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Summary

The first two chapters describe and develop some of the basics of Simplicial
set theory. They include a study of the category of finite ordinals and mono-
tonic functions, together with some related categories (particular note being
given to the monoidal structure), many of the basic technical results, and a
description of the functorial relation between simplicial sets and topological
spaces and small categories. There is also a section outlining those results in
the author’s MSc thesis which are to be used in later chapters.

Chapter three outlines a monoidal structure for simplicial sets based on
the monoidal structure of the category of finite ordinals, and obtains a tensor
product (®) for augmented simplicial sets which models the operation of join
on topological spaces. Using this, a simplicial model for the n-sphere, (S™),
is defined, which have the property that SP @ S? & Sptatl,

Chapters four and five study the subdivision functor of Porter and Cordier
(Sd), prove that it may be described as the composite functor diagDEC,
and recall some of the theory of anodyne extensions. A similar concept,
called weak anodyne extension is defined. Most space is taken in technical
lemmas and combinatorial descriptions culminating in a proof that the unit
of “Nerve/Categorisation” adjunction 7gqapm is a weak anodyne extension
for each n, and that the filling scheme respects the cosimplicial structure.

The last chapter uses this, and the adjunctions, “Nerve/categorisation”
and  “loopgroupoid/classifying-space”, to define a retraction from
GNerllSdA[n] to GSdA[n| (where G is the loopgroupoid functor). Finally,
this retraction and some topological morphisms are used to describe a Van
Kampen type theorem for a functor which is a quotient of the loop groupoid

functor of the singular complex of a space.
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Introduction

It has always been a problem of homotopy theory to construct functors which
are easy to calculate with, yet still preserve sufficient homotopy information
to be interesting. The (Seifert-) Van Kampen Theorem is one of the earliest
theorems about the calculational use of such a functor. It states that the
fundamental group of a pointed space (W, x), (W, %), may be described as
the quotient of the free product of (U, *) and 71 (V,*) by information in
T (U NV, %), where W = U UW, where U, V and U NV are all open path
connected subspaces of W and where x € & N V. It is this theorem which
provides the main motivation for this thesis.

To work with topology, it also made sense to work with simplicial sets
(originally called Semi Simplicial Complexes), rather than directly with topo-
logical spaces. In this area, there is a lot of material: there are the two fun-
damental papers of D. Kan ([30] and [31]) defining the homotopical structure
of simplicial sets: the extension condition, Kan complexes, homotopy groups
of simplicial sets, the loop group functor and its right adjoint. J. Milnor (in
an unpublished paper, printed as part of [1]) comments that the loop group

of a simplicial set is homotopically equivalent to the loop space, provided the



simplicial set is a Kan complex. There is the paper of Moore ([37]) studying
simplicial sets and Postnikov systems based on them. All these can in part
be seen as aspects of Whitehead’s view of Combinatorial Homotopy (see [13]
and [14]). Following the work of Quillen, in “Homotopical Algebra” ([39]),
in which he outlined the basic properties required of a category for it to sup-
port a homotopy theory, it became possible to study homotopy in a variety
of different categories.

Following more directly from Whitehead’s view, much work has been done
on the category of Crossed Complexes by Brown et al. There are a variety of
related algebraic categories which model n + 1-types (Crossed n-cubes, Cat”™
groups, see the work of Porter, Loday, Ellis & Steiner, Gilbert et al.) which
generalise the crossed modules of Whitehead, and the crossed 2-modules of
Conduché (models for 2-types and 3-types respectively).

It made sense to try to find Van Kampen Type Theorems for the new
algebraic models, and so there are now Van Kampen Type Theorems for the
fundamental groupoid of a space (see [9]) and the fundamental crossed com-
plex of a filtered topological space (see [11]). The idea also became broader,
so that a Van Kampen Type Theorem now represents the preservation prop-
erties of the functor on more general pushouts.

The purpose of this thesis is to examine some of the phenomena arising
in the category of simplicial sets, and to see how they relate to operations
in other categories, (including topological spaces). The emphasis is on the

simplicial structure, rather than the topological. The aim is to describe a



functor from topological spaces to simplicial groupoids which is a quotient of
the loop groupoid functor, and describe a Van Kampen Type theorem for this
functor. The point is that the (non-abelian) homology of the Moore complex
of the loop groupoid of a simplicial set yields the absolute homotopy groups
for the simplicial set. Thus, if a quotient of the loop groupoid functor can be
shown to satisfy a Van Kampen Theorem, and if the quotient has the same
homotopy type as the loop groupoid, it should be possible to calculate all
homotopy types of the union of two spaces for which all absolute homotopy

groups are already known.



Chapter 1

Models for Simplices

1.1 Definitions

The basis for using simplicial sets to calculate topological invariants is the
link between the model for simplicial sets (that is, the category of finite or-
dinals and monotonic functions) and the affine simplices in the category of
topological spaces. The theory reproduced below is well known. There is one
other model of simplicial structure which will be useful in this thesis, and it
is dealt with also. One important note is that the labelling conventions are

different from those used by Mac Lane in [35].

Definition 1.1 (i)

The category of finite ordinals and monotonic functions will be denoted by
A. The objects are the ordered sets {0,1,---,n} for n > —1, which will
be written as [n]. The object denoted by [—1] is the empty set. There is

precisely one morphism from [—1] to [n] for all n and no morphism from [n]



to [—1] for any n > 0. Thus [—1] is initial in the category A.
The morphisms of A are generated (under composition) by functions
i n—1] — [n] and ot n+1] — [n]

where

k if 0<k<i
n—1 . =
& (k)—{k+1 if n—1>k>i

Eooif 0<k<i
n+1 _ = =~
9j (k)_{k—l if ntl1>k>i

These morphisms obey the following identities:
ooyt =opy if 0<i<j<m

olo ™ =orotl i 0<i<j<n

o tol, i i<
ol ter = id if i=77+1
o ton i i>j+1
These equations are standard and may be found in [24], [30], [36] and [30]
(among others!). It is clear from them that [0] is terminal in A.
There is a full subcategory of A, denoted A" which does not have the

empty set as an object, but otherwise has all the objects of A.

Definition 1.1 (ii)
The affine n-simplex, which will be denoted by A", is the subset of R™"
defined by

{(wg,21,--+,2,) € R" | =1z, >0V0<i<n}
i=0
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There are continuous functions between the affine simplices generated
(under composition) by the continuous functions:

5?_1 AP 5 A” and O’;H_l AL AR

where 5?_1('1:& e 7xn—1) = (:EO) Ty gy 07 Tig1, 71'71—1)
o7 (o, Tan) = (0, T Tinr, o Tagr).

It is sometimes useful to consider the empty topological space as an affine
simplex. In such cases it will be denoted A~!. Since the empty set is initial
in the category of topological spaces, it is initial in the subcategory of affine

simplices.

Definition 1.1 (iii)

The category of small categories and functors will be denoted by Cat. The
category, N1, is the full subcategory of Cat defined by the objects

obN*t = {[n]|n € N}, where [n] is the category with objects the elements of
the set {0,1,---,n} and a unique morphism from i to j iff i < j. A functor
from [n] to [m] is then an order preserving map on the ordered set [n]. As

in the cases of finite ordinals and affine simplices, there are canonical maps

677"+ [n—1] — [n] and 0}*" : [n+ 1] — [n]. These are defined as follows:
(ot k—1) if 0<k<I<i<n
(5?_1(!k,lik—>l): (!k7[+11k—>l+1) if OSIC<ZSZ<TL

('k+1’l+1k+1—>l+1) if 0§Z§k§l<n

ol ey k— 1) = (g1 ik —1-1) if 0<k<j<li<n+1
(!k_17l_12k—1—>l—1> if 0<i<k<IlI<n+1



(Here, !, is the unique map from k to [, for k < 1.) These definitions make
it clear that [0] is the terminal object in N*.

The category N7 together with the empty category is denoted N; the
empty category (which shall be denoted [—1]) is initial in N.

Both the categories N and IN are themselves small categories. It is clear
that they may be described as categories of directed sets, where [n] is now
the directed set {0 < 1 < --- < n}, and morphisms are those set functions
which respect the ordering on the set.

In all cases, the categories AT, NT and the set of affine simplices, the
superscripts on the ¢; and o; will generally be omitted.

There are obvious inclusion functors, A™ — A and N* — N.

The comment made earlier about Mac Lane’s notation may now be ex-
panded. Although the notation for the categories A" and A is Mac Lane’s
notation, the notation for the objects of all the categories described is not.
Where n is used here, Mac Lane uses n+1; thus Mac Lane denotes the empty
set by 0, 0 and A, respectively. Note that the category described here by [n]
may be better known to category theorists as n+1. (This is Mac Lane’s no-
tation: see [35]). There should not be too much confusion arising from this:
the reason for maintaining a different notation for the objects themselves is
to stay in keeping with the standard definitions of simplicial objects.

There is also a category Ag which is a wide subcategory of A™. It has

morphisms all monotonic functions which fix 0. This effectively means that



there are no oy morphisms and the morphisms are generated by the 9; and
o; where ¢ # 0. This category is the model for contractible simplicial sets. It
has the property that [0] is both the terminal object (as it is for A" and A)
and the initial object (as there is a unique morphism [0] — [n] for every n,
which takes the 0 to 0). There is, of course, a natural embedding Ay — A™
and a natural embedding Ay — A.
Two further comments will be made here, but dealt with later.

First, there is an inversion function on the category of finite ordinals which
reverses the order, that is, sends {0 <1 < -+~ <n} to {0 > 1> --- > n}.
This clearly yields a category which is equivalent to AT, but the isomorphism
between them is a set function which is not monotonic.

Secondly, it has already been noted that N is a small category, and the same
is clearly true of the category A (which is essentially isomorphic to IN). This
implies that all finite powers of the category A (or of the category IN) are

also small. In particular, this is true of the binary product A x A.

1.2 Functors on the Models

Between the categories A and A™ (that is, the categorical product of n copies
of A) there are two important functors. These are the diagonal functor, 0,

and the join functor, which is linked to the monoidal structure of A.



1.2.1 The Diagonal

The diagonal functor 9" : A — (A)"*! is given by

o+ ()% lal) = (-, ) ™= (gl [a]) ), where (pl, -+, [p)
is the product of n + 1 copies of [p], and ([g],- -, [¢]) is the product of n + 1

copies of [¢]. The superscript on d will be dropped when there is no ambiguity,

and will always be dropped in the case n = 1.

Proposition 1.2.1.1

The functor O™ has neither left nor right adjoints.

Proof
From the theory of adjunctions, (see [35]), the functor 0" has a left adjoint
if A has (n + 1)-fold coproducts and a right adjoint if A has (n + 1)-fold
products.

Consider the case of binary products: let [1] x [1] 2 [n].
Then, A([1], [1]) x A([1],[1]) = A([1], [n]) and specifically,

AL DT> TAQLAD | = A, )|

n+1)(n+2 n+1)(n+2
Now, |A([1],[1]) | = 3 and [A([1],[n]) | = @2 Thys 9 = (2
so (n+1)(n+2) = 18. Since 3 x 4 = 12 and 4 x 5 = 20, there isnon € N
such that (n + 1)(n + 2) = 18 and so [1] x [1] does not exist in A. Since

binary products do not exist in this case, then finite products do not exist in

general.



Now consider the case of binary coproducts. Let [0] Ll [0] = [m].

Therefore A([m], [r]) = A([0], [r]) x A([0], [r]) and specifically,

Now | A([0]. [2))| = 3 and | A(fm], [2))| = T2 Thys g = (2

[A(m], ) | = TAQOL [P [ < TAO] [r]) |

)(m+3)

2

9

that is 18 = (m + 2)(m + 3). As has already been shown, there is no integer

m with this property, and hence there is no binary coproduct of [0] and [0]

in A, and so finite coproducts do not exist in general in A. Therefore the

functor 9" has neither left or right adjoints, for all n > 1.

1.2.2 The Monoidal Structure

Definition 1.2.2 (i)

Let f; : [p)] — [q;] for 0 < i < n. Define the “ordinal sum” functor,

or™ : A"t — A as follows:-

O’/’n(f(), ) fn) =

or™([pol, -+, [pn]) = [D_pi + 7]
i=0
fo(k) it 0<k<po
filk—po—1)+q+1 if pp+1<k
: : : Spo+p1—|—1

folk =X pi — 1)
: + Y+

fulk — S0 pi —n)
+ 3 g+ n

10
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Note that any number of copies of [—1] (the empty set) may be added
into the sum without affecting it, as would be expected. As with 0", the
superscript on or will usually be dropped, and will always be dropped in the
case n = 1.

For the rest of this section it will be assumed that n = 1. The ordinal sum
is the join of two finite ordinals, and generates the monoidal structure on A.
The unit of the monoid is the unique map ! : [-1] — [0]; the multiplication
is the unique arrow oy : [1] — [0].

For a study of this, see Mac Lane [35]. He describes the links between the
various categories defined in section 1.1 , shows that A is a strict monoidal
category. He further proves that < A,! oy > is universal in the sense that
for any monoid, < ¢, u,n >, in a strict monoidal category, < B, ®, e >, there

is a unique functor
F:<Aor,op>—<B,®,e>

where F([—1]) = ¢, F(0p) = p and F(!) = n.

Definition 1.2.2 (ii)

For two directed sets X and Y, X VY is defined as the disjoint union of the
elements, with a <biffa<be Xora<beY orae X andb e Y. In the

case that X = [n],Y = [m], it is clear that [n] V [m] & [n + m + 1].

There is also a join defined on affine simplices. This is the join on subsets

of a normed vector space. The join for topological spaces (which generalises

11



that on subsets of a vector space and will be looked at later) is described in

some detail in [9].

Definition 1.2.2 (iii)

Let X and Y be subsets of a normed vector, V. Consider U C V, where
U={rx+sy|r+s=1rs>0xe X, yeY} If XandY areplaced in V
in such a way that no two lines in the set U cross (that is, they meet only at

endpoints) then the join of X and Y, written X %Y, is defined by X «Y = U.

Proposition 1.2.2.1
AP x A9 2 APTatL

Proof
Consider the vector space RP™ and the two compact convex subsets:

p

X:{(x(]?xla"'axpvof"ao)’ szzl}

1=0

q
Y:{(07"'707y07y17'”7y4>| Zyjzl}
i=0

First note that X =2 AP and Y = A?. Furthermore, it is clear that no two
lines in the set U = {rx+ (1 —nr)y|0 <r <1,x € X,y € Y} intersect
except at endpoints. Thus X =Y = U. However, U is the subset of RPT7!

given by

{(rzo, - rap, (1= 1)yo, -, (1= 7)yy) | f%rxﬂri)(l_r)yj =1}

12



That is, U is the affine (p + ¢ + 1)-simplex. Therefore AP x A7 = APtatl m

Comment

The ordinal sum on the category A models the join operation, *, on the affine
simplices in the same way that the finite ordinals model the affine simplices.
Since it has been noted already that A and N are isomorphic categories, and
it is clear from the definitions above that the “isomorphism ” takes or to V,

then the same may be said of V on the category N.

It has been mentioned already that reversing the order on an ordered set,
X gives an ordered set which is bijectively equivalent to X, but that there
is no monotonic function to express this fact. There is a similar problem
with or. Despite the fact that [n|or[m| = [m]or[n] in Sets, there is no way
of obtaining the isomorphism from the morphisms of A™. The link between
these two “problems” is shown by the equation R([plor[q]) = (R[q])or(R[p]),
where RX is the ordered set obtained by reversing the ordering on X. Given
this problem with ordinal sum, it is important to be aware and draw the
distinction between those cases when [p]or[q| is just the set {0, 1, -+, p+q+1}
and when the cosimplicial structure of [plor[q] is being used.

The functor or is also connected to the inclusion functor in : Ag — A,
(this comes from [18], and has also been covered in [20]). The functor in has
a left adjoint b: A — Ay which is defined on objects by:-

b([n]) = [n+1]

13



and on morphisms by
bm(i):{ fli—1)+1 if i>1
This may be rewritten as:-
b:(f:[n] = [m]) — ((id)or(f) : [O]or[n] — [0]or[m])

The composite functor inb : A — A forms a monad in A with unit
the unit of the adjunction (that is 6§ : [n] — [n + 1]) and multiplication
in(og™ : [n+2] — [n+1]) = 0§ (since o is the counit of the adjunction).
The algebras are simply the arrows o' : [n + 1] = [n] where n > 0.

It is possible to embed the category Ay in the category A*. The ad-
joint has the same description, the difference being that while [0] € b(A),
(0] € b(A™). Further, the functor or : AT x AT — A% is well defined. This
is useful to the extent that it is sometimes convenient to be able to move
between A and A" (and hence between augmented simplicial categories and

simplicial categories) and know that the adjunctions and associated monad

and comonad structures extend naturally.

14



Chapter 2

Simplicial Categories

2.1 Preliminaries

Let C be a category. The following definitions are standard, and are noted

for completeness.

Definition 2.1 (i)

The category of simplicial objects in C is defined to be cAT”.

The category of augmented simplicial objects in C is defined to be CA™.

The category of contractible simplicial objects in C is defined to be C20".

In a similar way, categories of multiple simplicial objects in C may be

defined. The most common of these are the bisimplicial categories.

Definition 2.1 (ii)

The category of bisimplicial objects in C is defined to be CAT*AN,

15



Categories of augmented bisimplicial objects will be left for the moment.
Note that the opposite of a product of categories is the product of their
opposites.

When the above functor categories take values in the category of Sets

and functions, (denoted Sets) then their names and notations are somewhat
different.
Definition 2.1 (iii)
A simplicial set is a functor in Sets® . The category of simplicial sets is
usually denoted SS.
Similarly there are contractible simplicial sets, augmented simplicial sets and
bisimplicial sets, and the respective categories are denoted C'SS, ASS, and
BiSS.

The category of augmented bisimplicial sets is a little more complex: the
following three categories of contravariant, set-valued functors might all be

described as augmented bisimplicial sets:

Sets XA GetsBTHAT and SetsBXA)T

This will be discussed in more detail in section 2.5 .

A simplicial set, X, has face and degeneracy maps based on the mor-
phisms §; and o; respectively (which were defined in the first chapter): for
r € X,, d¥(z) = X(07")(z) (in geometric terms, this is the face opposite
the i*" vertex of x); similarly, s?(z) = X (o7™)(z) (in geometric terms, this

is the degenerate simplex obtained by “doubling” the i*" vertex). Normally,

16



the superscripts will be left off the face and degeneracy maps.

The simplicial set which is called the n-simplex, A[n], is the representable
functor, A(—, [n]). The simplicial set A[n] will be referred to as the standard
n-simplex.

Definition 2.1 (iv)

A non-degenerate n-simplex of a simplicial set X is one which cannot be
written as s;z for some x € X,,_;. Note that this implies the definition of
degenerate simplex (as one which can be written in the form s;x for some z).

A non-degenerate n-simplex will be called mazimal if it cannot be written
as d;jy for any nondegenerate n + 1-simplex y € X. A simplicial set is said
to be generated by a set of simplices {x;}ier if each simplex of X may be
expressed as s;, - - - s;,dj, - - - djx; for some ¢ € I, for some k >0, [ > 0.

In this event, X may be written as < x; : : € [ >.

Definition 2.1 (v)
If X is a simplicial set, then the n-skeleton of X, sk, X, is the simplicial set
generated by the m-simplices of X, for all m <n.

It follows that if X = sk, X for some n € N, then X is generated by
its maximal elements. Note that the standard n-simplex is generated by
the unique non-degenerate n-simplex of A[n] which is the identity morphism
Lt [n] — [n] € A.

Definition 2.1 (vi)

A simplicial complex is a simplicial set, X, with the property that any non-

17



degenerate simplex is completely defined by its vertices; that is, for a set
of n 4+ 1 distinct vertices in Xy, there is at most one n-simplex with those
vertices.

Definition 2.1 (vii)

Let 0 < k < n. Consider {z; € X,,_15.t.0 < j <n, j # k} where the z;
satisfy the property d;x; = d;_ix; for ¢« < j and 7, j # k.

If, for all n, for all 0 < k < n and for all such sets, there exists x € X,, such
that d;x = x;, then X is called a Kan Complex.

If, for all n, for all 0 < k < n and for all such sets, there exists x € X,, such

that d;x = x;, then X is called a Weak Kan Complez.

2.2 Nerves

Definition 2.2 (i)
Recall the definition of the nerve of a small category. Let C be a small
category, and define a simplicial set NerC as follows:-

(NerC)y = 0b(C)

(NerC), = arr(C);
x1, ) | x; € arr(C), dom(zy1) = cod(x;) }
1<i<(n-1)
For z € (NerC);, di(x) = dom(x), do(z) = cod(z)

(NerC), = { (

and for y € (NerQC)y,, so(y) = id,.
For (x1,---,xz,) € (NerC),,

do(z1, -+, xn) = (T2, -+, Tp);

18



dn(zla T 7xn) - (xb o 7xn—1);

di(x1, 29, xn) = (1, i1, -+, x,) fO0<i<n
so(x1, -, 2p) = (idgom(zr) T15 "+ Tn);
Sp(T1, - n) = (21, -+, Tn, 1deod(ay))
Si(T1, -, Tn) = (@1, -, @i, ideod(ay), Tig1, -+ Tn) if 0 <@ <.

