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1 Introduction
When studying 2d quantum gravity several approaches can be used in complementary
ways [46]. For example the matrix models (discretization) is powerful and gives a non-
perturbative definition, while Liouville theory (continuous approach) offer a more transpar-
ent physical interpretation (states are easier to identify, for example from BRST cohomol-
ogy) [75].

1.1 Acknowledgements
These notes grew up from lectures by Atish Dabholkar [12], and from discussions with him
and its students Tresa Bautista and Matěj Kudrna.

I’m also very grateful to Costas Bachas, Lætitia Leduc, Blagoje Oblak, Sylvain Ribault
and Raoul Santachiara for interesting discussions.

This review is still a work in progress, and as such it may contain errors and incomplete
material.

Part I

Conformal field theory
2 Conformal field theory
The classic references for 2d conformal field theory is [22, chap. 5].

2.1 Coordinates
We consider first an euclidean 2-dimensional manifold with coordinates (τ, σ).

All two dimensional manifolds are complex manifolds (and even Kähler) so that we can
use a complex coordinates z. It is often simpler to consider its complex conjugate z̄ as
independent, and then at the end to restrict oneself to the section z̄ = z∗.

The metric for a 2d Kähler manifold is just diagonal

ds2 = gzz̄dzdz̄. (2.1)

We can see that any change of coordinates

w = f(z), w̄ = f̄(z̄) (2.2)

where f and f̄ are any holomorphic and antiholomorphic (independent) functions preserve
the form of the line element, and the metric component transforms as

gww̄ = |f ′(z)|2gzz̄. (2.3)

We define also the (anti-)holomorphic part of the stress–energy tensor

T ≡ Tzz, T̄ ≡ Tz̄z̄. (2.4)

It transforms with an anomalous term

T ′(w) = 1
f ′2

(
T (z)− c

12S(w, z)
)

(2.5)
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where S(w, z) is the Schwarzian derivative

S(w, z) = f ′′′

f ′
− 3

2

(
f ′′

f

)2
. (2.6)

Example 2.1 (Flat metric) We may choose complex coordinates

z = τ + iσ. (2.7)

Then derivatives are given by
∂ ≡ ∂z = 1

2(∂τ − i∂σ) (2.8)

and similarly ∂̄ ≡ ∂z̄.
Then the flat metric is simply

ds2 = dzdz̄. (2.9)

Example 2.2 (Cylinder and complex planes) In order to avoid IR problem, it is useful
to compactify the spatial direction σ in a circle [48, sec. 4.3], such that

τ ∈ R, σ ∈ [0, 2π[. (2.10)

These two coordinates parametrize a cylinder.
We can introduce two different coordinates

w = τ + iσ, z = ew = eτ+iσ. (2.11)

The transformation z = ew defines a mapping from the cylinder to the complex plane. On
this plane, τ = cst corresponds to circles of radius eτ . Time reversal corresponds to 1/z∗,
parity to z∗. Past infinity is the origin, while future infinity is the complex infinity.

Action invariant under conformal transformations will have the same form in the three
coordinates systems

2.2 Quasi-primary fields
A field φ(z, z̄) of scaling dimension ∆ and spin s is said to be quasi-primary if it transforms
as

φ′(w, w̄) =
(

dw
dz

)−h(dw̄
dz̄

)−h̄
φ(z, z̄) (2.12)

where h and h̄ are the (anti-)holomorphic conformal dimensions defined as

h = ∆ + s, h̄ = ∆− s. (2.13)

This implies that for a spinless field we have

∆ = h = h̄ (2.14)

and

φ′(w, w̄) =
∣∣∣∣dwdz

∣∣∣∣−2∆
φ(z, z̄) (2.15)
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This normalization is very convenient for Liouville theory since we will be dealing with a
spinless field most of the time 1.

The associated state (on the plane)∣∣h, h̄〉 = φ(0, 0) |0〉 (2.17)

is an eigenvector of L0 and L̄0

L0
∣∣h, h̄〉 = h

∣∣h, h̄〉 , L̄0
∣∣h, h̄〉 = h̄

∣∣h, h̄〉 . (2.18)

Using the equality (2.14) for a scalar field we get

(L0 + L̄0)
∣∣h, h̄〉 = 2∆

∣∣h, h̄〉 (2.19)

instead of just ∆ ofr the usual conventions. Recall that Ln are the modes of the Hamiltonian
on the plane.

Note that the T (z) |0〉 is well behaved only if

Ln |0〉 = 0, ∀n ≥ −1. (2.20)

2.3 Operator product expansion
The stress–energy tensor is a quasi-primary operator, and we can read the central charge
from the order 4 term

T (z)T (w) ∼ c/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
z − w

. (2.21)

2.4 Free scalar field
The free scalar field is defined by the action

S = 1
4π

∫
d2σ (∂φ)2. (2.22)

Its stress–energy tensor is

Tµν = −
(
∂µφ∂ν −

1
2ηµν(∂φ)2

)
. (2.23)

Going to complex coordinates gives

T = −(∂φ)2. (2.24)

The propagator reads

〈φ(z, z̄)φ(w, w̄)〉 = −1
2

(
ln(z − w) + ln(z̄ − w̄)

)
. (2.25)

We can also take the derivatives with respect to z and w to get

〈∂zφ(z, z̄)∂wφ(w, w̄)〉 = −1
2

1
(z − w)2 (2.26)

1The usual definition is [22]
h =

1
2

(∆ + s), h̄ =
1
2

(∆− s). (2.16)

Our new definition amounts to replacing ∆ by 2∆. It means that our scaling dimension is twice the weight
of a scalar field [40, p. 12].
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and there is no more antiholomorphic dependence. For this reason we now study the holo-
morphic field ∂φ. It has the OPE with itself

∂φ(z)∂φ(w) ∼ −1
2

1
(z − w)2 . (2.27)

The OPE of T and ∂φ reads

T (z)∂φ(w) ∼ ∂φ(w)
(z − w)2 + ∂2φ(w)

z − w
(2.28)

showing that ∂φ is primary with h = 1.
The stress–energy tensor has the OPE with itself

T (z)T (w) ∼ 1/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
z − w

. (2.29)

We read the central charge c = 1.

2.4.1 Vertex operators

We define vertex operators Vp = eipX for the scalar field X. These are primary operators.

2.5 Rational and non-rational CFT
In a rational CFT there is a finite number of primary fields. They often come in families,
the most important example of such being the minimal models.

On the other hand non-rational theories have an infinite number of primary fields and
they are harder to study. Theories which have a continuous spectrum are non-rational. A
well-known example is Liouville theory, which is the main topic of this review.

Finally one defines also quasi-rational theories for which the OPE of two fields involve
only a finite number of fields. This is typically the case for theories which possess some
conserved current that restrict the quantum numbers. The free boson is such a theory.

Finding non-rational interacting theories can be a difficult task, and understanding their
properties can be even harder. For this reason it is interesting to build such theories as the
limit of a family of rational models. The limit may be taken in different manners by using
the freedom to rescale the fields, and in particular different limits give different theories.
Moreover several of these theories received an interpretation from a continuous orbifold.

This technique has been applied to several cases (for a general introduction see the
thesis [70]):

• c = 1: limit from minimal models [73, 74] and from Liouville theory with b → i [76],
from orbifold [31].

• c = 1− 6 (p−p′)
pp′ : limit from Liouville theory with b→ i

√
p′/p [57, 76].

• c = 3/2: limit from N = 1 minimal models and as the limit b→ i of N = 1 Liouville
theory [28].

• c = 3: limit from N = 2 minimal models [26], from orbifold [24].

• c = n− 1: limit from Wn minimal models and sl(n) Toda [23].

• c = 3n: limit from N = (2, 2) minimal models Wn (Kazama–Suzuki models) [25].
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2.6 Minimal models
The structure constants of the (supersymmetric) minimal models can be written in terms
of the Υ function [28, sec. A].

3 Correlation functions in CFT
3.1 Conformal blocks
Conformal blocks appear in the decomposition of the 4-point functions. These are universal
quantities determined only by representation theory.

Analytic expressions are known only for some particular values of the parameters. Start-
ing with some assumptions about the analyticity of the conformal blocks, Zamolodchikov
has derived reccurence formulas that are very efficient in the context of numerical computa-
tions (see also [72]). These formulas can be given in terms of position or elliptic variables,
the latter being more efficient. The derivation relies on two data (see also [39]):

• the analytic formula for c = 1;

• the first two terms of the (quantum) conformal block 1/∆-expansion can be found
from the 1/δ-expansion of the classical conformal blocks.2

An expression for the conformal blocks can be obtained from Nekrasov partition functions
through AGT conjecture [1].

Part II

Liouville theory
4 Two-dimensional gravity
In this section we will review some general aspects of (classical) 2d gravity coupled to some
matter. We consider a 2-dimensional (euclidean) space M with metric gµν and whose
coordinates are denoted by σµ.

The total action of the theory is written

S[g, ψ] = Sgrav[g] + Sm[g, ψ] (4.1)

where Sgrav is the action for pure gravity – constructed in section 4.1 –, and Sm is some
matter action (not necessarily conformally invariant) for a set of fields denoted collectively
as ψ. The action Sm[g, ψ] comes from making the action Sm[δ, ψ] covariant by minimal
coupling (δµν is just the flat metric).

We ask for the action of our theory to:

• be renormalizable;

• be invariant under diffeomorphisms;

• have at most second order derivatives.

General references are [16, 34, 68, 86].
2The latter can be obtained from semi-classical computations in Liouville theory.
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4.1 Pure gravity
4.1.1 Action and symmetries

We wish to construct the most general action for pure gravity.
Under diffeomorphisms, the coordinates and the metric transform as 3

σ′µ = fµ(σν), gµν = ∂σµ

∂σ′ρ
∂σν

∂σ′σ
g′ρσ. (4.2)

We will also need to consider (local) Weyl transformations which act only on the metric

gµν = e2ω(σµ)g′µν , (4.3)

but we will not require it to be a symmetry of the full action.
Dynamics of gravity is described by the Einstein–Hilbert action, but it is a topological

invariant in 2d
SEH[g] =

∫
d2σ
√
g Rg = 4πχ, χ = 2(1− g), (4.4)

g being the genus of the surface. So it can be ignored as soon as we are not interested
in topologies (which will be mostly our case). In addition to diffeomorphism this action is
invariant under Weyl symmetry (4.3).

Finally diffeomorphisms allow a last piece which is the cosmological constant term

Sµ[g] = µ

∫
d2σ
√
g = µA (4.5)

where A is the area ofM. In this case Weyl invariance (4.2) is explicitly broken.
The total action is given by the sum of (4.4) and (4.5)

Sgrav = SEH + Sµ. (4.6)

4.1.2 Equations of motion

Pure gravity in two dimensions is quite boring: it is purely topological and the equation of
motion is trivial.

First let’s consider the properties of the Riemann tensor Rµνρσ. In d dimensions it has

Cd = 1
12 d2(d2 − 1) (4.7)

independent components.
For a maximally symmetric spacetime, the Riemann tensor has only one independent

component corresponding to the curvature scalar [7], thus

Rµνρσ = R

d(d− 1) (gµρgνσ − gµσgνρ). (4.8)

Contracting with gµρ gives the Ricci tensor

Rµν = R

d
gµν . (4.9)

The same holds in two dimensions for R 6= cst because C2 = 1, implying that there is only
one independent component in the Riemann tensor, and its symmetries dictate its form.

3For most of the symmetries we will give the old field in term of the new one.
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As a consequence proving R = cst is sufficient for proving that the space it maximally
symmetric in two dimensions [7, p. 141].

The Ricci tensor is given by
Rµν = R

2 gµν . (4.10)

Because of this last expression the Einstein tensor vanishes identically

Gµν = Rµν −
1
2 gµνR = 0. (4.11)

Then the equation of motion for gµν reduces to

µ = 0. (4.12)

This equation has no solution 4 except for the specific case µ = 0. This implies that 2d pure
gravity exists only for vanishing cosmological constant and thus it always possesses Weyl
invariance.

4.2 Partition functions
We continue with a generic matter action Sm[g, ψ]. The partition function for 2d gravity is
then [29, sec. 1, 41, p. 671]

Z = 1
Ω

∫
dgµν dgψ e−S[g,ψ] (4.13a)

= 1
Ω

∫
dgµν e−Sµ[g] Zm[g], (4.13b)

where Ω is the volume of the diffeomorphism group 5 and we have indicated that the ψ
measure depends on gµν (see section 4.5). The total action is given by the sum of Sm and
Sµ (4.5)

S = Sm + Sµ, (4.14)

and the matter partition function is

Zm[g] =
∫

dgψ e−Sm[g,ψ]. (4.15)

In (4.13) the integral dg is over all metrics: because of the diffeomorphism symmetry we
are integrating over a huge number of identical metrics, and the integral will be infinite (as
it is usual when we try to integrate in the presence of a gauge symmetry) [29, sec. 2]. We
have divided the integral by Ω to indicate that we remove this factor; we will see later how
explicitly it cancels the redundant integral. In practice this overall factor will cancel when
computing correlation functions. We can remove it by restricting the integral over a gauge
slice, instead of integrating over the whole space: this amounts to fix a gauge.

We note that µ should be positive because it contributes as a factor e−µA in the path
integral, which would diverge for µ < 0.

4Recall that equations of motion are equations for the fields, not for the parameters which are fixed by
the definition of the model.

