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Abstract

This paper will construct examples of 2-groups that are grounded in

Euclidean geometry. The paper will introduce a notion of 2-group and

discuss how to classify them using the more familiar algebraic objects

that are groups, modules and cocycles. It concludes by explicitly

constructing a cocycle that can be used to construct a 2-group.
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1 Preliminaries
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1.2 Introduction

2-groups are fundamental objects in higher dimensional algebra. While in-

tricate in itself, higher dimensional algebra has gained much interest due to

its applications in physics. Much of the motivation for this comes from sting

theory where point particles are superseded by paths (or strings). Just as

the representation theory of Lie groups has important applications in parti-

cle physics, the 2-representation theory of Lie 2-groups plays an important

role in string theory.1 Similarly just as ordinary groups play a role in the

representation theory of Lie groups, it is anticipated that 2-groups play a role

in 2-representation theory. As such this paper aims to construct particularly

1See Baez and Huerta [2].

4



concrete example of 2-groups that are based on symmetries of geometric

objects, namely the Platonic solids.

The �rst substantive section will analyse in detail the tetrahedral group and

show explicitly how its binary extension sits inside the group of unit quater-

nions, Sp(1). The second section will list all the �nite subgroups of Sp(1)

that may be obtained in a similar manner. In the third section 2-groups

will be introduced and discussed culminating in a classi�cation of a certain

kind of 2-group. In the 3rd section, the co-cycle from the classi�cation will

be put in context and in the �nal section such a cocycle will be explicitly

constructed, giving su�cient data to form a 2-group.
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2 The Tetrahedral Group

The tetrahedral group, T , is the group of rotational symmetries of a tetrahe-

dron in Euclidean 3-space. It may be embedded into the symmetric group on

four elements, S4, as every rotational symmetry permutes the four vertices

of the tetrahedron.

Proposition 2.0.1. This embedding identi�es T with the the alternating

group on four elements, A4 which, in cycle notation, consists of the elements:

A4 = f(1); (12)(34); (13)(24); (14)(23); (123);

(132); (124); (142); (134); (143); (234); (243)g

Proof. See Appendix.

Henceforth, we will refer to elements of T using the notation of permutations

in A4.

Proposition 2.0.2. The group T has presentation ha; b j a3; b3; (ab)2i

Proof. See Appendix.

The binary tetrahedral group, ~T is given by the presentation:

~T =


e; f j e3 = f 3 = (ef)2

�
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Proposition 2.0.3. The sequence:

1! f�1g ,! ~T
�
�! T ! 1

Is short exact and a central extension. Where the map � is de�ned as:

� : ~T ! T

e 7! a

f 7! b

Proof. See Appendix.

The group ~T may be embedded into the group of unit norm quaternions,

Sp(1), which is a compact Lie group with its underlying manifold being the

3-sphere, S3. On the other hand T may be embedded into a special orthogonal

group, SO(3) which we identify with the group of rotations about an axis in

3 dimensions in the canonical manner.

The second embedding is the tetrahedral representation of T with the tetra-

hedron embedded into R3 as follows: Let the verticies 1, 2, 3 and 4 be at

the points (-1,-1,1), (1,-1,-1), (-1,1,-1) and (1,1,1) respectively. Since each

element of T is a rotation of a tetrahedron in 3-space, it is mapped to the

element of SO(3) as the rotation of R3 that achieves the same permutation

on the subset consisting of the verticies.
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The �rst embedding may be described as follows:

r : ~T ! Sp(1)

e 7!
1

2
(1� i� j� k)

f 7!
1

2
(1� i+ j� k)

It will be proved below that it is injective.

Proposition 2.0.4. The group SO(3) is doubly covered by Sp(1) via a map

p : Sp(1)! SO(3)

q 7! fT : r 7! qrq�1g

Proof. See Appendix.

The proof suggests an alternative rule for the map p. Let q = a+ bi+ cj+dk

where a2 + b2 + c2 + d2 = 1, then p(q) is a rotation of 2 cos�1(a) clockwise

about an axis of (b; c; d).

Thus we have the following diagram:

~T

�

��
��

r
// Sp(1)

p

��
��

T //
�
// SO(3)

Proposition 2.0.5. The above diagram commutes.
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Proof. Consider the generator e 2 ~T .

�(e) = a = (132)

And its image under � is a 4�
3
clockwise rotation about the axis (1; 1; 1).

r(e) = 1
2
(1� i� j� k)

And p(1
2
(1�i+j�k)) is a 2�

3
clockwise rotation about the axis (�1;�1;�1).

Which is equivalent to a 4�
3
clockwise rotation about the axis (1; 1; 1).

Also �(f) = b = (143).

And �((143)) is a 4�
3
clockwise rotation about the axis (�1; 1;�1).

While r(f) = 1
2
(1� i� j� k).

And p(1
2
(1� i+ j� k)) is a 2�

3
clockwise rotation about the axis (1;�1; 1).

Which is equivalent to a 4�
3
clockwise rotation about the axis (�1; 1;�1).

Thus �(�(e)) = p(r(e)) and �(�(f)) = p(r(f))

Since e and f generate ~T , � � � = p � r.

Finally it is required to prove that r is injective.

We may note that the kernel of ker(p) gives rise to the following diagram:

ker(�)
��

i1
��

'
// ker(p)
��

i2

��

~T

�

��
��

r
// Sp(1)

p

��
��

T //
�
// SO(3)

The homomorphism ' exists and is unique by the universal property of i2
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as:

(p � r � i1)(ker(�)) = (� � � � i1)(ker(�)) = f1g

Thus:

i2('(�1)) = r(i1(�1))

= r(g) = r(e3)

=

�
1

2
(1� i� j� k)

�3

= �1

Thus i2 � ' is injective, but as r � i1 = i2 � ' and i1 is injective, r must be

injective. Thus the �nal form of the diagram is:

~T

�

��
��

//
r
// Sp(1)

p

��
��

T //
�
// SO(3)

It should be noted that such a diagram may be constructed with any �nite

subgroup of SO(3) taking the place of T , which leads to the next section.
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3 Binary Polyhedral Groups

In the previous section there we constructed a �nite subgroups of Sp(1) from

a �nite subgroup of SO(3).

Up to isomorphism there is a classi�cation of such groups, (See [12, 27]) they

are:

� The �nite cyclic groups Cn;

� The �nite dihedral groups D2n;

� The tetrahedral group T ;

� The octahedral group O; and,

� The icosahedral group I.

As one may have guessed these are all possible rotational symmetry groups

for polygons and polyhedra in Eucledian 3-space. (Note that although the

dihedral group is traditionally thought of consisting of both rotations and

re
ections, the same permutations of verticies may be achieved by purely by

rotations in 3-space.)

The following is a table of polyhedral groups their presentations, a presenta-

tion of their Z=2 extension in Sp(1) and the order of the extension.
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G Presentation ~G j ~Gj

Cn ha j ani he j e2ni 2n

D2n ha; b j an; b2; (ab)2i he; f j en = f 2 = (ef)2i 4n

T ha; b j a3; b3; (ab)2i he; f j e3 = f 3 = (ef)2i 24

O ha; b j a4; b3; (ab)2i he; f j e4 = f 3 = (ef)2i 48

I ha; b j a5; b3; (ab)2i he; f j e5 = f 3 = (ef)2i 120
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4 2-Groups

Our discussion now turns to a catergor�ed concept of groups known as 2-

groups. We build by the de�nition of a 2-group from stages assuming that

the de�nitions of category, functors and natural transformations are known.

De�nition 4.0.1. A weak monoidal category is a (small) category, M

together with:

� A bifunctor t = �
� : M �M ! M

� A distinguished object 1 2 Ob(M )

� Natural isomorphisms

a : t � (t� idM )) t � (idM � t)

l : tj1�M ) idM

r : tjM�1 ) idM

Here 1 is the full subcategory generated by the object 1.