This may be described more compactly by saying (NerC),, = Cat([n], C),
and letting the natural functors between the objects of N describe the face
and degeneracy morphisms. This construction extends to a functor from Cat

to S5 in the obvious way.

Proposition 2.2.1
Al[n] = Ner[n]

Proof
The Yoneda lemma states that NerC,, = SS(A[n], NerC). Therefore
Cat([n],C) = SS(Aln], NerC)
If C is the category [n], this gives
SS5(Alnl, Nerln]) = Cat([n], [n])

Therefore the standard n-simplex, A[n], may be described as Ner|[n]. [

The functor Ner has a left adjoint II: this is the process of “categorisa-
tion”. The classical description of this is constructive, however the definition

that will be used here is a coend, from which the constructive definition will
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be derived. The coend description of II arises directly from it being the left

adjoint to Ner.

As a notational convenience, [ and Jiy shall be written as [ "and [,
respectively. Similarly (when occasion arises) the [PM9 and Jip, g shall be
written [*? and [ respectively.

Proposition 2.2.2
TLX = / X, - [n]

Proof

Let X be a simplicial set, and let C be a small category, then:-
Cat(I1X, C) = SS(X, NerC) = / Sets(Xn, (NerC),)

= [ Sets(X,., Cat(n],©)) = [ Cat(X,,-[n].C) = Cat([" X, - [].C)

As this is true for any small category C, it follows that IIX = [ X, - [n]. =

Recall that [n] is the category with the (n + 1) objects {0, 1,---,n} and
a unique arrow for every ¢ < j. A functor from [n] to a small category C is
then precisely a chain of n composible maps in C. The ¢; morphisms in N
induce composition of the chain across the codomain of the i** morphism in
the chain, and the o; morphisms induce insertion of an identity morphism

between the j* and (j + 1) morphisms in the chain.
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Thus, constructively, the functor II takes a simplicial set X and con-
structs the category which has objects X, arrows chains of 1-simplices,
and relations induced by the 6 and ¢ maps in N: this is the free cate-

di

—
S
X, &< X,

do
—

for © € X, (dodsx)(dodsz)(dodpxr) ~ dydax for € X3 and in general,

gory on the graph with relations induced by dyzdpxr ~ dyx

(dods - - - dpx)(dods - - - dpx) - - - (dédj+2 coodp) - (dg—lx) ~dydy -+ dy g,
for x € X,,. This higher order information is essentially associativity infor-

mation.

Proposition 2.2.3
The relations given by the n-simplices, for n > 3, are obtainable from the

relations given by the 2-simplices.

Proof

Let x € X3. Since d3x € X5, there is a relation
(dgdgﬂ?) (dodgl‘) ~ (d1d3$) = (dgdll‘)

Since the relation must be preserved by composition, it follows that
(dod3)(dodsx)(dodox) = (dods)(dodsz)(dodr )
~ (dodix)(dodyz) ~ (didix) = (d1da).
Thus the relations given by the 3-simplices are obtainable from the relations
given by the 2-simplices.
Next, assume the relations given by the (n — 1)-simplices are obtainable

from the relations on the 2-simplices. Then, for x € X,,, d,z yields the

21



relation (daods - - - dp_1dn2)(dods - - - dp_1dnx) - - - (diy " 2dpx) ~ dyds - - - dyy_odypz,
which is obtainable from the relations on the 2-simplices.

So, (dods - -+ dpx) - (dhdjig - - - dp) - -(dy~2) ~ (dy - - - dpp_od,x) (di~ ).
As dy' = dody---dn_y and didy---dp_sd, = dydidy---d,_y, then
(dods - -~ dp) - (Bdjy - dy) - (df ')

~ (dodydy - - - dp—ox)(dodyds - - - dp o)
~dydy - dyor =dydy - - dp g

Thus, by induction, all the relations are obtainable from the relations on
the 2-simplices. [ |
Definition 2.2 (ii)
For any 0 < k < n, AF[n] is defined to be the subsimplicial set of A[n]
generated by the simplices d;i, for 0 < i < n and i # k. (Recall that ¢, is

the unique nondegenerate n-simplex of A[n]).

Proposition 2.2.4

[I(A*[n]) = [n] for 0 <k <n, and if 4 <n, for 0 < k <n.

Proof
Consider A'[2]. Tt has two non-degenerate 1-simplices, dyiz and dyis, and
no non-degenerate 2-simplices. So II(A'[2]) has no relations, and is the free

category on the graph
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Clearly, this is [2].

Further, note that sk, o AF [n] = sk, 2A[n]. Therefore, for n > 4,
sk A*[n] = skiAln] and sko A¥[n] 2 skoAln], and so TIA* [n] 2 TIA[n] & [n).
So, consider the case n = 3.

Now, sky A* [3] &2 skyA[3], so TI(A*[3]) is generated by the same elements
as II(A[3]). As |sky A* [3]| = |skoA[3]] — 1, there is potentially one relator
missing, namely di3. Had it been present, the 2-simplex dii3 would have
given the relation (dodyis)(dodriz) = (didgiz). If k = 1 or 2, this may be

obtained from the other relations as follows:

k=1
(dodyis)(dodyis) = (didsis)(dodois)
= (dadsi3)(dodsis)(dodois) = (dadais)(dadois)(dodois)
= (dadais)(d1dois) = (dadais)(dodzis)
= (dydyis) = (didyis) as required.
k=2

(dgdgig)(donig) == <d2d3i3)(d1d0i3)
- (dgdgig)(dgdoig)(dodoig) - (dgdgig)(dodgig)(dgdlig)
= (dldgig)(d0d1i3) = (dgdl’i?,)(dodlig)
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= (didyiz) = (dydyis) as required.

I

Thus, if £ =1 or 2, then TI(A*[3]) = TI(A[3]) = [3]. =
Consider now the unit of the adjunction. Obviously the unit is the identity

on O-simplices, and the unit takes each 1-simplex to the element of arr(I1X)

which is the equivalence class containing it. In general, the unit takes

r € X, to ([dy---dyz], [dods - - dpz],-- -, [dy~?z]), where [w] is the element

of arr(I1X) which is the equivalence class of w € X.

Lemma 2.2.5 Let X be a weak Kan complex, and consider x1,---,x, € X,
where dyx; = doz;_q for 2 <1 < n. Then, there is a z € X,, with the property

di diiz = a; for 1 <i <.

Proof
This is a simple case of lemma 5.3.3: the machinery is more easily dealt with

in chapter 5 than here.

Proposition 2.2.6

If X is a weak Kan complex, the unit of the adjunction nx is epic.

Proof
The category I1.X is a quotient of the free category on the graph which is the

1-skeleton of X. Thus, it is a quotient of the set

{Xq U (Xygy Xay X1) U (X1gy Xay X1gy Xay X1) -}
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(where (Xi4, Xa, X1) is the set of words in X; of length two, zy, with
dox = d1y).

If X is a weak Kan complex, then any for any word zy € (X14, X4, X1)
there exists z € X, such that dyz = z,dpz = y. But the relations give that
dozdgz ~ dyz and so xy ~ dyz. Thus, by induction, the equivalence class of
any finite chain zi25 - --x, contains an element of X, so any arrow in II.X
has a representative which is a 1-simplex of X. Therefore (nx); is epic.

Given (f,g) € (NerllX), (so f,g € arr(Il1X) and domg = codf) then
there are x,y € X;, with [z] = f and [y] = ¢, and dyxr = dyy and hence
z € Xy with dyz = x, dyz = y. Thus (f, g9) = (nx)2(2).

Now, consider (f1,---, fn) € (NerllX),. For each f;, there is an z; € X3
with [x;] = f;, and thus dyz; = dox;_1 (for 2 < i < n). Lemma 2.2.5 states
that given such a chain of simplices in a weak Kan complex, there is an ele-
ment z € X, with dj'dlijz = a; (for 1 < i < n), and so
(five s fu) = (7x)a(2) and 50 (nx), is epic,

Since SS is a presheaf topos, the fact that each of the set morphisms

(nx)n is epic, implies that (nx) is epic. ]

Theorem 2.2.7
If X is a Kan complex, then 11X is a groupoid, all fillers in NerllX are

unique, and nx s a Kan fibration.

Proof

If X is a Kan complex, then X is a weak Kan complex, and so by Proposi-
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tion 2.2.6 ny is epic. Therefore, every arrow of I1.X is representable by a 1-
simplex of X. Consider an arrow f = [z] € arr(I1X). Since dyx = dy(sod1x),
r and sgdiz form a O-horn in X;, with sgdix thought of as the 1-face.
Then, there exists y € Xy with dyy = spdyx and doy = x. Then in 11X,
[z][doy] = [sod1y]. Similarly, doz = dysodpx, and so there exists z € Xy, with
di1z = sodpx and dpz = z, and so in 11X, [dez][z] = [sodoy]. Since [sop] is an
identity, for any p € Xy, it follows that [dez] = [d22][z][doy] = [doy], and this
is a two sided inverse for f = [z]. It is therefore unique. Thus, every arrow
of II.X has a unique inverse, and so II1.X is a groupoid.

Therefore, NerllX is a Kan complex, since I1X is a groupoid, and the
nerve of a small category is a Kan complex if and only if it is a groupoid.

Let ([a1],[az],- -, [ay]) and ([a}], [ab], -+, [al]) be two distinct fillers for
{nx(x;) }izx in (NerllX),, where {nx(x;) }izr is a k-horn in (NerllX),.
Let If 0 < k < n, then

([aa], -+ lan]) = ([a3], -+ [an]) = mx (o)
and (fad, -5 lanal) = (], - lana]) = nx (),
and so ([a1], -+, [an]) = ([a}], -, [a}]) and the two fillers are equal.
If k = n, then k # 0 and so ([as], -, [a]) = ([a4), -, [al]) = nx(z0).
Further, k # 1 and so [ay][as] = [a}][ay] (from nx(2y)). Therefore, since
[as]) = [a4], and all elements have inverses, [a1] = [a;] and so the two fillers

are (again) equal. A similar argument applies if k& = 0.
Since X is a Kan complex, any k-horn in X,, has a filler. Further, the

image of the k-horn in (NerIIX), has a unique filler which must be the image
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of any filler in X,,. Therefore for any commuting diagram of the form

A¥[n] 7, X
il nx |
Aln] -4 NerllX

the arrow ¢ is uniquely defined, and so for any extension of f, f say, nxf = g

by the uniqueness property. Thus, nx is a Kan fibration.

Proposition 2.2.8

If X is a simplicial complex, the unit of the adjunction nx is monic.

Proof
The unit of the adjunction is the identity on the 0-simplices of X. Consider
z,7 € X,, with n,(2) = n,(z"). Then the vertices of z and 2’ are the same,

and since X is a simplicial complex, this implies that z = 2’. ]

Since Ner is a right adjoint, it preserves all small limits (specifically,

products) and so NerC x NerD = Ner(C x D).

Theorem 2.2.9

The composite IlNer is the identity functor on Cat, ec : [INerC — C s
the identity natural transformation (where € is the counit of the adjunction),
Nnerc : NerC — NerllNerC is the identity, and I1(nx) = idnx, (where n

is the unit of the adjunction).

Proof

Consider a small category C. NerC is the simplicial set with O-simplices the
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objects of C and 1-simplices the arrows of C. The higher order simplices
are chains of composible arrows. The category [INerC is then a quotient
of the free category on the graph UC (where U : Cat — Graphs is the
forgetful functor). The relations which specify the quotient are precisely the
composition information of the category C. Therefore, the functor, IINer is
the identity on Cat.

The counit of the adjunction takes an equivalence class in [INerC and
maps it to the composite of all its representative elements, and since the
composite is also a representative element, the counit is the identity trans-
formation.

Since the counit and unit satisfy the equation N 67"(6(_))77Ner(_) = idNer(—),
it follows that nye.c : NerC — NerllINerC is also the identity.

Lastly, since (enx)I1(nx) = idny, and ey = idny, then I(ny) = idpx. ™

It is immediate that II is full and Ner is faithful.

Theorem 2.2.10

The category Cat is monadic over SS.

Proof

Let SSV* be the category of Nerll-algebras. Beck’s monadicity theorem
states that the unique comparison functor, K : Cat — SS™M is an iso-
morphism of categories if and only if the functor Ner creates coequalisers for
those parallel pairs of arrows f, g for which Nerf, Nerg have an absolute

coequaliser in SS.
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Let f,g: C — D and let h : NerD — X be an absolute coequaliser
for Nerf, Nerg. Thus II(h) is a coequaliser for the pair IINer(f), IINer(g).
But, since IINer is the identity functor, IIA is the coequaliser for f, g and

so K is an isomorphism of categories. [ |

Corollary 2.2.11

FEvery Nerll-algebra has the identity as structure map.

Proof

SNerH

The comparison functor K : Cat — S is defined on objects as

K(C) =< NerC, Nerec >.

Proposition 2.2.12
Let C be a small category and X a simplicial set. For any simplicial mor-

phism f : X — NerC, there exists uniquely f : NerllIX — NerC such

that fnx = f.

Proof

From theorem 2.2.9, ec = idc, Nnerc = idnerc and I(ny) = idpx. Let
ox.c: Cat(llX,C) — SS(X, NerC) be the bijection (natural in X and C)
of the adjunction II4Ner. Let f : NerlIX — NerC be such that fny = f.

First,

Then



= Nerll(f)nnenx = Nerll(f) = NerII(f).

Thus, f = NerlII(f) and so exists uniquely as claimed. m

Corollary 2.2.13
Consider a k-horn in (NerC),. It has a unique filler if either 2 < n < 3 and

O<k<norn>4and0<k<n.

Proof
Consider X = A¥[n]. Then proposition 2.2.4 proves that under the condi-

tions of the corollary NerlI(A*[n]) = Aln].

There is an important caveat about Nerll as a functor: Nerll does not
necessarily preserve homotopy type, and that specifically, for a simplicial
set, X, with non-trivial homotopy groups, it is possible for NerllX to be
contractible, that is to have all homotopy groups trivial. However, if X
is contractible, then the simplicial sets X and NerIlX will have the same
homotopy type.

No proof of these comments will be given here: for a study of the category
of small categories as a homotopy category, and for homotopy inverses for
Ner, the reader is referred to the work of Fritsch, Latch, Quillen, Segal,
Thomason (see [23], [32], [40], [11], [42].)
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2.3 Simplicial Groupoids

This section is a brief resumé of some of the results of the author’s MSc
Thesis (see [20]). The work relies heavily on a variety of sources, chiefly [19],
[18], and [31]; reader’s are referred to [20] for full acknowledgements. The
results are quoted without proof.

Definition 2.3 (i)

The category of simplicial groupoids, SGpds, is the category of simplicial
objects in the category of groupoids.

Definition 2.3 (ii)

The category of simplicially enriched groupoids or simplicial groupoids with
a constant object of objects, SGpds,, is the full subcategory of SGpds whose
objects are the simplicial groupoids with a constant object of objects (that
is, ob(G,,) is the same for all n, and the simplicial face and degeneracy maps
are the identity on the objects).

Definition 2.3 (iii)

The loop groupoid functor is a functor G : SS — SGpds, which takes the
simplicial set X to the simplicially enriched groupoid GX where (GX),, is the
free groupoid on the graph X,,1 —5 X, where s = (d)"™ and t = dy(dy)",
with relations soxz = id for z € X,,. The degeneracy maps (usually denoted o)
are given on the generators by o;(z) = s;11(z) for x € X,,11. The face maps
(usually denoted §) are given on the generators by d;(x) = d; 4 for x € X,

and 0g(z) = (dyx)(doz)". Tt is clear that this is indeed a simplicially enriched
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groupoid, and that the groupoids at each level are free.

Definition 2.3 (iv)

The classifying space functor W : SGpds, — SS takes a simplicially en-
riched groupoid H to the simplicial set described by:

(WH)o = ob(Hy), (WH);=arr(Hp) and for n > 2

| (Bt ho) i € arr(H)
(WH)n - { and dom(hi_l) = COd(hi), O<i<n [’

The face and degeneracy maps between (W H); and (W H), are the source
and target maps and identity maps of Hy, and the face and degeneracy maps
at higher levels are given as follows (where § and o denote face and degener-
acy maps in H):-

do(hn_t1,-- - ho) = (hn—zs- -, ho)y dn(hu_1, -+, ho) = (Op_1hn_1,---,01h1),
and for 0 <7 < n,

di(hn—1, -+, ho) = (8i-1hn—1,0i2hn 2, dohn_—ihn—i—1, n_i—2,- -+, ho)

and

50(hn—1," "+, ho) = (idaomh,_)> Pn—1, -+, ho), and for n > i >0,

Si(hnfla T ,ho) = (Uiflhnfla e 00hn g, idcod(hn_i)a Pp—iq, - ,ho) .
Definition 2.3 (v)

The Moore complex of a simplicial groupoid, H, is the chain complex of
groupoids (N H, 0) where (NH)y := Hy, (NH),, := N, Kerd; for n > 0 and
Opn : (NH), — (NH),_1 is the restriction of é, to the subgroupoid (N H),,.
If H is a simplicially enriched groupoid, then (N H), is a totally disconnected

wide subgroupoid of H,, for n > 0.
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Definition 2.3 (vi)
The functor DEC : SS — BiSS takes a functor X €& Sets®™™ to the

AT xAT

composite functor Xor € Sets It is dealt with in more detail in

section 2.7.

Proposition 2.3.1
The loop groupoid functor is left adjoint to the classifying space functor; the
unit and counit are given as follows:

For X a simplicial set, and for x € X,
nx (@) = (T, dox, -, dy ')

where T is x considered as an element of (GX),_1.

For H a simplicially enriched groupoid, and for (hy,---,hy) € (GWH),

Proposition 2.3.2
A simplicial groupoid is a Kan complex.

Given a simplicially enriched groupoid, H, WH is a Kan complex.

Proposition 2.3.3
The classifying space functor from simplicially enriched groupoids to simpli-

cial sets may be expressed as the composite

W =VNER
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where NER : SGpds — BiSS takes a simplicial groupoid to the bisimplicial
set whose n'™ row is Ner(G,), and where V : BiSS — SS is the right

adjoint to the functor DEC.

Proposition 2.3.4

The n* homology groupoid of the Moore complex of the loop groupoid of a
simplicial set gives the (n + 1)" homotopy groupoid relative to the vertices:
that is,

Hn(NGX) & 7Tn+1(X*, Xo)

Specifically, the fundamental groupoid of X relative to the vertices X is given
by ™1 (X*, X()) = (GX)O/éo(Ker&) .

Here H,(NGX) is the n'* homology group of the nonabelian chain complex
of groupoids, NGX; NGX is the Moore complex of the loop groupoid of X,
and 7, (X, Xo) is the n® homotopy groupoid of X, (where homotopy is “rel

the vertices, X").

Proposition 2.3.5
Given a simplicially enriched groupoid, H a crossed complex, CH , may be

defined in the following way:
(CH)p:= (NH)y [ (NH)n O Dp)O((NH)ny1 N D)

where D,, is the subgroupoid of H, generated by the degenerate elements. The

boundary maps are induced by the chain maps of (NH,0).
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2.4 Conjugation

Mention has been made of the set function reversing the order of the finite
ordinals in A*. The effect of this on simplicial sets is “Conjugation”.
Definition 2.4 (i)
Given a simplicial set, X, ConjX (the conjugate of X) is defined by
(ConjX),, = X,,
d} : (ConjX), — (ConjX ),y =d}_, : X, — X, and

CH (COHJX>7L - (Coan)n—l = Sh_i Xn — Xp1.

To check this is well defined is simple (if somewhat laborious): it is also
clear that (Conj)?X = X. However, there is in general no isomorphism
X — ConjX. In fact, in general, the only morphisms between a simplicial
set and its conjugate are the trivial morphisms taking X to some point in
ConjX (where a point is the subsimplicial set generated by a single vertex).

Clearly the two simplicial sets are geometrically equivalent in some sense,
just as the category A" with the order inverted is essentially the same cate-

gory as AT; however, there is no functor between them to reflect this fact.

2.5 Augmentations

It has already been mentioned that it is desirable to be able to move between
A and A" and so between augmented simplicial categories and simplicial

categories. While it is easy to see that in the model categories there is little
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difficulty, more care should be taken with functor categories.
For the purposes of this thesis, an augmentation of a simplicial set X, will
be defined as a morphism gx with domain X, which is a weak coequaliser
for the pair dy,d; : X7 — Xg. The codomain of the augmentation will
be denoted by X _;. It is obvious that a simplicial set, together with an
augmentation and the codomain of the augmentation, form an augmented
simplicial set, that is a contravariant set valued functor from the category A.
Any simplicial set, X, has two natural augmentations. These arise as left
and right adjoints to the forgetful functor from augmented simplicial sets to
simplicial sets. The forgetful functor, U is the composition of the augmented

simplicial set with the inclusion functor A™ — A (mentioned earlier).

Proposition 2.5.1

The left adjoint to the forgetful functor is obtained by augmenting a simpli-
cial set, X, by the coequaliser of dy,dy : X1 — Xo. The codomain of the
augmentation s called myX .

