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1 Introduction

The purpose of this primer is to lay out the current definition of Totalization of a
cosimplicial space and provide an alternate, equivalent definition of Totalization
that is more intuitive and easier to compute examples with.

2 Simplicial and Cosimplicial Spaces

Recall that ∆ (or Ord) is the category of finite totally ordered sets (e.g. [m] =
{0, 1, . . . ,m}) with monotone maps. A simplicial object of a category C is
a covariant functor ∆op to C and a cosimplicial object of a category C is a
covariant functor ∆ to C .

Example. Common examples:� C = Sets : Simplicial sets, Cosimplicial sets� C = TopCW : Simplicial Spaces, Cosimplicial Spaces� C = Simplicial Sets: Bisimplicial Sets, Cosimplicial x Simplicial sets.� C = Ab: Simplicial Abelian Groups (chain complexes), Cosimplicial
Abelian Groups.

2.1 Some Formal Comments

An important construction to know about is geometric realization, |−| : C
∆op

→
C. If one is familiar with Kan extensions, this can be defined as a left Kan
extension, |X | = X ⊗C ∆.

There is a remark in [GJ99] that Totalization is the dual or opposite to
realization, which, if you’re comfortable with Kan extensions is just saying that
Totalization is a right Kan extension. The formal expression in [GJ99] is the
following:

Tot = | |op : (s(Sop))op → (Sop)op

Using the coend definition of realization, this says that

Realization Realizationop

∐

n,m

∆(n,m)

Xm ×∆n
∏

m,n

∆(n,m)

HomSset(∆
n, Xm)

∐

m

Xm ×∆m

??
op-

∏

m

HomSset(∆
m, Xm)

66

|X |
?

Tot(X)

6
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3 Defining and working with Tot

3.1 Examining the innards

Jim McClure [MS04] makes a remark about Tot that we’ll use here. A point α
in TotX•

•
, i.e. an element of Tot(X•

•
)[0], will be a sequence of maps (α0, α1, . . .)

making the following diagram commute:

∆0
d0, d1

-�
s0

∆1
d0, d1, d2

-�
s0, s1

∆2 · · ·

X0

α0

? d0, d1
-�

s0
X1

α1

? d0, d1, d2
-�

s0, s1
X2

α2

?
· · ·

The dimension-increasing maps are the coface maps and the dimension-decreasing
maps are the codegeneracy maps.

More generally, an element of Tot(X•

•
)[k] for arbitrary k will be a sequence

of maps making the following commute:

∆0 ×∆k
d0, d1

-�
s0

∆1 ×∆k
d0, d1, d2

-�
s0, s1

∆2 ×∆k · · ·

X0

α0
k

? d0, d1
-�

s0
X1

α1
k

? d0, d1, d2
-�

s0, s1
X2

α2
k

?
· · ·

Where now the di and sj are di × id and sj × id on the top row.
However, since the the coface and codegeneracy maps of the ∆k factor for

a fixed k are trivial, we can view our k-level diagram as being, up to homotopy
data, of the form of the 0th-level diagrams.

Formally,

Definition 3.1. Tot(X•

•
) = homcS(∆×∆, X•

•
) := HomcS(∆, X•

•
)

Where cS is the category of cosimplicial simplicial sets, and HomcS(−,−) is
notational shorthand for homcS(− ×∆,−). Notice that Tot : cS → sS where
sS is the category of simplicial sets.

It can be advantageous to worry about a topological analogue of our resul-
tanat simplicial space, so an alternate definition is

Definition 3.2. When considering cosimplicial spaces ,

Tot(X•) = Mapcts(|∆|
•, X•)
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Remark 3.3. Notice that | − | and Sing are a Quillen pair between Simplicial
Sets and Top. Since ∆ is small, Sing and | − | induce a Quillen pair on (Sim-
plicial Sets)∆ and Top∆. X•

•
is weakly equivalent to Sing|X•

•
| (where these are

interpreted as the sort of ”levelwise” or ”pointwise” applications), so (since ∆
is cofibrant) when X•

•
is fibrant, we have

HomcS(∆, X•

•
) ∼ HomTop∆(|∆|, |X•|)

Where HomTop∆(|∆|, |X•|) ∼= Sing(MapTop∆(|∆|, |X•|) so that we get

MapTop∆(|∆|, |X•|)
w.e.
∼ |Sing(MapTop∆(|∆|, |X•|)|

w.e.
∼ |HomTop∆(|∆|, |X•|)|

w.e.
∼ |HomcS(∆, X•

•
)|

Thus we can view these two definitions of Tot as as ”compatible” definitions.