In addition to naturality, the component isomorphisms,

ax;y;z : (x
 y)
 z
�=
�! x
 (y 
 z)

lx : 1
 x
�=
�! x

rx : x
 1
�=
�! x

Must satisfy the following diagrams:
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(w 
 x)
 (y 
 z)

((w 
 x)
 y)
 z w 
 (x
 (y 
 z))

(w 
 (x
 y))
 z w 
 ((x
 y)
 z)

aw
x;y;z

aw;x;y 
 idz

aw;x;y
z

aw;x
y;z

idw 
 ax;y;z

(x
 1)
 y x
 (1
 y)

x
 y

ax;1;y

rx 
 idy idx 
 ly

The component isomorphisms ax;y;z, lx and rx are often referred to as the

associator, left unit and right unit respectively, since if they were identities

instead of isomorphisms they would correspond exactly to the axioms of

multiplication in a monoid. As expected, a 2-group re�nes this notion by

requiring invertability of objects and morphisms, in the following sense:

De�nition 4.0.2. A weak 2-group is a weak monoidal category, G, such

that:

� If x 2 Ob(G) then 9 y 2 Ob(G) s.t. x
 y �= 1 and y 
 x �= 1; and

� If f : x! y is a morphism in G then 9 g : y ! x in G s.t. f � g = idy

and g � f = idx.
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As expected we may de�ne homomorphisms of groups to be weak monoidal

functors, but we refer a reader interested in such notions to Baez and Lauda

[3].

It follows from the de�nition that the automorphisms of any object form a

group under composition. Furthermore given any automorphism of 1, we

may identify it with an automorphism of any x 2 Ob(G) as follows:

Let f 2 Aut(1), de�ne:

'x : Aut(1) �! Aut(x)

f 7�! lx � (f 
 idx) � l
�1
x

The map 'x is a homomorphism since:

'x(f � g) = lx � ((f � g)
 idx) � l
�1
x

= lx � (f 
 idx) � (g 
 idx) � l
�1
x Since 
 is a bifunctor.

= lx � (f 
 idx) � l
�1
x � lx � (g 
 idx) � l

�1
x

= 'x(f) � 'x(g)

We use this homomorphism to argue that the automorphism groups are

abelian, although we cannot quite achieve this in a weak 2-group.

If G is a weak 2-group, and x; y 2 Ob(G); and f 2 Aut(1) and g 2 Hom(x; y),

then the top face of the diagram below commutes as both direction are equal

to g 
 f .
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x
 1 x
 1

y 
 1 y 
 1

x x

y y

idx 
 f

g 
 id1

rx

g 
 id1

rx
idy 
 f

rx
'x(f)

g

'y(f)

g

rx

Since r is a natural isomorphism, the vertical arrows are invertible. Thus

g � 'x(f) = rx � (g 
 id1) � (idx 
 f) � r
�1
x

= rx � (idy 
 f) � (g 
 id1) � r
�1
x

= 'y(f) � g

Thus f may be said to \commute" with g. To have proper commutativity,

we obviously need x = y = 1. However we also need to change the type of

2-group we are dealing with as:

1. Inverses are only unique up to isomorphism (we will need this later).

2. The right unit law is not an identity but merely an isomorphism.

The �rst point may be addressed by taking the skeleton of G which is

obtained by replacing its objects by isomorphism classes. As the isomorphism

classes of objects in a weak 2-group form an ordinary group (under the tensor

product), the objects of the skeleton are a group.

16



De�nition 4.0.3. A skeletal category is a category in which every pair of

isomorphic objects are identical.

The second is addressed by the following de�nition:

De�nition 4.0.4. A special 2-group is a weak 2-group for which the under-

lying category is skeletal and the maps induced by the natural transformations

l and r are identities.

Note that the associator need not be an identity morphism as the automor-

phisms of an object in a skeletal category need not be trivial, however the

triangular diagram gives ax;1;y = idx
1
y = idx
y.

Now if f and g 2 Aut(1) in a special 2-group we have the following diagram,

which is a special case of the previous commutative cube:

1
 1 1
 1

1
 1 1
 1

1 1

1 1

id1 
 f

g 
 id1

g 
 id1
id1 
 f

f

g

f

g

Not only do we have g � f = f � g, but also g � f = g 
 f , i.e. Aut(1) is an

abelian group under composition which is equivalent to the tensor product

of morphisms.
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Lemma 4.0.5. Let G be a special 2-group and x 2 Ob(G), then the homo-

morphism

'x : Aut(1)! Aut(x)

is an isomorphism.

Proof. Note that as lx = idx, we have

'x(f) = idx � (f 
 idx) � id
�1
x

= f 
 idx

De�ne, as the inverse:

 x : Aut(x) �! Aut(1)

g 7�! g 
 idx�1

Where x�1 is the (unique) inverse of x. The map  x is is well de�ned though

g 
 idx�1 2 Aut(x
 x�1)

x
 x�1 = 1 As G is special.

The map  is a homomorphism by a similar argument as that used for 'x.
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They are isomorphisms as:

'x( x(g)) = (g 
 idx�1)
 idx

= g 
 (idx�1 
 idx)

= g 
 idx�1
x

= g 
 id1

= g

With the reverse direction being formally identical.

In order to simplify things slightly, we shall identify each Aut(x) with Aut(1)

via the isomorphism  x.

This enables us to de�ne a group action:

� : Ob(G)� Aut(1)! Aut(x)! Aut(1)

(x; f) 7! idx 
 f 7!  x(idx 
 f)

= idx 
 f 
 idx�1

= idx 
 f under the identi�cation.
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Let x; x1; x2 2 Ob(G) and f; f1; f2 2 Aut(1)

1 � f = id1 
 f

= l1 � f � l
�1
1

= f as l1 = id1

x � (f1 � f2) = idx 
 (f1 � f2)

= idx 
 f1 � idx 
 f2

= x � f1 � x � f2

(x1 + x2) � f := x1 � f � x2 � f

(x1 
 x2) � f = idx1
x2 
 f

= idx1 
 idx2 
 f

= x1 � (x2 � f)

Thus in a skeletal weak 2-group, G , Aut(1) is a left Z[Ob(G)]-module.

Furthermore, as G is skeletal, every object in the pentagonal diagram above

is in fact the same object and every morphism is an automorphism of that

object, which identi�ed with an element of the abelian group Aut(1). As

is conventional for abelian groups, we write composition (�) as addition to

obtain:

aw;x;y 
 idz + aw;x
y;z + idw 
 ax;y;z � aw
x;y;z � aw;x;y
z = 0
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Now idw 
 ax;y;z = w � ax;y;z while aw;x;y 
 idz is a right action

 z(aw;x;y 
 idz) = aw;x;y 
 idz 
 idz�1

= aw;x;y

So the right action is trivial, which gives us:

aw;x;y + aw;x
y;z + w � ax;y;z � aw
x;y;z � aw;x;y
z = 0

It may be observed that this is exactly the 3-cocycle condition in the context

of a group, G, acting on an abelian group, H, and � : G�G�G! H:

�(g0; g1; g2) + �(g0; g1g2; g3) + g0:�(g1; g2; g3)

� �(g0g1; g2; g3)� �(g0; g1; g2g3) = 0

We have show that every special 2-group may be contains the the data of

group, a module of the group ring and a 3-cocyle from the group to the

module, in fact this is a classi�cation of special 2-groups.

Theorem 4.0.6 (See Baez and Lauda [3]). Special 2-groups are classi�ed by

triples (G;H; a) where:

� G is a group

� H is a (left) ZG-module

� a is a normalised 3-cocycle, a : G3 ! H
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Moreover, 2-groups that are equivalent, in the sense that there exists some

notion of a 2-group isomorphism between them, are classi�ed by isomorphic

groups and modules and cohomologous cocycles [3]. As, at this stage, we

have not yet de�ned what a cocycle is, this may seem vague. So in the next

section we shed some light on what the cocycle is.
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5 Setting the Scene for the Co-cycle

As their name suggests, the natural place to look for cocycles is in some

cohomology. Thus in this section we will de�ne group cohomology. We will

also relate this to the cohomology of a topological space that is constructed

from the group known as the classifying space.