The right adjoint to the forgetful functor is obtained by augmenting a simpli-
cial set, X, by the unique function with domain Xo and codomain *, the one

point set.

Proof
Let X be a simplicial set and Y be an augmented simplicial set, and denote
the left and right adjoints to U by Ly and Ry respectively.

An augmented simplicial set, Y, is a cocone under the diagram UY. In
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other words, any augmentation factors uniquely through the colimit of the
diagram UY, which is Yy — mUY. So the left adjoint to U must be
augmentation by the colimit of the diagram X, with (LyX)_; = mpX. This

is indeed the case: given a morphism f, : X — UY, then

gy fody = qvd} f1 = qvdi f1 = gy fod;.

do
Since mpX is the domain of the coequaliser for X, d_: X there is a unique
ﬁ

arrow f_1: X 1 — Y 1 with f_1gx = gy fo as required. This augmentation
will be referred to as the canonical augmentation.

In the case of the right adjoint, the only possible augmentation is the
unique map from X, to the one point set, so that X_; = *. Clearly, given
fi : UY — X, there is a unique arrow f_; : Y. ;1 — X_; since X_; is
terminal in Sets; this unique arrow extends f, : UY — X to a morphism

in ASS. This augmentation will be referred to as the trivial augmentation. m

The set moX (which was implicitly defined by the last proposition) is the
set of path connected components, and it is well known that a simplicial
set may be written as the disjoint union of its path connected components.
Further, since any augmentation is a weak coequaliser of d} and d}, any
two O-simplices which map down to different elements of X _; must be in
distinct path components. So, any augmentation must be a partition of the
set of path connected components. Thus any augmented simplicial set may

be considered as the disjoint union of a set of trivially augmented simplicial
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sets, { X, |z € X_1}, where X, is the disjoint union of those path connected
subsimplicial sets of X which are augmented over x. Clearly, each X, has
the trivial augmentation.

The trivial augmentation does not have so clear a geometric description
as the canonical augmentation. It may be thought of as a label for the space,
and as will be seen later, the singular complex functor from topological spaces
to augmented simplicial sets has the trivial augmentation. The algebraic ef-
fect of the trivial augmentation is to force and indeed enable the simplicial
set to be dealt with as a single entity, rather than being split into path con-
nected components. This comment will be made clearer towards the end of
chapter 3.

A bisimplicial set, Y, may be augmented horizontally (so that it is ex-

AtxAt)e (At xA)or

tended from a functor Y € Sets! " to a functor Y}, € Sets , or it

may be augmented vertically (so that it is extended to a functor
Y, EM(AXAWH)).

As in the simplicial case, there are two natural augmentations, the canon-
ical and the trivial, which are right and left adjoint to the forgetful functors.
The forgetful functors are induced by the embeddings:

(AT x AT) — (A x A™)
(AT x A1) — (AT x A)

In the horizontal case, the augmentations are obtained by augmenting

each row in turn with the respective augmentation, and in the vertical case

they are obtained by augmenting the columns in turn. The nature of the
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two simplicial adjoints ensures that the codomain of the augmentation is (in
all cases) a simplicial set, and that it is left or right adjoint to the respective
forgetful functor.

Once a bisimplicial set has been augmented, it may be further augmented.
The codomain of the augmentation will then be an augmented simplicial
set. Again, the canonical and trivial augmentations are defined by right
and left adjoints to the forgetful functors, which are in turn induced by the
embeddings:

(A x AT) — (A X A)
(AT x A) — (A x A)

Given a bisimplicial set Y it is possible therefore to augment both hori-
zontally and vertically. The set Y_; _; which results will be the trivial set in
all cases except when both augmentations are canonical, when the set will
be 7h78Y, .. This is clearly isomorphic to m'myY, . since the horizontal and
vertical morphisms of a bisimplicial set commute. Generally, a functor in the

AxA)°P

category Sets! will be referred to as a bi-augmented bisimplicial set.

2.6 Topology

Definition 2.6 (i)

The singular complex is defined for a topological space U by

(Singlh), = Top(A™ U)

39



where the simplicial structure comes from the structure maps on the affine

simplices (see section 1.1).

Note that for X € ob(Sets) and Y € 0b(C), for some category C, the
X-indexed copower of Y shall be denoted by X - Y (if it exists). If C = Sets
then X - Y = X xY.

Geometric realisation is the left adjoint to the singular complex functor.
It is written | — | : SS — 7T op. Thus for any simplicial set, X, and for all
topological spaces, U, Top(|X|,U) = SS(X, Singld).

Proposition 2.6.1
1X| = / X, - A"

Proof

Let X be a simplicial set, and U be a topological space.

Top(|X|,U) = SS(X, Singl)

2

/ Sets(X,, (Singl),) = / Sets(X,, T op(A™,U))
/ Top(X, - A" U) = Top(/an - A" U)

Therefore geometric realisation has the coend description

]X\:/an~A"
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There are a number of different constructive definitions of geometric re-
alisation. The process is essentially the following: take one copy of A™ for
each non-degenerate n-simplex of X and glue them all together using the
face and degeneracy maps of the simplicial set X (see [35]). The following
constructive definition is from Curtis ([10]).

Definition 2.6 (ii)

Let X be a simplicial set. Define RX by:

RX - unEN UQ?EXH AZ

Define an equivalence relation on RX as generated by the following relation:
writing (p,z) for (po,---,pm) € AT and (q,y) for (g, -+, q.) € A} then
(p, ) ~ (q,y) if either

div =y and ;(go, -+, qn) = (Po, *+* ) OF

S =Y and Ui(QOa"'7qn> = (pOapm)

Then |X| =2 RX/~ where RX /~ has the identification topology. No

proof of this claim will be given.

In section 1.1, it was noted that the set of affine simplices {A"|n € N}
could be extended to include the empty set A~!. The singular complex of
a topological space, U, may then be augmented where the codomain of the
augmentation is Singld_; = Top(A~',U). Since the empty set is initial

in the category of sets, there is a unique function from the empty set as a
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topological space to any topological space. Thus, Singld_; = {x}, so Sing
as a functor to augmented simplicial sets has the trivial augmentation.

Thus, Sing to augmented simplicial sets is equivalent to taking Sing to
simplicial sets and augmenting trivially. The geometric realisation functor
(as the left adjoint to this Sing functor) is equivalent to taking the forgetful
functor on augmented simplicial sets, composed with the geometric realisa-
tion on simplicial sets.

This comes out of the coend formulation, since for any X i,
X ;- AP = A7l that is, the empty set. Thus ["X, - A" (where

n € NU{—1}) is precisely |UX]| (i.e. the same coend taken over n € N).

2.7 Dec and Total Dec

This section is based on work of Duskin and Van Osdol (see [18]), and on work
in the author’s MSc Dissertation (see [20]). The adjunction b—in described in
subsection 1.2.2 gives rise to an adjunction between the two functor categories
Sets®” (which is ASS) and Sets® (which is C'SS).

The functor in* : ASS — CSS (which is obtained by composing
X : A — Sets with in) takes an augmented simplicial set and strips
away the dy morphisms from each level, and “forgets” the augmentation, ¢y,
and its codomain, X ;.

The functor b* : CSS — ASS (obtained by composing Y : Af’ — Sets
with b) takes a contractible simplicial set, strips away the so morphisms from

each level.
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Since b in, it follows automatically that b* 4in*.

If the category A is replaced by AT, there is a similar adjunction:
m* . 5SS — (CSS is again obtained by composing the contravariant functor
X with in : Ay — AT, but the effect is simply to strip away the dy mor-
phisms at each level, as there is no augmentation to throw away. Similarly,
b* is obtained by composing the contravariant functor Y € obCSS with b;
the effect is to strip away the sy morphisms from each level, and to discard
X and the morphism d; : X; — Xj.

The category SS' is monadic over C'SSS via the functor in*: the triple is
T = (T,n, ) where T = in*b*, the unit ny : ¥ — in*b*Y is formed by
the sy at every level and the multiplication puy : T?Y — TV is formed
by d; at each level (for Y a contractible simplicial set). The T-algebras are
then precisely the simplicial sets, since the conditions that a map be a T-
algebra structure map are fulfilled precisely by maps consisting of dy at each
level, and the conditions for T-algebra morphisms are satisfied precisely by
simplicial set morphisms (see [18]).

Returning to augmented simplicial sets, the composite b*in* is often
called Dec ; the definitions imply that for an augmented simplicial set X,
(DecX),, = Xpi1, di : (DecX),, — (DecX),—1 = dip1 @ Xpy1 — X, and
s; + (DecX), — (DecX)ni1 = Siz1 @ Xnio2 — Xyaq; further, gpeex = di.
There is a comonad structure on ASS, defined by Dec. This has counit dy
at each level (with ¢, : DecX_; — X_1) , and comultiplication s, at each

level.
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Given an augmented simplicial set, X, not only is DecX_; = Xy, but
in fact Xy = mpDecX and the quotient map is d; : X7 — X (see [20] for
proof). It is clear that this is a split epic (the right inverse provided by sg).

The monad structure on A (described earlier) lifts to the comonad struc-
ture on ASS defined by Dec. However, the algebras do not necessarily
lift to coalgebras; specifically, oo : [1] — [0] is an algebra for inb, but
sy X — DecX is not a coalgebra for Dec. In fact an algebra f : [n] — [n—1]
will only lift to a coalgebra if f is the n* component of a natural transfor-
mation from inb — Id. This means that the algebras o : (inb)*[n] — inb[n]
go to form a coalgebra sj, : DecX — (Dec)?X.

The cotriple resolution of the comonad on S'S formed by Dec is the bisim-
plicial array, called Total Dec (and denoted DEC'). This was defined by II-
lusie (see [29]). This array has X, ;.. in the (p, ¢)™ position, the horizontal
face and degeneracies are do, - -, d, and s, - - -, s, and the vertical face and
degeneracies are dpi1, -, dptqr1 and Spp1---, Spygr1- Thus the array has
two natural augmentations; one of the augmentations is made up of the d,
morphisms at each level, the other of d,, 1 at the n'* level; the codomains are
the same, namely the simplicial set X. It is clear from the description that
DEC is a functor from simplicial sets to bisimplicial sets. Therefore DEC' is
well defined on ASS (the category of augmented simplicial sets) as a functor
with values in BiASS (the category of bi-augmented bisimplicial sets).

Given the description of b earlier, it will come as no surprise that the

ordinal sum, which is essentially a functor A x A — A gives rise to the
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functor DEC : ASS — BiASS. Observe that the p! column of the array
DECX is the simplicial set X ([p|or[—]) with face and degeneracies defined
by X (idyjord;) and X (idyoro;), respectively. The ¢*" row is (similarly) the
simplicial set X ([—]or[q]) with face and degeneracies defined by X (d;0ridj)
and X (o;oridy), respectively. Recall the comments made in section 1.1, that
R([plor[q]) = R([g])or R([p]). This means that the ¢*" row of DECX may be
described as Conj(Dect™(ConjX)).

Thus DECX = Xor (for X either a simplicial set or an augmented simplicial

set).

2.8 The Diagonal on ASS

The functor 9 (considered as a functor on either A*” or A%) may be com-

(ATXAT " (resulting in a functor

posed with any functor Y € Sets
Yo e MAMP). Composition with 0 is, then, a functor diag:BiSS — SS.
Given a bisimplicial set Y, diagY is the simplicial set given by:

(diagY), = Yun

d; : (diagY),, — (diagY )1 = d%dl : Y, — Yy 101
v oh

ij : Yn,n ? Yn+1,n+1

s; : (diagY’), — (diagY),11 = s
where df!, s" are the horizontal face and degeneracy maps, and dy, s} are the
vertical face and degeneracy maps of Y. Clearly it does not matter whether

the horizontal or the vertical map is taken first, as the horizontal and vertical

maps of a bisimplicial set commute.
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2.9 Right and Left Adjoints

It was noted (in section 1.1) that the category A™"! was small, and it is well
known that the category of sets is complete and cocomplete. Thus, by the
theory of Kan extensions, the functors Dec, DEC and diag have left and
right adjoints. These may be written in terms of ends and coends.

Since this method of obtaining adjoints will be used frequently, the rele-
vant equations are quoted here (the proofs are in [35]).

For categories C, M and A and functors T: M — A and K : M — C,

if T has a left Kan extension along K, then it is given on objects by:-
(LankT)(c) = /mC(Km,c) -Tm
and if 7" has a right Kan extension along K, then it is given on objects by:-
(RangkT)(c) = /m TnClekm)

It is important to remember that simplicial (and bisimplicial) objects are
contravariant functor categories on A* (or At x AT). Thus when dealing
with Kan extensions along or the categories C and M will be (AT x AT)%P
and AT respectively, and when dealing with Kan extensions along 9, C and
M will be AT and (AT x AT) respectively.

First, consider the functor Dec. For a simplicial set X, the left adjoint to
Dec (which is described combinatorially in [18]) is the cone over the connected
components of X: it will be denoted CX. It is described by the coend
TP X, - A([0]or[p]): although A([0]or[p]) = Alp + 1], A([0]or[p]) highlights

the fact that the structure of the simplicial set depends on A([0]or[p]).
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Combinatorially, C'X is defined as follows:-
(CX), =10

p=—1

Xp
win | @) ifo<i<p
For:vEXp,S'(l’)— T ifp<i<n

d'(z) if0<i<p

. . where dj is written for the
T ifp<i<n

For x € X, d?(z) = {
augmentation, qx.

Even when the codomain of the augmentation is not o X, then the defini-
tion above still works, and the construction is a left adjoint in the category of
augmented simplicial sets. It is particularly useful to consider X augmented
over a single point, as then C'X has the structure that might be naively
expected of a cone in simplicial sets.

Second, consider the functor DEC. The right adjoint to DEC' (which is

described in detail in a number of places, for example [18] and [20]) is called

V and, for a bisimplicial set Y, is given by the end:-

(VY), = / y A" (lorla) fn)
pa

The left adjoint (which will be of some use later on) is given for Y, by:-

(8 )= [ A (il [olorla]) - Vi

Now consider the functor diag. The right adjoint, in particular, has an
elegant description: given a simplicial set X, the set of n-simplices, X,,, is
given by SS(Aln], X); the right adjoint to the diagonal functor (which will

be called R for the moment) is then given by

(RX)pq = SS(A[p] x Alg], X)
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The calculation is as follows:-

(RX)p.q :/XT(LNXN>(([n],{n]>,([p1,[q}>>

/nSets(A

3

1%

([ ) < A*(Inl. g])). X.)
| Sets((Alp] x Alg))u X.)

2

>~

SS(Alp] x Alg], X)

Thus, (RX),. (that is the p**-column of RX) is the simplicial set X4l
and (RX)., (that is the ¢*"-row of RX) is the simplicial set X4,

Using this right adjoint, there is a coend definition of diag.

SS(diagX,Y) = - }Sets(Xpﬁq,SS(A[p] x Alq],Y)
phlq

= S8(Xpq - (Alp] x Alg]),Y)
[plla)
Thus diagX = [PH4 X . (A[p] x Alg]). This will be needed later.

Also, diag has a left adjoint (called for the moment L) given on objects
by the coend formula:-

(LX)pe = [ (A% % ANl o). (). [n]) - X,

= [ A* (] 1)) < A*(l 1) x X,

~ /M Aln], x Alnly % X,
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2.10 Product

There is another (bi-augmented) bisimplicial set which is needed in this the-
sis. Given two (augmented) simplicial sets, then there is a (bi-augmented)
bisimplicial set which has p* column X, x Y, (where X, is thought of as the
constant simplicial set at X,,) and ¢ row X, x Y, (where Y, is thought of as

the constant simplicial set at Y,). This construction will be called P(X,Y).
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Chapter 3

Tensor product

The category of simplicial sets is Cartesian closed (indeed, it is a presheaf
topos), but the topos structure is based on the structure of the category
of sets. This chapter sets out a monoidal closed structure on augmented
simplicial sets, based on the monoidal structure of the category of finite

ordinals and monotonic functions.

3.1 Definitions

Definition 3.1 (i)
For augmented simplicial sets X and Y, define an internal-hom,
(X, Y] € 0b(ASS) by [X,Y],_1 := ASS(X, Dec"Y’). The face and degener-
acy maps (and the quotient map to [X,Y]_;) are all induced by the structure
of Dec*Y as an augmented simplicial object in the category of augmented
simplicial sets.

Thus, given a simplicial morphism {f,}, (N : Xm — (Dec"*'Y),, (that

is an n-simplex of [X,Y7]),
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(di(f))m = Xow — (Dec™Y )) = (difrn * Xn — Yinin) where 0 < i < n;
and

(8i(fNm : Xw — (Dec™2Y)) = (Sifmm @ X;w — Yiuinio) where
0<1<n.

The codomain of the augmentation of [X,Y] is the set of simplicial mor-
phisms from X to Y, and two O-simplices f,g : X — DecY map to the
same element of ASS(X,Y) when gy f_1 = qyg_1 and dof,, = dog, for all

n € N.

Definition 3.1 (ii)

The tensor product, ®, is formally defined so that together with the internal-
hom described above, ASS becomes a monoidal closed category. Thus for
each Y, the endofunctor (=) ® Y is left adjoint to the endofunctor [Y, —|
which arises from the internal-hom. Thus for any three augmented simplicial
sets X, Y and Z, there is a bijection ASS(X®Y, Z) = ASS(X,[Y, Z]) which
is natural in X and Z, and dinatural in Y.

The set of n-simplices of a simplicial set X (that is X([n])) is usually
denoted by X,. Although X ([m]or[n]) & X,,1,+1 this notation does not
indicate how the simplicial structure varies with m and n. Therefore, define
X = X([m]or[n]). Using the bijection which arises from the monoidal
closed structure, a more explicit description of ® is obtained, by the following

calculation.

ASS(X ®Y,Z) = ASS(X,[Y, Z])
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>~ [ Sets(X,n, ASS(Y, Dec™*1 7))
>~ | Sets (Xm, J. Sets(Ya, (Decm“Z)n>)
> [ [ Sets(Xp x Yy, (Dec™12),)
2 Jon S Sets(Xo X Yo, Zonin)
= [ Sets(Xom X Yo, Zynun)
~ Set3<Xm % Yo, ASS(A([m]or[n)), Z)
% [y ASS (X X Y,y - A([m]or[n]), 2)
= ASS(J™" X % Yy, - A([m]or(n]), Z)

This gives a coend definition for ®:
 [Pa
Xev = [M(X, <Y, Alplorld)

There is a further characterisation of ®:

X®Y = APX,Y)

This is clear from the definitions already given.

The combinatorial definition is as follows. The set of n-simplices is:-

|_| Xn_1-i X Y
i=—1
the face maps are given by:-
B ) — (diz, y) if0<i<p
di(z,y) = { (v, di P y)ifp<i<nm

where (z,y) € X, X ¥,,_,_1, and dJ) is the augmentation (of X or Y);

lastly, the degeneracies are:-

D . .
n-1 _ (siz,y) if0<i<p
Si(%yy_{tmﬁffwﬁp<i§n—l
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where (z,y) € X, X Y,,_,_o.

This definition makes the connection between ® and C' very clear (and in
fact, if X_; = % then X ® A[0] is the cone over X)) more generally, X @ A0]
is the cone over the codomain of the augmentation. In the case that X and Y
are standard simplices, there is a characterisation, which will allow a further
description of ® on all (augmented) simplicial sets.

Proposition 3.1.1

Alm] ® Aln] = A([m]or{n])

Proof
ASS(AIm] @ Aln], X) = ASS(A[m], [Aln], X])
>~ [An], X]m =2 ASS([n], Dec™ ' X)
>~ (Dec™ X),, = X([m]or[n]) = ASS(A([m]or[n]), X)
This is the required result. u

Definition 3.1 (iii)
A functor from A" to a category C, that is an object in C2", is called a
cosimplicial object of C.

Similarly, a functor from A to a category C, that is an object in C2, is

called an augmented cosimplicial object of C.
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+op

In particular functors from AT x A* to Sets are called cosimplicial

simplicial sets. As with bisimplicial sets, the two separate structures com-
mute. The particular example of a cosimplicial simplicial set is the rep-

resentable functor of Sets® *

A+, that is, the cosimplicial simplicial set
where the standard n-simplices are the simplicial structure, and the natu-
ral morphisms between them forms the cosimplicial structure. Consider the
functor or : AT x AT — A™. Just as in the simplicial set case, where
or* = DEC, there is a functor or* on cosimplicial simplicial sets which
yields a bicosimplicial simplicial set. This functor may be composed with
the functor A[—] = A(—,—). The functor A[—Jor : A x A — SS is
then the bicosimplicial simplicial set which has (in the (p, ¢)*" position of the
bicosimplicial array) the simplicial set A[p] @ Alq] = A([plor[q]).
This, together with proposition 3.1.1, means that

X @Y = [M(X, xY,) - (Alp] @ Alg]).

Note also, that if the functor A[—] were composed with the composite
functor ord then the result would be the diagonal of the bicosimplicial sim-
plicial category A[—] ® A[~]: that is, {A[n] ® A[n]}, N This comment
may seem somewhat obtuse, but it will be useful in the next chapter.

