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Introduction

This note is for topologists who are sick of hearing “And then there was a theorem proved by Lazard that
we apply here...”

More specifically, we intend to show that formal group laws are given by maps out of a polynomial ring
on infinitely many variables. The author learned the proof given here from Hopkins’ famous notes, [1]. Also
Akhil’s blog post on this is nice, [2].

Enjoy!

Formal group laws

We may as well start by defining our object of study, though we hope you’ve seen this before.

Definition. A formal group law over a ring, R, is a power series F ∈ R[[x, y]] satisfying the following axioms:

1. (Associativity) F (x, F (y, z)) = F (F (x, y), z)

2. (Commutativity) F (x, y) = F (y, z)

3. (Unit) F (x, 0) = F (0, x) = x

In interest of space, we usually write f(x, y) as x+F y.

We see that this definition gives us a functor

FGL : Ring→ Set

where we assign to each ring the set of formal group laws over that ring, and the functoriality is given in the
obvious manner.

This functor is actually corepresentable. One can see this by abstarct nonsense (the functor preserves
limits and ℵ1-filtered colimits), or by direct construction:

Let RU = Z[aij ]/ ∼ where the relations are precisely those such that the formal power series f =∑
aijx

iyj satisfies the axioms for a formal group law, these are some polynomials in aij , so we’re good. Now
we have a universal formal group law over RU given by FU (x, y) =

∑
aijx

iyj , by definition.
It turns out this ring has a natural grading. There’s a neat way to get this that we’ll spell out, basically

we have:

Proposition. A ring R is graded (concentrated in even degrees if you want) if and only if there is an action
of Gm on Spec R.

Before we prove this we should say what we mean. For our purposes, Spec R means the functor

Rings→ Set
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given by A 7→ HomRings(R,A), i.e. the functor corepresented by R. The symbol Gm is the “multiplicative
group,” and it denotes the functor

Gm : Rings→ Group

given by
A 7→ A×

This is the same as saying that Gm is given by Spec(Z[t, t−1]) where we need to remember the Hopf algebra
structure on this ring to get a functor into groups.

An action of Gm on Spec R is then just given by a natural transformation

Gm × Spec R→ Spec R

satisfying the usual diagrams that we write down when we have, say, a group acting on a set. Ok, so now
we’re in a position to prove the proposition.

Proof. Suppose that R is an honestly commutative, graded ring. Define a map

R→ Z[t, t−1]⊗R

given on homogeneous elements of degree n by

r 7→ tn ⊗ r

This gives a map of functors
Gm × Spec R→ Spec R

satisfying the necessary axioms. Explicitly we have:

A× ×Hom(R,A) ∼= Hom(Z[t, t−1]⊗R,A)→ Hom(R,A)

where we’ve used the fact that ⊗ is the coproduct in the category of rings.
On the other hand, given an action of the multiplicative group, we see that this is the same as a map

R→ Z[t, t−1]⊗R

making a few diagrams commute (essentially via the Yoneda lemma), and so declare a grading by saying
x ∈ R is of degree n if its image is of the form tn ⊗ x.

Now, there is a natural action of Gm on FGL given, for each λ ∈ A× and formal group law F over A,
via

Fλ(x, y) = λ−1F (λx, λy)

So we get a grading on RU . One can check that we have |aij | = i+ j − 1. Indeed, the action defines a map

RU → Z[t, t−1]⊗RU

corresponding to the formal group law given by

t−1FU (tx, ty)

where FU is the universal formal group law. The coefficient of xiyj looks like

t−1(titjaij)

thus aij is homogeneous of degree i+ j − 1.
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To be consistent with the usual notion of graded commutativity and with topology, we will adjust all
gradings so that

|aij | = 2(i+ j − 1)

but don’t worry about this- everything will be okay. One can check that RU is connected, i.e. (RU )0 = Z,
and concentrated in non-negative degrees.

While innocent looking, this grading will give us a very convenient way of dealing with RU . Any time
we have a connected, non-negatively graded ring, R, we can consider a graded abelian group QR given by

QR = R>0/R
2
>0

where R > 0 is the ideal of positively graded elements. Our goal will be to understand

(QRU )2n

and see if that gives us any hints about what RU has to be. So we’ll be interested in maps

(QRU )2n →M

where M is an abelian group.
We’d like to actually prove that (QRU )2n is Z. It turns out that, amongst finitely generated abelian

groups, Z has a universal property: it’s the only one, A, for which

HomAbGrp(A,Q) ∼= Q, and HomAbGrp(A,Z/p) (∀p)

So we are left with studying maps

(QRU )2n → k, k = Q,Z/p

The trouble is that RU is defined via a property about rings, so we really only know how to study ring
maps... But we can transform this problem into one with ring maps:

Lemma. Let R be a connected, graded commutative ring concentrated in even, non-negative degrees, and M
an abelian group. There is a natural bijection

HomAbGrp(QR2n,M) ∼= HomGrRing(R,Z⊕M2n)

where Z ⊕M2n is the graded ring with a Z in degree 0, and M in degree 2n and multiplication given by
(a, b)(c, d) = (ab, ac+ bd).

