) is represented by the diagonal matrix A(A, Ao, ...)
w.r.t. (fi)ien. Hence the adjoint operator A* is represented by the diagonal matrix
A(Xl,XQ, .. ) w.r.t. (fZ)ZEN That is

A" =)\ (4.56)
=1

In particular, A is self-adjoint if and only if its eigenvalues are real. This is e.g. the case
for ortogonal projektions, cf. Example 4.10.

That the eigenvalues of a self-adjoint operator are real, holds generally (and not only for
diagonalisable operators). Likewise, the eigenspaces corresponding to different eigenvalues
are orthogonal, which for diagonalisable operators is evident from (4.48) in Theorem 4.9.
These facts are contained in the following lemma.

Lemma 4.11 Let A € B(H) be self-adjoint. Then
a) Every eigenvalue of A is real.

b) If \y and X\ are two different eigenvalues of A, then the two corresponding eigenspaces
are orthogonal.

¢) If Hy is a subspace of H such that A Hy C Hy, then A(Hy") C Hy .
Proof. a) Assume Az = Az, z € H \ {0}. Then
Mzl = (Az,2) = (Az,2) = (2, Az) = (2, Az) = A|lz||,

which implies that A = ), since ||z # 0.
b) Assume Ax; = Aiz; and Azg = Aaza. Since A\, A2 € R by a) we get

(A1 — Ao)(z1, 22) = (Mz1, 22) — (21, A2x2)
= (Azy,x2) — (21, Ax2)
= (33‘1714332) - ($17A$2) =0 )

which gives (z1,22) = 0, since A\; — A\a # 0. Hence 21 L x9.
c) Let x € Hy and y € Hy. Then

(Az,y) = (z, Ay) =0

since Ay € Hy. This being true for arbitrary y € Hy we conclude that Az € HOL, and the
claim is proven. O

A subspace Hj as in Lemma 4.11 ¢) is called an invariant subspace for A. Thus we have
seen that the orthogonal complement to an invariant subspace for a self-adjoint operator
A € B(H) is also an invariant subspace for A. If Hy is closed such that H = Hy @ HOL,
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this means that A can e split into two operators A; € B(Hp) and Ay € B(Hy ) in the sense
that
Ax = A1$1 + AQQZQ

for x = x1 4+ 22, 1 € Hy, 22 € HOL. We then write
A=A,9 A,y .
These remarks suffice to prove the finite dimensional versions of the spectral theorem.

Theorem 4.12 FEwvery self-adjoint operator A : H — H on a finite dimensional complex
Hilbert space H is diagonalisable.

Proof. Choose an arbitrary orthonormal basis o for H and let A be the matrix repre-

senting A w.r.t. a. By the fundamental theorem of algebra the characteristic polynomial
p(A) = det(A — AI)

has a root, and hence A has an eigenvalue. Call it A\; and let e; be a corresponding
normalised eigenvector. Setting Hy = span{e;} we clearly have that Hj is an invariant
subspace for A. Writing accordingly A = A; @& Ay as above, it is clear that A, is a self-
adjoint operator on the subspace HOL of one dimension lower than H. Hence the proof can
be completed by induction. O

The assumption that H is a complex vector space is essential in the argument above,
since the fundamental theorem of calculus only garantees the existence of complex roots.
However, by Lemma 4.11 a) the roots are real for any symmetric real matrix and the
argument carries through also in the real case. For completeness, we state the result in the
following theorem which is a restatement of Theorem 8.24 in [M].

Theorem 4.13 FEvery self-adjoint operator A; H — H on a finite dimensional real Hilbert
space H is diagonalisable.

Theorem 4.12 is easily generalisable to so-called normal operators, i.e. operators com-
muting with their adjoint.