3.2 Cosimplicial model for ΩB•

McClure gives in his paper [MS04], for B• a simplicial set, a cosimplicial simpli-
cial set whose totalization is ΩB•. In other words, he has given is a cosimplicial
model of a loop space. Given B•, let B?

•
be

∗
d0, d1

-�
s0

B•

d0, d1, d2
-�

s0, s1
B• ×B• · · ·

i.e. Bn
•

:= B• ×B• × · · · ×B•
︸ ︷︷ ︸

n times

for n > 0 and B0
•

= ∗.

The coface and codegeneracy maps are defined by

di(b1, . . . , bn) =







(∗, b1, . . . , bn) for i=1
(b1, . . . , bn, ∗) for 1 < i < n

(b1, . . . , bi, bi, . . . bn, ∗) for i=n

si(b1, . . . , bn) = (b1, . . . , bi−1, bi+1, . . . , bn)

Let’s examine elements of TotB?
[k]:

∆0
d0, d1

-�
s0

∆1
d0, d1, d2

-�
s0, s1

∆2 · · ·

∗

α0

? d0, d1
-�

s0
B•

α1

? d0, d1, d2
-�

s0, s1
B• ×B•

α2

?
· · ·

Notice that αi for i > 1 is a map into a product. Maps into products are
determined by maps into each of the factors. That, coupled with our diagram,
forces
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α2 = (α1s0, α1s1)

i.e. degeneracy of α2 and an analogous condition for all subsequent αi so
that they are also degenerate.

This tells us that Tot of this cosimplicial simplicial set is determined entirely
by the 1st square,

∆0
d0, d1

-�
s0

∆1

∗
? d0, d1

-�
s0

B•

?

i.e. simplicial maps α1 : ∆1 → B that satisfy the relations enforced by
commutivity:

s0 ◦ α1 = ∗ ◦ s0 = ∗

α1 ◦ d0 = d0 ◦ ∗ = ∗

α1 ◦ d1 = d1 ◦ ∗ = ∗

This construction can just as easily be made for B a topological space.
Then, maps from ∆1 into B should look comfortingly like 1-cells and the above
conditions force the two ends of the one cells to be equal to the basepoint since
α1 ◦ d0 = α1(0), i.e.it’s 0th endpoint, or source and v.v for α1 ◦ d1.

3.3 Cosimplicial model for homotopy pullback

Given a diagram of spaces

Y

g

X
f

B

we know that the pullback of this diagram looks like

X ×B Y = {(a, b)|f(a) = g(b)}

and that the homotopy pullback “is”

X ×ho
B Y = {(a, b)|∃ha,b

f,g : f(a) ' g(b)}

or, better yet,
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X × {ρ ∈Map(∆1, B)|ρ(0) = f(x), ρ(1) = g(y)} × Y

If we would like to build a cosimplicial space whose Tot is a model for the
homotopy pullback, perhaps we can take our inspiration from the example of
the Tot of the Bar construction on a space X producing ΩX . Recall that what
forced the Tot to be a loopspace was the ∗ in dimension 0. Adding something
to dimension 0 should relax constraints to get paths.

Naively, we can take our maps f and g and say that perhaps the 0th and 1st

levels of our “cosimplicial space” should be

Z

X × Y

f
6

g
6

i.e. that d0 = f and d1 = g. The immediate problem with this is – how
would you define s0(z) for z ∈ Z (namely, so that s0d0 = id = s0d1)? If we
“carry” X and Y to the 1st level, we have

X × Z × Y

X × Y

d0 6
s0
?

d16

We can define
d0(x, y) = (x, f(x), y)
d1(x, y) = (x, g(x), y)
s0(x, z, y) = (x, y)

We would like Tot of the cosimplicial space we build to collapse to be first
square, so we can force the degenerateness of higher level stuff by mimicing the
bar construction, so that

X × Y
-- X × Z × Y

--- X × Z × Z × Y
---- · · ·

The cosimplicial space that is the model for the homotopy pullback of our
diagram is denoted (X ×B Y ), where

(X ×B Y )n = X ×B × · · · ×B
︸ ︷︷ ︸

n times

× Y

The general coface and codegeneracy maps are defined as follows:

di(x, b1, b2, . . . , bn, y) =







(x, f(x), b1, b2, . . . , bn, y) for i = 0
(x, b1, . . . b

i, bi, . . . , bn, y) for 0 < i < n

(x, b1, b2, . . . , bn, g(y), y) for i = n

si(x, b1, . . . , bn, y) = (x, b1, . . . bi−1, bi+1, bn, y) ∀i ∈ [1, n]

Our model defined levelwise as above and with the given coface and codegener-
acy maps is called the geometric cobar construction on X,Y over B.