5Note that we can not include the Weyl group volume, writing Ω = Weyl n diffeomorphisms since we
can not expect to extract it outside the critical dimension [41, p. 671].
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4.3 Equations of motion and stress–energy tensor
We define the (tree order) stress–energy tensor of S and Sm by

Tµν = − 4π
√
g

δS

δgµν
, T (m)

µν = − 4π
√
g

δSm
δgµν

. (4.16)

For the action (4.1), we get
Tµν = T (m)

µν + 2πµ gµν . (4.17)

The classical equation of motions are given by variation of the full action (4.14) with
respect to ψ and gµν

δS

δgµν
= 0, δS

δψ
= 0. (4.18)

Without specifying the action for the matter we can not go further with the second equation.
Nonetheless we can already say a lot about the equation of motion for gµν which implies
that the total stress–energy tensor (4.16) vanishes

Tµν = T (m)
µν + 2πµ gµν = 0. (4.19)

This is three independent equations which appear to be constraints on the metric and matter
fields (since it does not contain derivatives of the metric): see section ?? for details on the
counting of degrees of freedom.

The trace of (4.19) gives
T (m) = −4πµ. (4.20)

Then we can rewrite the equation as

T (m)
µν −

1
2 T (m) gµν = 0 (4.21)

where the left-hand side is just the traceless part of the matter stress–energy tensor.
These last two equations have an important meaning: (4.21) is the stress energy tensor

corresponding to the action Sm where all the parameters breaking Weyl invariance have
been removed, and this allows us to conclude that it is traceless and thus Weyl invariant.
On the other hand, (4.20) will provide

• one equation for φ if it is not Weyl invariant;

• a third constraint on the matter fields.

Since (4.20) comes from a trace I think that it will always be Weyl invariant. Then even if
this symmetry is not a symmetry of the action, it is a symmetry of the equation of motion
for gµν (similarly to the electric–magnetic duality).

The equation of motion for the matter are not Weyl invariant and one of them will allow
us to fix the last metric component.

4.3.1 Conformal matter

If Sm[δ, ψ] is conformally invariant, then the action Sm[g, ψ] is Weyl invariant [83, chap. 4]

Sm[g, ψ] = Sm[ e2ωg, ψ]. (4.22)

In this case its stress–energy tensor (4.16) is traceless

T (m) = 0. (4.23)
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Then the trace of Tµν reduces to the cosmological constant, confirming that it is the only
term which breaks Weyl symmetry

T = 4πµ. (4.24)

At the classical level, and similarly to pure gravity, we can not include the cosmological
constant because the equation (4.20) implies [3, ex. 2.8]

T = 0 =⇒ µ = 0 (4.25)

which has no solution.
The equation of motion reduces to

T (m)
µν = 0 (4.26)

which consists in two independent equations. The last equation (4.20) being trivially satis-
fied we have only two constraints. This is quite surprising: in general adding a new gauge
symmetry adds a constraint and reduce the number of independent components, whereas
here we observe the opposite: adding Weyl invariance to the action removes the trace equa-
tion, which was a constraint, so we go from three to two constraints on the matter fields.

4.4 Conformal gauge
4.4.1 Gauge fixing

As we saw when we defined the partition function (4.13), we need to fix a gauge for the
diffeomorphism. We will choose the conformal gauge

gµν −→ g′µν = e2φhµν (4.27)

where hµν is fixed (in the other sections we will omit the prime on gµν , but it is crucial to
keep track of it here); φ is the only remaining degree of freedom 6. hµν is sometimes called
the fiducial (or non-physical) metric. It can be proved that such a reparametrization always
exists, and that it is not possible to make any further reparametrization which preserve this
gauge choice [29, sec. 2]. This means that the gauge slice [h] made of all metrics conformal
to hµν is a good one – we will note these conformal classes as

[h] =
{
gµν | gµν = e2φhµν

}
. (4.28)

Even if all these conformal classes are locally equivalent under reparametrization, they
can differ by (global) topology, and the global gauge slice is not well-defined [29, sec. 2].
These classes will depend on a finite number of parameters, called moduli (or Teichmüller
parameters), denoted collectively as τ . We will mainly ignore them.

We have the following relations between quantities for g and h metrics

Rg = (Rh − 2∆hφ) e−2φ,
√
g = e2φ

√
h. (4.29)

When doing this transformation the g measure in (4.13) transforms [56, 67, sec. 2]

dgµν = dτ dgφ ∆FP[g] (4.30)

where ∆FP[g] is the Jacobian of the transformation (4.27), also called the Faddeev–Popov
determinant. dτ is the integration over the Teichmüller space.

6In 2d metric has 3 dof, and 2 are removed by diffeomorphism.
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The integral on the right hand side will be on the different conformal classes. ∆FP[g]
takes into account the variable volume of the diffeomorphism group orbits [29, sec. 2]. The
determinant can either be evaluated directly, or it can be represented using ghosts.

Although we should write d e2φhX for the measure on X when the gauge if fixed, we will
continue to use dgX as a shortcut.

The partition function (4.13) becomes [41, p. 671]

Z =
∫

dgφ e−Sµ[g] Zm[g] ∆FP[g]. (4.31)

We need to express all the objects in terms of hµν (and possibly φ) instead of gµν : this
would be trivial if they were invariant under Weyl symmetry, but this is not the case due to
the conformal anomaly. We will discuss this point in section 5.

In the previous discussion we have ignored non-trivial Teichmüller parameters, but they
may add new terms in the action [32, chap. 1].

4.4.2 Ghost action

As it is common we can use anticommuting fields, called ghosts, to represent determinants.
Let’s apply this to the Faddeev–Popov determinant ∆FP[g] [37, p. 122–124, 68, p. 86–89,
86, p. 87–89] (very sketchy): introduce the notation g′ζ for a transformation of the metric
associated to vector ξµ, then

δgµν = ∇(µξν) =⇒ δgµν(σ)
δξρ(σ′) = δ ρ

(µ ∇ν)δ(σ − σ′). (4.32)

Plugging the relation
1 = ∆FP(g)

∫
dζ δ(g − g′ζ), (4.33)

where ∆FP(g) is the Faddeev–Popov determinant

∆FP(g) = det
(
δgµν
δζ

)
, (4.34)

into the partition function (4.13) one has

Z[g′µν ] = 1
Ω

∫
dζ dgψdgµν e−S[g,ψ]δ(g − g′ζ)∆FP(g)

= 1
Ω

∫
dζ dg′ζψ e−S[g′ζ ,ψ]∆FP(g′ζ)

where we have integrated over gµν . The determinant can be represented with ghost fields [86,
sec. 14]

∆FP =
∫

dbdc e−Sg (4.35)

where the ghost action is
Sg = 1

2π

∫
d2σ

√
g′ bµν∇′µcν . (4.36)

These ghost field are anticommuting and bµν = bνµ.
Nothing depend anymore on ζ since every object is gauge invariant, and the integration

gives Ω, cancelling the factor in front of the integral. We are thus left with

Z[g′µν ] = e−Sµ[g′]
∫

dg′ψ dg′bdg′c e−Sm[g′,ψ]−Sg [b,c,g′].
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where the only degree of freedom in g′µν is φ. Now we will always write g′µν = gµν = e2φhµν :

Z[gµν ] = e−Sµ[g]
∫

dgψ dgbdgc e−Sm[g,ψ]−Sg [b,c,g]. (4.37)

Remark 4.1 This section needs several improvements. For example Liouville measure is
missing in the last formula.

4.4.3 Emerging Weyl symmetry

If we count naively the number of field components in this gauge, it seems that we have
introduced one more: φ is one component, and hµν has three. Diffeomorphisms allow us to
fix two of the last three components, but there is still one off-shell degree of freedom. The
explanation is that we have adopted a redundant description of our system, and this last
component is not physical. As usual redundant components come with gauge symmetries
which allow to remove them.

What is the symmetry here? We note that the physical metric

gµν = e2φhµν (4.38)

is left invariant under the transformation

hµν = e2ωh′µν , φ = φ′ − ω. (4.39)

This emerging Weyl symmetry ensures that the counting of off-shell degrees of freedom is
still valid, since it allows us to remove the last component of hµν . This linear shift of φ
under a Weyl transformation also shows that φ can be interpreted as a Goldstone boson for
the broken Weyl invariance (by the choice of h) [34, p. 23].

Note that this emerging Weyl symmetry is not fundamental since it is very specific to
the conformal gauge, at the opposite of the Weyl symmetry (4.3): this last symmetry (when
it exists) can be used in any gauge and truly reduce the total number of off-shell degrees
of freedom, whereas the emerging Weyl is here only not to spoil the counting due to the
redundant notation [56]. To stress the distinction, the original Weyl symmetry acts in the
conformal gauge as

hµν = h′µν , φ = φ′ + ω. (4.40)
Another reason is that the decompositions

gµν = e2φhµν = e2φ′h′µν (4.41)

are both valid and should lead to the same action [41, p. 671].

Remark 4.2 (Comparison with a vector field) A similar description can be made for
a vector field Aµ. In general its action will be

S =
∫

ddx
(

1
4FµνF

µν + m2

2 AµA
µ

)
. (4.42)

If m2 = 0 then it enjoys a U(1) symmetry

A′µ = Aµ + ∂µα, (4.43)

which reduces the d components to d − 1 off-shell dofs, and furthermore to d − 2 on-shell
dofs. We can decide to separate the spin 0 component (removed by the gauge symmetry if it
is presents) from the spin 1 by writing

Aµ = Aµ + ∂µa, (4.44)
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where Aµ and a play respectively the roles of hµν and φ (from the point of view of Lorentz
representations, the trace of gµν is similar to the divergence of Aµ). The main difference with
the 2d gravity is that this is not really a gauge since we have a priori no other symmetries
to fix the components of Aµ. If the original system has a U(1) symmetry, then it acts as

A′µ = Aµ, a′ = a+ α (4.45)

We could fear that we enlarged our system to d+ 1 components, but we see that we have
an emerging U(1) symmetry

A′µ = Aµ + ∂µα, a′ = a− α. (4.46)

This last symmetry can be used to reduce the number of components of Aµ to d− 1 (we keep
a since a field Aµ describes a priori a mixing of spin 0 and 1, so here Aµ can be seen as a
pure spin 1).

The field a is the action and can have dynamics in the presence of chiral anomaly, exactly
in the same way as the field φ: this will be the topic of the later section 5.

4.5 Measures
4.5.1 General properties

We want to construct the measure associated to the different fields Φ appearing in our
action [62]: in order to define them we first define the variation δΦ on tangent field space
and an inner product

(δΦ1, δΦ2)g =
∫

d2σ
√
g γ(δΦ1, δΦ2), (4.47)

where γ is a metric on the δΦ space (see below to clarify). This product defines a norm

|δΦ|2g = (δΦ, δΦ)g =
∫

d2σ
√
g γ(δΦ, δΦ), (4.48)

Then we define the functional measure implicitly through a Gaussian integral such that∫
dgδΦ e− 1

2 |δΦ|
2
g = 1. (4.49)

The inner products have to respect reparametrization invariance and locality [56]. As
usual we desire that the measures be invariant under field translation by some function ε(σ)
(but this does not implies that the action be invariant).

All these norms will depend on the metric in a non-trivial way (at least in the volume
element), so we may face some difficulties when the metric over which we integrate.

We want to show that Gaussian measures are invariant under field translation

Φ(σ) −→ Φ′(σ) = Φ(σ) + ε(σ). (4.50)

This property is very useful because it allows to complete squares and shift integration
variables (for example to generate a perturbative expansion and to derive the propagator).

In fact you can see this as follow: shift Φ by ε in the integrand, and then change variables
to Φ′ = Φ + ε∫

dgΦ e− 1
2 |Φ+ε|2g =

∫
dgΦ′ det δΦ

δΦ′ e−
1
2 |Φ′|2g =

∫
dgΦ′ e−

1
2 |Φ′|2g = 1 (4.51)

The determinant is the Jacobian of the transformation and its value is simply 1, while the
last equality comes from the relabelling Φ′ → Φ.

Below we give the measure for the fields of spin 0, 1, 2 [16, 59].
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4.5.2 Scalar and vector field measures

The measures for the scalar and vector fields which respect locality, reparametrization and
field-translation invariance are unique [59]:

• scalar field X:
|δX|2g =

∫
d2σ
√
g δX2, (4.52)

• vector field V µ:
|δV µ|2g =

∫
d2σ
√
g gµν δV

µδV ν . (4.53)

4.5.3 Gravitational metric measure

In the case of the metric many choices come to us for the measure. The most general form
we have is

|δgµν |2 =
∫

d2σ
√
g Gµνρσ δgµνδgρσ (4.54)

where Gµνρσ is a metric on the symmetric rank 2 tensor tangent space.
Ultralocality 7 restricts its expression to be [86, p. 87]

Gµνρσ = gµρgνσ + c gµνgρσ, (4.55)

where c is some constant.
See [56] for some comments.
We want to show that the trace and the traceless part of the metric are orthogonal with

this inner product. Define the trace of δgµν as

gµνδgµν = 2δτ, (4.56)

and write δg⊥µν as the traceless part

δgµν = gµν δτ + δg⊥µν . (4.57)

Now compute the product

Gµνρσ δgµνδgρσ =
(
gµρgνσ + c gµνgρσ

)(
gµν δτ + δg⊥µν

)(
gρσ δτ + δg⊥ρσ

)
=
(
(1 + 2c)gρσδτ + gµρgνσδg⊥µν

)(
gρσ δτ + δg⊥ρσ

)
= 2(1 + 2c)(δτ)2 + gµνδτδg⊥µν + (1 + 2c)gρσδτδg⊥ρσ + gµρgνσδg⊥µνδg

⊥
ρσ

and after simplification

Gµνρσ δgµνδgρσ = 2(1 + 2c)δτ2 + gµρgνσδg⊥µνδg
⊥
ρσ, (4.58)

or in term of the original inner product:

|δgµν |2 = 2(1 + 2c)|δτ |2 +
∣∣δg⊥µν∣∣2, (4.59)

where the norm of δτ is the one defined for a scalar field (4.52), while the one for δg⊥µν is
the same as δgµν but with c = 0. We see here that |δgµν |2 is positive-definite only if [10]

c > −1
2 . (4.60)

7Authors of [5, sec. 2.3] argue that locality is not the most important condition for a theory of quantum
gravity, while background independence is a more natural requirement.
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We can absorb the coefficient with c in δτ and it will just contribute as an overall factor, so
its precise value has no physical meaning and we can choose c = 0 for convenience.