Proposition 3.1.2
X Y.zl =[XeY Z]
Proof
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=/ " ASS(X, Dec™ VY, Z]) - Alm]
Sets(X: [V, Zlmin) ) - 5[]

%’/m /SetS(Xn,Am<myszan))) - A[m]

Sets(X,, X Y,, Zm\/n\/p)) - Alm]

~ [ " ass( [ (X, x V) - AnJor[p]), Dec™ 1 Z) - Afm]

"X ©Y. 2 Alm 2 (X @Y, Z)

Corollary 3.1.3

(X@Y)Z=2X® (Y ®Z)

Proof
Let W, XY and Z be augmented simplicial sets.

ASS((W @ X) @Y, Z) = ASS(W @ X, [, Z))

=~ ASS(W,[X,[Y, Z]]) = ASS(W,[X ® Y, Z])

>~ ASS(W® (X ®Y),Z)
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Proposition 3.1.4

If X Y and Z are augmented simplicial sets, then
(XUY)®Z=2X2)u(Y®2)

and XoYuzZ)=2(XY)u(X®2)

Proof
It suffices to comment that colimits commute. However, a more explicit proof

will clarify things. Let W, X, Y and Z be augmented simplicial sets. Then:
ASS(XUY)@ Z, W)X ASS((X UY),[Z,W])

~ ASS(X,[Z,W]) x ASS(Y,[Z,W])
~ ASS(X @ Z,W) x ASS(Y ® Z,W)
>~ ASS((X @ Z)U (Y © Z), W)

and

ASS(X @ (YU Z), W)= ASS(X,[Y U Z W)
%’/Sets(Xn,ASS(YI_IZ, Dec" W)

= / Sets(X,,, ASS(Y, Dec"™ W) x ASS(Z, Dec™t1))

n

-

Sets(X,, [V, Wa) x [ Sets(X,, [2,W],)
~ ASS(X,[Y,W]) x ASS(X,[Z,W])

~ ASS(X @ Y, W) x ASS(X ® Z, W)
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>~ ASS(X @ Y)U (X ® Z), W)

This concludes the proof. |

Recall from subsection 2.5 that an augmented simplicial set, X, may be

written as the disjoint union of subsimplicial sets, {X, |z € X_;}, where

Y € (Xo)n iff qx(do)"y = .

Corollary 3.1.5
If X and 'Y are augmented simplicial sets, then
XY= ] X.®Y,
rzeX_1,yeY_1

Proof

This proposition highlights an interesting point: the cone in topological
spaces is always a path connected space, whereas the construction C'X in
simplicial sets (section 2.9) is the cone over the augmentation. This means
that there is an extra “degree of freedom” when considering the cone in
simplicial sets. From the view of the “non-basepointed, non-connected ho-
motopy theorist” this is philosophically very nice. From another point of
view, it is another caveat to bear in mind. A similar situation arises with

the construction of topological join.
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3.2 Topological Join

The topological join is discussed in some detail in chapter 5, section 7 of [9].
Results proved there will be used here without proof: the notation for this
section is largely taken from there.
Definition 3.2 (i)
This definition is a generalisation of the concept of join for two suitable
subspaces of a vector space. Consider two topological spaces U and V), and
construct a set of 4-tuples (r,u, s,v), where u € U, v € V, r,;s € [0,1] and
r+ s = 1: in the case that r = 0, the u will be ignored, and in the case that
s = 0, the v will be ignored. This set will be suggestively called U * ).
There are obvious projections from this set of 4-tuples:
py UKV = U, py:UxV =V, p.UxV — (0,1] and ps : U*V — (0,1]
which are termed the coordinate functions of Ux). The first two are obviously
defined, the last two take a point (r,u,s,v) € U *V to r and s respectively.
Then the topological join of U and V is defined as the set U * V together
with the initial topology with respect to the coordinate functions. Thus a
function with codomain i *V is a continuous function if and only if its com-
posite with each of the coordinate functions is continuous. (For definitions
of initial, final, and other topologies see [9]). The topological join of U and
V is written U * V.
Since r + s = 1, the pair (r,s) defines the unit interval, and so U * V

consists of one unit interval for every pair of points u € U and v € V, and
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this unit interval joins the point in U to the point in V in such a way that
it does not intersect with any of the other unit intervals so defined: this is
the vector space definition of join, and the “suitability” mentioned earlier is
precisely that the lines between the two subspaces do not intersect; (recall
proposition 1.2.2.1).

The set of points U * V may be given the identification topology with
respect to the function UXYV XT— UV,
given by (u,v,2) — zu+ (1 —z)v
where 0 <z <1l,uel and v € V.

Brown discusses the idea that topological join should be defined in this
way, but notes a major problem: in general, join defined with this topology
is not an associative operation. With respect to the initial topology, the join
operation s associative up to isomorphism.

However, in the case that ¢ and ) are compact Hausdorff spaces, the two
topologies coincide. In fact, if the category of topological spaces is replaced
with the category of k-spaces, then the two topologies on the join coincide;
however, the definition of product in the category of k-spaces is distinct from
that on the category of topological spaces, (see [9]). A full discussion of
k-spaces is not appropriate here, nor will more comments be made on the
results mentioned in this paragraph. Results proved by Brown in [9] will be
used without further proof, but will be quoted.

Now that it has been shown that the ordinal sum on finite ordinals mod-

els ® on augmented simplicial sets, it is possible to prove a lemma which
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formalises the comment following proposition 1.2.2.1.

Lemma 3.2.1

|Alp]] * [Algl] = |Alp] @ Alg]]

Proof
Recall |[A[m]| := A™. Since Ap] ® Alg] = A([plor[q]) = Alp + g + 1], the
isomorphism exists for each pair (p, q).

The isomorphism is natural in p and ¢ if it commutes with the bicosim-
plicial structure of A[—] ® A]—] and A* x A*. Considering the structure on

A* and A outlined in the first chapter, this is clear.

Thus, the tensor product on the representable functors in ASS models
the topological join on the affine simplices in the same way as the ordinal
sum on A.

The aim now is to extend this to simplicial sets X and Y to obtain a

result | X @ Y| 2 |X| x |Y|. In general this will not be true:
[(A0] U AA) @ AJ0]| =2 |AJU A = A U A
is not path connected whereas
|A[0] LI AJO]] * |A0]] =2 (A% LU A®) % AP

is path connected. However, under certain conditions, the theorem is true.
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Theorem 3.2.1.1

Let X and Y be trivially augmented simplicial sets. Then

X® Y| |X]|+]Y]

Proof
The definition of geometric realisation which is most useful here is defini-
tion 2.6 (iii). Then

r[(po, - s pm)a) st Xilopi=1, Yioqa=1,

pl? QU 7’, S Z O
and [—| denotes equivalence class

It should also be noted that if » = 0 that the point from |X]| is ignored
and similarly if s = 0 the point from |Y| is ignored.

Define a map f: | X|* |Y| — |X ® Y| as follows:

f(r[(po, e 7pm)z] + 5[<QO> T ;Qn)yD = [(TpOa “ 5 TPm, Sqo, - 7Sqn>$7y]

The problem of f being well defined revolves around the fact that if
r = 0, the point z is ignored. This means that for any y, it must be true
that (0,---0,q0," 5 qn)(ay) ~ (0,--0,q0,  @n) @y for all z,2" € X. This
can only be true if the codomain of the augmentation of X is trivial. Simi-
larly the augmentation of Y must be trivial for the case s = 0. It is for this
reason that the simplicial sets X and Y must be trivially augmented, since

the equivalence relation given in definition 2.6 (iii) does not allow simplices
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which map down to distinct elements of X_; to be identified. Other than
these two extreme cases, a moment’s thought will show that the function f
respects the relation and so is well defined. Continuity is also trivial. The
obvious inverse function is also continuous under the definition of the topol-

ogy on | X| x |Y|. Thus the two spaces are homeomorphic. ]

Comment
It is not true that Singld ® Singy = Sing(U V). Consider the case where U
and V are both the one point set. Then Singld = SingV = A[0] but Sing/A!
is not isomorphic to A[1].
The join has particular uses. First, the join of a space X with a point P
is the cone under the space. There is a difference between the spaces X x P
and P x X as the first is (categorically) a cone under P and the second a
cocone over P; in fact, if X is a compact Hausdorff space, then CX = X x P.
Similarly there is a continuous bijection from SX (the suspension of X)
to X x S® which is a homeomorphism if X is a compact Hausdorff space.

Using these ideas, it is a simple step to the following result (proved in [9])
SP & §¢ o~ gptatl

This essentially says that the n-sphere in the category of topological spaces
is the join of n + 1 copies of the 0-sphere.
The usual model for the n-sphere in simplicial sets is the simplicial set

with one nondegenerate n-simplex and one non-degenerate O-simplex and
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all other simplices degenerate (see [7]). The tensor product of a p-sphere
with a g-sphere would then have one nondegenerate simplex in each of the
dimensions 1, p+ 1, ¢+ 1 and p 4+ ¢ + 1 and two nondegenerate simplices in
dimension 0. Thus tensor product will not preserve this set of models for the
spheres. However, there are models for the spheres in simplicial sets which
are respected by tensor.

The models are defined inductively. Clearly there is only one possible
description in simplicial sets for the O-sphere, and that is S° := A[0] U A[0].
However, in augmented simplicial sets there are two possible models; one has
the canonical augmentation which has two points in the codomain, and the
other has the trivial augmentation, with the singleton set as the codomain.
If the former model is chosen, then a simple calculation shows that S ® S° =
AU AU AL U AL

However, if the trivially augmented model is chosen, S° ® S° has four
non-degenerate 1-simplices connected to each other in a “diamond” as in the

following picture:- ¢

The tensor of product of three copies of S° has eight non-degenerate 2-
simplices, twelve non-degenerate 1-simplices and six O-simplices which join

together as an octahedron.
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So, S° € 0bASS shall denote the simplicial set A[0] LI A[0] together with
the trivial augmentation. It will be referred to as the simplicial O-sphere.

Define the simplicial n-sphere, S™ € 0bASS, as follows:-

S":=S'®...®S°
—_————
n+1

It is clear from the definition of tensor product and of the simplicial O-sphere
that the simplicial n-sphere is a triangulation of the topological n-sphere. In

fact, theorem 3.2.1.1 gives explicitly that

S = 8"
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Chapter 4

Subdivision

Any classical attempt to prove a Van Kampen would require a concept of

subdivision. This chapter will expound such a theory for simplicial sets.

4.1 Definitions

Definition 4.1 (i)

The ordinal subdivision of A[n] (the standard n-simplex in simplicial sets)

is denoted by Sd(A[n]), and is defined as follows:-
Sd(Am) = [ Allplorlal [n]) - (Alp] x Ala))

Definition 4.1 (ii)

The ordinal subdivision of a simplicial set X is denoted by Sd.X and is defined

as follows:-

SdX = /” X, - SdAn]
This expands to
sax = [ x.- ([ Atplorlal o) - (A1) x 2la))
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These definitions are due to Cordier and Porter. Intuitively, each n-
simplex of X is replaced by a subdivided n-simplex, which is made up of a
set {Alp] x Aln — p]to<p<n Where Alp] x Aln — p] has a face in common
with Alp+ 1] x Aln —p—1]. The following picture shows the case of n = 3;
it has two triangular prisms which meet up in a rectangular face, and two

tetrahedra - each one meeting one of the prisms at a triangular face.

There is an elegant geometric definition. Cut the affine n-simplex, A"
(defined by {(zo, 1, -, 2,) € R X" 2; = 1,2; > 0} ) by the family of
affine hyperplanes defined by {>/_y@; = 3|0 < r < n—1}. Note that this is
also the set of affine hyperplanes defined by {37, z; = 2|1 <r <n}. This

2

gives n affine hyperplanes.
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Since the simplicial sets Afp] x Alg| split naturally into a set of ( Z )

n-simplices, Sd naturally splits the n-simplex into 2" n-simplices.

It should be noted that there are important differences between this sub-
division and the barycentric subdivision - the latter adds a vertex “in the
middle” of every nondegenerate n-simplex, for all n € N. The former adds a
vertex “in the middle” of every nondegenerate 1-simplex, but nothing more.
Further, the right adjoint to barycentric subdivision is the functor Exz,
which has the property that Ex* X is a Kan complex (whatever the proper-
ties of X'). This is not the case with the right adjoint to Sd (which is derived
later).

It is possible that definition 4.1 (ii) could give rise to a contradictory

definition of SdA[n]; it is important to check, therefore, that
SA(A[) = [ Alnln - Sd(D[m),
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that is, that the two definitions agree on the simplicial set A[n]. The follow-

ing proposition goes somewhat further.

Proposition 4.1.1

sax = [" X, ([ Alplortal, In) - (Alp) x Ala) )

P,q
= [" DECX, - (Alp] x Ald)
Proof

Consider SS(SdX,Y) for any simplicial set Y. Then,

SS(SdX,Y) = S (/" X, - (/p’qA([p]or[q], ) - (Alp] x A[q])),Y)
= [ sets (X, 85( [ Alplorlal ) - (Bl x la)),Y))

Sets (Xn, / Sets(Aap]or[ | [n]), SS((Al x A1a), 1)) )

Sets( [ (SS(Aln), X)xSS(APIS Al Aln))), SS(Llp)x Alq)). V)

= ets(ss (Alp] @ Bla), X), SS((Alp] x Ala), V)

~ SS/ DECX,, - (A[p] x Ag)),Y)

Since this is true for any Y € S5, the proposition follows.

Corollary 4.1.2

(SdX) = diagDECX
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Proof

It was proved in the second chapter that for a bisimplicial set Y,

diagy = [, (Bld] x Alg)).

Replacing Y with DECX gives the result.

Since SdX = diagDFECX the n-simplices of SdX are given by the set
Xony1; the i*" face map is given by:-
0; + (SdX),, — (SdX )1 = didpy11i - Xopy1 — Xon1
and the i*" degeneracy map by:-
o (8dX), — (SdX)pi1 = SiSnt1+i * Xony1 — Xongs -
It is trivial that these satisfy the simplicial identities.
To emphasise the (philosophical) difference between (SdAl[n]),, and

A[nlami1, denote m-simplices of SdA[n| by (2 X m)-matrices,

T
Il 00 lomtr )
The conditions on A[n] imply that i < igi;.
Since 0 < iy < n, the nondegenerate n-simplices of SdA[n] are given by

. Qo e
matrices | . o
tny1 0 2n41

) where ig = 0, i3,.1 = n and for 0 < k < n,
ih—1 = U Uf ngk = fngpyr —1land ig_y =i — 1 iff 444 = G4x41 and there
are no other possibilities. Clearly there are no nondegenerate r-simplices for

r>n.

Using this it is possible to describe the nondegenerate n-simplices of
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SdA[n] as degeneracies of the identity morphism ¢, : [n] — [n].

Proposition 4.1.3

The nondegenerate n-simplices of SA/A[n] are given precisely by the elements
of DNopy1 of the form s;,s;, | -+ Sjotn, where ji < jrp1 for 0 <k <n —1,
there is some r such that j, = n, and if there is some t (0 <t < n) such that

Jt = p, then there is no k such that jp =n+1+p (for0<p<n).

Proof

Note first that any element of A[n]s,41 must be of the form

Shngipr " Sjodkz e dk’o ln-

Clearly, the nondegenerate ones will have no face maps in them, thus they
must be of the form
8jnSin 1" Sjoln-

Secondly, by use of the simplicial identities, the degeneracies may be re-
ordered so that jp < jry1 (see [7]). When the composite degeneracy is in
this form, the suffices on each degeneracy denote those vertices in the final
2n + 2-tuple which are the same as the subsequent vertex. Thus, if there
are r and r’ such that j, +n + 1 = j;, this means that both ¢; =i, 4+, and

Uj,+n+1 = Lj+n+2. Thus, putting the 2n + 2-tuple in the matrix form

o e i, Qi1 e in
tnr1 0 Yiedntl Yj4n+2 0 2n41
it is evident that the jI* vertex is the same as the j,. Thus the matrix

represents a degenerate simplex.
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Lastly, assume that there is no r such that j, = n; this means that the
last entry on the top row of the matrix representing the element is not equal

to the first entry of the second row of the matrix. Thus, for some 0 < r < n,

0 - 7
r+1 -+ n |’

This means that there are r points in the top row where the entry changes,

the matrix has the form

and so n — r points of no change. Therefore, for the matrix to represent a
nondegenerate simplex, there must be at least n — r points of change in the
bottom row. However, since the first entry of the bottom row is r 4 1, there
can only be n —r — 1 points of change in the bottom row, thus there will be
some point in the matrix where both the top and bottom rows remain the
same, which is means it represents a degenerate element.

Since geometrically there are 2" nondegenerate n-simplices in SdA[n],
they must be the 2" simplices not excluded by the above conditions.

This concludes the proof. u

Consider the set of n-simplices of X, X,;; by the Yoneda Lemma it is pos-
sible to describe this set as SS(A[n], X). Using the fact that Sd = diagDEC,
it is then possible to describe the set (SdX), as SS(A[n] ® Aln], X).

Although the definitions and calculations in this section have dealt with
simplicial sets, they clearly extend to augmented simplicial sets. It clear that

SdX_1 =X_4,since (DECX)_1_1=X_;.
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Proposition 4.1.4
Let X be a simplicial set, then my(SdX) = mpX.

Proof

Let ¢ : Xg — mX and p : (SdX )y — mp(SdX) be the canonical quotient
maps. Then, qdy = qd; is a coequalising map for the pair dyds, dids. Thus,
there is a unique map f : mo(SdX) — mX such that fp = qdp.

Consider z € Xi; p(sodiz) = p(x) since dyda(sp)?r = =z and
dids(so)?r = sodiz; and p(x) = p(sedor) since doda(s1)?r = sodpr and
dids(s1)? = .

Define a function g : mpX — mo(SdX) for y € Xy by ¢ : q(y) — pso(y).
To show this is well defined, take y,z € Xy s.t. ¢(2) = ¢(y). This implies
dn e Nandw, € Xy, 0 <1< n st y=d,wy di_, ,wim1 = de,w;
1<i<n, ¢¢€{0,1} and dy_.,w, = z.

Then p(soy) = p(wo) = p(wy) = - -+ = p(w,) = p(soz). Thus g is well defined,
and gq = pso

Now psody = p, thus p = psody = gqdy = g fp. Further,
fgqa = fpso = qdyso = q. Since p and ¢ are both epic, these two equations
imply that fg = id and gf = id. Therefore, mo(SdX) = mX. This is the

required result. [ |

4.2 Sd and Sing

Let W be a topological space, and consider SdSingWV. For every affine n-

simplex of W, Sd produces 2" affine n-simplices of W; since (SingW),, is
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by definition the set of all possible affine n-simplices of W, it is tempting to
assume that (SdSingWV),, is a subset of (SingWV),,.

Consider the specific example of (SdSingWV),. By definition of Sd, this is
the set of affine 1-simplices in W. Each 1-simplex of SingWV, as a 0-simplex
of SdSingWV, represents the vertex which is the “midpoint” of the affine
1-simplex in W; since SingWV already contains every point of the space W, it
is tempting to assume that (SdSingWW), = (SingW),, and so
(SingW); = (SingW)p.

In fact this is not the case. It is possible for many of the 1-simplices of
SingW to have the same midpoint, but the functor Sd as a combinatorial
device will consider them as separate points. To bring the functor back
under some kind of topological control, it is necessary to form a quotient of
SdSingW.

Consider the cosimplicial topological spaces A* - that is {A”}HG]N - and
A* % A - that is {A" x A"} N The cosimplicial structure of A* x A* is
the obvious one.

Define a cosimplicial morphism 7, : A* — A* x A*: 7, 0 A" — A2+

is given by:-

tO tl tn tO 1 tn
Tn(tﬂytl,-.-,tn)l—>(§7§7...’§’§’§’..., 2)

~+

(Note that although it is normal to denote the order of cosimplicial objects
by superscripts, the topological map on the affine n-simplex is denoted 7,.)

Consider 7} : SdSingWW — SingWV. This takes f : A?"T1 — W to
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f7n. Under this map, two affine 2n + 1-simplices, f # ¢ in WW are mapped

to the same affine n-simplex if they have the same “midpoint”. So if

to t1 t, to 1 tn

~

=)
~

=
~
~
~

t

— 2L 0

f(2727 727272a 72)_9(2a27 72727 ) a2)
then they are mapped to the same n-simplex of Im(7}). Im(7}) is a sub-

simplicial set of Sing)V, and is what might be expected geometrically of
subdivision in the singular complex.

To be more explicit, consider o : A" — W, an n-simplex of SingWV: by
an abuse of notation, o will be allowed to denote both the topological map
given, and its image under the bijection of the adjunction | — | 4 Sing.

Now, Sdo : SdAn] — SdSingWV is o : A[n] @ A[n] — SingWV, which
iso : A"« /A" — W. Recall the description of the nondegenerate n-simplices
of SdAn|, from proposition 4.1.3. They are of the form s; s;, - Sjyin,
where jp < jrr1 for 0 < k < n — 1, and where there is some r such that
Jr = n, and if there is some ¢, (0 <t < n) such that j; = p, then there is no
k such that jry =n+ 1+ p (for 0 < p < n).

For such a simplex, consider the subset of {0, ---,2n+ 1} whose elements
are not equal to j, for 0 < k < n. Label them ¢; for 0 < [ < n, so that
¢ < ¢ry1. Note that ¢, = 2n + 1. For convenience, define ¢_; := —1.