5.1 G-Bundles and the Classifying Space

In this subsection, the notation (E; p;B; F ) will denote a �bre bundle with

total space E, base space B, bundle projection p : E ! B and �bre F .

Where it is obvious what the �bre is, the last term in the quadruple will

often be omitted. Our discussion will largely follow that of Benson [4].

De�nition 5.1.1. Let � = (E; p;B; F ) and �0 = (E 0; p0; B0; F 0) be �bre bun-

dles.

A bundle morphism from � to �0 or consists of two continuous maps,

~f : E ! E 0 and f : B ! B0 such that the following diagram commutes:

E E 0

B B0

~f

p p0

f

De�nition 5.1.2. Let � = (E; p;B; F ) and �0 = (E 0; p0; B; F 0) be �bre bun-

dles.

A bundle morphism over B is a bundle morphism � to �0, i.e. a mor-

phisms between two bundles with identical base space.

23



De�nition 5.1.3. Let � = (E; p;B; F ) be a �bre bundle and f : B0 ! B a

continuous map.

The pullback bundle of �, f !(�) is a �bre bundle (E 0; p0; B0; F 0) where

E 0 = f(x; y) 2 B0 � E j f(x) = p(y)g

with projection

p : E 0 �! B0

(x; y) 7�! x

Pullback bundles �t in the pullback square:

E 0 E

B0 B

~f

p0 p

f

Like all pullbacks, any bundle which �ts into a similar pullback square is

isomorphic to f !(�), also the �bres F and F 0 are homeomorphic.

De�nition 5.1.4. Let G be a group with topology.

A principal G-bundle, is a �bre bundle (E; p;B; F ), where F is homeo-

morphic to G, E is a (left) G-space and there exists an open cover fU�g of

B with homeomorphisms �� : G � U� ! p�1(U�) such that the following

diagram commutes:
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G� U� p�1(U�)

U�

��

�2 p

Where �2 is the projection onto the second factor.

As this de�nition is rather cumbersome, we will use the following theorem

when, in a later section, we need to show that things are principle G-bundles.

Theorem 5.1.5 (Chevelley see [4]). If H is a Lie group and G is a closed

subgroup of H, then (H; p;GnH) is a principal G-bundle where p : H ! GnH

is the natural map into the coset space.

Proposition 5.1.6. If G is a group with topology, B0 is a paracompact space,

f; g : B0 ! B are homotopic maps and � = (E; p;B) is a principal G-bundle,

then the two pullback bundles are isomorphic as principal G-bundles over B0,

i.e. f !(�) �= g!(�).

Proof. See [4, pp 37-8].

We need not divulge what a paracompact space is as all spaces we are dealing

with are compact.

De�nition 5.1.7. Let G be a group, let � = (E; p;B) be a principal G-bundle

.

A universal G-bundle, �G, is a principal G-bundle (EG; �;BG) such that
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for any paracompact space B0 the map:

HomhTop(B
0; BG) �! PrincG(X)��=

f 7�! f !(�)

is a bijection, i.e. the homotopy classes of maps into BG are in 1-1 corre-

spondence with the isomorphisms classes of principal G-bundles.

The base space of a universal G-bundle is referred to as a classifying space

of G.

Lemma 5.1.8. If �1G and �2G are two universal bundles, then there exists

a homotopy equivalence f1 : B1G! B2G with pullback f !1(�2G) = �1G.

Proof. Let f1 : B1G! B1G and f2 : B2G! B1G be the images of �1G and

�2G under the bijection mentioned above.

Then f1 � f2 is the base map of a bundle morphism over B1G.

All bundle morphism over a common base are isomorphisms (Husemoller, [8,

p 43]).

Therefore f1�f2 : B1G! B1G along with ~f1� ~f2 : E1G! E1G give a bundle

isomorphism.

Hence by the property in De�nition 5.1.7, f1 � f2 ' idB1G.

Similarly, f2 � f1 ' idB2G.

Hence we may refer to any classifying space of G as the classifying space of

G. Furthermore, there is a theorem of Milnor which states that a classifying

space always exists for a given group (see [4, pp 38-40]).
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As the groups we are dealing with are somewhat more simple than the more

general groups that the theorem encompasses, the following simpli�ed con-

struction su�ces.

Theorem 5.1.9 (Segal [11]). If G is a discrete group, and Ĝ is the category

with one object whose endomorphisms are all automorphisms and whose au-

tomorphism group (under composition) is G, then geometric realisation of

the nerve of Ĝ is a classifying space for G., i.e.

BG ' jN�(Ĝ)j

Notice that the de�nition required the group to be discrete. The following

theorem may be used for construction of classifying spaces of groups with

(non-discrete) topology.

Theorem 5.1.10. If G is a topological group, and EG is a contractible

paracompact topological space on which G acts continuously (from the left) ,

then (EG; �;EG=G) is a universal G-bundle where

� : EG �! EG=G

is the natural projection onto the quotient space.

Corollary 5.1.11. If G and EG are as above, then

BG ' EG=G
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Example 5.1.12. The classifying space for the Lie group Sp(1) is homotopy

equivalent to the in�nite quaternion projective space, i.e.

B(Sp(1)) ' HP1

Proof. Consider the action of the unit quaternions on

S4n+3 =

(
(q1; q2; :::; qn+1) 2 H

n+1

�����
nX
i=1

qiqi = 1

)

By co-ordinatewise left multiplication, i.e. for q 2 Sp(1)

q � (q1; q2; :::; qn) = (qq1; qq2; :::; qqn)

The action is well de�ned, as:

nX
i=1

qqiqqi =
nX
i=1

qqiqiq

= qq
nX
i=1

qiqi

= 1� 1 = 1

Furthermore, the action is clearly continuous and free.

We may build the space S1 as follows

S1 := lim
�!

S4n�1

=

 
1a
n=1

S4n+3

!,
�
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With maps fij : S4i�1 ,! S4j�1 for i � j being inclusions into the �rst

i co-ordinates. By this construction, S1 is the unit sphere in the in�nite

dimensional space H1 which is de�ned analogously to the be set of in�nite

tuples of quaternions with only �nitely may non-zero components.

The action is carried through the direct limit as the action commutes with

the maps fij:

q � fij((q1; q2; :::; qi)) = q � (q1; q2; :::; qi; 0; :::; 0)

= (qq1; qq2; :::; qqi; 0; :::; 0)

= fij(q � (q1; q2; :::; qi))

The space S1 is contractible since, given i 2 Z�0 pick n such that i < 4n+3.

Then by cellular approximation:

�i(S
1) �= �i(S

4n+3)

�= f1g

Therefore, the constant map g : S1 ! � must induce isomorphisms between

all homotopy groups. Therefore byWhitehead's Theorem [6], g is a homotopy

equivalence, i.e. S1 is contractible.

Thus S1 = E(Sp(1)) and by Theorem 5.1.10, B(Sp(1)) ' S1=Sp(1).

This is the projective space HP1.
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5.2 The Nerve of a Category

De�nition 5.2.1. Let C be a category, n 2 Z�0.

An n-morphism chain in C is an (n + 1)-tuple of objects from C with an

n-tuple of morphisms, one for each pair of adjacent objects.

e.g. if x; y; z 2 Ob(C) and f 2 HomC (x; y) and g 2 HomC (y; z) then

x
f
�! y

g
�! z

is a 3-morphism chain.

De�nition 5.2.2. Let C be a (small) category, n 2 Z�0.