Theorem 4.14 Suppose A : H — H is an operator on a finite dimensional complex Hilbert
space such that

AAT = A"A
Then A is diagonalisable.
Proof. Write
A =U + 1V where U:§(A+A ) and V:?(A—A )
i

Then U and V are self-adjoint and they commute,

Uv=vu,
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since A and A* commute. By Theorem 4.12, U is diagonalizable, and we can write
U=MP1+ -+ MNPy,

where A1, ..., A, are the different eigenvalues of U and P, is the orthogonal projection onto
Ey,(U). Since V commutes with U it follows that each eigenspace Ej,(U) is invariant
under V (see Exercise 8), and evidently V is self-adjoint when restricted to this subspace.
By Theorem 4.12 there exists an orthonormal basis of eigenvectors for V' for each of the
eigenspaces E),(U). Together these bases form an orthonormal basis consisting of eigen-
vectors for both U and V' and hence they are also eigenvectors for A. O

Since unitary operators clearly are normal we get the following

Corollary 4.15 Any unitary operator on a finite dimensional complex Hilbert space is
diagonalisable.

It is worth noting that the corresponding result does not hold for orthogonal operators
on a real Hilbert space. F.ex. a rotation in the plane through an angle different from 0
and 7 has no eigenvalues at all (see also Example 4.2 b)).

We next quote a result without proof about diagonalisability of so-called Hilbert-
Schmidt operators which turns out to by quite usefull in various contexts.

Definition 4.16 An operator A : H — H on a Hilbert space H is said to be a Hilbert-
Schmidt operator if
Z | Ae;||? < oo

€N
for any orthonormal basis (e;);en for H.

It can be shown that if the condition holds for one orthonormal basis then it holds for
all orthonormal bases. Important examples of Hilbert-Schmidt operators are provided by
the integral opertors as defined in Example 4.3 e) for which one can show that

b b
S| Aes]? = / / (e, y)2dady.

1€EN

We then have the following result.

Theorem 4.17 FEvery self-adjoint Hilbert-Schmidt operator A : H — H on a separable
Hilbert space H is diagonalisable.

The difficult step in the proof of this result is to establish the existence of an eigenvalue.
Having done so, the proof can be completed in a similar way as in the finite dimensional
case. Details of the proof can be found in e.g. B.Durhuus: Hilbert rum med anvendelser,
Lecture notes 1997.

We end this section by two examples of which the first contains some further discussion
of multiplication operators providing prototypes of self-adjoint operators that cannot be
diagonalised in the sence of Definition 4.8, and the second one discusses self-adjointness of
the unbounded differential operator of Example 4.3 d).
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Example 4.18 Let H = Ly([0,3]), and let f : [0,3] — R denote the function
fz) ==z, x€10,3].

Since f is real, My is a self-adjoint operator by Example 4.6 b).

M has no eigenvalues, which is seen as follows. Assume Mg = A\g for some A € R and
some function g € H. This means that (f — A)g = 0 almost everywhere. But since f — \ is
# 0 almost everywhere, it follows that g = 0 almost everywhere, that is ¢ = 0 € H, which
shows that A is not an eigenvalue.

In particular, it follows that M/ is not diagonalisable in the sense of Definition 4.8.

Let us next consider the multiplication operator My, defined by the function f; : [0,3] —
R, where

T for0<z<1
filx)=4¢ 1 for1 <z <2
r—1 for2<z<3.

Note that f; is constant equal to 1 on the interval [1,2] and strictly increasing outside this
interval. Clearly, My, is self-adjoint. We show that 1 is the only eigenvalue of My, . Indeed,
if A # 1 we have fi — A # 0 almost everywhere in [0, 3], and it follows as above that A
is not an eigenvaluee. On the other hand, fi —1 = 0 on [1,2] and # 0 outside [1,2]. It
follows that My, g = g, if and only if g = 0 almost everywhere in [0,3] \ [1,2]. The set of
functions fulfilling this requirement is an infinite dimensional closed subspace of H, that
can be identified with Ly([1,2]), and which hence equals the eigenspace E1(My,).
Clearly, My, is not diagonalisable in the sense of Definition 4.8.

The primary lesson to be drawn from this example is that self-adjoint operators in gen-
eral are not diagonalisable in the sense of Definition 4.8. However, as mentioned previously,
it is a principal result of analysis, called the spectral theorem for self-adjoint operators,
that they are diagonalisable in a generalised sense. It is outside the scope of this course to
formulate and even less to prove this result. Interested readers are referred to e.g. M.Reed
and B.Simon: Methods of modern mathematical physics, Vol. I and II, Academic Press
1972.