6



3.3.1 Working through the Totalization

It can be noted that the original source of the geometric cobar construction
above is a paper of Rector, [Rec70].

Here is our Tot-diagram from the geometric cobar construction above:

∆0
d0, d1

-�
s0

∆1
d0, d1, d2

-�
s0, s1

∆2 · · ·

X × Y

α0

? d0, d1
-�

s0
X ×B × Y

α1

? d0, d1, d2
-�

s0, s1
X ×B2 × Y

α2

?
· · ·

Commitivity forces the αi to be fixed on X & Y by what α0 does, so we can
think of each αi as being maps ∆i → Bi. This reduces us to the same situation
we handled in the model for ΩB case, i.e. that all of our αi will be degenerate
for i > 1.

This again tells us that Tot of this cosimplicial space is determined entirely
by the 1st square,

∆0
d0, d1

-�
s0

∆1

X × Y

α0

? d0, d1
-�

s0
X ×B × Y

α1

?

Let α0
x denote α0 followed by projection to X, v.v. for α0

y. Then the relations
we obtain from the square are:

(1) α0s0 = s0α1

(2) α1 ◦ d0 = d0 ◦ α0 = (α0
x, f(α0

x), α0
y)

(3) α1 ◦ d1 = d1 ◦ α0 = (α0
x, g(α

0
y), α0

y)

Since s0 is projection onto X × Y , (1) tells us that α1 is determined on
X × Y precisely by α0 . Then (2) & (3) imply that α1 are paths in B between
the images of f and g. Since we can recover α0 from α1 via s0 ◦ α1 ◦ d1/0 = α0,
the data from this square reduces to the α1 maps. Since Map(∆0, X) = X for
X a space, we can see that the space of all α0 will give us X ×Y back again, so
we have

X × {ρ ∈Map(∆1, B)|ρ(0) = f(x), ρ(1) = g(y)} × Y

i.e. that Tot of our geometric cobar construction is the homotopy pullback of
our original diagram.
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4 Totn definition and fiber sequence

In algebra, we understand more about a group by considering a filtration of the
group by subgroups, e.g. its lower central series. We can similarly filter ∆ by
the ∆n:

∆0 ⊂ ∆1 ⊂ ∆2 ⊂ · · ·

For a cosimplicial or simplicial object, we have a similar filtration by coskeleta
or skeleta. For a discussion of (co)skeleta and matching/latching spaces, see ap-
pendix A.

4.1 Tot
n
(X•

•
) standard definition

Definition 4.1. Totn(X•

•
) := HomcS(skn∆, X•

•
)

Proposition 4.2. Totn(X•

•
) = Tot(cosknX

•

•
)

Proof.

Totn(X•

•
) = HomcS(skn∆, X•

•
)

= homcS(skn∆×∆, X•

•
)

= homcS(∆, homcS(skn∆, X•

•
)) adjointness of hom and ×

= homcS(∆, homcS(∆, cosknX
•

•
)) adjointness of cosk and sk

= homcS(∆×∆, cosknX
•

•
) adjointness of hom and ×

= HomcS(∆, cosknX
•

•
)

Adjointness of cosk and sk is discussed in Remark A.1

Proposition 4.3. Totn(X•

•
)→ Totn−1(X

•

•
) is a fibration when X•

•
is fibrant.

Remark 4.4. cS is a simplicial monoidal category; namely, it satisfies SM7,i.e.
we have forX•

•
fibrant and A→ B a cofibration, HomcS(, X•

•
) applied to A→ B

yields a fibration with the arrow point in the other direction,

HomcS(A,X•

•
)← HomcS(B,X•

•
)

Proof of Proposition 4.3. By definition, Totn(X•

•
) = HomcS(∆, X•

•
). The map

Totn to Totn−1 is then

HomcS(skn ∆, X•

•
)→ HomcS(skn−1 ∆, X•

•
)

Since ∆ is cofibrant, the inclusion skn∆ ⊂ skn+1∆ is a cofibration (if it wasn’t
cofibrant, an extra condition would be required. See the section on Reedy Model
Structure for details). By Remark 4.4, we know that this is a fibration.

Proposition 4.5. For X•

•
a cosimplicial simplicial set,

TotX•

•
= lim←−TotsX

•

•
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Proof.

lim←−Tots X = lim←−
s

HomcS(∆, cosksX
•

•
)

= HomcS(∆, lim←−
s

cosksX
•

•
)

= HomcS(∆, X•

•
)

Note that hom (and thus Hom = hom(− ×∆,−) ) commutes with inverse
limits in the second/covariant variable. Also, as s increases, the amount of
truncation before extending in taking coskeleton decreases, i.e.

lim←−
s

(cosks X
•

•
)m = lim←−

s

(cosksX
m
. )

= lim←−
s

lim←−
k→m

(trsX
m
. )

= lim
←−

k→m

lim
←−

s

(trsX
m
. )

= lim←−
k→m

Xm
.