Since the two variation are orthogonal, the measure dggµν factorizes as

dggµν = dgτ dgg⊥µν . (4.61)

4.6 Computing path integrals
Let’s compute the path integral for a scalar field X

Z[g] =
∫

dgX e−S[g,X] (4.62)

with action
S = 1

4π

∫
d2σ
√
g (∂X)2 = − 1

4π

∫
d2σ
√
g X∆X. (4.63)

The equation of motion for X is
∆X = 0. (4.64)

The computation can be done by splitting the field into its (constant) zero-mode a
fluctuation around it [14]

X(σµ) = X0 + X̃(σµ), X0 = cst, ∆X̃ = 0. (4.65)

The zero-mode and the fluctuation can be taken to be orthogonal with respect to the scalar
product defined by (4.52)

(X0, X̃)g = 0 =⇒
∫

d2σ
√
g X̃ = 0. (4.66)

The latter fact implies that the measure on the scalar field can be separated

dgX = dX0 dgX̃ (4.67)

where the integration on X0 is a normal integration (not a path integral). Note that these
measures are not canonically normalised. To find the normalisation, the norm of the zero-
mode can be computed

|X0|2 =
∫

d2σ
√
gX2

0 = X2
0 A (4.68)

as they are constant.
Since we have normalised the measure dgX using (4.49), we can write

1 =
∫

dgX e− 1
2 |X|

2
=
∫

dX0 dgX̃ e− 1
2 |X0|2 e− 1

2 |X̃|2 =
√
π

A

∫
dgX̃ e− 1

2 |X̃|2 (4.69)

after performing the Gaussian integral on X0.
We are now able to compute the above path integral

Z[g] = (det′∆g)−1/2
∫

dX0

∫
dgX̃ e− 1

2 |X̃|2 = Ω
( π
A

det′∆g

)−1/2
(4.70)

where we used the formula (D.2), and Ω =
∫

dX0 is the volume of spacetime and the prime
indicates that we omit the zero-mode of the Laplacian.
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5 Liouville effective action for quantum gravity with
conformal matter

In the previous section we studied the Polyakov action at the classical level: the classical
cosmological constant vanishes and the resulting Weyl symmetry allows us to fix also the
last metric degree of freedom φ, which becomes non dynamical. Things are greatly different
at the quantum level: conformal anomaly forces a non-zero cosmological constant and a
dynamical Liouville mode.

To be clear: the last section was also quantum because we used path integral, ghosts,
and so on, but we did not compute any effective action. These will arise from the 1-loop
conformal anomaly.

The aim of this section is to determine the effective action Γ that we get after integrating
out the matter and ghost fields 8 in (4.31)

Z[g] ≡ Z[h, φ] = e−Γ[g] = e−Sµ[g] e−Seff[g] = e−Sµ[g] Zm[g] ∆FP[g], (5.1)

where g stands as a shortcut for g = e2φh. Including the integration over the metric gives

Z[h] =
∫

dgφ Z[h, φ]. (5.2)

Our formalism is very general and we can use any matter for Zm[g]. In this section
we consider generic fields ψ with action Sm[ψ, g] invariant under conformal symmetry. We
denote by c the central charge, and the partition function is 9

Zm[g] = e−Seff[g] =
∫

dgψ e−Sm , (5.3)

Seff[g] being the effective action. The stress–energy tensor T (m)
µν is traceless due to conformal

invariance.
From the effective action Seff we can compute the stress–energy tensor with quantum

corrections 〈
T (m)
µν

〉
= − 4π
√
g

δSeff
δgµν

= 4π
√
g

δ

δgµν
lnZm. (5.4)

Reversing the argument, we can compute the effective action if we know the quantum
stress–energy tensor, and we will follow this approach.

5.1 Conformal anomaly
5.1.1 General expression

At the quantum level, the stress–energy tensor is no more traceless because of the conformal
anomaly [48, p. 65, 68, p. 95, 83, p. 86–87]〈

T (m)
〉

= − c

12 Rg. (5.5)

For a computation from Feynman diagrams and current algebra see [37, sec. 3.2.2].
Since it is an anomaly this result is 1-loop exact and can receive only non-perturbative

corrections.
8In fact we will see that this is not exactly correct: the measure dgφ will also contribute to a term in Γ.
9The subscript m is for "matter", but all what we say in this section works if the ψ are ghosts.
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5.1.2 Adding the cosmological constant term

The anomaly computation is still valid when one includes Sµ since it does not depend on ψ
(which are the matter and ghost fields), so we can take it outside the integral dψ. This is
more clearly seen with the total partition function

Z[g] = e−Γ[g] = e−Sµ[g] Zm[g] = e−Sµ[g]
∫

dgψ e−Sm (5.6)

where Zm is (5.3), and each object contributes independently to the (quantum) stress–energy
tensor. Γ is the new effective action, basically

Γ = Seff + Sµ. (5.7)

We can compute the effective action by integrating scalar fields without taking Sµ into
account. The result is then

〈T 〉 = − c

12 Rg + 4πµ. (5.8)

More specifically this anomalous part is given because the action is not invariant at
quantum level, starting with (5.4):

〈Tµν〉 = 4π
√
g

δ

δgµν
lnZ = 4π

√
g

1
Z

δZ

δgµν

= − 4π
√
g

(
δSµ
δgµν

+
∫

dgψ
δSm
δgµν

e−Sm
)

which gives
〈Tµν〉 = − 4π

√
g

(
δSµ
δgµν

+
〈
δSm
δgµν

〉)
, (5.9)

and Ward identities tell that (quantum) non-invariance of Sm implies a non-zero expectation
value.

5.2 Derivation of the classical Liouville action
The derivation can be found in various places [69, 86, sec. 13.3].

5.2.1 Integrating the conformal anomaly

From the change of variable
gµν = hµν e2φ (5.10)

we get the variations (see also app. B.3)

δgµν = −2gµνδφ, (5.11)

or
gµν

δφ

δgµν
= −1

2 ,

we can obtain the effective action by integrating
〈
T (m)〉 from φ = 0 to φ, starting from〈

T (m)
〉

= − 4π
√
g
gµν

δSeff
δgµν

= − 4π
√
g
gµν

δφ

δgµν
δSeff
δφ

= 1
2

4π
√
g

δSeff
δφ

we deduce
δSeff
δφ

= − δ

δφ
lnZm = 1

2π
√
g
〈
T (m)

〉
. (5.12)
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Replacing
〈
T (m)〉 with (5.5) we get

δSeff
δφ

= 1
2π
√
g
(
− c

12 Rg
)

= − c

24π
√
h e2φ(Rh − 2∆hφ

)
e−2φ

from which we get that 10 [10, 68, p. 326, 83, p. 120]

Seff[ e2φh]− Seff[h] = − c

24π

∫
d2σ
√
h(−φ∆hφ+Rhφ) (5.13)

or after integrating by part

Seff[ e2φh]− Seff[h] = − c

24π

∫
d2σ
√
h(hµν∂µφ∂νφ+Rhφ). (5.14)

We define the right hand side to be the (bare) Liouville action without cosmological constant

sL = −6
c

(
Seff[ e2φh]− Seff[h]

)
= 1

4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+Rhφ

)
, (5.15)

and φ is called the Liouville mode. We see that the Weyl anomaly generates a kinetic
term for it so it becomes dynamical. Said another way the conformal anomaly avoid the
decoupling of the trace part which corresponds to a spin 0 field.

5.2.2 Partition function and transformation properties

At the end the old effective action is rewritten

Seff[ e2φh] = Seff[h]− c

6 sL. (5.16)

Taking the exponential gives the fundamental relation

Zm[ e2φh] = e c6 sL Zm[h] (5.17)

since we recall that
Zm[h] = e−Seff[h]. (5.18)

This can also be seen by integrating directly (5.15) [83, p. 119, 86, p. 83].
Then using the path integral representation (5.3) for Seff[h] we can deduce the transfor-

mation of the partition function under a Weyl transformation [46]

d e2φhψ = e c6 sLdhψ. (5.19)

Since the action (5.3) for ψ is invariant at the classical level, the anomaly must come from
the measure dgψ.

From now on we omit the index h on the curvature, except when it is needed to avoid
confusion.

10Factor 2 disappears because the primitive of 2φ is φ2. Idem the primitive of 2 e2φ is e2φ (if we integrate
the cosmological constant term).
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5.3 Application to 2d gravity
We now apply the results of the previous section to the partition function of 2d gravity (5.1)

Z[g] = e−Γ[g] = e−Sµ[g] e−Seff[g] = e−Sµ[g] Zm[g] ∆FP[g]. (5.20)

There the ghosts behave exactly as normal matter, such that we can use the same formula
for all the derivation. The peculiar point will come from the negative sign which will be
really important.

Let’s denote by cm and cg the central charges for matter and ghosts. The central charge
for all the ghosts is −26:

cg = −26. (5.21)
We define the central charge

c = −cg − cm = 26− cm. (5.22)

With these notations the relation (5.8) reads

〈T 〉 = c

12 Rg + 4πµ. (5.23)

Because of our definition of c the first term in this formula differs by a minus sign with
respect to (5.8) (and thus also with the other formula).

Using the results of the previous section for (5.1) with

e−Seff[g] = Zm[g] ∆FP[g] (5.24)

and c given above, we find
Seff[ e2φh] = Seff[h] + c

6 sL, (5.25)

or written in term of the partition function

Zm[g] ∆FP[g] = e− c6 sL Zm[h] ∆FP[h] (5.26)

Then the total effective action is [10, sec. 2]

Γ[ e2φh] = Seff[h] + c

6 sL + Sµ (5.27)

where
Sµ = µ

∫
d2σ
√
h e2φ. (5.28)

We can redefine the cosmological constant µ→ cµ/6 [86, p. 121] and get

Γ[ e2φh] = Seff[h] + c

6 SL (5.29)

where the complete (bare) Liouville action is now 11

SL[h, φ] = 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+Rhφ+ 4πµ e2φ

)
. (5.30)

11If we had integrated (5.8), then the cosmological constant term would have been 4πµ ( e2φ − 1) [29,
sec. 9]; but the additional term is independent of φ. The relation would have been

Γ[ e2φh] = Γ[h] +
c

6
SL.
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The path integral (5.2) for 2d gravity thus reduces to

Z[h] =
∫

dgφ e− c6SL Zm[h] ∆FP[h]. (5.31)

We note that the Liouville measure, coming from (4.31), is still given by the metric g = e2φh;
we will discuss this problem in sec. 5.5. Moreover the path integral seems to be well defined
only if c ≥ 0, that is cm ≤ 26, otherwise the exponential factor would come with a positive
sign; we will come back later to this problem.

In the last expression Zm[h] and ∆FP[h] do not depend on φ and they can be taken
outside the φ integration; we get three decoupled sectors: the matter, the ghosts and the
Liouville mode [67]

Z[h] = Zm[h] ∆FP[h]
∫

dgφ e−SL (5.32)

where we have defined
SL = c

6 SL. (5.33)

5.4 Few properties of the classical Liouville action
As we said this theory is not yet well-defined because the measure over φ is dgφ: to get
the final expression we need to transform this measure to dhφ. General arguments indicates
that contributions of this transformation can be reabsorbed into the coefficients of the terms
in the action, so it is equivalent to a renormalization of these parameters. For this reason
it will be interesting to use different names for the parameters in front of the different
terms since they may receive different corrections. This explains why we speak of classical
Liouville gravity even it it arises as an effective action: to really get the full quantum effective
action we need to take into account all contributions. Moreover we will see later that the
semi-classical limit is given by the classical Liouville action (sec. 6.8), hence the name is
well-chosen.

5.4.1 Central charge

In the previous section we derived the classical Liouville action (5.33). We introduce the
parameters

Q = 1
b

=
√
c

6 (5.34)

and we rescale the Liouville field and the cosmological constant

φ −→ bφ (5.35)

in order to get 12

SL = 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+QRφ+ 4πµ e2bφ

)
. (5.36)

With these parameters, the physical metric g reads [34, p. 19]

gµν = e2bφhµν . (5.37)

The emerging Weyl symmetry (4.39) is then modified and can be written in two equivalent
way

hµν = e2bωh′µν , φ = φ′ − ω. (5.38a)
12We write SL for SL.
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or [34, p. 23]
hµν = e2ωh′µν , φ = φ′ − 1

b
ω = φ′ −Qω. (5.38b)

In section 6.4 we will prove that the trace of the stress–energy tensor (6.29) is given by

T = −Q
2

2 R. (5.39)

Comparing with (5.5) and writing
T = −cL12 R, (5.40)

we can thus interpret the Liouville action as a conformal field theory with central charge

cL ≡ c = 6Q2 = 26− cm. (5.41)

This is a very striking fact since the action presented here is purely classical but already
shows some quantum features [12].

If we interpret the Liouville sector as independent, then the total central charge of the
theory vanishes

ctot = cL + cm − 26 = 0. (5.42)

So even if we replace the Polyakov action by some other kind of matter, the Liouville central
charge will take the necessary value to cancel the total central charge. Then in any case the
full theory is conformally invariant.