The map Sdo is defined by the action of ¢ on each of these nondegenerate

simplices, and therefore it is given by the maps

. n n
0(8joSjy -+ 8j,) t A" x A" — W,
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(which is considered an n-simplex of SdSingWV: here the s; are the topolog-
ical maps which induce the degeneracies in SingW).
Consider, therefore o(s;ys;, -« - 5j,)T : A" — W.

It takes the point (o, ¢y, -, t,) of A™ to the point (ug, u1, - -, u,), where

1 P
u = — Z t; for ¢ <n

i=¢;_1+1

n $1—n
Ul:( Z tz+ztz> for ¢l<n&¢l+1>n
=0

i=¢r_1+1

1 $1—n
ul:§ Z t; for ¢ >n

¢r—1+1-n

As an example, consider the four nondegenerate 2-simplices of SdA[2].
These are s95180t2, S35251, S4S352 and s45959. The simplices they produce in

A? are
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— (tottittotto 11 2
A - ( 2 ADRED) )7

— (to tittottottr t2
B = (57 2 75)7

__ (to t1 tottottitto
C - (2 ) 92 2 )

_ (tott1 totto titt

and D = ( 02 17 22 0’ 12 2).
Thus 7*(Sdo) maps the 2" copies of the affine n-simplex which go to
make up |SdA[n]| into the affine n-simplex in precisely the way that would

be expected geometrically.

Definition 4.2 (i)
Let X be a simplicial complex, considered as a subsimplicial complex of
Sing(|X|). Clearly, SdX C SdSing|X|. If 77(SdX) C X and X is a Kan

complex, then X shall be called a Subdivision Complez.

4.3 Adjoints to Subdivision

It is now known that SdX = diagDFECX. Since both DEC and diag have
left and right adjoints, it is immediate that Sd has both left and right ad-
joints. These, described earlier in the thesis, are given by left and right Kan
extensions: the object part of the composites of these adjoints (which are
the adjoints to Sd) are given below as the object parts of left and right Kan

extensions along the composite functor ord (the notation is Mac Lane’s, see

[35])-
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The left adjoint:-
Langro X ([n]) = Lang, ([ Alm], x Almly x X (1)

z/p’qA[pwH]n x </’”A[m1pw[m]qxxm>
~/ | [2m+1]) - Xom

and the right adjoint:-

Ranop X ([n]) = Rane, (SS(Alp] x Alg], X))([n])

~ / Sets(Bfnlysgrss | Sets(Alphn X Alghns X))
~/ / Sets(A[n]prqr1 X Aplm X Alglm, Xm)
~ /mSets(/pq(A[ Mprart X Aplm X Alghn), Xim)

There is an important observation to be made at this point. Let X be a
simplicial set, then SdX, = SS(A[n],SdX) = SS(An] ® An], X). Since

adjoints are unique up to isomorphism, this implies that
Lang.s(A[n]) =2 Aln] @ Alnl.

This means that

(D)@ Al = [* A, 20+ 1) < A(lpl, 0]

= [" Alp), () x Alal [n]) x A(m), [p+q+1]).
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It is not true in general, that Lan,sX = X ® X. It is true in the
particular case of A[n] because A[n] is generated by a single n-simplex. Tt

does however give the following description of Lan,sX:

LangsX = / "X, - (Aln] @ Aln))

4.4 SAA[]

Consider A[1] with vertices labelled 0 and 1. Then Sd(A[l]) has vertices
A[1]; - thus labelled by pairs ij where 0 < ¢ < j < 1. The one simplices are
then labelled ijkl where 0 <i < j <k <[ <1 - that is A[l]3. Then, given
0o and &7 as described above, the 1-simplex ¢jkl runs from ik to jl. Now,
A[1] has one nondegenerate 1-simplex running from 0 to 1. For this simplex
to still exist after the subdivision has been taken, there would have to be
x € A[l]s with dodox = 500 and dydsxz = s¢l - that is a three simplex 0101.

(See the picture below).

0 0
Clearly this is not possible.

Corollary 4.4.1

The subdivision of a weak Kan complex is not necessarily weak Kan.
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Proof
Although A[1] is a weak Kan complex, SdA[1] is not weak Kan, since there
is no filler for the 1-horn x5 = 0001, o = 0111.

Although there is no cosimplicial simplicial morphism A[—] — SdA[—]
which models the topological cosimplicial morphism 7, (as has been seen
by the last example), there is a cosimplicial simplicial morphism A[—] to
Sd(A[—] ® A[—]) which does. This is the unit of the adjunction Lan,,o5d.
The identity morphism id : A([n]or[n]) — A([n]or[n]) also denotes an
n-simplex of Sd(A[n]® A[n]). This n-simplex is therefore the unit of the ad-
junction, and further, since the unit of the adjunction is a natural transforma-
tion, it commutes with the simplicial structure of Aln| to form a cosimplicial

simplicial morphism from A[—] to SdA([—]or[—]).

4.5 Sd in Cat

In the first chapter, it was noted that the standard n-simplices had a cate-
gorical model - namely the category N. Subdivision may be as easily defined
in Clat as in SS. This is more than just a categorical exercise - once a subdi-
vision of [n] is defined, it would be possible to take its nerve, and so obtain
a simplicial set which modelled the subdivision, but which was also a weak
Kan complex (it is a standard fact that the nerve of a small category is a
weak Kan complex, and that the nerve of a small category is a Kan complex
if and only if the small category is a groupoid).

Definition 4.5 (i) If C is a small category, then define

79



sd(C) = [ Cat(([p] v 4).C) - (] x [a))
This is instantly expressible as

[ (erCysgen - (] x la))

Consider the case when C = [n] for some n € N.

Noting that Cat([p] V [g], [n]) = A([plor{g], [n]),

Sdin] = [ Adlplorlal In)) - (1) % la)

Since this a category, then its nerve
Ner([" Alplorlal, n]) - (17) % [a))

will be a weak Kan complex.

Compare this with SdA[n], that is SdNer[n]:

[ Aplorlal, [a]) - (Alp] x Ala))

Since A[n] = Ner[n|, and since Ner is a right adjoint, this may be rewritten

[ Allplorlal, ) - Ner((p) x [a))

There should be a link between these two definitions, and indeed, it arises as

the unit of the adjunction II4Ner. Specifically,
Ny : SdNer[n] — NerSd[n|
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Proposition 4.5.1
[I(SdA[n]) = Sd[n]

Proof

Let C be any small category.
Cat(ILSd(A[n]), C) = SS(Sd(An]), NerC)

= 55(["" Allplorlal. [a]) - (4[] x Ala)), NerC))

~ [ Sets(A(plorlg]. [n]), SS(Ner([p] x [q]), NerC))

= Cat(Sd[n], C) .

Note that the proof relies on the fact that IINer = Idgy: see subsection 2.2

Corollary 4.5.2
Let C be any small category. For any simplicial morphism

f:SdAn] — NerC 3! f: NerSdn] — NerC s.t. fnsanp = f-

Proof

The result follows from Proposition 4.5.1 and Proposition 2.2.12.
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Chapter 5

Extensions

5.1 Anodyne Extensions

Before addressing the main matter of this chapter, recall some of the basic
theory of Anodyne extensions, Kan complexes and Weak Kan complexes.
Definition 5.1 (i)

The simplicial set A¥[n] is defined to be the subsimplicial set of A[n] gener-
ated by the (n—1)-simplices dotp, ditpn, -+ dk—1tn, dks1ln, « - - dyty, Where ¢, is
the unique non-degenerate n-simplex in Aln]. For any n € N, A¥[n] is com-
monly known as a “k-horn”. There is a natural embedding i : AF[n] — Aln].
Definition 5.1 (ii)

A simplicial set, X, is a Kan complex if every morphism f : A¥[n] — X
(for all n, for all 0 < k < n) extends to a morphism f : A[n] — X, with
fi=f.

This definition of a Kan complex is equivalent to definition 2.1 (vi).

Definition 5.1 (iii)
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An anodyne extension is an element in the saturated set of morphisms in S5

which is generated by the family of inclusions
{A*[n] — Aln]|n €N, 0 <k <n}

For a description of saturated sets and a study of anodyne extensions see
[25] . It is a property of anodyne extensions that if i : A — B is an anodyne
extension, and f : A — X is any simplicial morphism whose codomain, X, is
a Kan complex, then 3f : B — X with fi = f. Thus anodyne extensions are
the class of simplicial morphisms along which any other simplicial morphism
(with codomain a Kan complex) may be extended; the exposition of this in
[25] is particularly elegant.

However, the class of Kan complexes does not include the standard
n-simplices (for n > 0). A wider class of complexes which satisfies some
extension conditions (and contains the standard n-simplices) is the class of
Weak Kan Complexes.

Definition 5.1 (iv)

A simplicial set Y is called a weak Kan complex if for any n € N, and
0 < k < n, any simplicial morphism f : A¥[n] — Y extends to a morphism
f:An] =Y with fi = f.

This definition of Weak Kan complex is equivalent to definition 2.1 (vi).

Let C be a small category. It is well known that NerC is a Kan com-

plex if and only if C is a groupoid; as a quick demonstration of this fact,
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consider f € arrC. The pair 2o = f, 21 = idgoms form a O-horn in

NerCy, while the pair zp = f, 21 = ideq, forms a 2-horn in NerCi:

/ /
iddom f idcodf
0-horn 2-horn

If © = (f,g) is a filler for the 0-horn, then dyzr = =z, = f and
dix = f-g = idgomy. Similarly, if x = (h, f) is a filler, then dox = z2 = f and
dix = h - f = ideogr. Thus for NerC to be a Kan complex, every morphism
must have a left and right inverse, which must therefore be unique and a two
sided inverse. The converse argument (that if C is a groupoid then NerC is
a Kan complex) is equally simple. The concept of Kan complexes is therefore
connected to the idea of the existence of inverses and composition. If C is

not a groupoid, then NerC is a weak Kan complex (a 1-horn in

NerC; is simply a pair of composible maps, f,g € arrC

f g

1-horn
and hence by definition of Ner there is a canonical filler. This idea gener-
alises to higher dimensions). Therefore the concept of weak Kan complex is

connected with composition without inverses.
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5.2 Extending SdA|n]

The aim of the whole of this chapter is to give a proof of the following result:
given a cosimplicial simplicial set X where the simplicial set X[ is weak Kan
for all n, and given a cosimplicial simplicial morphism f : SdA[—] — X,
then there is a cosimplicial morphism f : NerSd|—] — X extending f.

There is a sketch proof of the result in unpublished work of Porter. FEs-
sentially, this claims that the morphism ngqap,) : SdAn] — NerSdn] is a
weak anodyne extension (see definition 5.3 i) for each n, and it is possible
for the filling to be compatible with the cosimplicial structure.

In fact, in Porter’s description, the subdiagonal of A[—] x A[—] is used
in place of NerSd[—] but as the description of NerSd|—| below shows, they
are the same cosimplicial simplicial complex.

Recall (see [39]) that a fibration in the category of simplicial sets is a Kan
fibration, a cofibration is a monic, and a weak homotopy equivalence is a map
which induces an isomorphism of homotopy groups. It follows that ngsa, is
monic (see proposition 2.2.8) and a weak homotopy equivalence (since both
SdA[n] and NerSd[n| are contractible, and so have trivial homotopy groups).

Therefore, if X™ is a Kan complex for each n, then for each n
nxn : X" — NerlIX"™ is a Kan fibration (see theorem 2.2.7) and so if
there is a cosimplicial simplicial morphism f : SdA[—] — X, then each
of the simplicial morphisms f" : SdA[n] — X" may be extended to

a simplicial morphism f* : NerSd[n] — X", with f* = f™nssapm and
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nxnf" = NerII(f"), by the Quillen model category structure of S.S.

This result is not the main theorem with the weak Kan condition replaced
by a Kan condition, as the extensions are at each level, not over the whole
structure.

It should be stressed that the main reason for attempting to prove the
theorem as stated (with the weak Kan condition rather than the Kan con-
dition) is that it is possible, and since it is more general, it is a preferable
result. It is also constructive, in that the inductive method of proof gives an
indication of how to build such fillers explicitly.

Before starting, consider the structure of the two simplicial sets, SdA[n]
and NerSd[n|. Notice first, that A[n] is a simplicial complex - that is, the
non-degenerate m-simplices are defined as (m + 1)-element subsets of the

vertex set. Recall the notation for an m-simplex of SdAn] is

io o im
Imt1 " l2me1

where (g, G, bmt1s - * * 5 loms1) 18 & (2m+1)-simplex of Aln|, and that the
p'" vertex of this m-simplex is < o >

tmp+1
The m-simplices of NerSd[n| may be described by the matrix

o o i
Jo =t Im
where (ig, ", %m), (Jo, ", Jm) are both m-simplices of A[n], and i), < jj for

all k. The p' vertex of this m-simplex is ( ;.p )
P
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It is clear that the vertices of SdA[n] and NerSd[n] are the same. There-

fore, to describe both SdA[n] and NerSd[n], consider the diagram:-

()

() )

where the vertex < ; ) is on the i row, in the j** column. The vertices
have a natural partial order on them, given by ( ;.0 ) < ( ;.1 ) when
0 1

10 < 17 and jo < 7; and further ;.0 ) < ;1 when iy <27 and jy < j; or
0 1
1o < i1 and jo < j;. A “path” in the diagram is defined to be a sequence of

vertices which is strictly increasing.

Note first, that SdA[n| is a simplicial complex, so that a particular set
of vertices uniquely defines a non-degenerate simplex, and second that both
SdA[n] and NerSd[n| are contractible, so that in this case the problem of
Nerll not preserving homotopy type is avoided.

Then, the non-degenerate simplices of SdA[n| are given by paths which

lie entirely in a rectangle, and the n-simplices are the maximal paths in any
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(p x q)-rectangle, where p + ¢ = n. Thus a non-degenerate m-simplex is

described by a (2 x m) -matrix < o im

. where (7:0, tee ,i2m+1) is
tm+1 0 am41

a (2m+1)-simplex of A[n], and ( Uk > < ( Pl ) forall0 < k < m.
Imtk+1 mtk+2

Similarly, the non-degenerate simplices of NerSd[n| are all paths in the

diagram. Thus a non-degenerate m-simplex is described by a (2 x m)-matrix
ot ) Shere | F ) < [ ).
Jo 0 Jm Jk Jk+1

Note that the n-simplex ( 8 i

SdA[n], and also, that NerSd[n] has c¢(n 4+ 1) 2n-simplices - where ¢(n)

Z ) is in NerSd[n] but not in

is the n'" Catalan number. The n'* Catalan number is usually defined as the
number of different bracketings of the word ajas - - - a,, but there are other
descriptions, one of which is the number of maximal paths under the diagonal
of an (n — 1) x (n — 1)-grid (that is a grid with n vertices on each side). For
a description of Catalan numbers, and some of their properties and uses see

(5] and [27].

As an example, consider SdA[4]. It may be described by the diagram:
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VN N - S
< ¢ —— N < — N — A< — O <
N— ~ ~ ~ ~—
 ~ /- /N /N

MmN — NN — " N — O M

~— ~— ~— ~

/ / /

AN — 4 N — O

~— ~— ~—

/N N

— - — O -

~— ~—

/

o O

~_—

The simplices of SdA[4] are those paths which lie entirely in a particular

rectangle - specifically, the non-degenerate 4-simplices are
0
1
0
1
0

012 3 4
4 4 4 4 4
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The simplices of NerSd[4] are all the paths of the diagram, and specifi-

cally include the following 8-simplices:

000001234 000011234
(012344444)’(012334444)’
000111234 000012234
(012234444)’(012333444)’
001111234 000112234
<o11234444>’<o12233444>’
000012334 000122234
(012333344)’(012223444)’
001112234 000112334
(()11233444)’(012233344)’
001122234 000122334
<o11223444>’<o12223344>’
001112334 001122334
(011233344)’(011223344)’

To help keep control of the extension, certain definitions will be necessary.

Definition 5.2 (i)

The weight of a vertex,

w : { wvertices of SdA[n]} — N, is defined by
wl| | = :
( Jr > { = r

The depth of a 2n-simplex of NerSd[n],

ifr<n
if r > n.

Definition 5.2 (ii)

d : {2n — simplices of NerSd[n]} — IN, is defined by

. . om .
’I/O « e ’l/m 7/7”

d: ) . = wl| . )
<jo Jm> 2, (]>

This depth function counts the number of squares in the grid (pictured above)
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which lie under the path described by the 2n-simplex in question.
Definition 5.2 (iii)

Let x be a 2n-simplex in NerSd[n| of depth r (for 1 < r < n(n — 1)/2),
a 2n-simplex of depth (r — 1) will be called a predecessor of x if it differs
from z at one vertex - that is, if they share a common (2n — 1)-simplex. The
number of predecessors of x will be denoted p(x). The number of predecessors
a simplex has is the number of “steps” the path representing it has in the
diagram (irrespective of the height of the steps).

Thus, a path in the diagram may be uniquely described by the vertices
at which the path turns from the vertical to the horizontal - the number
of these vertices being the number of steps, and therefore the number of
predecessors of the 2n-simplex described by the path. It may be helpful to
consider the Hasse diagram of the set of 2n-simplices, where the relation is
“is a predecessor of”. The following is such a diagram for the case n = 4,
with the 2n-simplices denoted pictorially by the paths which represent them,

and each arrow is to a 2n-simplex from one of its predecessors.
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Depth 0

|
VAN
A j Depth 2
NN
] i i Depth 3
L
i = : Depth 4
| > >
= o o Depth 5
L Depth 6

More will be said on this in the proof of the main theorem.

If use is to be made of the cosimplicial structure of NerSd|—| and SdA[—],
then some idea of it is needed. Consider the diagram used to describe the
two simplicial sets NerSdn| and SdA[n]. The image of the cosimplicial
morphism induced by the morphism d; € A is the subdiagram on all those
J
k
main general result, consider the first few cases.

vertices < ) for which 7 # i and k # i. Before attempting to prove the

Lemma 5.2.1
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Let X be a cosimplicial simplicial set where X™ is a weak Kan complex
for each n, and let f : SAA[—] — X be a cosimplicial simplicial mor-
phism. Then, there exists a 2-truncated cosimplicial simplicial morphism
ftr?2(NerSd|—]) — tr?(X) which extends tr*(f). Here tr* is the trunca-
tion of the cosimplicial structure at the 2-cosimplices.

The lemma essentially states that the general result holds up to the 2-

cosimplices.

Proof

In this proof, reference will be made to lemma 5.3.1, which will not be proved
until the next section. The lemma, which is not difficult, states the following:
If Y C Aln+1] is generated by a set of n-faces of ¢,,41, which includes the 0™
and (n+1)" faces, and does not include all the faces, then for any morphism,
f, from Y to a weak Kan complex, there is a morphism from Aln + 1] with
the same codomain, which extends f.

Note that NerSd[0] = SdA[0] = A[0], and that NerSd[1] = A[2] and
SdA[1] 2 AY[2]. Thus, f = f°and f' is defined by the weak Kan property of
X1, and the two must match up over the cosimplicial structure since ?0 = fY.

The case n = 2. The morphism 72 is defined on the four non-degenerate
2-simplices of SdA[2] by f?, that is
<8 (1) 8),(? g ;),(2 } ;),and<g ; ;),andfurther,itis
defined on three more non-degenerate 2-simplices of NerSd[2] by inducting

up the coskeleton of X; these are
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001 00 2 (112
01 1/)'{o22)2(122)

Consider the 4-simplex of NerSd[2]: ( 8 (1)

01 2
2 2 2 )

As already shown, f2 has been defined over four of its 2-simplices (those

. 1 . o : -
not containing ) ) ). Using lemma 5.3.1, it is possible to extend f

012 2 1 2 2 2

00 2
0 2 2

over the 3-simplices ( 0001 > and ( 00 12 ) If it were not for

the 2-simplex ) the extension would now be easy to define over

0011 2
0112 2

> by using lemma 5.3.1 once again. Instead, a little care

must be taken: f may be extended over the three simplex 8 (1] g g )

. =00 0\ (00 2 —(0 0 2

smcef(o 1 2>,f<0 9 2>andf<1 9 2>haveallbeendeﬁned,
00 2
01 2

2-horn in X2

but f < has not, and so the first three simplices form a simplicial

Thus f has been defined over three of the 3-simplices which are faces of
( 00012
01 2 2 2
be extended to cover the 4-simplex itself.

00112
0112 2

>, including the 0 and 4**. Thus lemma 5.3.1 allows f to

Now consider the simplices of ( ) over which f has already

001 2 . ..
01 2 92 ) since this is

the only 3-simplex present in both 4-simplices. It also covers the three sim-
. 0 01 011 1 1 2 o .
plices < 01 1 ), < L1 2 ), and < 1 2 9 ) Therefore it is possible
1
1

to extend f to cover 8

been defined. Certainly it covers the 3-simplex (

— O

1 0111 .
9 and < 11 9 9 since for each of
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these 3-simplices f has been defined over three faces (including the 0" and

3" in each case). This means that f may be extended to cover the three

0011 2
0112 2

and 4. Therefore the f may be defined as stated. ]

of the 3-simplices which are faces of < ), namely the 0%, 2nd

As may be seen by this part of the theorem, the problem is not in having
too few simplices over which f is already defined, but in having too many. It
is also clear that to attempt to prove the main result using the “bare hands”
approach of lemma 5.2.1 would be impractical.