= X•

•

Note: we have k < m (i.e. this is the same inverse limit as that giving in the
definition of G & J).

Remark 4.6. This argument can also be made for X•

•
a cosimplicial space, but

topology issues have to be taken into account.

4.2 Fiber of Tot
n
(X•

•
)→ Tot

n−1X
•

•
is ΩnNnX

Recall s =
∏
si : Xn →Mn ;MnX is the nth matching space of X.

NnX := ker(Xn s
→MnX) = Xn ∩ kers0 ∩ · · · ∩ kersn

We have the following pullback square from [GJ99]):

TotnX
•

•
HomcS(∆n, X•

•
)

Totn−1X
•

• Y

Where Y is a pullback itself:

Y := HomcS(∂∆n, X•

•
)×HomcS(∂∆n,MnX•

•
) HomcS(∆n,MnX•

•
)

Its elements are commutative squares of the form

∂∆n ∆n

X•

•
MnX•

•
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A map ϕ ∈ HomcS(∆n, X•

•
) gves a commutative square (this is the description

of our righthand vertical map in the first diagram) by pre and post composing
by s, i (where i is the inclusion ∂∆n ↪→ ∆n).

∂∆n i

ϕi

∆n

ϕ
sϕ

X•

•

s
MnX•

•

Note: For X•

•
fibrant, we get that our righthand vertical arrow of the

original square is a fibration. So if we show that the fibre of that map is
ΩnNnX , then we have that the fiber of our Tot fibration is homeomorphic to
ΩnNnX . This is because pulling back a fibration preserves the fiber up to
homeomorphism.

The kernel of the map HomcS(∆n, X•

•
)→ Y consists of maps that determine

trivial squares, i.e. squares where the two vertical maps are trivial. The lefthand
vertical map is restriction to the boundary, so any map out of ∆n that is trivial
when restricted to the boundary is the same as a map from Sn. The righthand
vertical map is post-composition with s, so for it to be trivial it’s a map whose
image in X is trivial under s, i.e. its image lands in NnX = ker(s). Thus, the
kernel of the map is HomcS(Sn, NnX) = ΩnNnX .

5 New Totn Definition

Notice that in our above examples, we reduced our analysis to a single square and
then to maps that fit into the rightmost vertical arrow-position of the diagram.
This reoccuring reduction suggests that perhaps our definition of Totn can be
similarly reduced or rephrased.

5.1 Motivation using Tot1

Recall that Tot1X
•

•
= MapTop∆(|∆|, cosk1X

•

•
) where cosknX can be thought

of as having the data of X up to and including the nth level and then extended
by degeneracies. As we saw with our examples of ΩB and homotopy pullback
models, Tot-data reduces to the squares which are non-degerate, e.g. Tot1-data
for a space X corresponds to diagrams:

∆0
d0, d1

-�
s0

∆1

X0

ρ0

? d0, d1
-�

s0
X1

ρ1

?
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In our two examples, we were able to reduce this even further, to conditions
on maps that fit into the ρ1-slot. It stands to reason that perhaps this can be
done in general.

Commutivity of the above squares produces the following relations:

(I) ρ1d0 = d0ρ0 and ρ1d1 = d1ρ0

(II) ρ0 = s0ρ1d0 = s0ρ1d1

(III) ρ0s0 = s0ρ1

Claim: These relations reduce to just equation (I), restated as

(I)′ ρ1d0 = d0(s0ρ1d0)
ρ1d1 = d1(s0ρ1d0)

Justification. We’ll show (I)’ ⇒ (II) ⇒ (III)
(I)’ ⇒ (II) Assume (I)’ and apply s0 to both equations.
(II) ⇒ (III) Rewrite (III) with the substitutions from (II) and we get

(III)′ (s0ρ1d0)s0 = s0ρ1

Assume (II) and apply di to the expression on the LHS of the “=” of (III)’
and separately to the expression on the RHS.

LHS = (s0ρ1d0)s0d0 = s0ρ1d0

RHS = s0ρ1d0

Since result of application of d0 are equal, then (III)’ holds since the di are
injective.

So, we get

Definition 5.1. Tot1X
•

•
=

{

ρ ∈ HomcS(∆1, X1)

∣
∣
∣
∣

ρd0 = d0(s0ρd1)
ρd1 = d1(s0ρd0)

}

Remark 5.2. The definition is equivalent to one where we replace s0ρd1 with
s0ρd0.

What does this definition tell us? That elements of Tot1 can be seen as
paths between two images of a vertex (under d0 and d1).