The nerve of C is a simplicial set (See Alligretti [1]), N�(C), constructed as

follows:

� 0-simplicies are the objects, Ob(C)

� 1-simplicies are 1-morphism chains in C and in general,

� n-simplicies are n-morphism chains in C

The face maps of an n-simplex are given by a deleting an object and composing

the morphisms that have it as a source with the one that has it as a target,

but for the objects at either end of the chain, the morphism is simply dropped
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along with the object:

@i(x0
f1
�! � � �

fn
�! xn) =

8>>>>>><
>>>>>>:

x1
f2
�! � � �

fn
�! xn i = 0;

x0
f1
�! � � �xi�1

fi�fi+1
����! xi+1 � � �

fn
�! xn i = 1; :::; n� 1;

x0
f1
�! � � �

fn�1
��! xn�1 i = n:

The degeneracy maps are simply composition with an identity morphism at

the appropriate point:

&i(x0
f1
�! � � �

fn
�! xn) = x0

f1
�! � � �xi

id
�! xi � � �

fn
�! xn

As we want to turn this combinatorial data into a topological space, it is

natural to consider gluing simplicies along their faces according to the face

and degeneracy maps to obtain a �-complex.

Let �n :=

�
(t0; :::; tn) 2 R

n+1

���� ti � 0;
nP
i=0

ti = 1

�
be the standard topologi-

cal n-simplex i.e. it has the subspace topology.

For each 0 � i � n, de�ne maps:

�i : �
n�1 ! �n

(t0; :::; tn�1) 7! (t0; :::; ti�1; 0; ti; :::; tn�1)

�i : �
n+1 ! �n

(t0; :::; tn+1) 7! (t0; :::; ti�1; ti + ti+1; ti+2; :::; tn+1)

De�nition 5.2.3 (From Alligretti [1]). Let X� be a simplicial set. The
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geometric realisation of X� is a is a topological space, jX�j de�ned as

jX�j :=

 
1a
n=0

�n �Xn

!,
�

Where � is the equivalence relation generated by:

If x 2 Xn; u 2 �n�1; v 2 �n+1 and i = 0; 1; :::; n, then

(�i(u); x) � (u; @i(x))

(�i(v); x) � (v; &i(x))

5.3 Group Cohomology

This construction of the classifying space is insu�cient for the purposes of

calculating group cohomology as it does not take into account the action of

the group on the coe�cient module. So in this section we give the formal

de�nition of group cohomology and relate it to the classifying space.

De�nition 5.3.1. Let R be a ring and M be an R-module. A resolution

of M is an exact sequence of R-modules:

� � �
�2
�! N1

�1
�! N0

"
�!M ! 0

The resolution will often be abbreviated as N�(M).

Note that we will treat this as a chain complex with M having position �1.

If the modules are all of a certain type, the resolution is referred as having
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that type, eg the type of resolution we will be interested in are projective

resolutions which are comprised of projective modules. Note that as all

free modules are projective, it su�ces to �nd a free resolution. A given

module will always have free resolutions (and hence projective resolutions)

as if M �= hX j Si as an R-module then

� � � ! 0! R[S] ,! R[X]� R[X]=R[S]! 0

is a free resolution of M . There are numerous such resolutions and indeed

we will construct a di�erent free resolution below.

Given an R-module, N , a projective resolution, P�(M), may be dualised by

applying the contravariant functor HomR(�; N) to the resolution to obtain:

� � �
HomR(�1;N)
 ������� HomR(P0; N)

HomR(";N)
 ������� HomR(M;N) 0

We denote this sequence as HomR(P�(M); N), also the homomorphisms

Hom(�i; N) and HomR(";N) are abbreviated to ��i and "
�.

The sequence HomR(P�(M); N) is a cochain complex by the following propo-

sition:

Proposition 5.3.2. If C� is a chain complex, then HomR(C�; N) is a cochain

complex.

Proof. Suppose

� � � ! Pi+1
'i+1
��! Pi

'i
�! Pi�1 ! � � �
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is a chain complex. Therefore 'i � 'i+1 = 0. Dualising gives:

� � �  HomR(Pi+1; N)
'�i+1
 �� HomR(Pi; N)

'�i � HomR(Pi�1; N) � � �

Suppose � 2 HomR(Pi�1; N), then

'�i (�) = � � 'i

'�i+1 � '
�
i (�) = '�i+1(� � 'i)

= � � 'i � 'i+1

= � � 0 = 0

'�i+1 � '
�
i = 0

Thus the exactness of P�(M) ensures that HomR(P�(M); N) is a cochain

complex, however it is not necessarily exact in turn, which allows for the

following de�nition.

De�nition 5.3.3. Let R be a ring and N a left R-module, n � 0.

Then ExtnR is a contravariant functor:

ExtnR(�; N) : RMod! Ab

ExtnR(M;N) = Hn(HomR(P�(M); N))

where P�(M) is any projective resolution of M .

This is independent of choice of resolution see [6, pp 194-5]
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De�nition 5.3.4. Let G be a group and M be a ZG-module.

The group cohomology of G with coe�cients in M is de�ned as ZG-

modules by:

Hn(G;M) := Extn
ZG(Z;M)

where Z is considered to be a trivial ZG-module.

We will construct a projective resolution for Z in order to calculate the

cohomology directly.

We now de�ne the cochain complex of a simplicial set, after which its homol-

ogy and cohomology may be calculated using the usual de�nitions.

De�nition 5.3.5. Let S� be a simplicial set.

The cochain complex of S� is the sequence of abelian groups:

C0(S�)
d1�! C1(S�)

d2�! � � �

with chain groups

Ci(S�) = Z[Si]

and boundary homomorphisms

di =
iX

j=0

@i

It is relativity simple to prove that this is a chain complex and a proof may
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be found in [6] albeit with di�erent terminology.

Let G be a discrete group and let G be the category with:

� Ob(G) = G

� 8 g; h 2 G;Hom(g; h) = ff(g;h)g

Then the n-simplicies in N�(G) have the form

g0
f(g0;g1)����! g1

f(g1;g2)����! � � �
f(gn�1;gn)

������! gn

Since the morphisms are uniquely determined by the adjacent objects, there

is one such simplex for each element of Gn+1. Thus the simplicial chain

complex of N�(G) consists of the abelian groups Cn(N�(G)) = Z[G
n+1] with

boundary homomorphism:

dn+1 : Cn+1(N�(G))! Cn(N�(G))

(g0; :::; gn) 7!
nX
i=0

(�1)i(g0; :::; ĝi; :::; gn)

Since G acts on the Z-bases by left multiplication, each abelian group in

the chain complex is in fact a (left) ZG-module, and the boundary homo-

morphisms are clearly G-equivariant, so C�(N�(G)) is chain complex of ZG-

modules.

The topological space jN�(G)j is contractible and in fact it is a model for

the total space EG as both are contractible and have a free G action [11].

However, at this stage we only require that C�(N(G)) is exact, which we may
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prove by use of the abelian group homomorphisms:

�n : Cn(N�(G))! Cn+1(N�(G))

(g0; :::; gn) 7! (1; g0; :::; gn)

This is a contracting homotopy as

(dn+1�n + �n�1dn)(g0; :::; gn�1)

= (g0; :::; gn�1) +
nX
i=1

(�1)i(1; g0; :::; ĝi�1; :::; gn�1) + (�1)n+1(1; g0; :::; gn�2)

+ (1; g1; :::; gn�1) +
n�1X
i=1

(�1)i+1(1; g0; :::; ĝi; :::; gn�1) + (�1)n(g0; :::; gn�2)

= (g0; :::; gn�1) +
n�1X
i=0

(�1)i(1; g0; :::; ĝi; :::; gn�1) + (�1)n+1(1; g0; :::; gn�2)

+
n�1X
i=0

(�1)i(1; g0; :::; ĝi; :::; gn�1) + (�1)n(g0; :::; gn�2)

= (g0; :::; gn�1)

In other words, dn+1�n+�n�1dn = 1, therefore � is a contracting homotopy.