It is necessary to define and develop a concept of weak anodyne extension,
which will have the same property with respect to weak Kan complexes that
anodyne extensions have with respect to Kan complexes. The next section

does precisely that.

5.3 Weak Anodyne Extensions

Definition 5.3 (i)
A Weak Anodyne Eztension is a morphism i : Y — X which is obtainable by
a finite sequence Y LN Yi A Yo Y, 4 In, Y, = X where there is a pushout

diagram
Am]  —  Alm]

! o

Y; — Yjit
for all 0 < 7 < n, for some 0 < k < m.

This definition lacks the categorical elegance of the definition of anodyne
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extension ([25]), and it may be possible to redefine the definition of weak
anodyne extension along the same lines. However, the definition given here
is sufficient for the purposes of this thesis.

The following technical lemmas prove that the embedding
Y — An 4+ 1] is a weak anodyne extension, for certain subsimplicial sets,

Y, of a standard n + 1-simplex.

Lemma 5.3.1

LetY C A[n+1] be generated by the n-simplices, d.,t,11 for0 < j <r, where
1<r<n, vy <4 for 0 <j<r—1. Then the inclusion Y — An + 1]
is an anodyne extension, and if vo = 0, 7, = n+ 1, then the inclusion is a

weak anodyne extension.

Proof

The proof is by induction. First consider the case n = 1. In this case, r =1
and so (79,71) € {(0,1),(0,2),(1,2)}. Therefore Y is a k-horn A*[2], (for
0 < k < 2), and so the result is trivial (as in all three cases, the embedding
of Y in A[2] is an anodyne extension, and it is a weak anodyne extension in
precisely the case k = 1).

Next, assume that the result is true for all m < n and for all 1 <r < m.
Consider a set as described in the statement of the lemma. If r = n then the
simplices constitute a k-horn AF[n + 1] for some k (since there is precisely
one k with k # ~; for all 0 < j <n) and so the result is (again) trivial.

Then assume r < n. Let s be the smallest integer not equal to any of the
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7;. Consider the following set of (n — 1)-simplices:
dy,dstny1 for vy < s and dy, _1dstny1 = for 45 > s.

These simplices are a set of faces of the n-simplex < dgt,,11 >. Note
that the face dodst,, 11 is present iff 79 = 0 and the face d,,dst,, 11 is present iff
v = n + 1. Further, these simplices generate YN < dstp1 >C< dstpir >.
Thus, by induction, the embedding is an anodyne extension, and is weak
anodyne if the 0" and n'" faces are present in the set.

So, Y — YU < dgstp,p1 >:= Y is an anodyne extension, and is a weak
anodyne extension when the faces dyt,41 and d,1t,41 are both present in
the set of generators of Y.

If r + 1 = n, then Y; 2 AF[n + 1] for some k; if not, repeat the process
with a new s. Thus, it is possible to obtain a chain of anodyne extensions
Y —-Y —-.---=Y,_ , = /\’“[n + 1] for some k, and these extensions are all
weak anodyne extensions if the generators of Y include the faces dy¢, 1 and

dps1tne1. Thus the lemma is proved. ]

Lemma 5.3.2
Let Y be the subsimplicial set of A[n + 1] generated by two simplices
T = ditns1 and y = d§+27ﬂbn+1, where 1 < o, < n and a+ 3 < n—+ 1.

Then the inclusion i : Y — A[n + 1] is a weak anodyne extension.

Proof

Let n =1. Then a« = = 1 and the subsimplicial set generated by x and y
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is A'[2]. The embedding of this into A[2] is weak anodyne. Then, assume
the lemma has been proved for all cases up to n — 1. The case « = f =1
has been dealt with by lemma 5.3.1.

Consider the case @« > [ > 1. Then dyy and z are in the standard
n-simplex generated by dyt, 1. The subsimplicial set generated by x and
doy embeds into the standard n-simplex generated by dyi,y1, and since
g (dotns1) = @, and dod)) 5 sy = di,|_sdoy, the embedding is a weak
anodyne extension.

Then, dytps1 and y are n-simplices with doyy = d,dyt,+1 and so the sub-
simplicial set generated by them embeds into Aln + 1] by a weak anodyne

extension. (The case > a > 1 is conjugate to this). ]

Lemma 5.3.3

LetY be the subsimplicial set of Aln+1] generated by the simplices x, - - -, T,
where x; is an m;-simplex, dy' ' x;_1 = df;_mH% for1 <i<k-—1, G;,a; >0
for all i and mgy + Zf;l B = Zf:ol o; +my = n+ 1. Then the inclusion

Y — Aln+ 1] is a weak anodyne extension.

Proof

The case k = 1 has been dealt with by lemma 5.3.2. Assume that the lemma
has been dealt with for all k£ for all m < n + 1, and for m = n + 1 for all
cases up to k — 1.

Then, given Y generated by xg,---,x; as described in the statement of
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the theorem, the subsimplicial set generated by xzq,---,z,_1 embeds into
the subsimplicial set generated by dﬁfk_ﬂk +1tnt1, and by the inductive as-
sumption this embedding is a weak anodyne extension. Then, the simplicial

set generated by xj and dfrfk_ g, +1tn+1 satisty the conditions of lemma 5.3.2. m

Corollary 5.3.4

Let X be the simplicial complex with vertices 0 < 1 < --- < 2n , generated
by the n-simplices (s,s + 1,---,s+n) for 0 < s < n, and let X' be the
2n-simplex (0,1,---,2n). Then the natural inclusion i : X — X' is a weak

anodyne extension.

Proof

Consider the pair of simplices (s,s+1,---,s+n), (s+1,8s4+2,---,s+n+1)
for any 0 < s < m — 1. The pair satisfies the conditions of lemma 5.3.1,
with r = 1 and 79 = 0, 74 = n. Thus the embedding of the pair into the
n+ 1l-simplex (s,s+1,---,s+n+1) is a weak anodyne extension. Thus there
is a weak anodyne extension from X to the simplicial complex generated by
the n + 1-simplices (s,s+1,---,s+n+1) for 0 < s < n — 1. Repeating the
process inductively extends the simplicial complex X to X’ as required. =

Let X be the simplicial set which is the 2n-simplex on the vertices

0 0 0 1 n .
<0>,< 1><n>’<n>’<n> The corollary effectively proves

that SdA[n] — SdA[n] U X is a weak anodyne extension.
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Lemma 5.3.5

Let Y C Aln + 1] be generated by the n-simplices dy tny1, for 0 < j <,
where 1 <r < n, v; <41 for0 < j <r—1. The embeddingY — A[n+1]
is a weak anodyne extension if there is some c, vy < ¢ < ., with ¢ # y; for

all0 <3 <r.

Proof

Consider the case n = 1. In this case, the conditions require that Y be
generated by precisely two 1-simplices. If one of them is dyto and the other
dst9, then the conditions are satisfied for weak anodyne extension: if not,
then the conditions fail (but anodyne extension is possible).

Now, assume that the lemma is true for all n < m. Let Y be generated
by the m-simplices d.,;tpmy1 for 0 < j < r, where 1 < r < m, and assume
that there is some ¢ where 7y < ¢ <, and ¢ # ; for all 0 < j <.

If 79 # 0, then consider the simplices dody;tmy1 = dy;—1dotmy1. These
(m —1)-simplices form a set of generators for YN < dytypi1 >C< dotmyr >,
and since c—1# v; — 1l and 79 — 1 < c—1 < ; — 1, they satisfy the con-
ditions of the lemma, and so by induction, YN < dotyr1 >—< dotme1 >
is a weak anodyne extension, and so ¥ — YU < dytme1 > is a weak
anodyne extension. Thus, it is possible to extend Y by weak anodyne ex-
tensions to a simplicial subcomplex Y’ C A[m + 1] where Y is generated by
Aotm+1s Ay b1y Aoy b1y -+ 5 Ay g1 -

If 7, # m+1, then consider the simplex d,,dotm11 = dodpi1tm 1 together

with the simplices dydy,tmi1 = dy,dmy1tmy1. These (m — 1)-simplices form
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the generators of YN < d,41tme1 > and they satisfy the conditions of the
lemma (since 0 < 79 < ¢ <, and ¢ # 0 and ¢ # v; for 0 < j < r). Thus
it is possible to extend Y’ by a weak anodyne extension to a simplicial set
Y” C Alm + 1], where Y is generated by the m-simplices dotmi1, dmt1tmr1
and dy;tyqq for 0 < g <7, 1 <r <m.

Since 0 # ¢ and m + 1 # ¢, it is still true that none of the generators is
detms1, and so by lemma 5.3.1 Y — A[m+1] is a weak anodyne extension,

and so Y — A[m + 1] is a weak anodyne extension. m

Lemma 5.3.6

Let Y C Aln+ 1] be generated by the following simplices:

dStns1 (for 1 < a <mn), dgwfﬁbnﬂ (for 1 < B <n), dytny1 (for 1 <5 <p,
0<p<nand0 < v < v <n+1)and d,detn1 (for 1 <k < g,
0<q¢<5,0<pe<prr1<n+1,1<p+1<k<n+1),

where p = 0 implies the set of n-simplices is empty, ¢ = 0 implies the set of
n — 1-simplices is empty, all the py,k, and v; are distinct, 2¢ +p < n and
the (n — 1) and n-simplices are maximal in Y. If there is a ¢, 0 < c<n+1
such that the ¢ vertex of 1,41 s a vertex of all the generators of Y, then

Y — Aln+ 1] is a weak anodyne extension.

Proof
If both p = 0 and ¢ = 0, then the lemma reduces to lemma 5.3.2, and so is
proved. If n = 1, then Y = A![2], and so the lemma is trivial. Note, the

conditions on p; and kj imply that ¢ = 0 unless n > 4.
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Assume the lemma is true for 1 < n < m and consider Y C Aln + 1]
as described. Consider Y N d,, tn41. The conditions on the vertex, ¢, imply
that the simplices df¢,,41 and dﬁ +o_plnt1 span the vertices of An+1]. Thus,
either « > kg or n 42 — 8 < K.

If « > kg and kg < n+2— 3, then YN < d, 1,41 > is generated
by dftn+1 = dg‘_ld,{qbn_,_l, d2+176dﬁqbn+1, the n — l-simplices d,;dy,tny1 for
Vi < kg Ay 1de tngr for oy > kg, dpde,tny1 and the n — 2-simplices
dp,dy, drytny1 for 1 <k < g —1. If ¢ < kg then the cth vertex of dyglnt1
is in all the simplices described, and if ¢ > r,, then the (¢ — 1) vertex of
ds,tns1 18 in all the simplices described.

In neither case is it an end vertex (i.e. 0 < c<nor 0 < ¢ —1 < n which
ever is applicable), and further, 3 < n because if 8 = n, then dy,11-gdy, tnt1
would be a vertex, whereas the existence of ¢ implies it is at least a 1-simplex.
Lastly, the number of n—3-simplices is ¢—1, and the number of n—1-simplices
isp+1and 2(¢—1)+(p+1) = 2¢+p—1 < n—1 as required by the conditions
of the Lemma.

Thus, YN < di, tny1 >——< dy, tny1 > is a weak anodyne extension (by
induction) and so Y — YU < ds,tny1 >:= Y1 is a weak anodyne extension.

If K, > a and K, > n + 2 — 3, then the generators of YN < d, tny1 >
are the same as before, except that dft,4; is replaced with dfd,,t,41 and
d) s, tnr1 is Teplaced with d), 5 gtus1 = dbry_sdutns1. The problem
now is the possibility that @ = n, but just as before, the existence of the

vertex ¢ means that this is not a problem. Thus, Y; may be defined as above,
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and Y — Y] is a weak anodyne extension.
Lastly, if k; < a and K, > n + 2 — 3, then the first two generators of

YN < dg,tny1 > become

o _ ja—1 I6] _ B-1
dotnyr = dy  dy,tny1 and dn+2_ﬁLn+1 = dn+2_BquLn+1,

and so Y} may be defined as before.

Then, Y; is generated by a set of simplices as described by the initial con-
ditions, except that there is one more n-simplex, and one less
n — l-simplex. Continuing this process, it is possible to define a set chain of
weak anodyne extensions Y — Y; — --- — Y, where Y, is generated by the
p +q n-simplices d,, ¢, 11 (for 1 < j < p) dy, tny1 (for 1 <k < ¢g) and the two
simplices dStn41, and d” +2-pglntl

If ¢ =1, then dft,4+1 is maximal, and further must be dytp41. Consider
Y,N < dﬁ;},),ﬁbnﬂ >. It is generated by a set of (n 4+ 2 — )-simplices in-
cluding the 0" and (n + 3 — 3)"" faces, and so
Y,N < dﬁ;&,,ﬁwl >—< dg;;fﬁ%“ > is a weak anodyne extension.
SoY, — Y,U < dﬁ;é_ﬁLnH > is a weak anodyne extension. Clearly this
process may be continued, extending the system to Y’ generated by the n-
simplices dotny1, dntitng1, dytny1 and dp, L,y and specifically missing the
face
ditni1. Thus, by lemma 5.3.1 Y/ — Al[n + 1] is a weak anodyne extension,
soY — Y, — Y’ — A[n+1] is a chain of weak anodyne extensions.

If, rather ¢ = n, the conjugate argument works, that is dﬁ 42_plnt1 must
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be dy4+1tnt1, and the induction is defined on dj¢,, ;.

In the case 1 < ¢ < n, then Y,N < dyt,1 > is generated by a suitable
system of simplices and the (¢ — 1) vertex of dyt,11 (0 < c¢—1 < n)is in
all the simplices generating Y,N < dotn41 >.

Thus, Y, — Y, UY,N < dytny1 > is a weak anodyne extension, and
similarly, (Y, UN < dotpy1 >)N < dpy1tnt1 > is generated by a suitable set
of simplices, and the ¢ vertex of d,, 11,41 (0 < ¢ < n) is in all the simplices
generating (Y, UN < dotny1 >)N < dpyitnsr > and so
Y, — Y’ — Aln+1] is a weak anodyne extension.

This completes the proof of the lemma. u

One more lemma of this form is needed before moving on to the next

section, where they are put into practice.

Lemma 5.3.7
Let Y C Aln + 1] be generated by the following simplices:
xo, w1, xp (forl>1),
dyjtng1 (for 1<j<p,0<p<nand0<~vy; <7y <n+1)
and dy, dy, i (for 1 <k<q0<q¢<7%3,0<pp<prq<n+l,
l<pr+1l<rr<n+1),
where p = 0 implies the set of n-simplices is empty,
q = 0 implies the set of n — 1-simplices is empty,
all the py, ki and y; are distinct,

x; is an m;-simplex (where m; > 1 for 0 <1i <),
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_ gnt+l-mo _ m+l-my o0—1 1B
g = dmOJrl Ln—}—l; X = dO 5 dol Ti—1 = dnzi—&-l—/@ixi

(for1 <i<l, wherea; >1,3>1, Y 0ai+m=me+X\_ Bi=n+l
and mo +m; > n+ 1), where all these generators with the exception of xg
and x, are mazimal in'Y and 2q +p < n.

If for each pair z,, x,41 there is a c,), Z?;Ol a+1<e <Ylga+mi
such that the c%h verter of tny1 18 a verter of d iny1 for 1 < j < pandd, dy,

for 1 <k <gq, thenY — Al[n+ 1] is a weak anodyne extension.

Proof

If I = 1, the proposition reduces to lemma 5.3.6 . Consider a system as
described, and assume that the proposition holds for any similar system
with either a smaller n or a smaller .

Consider xy and x;. They have at least one common vertex. If p; is not
the only common vertex of zy and x;, then define Y’ :=YN < d,, 1,11 >.

Then, Y” is generated by (2; N dy, tny1) (for 0 < i < 1), dydy, tnyr (for
Y < p1)s dy—1dp gy (for 5 > p1), de—1dp tnga and dp, 1dy, —1d,, (for
2<k<q).

These generators satisfy the conditions of the proposition: in particular,
the x; still intersect as before, because it is assumed that p; is not the only
connecting vertex for zo and x;; there are now ¢—1 (n—2)-simplex generators
and p + 1 (n — 1)-simplex generators (and 2(¢ — 1) + p+1 < n — 1 as
required). Thus, Y —< d, t,+1 > is a weak anodyne extension, and
therefore Y — YU < d,, 1,41 > is a weak anodyne extension.

If py is the only vertex common to both zy and x;, then define
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Y':=YN < dytny1 >. The definition of (n — 1)-simplex and n-simplex
generators is a little more involved, the proof is essentially the same.

Define Y; := YU < d,, 1,41 > in the first case, and
Y, == YU < dg,tny1 > in the second. The generators x; may be altered
by this, in particular, the generators x,, - - - £;_; may become redundant, and
the generators zy and x; may be subfaces of larger simplices. However, they
will still meet (in fact, the overlap may be increased) and so the Y; will still
be generated by a set of simplices which satisfies the conditions.

This process may then be continued, so that there is a chain of weak
anodyne extensions, ¥ — Y;--- — Y, where Y}, := Y, U < d, tny1 >
if pr is not the only vertex common to xy and x; (where these are taken to
be the modified zy and z; of Y;_;), and where Yy := Yy iU < Sg tnp1 >
otherwise.

Thus Y, will be generated by a set of n-simplices, d,;t,41 (for 1 < j < p),
(for each 1 < k < q) either dytni1 o dy,tni1, and a set of overlapping
simplices, zg, -+, 2y (where ' < [). We will assume that the notation for
Y, alters from that of Y, so that all the n-simplex generators will be d. i, 41
for 1 < j < p+ q, and the overlaps of the x;’s (which will be described as
m;-simplices) will be described by the «;’s and f3;’s as before.

Then, consider Y :=Y,N < dg°tp41 >. If g > 74, then x; overlaps all
the x; for 1 < i <!’ — 1, which means that I’ = 1, and so the theorem is
reduced to lemma 5.3.6.

Otherwise, if ap + 1 # 71, then Y” will be the simplicial subset of
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< dy®tpy1 > generated by the simplices xy,---,x;, together with the
(n — ag)-simplices d,, _a,dG°tns1. This set of generators satisfies the condi-
tions of the theorem, and so by induction, Y, — Y,U < dg°¢,,+1 > is a weak
anodyne extension. But Y,U < dg°.,41 > is generated by the n-simplices
dy;tns1 together with xg and dg°uy,41, and so there is a weak anodyne exten-
sion Y,U < dg° >— A[n + 1] by lemma 5.3.1, again.

If 1 = ap+1, then Y is generated by the n — ag-simplices d., _a,dG°tn+1
(for 2 < j < p+q) and by the simplices 2 and dsot, = dg°dy, tns1. There-
fore, again, the extension is reduced to lemma 5.3.6, and so
Y" —< di°t,y1 > is a weak anodyne extension, and so
Y,U < dg° >— Aln+ 1] is a weak anodyne extension.

This completes the proof of the proposition. ]

It is now possible to prove the main result. It must be said that while
it lacks both the “bare hands” approach of lemma 5.2.1, and the technical
messiness of the lemmas from the last section, it could in no way be described

as elegant.

5.4 The Main Result

Theorem 5.4.1 Let X be a cosimplicial simplicial set where X™ is a weak
Kan complex for each n, and let f : SdA[—-] — X be a cosimplicial

simplicial morphism. Then, there exists a cosimplicial simplicial morphism
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f:(NerSd[—]) — X which extends f.

Proof

Lemma 5.2.1 proved that it was possible to define the extension up to the
second level. Therefore, assume that f has been defined over tr"~*NerSd|—]
and consider level n (where n > 3).

By means of the n — 1 coskeleton (the images of
NerSd(s;) : NerSdn — 1] — NerSd[n]) f* may be defined for a large
amount of the structure of NerSd[n].

In lemma 5.2.1, TQ was defined over the 2n-simplex of depth 0 before it
was defined over the 2n-simplex of depth 1. This will be a principle for the
general case, that f must be defined on the 2n-simplices of depth less than
r before they are defined on those of depth r. This will ensure that before
f is defined on a 2n-simplex, it is defined on all its predecessors. Thus, the
process must start with the 2n-simplex of depth 0.

01 --- nn
which f" has been defined. These are all the n-simplices of SdA[n], (of

Therefore, consider the simplices of <O 0 - 0 Z) over

which there are n + 1), together with the n — 1 2n — 2-simplices which come

from extending over the coskeleton, that is:
0 --- 0 0 -+ 0 -+ i—=1 4341 --- n ,
(() cei =1 i4+1 - m oe-- no .- n>f0r0<z<n,

Consider this in the notation of proposition 5.3.7: n is 2n — 1, the x; are
the n-simplices arising from SdA[n], and the simplices d,, d,, t2, are those
arising from NerSd[n — 1], where p, =k, ky =n+kand 1 <k <n—1.

Since the n'* vertex is common to all these generators, the embedding of the
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subsimplicial set generated by these simplices into the 2n-simplex of depth
0 is a weak anodyne extension, and so f may be extended over it.