The ”natural map” Tot1X
•

•
→ Tot0X

•

•
is ρ 7→ s0ρd0. So, this new descrip-

tion has already told me something new, that the map Tot1 → Tot0 factors as
2 maps.

5.2 Tot2 and generalizing to Tot
n

Based on our Tot1 result, we might immediately think that Tot2 should satisfy
the same equations + 1 more since 1-cells have 2 ends to control and 2-cells
have 3 edges (one more “end” than a 1-cell).

11



Definition 5.3. Tot2X
•

•
=






ρ ∈ HomcS(∆2, X2)

∣
∣
∣
∣
∣
∣

ρd0 = d0(s0ρd2)
ρd1 = d1(s0ρd0)
ρd2 = d2(s0ρd1)







Justification of definition. As above, we’ll show (I)’ ⇒ (II) ⇒ (III), where now
(I)’ is the 3 constraints in the definition above and (II) and (III) are now

(II)sjρdi all equal, for i ∈ {0, 1, 2}, j ∈ {0, 1}
(III)(sjρdi)sk = skρ

(II) ⇒ (III) The exact argument as in the Tot1 case still holds and gener-
alizes immediately for all n.

(I)’ ⇒ (II): Let us denote

(0)ρd0 = d0(s0ρd2)
(1)ρd1 = d1(s0ρd0)
(2)ρd1 = d1(s0ρd1)

We would like to show (II), i.e. that sjρdi all equal for j ∈ [0, 1] and i ∈ [0, 2].
We get

s0 applied to...
(0) gives s0ρd0 = s0ρd2( because sjdi = id i = j, j + 1)
(1) gives s0ρd1 = s0ρd0( because sjdi = id i = j, j + 1)

i.e. now we have that all of the s0ρdk are equal for all k and

s1 applied to...
(1) gives s1ρd1 = s0ρd0( because sjdi = id i = j, j + 1)
(2) gives s1ρd2 = s0ρd1( because sjdi = id i = j, j + 1)
(0) gives s1ρd0 = s1d0(s0ρd2)

= s1d0(s0ρd0) ( because all s0ρdk equal ∀k)
(⇒ d0s0 = id)

= s1d0(s0ρd1) ( because all s0ρdk equal ∀k)
= s1ρd1

This shows that all of the sjρdi all equal for j ∈ [0, 1] and i ∈ [0, 2]

Then, the natural generalization would be:

Definition 5.4. Totn(X•

•
) =







ρ ∈ HomcS(∆n, Xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(0) ρd0 = d0(s0ρdn)
(1) ρd1 = d1(s0ρd0)
(2) ρd2 = d2(s0ρd1)

...
(n) ρdn = dn(s0ρdn−1)







Justification of definition. The proof for (II)⇒ (III) readily generalizes.
We need now to show that (I)’ ⇒ (II) holds in general. Note that
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(I)’ will be the n-1 equations labeled (0) through (n) above
and (II) is that all of the sjρdi are equal ∀j ∈ [0, n− 1], k ∈ [0, n].

We can treat the cases of Tot1 and Tot2 as our base cases and prove by
induction.

Our inductive hypothesis is that (I)’ is assumed and sjρdi are known to be
equal ∀j ∈ [0, n− 2] , i ∈ [0, n− 1].

Notice that sn−1ρdn = s0ρdn−1, so we need to show

(a) sn−1ρdi all equal for i ∈ [0, n]( and equal to the other sjρdi)
(b) sjρdn all equal for j ∈ [0, n− 1]( and equal to the other sjρdi)

Proof of (a):

sn−1ρdi = sn−1di(s0ρdi−1) i ∈ [0, n− 1]
= sn−1di(si−2ρdk) for any k ∈ [0, n− 1] by induction hyp
= sn−1si−1diρdk ( because disj−1 = sjdi i < j)
= sn−1ρdk ( because sjdi = id i = j, j + 1)
= sn−1ρdn−1 (namely, since any k works)
= s0ρdn−2 by induction hyp

So, sn−1ρdi = s0ρdn−2 = sjρdi ∀j ∈ [0, n− 2], i ∈ [0, n− 1]

Proof of (b):

sjρdn = sjdn(s0ρdn−1) j ∈ [0, n− 1]
= sjdn(sn−2ρdk) ( for any k ∈ [0, n− 1] by induction hyp)
= sjsn−1dnρdk ( because disj−1 = sjdi i < j)
= sjρdk ( because sjdi = id i = j, j + 1)
= sjρdn − 1 (namely, since any k works)
= s0ρdn−2 by induction hyp

So, sjρdn = sjρdi ∀j ∈ [0, n− 1], i ∈ [0, n]

6 Examining the map ρ 7→ s0ρd0 = siρdj

Now that we are perhaps convinced that this is a valid change of definition,
we should examine the natural map that arises as our map between Totn and
Totn−1. Namely, it needs to be shown that it is a fibration and the fiber is what
we expect it to be.