Proof. Given a map QR2n → M we get a map R>0 → M , and combining with the isomorphism R0
∼= Z

gives us a ring map as on the right. Going backwards we note that the definition of multiplication for Z⊕M
forces decomposable elements to go to zero, and so we get a map as on the left.

So we are interested in maps of graded rings RU → Z ⊕ k2n. Notice that our requirement that this be
a ring map tells us that we have an isomorphism on 0th-degree, so we are really looking for lifts in the
following diagram

Z⊕ k2n

��
RU //

::

Z

These correspond to special formal group laws over Z⊕ k2n that agree with the additive one, modulo k.

Remark 1. It’d be really neat if someone could tell me how to word this as a deformation problem of the
form “We know something over the generic point, and now we want to deform over the rest of Spec Z to see
what happens... so we look at André-Quillen cohomology...” But I haven’t figured out how to do this. It
seems close but a few pesky things are in the way, the first being the appearance of Z above instead of Q.
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So we are looking for power series that are of the form

F (x, y) = x+ y + f(x, y)

where f(x, y) is a polynomial with coefficients in k where each term has total degree n+ 1. This polynomial
satisfies the following conditions:

1. f(x, 0) = f(0, x) = 0

2. f(x, y) = f(y, x)

3. f(y, z)− f(x+ y, z)− f(x, y + z)− f(x, y) = 0

The last condition follows from the associativity condition for a formal group law. Indeed, the degree n+ 1
part of F (x, F (y, z)) is

x+ y + z + f(y, z) + f(x, y + z)

and the degree n+ 1 part of F (F (x, y), z) is

x+ y + z + f(x, y) + f(x+ y, z)

Now the key point is to notice that the last condition reminds us of a “cocycle” type condition. Indeed,
let k[x] denote the abelian group of polynomials with coefficients in k, and consider the complex

k
d0 //k[x]

d1 //k[x, y]
d2 //k[x, y, z]

where
d0(a) = a

d1(f(x)) = f(x+ y)− f(x)− f(y)

d2(f(x, y)) = f(y, z)− f(x+ y, z)− f(x, y + z)− f(x, y)

So what we are concerned with is the kernel of d2. The 2-coboundaries are easy to understand, so it would
be helpful to compute this cohomology.

Let me write this complex slightly differently, and extend it to a larger complex. We start by endowing
k[x] with a coalgebra structure, where x is primitive. Then we write down the cobar complex for k. This
looks like:

0 // k // k[x]⊗k k // k[x]⊗2 ⊗k k // k[x]⊗
3 ⊗k k // · · ·

We represent an element of k[x]⊗n+1 ⊗k k as having basis elements

[f0|f1| · · · |fn]a

where the fi ∈ k[x] are polynomials and a ∈ k. The differentials are given by

d([f0|f1| · · · |fn]a) = [f ′0|f ′′0 |f1| · · · |fn]a− [f0|f ′1|f ′′1 | · · · |fn]a+ · · ·+ (−1)n+1[f0| · · · |fn|f ′]a′

Now if we apply Homk[x](k,−) to this complex we get another one that looks like

k // k[x] // k[x]⊗2 // k[x]⊗
3 // · · ·

and one can check that the differential agrees with what we had earlier! So even though we didn’t realize
it, we’ve been interested in

Ext2
k[x](k, k)

(thinking about everything as coalgebras an comodules, and I should be inserting a grading somewhere).
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If I’d had more time I would’ve tried to do this purely in the land of coalgebras, but alas... who has
time? So let’s dualize and then we’re talking about computing

ExtΓ[t](k, k)

And now I should explain what Γ[t] is and what’s going on.
The deal is that, for the polynomial algebra k[x], where x is primitive, we can compute that

∆(xn) =
∑(

n

k

)
xkyn−k ∈ k[x, y]

So if I want to take the dual gadget (an algebra) then it will have generators t(n) that satisfy

t(n)t(m) =

(
n+m

n

)
t(n+m), t(0) = 1.