Next, consider the 2n-simplex of depth 1. In this case, f is already

deﬁnedonthen—simplices<8 ngl n£1>’ (nil i Z)
and<§ o0 e ;)(forlgign—l),
on the (2n — 2)-simplices
(()... 0 0o .- 0 1 l--- j—1 j+1 --n
o---j5-19+1 -~ n—=1 n—-1 n--- n n o --n
(for2§j§n—2),andontheQn—l—simpleX(0 0 L n)
0 - n—1mn - n

Again, the generators satisfy the conditions of proposition 5.3.7, although
this time there is no vertex common to all the simplices. In fact, the (n—1)%
. o 1 1
vertex of 1y, is common to all the simplices except ( n ) , and
n—1n -+ n

the (n + 1)" vertex of 1y, is common to all the simplices except

0 --- 0 1

0O -+ n—1 n—-1)
Thus the embedding of the subsimplicial set generated by these simplices
into the 2n-simplex of depth 1 is a weak anodyne extension, and so f may
be further extended, so that is defined on it.

Now, consider z, a general non-degenerate 2n-simplex of NerSd[n|, and
assume that f has been defined over all the simplices of less depth than z: in
particular, over all its predecessors. Note, that it does not matter in which
order the simplices of a certain depth are dealt with, as the simplices common

to two 2n-simplices of the same depth are contained in a 2n-simplex of less

depth.
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Let Y C< x > be generated by the simplices of < x > on which f has
been defined up to that point: if it can be shown that ¥ —< x > is a
weak anodyne extension (by proposition 5.3.7), then f can be extended over
x and so over the whole of NerSd[n].

As has been noted earlier, = is determined by the vertices of NerSd[n]
where the path describing = turns from the vertical to the horizontal. Assume
that o turns at the vertices: {( ;2;, ) 10<7; <7 <n,1<5< p}.

Note that each of x’s predecessors intersects x in a (2n — 1)-simplex, and
the missing vertex in each of these faces is one of the turning points of x, so
that in the notation of proposition 5.3.7, v; = 7} + ;.

Then, §x(NerSdn — 1]) intersects x in a (2n — 2)-simplex for 0 < k < n,
precisely when k # 7}, ~j for all 1 < j <p.

Further, 6o(NerSd[n — 1]) and 6, (NerSdn — 1]) give xy and z; (so long
as « has depth greater than 1), and mg, m; > n (and so z¢ and z; will always
connect with each other).

Lastly, Sd/AA[n] intersects with x in the n-simplices ¢, », for 7, < m < 47,

where 1, ,, is the nondegenerate n-simplex of  which has initial vertex the

m!" vertex of x, and final vertex the (m + n)™ vertex of z. Note that these
simplices only occur when v, < 7. Otherwise, the simplices common to x
and SdA[n] are contained in the simplices already described.

It only remains to show that there are suitable common vertices for these
simplices so that proposition 5.3.7 may be used. A moment of thought will

.« .. /
show that ( O,, ) is common to all except xq, which is ( 0 T ),

110



/ 1 ...
and that < T ) is common to all except x;, which is ( p " )
n /')/1 DY n

Therefore, so long as 7, < 77, this will be sufficient (as in this case, [ > 2).
If it is not the case, then [ = 1, and a common vertex for all the generating
simplices is required. Note that if p = 1, then 4, =+ < /. Thus, if [ =1,
then p > 2.
Vi
7+ 1
all the 2n — 1-simplices on which f is already defined. It is also common to

Now consider the vertex ( ) This vertex is clearly common to

all the 2n — 2-simplices which derive from d§;NerSd[n — 1] since these are
only relevant when k # +%, 7 for 1 < j < p. Lastly, it is common to both z
and x1,since 1 <y <n—Tland 1 <~/ +1 <~ <n-—1

This concludes the proof of the theorem. m
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Chapter 6

A Van Kampen Type Theorem

The aim of this chapter is describe how the ideas of subdivision and extension
outlined in the last two chapters may be used to obtain Van Kampen type
results in the category of simplicially enriched groupoids.

It should be stressed at this point that the classical Van Kampen theorem,
and similar results in the literature all deal with topological data, rather
than with topological spaces: the classical Van Kampen Theorem deals with
pointed spaces, the Van Kampen for the fundamental groupoid deals with
spaces with a set of base points (see [J]), the Van Kampen Theorem for
crossed complexes deals with filtered topological spaces (see [L1]), and the
Van Kampen Theorem for cat”-groups deals with n-cubes of spaces (see
[13]). Tt is also noticeable that strong connectivity conditions are needed in
all cases. However, these results do make the actual calculation of homotopy
invariants for certain types of data easier.

The main result of this chapter is simply about the preservation of certain

pushouts in the category of topological spaces by a functor which is a quotient
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of the loop groupoid functor. It does not give an explicit way of calculating
homotopy types of particular spaces; it is best thought of as a staging post
between the loop groupoid functor (which does not satisfy such a theorem)
and the fundamental constructions mentioned in the last paragraph (which
do). Subtler questions, for example the particular place of CW-complexes
and free objects in relation to this work, will not be discussed, since the
theory is not yet in an advanced enough state to be able to handle such
question.

Before starting, recall the cosimplicial topological morphism

Ty 1 AN — A" x A* defined by

Tn(t07tla"'7tn):(— 57 — = ... 7)

which was introduced in section 4.2.

It induced a cosimplicial simplicial morphism 7 : SdSingWW — SingW,
which took a subdivided simplex in SdSing)V to what was geometrically
expected of a subdivision.

It will also be necessary to work with three different adjunctions:
| — |4Sing (introduced in section 2.6), II4 Ner (introduced in section 2.2)
and G =W (introduced in section 2.3). Although the unit and counit of the
| —| - Sing adjunction will not be explicitly needed, the units of the other two
adjunctions will be. To avoid confusion, the following convention has been
adopted: 7 and e shall denote the unit and counit of the GHW adjunction

respectively; the unit of the II4Ner adjunction will be denoted by A. The
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counit is always an identity, and will be ignored.

Further, given a topological space W and a simplicial set X, then
o € SS(X,SingW) will also be used to denote the bijective image in
Top(|X|, W), as well as the subspace o(|X|) C W.

6.1 Preliminaries

Let W = U UV, where U and V are open path-connected topological sub-

spaces of W such that &4 NV is open. This means that the commuting

diagram
uny — U
! rol
Yy  — W

is a push out in the category of topological spaces.

For the rest of this chapter, a “Van Kampen type theorem” is a theorem
about the preservation of this pushout in topological spaces by some functor
from topological spaces to an algebraic category. As noted at the beginning
of this chapter, this is a very specific use of the term. It is justified on the
grounds that this chapter is a move towards connecting the general properties
of the loop groupoid functor with the special (and powerful) properties of
fundamental constructions.

The loop groupoid functor is a left adjoint, and so preserves all colimits
in simplicial sets. However, the singular complex functor from topological

spaces to simplicial sets is a right adjoint, and it does not preserve pushouts.
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Specifically, the pushout of the diagram:

SingUUNYV) — Singl

|
SingV
is
SingUUNY) — SingU
l r |

SingV —  Singd U SingV
and in general , Singld U SingV # SingWV.

Further, SingVV is a Kan complex, for any V. This is because there is a
retraction in Top, r : A™ — |A¥[n]|, and so for any arrow f : |AF[n]| — W,
there is a “filler”, that is the arrow fr. However, in general Singld U Sing)V
is not Kan.

The problem of obtaining a Van Kampen Type theorem for a functor
which factors through the singular complex functor, is essentially the problem
of inverting the unique morphism, (defined by the pushout) which embeds
Singld U Sing) into SingWV.

It has been noted already that |NerSd[n]|, |[SdA[n]| and |A[n]| are all
contractible. It turns out that there are retractions from |NerSd[n]| onto

each of the other two spaces.

6.2 Retractions

Recall that |A[n]| = A™ := {(to, -, tn) | Xioti = 1,t; > 0}.

n

Now |SdA[n]| comprises (as was noted earlier) 2" copies of A™ glued

together into a “larger” copy of A". However, it will be easier to think of
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SdA[n] as it was first defined: SdA[n] = [P A([plor|q], [n]) - (Alp] x Alq]).
In this way, [SdA[n]| = (7T A([plor[q], [n]) - (AP x A9).

Similarly, recall (section 5.2) NerSd[n] = Subdiag(Aln] x Aln]) (the
subdiagonal of A[n] x Aln]), and so |NerSd[n]| = Subdiag(A™ x A™). This
is the topological space {(z,y)|z,y € A" and z <y }.

Note that for two n-simplices z < y if and only if >7 jx; < 377y, for
all 0 <a <n.

As an example, consider the square A[1] x A[l].

(1,0),(0.1) (0,1),(0.1)

A A

(1,0),(1,0) (0,1),(1,0)

The subdiagonal is the lower triangle, and this is defined by
So , forz = (z,1 —z)and y = (y,1 —y), 2 <y means z < y.

Proposition 6.2.1

Recall that O denotes the diagonal embedding, and so 0 : Aln] — NerSd[n]
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s the map which sends the vertex i to the vertex ( i ) Then, let |0| :
A" — |NerSd[n]| be the map induced by O : A[n] — NerSd[n].
Then there is a morphism Awv, : |[NerSd[n]| — A", such that Av, is a

retraction, and Av,|0| = idan.

Proof
The map |0] : A" — |NerSd[n]| is given by |0] : £ — (x,z). Then define
Av :|NerSd[n]| — A" by Av : (z,y) — :C;Ly'

It is clear that Av,|0| = idan. m

Before proving a similar proposition for |[NerSd[n|| and |[SdA[n]|, it will
be necessary to describe the map |A,| : |SdA[n|| — |NerSd[n]|, which is in-
duced by Agaafn)- (Recall that A, denotes the unit of the adjunction II4{Ner.)

The definition of |SdA[n|| implies that it consists of a set of (p, ¢) prisms,
one for each distinct pair (p, q) with p+ g = n. Recall the picture of “paths”
in the step diagram, from section 4.1. The n-simplices of SdA[n| all lie in
the (p x q) -rectangles, for p+ ¢ = n, and the rectangles clearly represent the
prisms.

The vertex ( ;.0 ) in NerSd[n| represents the vertex
0

((07"'7071a07"'70)7 (07"'7071a07"'70))
20 n—1 Jo n—jo
in |[NerSd[n]|. Since both NerSd[n] and SdA[n| are simplicial complexes,
the embedding of the (p,q) prism, (A[p] x Alq]), into NerSd[n] may be
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described by specifying to which vertices of NerSd[n] the vertices of the
prisms are sent.
So consider the vertices of the (p,q)-prism. If p = 0, the prism is an

n-simplex, and its vertices correspond to the vertices ( ? ) for0 <j<n. If
p = 1, the vertices of the prism are < ; > where 0 <7< land1<j<n.In

general, the vertices of the (p, q) prism are ( ; ) where 0 < <p<j<n.
In order to denote how the prisms match up, denote the geometric

(p,q)-prism as (0, -, 0,20, -+, %), (yo, -+, ¥4, 0, -, 0)),

where 3 jx; =1 afld Yoy = 1.
Since the point described in this way is clearly an element of A" x A™,

it is clear that |\,| merely considers the point of the prism as an element of

|NerSd[n]| .

Corollary 6.2.2

Avn‘)\n| : ((Oa"'707‘1'07"'7'771))7(y07"'7yq707"'70)>
——— ——
q p
H(@,...’yq_‘_ajﬂ,ﬂ?...’ﬁ)
2 2 2 2

Proof

This is clear.

This means that for each prism of |SdA[n]|, only one point of the image of

Av|\,| is a vertex in A", that is the vertex where x¢ and y, “meet”. The first
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diagram of the geometric subdivision in section 4.1 shows this phenomenon
clearly, (for the case n = 3).

Thus, the composite map Av|\,| embeds the prisms of the subdivided
simplex |SdA[n]| into A™ in precisely the way described by the picture in

section 4.1.

It follows that the composite |7*(Sdo(SdA[n]))| (that is the image in
W) must be the same as 0 Av|\,|(|SdA[n]]) as it too takes |SdA[n]| to the

geometric subdivision of o(A™) in W.

Corollary 6.2.3 Let 0 : A" — W. Then cAv, A, : |SdAn]| — W is a
subdivision of o. Thus, given an n-simplex in SingVV there is a subdivision

in SingWV.

Proposition 6.2.4
There is a morphism r,, : |[NerSd[n]| — |SdA[n]|, such that r, is a retrac-

tion, (that is 1| Ap| = idisanm)| )y Avp| M| = Avy, and r,|0|Av, = 15,

Proof
Define a function r,|NerSd[n]| — |SdA[n]| as follows:
Tn((x07 T 7‘1'71)7 (y07 e 73/71)) =

((\Of,a fL‘;, Lg+1 + Yg+1," " T + yn)a (xO + Yo, "y Tg—1 + Yg—1, y:p\o/))

q p

where

q—1 q n q—1
Z(xi—l—yi) < 1, Z(.Iz—i—%) Z 1, ZE; =1- Z (Iz—f—yz) &:y; = 1—2(1‘1‘—’—%)
i=0 i=0 i=q+1 i=0

119



q
As ;)(xz + ;) tends to 1 from below for some ¢, the value of y; ., tends

q
to 0, and @}, ; tends to zg41+Yg+1, while if »(x; + y;) tends to 1 from above,
=0
the value of y, tends to x4 +y,, while the value of x; tends to 0: at the point
q
> (x4 y) =1, Yy = Tq +Yq, and z;, = 0. Thus, r, is continuous.

=0
First,
Tn|>\n|((07'"7O7$07"'7xp)a(y07'”7yq707"'70))
—— ——
q p
:T’n<<07"'707x07'"7xp>7(y07"'7yq707'"70>>
—— ———
q P
=((0.---.0.2.--- , R ”O,...’O
((7 y U, Ty, 7'1'10) (y(] yq ))
q p

p q—1
where 2 =1—> z; =xgand y, =1 — > 4 =y,
i=1 i=0

and so 7,|A| is the identity map.

If ((zo, -, xn), (Yo, yn)) € |O|(A™)], then z; = y; for all 4, and the for-

mula becomes

Tn(<x0a 7 xn)v (JZOa " xn)) =

((07 e ,O,.f;, 2xq+17 Ty an)a (2‘7;07 ) 23:(1—17 2xq - .Z’;, 07 Ty 0))
S—— ———
q p
q—1 1 q 1 n
where in<7, Z%’Z*, &Kol =1-2 Z x;
i=0 23 2 ! i=q+1

Then

Avnl)\n|rn((x07 e wxn)a (?/0, e 7yn))
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= AUTL|>\|((\O/,7 l’;, Tg+1 + Yg+1, " T + yn)7 ('IO + Yo, "y Tg—1 + Yg—1, y:p\of,))
p q
_ (l’o—i‘yo L Tg1t Yg-1 Ty + Yy Tap1 + Yo SCn-i‘yn)
9 ) > 9 ) 9 5 9 ) > 9
= Avn«an to )xn)7 (yo: o 7yn))
That is, Av,|A,|r = Av,.

Then

Tn|a’AUTL<<xO7'"7xn)7(y07”'7yn))
TotY  TontYn, TotYo  TntYn

= rn( 9 5 ) 9 )7( 2 ) s 9 )
= ((\0/,7 $:],$q+1 + Yg+1," " T + yn)y (xo + Yo,y Tg—1 + yq—hy;’&))
q p
= T’n((l’o, T 7xn>7 (y07 to 7yn))
q—1 q
=0 1=0

That is r,|0|Av, = r,.

Corollary 6.2.5
Avy | A1 |0n| is the identity on A™.

Tn|0|Avy | Ay is the identity map on |SdA[n]|.

Proof
Avg|A|rp|0n| = Av,|0| = idan

Tn|O|Avp| An| = 10| An| = id|sanm))-

As an example, consider the case n = 1.

(z+y—1,2—2—y),1) forl<z4+y<2
7"1((33,1—33),(%1—3/))'_’{ (1, (x+y,1—z—1y)) for0<z+y<1
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These clearly match up when = +y = 1.

The corollary implies that A™ = |SdA[n]).

Thus, if o : A™ — W, there is a subdivision o Av|\,| : |SdA[n]| — W,
which composes back to o. That is, for any simplex in SingVV there is
a specific subdivided simplex (arising from the bijection of the | — | 4 Sing
adjunction), having the property that by composing it with r,,|d]|, the original
simplex is recovered.

Recall the following theorem.

The Lebesgue Covering Theorem 6.2.1

Let W be a compact metric space, and let {U, : o € A} be an open cover of
W, then 33 > 0 s.t. o«f V C W and diam V < (3, then V C U, for some
ae A

Note: The supremum of all such [ is called the Lebesgue Number of the

Cover.

Proof

This is a standard topological result, and the proof may be found in [9].

Corollary 6.2.2

Let U and V be open path-connected topological subspaces of VW, where
UUY =W. Then for any o : A" — W, there is an s such that all the
affine n-simplices of |Sd* /A[n]| have diameter less than 3, and so each is

contained entirely in either U or V.
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Note that the last result is equally true when the topological maps
o Av,|A| and (r,|0])* are used in place of Sd(o) and 7.

Thus given a simplex in SingWV, there is a subspace of Singld U Sing)’,
namely (7%)*Sd*c(Sd*Aln)).

Consider for the moment, that s = 1 is sufficient for this purpose, that is
that one subdivision will split the simplex ¢ so that the constituent simplices
lie entirely in either Singld or Sing). Now, there is a subspace of SingWV,
namely o Av, (NerSd[n]) which contains both o Av,\,,(SdA[n]) and o(A[n]),
and it is contractible.

Now, consider G(Singld U SingV). It should be possible to construct an
algebraic image of G(A[n]) C G(SingUd U SingV) which uses the elements of
the image of G(aAv,\,,).

6.3 Working with G

Theorem 6.3.1

There is a cosimplicial simplicial groupoid morphism

0 : G(NerSd[—]) — G(SdA[-])

with the property 0*G(Asan[-)) = idasan|-)-

Proof
Consider, the morphism ngqaf,) : SAA[R] — WG(SdA[n]). Since for any

simplicially enriched groupoid, H, W(H) is a Kan complex, then the cosim-
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plicial simplicial set WG(SdA[—]) has the property that each
simplicial set WG(SdA[n]) is weak Kan. Thus, using theorem 5.4.1 (the
main result of chapter 5), there is an extension

Nsani_] : NerSd[—] — WG(SdA[-])
such that NSdA[—JASdA[-] = NSdA[-]-

Using the G W adjunction, the morphism
€c(san[-)G(Msan) : GNerSd[—] — GSdA[-]

has the property that egsaa-))G(Msan—])G(Asial-]) = ida(san-))- Thus
€a(san[-)G(Msan[—]) is a retraction in cosimplicial simplicially enriched
groupoids. That is, eg(saa-) G (MsanT)) is left inverse to G(Agaa[-)-

Define 0" := eq(sani-))G (Msan-])- .

Note that this implies that GNerSd|—| = Kerf* x G(A.SdA[-]).

Recall that 0, : A[n] — NerSd[n] is the diagonal embedding of Al[n]
into NerSd[n]: (this is most clearly defined by considering NerSd[n] as the
subdiagonal of A[n] x A[n]).

Recall that the subdivision of an m-simplex consists of 2" n-simplices
which “fit together”; explicit pictures for this are given in chapter 4. Each

such simplex is a morphism A[n] — SingWV, and so they define a morphism

p: SdA[n] — SingW.

Definition 6.3 (i)
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Consider a pair , (X, p), where X is a set of 2" generators of GSingW, _1,
which (considered as n-simplices of Sing)V) can be collectively described as
p : SdA[n] — SingW. Note that this means that p describes the way in
which the simplices “fit together”, and so forms a pasting scheme for the set.

Then, the algebraic composite of (X, p) is given by
G(p)0"G(0,) : G(Aln]) — GSingW.

The following picture describes the various morphisms:

GSdAn) o
.
GNerSdjn] Glp)0" > GSingW
G(0,) |
a] — GG

Note that if 0 : A" — W, then 7""(Sdo) is a “pasting scheme” for the
2" simplices which make up the subdivision of .

It will clarify the idea to consider an example of this definition. So,
consider the case n = 1. That is, construct the map 7ggap). Note that

SAA[1] 2 A'[2] and NerSd[1] = A[2).

Example 6.3 (ii)
The generators of SdA[1] are the 1-simplices s15¢i; and sgs14; where 45 is the

generator of A[1]. The morphism 7gqap) acts as the identity on 1-simplices.
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The filler for this pair in WG(SdA[1]) is the 2-simplex (5482518071, 25171 ).
This filler is, in fact, uniquely defined. Thus, the 2-simplex (s10i1, $28141) in
NerSd[1] is mapped to (5452515071, 5251%1) bY Tsaaq]-

The image of A[l] in NerSd[l] is generated by the 1-simplex
(s150%1)(825171), the composite of the two generators of SdA[1].

Using the adjunction, 6! is defined on the nondegenerate generator of
(GNerSd[1]); by (s180i1, $28101) > (S48281801) = 00(s18011) € (GSAA[L]);.
Note that in (NerSd[1])s2, A(ss825150%1) = (S1S0%1, S2S0%1) and sa5¢ is the de-
generacy from (SdA[1])g to (SdA[1]);. Thus 6! identifies the
nondegenerate 2-simplex of NerSd[1] with the degeneracy of its 2-face.