Example 4.19 Consider again the operator D defined in Example 4.3 d). Keeping the
same notation, it follows from eq. (4.31) that D is given on the domain span{e, | n € Z}
by

Df = Z n(f,en)en . (4.57)

nez
This formula can be used to define an extension D of D by extending the domain of
definition to the largest subspace of Lo([—m,7]) on which the righthand side is convergent,
i.e. to the set
D(D) = {f € Lo([0,27]) | S n?((f, en)|? < o},
ne”L

on which D is given by the righthand side of (4.57). Defining the adjoint D* as at the end
of section 4.3 it is then not difficult to show that D is a self-adjoint operator, see Exercise
17.
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4.5 The Fourier transformation as a unitary operator.

Some of the fundamental properties of the Fourier transformation, which we define below,
are conveniently formulated in operator language as will briefly be explained in this section.

We first generalise the definition of a unitary operator, given in section 4.2 in the finite
dimensional case.

Definition 4.20 An operator U € B(Hj, H2) is unitary if it is bijective and
or, equivalently, if
U*U =idy, and UU* =idy,.

Note that, contrary to the finite dimensional case, the relation U*U = idy, does not
imply the relation UU* = idp,, or vice versa, if Hy and Hy are of infinite dimension, see
Exercise 14. As a consequence, Theorem 4.1 needs to be modified as follows in order to
cover the infinite dimensional case.

Theorem 4.21 Let U : Hy — Hy be a bounded linear operator. The following four state-
ments are equivalent.

a) U is unitary.
b) U is surjective and preserves the inner product.
c¢) U is surjective and isometric.

d) U maps an orthonormal basis for Hy into an orthonormal basis for Hs.

The proof is identical to that of Theorem 4.1 with minor modifications and is left to
the reader.

Example 4.22 Let H be a Hilbert space with orthonormal basis (e;);en. The mapping
C : H — (3(N) which maps the vector x to its coordinate sequence w.r.t. (e;);cn, that is

Cr = ((v,€i))ien

is unitary. Indeed, C' is an isometry by Parseval’s equality (3.27), and C is surjective
because, if a = (a;)ien € £2(N) then Cz = a, where z = Y7, ase;.

Thus every separable Hilbert space can be mapped onto /3(N) by a unitary operator.
We say that every separable Hilbert space is unitarily isomorphic to £2(N)

As a further, highly non-trivial, example of a unitary operator we discuss next the
Fourier transformation. For detailed proofs of the statements below the reader is referred
to e.g. M.Reed and B. Simon: Methods of modern mathematical physics, Vol. 11, Academic
press, 1972.

If f is an integrable function on R, its Fourier transform f is the function on R defined
by

R 1 —ipx T
fir) = o= [r@ean. per. (4.58)
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The first fundamental result about the Fourier transform is that, if f is a C'°°-function
vanishing outside some bounded interval, then f is a C°°-function that is both integrable
and square integrable, and

[Ir@P ds = [ 1f@)Pdp. (4.59)
R R

It is clear that the set C§°(R) of C*°-functions that vanish outside some bounded interval is
a subspace of Ly(R) and that the mapping f — f is linear on this subspace. As mentioned
in Example 3.9 3), the closure of C§°(R) equals Ly(R). Hence, by the extension result of
Exercise 16, the mapping f — f has a unique extension to an operator F : Ly(R) — La(R),
which moreover is isometric by (4.59).

The second fundamental result about the Fourier transform is the inversion theorem,
which states that for f € C§°(R) we have

1 Pl i
T) = —— ePdp, xeR. 4.60
f@) = <= [ Fwerap (4.60)
In operator language this equation can also be written as
FoF(f)="F, (4.61)

where F is defined by the same procedure as F except that p is replaced by —p in (4.58),
i.e.
F()p) = F(f)(=p).
By continuity of F and F eq. (4.61) holds for all f € Lo(R). In particular, F is surjective
such that, by Theorem 4.20, we have shown that F is a unitary operator on Ly(R), whose
adjoint is F.
We collect our findings in the following

Theorem 4.23 The Fourier transformation F defined for f € C§°(R) by

1 A
F :/ x)e PP dx, eR,
(D) =—= | 1@ .
extends uniquely to a unitary operator on Lo(R), whose adjoint is given by

F () =F(f)(-p), peR.