The result presented here can also be found by using canonical quantization and studying
the Virasoro algebra [54].

5.4.2 Polyakov action and critical string theory

The matter is made of d scalar fields Xµ. The central charge for one scalar field is 1, and
we have d of them, so

cm = d. (5.43)

The formula (5.17) gives for Zm[g] and ∆FP the following transformation

Zm[ e2φh] = Zm[h] e
cm

6 SL , ∆FP[ e2φh] = ∆FP[h] e− 26
6 SL . (5.44)

Translating this to the measures we have

dgX dgbdgc = e−
(26−cm)

6 SL dhX dhbdhc. (5.45)

Both terms cancel if cm = 26 – or c = 0 – (which justify the string theory procedure). If
cm 6= 26 then quantizing quantum gravity reduces to the quantization of Liouville theory.
Another way to reach c = 0 is to add conformal matter which will contribute to Weyl
anomaly [86].

5.5 Changing the Liouville mode measure
We may think that the measure over the Liouville mode dgφ is the same as any scalar field
and that the Jacobian will be the same when changing the variable from g to h, but this
would be a mistake [86, sec. 14, 21]. In fact the measure is defined from the norm [16]

|δφ|2 =
∫

d2σ
√
g δφ2 =

∫
d2σ
√
h e2φδφ2, (5.46)
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which depends on the field φ and not only on its variation. Thus this expression is Weyl
invariant, but it is not invariant by translation, and we do not know how to make sense of
this measure for the quantum theory. For this reason we want to find a new measure dhφ
defined with respect to the norm 13

|δφ|2 =
∫

d2σ
√
h δφ2. (5.47)

The change of variables reads [56]

dgφ = dhφ DetJ (5.48)

where the operator inside the Jacobian DetJ is

J = δgµν(σ)
δhµν(σ′) = e2φ(σ)δ(2)(σ − σ′). (5.49)

Several approaches are possible to find the expression of the Jacobian:

1. make some assumptions on its form and show that it is given by the Liouville action
with different parameters, as was done by David and Distler and Kawai (DDK) [13,
16];

2. make an ansatz for the stress–energy tensor, and ask for the closure of Virasoro alge-
bra [78];

3. compute it explicitly as did Mavromatos and Miramontes [10, 11, 56].

Finally note that [20] propose to define rigorously the Liouville measure by parametrizing
the Liouville field in terms of the area and a Kähler potential: this allows them to use
Bergmann matrices and tools from matrix models.

5.5.1 Ansatz for the jacobian

One can argue that the Jacobian DetJ should take the same form as Liouville action since
there is no other possible term allowed by the symmetries, thus it leads to a renormalization
of the coefficient appearing in the Liouville action [13, 16, 47, app. E, 48, p. 148–150, 86,
p. 7], that we defined to be

SL = 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+QRφ+ 4πµ e2bφ

)
(5.50)

and we will fix the relation between them by asking that the physical metric g does not
depend on the specific splitting we choose, as discussed when we fixed the gauge (sec. 4.4.3);
we will mainly use [34, p. 17–19, 86, sec. 21.2] for the derivation. This has the same form
as (5.36) but Q and b are now independent. Remember that we called the Liouville action
without cosmological constant sL.

However the computations is more difficult here: for the classical action the three trans-
formations (5.38) were equivalent (recall that we used these ones to keep the exponential
term invariant). But the parameters b and Q receive different corrections; naively we may
try to keep the transformation in terms of b since it is the most obvious candidate to keep
e2bφ invariant. But then we would discover that the kinetic and curvature terms are not
invariant. . . Moreover exponentials of quantum fields can get anomalous dimensions from

13In [86, p. 120] it is said that one believes that we can replace a non-linear measure by a linear one by
adding local terms to the Lagrangian.
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quantum corrections, and it would spoil the transformation with b. Thus we use the last
transformation

hµν = e2ωh′µν , φ = φ′ −Qω, (5.51)

and it will appear to be correct. Another approach would be to transform h normally and
then shift φ by some function, which is determined by the invariance of the kinetic plus
curvature terms [86, sec. 21.2]. At the end we need to show that the cosmological constant
term is invariant independently (see section 5.6).

Transforming the kinetic and curvature terms The inverse metric transforms as

hµν = e−2ωh′µν (5.52)

and the kinetic term reads
√
hhµν∂µφ∂νφ =

√
h′ h′µν∂µ (φ′ −Qω) ∂ν (φ′ −Qω)

=
√
h′ h′µν

(
∂µφ

′∂νφ
′ +Q2 ∂µω∂νω − 2Q∂µφ′∂νω

)
.

We recall the formula
R = e−2ω(R′ − 2∆′ω). (5.53)

before computing the transformation of the curvature term:
√
hRhφ =

√
h′ e2ωR (φ′ −Qω) =

√
h′ (R′ − 2∆′ω) (φ′ −Qω)

=
√
h′ (R′φ′ −QR′ω − 2φ′∆′ω + 2Qω∆′ω)

=
√
h′ (R′φ′ −QR′ω) +

√
h′ h′µν(2 ∂µφ′∂νω − 2Q∂µω∂νω)

where the last step is an integration by part (valid under integral). Adding these two pieces,
the cross term ∂µφ

′∂νω cancels and we get

s′L = 1
4π

∫
d2σ
√
h′
(
h′µν∂µφ

′∂νφ
′+QR′φ′

)
− Q

2

4π

∫
d2σ
√
h′
(
h′µν∂µω∂νω+R′ω

)
, (5.54)

that is
s′L[φ′, ω] = sL[φ′]−Q2 sL[ω]. (5.55)

We also need to take into account the transformation of the path integral measures of
the other sectors. From the expression (5.26) we get

Zm[h] ∆FP[h] = e− c6 sL[ω] Zm[h′] ∆FP[h′], c = 26− cm. (5.56)

The measure for φ is invariant under its translation since we made it this way. Since ω is
a Weyl rescaling independent of φ, the measure for φ transforms as the one for a normal
scalar field [41, p. 673]

d e2ωhφ = e 1
6 sLdhφ. (5.57)

Adding all the pieces together, we see that the variation is given by

δS =
(
c− 1

6 −Q2
)
sL, (5.58)

and it vanishes if
c = 1 + 6Q2, (5.59)
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or written differently

6Q2 = 25− cm, Q =
√

25− cm
6 . (5.60)

Again this means that the total central charge vanishes

ctot = c+ cm − 26 = 0, (5.61)

and the quantum Liouville theory (plus the ghosts and matter) thus possesses exact confor-
mal symmetry at the quantum level, with respect to the h metric. We can interpret the 1 in
c as the quantum correction (due to one scalar field) to the classical central charge 6Q2 [12].

An infinitesimal derivation exists [34, p. 18–19, 67, sec. 3]. There is also a mixed deriva-
tion in [41, sec.25.1].

Transforming the cosmological constant term In a conformal theory, exponentials
e2aφ receive quantum corrections to their dimensions

∆( e2aφ) = a(Q− a). (5.62)

Since every term in an action should have conformal dimension (1, 1), the coefficient b from
the cosmological constant term should satisfies

b(Q− b) = 1 (5.63)

or
Q = 1

b
+ b. (5.64)

Again we recognize a quantum correction to the classical value b−1, and we recover this
value in the semi-classical limit b→ 0.

5.5.2 Explicit computation

We will compute the determinant of (5.49) using standard techniques [56].
In order to find the φ dependence of DetJ for

J = δgµν(σ)
δhµν(σ′) = e2φ(σ)δ(2)(σ − σ′) (5.65)

we look at the variation σ → σ + δσ of its logarithm [6]. Then integrating will give the
effective action Seff.

Its logarithm gives the effective action, and for a small variation δφ it reads

δSeff = ln DetJ = Tr lnJ = 2
∫

d2σ δφ(σ) δ(2)(0). (5.66)

The δ(2)(0) is infinite and does not make sense, so we need to regularize it: we replace it by
G(ε;σ, σ′) where G is the heat kernel of the Laplacian (C.40). Its small time expansion is

G(ε;σ, σ′) = √g
(

1
4πε + 1

12π Rg

)
=
√
h

(
e2φ

4πε + 1
12π (Rh + 2∆φ)

)
(5.67)

We can now replace

δSeff = 2
∫

d2σ
√
h δφ

(
e2φ

4πε + 1
12π (Rh + 2∆φ)

)
(5.68)
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We can integrate and get the effective action (after an integration by part)

Seff = 1
4πε

∫
d2σ
√
h e2φ + 1

12π

∫
d2σ
√
h (∂µφ∂µφ+Rhφ). (5.69)

The cosmological constant piece is divergent and we need to introduce counter-terms

Sct = µ0

ε

∫
d2σ
√
h e2φ + Sfin. (5.70)

The first piece removes the divergence, whereas Sfin contains all the finite (and arbitrary)
counter-terms that are allowed by the (quantum) symmetries; especially it needs to be
invariant under the (emerging) Weyl symmetry:

Sfin[h, φ] = Sfin[ e2ωh, φ− ω]. (5.71)

For the moment we consider Sfin = 0 and we will come back on this point later (sec-
tion 5.6), where we will also discuss the cosmological constant term renormalization. Then
the effective action is 14

Seff − Sct = 1
12π

∫
d2σ
√
h (∂µφ∂µφ+Rhφ) = 1

6 sL. (5.72)

By looking at formula (5.25) we see that adding this term amounts to renormalize the central
charge from c = 6Q2 to

c = 1 + 6Q2 (5.73)
in agreement with the previous section.

The previous computation is not totally rigorous: we obtained the renormalization for
the central charge c directly from the kinetic and curvature terms, but the computation of
b is still a bit ad hoc. It is possible to improve this computation by using other methods
(a better heat kernel, Schwinger–Dyson equations, background field expansion and Ward
identities for the Weyl symmetry) [10, 11].

In [10], D’Hoker checks that Green functions computed with both measures and actions
agree at all order in a perturbative development in b (the zero-mode is treated exactly). But
then additional non-perturbative divergences arise for c < 0 and lead to shrink the radius
of convergence to zero. He concludes that even if we can find agreement for the expansion,
it is not sure that Liouville it renormalizable non-perturbatively.

5.5.3 Summary

The quantum Liouville action

SL = 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+QRφ+ 4πµ e2bφ

)
(5.74)

is defined by the parameters

c = 1 + 6Q2, Q =
√

25− cm
6 = 1

b
+ b. (5.75)

We end this section by a comment on the previous derivations. The DDK approach
does not have any firm foundation, and the direct computation raises also some questions.
The main problem is to assume that one can separate the kinetic and curvature terms
from the cosmological constant: the first are used to compute the Jacobian, the second the
renormalization of the interaction. But the effect of one on the others has been ignored [10,
sec. 5]. It is only recently that a non-perturbative approach has been found [5, 19, 20].

14We have a factor 1/2 wrong.
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5.6 Interactions with matter
In section 5.5.2 we saw that we can add finite counter-terms to our action: if we have
a matter theory with (spinless) fields ψi of conformal dimensions ∆i, then [13, 16] (see
also [34, p. 21–22, 47, app. E, 53, sec. 1, 56, 78, sec. 4.3])

Sfin =
∑
i

Ui

∫
d2σ
√
h ψi e2aiφ, (5.76)

where Ui are coupling constants. Matter fields are gravitationally dressed by exponentials
of the Liouville field to ensure that the whole term has conformal dimension (1, 1). The
conformal dimension hi = ai(Q− ai) of the exponential is such that

∆i + hi = ∆i + ai(Q− ai) = 1. (5.77)

Solutions for ai are

ai = Q

2 ±
1
2
√

∆i − 1 +Q2 = Q

2

(
1±

√
1 + ∆i − 1

Q2

)
, (5.78)

and replacing the value of Q gives 15

ai =
√

25− cm
24

1−

√
1 + 24(∆i − 1)

25− cm

 . (5.79)

In the semiclassical limit b→ 0, or cm → −∞, we should have

ai = 1−∆i (5.80)

and this selects the minus sign.
The effect of including these terms is to define the theory outside from the critical point,

for matter coupled to Liouville 16.
If we have no matter we still have the identity operator with ∆i = 0, and it will contribute

as
Sfin = Λ

∫
d2σ
√
h e2bφ. (5.81)

Since this "renormalized" cosmological constant has been generated as a finite counter-term,
its coefficient is arbitrary. The exponent is real if cm < 1 or cm > 25.

In the general case, we also have cm < 1 or cm > 25 if we allow imaginary ai for i 6= 0,
otherwise we should restrict to cm < 1.

Finally to end the coupling of the conformal matter to gravity, we need to replace deriva-
tive by minimal coupling, and to dress all the operators.

5.7 Non-local effective action
The trace of the equation for the effective action (5.4)

− 4π
√
g
gµν

δSeff
δgµν

= 4π
√
g
gµν

δ

δgµν
lnZm =

〈
T (m)

〉
= c

12 R (5.82)

15Note that [13, 56] got the formula wrong as they forgot the square root for the first factor.
16All these terms are marginal operators.
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can be directly integrated without having to choose a gauge [69]

Seff = c

6

∫
d2σ1d2σ2

√
g(σ1)

√
g(σ2)Rg(σ1)G(σ1, σ2)Rg(σ2) (5.83)

where G is the Green function for the Laplacian ∆g and this action is covariant. The price
we pay for not introducing a gauge is that the action is non-local. Note that we do not
include the cosmological constant for the moment.

A perturbative analysis is done in [42].
It is said that this action is equivalent to the Liouville one and emerges as the quantum

effective action of conformal matter, but this is not true at finite area because fixing the gauge
involves the Mabuchi action (see section 14) while the latter never appears for conformal
matter [19, sec. 3.2.4].