Therefore, the map eG(7) takes the generators of the (GNerSd[1])y to
(GSdA[1]) as follows:
$1S01 > S1S0l1, SeS1i1 > S28111 and (s1S001)(S251%1) — (S18071) - (S28141).
This is deceptive - the element (s150i1)(525171) in (GNerSd[1])o is a genera-

tor, and is distinct from the composite element
(8180i1) . (32517)1) € (GNBTSd[l])O

Thus, the algebraic composite of the elements which form a copy of the
simplicial set GSdA[1] in GSingWV is the standard composite in the groupoid
GSingW,. Of course, for general n this “composition” will not be as neat as
it is for n = 1.

It is possible to construct a splitting function (not a morphism) for the
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embedding G(SingV U SingV) — GSingWV. For an element
(o) : (Aln]) — SingWV,

there is some (iterated) subdivision which has the property that its n-simplices
are in Singld U Sing)V. This set of simplices forms the image of the (iterated)
subdivision of A[n] for which there is an algebraic composite. (If necessary,
the algebraic composite of a set of algebraic composites must be taken). This
choice of an element in G(Singd U Sing)) forms the splitting function.

The aim now is to construct a quotient of G\Sing¥V under which both
the embedding G(Singld U Sing)) — GSingVV and the splitting function
become identity morphisms.

If the quotient identifies the two morphism G(o) and G(oAv,\,)0"G(0),
then it will identify all algebraic composites of subdivisions with the original
G(0), and since the Lebesgue Covering Theorem states that there is some
finite subdivision of o which sits in Singld U SingV, then the quotient will
identify G(Singld U SingV) with GSingWV.

Lemma 6.3.2
For g € GSingW, ((G8,)(9))”" (GX\,)0™(GD)(g)) € Kerf".

Proof
0"G(\,) = id.

Let 0 : A" — W, and consider cAuv, : |NerSd[n]] — W. The

bijective image of this map under the | — | 4 Sing is also written o Av,,. Now
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o Av,0, = o, and so,
( / " SingW, - G(aAvn)) G(D,) = G(0) : G(A[n]) — GSingW

where [" SingW, - G(cAv,) : GNerSd[n] — GSingWV.

Write U := [" SingW - G(c Av,,).

Note [ SingW,, - GSdA[n] = G ([ SingW,, - SdA[n]) = GSdSingWV.
Then, the morphism

/ " SingW, - 0" - / " SingW, - GNerSdjn] — / " SingW, - GSAAN]

takes GNerSd[n|, to 60"GNerSdn| in GSdSingWV. Note that
" SingW,, - GSAA[n] = GSdSingWV.

Consider the following pushout diagram:

v

" SingW,, - GNerSd|n] ~  GSingWV
" SingW,, - 0
Y r Y
" SingW,, - GSdAn| - G'W

This defines a functor G’ : Top — SGpds,: if f : W — W then G'(f)

is defined to be the unique arrow arising from the pushout in the obvious
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commuting cube. It is clear from the definition that G'W is a quotient of
GSingW.

This next result is the central aim of the thesis.

Theorem 6.3.3

The functor G' preserves the pushout

uny — U
! rol
vV — W

Proof

First note that ["(SingidUSingV),-GNerSd[n] is the pushout of the diagram

["(SingUd N SingV),, - GNerSd|n] " SingV, - GNerSd[n|

" Singlh,, - GNerSd[n]

Similarly, since both G' and Sd are left adjoints, G(Singld U SingV) is the

pushout of the diagram

G(SingU N SingV) — GSingV
! r !
G SingU —  G(Singl U SingV)
and GSd(Singld U Sing)V) is the pushout of the diagram:
GSd(Singd N SingV) — GSdSingV
| r !
GSdSingU — GSd(Singd U SingV)
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Write G'(U U V) for the pushout of the diagram

["(SingUd U SingV),, - GNerSd[n] G(Singd U SingV)
["(SingUd U SingV),, - 6
" (Singld U SingV),, - GSdAn] G'UUY)

It follows that G’'(U U V) is also the pushout of the diagram
GUNY) — G'V

! r !
GU  — GUUY)

Now to prove the theorem, it is necessary to prove that the morphism
G'(UUYV) — G'W induced by G(Singd U SingV) — GSingW, and also
by the pushout property of G'(U UV) is an isomorphism.

Since G'W is a quotient of GSingWV, each generator of G'VV has a preim-
age that is a generator of GSingW. So, for o € SingW,,, there is a generator
[G(0)] € G'W which is the equivalence class of G(o) under the quotient.

Then, G(oAv,\,)0"G(0,) is the algebraic composite of the subdivision
of o, (which is assumed to be in G(Singld U SingV), without loss of gener-
ality: see the paragraphs following the proof of theorem 6.3.1). Note that
G(ocAv,)G(0,) = G(o), since Av,0, = id. Therefore, there is a splitting
function for G'(U UV) — G'W, which takes [G(0)] = [G(cAv,0,)] to
(G (0 Av, A\, 0" G(0,,)].

So consider (G(0Av,d,)) " (G(oAv, A, )0"G(8,,)). This is in the kernel of
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0", by lemma 6.3.2, and so in the kernel of [ SingWV,, -0"™. Thus, the element
is the identity in GSd(SingW), and hence in G'(W). This is precisely the
required result, that [G(cAv,\,)0"G(0,,)] = [G(cAv,0,)] = [G(0)] in G'W.
Thus the splitting is the identity function, so the embedding is the identity
morphism, and GW = G'(UU V). m

This shows that G’ satisfies a Van Kampen Type Theorem.

There is one remaining problem, which needs a “constructive” proof:
ideally G'W and GSingWV should have the same homotopy type.

Recall that GNerSd[n] 2~ GSdA[n] is split by G(A,). It follows that

the morphism
/ " SingW, - 6" - / " SingW, - GNerSd[n] — / " SingW, - GSdAn]
is split by the morphism
/n SingW, - G\, : /n SingW, - GSdA[n] — /n SingW, - GNerSd[n]
and the kernel of
/ " SingW,, - 0" - / " SingW, - GNerSdjn] — / " SingW, - GSdA[n]

is [" SingW,, - Kero™.
Therefore the quotient map, induced by the pushout, which takes
GSingW to G'W is split (since the pushout preserves splittings), and the

kernel of the quotient map is W([" SingWV, - Kerf™).
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Thus to show that G'W and G Sing)V have the same homotopy type it is
necessary to prove that W([™ SingW,, - Kerf™) is contractible. Although it is
not unreasonable to believe this to be true, time constraints have prevented
further investigation, and a proof will not be provided in this thesis. However,

the next proposition shows that G’ is not trivial.

Proposition 6.3.4
The fundamental groupoid m (SingW, (SingV)o) is a quotient of G'(W)o.
Further, theorem 6.3.3 implies the Van Kampen Theorem for the fundamental

groupoid (where homotopy is rel the base points).

Proof
To avoid confusion, write d; for the face operators of SingW, and ¢; for the

face operators of GSingW.

G'W is a quotient of GSingW, so

(GSingW),
Q

Il

(G'W)o

for some normal subgroupoid @ C (GSingW)o.
Also, the fundamental groupoid m(SingWV, (SingW)o) is mo(GSingW),

([20] et al) that is,

(GSingW)o
o8 (Kerdt)

I

m (SingW, (SingW)o)
The aim is to show that the Q C o3 (Kerd;).
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Recall that 6} (Kerdi) is generated by elements of the form
(612)(doz) " for & € SingWs (see [20]).

Now, theorem 6.3.3 shows that the equivalence relation represented by )
is generated by identifying each 1-simplex, ¢ with the“algebraic composite”
of the two 1-simplices, o7 and oy, which comprise its subdivision (and so
dooy = dy09). Further, example 6.3 (ii) shows that the “algebraic composite”
of two such elements is the normal groupoid composite in GSingW.

Define a 2-simplex of SingWV as follows:

2t +t1 1 + 2t
2 72

)

2 (to, t1, 1) — o

This element has 01,0 and o9 as 2, 1 and 0 faces, respectively. Thus,
(612)(0pz) " is an an element of o} (Kerd;) which identifies o with (a1)(02),
which is precisely the generating relation for Q.

Thus Q C 6} (Kerdy), and 71 (SingW) is a quotient of G'(W)j.

Now consider my(G'W).  Clearly there is an epimorphism from

mo(GSingWV) onto mo(G'W). Let z,y € (GSingW)o, so [z],[y] € (G'W),.

If [x] ~ [y] in mo(G'W), then there is [z] € (G'W); with dplz] = [z] and
0(z] = [y]. Thus, [6oz] = [z] and [012] = [y]. Thus Qdpz = Qz and
@41z = Qy, where Qx denotes (as usual) the coset of  under the quotient
Q.

However, the elements which generate () are trivial under 7, as the first
part of this proof demonstrates, and so elements in the same ()-coset are

equivalent in 7o (GSingWV).
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Therefore x ~ dgz ~ §12 ~ y, and so [z] ~ [y] € mo(G'W) implies that
x ~y € mo(GSingWW). Thus the epimorphism is also a monomorphism, and
hence an isomorphism.

Thus theorem 6.3.3 implies the Van Kampen Theorem for the fundamen-

tal groupoid.

In Conclusion

Given a simplicial set, X, it is possible to build a filtered topological space
| X |, by taking the realisation of the n-skeleton for each n. The fundamental

crossed complex of this construction is:-

C {ﬂ—n(XnaXn—lap)}peXo — {7T2(X27X17p)}p€Xo - 7[_1(X17X0)

It is also possible to construct a crossed complex from a simplicial set by
passing to GX (the loop groupoid), taking the Moore complex, NGX, and
factoring (NGX),, by (NGX), N D,,)do((NGX )p1 N Dyy1), where D, is
the subgroupoid of (GX), generated by the degenerate elements. There are
two methods of proof, one a combinatorial proof by Porter, the other a proof

which shows that

(NGX)s
((NGX)n n Dn>d0((NGX)n+1 N Dn+1)

= {Wn(Xn, Xn—l ) p)}PEXO’

by Carrasco and Cegarra. Thus, fundamental crossed complex of a simplicial

set may be obtained by passing through simplicially enriched groupoids.
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Now, recall that the construction of § was as €gsinp G (Msanp)) and
(SdA[n]),, consists entirely of degenerate elements for m > n. Thus, the
elements of G(SdA[n]),, are all generated by degenerate elements for m > n;
in particular for n = m. Therefore, the image of 6" is a degenerate element.

Thus, when the Moore complex is divided out by degenerate elements,
the identification collapses the filling constructed between a simplex and its
subdivision, and so the fundamental crossed complex may be seen to satisty
a Van Kampen Type Theorem for any skeletally filtrated topological space.

This is not a proof, of course, however time constraints have prevented
further investigation on these lines.

However, it suggests that when algebraic models can be thought of as
arising as quotients of the loop groupoid, then they should satisfy a Van
Kampen Theorem, so long as the quotient identifies those elements which

the pushout diagram for G’ identifies.
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Glossary of Notation

The page number given is the first occurrence of the notation.
Categories

A Finite Ordinals and monotonic maps 4

AT Non-empty Finite Ordinals 5

A" The affine n-simplex 5

Cat Small categories 6

N Finite Totally Ordered Sets 6

N+ Non-empty Finite Totally Ordered Sets 6

Ay Non-empty Finite Ordinals 7
and monotonic maps which fix 0

Sets Sets and functions 15

SS Simplicial Sets 15

CSS Contractible Simplicial Sets 15

ASS Augmented Simplicial Sets 15

BiSS BiSimplicial Sets 15

Aln] The Standard n-simplex 15
Simplicial Complex 16
Kan complex 16,72
weak Kan complex 16,73

SGpds  Simplicial groupoids 28

SGpds, Simplicial groupoids 28

BAiSS BiSimplicial Sets 35

Top Topological Spaces 35

MA+ Cosimplicial Sets 47

Operations and Constructions

or Ordinal Sum in A 10
Join in N 10

* Topological Join 11, 51

sk, the n-skeleton construction 16

ln the unique nondegenerate n-simplex of A[n] 16,72
maximal simplex 16

A¥[n] the generic k-horn 20

ConjX  Conjugation 31

T X connected components of X 32
the canonical augmentation 33
the trivial augmentation 33

XY The X indexed copowek3af Y 36

cX The cone over the codomain 42

of the augmentation



P(X,Y)
[X,Y]

Sn

A*
A* % A\*

Functors

bisimplicial array of X x Y
“internal-hom” construction
tensor product

the n-sphere

cosimplicial space of affine simplices

cosimplicial space

of the join of affine simplices
Anodyne extension

weak Anodyne extension
Lebesgue number

diagonal embedding of A in A x A

used for embedding Aln]

into Subdiag(A[n| x Aln])
inclusion of Ay in A

left adjoint to in

Nerve

Categorisation Functor

the loop groupoid functor

the classifying space functor

the Moore Complex functor
Singular Comples Functor
Geometric realisation

functor induced by in

functor induced by b

Total Dec

diagonal of a bisimplicial set

left Kan extension of T along K
right Kan extension of 7" along K
right adjoint to DEC

left adjoint to DEC

ordinal subdivision functor
embedding of A* in A* x A*
functor induced by 7,
subdivision in Clat

the unit of the adjunction [I4Ner
retraction of | NerSd[n]| onto A™

retraction of | NerSd[n]| onto |SdAn]|
retraction of GNenSd[n| onto GSdA[n|

definition
quotient of GSing

43
44
45
95, 56
64
64

72
33
107

102

12
12

17

18

28

28

29

35

36

38

38

40

41

41

41

42

42

57
64,99
64,99
70
99,103
102
104
108, 109
112
113



Bibliography

1]

2]

8]

[9]
[10]

[11]

J. F. Adams
ALGEBRAIC TOPOLOGY - A STUDENT’S GUIDE
C. U. P., L.M.S. Lecture Note Series 4, 1972 1

M. Artin & B. Mazur On The Van Kampen Theorem
Topology, Vol. 5 pp.179-189, 1966

M. Artin & B. Mazur ETALE HOMOTOPY
Springer Lecture Notes in Maths, 100, 1969

N. Ashley Simplicial-T-complezes and Crossed Complexes
Dissertationes Math. 265, 1978

M. A. Batanin The Coherent Categories with respect to the Monad
and Coherent ProHomotopy Theory
Preprint, Universitetskiy Prospect, 4 Novosibirsk-90, ¢.1990

A. Blakers  Some Relations between Homology and Homotopy Groups
Annals of Maths, 49(2) pp.428-461 1948

A. K. Bousfield & D. M. Kan Homotopy Limits, Completions and
Localizations
Springer Lecture Notes in Maths, 304, 1972 63, 70

W. Breckenridge, H. Gastineau-Hills & A. Nelson Lattice paths and
Catalan Numbers

Sidney Preprint pp.1-15 1990 88
R. Brown TOPOLOGY

Ellis Horwood, 1988 2, 12, 58, 59, 62, 112, 122
R. Brown & P. J. Higgins On the Algebra of Cubes

J.P. A. A, 21, pp.233-260, 1081

R. Brown & P. J. Higgins Colimit Theorems for Relative Homotopy
Groups
J.P.A. A, 22, pp.11-41, 1981 2, 112

139



[12]

[13]

14
15
16
17

[18]
[19]

R. Brown & P. J. Higgins The Classifying Space of a Crossed Complex
U. C. N. W. preprint, 1990

R. Brown & J.-L. Loday Van Kampen Theorems for Diagrams of
Spaces

Topology, Vol. 26 no. 3 pp.311-335, 1987 112
P. Carrasco Complejos Hipercruzados: Comologia y Extensiones
Cuadernos de Algebra, Granada no.6, 1987

D. Conduché Modules Croissés Géneralisés de longeur 2
J.P.A. A, 22, pp.11-41 , 1084

E. B. Curtis Simplicial Homotopy Theory
Advances in Mathematics, Vol. 6, no.2, pp.107f 1971 41

K. Dakin Kan Complexes and Multiple Groupoid Structures
U. C. N. W. PhD Thesis , 1978

J.Duskin & D.Van Osdol Unpublished Notes 13, 31, 42, 43, 46, 47
W. Dwyer & D. Kan Homotopy Theory and Simplicial Groupoids

Kon. Ned. Acad. v. Wet., 87(4) pp.379-385, 1984 31
P.J.Ehlers Simplicial Groupoids as Models for Homotopy Type
MSc. Thesis, U. C. N. W., 1991 13, 31, 42, 44, 47, 132, 133
G. Ellis Crossed Modules and their Higher Dimensional Analogues
U. C. N. W. preprint, 1984
G. Ellis & R. Steiner Higher Dimensional Crossed Modules and the
Homotopy Groups of (n+1)-ads J.P.A.A., 46, pp.117-136, 1987
R. Fritsch & D. M. Latch Homotopy Inverses for Nerve

Bulletin A. M. S., 1(1) 1979 30

R. Fritsch & R. A. Piccinnini
CELLULAR STRUCTURES IN TOPOLOGY
C. U. P. Cambridge Studies in Advanced Mathematics 19 1990 5

P. Gabriel & M. Zisman
CALCULUS OF FRACTIONS AND HOMOTOPY THEORY

Springer-Verlag, 1967 83, 96
N. Gilbert The Fundamental Cat™-Group of an n-Cube of Spaces
Springer Lecture Notes in Maths J.,31 pp.17-29 1989

(Proc.Conf.Algebraic Topology, Barcelona 1986)

140



[27]

28]

[29]

[30]
[31]

[32]

P. Hilton & J. Pedersen Catalan Numbers, their Generalization and
their Uses

Mathematical Intelligencer 13 (2), pp.64-75 1991 88
S.-T. Hu The Homotopy Addition Lemma
Annals of Maths. 58, pp.108-122 1953
L. Hlusie

COMPLEXE COTANGENT ET DEFORMATIONS I1
Springer Lecture Notes in Maths, 283, 1972 44
D. M. Kan A Combinatorial Definition of Homotopy
Annals of Maths, 67(2) pp.282-312, 1957 1,5
D. M. Kan On Homotopy Theory and C.S.S. Groups
Annals of Maths, 68(1) pp.38-53, 1958 1, 31
D. M. Latch The Uniqueness of Homology for the Category of Small
Categories
JP.AA., 9, pp.221-237, 1977 30

D. M. Latch, R. W. Thomason & W. S. Wilson Simplicial Sets from
Categories

Preprint, (to appear) ¢.1979
Loday Spaces with Finitely many Non -Trivial Homotopy Groups
J.P. AL A 24, pp.179-202, 1982
S.Maclane

CATEGORIES FOR THE WORKING MATHEMATICIAN
Springer-Verlag, 1971 4,5, 7,9, 11, 41, 46, 76
J. P. May

SIMPLICIAL OBJECTS IN ALGEBRAIC TOPOLOGY
Van Nostrand, Math. Studies 11, 1967 5
J.C.Moore Semi-Simplicial Complexes and Postnikov Systems
Symposium Internagional de Topologia Algebraica, 1958 2
T. Porter n-Types of Simplicial Groups and Crossed n-cubes
U. C. N. W. Preprint, 1991
D. Quillen HOMOTOPICAL ALGEBRA
Springer Lecture Notes in Maths, 43, 1967 2, 85
D. Quillen

HIGHER ALGEBRAIC K-THEORY, I, HIGHER K-THEORIES
Springer Lecture Notes in Maths, 341, pp.85-147 1973 30

141



[41] G. Segal, Classifying Spaces and Spectral Sequences

Inst. Hautes Etudes Sci. Publ. Math., 34, pp.105-112, 1968 30
[42] R. W. Thomason Homotpy Colimits in the Category of Small Cate-
gories Math. Proc. Camb. Phil. Soc.,85,91 pp.91-109, 1979
30
[43] J. H. C. Whitehead = Combinatorial Homotopy I
Bulletin A. M. S., 55, pp.213-245, 1959 2
[44] J. H. C. Whitehead = Combinatorial Homotopy II
Bulletin A. M. S., 55, pp.496-543, 1959 2

142



	  Summary
	  Introduction
	1 Models for Simplices
	1.1 Definitions
	1.2 Functors on the Models
	1.2.1 The Diagonal
	1.2.2 The Monoidal Structure


	2 Simplicial Categories
	2.1 Preliminaries
	2.2 Nerves
	2.3 Simplicial Groupoids
	2.4 Conjugation
	2.5 Augmentations
	2.6 Topology
	2.7 Dec and Total Dec
	2.8 The Diagonal on ASS
	2.9 Right and Left Adjoints
	2.10 Product

	3 Tensor product
	3.1 Definitions
	3.2 Topological Join

	4 Subdivision
	4.1 Definitions
	4.2 Sd and Sing
	4.3 Adjoints to Subdivision
	4.4 Sd [1]
	4.5 Sd in Cat

	5 Extensions
	5.1 Anodyne Extensions
	5.2 Extending Sd[n]
	5.3 Weak Anodyne Extensions
	5.4 The Main Result

	6 A Van Kampen Type Theorem
	6.1 Preliminaries
	6.2 Retractions
	6.3 Working with G

	  Indexed Glossary
	  Bibliography