ρ ∈ Totn+1 = HomcS(∆n+1, Xn+1| · · · )

d0

s0ρd0

Totn = HomcS(∆n, Xn| · · · )

d0

s0ρd0

HomcS(∆n−1, Xn−1)

ρd0 ∈ HomcS(∆n, Xn+1| · · · )

s0

HomcS(∆n−1, Xn| · · · )

s0

13



6.1 s0· : im(·d0)→ Tot
n

is an isomorphism

We are considering the following situation

ρ ∈ Totn+1
·d0

s0ρd0

im(·d0)
s0

·

Totn

? d0
·

where the dashed arrow labeled ? d0· is speculative and needs to be shown to
be well defined as well as the other piece of s0· being an isomorphism.

Proposition 6.1. s0· : im(·d0)→ Totn, d0· : Totn → im(·d0) are the two pieces
of an isomorphism.

Lemma 6.2. d0· : Totn → im(·d0) and is well-defined.

Argument. For γ ∈ Totn, recall that even though our data reduces to a finite
diagram of adjacent squares, that it is actually infinite and that we have a γ̃ as
in the following:

∆0 · · · ∆n−1
d0, . . . , dn

-�
s0, . . . , sn−1

∆n
d0, . . . , dn+1

-�
s0, . . . , sn

∆n+1

X0
?

· · · Xn−1

s0γd0

? d0, . . . , dn
-�

s0, . . . , sn−1
Xn

γ

? d0, . . . , dn+1
-�

s0, . . . , sn
Xn+1

γ̃

?

Where commutivity of the rightmost displayed square gives us that
d0γ = γ̃d0, i.e. that d0 takes us to im(·d0).

Proof of Proposition 6.1. Given the above lemma, we just need to show the two
equalities s0d0 = idTotn

and d0s0 = idim(·d0):

• s0d0 = idTotn
: Our cosimplicial relations imply that s0d0 = idTotn

.

• d0s0 = idim(·d0): Notice that ρd0 s0
·

7→ s0ρd0 d0
·

7→ d0s0ρd0 = ρd0

The last equality is because ρ ∈ Totn+1 and we can conclude
that d0s0 = idim(·d0).

6.2 Tot
n
X•

•
→ Tot

n−1 X•

•
is a fibration for X•

•
fibrant

It is enough to first show the equivalence of the two definitions and then show
that the fibration (when X•

•
is fibrant) in the standard definition can be viewed

as ρ 7→ ρd0, i.e. the same as our induced map between Totn in the new definition.
For the purposes of distinguishing instances of the new definition, I will in

this section denote the “standard” Tot by Totstd and our proposed new definition
by Totnew.
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Proposition 6.3. Totstd
n (X•

•
) ∼= Totnew

n (X•

•
)

Proof. In the construction of our new definition, we implicitly created a map

Totstd
n (X•)

ϕ
Totnew

n (X•)

ρ = (ρ0, . . . , ρn) 7→ ρn

This projection to the last coordinate clearly commutes with coface and code-
generacy maps.

We should construct a (simplicial) map in the other direction, ψ and show
both compositions are identity.

Define
ψ(ρ) = (s0 · · ·

︸︷︷︸

n times

s0ρd0 · · ·
︸︷︷︸

n times

d0, . . . , soρd0, ρ)

By the constraints on ρ (which correspond exactly to what is needed to have a
commuting square), we get that our map commutes with coface and codegen-
eracies and is levelwise a map of simplicial sets.

Note that our finite square extends to an infinite one which is just the finite
one extended by degeneracies.

Then it is clear that ϕψ = id.
Also, commutivity of squares gives us for α = (α0, . . . , αn) ∈ Totstd

n ,

αn−1 = s0αnd0 = siαndl for all valid i, j

So it follows that ψϕ = id.

Lemma 6.4. Totstd
n → Totstd

n−1 can be seen as ρ 7→ ρd0 (i.e. is the same map
as in the new situation).