As we see here there are no emerging Weyl symmetry, explaining why this symmetry is
less fundamental.

We may introduce an auxiliary field ϕ such that the action becomes local

S = c

6

∫
d2σ
√
g
(1

2 g
µν∂µϕ∂νϕ+QRgϕ

)
. (5.84)

This action looks like Liouville, except that it is formulated in terms of the physical metric
g; in fact this action corresponds to 2d dilatonic gravity. Then we can go the conformal
gauge and get an action for ϕ and φ. One the field should not be dynamical.

5.8 Comment on Liouville action status
Here we got Liouville gravity as the effective 2d gravity: it is the exact perturbatively since
we derive it from an anomaly and we know that anomalies are 1-loop exact (but nothing
prevents non-perturbative corrections). But we should not forget that the Liouville action is
really the gravity action, and the Liouville mode should be treated as matter. In this sense
the metric h that appears is not physical.

Nonetheless it is possible to study Liouville action by itself without referring to 2d gravity,
and then the Liouville mode corresponds to the matter, while h is the physical metric. From
this point of view it is also possible to couple the Liouville action to (tree-level) gravity,
and this system will be really different from pure 2d gravity (the idea is similar to dilaton
gravity).

This is just a perspective choice, but one has to be clear about one’s position.

5.9 Gravitational anomaly
In the rest of this paper we consider the Liouville action, obtained from the conformal
anomaly, as the effective action for 2d quantum gravity. Starting from the equations of
motion

∇µTµν = 0, T = c

12 R, (5.85)

using the change of variable
T̃µν = Tµν −

c

12 Rgµν (5.86)

one can trade the conformally anomaly for a gravitational anomaly

∇µT̃µν = − c

12 ∂νR, T̃ . (5.87)

The first formula can be made Weyl covariant, and it is the starting point for another
effective action. This path has been studied in [44, 45].
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6 Properties of Liouville action
In this section we study the Liouville action for itself, without referring anymore to its origin.

In particular we will use two approximations:

• minisuperspace: consider only the time dependence;

• ultralocal: consider only the constant dependence.

6.1 Definitions
The Euclidean Liouville action is

SL = 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+QRφ+ 4πµ e2bφ

)
(6.1)

with parameters

c = 1 + 6Q2, Q =
√

25− cm
6 = 1

b
+ b. (6.2)

We note that the Liouville action is very similar to that of the Coulomb gas (sec. C.5) with
an imaginary background charge Q = −iq. We can express b in terms of Q [16, 34, p. 19]

b = Q

2 −
1
2
√
Q2 − 4 = 1√

24

(√
25− cm −

√
1− cm

)
, (6.3)

and we choose the minus sign to get agreement with the semi-classical limit b → 0 [10,
sec. 4].

The potential will be denoted by

U(φ) = µ e2bφ. (6.4)

The cosmological constant needs to be positive in order to have a well-defined path integral
(see section 4.2). We will find that µ ≥ 0 is also necessary within the Hamiltonian formalism.
Since the path integral is invariant under constant shift of φ→ φ+ c the value of µ can be
changed at will since

µ e2bφ −→ (µ e2bc) e2bφ. (6.5)

If µ > 0 then the new cosmological constant is also positive as the exponential is always
positive.

Even if we will rarely use it except to gain some intuition, the original (and physical)
metric g is [34, p. 19]

gµν = e2bφhµν . (6.6)

Because of this splitting the Liouville action (6.1) is invariant under Weyl transformations

hµν = e2ωh′µν , φ = φ′ −Qω. (6.7)

6.1.1 Coordinates

In order to avoid some IR divergences, we compactify the space direction on a circle in order
to obtain a cylinder [48, sec. 4.3]

τ ∈ R, σ ∈ [0, 2π[. (6.8)
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In order to use all the tools of radial quantization we will also study the theory on the
plane. For this we can use a Weyl transformation (6.7) such that h′ = δ. Then the action
becomes

SL = 1
4π

∫
d2σ′

(
∂µφ∂

µφ+QRφ+ 4πµ e2bφ
)

(6.9)

where σ′ are coordinates on flat space. We kept the curvature term even if R = 0 because
it will contribute to the equations of motion.

This map for other quantities is easier to establish in complex coordinates and we delay
the discussion to section 6.5.

6.1.2 Values of the central charge

For cm ≤ 1 both b and Q are real and this is the domain where the theory is the best
understood (we speak about spacelike Liouville theory); on the other hand we loose the
spacetime interpretation of strings except for cm = 1 (where we can use Polyakov action
with d = 1).

For cm > 25 both Q and b are pure imaginary [16]: then it makes sense to do a Wick
rotation on Q, b and φ in order to obtain real parameters; this theory is called timelike
Liouville, we will study it in section 13. In this case the kinetic term changes sign since
c < 1. Especially for cm = 25 the field X0 = −iφ provides the timelike coordinate and we
get back critical string theory.

Finally for the interval cm ∈]1, 25[, Q is imaginary and b is complex and we don’t have
much control in the continuum approach.

For cm ≤ 1 it might me convenient to represent the matter sector as a Coulomb gas with
a charge q (see section C.5) [16, sec. 5]. In [10] the authors comments on the various ranges,
and he argues that doing an analytic continuation of the parameters may help to regularize
the divergences.

6.2 Partition function at fixed area
It is possible to expand the partition function as

Z =
∑
g

∫
dA Zg[A] (6.10)

where g is the genus and A the area.
We define the partition function at fixed area A by [16, 34, p. 20]

Z[A] =
∫

dφ e−SL δ
(∫

d2σ
√
h e2bφ −A

)
. (6.11)

In [16] the authors explain why this delta function may be ill-defined, and that we are saved
by the fact that µ is arbitrary. Then the partition function can be recovered through the
Laplace transform

Z =
∫

dA e−µAZ[A]. (6.12)

The correlation function at fixed area of an operator O is defined by

〈O〉A = Z[A]−1
∫

dφ O e−SL δ
(∫

d2σ
√
h e2bφ −A

)
. (6.13)

Several scaling laws can be obtained using this partition function. For example the
critical string exponent γstr (to be determined in the next section) is defined by

Z[A] ∼ Aγstr−3. (6.14)
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If one adds some matter interaction (see section 5.6)

Sint =
∫

d2σ
√
h ψ e2aφ, (6.15)

where ψ is a primary field of dimension ∆0, then the gravitational scaling dimension ∆ is
defined by

〈Sint〉A ∼ A
1−∆. (6.16)

6.3 Critical exponents
From formula (5.17) we can easily get the way the partition function depends on the size of
the system for µ = 0 [13, 86, p. 84]. Take φ = lnL, then the rescaling

gµν −→ L2gµν (6.17)

gives
Z[L2g] = e−

c
24π lnL

∫
d2σ
√
gR Z[g] = e− c6 (1−g) lnL2

Z[g].

We thus find that
Z[L2g] = AκZ[g], κ = c

6(1− g). (6.18)

The critical exponent γ is given by [33, p. 9–10]

κ = (γ − 2)(1− g)− 1 =⇒ γ = 1
12

(
d− 1−

√
(d− 1)(d− 25)

)
= − 1

m
(6.19)

where m is defined by
c = 1− 6

m(m+ 1) . (6.20)

Note that d > 25 does not make sense. For pure gravity one has

d = 0, m = 2, γ = −1
2 . (6.21)

6.4 Equations of motion and classical solutions
6.4.1 Equations

Our first interest is in computing the hµν and φ variations of SL (6.1)

δhSL = 1
4π

∫
d2σ
√
h δhµν

[
− 1

2 hµν

(
hρσ∂ρφ∂σφ+QRφ+ 4πµ e2bφ

)
+
(
∂µφ∂νφ+QRµνφ+Q

(
hµν∆φ−∇µ∇νφ

))]
,

(6.22a)

δφSL = 1
4π

∫
d2σ
√
h δφ

(
− 2∆φ+QR+ 8πµb e2bφ

)
. (6.22b)

The equation of motion for φ
δSL
δφ

= 0 (6.23)

gives [34, sec. 3.1]
QR[h]− 2∆φ = −8πµb e2bφ. (6.24)
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For flat fiducial metric h = δ it reduces to [63, sec. 2.3]

∂µ∂
µφ = 4πµb e2bφ. (6.25)

We can now compute the stress–energy tensor associated to the hµν metric

Tµν = − 4π√
h

δS

δhµν
(6.26)

which reads

Tµν = −
(
∂µφ∂νφ−

1
2 hµνh

ρσ∂ρφ∂σφ

)
+Q

(
∇µ∇νφ− hµν∆φ

)
+ 2πµ e2bφhµν . (6.27)

The trace of this tensor is
T = −Q∆φ+ 4πµ e2bφ. (6.28)

Using the equation of motion (6.24) we can rewrite it as

T = −Q
2

2 R. (6.29)

Taking into account the anomalous contribution of φ, we get the quantum expectation

〈T 〉 = − c

12 R = − 1
12 −

Q2

2 R. (6.30)

6.4.2 Classical solutions

6.4.3 Backlünd transformation

Liouville theory can be mapped to a free field by a Backlünd transformation [9, 79, app. A.1].

6.5 Complex coordinates
6.5.1 General computations

It is interesting to use complex coordinates to study Liouville theory [34, sec. 3.1, 3.3, 40,
sec. 2], since it brings the discussion closer to usual CFT. If µ = 0, then Liouville theory
would just be a CFT; but this situation is more difficult (for example product of exponentials
are not given by a free field expansion).

If we have some coordinates z, then we recall that the metric reads

ds2 = hµνdσµdσν = hzz̄dzdz̄. (6.31)

Under a conformal transformation, the metric changes as

hww̄ =
∣∣∣∣dwdz

∣∣∣∣2hzz̄, (6.32)

and from this we read the conformal factor

ω = ln
∣∣∣∣dwdz

∣∣∣∣. (6.33)

As a consequence the Liouville mode transforms as (6.7)

φ′ = φ−Q ln
∣∣∣∣dwdz

∣∣∣∣. (6.34)
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Note that this reduces to
φ′ = φ− 1

b
ln
∣∣∣∣dwdz

∣∣∣∣ (6.35)

in the semiclassical limit. Then its derivative follows

∂zφ −→
dw
dz ∂wφ+Q

d
dz ln

∣∣∣∣dwdz
∣∣∣∣. (6.36)

The field ∂φ transforms inhomogeneously, thus it is not a primary field.
We can guess that fields e2aφ will be primary fields since they transform as [40, sec. 2.2,

78]

e2aφ(z) −→ e2aφ(w) =
∣∣∣∣dwdz

∣∣∣∣2aQ e2aφ(z) (6.37)

(we consider only the holomorphic part).
Let’s compute the change of T under a transformation w = w(z). We plug (6.36) into

the expression (6.49) (omitting absolute values)

T ′zz = −1
2

(
w′ ∂wφ+Q

d
dz lnw′

)2
+Q

d
dz

(
w′ ∂wφ+Q

d
dz lnw′

)
.

and after simplification we get

T ′zz = (w′)2
Tww̄ +Q2 S(w, z) (6.38)

with
S(w, z) = d2

dz2 lnw′ − 1
2

(
d
dz lnw′

)2
. (6.39)

We used the fact that
d
dz lnw′ = w′′

w′
(6.40)

in order to cancel the term proportional to Q∂wφ.
The first term is the usual term that we get from transforming a rank 2 tensor. The

other term needs a bit more thought for its interpretation. First we note that

S(w, z) = Tzz̄(φ = lnw′). (6.41)

Operating with all the derivatives, we obtain

S(w, z) = w′′′

w′
− 3

2

(
w′′

w′

)2
(6.42)

which is the usual expression of the Schwartzian derivative. This formula is valid also for
generic coordinates, just that the proof is harder.

This is a great fact that one can obtain this expression by a simple computation, whereas
proving this formula just from CFT computation is much longer. It is also very nice to see
that we have a classical field theory (in the semiclassical limit) which possesses nevertheless
many features of quantum CFT.
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6.5.2 From the cylinder to the plane

Let’s consider S2. Two sets of complex coordinates will interest us

w = τ + iσ, z = ew = eτ+iσ. (6.43)

The first coordinates describe a cylinder, while the second describes the complex plane. For
this reason the metric in z-coordinates is flat

ds2 = dzdz̄. (6.44)

We will mostly work in z-coordinates and use the previous rules to translate the result in
w-coordinates (and thus in terms of τ and σ).

In this case the curvature term of the action disappears and one needs to impose the
boundary condition [40, sec. 2.1]

φ(z, z̄) −−−−→
|z|→∞

−Q ln |z|2 +O(1). (6.45)

This ensures that the physical metric is smooth on S2, see (6.34). This is equivalent to
concentrating the curvature at infinity through the insertion of an operator there (cf also
the discussion with the Coulomb gas).

Putting the theory on the sphere directly may introduce divergences, and for regulating
them one needs to set a cutoff for the integration and to introduce boundary terms. Hence
the action is equivalent to the large R of

SL = 1
4π

∫
D

d2σ (∂µφ∂µφ+ 4πµ e2bφ) + Q

π

∫
∂D

dθ φ+ 2Q2 lnR. (6.46)

The equation of motion (6.24) reads

∂∂̄φ = 4πµb e2bφ, (6.47)

while the stress–energy tensor (6.27) is

T = −(∂φ)2 +Q∂2φ+ 2πµ e2bφ, (6.48)

or after using the equation of motion

T = −1
2(∂φ)2 +Q∂2φ. (6.49)

It is straightforward to check that Tzz̄ = 0. The last term is is called an improvement term:
if we had set directly R = 0 into the action, then we would miss it. Again we note the
similarity with the Coulomb gas expression (section C.5).