So now there are really only two cases to consider.

Case 1: Q
When k = Q life is easy: divided power algebras are the same as polynomial algebras, and so we’re interested
in computing

ExtQ[t](Q,Q)

Well, consider the resolution
0 //Q[t] //Q[t] //Q //0

so Ext2 = 0, which, if we trace everything back means that the symmetric 2-cocycles are 1-dimensional over
Q.

Case 2: Fp

. If k = Fp, then the coalgebra k[x] actually decomposes as a tensor product of coalgebras of the form An
where

An = k < xp
n

, x2pn , ..., x(p−1)pn >

that is to say that
∆(xkp

n

) = (x+ y)kp
n

= (xp
n

+ yp
n

)k, 1 ≤ k < p

is a polynomial in xmp
n

and ymp
n

for 1 ≤ m < p. The dual of this gadget is just a truncated polynomial
algebra (since the various binomial coefficients we want to invert are invertible in Fp- they are all less than
p.) That means we have a decomposition

Γ[t] =
⊗

Fp[t(p
k)]/(t(p

k))p

By the Künneth formula, this means we really just need to study

ExtA(Fp,Fp)

where A = Fp[t]/tp. But we already know how to do this, because this is like the group cohomology of Z/p.
We can write down a nice complex and get that, as an algebra, this looks like

ExtA(Fp,Fp) = Λ(α)⊗ Fp[β]

for p odd, and
ExtA(F2,F2) = Fp[α]
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where α ∈ Ext1 and β ∈ Ext2. In the bar complex, α is dual to xp
n

and β is dual to 1
pn ((x + y)p

n −
xp

n − ypn).
Putting all of this together we get that Ext2

Γ[t](Fp,Fp) is generated by elements of the form αiαj and βk,

dual to xp
i

yp
j

and
1

p

(
(x+ y)p

k

− xp
k

− yp
k
)

when p is odd, and by elements of the form αiαj and α2
k where α2

k is dual to

1

2

(
(x+ y)2k

− x2k

− y2k
)

In summary:

Corollary. The 2-cocycles are generated by elements of the form Cn(x, y) and xp
i

yp
j

. Therefore, the sym-
metric 2-cocycles are generated by elements of the form Cn(x, y)

Translating this back into formal group laws, we are saying that maps of abelian groups

Z ∼= Q(RU )2n →M

correspond to formal group laws over Z⊕M that look like

x+ y + aCn(x, y)

where a is the image of our chosen generator of Q(RU )2n.

Wrapping up

Okay! So we’ve shown that Q(RU )2n is canonically isomorphic to Z. This gives us a map of graded rings

Z[x1, x2, ...]→ RU

by lifting generators- here |xi| = 2i. The map is surjective on indecomposables, and so it is surjective
(exercise!)

So we need only show that this thingy is injective, and we’re good.
To do this, let’s compare RU with the ring of “all the formal group laws one can get via isomorphisms

and the additive one.” That is, we have a map

RU → Z[m1,m2, ...]

classifying the following formal group law... Let

g(x) = x+m1x
2 +m2x

3 + · · ·

and define a formal group law via
G(x, y) = g−1(g(x) + g(y))

Now we have maps
L→ RU → Z[m]

And to show that the left hand side is injective it’s enough to show the composite is injective. Since this is
a map of graded, polynomial rings it is enough to show that the map on indecomposables is injective... so
we need to check that

Q(RU )2n → Z
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is injective. What is that map? Well, it’s the one corresponding to a formal group law over Z ⊕ QZ[b]2n.
To get it, we note that in this quotient we get

g ≡ x+mnx
n+1, g−1 ≡ x−mnx

n+1

so that...

G(x, y) = g−1(g(x) + g(y)) ≡ g−1(x+ y +mn(xn+1 + yn+1)) (1)

= x+ y +mn(xn+1 + yn+1)−mn(x+ y + · · · )n+1 (2)

= x+ y +mn(xn+1 + yn+1 − (x+ y)n+1) + · · · (3)

≡ x+ y − dn+1mnCn+1(x, y) (4)

so the map Z ∼= Q(RU )2n → QZ[m]2n sends 1 to −dn+1mn, which is nonzero, so we have an injective map.
This completes the proof!!

Remark 2. This proof has a few puzzling components. For example, a priori we only cared about Q(RU )2n

as an abelian group, but in order to study it we ended up talking about fields and coalgebras over them.
We introduced an ad-hoc Hopf algebra structure that happened to fit. I have trouble finding good moral
reasons for doing all of this; if anyone has insight, please let me know!
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