Proof. The map in our standard situation is the induced map by inclusion of
skn−1 ∆ ⊂ skn ∆. We can take this inclusion to be d0 and then the map
Totstd

n → Totstd
n−1 is ρ 7→ ρd0

We know in the standard setting that for X• fibrant, the map
Totstd

n X• → Totstd
n−1X

• is a fibration, so with the proposition and lemma above,
we can port this to the new setting and gain the same result. In other words,
we have just shown

Theorem 6.5. Totnew
n X•

•
→ Totnew

n−1X
•

•
is a fibration for X•

•
fibrant

6.3 Fiber of ρ 7→ s0ρd0 : Tot
n
→ Tot

n−1 is isomorphic to

ΩnNXn

Remark 6.6. We are assuming that X•

•
is basepointed and that our maps are

basepoint-preserving.
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Note that this is saying that the fiber in our new situation is isomorphic
to that in the original situation, using the new definition instead of relying on
equivalence of definitions. It turns out that the proof is more natural in this
new setting.

The fiber of ρ 7→ s0ρd0 : TotnX
•

•
→ Totn−1X•

•

will be the space







ρ ∈ HomcS(∆n ×∆, Xn)

∣
∣
∣
∣
∣
∣
∣

ρd0 = d0(s0ρd0)
...

ρdn = dn(s0ρdn−1)

& s0ρd0 = ∗







6.3.1 Looks like a loopspace:

This description of the fiber gives us the following equalities:

ρd0 = d0s0ρdn = dn∗ = ∗
ρd1 = d1s0ρd0 = d0∗ = ∗
...
ρdn = dns0ρdn−1 = dn−1∗ = ∗

These tell us that the maps comprising our fiber are actually maps out of Sn

instead of just ∆n, since the equlaties we obtained tell us that the maps of ∆n

collapse all of its faces to a point.

6.3.2 The loopspace is ΩnNXn:

Recall that when we reduced to this new definition, we had a set of equalities
that followed from those of the form ρdi = di(sjρdk). Those which were labeled
as (III) were:

s0ρ = (s0ρd0)s0

...
sn−1ρ = (s0ρd0)sn−1

In our fiber, we have that s0ρd0 = ∗, so each of these equalties reduces to
∗si = ∗, i.e. our fiber is in {kersi}n−1

i=0 ∩X
n

This tells us that our fiber is maps Sn → {kersi}n−1
i=0 ∩X

n, which is exactly
the definition of ΩnNXn

A Skeleta and Coskeleta

Recall that for a category C that a simplicial object in C is an element of C∆op

and a cosimplicial object is an element of C∆. We can define the subcategory

∆n

in

⊂ ∆ consisting of all [k] for k < n. This gives induced truncation functors

(in)∗ = trn : C∆op

→ C∆op
n

and (in)∗ = trn : C∆ → C∆n
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In both situations, the truncation functor has both a left and a right adjoint,
given by left and right Kan extensions along in.

Let X• be a cosimplicial object and Y• be a simplicial object and let rn, ln

be the left and right adjoints of cosimplicial truncation and rn, ln dually for
simplicial, defined as follows (for k ≤ n):

(lnX•)m = colim
k↪→m

Xk (rnX•)m = lim
m�k

Xk

(lnY•)m = colim
m�k

Yk (rnY•)m = lim
k↪→m

Yk

In either the cosimplicial or simplicial case, the skeleton will be truncation
followed by a left kan extension and the coskeleton will be truncation followed
by a right kan extension. Definitions for coskeleton and skeleton are (for k ≤ n)

cosknX
k = rn(trnX

•) sknX
k = ln(trnX

•)
coskn Yk = rn(trnY•) skn Yk = ln(trnY•)

Remark A.1. It is casually trivial to the obvious observer that coskeleton and
skeleton will be adjoint functors in each situation.

A nicer way to view at least the simplicial skeleta and coskeleta comes from
the unpublished paper of Reedy [Ree74], wherein he gives cosk as a pullback
and sk as a pushout:

(a) The following is pushout, and definition of skn:

∐

α:n→k

skn−1(X)n

∐

α:n→k

Xn

skn−1(X)k skn(X)k

where sums are over degeneracies n to k and the vertical maps are sums

of degeneracies in skn(X).

(b) The following is pullback, and definition of coskn:

coskn(X)k coskn−1(X)k

∏

α:k→n

Xn

∏

α:k→n

coskn−1Xn

where products are over degeneracies from n to k and the vertical maps

are products of the face maps of coskn(X).

Remark A.2. For X a simplicial object, (cosknX)k
∼= Xk and (sknX)k

∼=
Xk for k ≤ n. It is also true that for Y a cosimplicial object that we have
(coskn Y )k ∼= Y k and (skn Y )k ∼= Y k for k ≤ n.
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Lemma A.3. The cosimplicial skeleton of ∆, i.e. skn ∆, is the functor
s 7→ skn ∆s

Proof. By definition of the simplicial skeleton, we get that for s ≤ n, skn ∆s ∼=
∆s. So, our levelwise description agrees with what the cosimplicial coskele-
ton should look like for the levels where it should just look like cosimplicial
truncation.