The Schwarzian derivative (2.6) for the change of variables

w = ln z (6.50)

reads
S(w, z) = 1

2z2 , (6.51)

and we get the expression for Tww̄

Tww̄ = −1
2(∂φ)2 +Q∂2φ+ Q2

2 . (6.52)
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The difference between the two tensors is just a constant shift of the vacuum energy.
The vertex operator e2aφ on the cylinder creates a state with momentum

ip = a− Q

2 (6.53)

on the cylinder because of the anomalous term in the transformation (6.36) of ∂zφ

∂zφ −→
1
z

(∂wφ−Q) . (6.54)

This last property may seem to be incompatible with the action (6.1) since it contains
the operator

Vb = e2bφ (6.55)
which, on the cylinder, is transformed to

Vb = e(2b−Q)φ. (6.56)

But the point is that the term
√
hVb has been designed to be Weyl invariant, which implies

that we still have Vb for any choice of h, and the term looks the same on both the plane and
the cylinder – this is a consequence of the Weyl invariance (6.7).

6.6 Lorentzian theory
According to the discussion on Wick rotation in appendix A.4, the Liouville action gets an
additional minus sign for Lorentzian signature [67, pp. 125–126]

SL = − 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+QRφ+ 4πµ e2bφ

)
. (6.57)

6.6.1 Hamiltonian formalism

The canonical momentum conjugate to φ is

p = δS

δφ̇
= φ̇

2π . (6.58)

We see that µ should be positive otherwise the Hamiltonian is unbound from below.
Note also that for Euclidean signature the Hamiltonian is negative.

6.6.2 Minisuperspace

The minisuperspace approximation (also called reduced particle dynamics) consists in treat-
ing the Liouville mode as constant over space [32, sec. 2.4, 57]

φ(t, σ) = φ0(t), (6.59)

and by considering only the flat metric. A lot of subtleties of Liouville theory already appear
in the treatment of this zero mode.

The action becomes 17 [34, sec. 3.4, 86, sec. 22.3]

S =
∫
Ldt =

∫
dt
(
φ̇2

0
2 − 2πµ e2bφ0

)
(6.60)

17Note that many authors [57] write the Euclidean Liouville action before giving the minisuperspace
equation, and the switch to Lorentzian signature is implicit.

38



taking into account the integration over σ ∈ [0, 2π], and the dot denotes the derivative with
respect to the time.

The conjugate momentum is 18

p0 = φ̇0 (6.61)
and we can find the Hamiltonian [78, sec. 4.2]

H0 = p0φ̇0 − L = p2
0
2 + 2πµ e2bφ0 . (6.62)

Note that if we had taken Euclidean signature the Hamiltonian would have been negative
definite.

6.7 States
In this section we begin by describing the states, and we will show later how to obtain them.
Normalisable states can be found from minisuperspace analysis, while the non-normalisable
ones cannot.

Primary states are vertex operators

Va = e2aφ. (6.63)

Recall that the associated weight is

ha = a(Q− a). (6.64)

The momentum a can generically be written as

a = Q

2 + ip, (6.65)

with associated weight

h = Q2

4 + p2 = c− 1
24 + p2. (6.66)

As we are asking for unitarity, the conformal dimension needs to be positive

h ≥ 0. (6.67)

Solving this inequality implies that the spectrum is made of two categories of states:
• normalisable

p ∈ R, h ≥ Q2

4 = c− 1
24 ; (6.68)

• non-normalisable

a ∈ [0, Q], p ∈ i
[
−Q2 ,

Q

2

]
, 0 ≤ h ≤ Q2

4 = c− 1
24 . (6.69)

Note that due to the reflection property of vertex operators, one can restrict states to

p ∈ R+ (6.70)

and to
a ≤ Q

2 , (6.71)

the latter being known as the Seiberg bound.
When studying the semiclassical approximation, two types of states will be singled out:

18Note that the minisuperspace momentum is related to the full momentum by p = p0/2π which means
that p is a spatial density, as it is usual when discretizing space in QFT.
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• Light states: their momentum is proportional to b, i.e.

a = b σ (6.72)

where σ is finite.
Their particularity is to have a finite dimension as b→ 0

hbσ −→ σ. (6.73)

The vertex operator becomes independent of b in the semiclassical limit

Vbσ = e2σφcl . (6.74)

and insertions of these operators into the path integral will not contribute to the
equations of motion (i.e. they do not change the saddle point). Then in correlation
functions they just need to be evaluated at the solution for φcl.

• Heavy states: their momentum is proportional to 1/b, i.e.

a = η

b
(6.75)

where η is finite.
Their conformal dimension diverges as b → 0. The associated vertex operators will
contain a power 1/b2

Vη/b = e
2ηφcl
b2 , (6.76)

which is the same than the one which appears in the semiclassical action (6.81), and
for this reason they will contribute as delta functions in the equations of motions (they
modify the saddle point). Indeed one can write

Vη/b(σ) = exp 2η
b2

∫
d2σ′ δ(2)(σ − σ′)φcl(σ′). (6.77)

6.8 Semi-classical limit
The semi-classical analysis of Liouville theory is described in [40], where the Liouville field
is continued to complex values.

We saw that the semi-classical limit is given by the equivalent limit

b→ 0, cm → −∞, c→∞ (6.78)

Then Q reduces to

Q = 1
b

=
√
c

6 . (6.79)

b2 can be thought as controlling the semi-classical limit of the path integral since it gives
the saddle points for b→ 0. For this reason we rename (φ, µ) as (φcl, µcl) 19.

19We will not write the indices when no doubt is possible. In fact these variables are the ones that were
used in (5.33).
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6.8.1 Semiclassical action

After rescaling the Liouville mode and the cosmological constant

φcl = bφ, µcl = µb2, (6.80)

the Liouville action (6.1) becomes

SL = 1
4πb2

∫
d2σ
√
h
(
hµν∂µφcl∂νφcl +Rφcl + 4πµcl e2φcl

)
. (6.81)

The equation of motion (6.24) becomes [40, sec. 1]

R[ e2φclh] = (R[h]− 2∆φcl) e−2φcl = −8πµcl. (6.82)

This is the well-known Liouville equation 20 whose solutions are metrics g of constant nega-
tive curvature (since µ ≥ 0). Moreover this last equation is explicitly invariant under (5.38).
A solution of this equation corresponds to a saddle point of the path integral.

6.8.2 Correlation functions on the sphere

In this section we restrict ourselves toM = S2, and we will follow [40, sec. 2]. The goal is
to obtain semi-classical expressions for the correlation functions in order to compare them
to exact expressions obtained after the quantization.21

In complex coordinates the action (6.46) simply becomes

b2 SL = 1
4π

∫
D

d2σ (∂µφc∂µφc + 4πµc e2φc) + 1
π

∫
∂D

dθ φc + 2 lnR. (6.83)

We consider semiclassical computations of correlation functions〈∏
i

e2aiφ/b

〉
=
∫

dφ
∏
i

e2aiφ/b e−S[φ]. (6.84)

As said above, light states ai = bσi do not modify the saddle point, while a heavy
operator ai = ηi/b will contribute [40, sec. 1].

For three heavy states, the saddle point is real only if the ηi satisfy the following condi-
tions (called the physical region)

ηi ∈ R, ηi < 1/2,
∑
i

ηi > 1, (6.85)

and the result is〈 3∏
i=1

e2ηiφ

〉
= e−S[φcl], S[φcl] = 1

b2
G(η1, η2, η3) +O(1). (6.86)

If the ηi are not in the physical region then G(ηi) becomes multivalued and there are
monodromies [40, sec. 1.1]. In particular the normalisable states are not in the physical
region since they correspond to

Re ηi = 1
2 , Im ηi > 0. (6.87)

20It was used in the context of Riemann uniformization problem: “Can any metric be related to one with
negative constant curvature?” Liouville theory can be viewed as the quantum version of this problem.

21In particular this is useful for deciding if theories which are not defined through the Liouville action
are equivalent to it (for example in the case of matrix model or conformal bootstrap approaches).
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6.9 Ultralocal approximation
In the ultralocal approximation only the constant zero-mode is kept

φ(t, σ) = φ0 = cst. (6.88)

This approximation is sometimes also called minisuperspace but we reserve the latter for
the time-dependent zero-mode.

The exponential interaction (6.4) can be approximated by a wall located at

φw = − 1
2b lnµ (6.89)

which corresponds to the point where the interaction becomes strong

U(φw) = µ e2bφw ∼ 1. (6.90)

7 Quantization
Several approaches can be used in order to quantize the Liouville theory (canonical quanti-
zation, path integral, BRST quantization, "conformal bootstrap". . . ). They are all comple-
mentary as some answers are easier to get in one of them.

7.1 Canonical quantization
The first approach is to quantize canonically by promoting fields to operators [34, sec. 3.3].

We can expand φ and p in Fourier modes [78, sec. 4.2]

φ(t, σ) = φ0(t) +
∑
n 6=0

i

n

(
an(t) e−inσ + bn(t) e−inσ

)
, (7.1a)

p(t, σ) = p0(t) + 1
4π
∑
n6=0

(
an(t) e−inσ + bn(t) e−inσ

)
. (7.1b)

We have
a†n = a−n, b†n = b−n. (7.2)

Imposing the equal time commutation relation

[φ(t, σ), p(t, σ′)] = δ(σ − σ′) (7.3)

gives the following relations for the modes

[φ0, p0] = i, [an(t), bm(t)] = n δn,m. (7.4)

7.2 Operator formalism
The authors of [9] proved that Liouville does not have a translation invariant vacuum. We
can guess this result by taking the expectation value of the quantum equation of motion

−∆Φ + 8πµb e2bΦ = 0, (7.5)

then assuming that |0〉 is translation invariant we have

〈0|∆Φ |0〉 = 0 (7.6)

which implies
〈0| e2bΦ |0〉 = 0. (7.7)

This is a contradiction with the fact that the exponential is strictly positive.
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7.3 Minisuperspace quantization
We continue the study of minisuperspace (called also the quantum mechanical model) [57,
sec. 2, 77, sec. 3.1, 86, sec. 22.3] (see also [34, sec. 3.4, 4.3]) 22

S =
∫

dt
(
φ̇2

0
2 − 2πµ e2bφ0

)
, (7.8a)

H0 = p2
0
2 + 2πµ e2bφ0 (7.8b)

that we begun in section 6.6.2. It can be used to obtain semi-classical approximations to
n-point functions.

The discussion can be extended to include matter [53, sec. 1].

7.3.1 Canonical quantization

Canonical quantization goes with the replacement

p0 = −i d
dφ0

. (7.9)

The zero-mode Hamiltonian (6.62) reads [78, sec. 4.2]

H0 +N = −1
2

d2

dφ2
0

+ 2πµ e2bφ0 +N (7.10)

where we added a zero-point energy N [63, sec. 2.3].
In order to find interpret the eigenvalues of this operator, let’s go back to the plane.

There the Hamiltonian is given by the dilatation operator L0 + L̄0 (these are the Virasoro
modes defined on the plane)

(L0 + L̄0)ψ∆ = 2∆ψ∆ (7.11)
because of the relation (2.14). The Hamiltonian on the cylinder is given 23by [63, sec. 2.3]

H0 +N = L0 + L̄0 −
c

12 = L0 + L̄0 −
1
12 −

Q2

2 . (7.12)

and this allow us to identify the zero-point energy

N = − 1
12 . (7.13)

Finally applying H0 on ψ∆ with (7.11) we get

H0ψ∆(φ0) =
(

2∆− Q2

2

)
ψ∆(φ0). (7.14)

Defining

∆ = Q2

4 + p2, p ∈ C (7.15)

and renaming ψ∆ to ψp the Wheeler–deWitt equation 24 for a wave functions 25 ψp(φ0)

H0ψp = 2p2ψp, (7.16)
22McElgin is defining a = (Q+ ip)/2.
23Both operators L0 and L̄0 are shifted by −c/24 and −c̄/24 on the cylinder, but we have c̄ = c.
24The WdW equation is a constraint on wave functions since the latter should be invariant under time

diffeomorphisms.
25Do not confound the momentum p in the eigenvalue with the canonical momentum.
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or after using the explicit expression (7.10) we get the(
−1

2
d2

dφ2
0

+ 2πµ e2bφ0

)
ψp = 2p2 ψp. (7.17)

In order to simplify this equation we can do the change of variable

` = ebφ0 . (7.18)

This new variable ` can be interpreted as the circumference of the 1d universe in the physical
metric.

We compute the change of variables for the derivatives

d
dφ0

= d`
dφ0

d
d` = b `

d
d` , (7.19a)

d2

dφ2
0

=
(

d`
dφ0

d
d`

)2
= b2

(
`

d
d`

)2
= b2

(
`2

d
d`2 + `

d
d`

)
. (7.19b)

We obtain the equation(
`2

d
d`2 + `

d
d` − 4(µ̂ `2 − p̂2)

)
ψp = 0 (7.20)

where we defined
µ̂ = πµ

b2
, p̂ = p

b
. (7.21)

Note that µ̂ is proportional to the semi-classical cosmological constant, and p̂ = bp is a light
momentum (since it is proportional to b which goes to zero in this limit).

7.3.2 Wave functions

In the limit φ0 → −∞ (short physical distance, i.e. UV), the potential energy tends to zero
and we get the equation [78, sec. 4.2]

d2ψp
dφ2

0
+ 4p2 ψp = 0, (7.22)

which is just the equation for normalizable states which behave as plane waves

ψp ∼ sin(2p φ0). (7.23)

Plane waves with energy ±p behaves identically. For φ0 →∞, the wall grows exponen-
tially and reflects waves, such that the two waves ±p are related and we should select only
one. Then we see that the effect of the wall is to truncate half of the states.