4.6 A note on Dirac notation.

In physics litterature on quantum mechanics the inner product is traditionally denoted by
(-]-) instead of (-,-). Moreover, it is assumed to be linear in the second variable rather
than in the first variable, cf. Definition 3.1 iii) and iv). This convention, however, has
no influence beyond notational on the general results derived above and is closely linked
to the notation introduced by Dirac in his classic work P.A.M. Dirac: The Principles of
Quantum Mechanics, Oxford, 1930. Its essentials are the following;:
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A vector z in the Hilbert space H is called a ket-vector and denoted by |z). The linear
form ¢, corresponding to the vector y € H is called a bra-vector and is denoted by (y|. By
Theorem 4.4, the mapping

) — (2]

from H to H* is bijective. With this notation, ¢,(z) takes the form

(wl(l2)) = (ylz),

which explains the names of bra and ket making up a bracket (:|-).
Given a ket-vector |x) and a bra-vector (y|, the linear operator on H defined by

[2) = (yl2)]x)

is naturally denoted by |z)(y|. In particular, if |e) is a unit vector in H, the orthogonal
projection onto the subspace spanned by |e) is |e)(e|. More generally, if A is a diagonalisable
operator it has the form (4.47), which in Dirac notation is written as

A= NI

i=1

interpreted in a way similar to (4.55). In particular, for A = 1, the identity operator on
H, we get

=1

where (f;)ien is an arbitrary orthonormal basis for H. When applied to |z), this yields the
the orthonormal expansion of |z) in Dirac notation

) =Y 1 fi) (file) -
i=1
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Exercises

Exercise 1 Let H be a 3-dimensional complexn Hilbert space and let A: H — H be the
operator represented by the matrix

2 3+1 2
0 2 0
t 1—17 2

w.r.t. an orthonormal basis a = (ej, e, e3). Find the matrix, that represents A* w.r.t. a,
and determine A*(e; + iex — e3).

Exercise 2 Let A be the linear operator on C3 represented by the matrix

2 0 —¢
0 2 0
1 0 2

w.r.t. the canonical basis for C3. Show that A is self-adjoint and find its eigenvalues as
well as an orthonormal basis for C3, which diagonalises A.

Exercise 3 Let H and « be as in Exercise 1 and let U be the linear operator on H
represented by the matrix

OO =
[NSIEE NG N
[ =

—+
[ IR EN
|

O LoD N

wIin
win

w.r.t. a.

Show that U is unitary.

Show that 1, —1, ¢ are eigenvalues of U and find an orthonormal basis for H, which
diagonalises U.

Exercise 4 Let H be a finite dimensional Hilbert space over .. We define

GL(H)={A € B(H) | A er invertible, i.e. A is bijectiv}

and
O(H) ={0O € B(H) | O is orthogonal} ,if L = R,
and
UH)={U € B(H) |U is unitary} ,if L = C.
Show that

1) If A,B € GL(H) then AB € GL(H) and A~! € GL(H),

2) O(H) C GL(H) and U(H) € GL(H),

3)If A,B € O(H) then AB € O(H) and A~! € O(H), and similarly if O(H) is replaced
by U(H).

Show likewise the corresponding statements for GL(n), O(n) and U(n), denoting the
sets of invertible, orthogonal and unitary n x n-matrices, respectively.

GL(H), O(H) and U(H) are called the general linear, the orthogonal and the unitary
group over H, respectively.
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Exercise 5 Let A : E — E’ be a bounded operator between inner product spaces as
defined by eq. (4.2).

Show that the norm ||A]| is given by (4.3). Show also the following properties of the
norm:

JA| > 0if A0,
[IAA[] = [A][|A]l,
1A+ B[ < Al + B,
[CA[ < ICIIIA]l,

where A € L and the operators B: E — E', C': E' — E” are bounded (E” being an inner
product space).

Exercise 6 Show that a linear operator A : E — E’ between inner product spaces is
bounded if and only if it is continuous.
Hint. Show first that by linearity A is continuous if and only if it is continuous at 0.
To show that continuity implies boundedness it may be useful to argue by contradiction.
Exercise 7 Show that the norm of the multiplication operator in Example 4.3 b) is given
by
Ml =11l -

Exercise 8 Assume that U and V are two commuting bounded operators on a Hilbert
space H. Show that each eigenspace Ey(U) is invariant under V, i.e. if x is an eigenvector
for U with eigenvalue A or equals 0, then the same holds for V.