This implies that C�(N�(G)) is exact as a chain complex of abelian groups,

which in turn implies that it is exact as chain complex of ZG-modules (see

[7]).

For the �nal homomorphism, de�ne

" : C0(N�(G))! Z

g 7! 1
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Since C0(N�(G)) is a free abelian group, " is surjective. Hence,

C�(N�(G))
"
�! Z! 0

is a free resolution for Z as ZG modules and thus,

H�(G;M) = H�(HomZG(C�(N�(G));M)

In particular, the cochain complex is:

HomZG(C�(N�(G));M)
"�

 � HomZG(Z;M) 0

Observe that f(1; g1; g2; :::; gn) j gi 2 Gg is a basis for Cn(N�(G)) as a free

ZG-module. This motivates us to seek a basis for the modules with basis

Gn. This may be achieved by keeping track of the morphisms instead of the

objects in each morphism chain, and this is the purpose of the bar notation:

[g1jg2j:::jgn] := 1
g1
�! g1

g2
�! g1g2 ! � � �

gn
�! g1g2:::gn

= (1; g1; g1g2; :::; g1g2:::gn)

Note that the 0-simplicies are represented by the empty brackets: [] which

equals 1. Thus as a ZG-module,

Cn(N�(G)) = ZG[f[g1j:::jgn] j gi 2 Gg]

= ZG[Gn]
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Note that the action is now

g � [g1jg2j:::jgn] = (g; gg1; gg1g2; :::; gg1g2:::gn)

The face maps are now:

@i([g1jg2j:::jgn]) =

8>>>>>><
>>>>>>:

g1 � [g2j:::jgn] i = 0;

[g1jg2j:::jgi�1jgigi+1jgi+2j:::jgn] i = 1; :::; n� 1;

[g1jg2j:::jgn�1] i = n:

While the degeneracy maps are:

&i([g1jg2j:::jgn]) = [g1j:::jgi�1j1jgij:::jgn]

Since the boundary homomorphisms are G-equivariant, they are uniquely

determined by their mapping of the ZG-basis, Gn:

dn([g1jg2j:::jgn]) = g1 � [g2j:::jgn] +
n�1X
i=1

(�1)i[g1jg2j:::jgi�1jgigi+1jgi+2j:::jgn]

+ (�1)n[g1jg2j:::jgn�1]

Recall that an element of a cochain module is a cocycle if it is in the kernel

of a coboundary homomorphism. Thus letting � be a generator of Cn(G;H),
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the condition is:

0 = �n+1(�)([g1jg2j:::jgn+1])

= � � dn+1([g1jg2j:::jgn+1])

= �

0
B@ g1 � [g2j:::jgn+1] +

n�1P
i=1

(�1)i[g1jg2j:::jgi�1jgigi+1jgi+2j:::jgn+1]

+ (�1)n[g1jg2j:::jgn]

1
CA

= g1 � �([g2j:::jgn+1]) +
n�1X
i=1

(�1)i�([g1jg2j:::jgi�1jgigi+1jgi+2j:::jgn+1])

+ (�1)n�([g1jg2j:::jgn])

In particular, the 3-cocycle condition is:

g1 � �([g2jg3jg4])� �([g1g2jg3jg4]) + �([g1jg2g3jg4])

� �([g1jg2jg3g4]) + �([g1jg2jg3]) = 0

Just as with the boundary homomorphisms, � is uniquely determined by

a map G3 ! H and so we have precisely achieved the cocycle condition

presented above.

The cocycle we are looking for is a normalised cocycle and it resides in the

normalised cochain complex. This is constructed by removing degenerate

simplicies from N�(G), namely the ones which have an identity in their mor-

phism chains. For each n 2 N the degenerate objects form the subcomplex:

Dn = Z[f(g0; :::gn) j 9 i 2 f0; :::; n� 1g s.t. gi = gi+1g]

= ZG[f[g1j:::jgn] j 9 i 2 f1; :::; ng s.t. gi = 1g]
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For each n, Dn � CnjN�(G)), so we can de�ne as abelian groups:

C� := C�(N�(G))=D�

We check that the boundary homomorphisms respect the degenerate sub-

complex. Let I = f1; 2; :::; j � 1; j + 2; :::; ng, then

dn(g0; :::; gj; gj; :::; gn) =
X
i2I

(�1)i(g0; :::; ĝi; :::; gn)

+ (�1)j(g0; :::; gj�1; ĝj; gj; gj+2; :::; gn)

+ (�1)j+1(g0; :::; gj�1; gj; ĝj; gj+2; :::; gn)

=
X
i2I

(�1)i(g0; :::; ĝi; :::; gn) 2 Dn�1

Since dn(Dn) � Dn�1 the boundary homomorphisms in C�(N�(G)) induce

boundary homomorphisms in C� making it a chain complex. Furthermore

as �n(Dn) � Dn+1, the homomorphism � is a contracting homotopy on C�

making it exact.

Thus if we de�ne " accordingly,

C�
"
�! Z! 0

is also a free resolution for Z as ZG-modules. As the group cohomology is

independent of the choice of resolution,

H�(G;M) �= H�(HomZG(C�;M))
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Now we return to the setting of the un-normalised cochain complex. Let us

suppose that the action of the group G on the coe�cient moduleM is trivial.

Now it was observed above that the �-complex jN�(G)j is a contractible space

thatG acts upon freely. Hence jN�(G)j = EG, also recall thatBG = jN�(Ĝ)j.

The simplicial complex of BG will now be constructed for comparison with

that of EG.

The simplicial set N�(Ĝ) is comprised of:

� 0-simplicies: the sole object 1

� 1-simplicies: g 8 g 2 G

� n-simplicies: g1g2:::gn 8 (g1; g2; :::; gn) 2 G
n

With boundary maps:

@i(g1g2:::gn) = g1g2:::ĝi:::gn

Thus the chain groups are C�
n (BG) = Z[Gn] for n = 0; 1; ::: with boundary

homomorphisms

dn(g1g2:::gn) =
nX
i=1

(�1)ig1:::ĝi:::gn

There is also an explicit construction of the projection map due to Segal [11].
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There is a functor:

P : G! Ĝ

g 7! 1

f(g;h) 7! g�1h

This functor induces a map (See Hatcher [6, 165]) which is the projection

map in the bundle:

� : jN�(G)j ! jN�(Ĝ)j = BG

Intuitively, the map is just what one would expect it to be, it maps all the

verticies of the simplicies to a point etc.

Let the G-equivariant cohomology of a G-space be the cohomology of the

cochain complex which is formed by applying the functor HomG(�;M) func-

tor, which gives the G-equivariant homomorphisms intoM , to the (simplicial

or singular) chain complex of the space i.e.

H�
G(X;M) := H�(HomG(C�(X);M))

Theorem 5.3.6. Let G be a group, M be a ZG-module, then the group coho-

mology of G with coe�cients inM is the G-equivariant simplicial cohomology

of EG with coe�cients in M , i.e.

H�(G;M) = H�
G(EG;M)
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Proof. Observe that it is very simple to triangulate EG back to the simplicial

set N�(G). The identi�es the simplicial chain complex of EG with the chain

complex of N�(G).

C�(N�(G)) = ��(EG)

The ZG-module homomorphisms with source in Cn(N�(G)) are precisely the

G-equivariant homomorphisms from Cn(N�(G)) as an abelian group. Thus

HomZG(C�(N�(G);M) = HomG(��(EG);M)

is an identity of chain complexes. Hence,

H�(G;M) = H�
G(EG;M)

Corollary 5.3.7. Suppose M is a trivial G-module, i.e. g � m = m is the

G action, then the group cohomology is isomorphic to the cohomology of the

classifying space as modules.

H�(G;M) �= H�(BG;M)

Proof. As the action is trivial, every abelian group homomorphism is a G-

equivariant homomorphism, i.e.

HomG(�n(EG);M) = HomAb(�n(EG);M)

44



where Ab is the category of abelian groups.