In (7.20) we recognize the modified Bessel equation (E.30) with imaginary parameter,
and whose solution is

ψp(`) = αpK2ip̂(2
√
µ̂ `) + βp I2ip̂(2

√
µ̂ `). (7.24)

Looking at the asymptotic form (E.31) for the modified Bessel equations in the limit φ0 →∞
corresponding to `→∞, we need to set

βp = 0 (7.25)

to discard the growing exponential.
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In order to find αp we need a normalization condition. We choose to take incoming plane
waves e2ipφ0 with unit coefficient when φ0 → −∞ or ` → 0. Using again the limit of the
modified Bessel functions (E.31), we get

ψp(φ0) ∼ αp

[
Γ(2ip̂)

2

(
1√
µ̂`

)2ip̂
+ Γ(−2ip̂)

2

(√
µ̂`
)2ip̂

]
(7.26a)

= αp
Γ(−2ip̂)
2µ̂−ip̂

[
e2ipφ0 + Γ(2ip̂)

Γ(−2ip̂) µ̂
−2ip̂ e−2ipφ0

]
(7.26b)

(the p in the exponential in order to remove the b in ` = ebφ0). Choosing

αp = 2µ̂−ip̂
Γ(−2ip̂) , (7.27)

we finally obtain

ψp(`) = 2µ̂−ip̂
Γ(−2ip̂) K2ip̂(2

√
µ̂ `) (7.28a)

or substituting p̂ and µ̂

ψp(`) = 2(πµ/b2)−ip/b
Γ(−2ip/b) K2ip/b(2

√
πµ `/b). (7.28b)

As we have written above for φ0 → −∞ one gets

ψp(φ0) ∼ e2ip̂φ0 +R0(p) e−2ip̂φ0 . (7.29)

The wave function decomposes in two plane waves, one ingoing, and one outgoing with a
reflection coefficient

R0(p) = Γ(2ip̂)
Γ(−2ip̂) µ̂

−2ip̂. (7.30)

This may be seem as the effect of the wall, which implies that both waves are not indepen-
dent. Using the recursion (E.3) for the Gamma function we obtain the usual expression for
the coefficient

R0(p) = −Γ(1 + 2ip̂)
Γ(1− 2ip̂) µ̂

−2ip̂. (7.31)

For p ∈ R, the reflection coefficient is a pure phase [57, sec. 2]

|R0(p)| =
∣∣∣∣ Γ(2ip̂)
Γ(−2ip̂)

∣∣∣∣ = 1, (7.32)

using the formula (E.6), and this is expected for a completely reflecting potential.
It is easy to check that

R0(−p) = αp
α−p

= 1
R0(p) . (7.33)

In particular this implies
ψ−p = R0(−p)ψp. (7.34)

One may see that it corresponds to the limit b→ 0 of the full reflection coefficient (9.26).
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7.3.3 States

Wave functions such that p is real
p ∈ R (7.35)

corresponds to normalizable states, i.e. they correspond to square integrable functions.
Moreover functions with p ∈ R form an orthonormal set 26∫ ∞

−∞
dφ0 ψ

∗
p(φ0)ψp′(φ0) =

∫ ∞
0

d`
`
ψ∗p(`)ψp′(`) = π δ(p− p′), (7.36)

using the orthonormalization relations for the modified Bessel functions. In view of this
formula, the normalization (7.27) for α corresponds to a canonical normalization of the
wave functions. For this set of states, the conformal dimensions (7.15) are bounded from
below [78, sec. 4.2]

∆ ≥ Q2

4 . (7.37)

When p is a pure imaginary number [78, sec. 4.2]

p = iω, ω ∈ R, (7.38)

the wave function (7.28a) diverges as φ0 → −∞

ψp(φ0) ∼ e−2ω̂φ0 . (7.39)

Moreover conformal dimensions (7.15)

∆ = Q2

4 − ω
2 (7.40)

are bounded from above
∆ ≤ Q2

4 . (7.41)

and positive values (for unitarity) are achieved only for

|ω| ≤ Q

2 . (7.42)

As a consequence values of the parameter a are

a ∈ [0, Q] (7.43)

if one requires unitarity (but note that wave functions corresponding to a /∈ [0, Q] are solution
anyway).

As we have seen wave functions φ±p are equivalent, which is due to the reflection of the
wall, and they should be identified. Hence the independent parameters are limited to

normalisable: p ∈ R+, non-normalisable: a ∈ [0, Q/2]. (7.44)

The second is called the Seiberg bound [78, sec. 4.2].
For more details see also [32, sec. 2.5].

26In principle we normalize wave functions to 2πδ(p− p′), but here the wave functions is e2ipφ0 and we
have δ(2p) = δ(p)/2 [63, p. 13].
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7.3.4 Correlation functions

The wave functions can be used to compute a semi-classical approximation to the 3-point
structure constant C(a1, a2, a3) (see for example [57, 76]). In particular the limit b → 0 of
C(a1, a2, a3) evaluated with the following weights27

a1 = Q

2 + ibp1, a2 = bσ, a3 = Q

2 + ibp3 (7.45)

matches the integral (assuming σ ≡ ip2 > 0)

C0(a1, a2, a3) =
∫ ∞
−∞

dφ0 ψbp1(φ0) e2bσφψbp3(φ0) (7.46a)

=
(πµ
b2

)−2p̃
Γ(2p̃)

∏
i

Γ
(
(−1)i2p̃i

)
Γ(2pi)

(7.46b)

where we defined
2p̃ =

∑
i

pi, p̃i = p̃− pi, i = 1, 2, 3. (7.47)

8 Liouville duality
Quantum Liouville theory exhibits a duality under [57, sec. 2]

b←→ 1
b
. (8.1)

The presence of this duality is responsible for the two-dimensional lattice of poles of the
three-point function [65], which can be understood as coming from the presence of a second
exponential interaction (called the dual cosmological constant) in the action. Hence the
cosmological constant and its dual are

Ub = µ e2bφ, Ub−1 = µ̃ e2φ/b. (8.2)

The Liouville action can be obtained by the reduction of a WZW model. Then conformal
invariance at the classical level requires its potential to be the sum of the two exponentials
(whereas classically the reduction leads to a single exponential) [65]. This is obtained from
a differential equation on the potential, which is needed to get it invariant under conformal
symmetry; then this equation is second-order in the quantum theory, and only first order in
the classical theory.

8.1 Dual cosmological constant
Vertex operators are defined by exponentials of the Liouville field

Va = e2aφ. (8.3)

Operators that have a conformal weight (1, 1) are denoted by

Vb = e2bφ (8.4)

where b is a solution of the equation

Q = 1
b

+ b. (8.5)

27For simplifying the notations we do not write the that on pi and σ,but these quantities really correspond
to the hatted ones of the previous formulas.
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This equation admits two solutions for b

b± = Q

2 ±
1
2
√
Q2 − 4. (8.6)

We can see that we have the relations

b+b− = 1, b+ + b− = Q. (8.7)

We define
b− ≡ b (8.8a)

from which it follows that
b+ = 1

b
. (8.8b)

We thus obtain two vertex operators of conformal dimensions (1, 1)

Vb ≡ V− = e2b−φ ≡ e2bφ, Vb−1 ≡ V+ = e2b+φ ≡ e2φ/b. (8.9)

These operators are very special for several reasons. First of all they can be added to the
Lagrangian as marginal deformations. In general only V− is added since it appears from the
classical cosmological constant term, but the others could be present as a non-perturbative
effect. It would them seem very natural to include both in the action. Another reason is
that this second term is required by crossing symmetry [57, sec. 2]. This has been studied
in the context of the Coulomb gas [18, chap. 7].

We define the interaction term

U = U− + U+ = µ−V− + µ+V+ = µ e2bφ + µ̃ e2φ/b (8.10)

with the alternative notations for the coupling constants

µ ≡ µ−, µ̃ ≡ µ+, (8.11)

µ being the usual cosmological constant and µ̃ is called the dual cosmological constant. This
new term is adding a second growing wall. Then the Lagrangian reads

SL = 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+QRφ+ 4πµ e2bφ + 4πµ̃ e2φ/b

)
. (8.12)

The action we have just written is invariant under the weak-strong transformation

b −→ 1
b

(8.13a)

if we also exchange the cosmological constants

µ←→ µ̃ (8.13b)

since Q is obviously invariant and so is the two interaction terms taken together.
Moreover the two cosmological constants are related by [57, sec. 2](

πµγ(b2)
)1/b =

(
πµ̃γ(b−2)

)b
. (8.14)

This relation is used a simplification in the computations of [65] (it seems to be an assump-
tion, despite the fact that they claim in the introduction to derive it). It can be obtained
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by asking for the invariance of the 3-point function under the duality. One can check that
this relation is invariant under the duality (8.13). Note that we can rewrite it as(

πµ−γ(b2−)
)1/b− =

(
πµ+γ(b2+)

)1/b+
. (8.15)

Finally it can be used to write µ̃ in terms of µ

µ̃ = 1
π γ(b−2)

(
πµγ(b2)

)1/b2

. (8.16)

In particular this relation implies that the identity [57, sec. 2]

SL[φ](b, µ) = SL[φ+ 1
2b lnµ](b, 1)− Qχ

2b lnµ (8.17)

is preserved (χ is the Euler number).
Since an exponential term is growing very fast it can be approximated by a hard wall

located at the position where the interaction term is of order 1 [34, sec. 0.2]. In our case we
get

µ e2bφ− ∼ 1 =⇒ φ− ∼
1
2b ln 1

µ
, (8.18a)

µ̃ e2φ+/b ∼ 1 =⇒ φ+ ∼
b

2 ln 1
µ̃

(8.18b)

for the positions of the two walls φ±. Using the expression (8.16) we find that

φ+ = φ− + b

2 ln π γ(b−2)− 1
2b ln π γ(b2) (8.19)

from

φ+ ∼
b

2 ln 1
µ̃

= b

2 ln π γ(b−2)
(
πµγ(b2)

)−1/b2

= 1
2b ln 1

µ
+ b

2 ln π γ(b−2)− 1
2b ln πγ(b2).

Another expression for this relation is

φ+ + b+
2 ln π γ(1/b2+) = φ− + b−

2 ln π γ(b−2
− ). (8.20)

We can also note that since b < 1 the dual exponential is growing much faster, but
depending on the value of µ̃ it can start to grow later.

An interesting relation is [57, sec. 2]
∂µ̃

∂µ
= 1
b2
µ̃

µ
= R(b) (8.21)

where R(b) is the reflection coefficient evaluated at b. From this last point we obtain that
∂U−
∂µ

= ∂U+

∂µ
= Vb (8.22)

since
∂U+

∂µ
= ∂µ̃

∂µ
Vb−1 = R(b)Vb−1 = Vb (8.23)

because of 1/b = Q/2− b and using the reflection property (9.3).
At the self-dual point

b = 1 (8.24)
we obtain

V− = V+ = e2φ, µ̃ = µ, (8.25)
the second relation following from (8.16).
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8.2 Quantum theory
By looking at the Ward identities, it is shown in [64] that the relations

Q = b−b+, b−b+ = 1 (8.26)

still holds in the quantum regime.

9 Correlation functions
In this section we consider correlation functions of vertex operators

Va(z, z̄) = e2aφ(z,z̄), ∆a = a(Q− a). (9.1)

We will often omit the z dependence.
We identify the identity operator as

id = lim
a→0

Va. (9.2)

We recall that Va and VQ−a are related by reflection

VQ−a = R(a)Va (9.3)

due to the wall 28. The reflection coefficient is such that

R(a)R(Q− a) = 1. (9.4)

9.1 2-point function
It is explained in [64] how to interpret this reflection if the two-point function is given.
Defining the inner product

〈a1, a2〉 = lim
x→0

x2∆1A2(Q− a1, a2;x) (9.5)

between primary states, one has(
〈a, a〉 〈a,Q− a〉

〈Q− a, a〉 〈Q− a,Q− a〉

)
=
(

1 R(Q− 2a)−1

R(Q− 2a) 1

)
δ(0). (9.6)

The determinant of this matrix is zero which implies that one linear combination of states
has zero norm and decouples

|a〉 −R(Q− 2a) |Q− a〉 = 0. (9.7)

9.2 3-point function and DOZZ formula
The three-point function of Liouville theory was found by Dorn and Otto and by Zamolod-
chikov and Zamolodchikov [17, 84] by generalizing the result of computations done with the
path integral at specific values of the momenta (see also [2] and [15]).

On the other hand, this 3-point function can be obtained by solving some equations of
the conformal bootstrap, as was shown by Teschner (and refined by others) [82]. This will
be the topic of the section 10, where more references will be given.

28Some authors use R(a)−1.
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It was latter explained by O’Raifeartaigh et al. how to get this formula by generalizing
the path integral to include the dual cosmological constant interaction [64, 65] (see also
section 8). In this case it is possible to obtain the normalization coefficient of the 3-point
function, which cannot be derived by the two other methods (instead an ansatz).

Various references on the DOZZ formula and the recursion relations include [40, 57,
sec. 5, 63, 85].

Given a set of three variables {x1, x2, x3}, one defines [76, p. 5]

2x̃ =
∑
i

xi = x1 + x2 + x3, x̃i = x̃− xi. (9.8)

For example one has
x̃1 = x2 + x3 − x1. (9.9)

Conformal invariance dictates the form of the 3-point function to be [40, sec. 2.3]

〈Va1Va2Va3〉 = C(a1, a2, a3)
|z12|2∆12 |z13|2∆13 |z23|2∆23

(9.10)

where we defined
zij = zi − zj , ∆12 = ∆1 + ∆2 −∆3. (9.11)

The structure constant C(a1, a2, a3) are one of the fundamental element to define a CFT.
Its expression is given by the DOZZ formula

C(a1, a2, a3) =
[
πµγ(b2)b2−2b2

](Q−2ã)/b Υ′b(0)
Υb(2ã−Q)

∏
i

Υb(2ai)
Υb(2ãi)

. (9.12)

We refer to the appendix E.3 for the properties of the various functions. The limit b → 0
agrees with (??) [57, p. 7].