Then for s > n, skn ∆s = colim
k↪→s

(trn ∆)k. This looks like the injections

n ↪→ s subject to the relations inforced by the relations of the lower dimensional
injections. These injections are precisely the n-cells on ∆s where the lower-
dimensional relations tie them together to be the n-skeleto, which agrees with
our levelwise description.

Remark A.4. skn∆ ⊂ skn+1∆

Notice that cosk and sk can both be interpreted as reducing the information
we were given to what is known for truncation to the nth level and then filling
in by degeneracies.

A.1 Matching and Latching spaces

This is the most natural place for this section to occur in terms of required
definitions that need to be fresh, but it is not perhaps optimal in terms of usage
of the objects.

Definition A.5. Given a simplicial object X• and a cosimplicial object Y •,
the nth matching and latching objects are given by:

MnX• := lim
k↪→n
k<n

Xk LnX• := colim
n�k
k<n

Xk

MnY • := lim
n�k
k<n

Y k LnY • := colim
k↪→n
k<n

Y k

These differ from those of Goerss and Jardine by a degree shift. Our Ln and
Mn are their Ln−1 and Mn−1

B Reedy Model Structure

The information from this section is taken nearly wholesale from Philip Hirschorn’s
book on Model Categories. The proposition and example about fibrancy are
from Bausfield & Kan.

Definition B.1. A Reedy Category is a category C with two subcategories
←−
C

(inverse subcategory) and
−→
C (direct subcategory) and an assignment of degree

to each object of C . Both subcategories contain all the objects of C . All non-
identity morphisms of the inverse subcategory lower degree and those of the
direct subcategory raise degree. Additionally, every morphism g ∈ C can be

factored as a composition of morphisms −→g←−g = g where ←−g ∈
←−
C and −→g ∈

−→
C .
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Example. ∆ the category with objects [n] for n ≥ 0 and morphisms the weakly
monotone functions [n]→ [k] is a Reedy category where the direct subcategory’s
maps are the coface maps di and the inverse subcategory’s maps are the code-
generacy maps sj .

Definition B.2. X a cosimplicial set, the nth latching object, LnX is naturally
isomorphic to the subcomplex of Xn which is simplices that lie in the image of
the coface operator.

Definition B.3. Let C be a Reedy category and M a model category and
X,Y,C− diagrams in M . Then the Reedy model structure on M C is defined
as, for f : X→ Y a map of diagrams:

(i) f is a Reedy weak equivalence if for every object c ∈ C , the map
fc : Xc → Yc is a weak equivalence in M .

(ii) f is a Reedy cofibration if for every object c ∈ C , the relative latching map
Xc

∐

LcX LcY → Yc is a cofibration in M

(iii) f is a Reedy fibration if for every c ∈ C , the relative matching map
Xc → Y ×McY McX is a fibration in M

Proposition B.4. Cosimplicial simplicial sets has a model structure as in B.3,
where C = ∆ is a Reedy category and M = Ssets has a model category struc-
ture were fibrations are Kan fibrations, cofibrations are monomorphisms and
weak equivalences afre maps whos realization is a weak equivalence of topolog-
ical spaces.

Note that the weak equivalences in cosimplicial simplicial sets are levelwise.
A more convenient condition for a map to be a cofibration will follow.

Definition B.5. For X a cosimplicial simplicial set, a maximal augmentation

of X is a the simplicial set which is the equalizer of the diagram

X0
d0

-

d1
- X1

i.e. an n-simplex of the maximal augmentation of X is an n-simplex σ of X0

such that d0σ = d1σ.

Then

Theorem B.6. If f : X → Y is a cosimplicial simplicial set map, then f
is a cofibration if and only if it is a monomorphism that takes the maximal
augmentation of X onto that of Y.

Heuristically, this is true because the Reedy structure says that f is a cofibra-
tion if it’s a levelwise cofibration and if the induced maps on Latching objects
are cofibrations. Monomorphisms are the cofibrations in simplicial sets and the
condition of latching objects is satisfied by f be a levelwise monomorphism and
correcting at the 0th level with the maximal augmentation condition. For a real
proof, see Hirschorn.
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Corollary B.7. A cosimplicial simplicial set is Reedy cofibrant if and only if
its maximal augmentation is empty.

Example. The standard cosimplicial simplicial set ∆ is Reedy cofibrant.

Proposition B.8. X a cosimplicial simplicial set is Reedy fibrant if maps
s : Xn →MnX for n ≥ 0 are all fibrations (i.e. Kan fibrations).

Example. All cosimplicial groups (called in DK ”grouplike cosimplicial ob-
jects”) are Reedy fibrant. [BK72]
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