Exercise 9 Let H be a Hilbert space and let f be a function given by a power seires

9
f(z)zzcnznv ‘Z|<p,
n=0

where p > 0 is the series’ radius of convergence.
Show that for an operator A € B(H) with ||A|| < p the series

o0
> leal 1147
n=0
is convergent (in R) and that the series
(0.9}
Z cn AT
n=0
is convergent in H for all € H. The sum is then denoted by f(A)x, that is
o0
f(A)z = chA”x .
n=0
Verify that f(A) is a bounded linear operator on H.
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Assume now that H is finite dimensional and that o = (eq,...,ey) is an orthonormal
basis for H, and let A be the matrix representing A w.r.t. . Show that the series

> enlA™)y
n=0

is convergent in C for all 1 <4, j < n, and that the so defined matrix f(A), where

(F(A)i =D elA™)is
n=0

represents the operator f(A) w.r.t. a.

Exercise 10 Let A and f be given as in Exercise 9.

Show that if A is diagonalisable, such that A = > A\;P; in the sense of eq.(4.55), then
el
f(A) is also diagonalisable and

FA) =Y f)P
el
Exercise 11 Let H be a complex Hilbert space and let A € B(H). Show that

(IF9)A _ tAgsd oy
and conclude that e is invertible, and that
(eMHt=e4.
Does the identity eAtB = e4e® hold for arbitrary A, B € B(H)?

Exercise 12 Let H be a Hilbert space. A function z : R — H with values in H is called
differentiable at £y € R if there exists a vector a € H, such that

[(t —to) " (x(t) — 2(to)) —al| — 0 for t — tq.

As usual, we then denote a by 2/(tg) or by d—f(to):

lim (t — to) "L (z(t) — z(tg)) = 2'(to) in H .

t—to

tA

Show, using notation as in Exercise 11 that the function ¢ — "z is differentiable on

R for all x € H and that

detz
dt

=Aez; teR. (¥).

(In case A is self-adjoint the equation (x) is a special case of the Schrédinger equa-
tion describing the time-evolution of a quantum mechanical system, for which the energy
operator (Hamiltonian) A in suitable units is bounded and time-independent. If A is
diagonalisable, its eigenvectors are called the energy eigenstates of the system.)
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Exercise 13 Let 0, j = 1,2,3 denote the so-called Pauli matrices given by

0 1 0 —i 1 0
9= 0/ 27\ o) 7\ -1/

10
2 .
oj = <0 1) , 71=12.3,

and use this to calculate %97 for § € C and j = 1,2, 3.

Verify that

Exercise 14 Let H be an infinite dimensional Hilbert space and let (e;);en be an ortho-
normal basis for H.
Show that there exists exactly one operator T' € B(H) such that

TeizeiJrl? ’iGN,

and that 7' is an isometry, that is || Tz| = ||z||, x € H.
Find T™ and show that
T"T=1 og TT*#1.

Exercise 15 Show that if P € B(H) fulfills P* = P and P? = P, then P is the orthogonal
projection onto X = P(H).

Exercise 16 Let A be a densely defined operator from H; to Hy and assume A is bounded.
Show that A has a unique extension to a bounded operator A defined everywhere on
H, in the following two steps.

1) Since A is densely defined there exists for every = € H; a sequence (x;) in D(A) that
converges to x. Show that the sequence (Ax;) is convergent in Hs and that its limit
only depends on z and not on the choice of sequence (z;) converging to x.

2) With notation as in 1) set
Az = lim Az;

i—00

and show that A is a bounded linear operator that extends A.

Exercise 17 Let H be a Hilbert space with orthonormal basis (e;);cny and let (A;);en be
a sequence in L, not necessarily bounded.

a) Show that the equation
Az = Z i(z,ei)e; . (4.62)
i=1

defines a densely defined operator with domain

D(A)={zeH| Z |Ai(z,e)|? < oo}
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b) Show that the adjoint of the operator A in a) has the same domain of definition as
A and is given by the formula

Afx = in(x,ei)ei. (4.63)
i=1

c¢) Deduce from a) and b) that A is self-adjoint if and only if A; is real for all i € N.
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