The orbit set Gn�n(EG) is no longer a G-module.

However since the G action commutes with the Z action on �n(EG), it is

nevertheless an abelian group.

The basis of Gn�n(EG) are the n-morphisms chains commencing in 1, the

set of which is in bijection with Gn.

This, in turn, is in bijection with the basis of �n(GnEG). Hence,

Gn�n(EG) �= �n(BG)

Let � : �n(EG)!M , be a G-equivariant homomorphism then

If g 2 G; � 2 �n(EG),

�(g � �) = g � �(�)

= �(�)

Since � is constant along the orbits, it descends to a unique abelian group

homomorphism �0 : Gn�n(EG)!M .

But this assignment is surjective as the inverse, composition with the quotient

map, works for every  : Gn�n(EG)!M .

�n(EG) M

Gn�n(EG)

�

q
�0
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Hence there is a one-one correspondence:

HomG(�n(EG);M) ! HomAb(�n(BG);M)

Thus

Hn(G;M) �= Hn(BG;M)
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6 Constructing the Co-cycle

The cocycle we seek is a G-equivariant homomorphism from 3rd simplicial

chain group of EG into some G-module. Since this description is rather

discouraging when searching for explicit construction, in this section we will

instead maps the 3-skeleton of EG to the 3-sphere, where as we will later

see, there is a rather explicit method of constructing cocycles.

As di�erent choices of G that were enumerated in Section 2 were �nite sub-

groups of Sp(1) = S3, the group G acts on S3 by left multiplication. As G

is �nite, it is closed in the Lie group S3 and hence by Theorem 5.1.5, the

map S3
p
�! GnS3 is the projection of a principal G-bundle. Thus by the

correspondence in De�nition 5.1.7, the following pullback square exists.

S3 EG

GnS3 BG

~fp

p �

fp

We start by constructing a G-equivariant map s : EG(3) ! S3.

By EG(3), we mean 3-skeleton of EG which is de�ned as follows:

De�nition 6.0.1. Let X� be a simplicial set.

The k-skeleton of jX�j is a is a topological space, jX�j
(k) de�ned as

jX�j
(k) :=

 
ka

n=0

�n �Xn

!,
�

Where � is the equivalence relation generated by:
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If x 2 Xn; u 2 �n�1; v 2 �n+1 and i = 0; 1; :::; n, then

(�i(u); x) � (u; @i(x))

(�i(v); x) � (v; &i(x))

Where �; @; � and & are as de�ned in Section 5.1.

Assuming such an s exists, the following diagram will commute up to G-

equivariant homotopy.

S3 EG

EG(3)

~fp

�
s

Proof. Let � = (EG; p;BG) be the universal principal bundle. A free and

properly discontinuous action of G on EG(3) is inherited from EG.

Thus we have the principal G-bundle, �(3) : EG(3) �(3)

��! GnEG(3).

Since both � and ~f � s are G-equivariant maps EG(3) ! EG, they descend

to maps GnEG(3) ! BG, giving the following bundle morphisms

EG(3) EG

GnEG(3) BG

~fp � s

�(3) �

( ~fp � s)

EG(3) EG

GnEG(3) BG

�

�(3) �

�

By a theorem in Husemoller [8, p 44], each pullback bundle is isomorphic to

48



�(3). Hence they are isomorphic to each other.

(�)!(�) �=
�
( ~fp � s)

�!
(�)

Thus by the universal property in De�nition 5.1.7, we have:

� ' ( ~fp � s)

This induces a G-equivariant homotopy between the top rows of bundles

morphisms above.

6.1 Construction of the map s

The simplicies in EG are of the form �n � g[g1j:::jgn] where g; gi 2 G and

0 � n � 3. If we de�ne the map s on the simplicies of EG(3), we may obtain

a map from EG(3) to S3. As we want a G-equivariant map, we instead de�ne

in on �n � [g1j:::jgn] and extend it G-equivariantly. For reasons that will

be revealed later, we must choose s so that its restriction to any particular

simplex is a smooth map.

Note that by De�nition 6.1.1, the only simplicies in EG(3) of dimension

greater than 3 are degeneracies of simplicies of dimension 3 or less. In all

dimensions, we ensure that s restricted to the degenerate simplicies, is a de-

generate simplex in S3 which is identical to s restricted to any simplex that

it is a degeneracy of, more precisely:

Suppose the map s is well de�ned on non-degenerate simplicies.
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If �n � [g1j:::jgn] is an degenerate n-simplex then there exists [h1j:::jhn�1]

and i 2 f1; :::; ng such that:

�n � [g1j:::jgn] = �n � &i([h1j:::jhn�1])

� �i(�
n)� [h1j:::jhn�1]

We set

sj�n�[g1j:::jgn] = sj�i(�n)�[h1j:::jhn�1]

Now there is unique non-degenerate simplex obtained by applying &�1 to

[g1j:::jgn] in all possible ways. It is obtained by deleting all the gj that are

equal to 1. Thus the map is well de�ned on degenerate simplicies.

Thus in the construction below, we may assume that the simplicies are non-

degenerate.

We map the simplex �0 � [] to the point 1 in S3.

The 1-simplicies are mapped as smooth paths, so if �1 � [g] is a 1-simplex

in EG(3), then s(�1 � [g]) is a smooth path from 1 to g in S3.

Such path exists as S3 is path connected. So for each 1-simplex, �x such a

path.

A consequence of this construction is that:

sj@(�1�[g]) = @sj(�1�[g]) (6.1)
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If �2 � [gjh] is a 2-simplex in EG(3) then we wish to map it to a smooth

simplex with boundary sj@(�2�[gjh]).

Such a surface exists as:

@sj@(�2�[gjh]) = sj@@(�2�[gjh]) By (6.1)

= ?

Now sj�2�[gjh] is a simplicial chain of S3, and the previous equation shows

that it is in fact a cycle.

As H1(S
3) = 0, it is also a boundary, i.e., there exists a smooth simplex

�2 : �
2 ! S3 such that:

sj@(�2�[gjh]) = @�2

We will see by Theorem 6.1.3 below that �2 may be taken to be smooth

simplex.

We choose one such �2 to de�ne s on the appropriate 2-simplex, i.e.

sj�2�[gjh] := �2

Then we again have:

sj@(�2�[gjh]) = @sj�2�[gjh]

51



Now as H2(S3) = 0, we may repeat this procedure to de�ne

sj�2�[gjhjk] := �3

Where �3 : �
3 ! S3 is a smooth map. Hence,

sj@(�3�[gjhjk]) = @sj�3�[gjhjk]

As there are no more non-degenerate simplicies, we have �nished constructing

s.

De�nition 6.1.1. Let X be a smooth manifold.

The smooth singular chain complex of X CS
� (X) is the subcomplex of

the (continuous) singular chain complex consisting of free abelian groups with

a basis of smooth maps �n ! X.

De�nition 6.1.2. Let R be a ring, M be an R-module and X be a smooth

manifold.

The smooth singular cochain complex of X is de�ned as

C�
S(X;M) := Hom(CS

� (X);M)

With smooth homology and cohomology de�ned as usual.

Theorem 6.1.3 (See Bredon [5]). If X is a smooth manifold, R is a ring

and M is an R-module then the smooth (co)homology is isomorphic to the
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(co)homology.

HS
� (X) �= H�(X)

H�
S(X;M) �= H�(X;M)

6.2 On the Level of Chains...

From the construction it follows that s induces a chain map between the

simplicial complex of EG(3) and the smooth singular complex of S3.

CS
0 (S

3) CS
1 (S

3) CS
2 (S

3) CS
3 (S

3) CS
4 (S

3)

�0(EG
(3)) �1(EG

(3)) �2(EG
(3)) �3(EG

(3)) �4(EG
(3))

�0(EG
(3)) �1(EG

(3)) �2(EG) �3(EG) �4(EG)

d d d d

d d d d

d d d d

s] s] s] s] s]

Lemma 6.2.1. If s; s0 : EG(3) ! S3 are two alternative choices for the map

described above, then there exists a chain map, s00] with the properties.

1. s00] is chain homotopic to s]; and,

2. s00n = s0n for n 6= 3.

Proof. We will attempt to construct a chain homotopy � as depicted in the

following diagram.
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CS
0 (S

3) CS
1 (S

3) CS
2 (S

3) CS
3 (S

3) CS
4 (S

3)

�0(EG
(3)) �1(EG

(3)) �2(EG
(3)) �3(EG

(3)) �4(EG
(3))

d1 d2 d3 d4

d1 d2 d3 d4

�0 �1 �2 �3
s0-s00 s1-s01 s2-s02 s3-s03 s4-s04

This will work up until degree 3, but the error will dictate how to de�ne s003.

In degree 0 we are forced to take �0 = since the other terms in the following

equation are zero.

s0 � s
0
0 = d1 � �0 + ��1 � d1

Thus we must de�ne �1 such that:

s1 � s
0
1 = d2 � �1 (6.2)

Let �1 2 �1(EG
(3)).

d1 � (s1 � s
0
1)(�1) = (s0 � s

0
0)(d1(�1))

= 0 since s0 = s00

Thus (s1 � s
0
1)(�1) is a 1-cycle in CS

1 (S
3).

Since HS
1 (S

3) = 0, there exists �2 2 C
S
2 (S

3) such that:

(s1 � s
0
1)(�1) = d2(�2)
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Thus we may construct �1 by choosing appropriate �2:

�1(�1) := �2

For degree 2 we have:

d2 � (s2 � s
0
2 � �1 � d2) = d2 � (s2 � s

0
2)� d2 � �1 � d2

= d2 � (s2 � s
0
2)� (s1 � s

0
1) � d2 By (6.2)

= 0 As s] is a chain map

Hence if �2 2 �2(EG
(3)), then (s2 � s

0
2 ��1 � d2)(�2) is a 2-cycle in C

S
2 (S

3).

Since HS
2 (S

3) = 0, it is also a 2-boundary.

Thus we may choose �3 2 C
S
3 (S

3) so that:

(s2 � s
0
2)(�2) = (�1 � d2)(�2) + d3(�3)

Thus if we de�ne:

�2(�2) := �3

We have:

s2 � s
0
2 = d3 � �2 + �1 � d2 (6.3)
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In degree 3 we have:

d3 � (s3 � s
0
3 � �2 � d3) = d3 � (s3 � s

0
3)� d3 � �2 � d3

= d3 � (s3 � s
0
3)� (s2 � s

0
2 � �1 � d2) � d3 By (6.3)

= d3 � (s3 � s
0
3)� (s2 � s

0
2) � d3 As d2 = 0

= 0 As s] is a chain map

Hence if �3 2 �3(EG
(3)), then (s3 � s

0
3 ��2 � d3)(�3) is a 3-cycle in C

S
3 (S

3).

However, since HS
3 (S

3) �= Z, there exists m 2 Z and �4 2 C
S
4 (S

3) such that:

(s3 � s
0
3 � �2 � d3)(�3) +m& = d4(�4)

Where & 2 [S3], the fundamental class of S3. Thus if we de�ne:

�3(�3) := �4

We have:

(s3 � s
0
3)(�3) +m& = (d4 � �3 + �2 � d3)(�3)

Although � is not a chain homotopy between s] and s0], it will be a chain

homotopy (up to degree 3) between s] and s
0
] � t] where t] is a chain map

such that:

tn(�n) =

8>><
>>:
m& n = 3;

0 n 6= 3:
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With m is as it is in Lemma [6.2.1]. The homomorphisms t] form a chain

map as dn � tn = tn�1 � dn trivially for n 6= 3, while:

d3 � t3 = d3(m&)

= 0

= t2 � d3

De�ne a chain map s00] so that:

s00n = s0n + t]

We now continue the chain homotopy for higher degrees but this time with

s00] In degree 3 we have:

s3 � s
00
3 = d4 � �3 + �2 � d3

As HS
4 (S

3) = 0, we may apply the same reasoning as in degree 3 to obtain:

�4 := �4

And

s4 � s
00
4 = d5 � �4 + �3 � d4

And since HS
n (S

3) = 0 for n � 4, it is easy to see that the required chain

homotopy exists by induction.
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The second property is obvious from the de�nition of s00] .

Suppose � is a 3-chain in �3(EG) and s, s
0 are as in the lemma and s00] is as

in its proof, then:

d3(s
00
3(�)) = d3(s

0
3(�))

d3(s
00
3(�)� s

0
3(�)) = 0

Again we �x a representative & 2 [S3] to obtain:

s003(�)� s
0
3(�)�m& = d4(�) (6.4)

Where m is dependant on �, s0 and s00 as in the proof of Lemma [6.2.1].

Let � : C3(S
3)! R be a cocycle (for S3).

Since H3
S(S

3;R) = R, we may normalise � so that �(&) = 1.

Applying it to (6.4) gives:

�(s003(�)� s
0
3(�)�m&) = �(d4(�))

�(s003(�))� �(s
0
3(�))� �(m&) = 0 since � is a cocycle:

(� � s003)(�))� (� � s03)(�))� �(m&) = 0
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Now if we compose � with the quotient homomorphism q : R ! R=Z, we

have:

(q � � � s003)(�)� (q � � � s03)(�)� q(�(m&)) = 0

(q � � � s003)(�)� (q � � � s03)(�) = q(m � 1)

= 0

(q � � � s003)(�) = (q � � � s03)(�)

By the lemma there exists a chain homotopy, �, i.e.

sn � s
00
n = dn+1 � �n + �n�1 � dn

As HomZG(�;R) is an additive functor, there exits a cochain homotopy, S,

between the dual chain maps:

sn � (s00)n = Sn � �n+1 + �n � Sn�1

Hence s](�) and (s00)](�) are cohomologous in �n(EG).

Hence (q � s])(�) and (q � (s0)])(�) are cohomologous in �n(EG).

Thus any two choices of the map s will give cohomologous homomorphisms

(q � s3)(�).

We need to check that (q � s3)(�) is a cocycle for EG, i.e., if � 2 �4(EG),

then

�4((q � s3)(�))[�] = (q � � � s3 � d4)(�) = 0
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We have:

d3(s3(d4(�))) = (s3 � d3 � d4)(�)

= 0

Hence (s3 � d4)(�) is a 3-cycle in CS
3 (S

3).

As before we may conclude that there exists � 2 �4(S
3) and m 2 Z such

that:

s3(d4(�))�m& = d4(�)

�(s3(d4(�)�m&)) = �(d4(�)) = 0 since � is a cocycle.

�(s3(d4(�)) = �(m&)

q(�(s3(d4(�)))) = q(m�(&))

(q � � � s3 � d4)(�) = q(m)

= 0

Hence (q � s3)(�) = q � � � s3 is a 3-cocycle in �3(EG;R=Z).

6.3 Choosing the Cocycle by Integration

Now we may describe a choice of a 3-cocycle � in C3(S3;R). This can be

achieved via integration of di�erential forms on the smooth manifold S3.
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More precisely, let � be the normalised volume form on S3 such that:

Z
S3

� = 1

As S3 is a 3-manifold, at every point x 2 X the cotangent space is of di-

mension three. Thus the 4-th exterior power of T �
x (S

3) is trivial, and every

4-from is trivial. The form � is a 3-form, therefore d� = 0, i.e., � is closed.

As per de Rham's theorem if X is a smooth manifold, the following homo-

morphisms de�ne a chain map which induces an isomorphism on the level of

cohomology:

i : 
n(X)! Cn
S(X;R)

! 7! �(�) =

Z
�n

��! for � 2 CS
n (X):

As any chain map sends cocycles to cocycles, the image of � under this

homomorphism is a cocycle.

More explicitly, let � 2 CS
4 (S

3), then

�4(i(�))(�) = (i(�) � d4)(�)

=

Z
�3

(d4(�))
��

=

Z
@�4

� �� as this is a sum of

integrals over 3-simplicies.

=

Z
�4

� �d� by Stoke's theorem.

= 0 since � is a closed 3-form.
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Hence i(�) is a 3-cocycle in C3
S(S

3;R) and it is the one we choose for our

construction, i.e. � = i(�).

Our cocycle must also be G-equivariant, but this follows from the fact that

G acts on S3 by isometries and thus g�� = �. Thus if � 2 CS
3 (S

3) then

�(g � �) =

Z
�3

(g � �)��

=

Z
�3

��g��

=

Z
�3

���

= �(�)

= g � �(�) Since R is a trivial G-module:

Finally, we need that it is a normalised cocycle, but this follows as the map

s sent degenerate simplicies in EG to degenerate simplicies in S3, the images

of which have zero volume.

As our cocycle, q � i(�) � s3 = 0 on the degenerate subgroup, it descends to

a normalised cocycle  . This is the cocycle that we set out to construct.

Now we may construct the special 2-group, G . Its set of objects will be G,

with Aut(g) = R=Z.
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7 Appendix

7.1 Proof of 2.0.1

T consists of:

� The identity;

� Two
2�

3
rotations about each of the four axes that passes through a

vertex and the centroid of the opposite face; and

� One � rotation about each of the three axes that pass through the

centre of an edge and the unique edge that does not touch either of the

vertices that bound the �rst edge

This gives 12 elements in total.

It may be observed that 2 three cycles such as (132) and (143) generate A4.

However, (132) and (143) are images of rotations under the aforementioned

embedding, � : T � S4.

Therefore, A4 � �(T ), but as jA4j = jT j = 12, A4 = �(T ) and hence

A4
�= T .
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7.2 Proof of 2.0.2

We may de�ne a homomorphism:

' :


a; b j a3; b3; (ab)2

�
! T , where

a 7! (132)

b 7! (143)

The homomorphism ' is well de�ned as (132)3 = (143)3 = ((132)(143))2 = 1.

It is surjective as generators go to generators

It may be shown using the Todd-Coxeter Process [10] or otherwise that

��
a; b j a3; b3; (ab)2��� = 12

As noted above, jT j = 12, therefore ' is injective and hence an isomorphism.

7.3 Proof of 2.0.3

The homomorphism � is clerly surjective so it remains to show that ker(�) =

f�1g.

There is an isomorphism he; f j�i �= ha; bj�i that �ts into the following com-

mutative diagram.
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he; f j �i ha; b j �i

~T T

�=
�

q1 q2

�

Where q1 and q2 are the natural surjections.

The map � as de�ned �ts into the central extension.

Proof.

ker(q2) =


a3; b3; (ab)2

�ha;bi

Where HG is the the normal closure of H in G. Therefore,

ker(q2 � �) =


e3; f 3; (ef)2

�he;fi

In ~T , let e3 = f 3 = (ef)2 be denoted by g.

Then q1(ker(q2 � �)) � hgi
~T and hgi � q1(ker(q2 � �)).

But gf = f 4 = fg and ge = e4 = eg, therefore g 2 Z( ~T ), the centre of T .

Hence,

hgi = hgi
~T and q1(ker(q2 � �)) = hgi :
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Since q1 is surjective, ker(�) = hgi Note that

f 2 = efe (7.1)

e2 = fef (7.2)

We may use this to show that g2 = 1.

e10 = ef 9

= efe6f 2

e7f 3 = f 2e5f 2

= f 2ef 3ef

e7f 2 = fe2fe2

e8fe = fe2fe2

e8f = fe2fe

e5fe3 = fe2fe

e5fe2 = fe2f

e5ffef = fe2f

e5f 2 = fe

e6f 2 = efe

e6f 2 = f 2

e6 = 1
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Hence ker(�) = f1; gg �= f�1g.

7.4 Proof of 2.0.4

The map p will �rst be de�ned into Aut(R3) = GL3(R) before showing that

the image is in O(3) and then SO(3) recalling that

SO(3) = fA 2 Aut(R3) j AAt = 1; det(A) = 1g

Identify R3 with the orthogonal complement of the real axis in H, i.e. R3 =

fq 2 H j Re(q) = 0g

De�ne: � : Sp(1)� R3 ! R3

where (q; r) 7! qrq�1

To see the action is well de�ned:

Let q = a+ bi+ cj+ dk; r = xi+ yj+ zk, then

Re(q � r) = d(�cx+ by + az) + c(dx+ ay � bz)

+ b(ax� dy + cz) + a(�bx� cy � dz)

= 0
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The action is linear in the second argument as quaternion multiplication is

distributive. Thus we may de�ne:

p : Sp(1)! GL3(R)

q 7! fT : r 7! qrq�1g

In order to show that p(Sp(1)) � O(3), it will be shown that elements in the

image of p preserve the standard inner product on R3.

Let p(q) = T : R3 ! R3

T is clearly invertible with T�1s = q�1sq

Let r; s 2 R3 � H note that rs = �hr; si+ r � s

Thus hr; si = �Re(rs)

So


qrq�1; s

�
= �Re(qrq�1s) = �Re(rq�1sq) =



r; q�1sq

�

The central equality may be explained by noticing that quaternions commute

in the real part:

Let q = a+ bi+ cj+ dk, and t = e+ fi+ gj+ hk. Then

Re(qt) = ae� bf � cg � dh

= ea� fb� gc� hd Since R is commutative.

= Re(tq)

Thus the transpose is Ats = q�1sq and we may see that AtA = AAt = Id

and hence A is orthogonal.
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It will now be shown that det(A) = 1 and hence p(Sp(1)) � SO(3).

qiq�1 = (a2 + b2 � c2 � d2)i+ (2bc+ 2ad)j+ (�2ac+ 2bd)k

qjq�1 = (2bc� 2ad)i+ (a2 � b2 + c2 � d2)j+ (2ab+ 2cd)k

qkq�1 = (2ac+ 2bd)i+ (�2ab+ 2cd)j+ (a2 � b2 � c2 + d2)k

Then det(A) = (a2 + b2 + c2 + d2)3 = 1 as q 2 Sp(1)

It will now be shown that SO(3) � p(Sp(1)) and hence � is surjective.

Every rotation in 3-space is a rotation about an axis, u = (m;n; o) 2 S2 � R3

at an angle of 2� for some � 2 [0; �].
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Note that u = mi+ nj+ ok 2 H.

Let v = cos(�) + sin(�)u

v 2 Sp(1) as hv; vi = cos2(�) + sin2(�)(m2 + n2 + o2) = 1

vrv�1 = (cos(�) + sin(�)u)r(cos(�)� sin(�)u)

= cos2(�)r + sin(�) cos(�)(ur � ru)� sin2(�)uru

= cos2(�)r + sin(�) cos(�)(�hu; ri+ u� r + hr; ui � r � u)

� sin2(�)(�hu; ri+ u� r)u

= cos2(�)r + 2 sin(�) cos(�)(u� r)

� sin2(�)(�hu; riu� hu� r; ui+ (u� r)� u)

= cos2(�)r + 2 sin(�) cos(�)(u� r)

� sin2(�)(�hu; riu� 0� hu; riu+�hu; ui r)

= cos2(�)r + 2 sin(�) cos(�)(u� r)� sin2(�)(hu; ui r � 2 hu; ri r)

= (cos2(�)� sin2(�))r + 2 sin(�) cos(�)(u� r) + (2 sin2(�)) hu; riu

= cos(2�)r + sin(2�)(u� r) + (1� cos(2�)) hu; ri r

= cos(2�)(r � hu; riu) + sin 2�(u� r) + hu; riu

Which is the Rodrigues rotation formula [9] for such a rotation.

Hence, S0(3) � p(Sp(1)) and p is surjective.
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