We can obtain the reflection amplitude from the identity

C(a1, a2, a3) = R(a1)C(a1 −Q, a2, a3). (9.13)

We can also get this coefficient from the limit of C, but there is no ambiguity here: we don’t
have to know that Va → id when a → 0 in order to compute it, while the limit requires
this [76, sec. 3].

9.2.1 2-point function limit

We want to check if the limit of C(a1, a2, a3) gives the correct 2-point function. We consider

a1 = Q

2 + ip1, a3 = Q

2 + ip2, a2 = ε. (9.14)

The various combination of ai are∑
a−Q = i(p1 + p2) + ε, (9.15a)

a12 = i(p1 − p2) + ε, (9.15b)
a23 = −i(p1 − p2) + ε, (9.15c)
a13 = i(p1 + p2)− ε+Q. (9.15d)
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The DOZZ formula gives then (we already remove the ε which will not contribute)

C(Q/2 + ip1, ε,Q/2 + ip2) =
[
πµγ(b2)b2−2b2

]i (p1+p2)
b ×

× Υ′b(0)Υb(Q+ 2ip1)Υb(Q+ 2ip2)Υb(2ε)
Υb

(
i(p1 + p2)

)
Υb

(
i(p1 + p2) +Q

)
Υb

(
i(p1 − p2) + ε

)2 . (9.16)

We use the formula (E.42) to remove the Q in the Υb functions. The total power of b is
given by

− i(2− 2b2)p1 + p2

b
− 4 + 4i(p1 + p2)

(
1
b
− b
)

+ 2− 2i(p1 + p2)
(

1
b
− b
)

= −2, (9.17)

where the second and third terms comes from Υb(Q + 2ip1)Υb(Q + 2ip1), and the fourth
and fifth from Υb

(
i(p1 + p2) +Q

)
.

We can also use (E.44) to expand Υb(2ε) as

Υb(2ε) = 2εΥ′b(0) (9.18)

The formula reduces to

C(Q/2 + ip1, ε,Q/2 + ip2) = 1
b2

[
πµγ(b2)

]i (p1+p2)
b Υb(2ip1)Υb(2ip2)

Υb

(
i(p1 + p2)

)2 ×
× 2εΥ′b(0)2

Υb

(
i(p1 − p2) + ε

)2 γ(2ip1b+ 1)γ(2ip1b
−1)γ(2ip2b+ 1)γ(2ip2b

−1)
γ
(
i(p1 + p2)b+ 1

)
γ
(
i(p1 + p2)b−1

) . (9.19)

The denominator has a zero only when p1 = p2, so that we can deduce directly that the
function vanishes when ε→ 0 if p1 6= p2. If the two momenta are equal we need to expand
also Υb

(
i(p1 − p2) + ε

)
, giving

C(Q/2 + ip1, ε,Q/2 + ip2) = 1
b2

[
πµγ(b2)

]i (p1+p2)
b Υb(2ip1)Υb(2ip2)

Υb

(
i(p1 + p2)

)2 ×
× 2εΥ′b(0)2(

i(p1 − p2) + ε
)2Υ′b(0)2

γ(2ip1b+ 1)γ(2ip1b
−1)γ(2ip2b+ 1)γ(2ip2b

−1)
γ
(
i(p1 + p2)b+ 1

)
γ
(
i(p1 + p2)b−1

) . (9.20)

We make use of the relation

lim
ε→0

ε

(p1 − p2)2 + ε2 = π δ(p1 − p2) (9.21)

and this allows us to set p2 = p1.
We obtain the 2-point function [40, sec. 2.4]

lim
ε→0

C(Q/2 + ip1, ε,Q/2 + ip2) = 2πG(a1)δ(p1 − p2). (9.22)

where
G(a) = 1

R(a) = 1
b2

[
πµγ(b2)

]Q−2a1
b

γ(2ba1 − b2)γ(2a1/b− 1− 1/b2) (9.23)

To make contact we the previous formula we note that

2ip1 = Q− 2a1, 2ip1b+ 1 = 2ba1 − b2, 2ip1b
−1 = 2a1

b
− 1− 1

b2
. (9.24)

For generic α1, α3 we get

lim
a2→0

C(a1, a2, a3) = 2πδ(a1 + a3 −Q) +G(a1) δ(a1 − a3). (9.25)
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9.2.2 Reflection coefficient

From the DOZZ formula the reflection coefficient is found to be [57, sec. 1, 2]

R(a) =
[
πµγ(b2)

](Q−2ã)/b γ(2ab− b2)
b2 γ(2− 2a/b+ b−2) , (9.26a)

R(p) = −
[
πµγ(b2)

]−ip/b Γ(1 + ip/b)
Γ(1− ip/b)

Γ(1 + ibp)
Γ(1− ibp) . (9.26b)

Part III

Extensions
10 Conformal bootstrap
In the context of the conformal bootstrap, the theory is defined only by its symmetries. Its
spectrum and its correlation functions are determined from consistency conditions. This
allows to remove many assumptions and to get a more general theory that we still call
Liouville theory.

The conformal bootstrap approach to Liouville theory was initiated by Tescher [82] who
derived recursion relations for the 3-point function. He still relied on the existence of an
action, but at the price of few assumptions it is possible to get rid of it [66].

By giving up the formulation in terms of an action one gets more freedom in defining
the theory because it can be extended to cases where the action is not well-defined [71].

We will greatly follow [71, 72].

10.1 Hypothesis and setup
The main hypothesis is that the spectrum is the same as for c ≥ 25 Liouville theory

p ∈ R. (10.1)

10.2 Teschner’s recursion relations
10.2.1 Derivation

We will again use the notations (9.8)

2x̃ =
∑
i

xi, x̃i = x̃− xi, i = 1, 2, 3. (10.2)

10.2.2 First solution

10.2.3 Second solution

The second solution to the recursion relations, called D̂OZZ or timelike DOZZ, was obtained
by [85] and independently in [50, sec. 3, 51], but it already appears as part of the analytic
continuation derived by Schomerus [76]. Finally it was shown that this function can be
computed from the usual path integral with a different cycle of integration [40] and from a
Coulomb gas computation in [35]. Good reviews of the properties and derivation include [40,
sec. 7.1, 57, sec. 5, 72].
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The 3-point function reads

Ĉ(α1, α2, α3) = 2π
β

[
− πµγ(−β2)β2+2β2

]−(q+2α̃)/β
eiπ(q+2α̃)/β×

× Υβ(β − q − 2α̃)
Υβ(β)

∏
i

Υb(β − 2α̃i)
Υb(β − 2αi)

. (10.3)

We refer to the appendix E.3 for the properties of the various functions.
Note that

eiπ(q+2α̃)/β = (−1)(q+2α̃)/β (10.4)
and this cancels the minus sign in the first parenthesis of (10.3).

10.3 Crossing symmetry
10.4 Modular invariance

11 Runkel–Watts–Schomerus theories
The Runkel–Watts–Schomerus (RWS) theories exist for rational values of the central charge

β2 = p′

p
∈ Q. (11.1)

Recall that in this case c ≤ 1.
The first such theory was obtained by Runkel and Watts by taking carefully the limit

p → ∞ of the unitary minimal models Mp and it has c = 1 [73, 74]. It was later shown
by Schomerus that this theory arises as a specific case from the analytical continuation
of the DOZZ formula to the above values of the central charge [76]. As Schomerus was
only interested in the rolling tachyon, he did not compute the limit explicitly for the cases
c 6= 1, and the corresponding formulas have been provided by McElgin [57]. It was proved
numerically in [72] that these theories are crossing symmetric.

The original motivation for taking this limit is that it reproduces the 3-point function
computed from the c = 1 minisuperspace approximation. Moreover by taking the limit
α2 → 0 of the 3-point function the non-analytic factor gives a diagonal 2-point function,
which also agrees with the minisuperspace [76]. As shown in McElgin the theories with
p = 1 also have diagonal two-point functions. But as we explained in other sections one can
identify the 2-point function from the limit of the 3-point function only if the identity is the
only field with vanishing dimension.

The only unitary theory of this family is the c = 1 theory since the weights are such that

h ≤ c− 1
24 , (11.2)

and the theory contains negative weights for any central charge less than one. As it is special
we call this one the Runkel–Watts model. Note that it also arises from the orbifold of the
free boson [31].

11.1 Three-point function from analytical continuation
As explained in the appendix E.3.4, Υb functions can not be continued to b ∈ iR. Nonetheless
the specific combination that appear in the 3-point function admits a well-defined limit which
will take the form

C̃(a1, a2, a3) = P (a1, a2, a3) Ĉ(a1, a2, a3) (11.3)
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where Ĉ is the timelike DOZZ formula, and P is a non-analytic function whose expression
depends on the domain of the ai.

We will follow the computations from [57, sec. 6, 76].29
We wish to make the analytical continuation

b = iβ, ai = iαi (11.4)

of (9.12)

C(a1, a2, a3) =
[
πµγ(b2)b2−2b2

](Q−2ã)/b Υ′b(0)
Υb(2ã−Q)

∏
i

Υb(2ai)
Υb(2ãi)

. (11.5)

In the appendix we got the formula

Υb(a) = Hb(a)
Υib(−ia+ ib) = H−iβ(−iα)

Υβ(β − α) (11.6)

with

Hb(x) = exp
[
iπ

2

(
x2 + x

b
− xb+ b2

4 −
3

4b2 −
1
4

)]
ϑ1(x/b)

ϑ1(1/2 + 1/2b2) , (11.7)

and for simplicity we defined

ϑ1(x) ≡ ϑ1(x, τ), τ ≡ 1
b2

= − 1
β2 . (11.8)

Since tau ∈ R corresponds to the boundary of analyticity of ϑ1, we assume that τ has a
small imaginary part.

We can see easily that the only difference with the timelike DOZZ (10.3) (the prime
indicates that we removed few factors from the original formula)

Ĉ ′(α1, α2, α3) =
[
− πµγ(−β2)β2+2β2

]−(q+2α̃)/β Υβ(β − q − 2α̃)
Υβ(β)

∏
i

Υb(β − 2α̃i)
Υb(β − 2αi)

(11.9)

will come from contributions from Hb functions, thus we can write

C̃(α1, α2, α3) = P (α1, α2, α3) Ĉ ′(α1, α2, α3) (11.10)

with P (αi) gathering contributions from Hb. This function will provide the poles necessary
to get a diagonal 2-point function.

The derivative of Υb taken at x = 0 is

Υ′b(0) = H ′b(0)
Υβ(β) = exp

[
iπ

2

(
b2

4 −
3

4b2 −
1
4

)]
ϑ′1(0)
Υβ(β) (11.11)

using the fact that ϑ1(0) = 0 which implies Hb(0) = 0 (the – constant – exponential factor
will cancel with the one of Υb(Q−

∑
ai)).

We now try to evaluate

P (α1, α2, α3) = H ′b(0)
Hb(Q−

∑
ai)
∏
i

Hb(2ai)
Hb(2ãi)

. (11.12)

First we note that there are the same number of functions in the numerator and denomi-
nator, so factor independent of the function argument will cancel (in particular inside the
exponentials). After continuing the parameters, we are left with

P (α1, α2, α3) = E(α1, α2, α3)Θ(α1, α2, α3) (11.13)
29Similar computations were already done in [38, 81].
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with

Θ(α1, α2, α3) = ϑ′1(0)
ϑ1(q/β + α̃/β)

∏
i

ϑ1(2αi/β)
ϑ1(2α̃i/β) , (11.14a)

lnE(α1, α2, α3) = iπ

β
(q + 4α̃). (11.14b)

Note that we can remove the minus sign in the parenthesis of (11.9) by multiplying with

e
iπ
β (q+2α̃) = (−1)(q+2α̃)/β . (11.15)

Our results agree completely with McElgin [57, sec. 6]: he does not have the minus sign in
(11.9) such that he has

lnE(α1, α2, α3) = 2iπα̃
β

. (11.16)

We observe a difference in E(αi) with Schomerus [76, sec. 4] who gets

lnE(α1, α2, α3) = iπ

β
(q + 2α̃)− 2πiq α̃+ lnN0(β). (11.17)

This might come from the definition of Hb(x) that Schomerus gives: the exponential inside
is

exp− iπ2

(
x2 + bx− x

b

)
. (11.18)

According to McElgin [57, p. 23], the 3-point function is non-trivial only when

τ = 1
b2

= − 1
β2 = r + iε, r ∈ Q. (11.19)

The latter can be obtained by letting

β −→ β + iε, β2 = p′

p
(11.20)

since
τ = − 1

(β + iε)2 ∼ −
1

β2 + iε
∼ − 1

β2 + iε. (11.21)

11.2 Limit from minimal models
11.3 Continuous orbifold

12 Complex Liouville theory
In section 10 we have considered the conformal bootstrap of Liouville theory from an alge-
braic point of view. Then the reality of the Liouville mode and the condition c ≥ 25 could
be relaxed. We will explore in this section the properties of this theory.

12.1 Lagrangian study
The properties of the complex Liouville Lagrangian were studied in [40]. This paper is
agnostic concerning the spectrum and computes correlation functions for any values of the
conformal dimensions.

Classical solutions and minisuperspace analysis can be found in [87, sec. 3].
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12.2 c ≤ 1 Liouville theory
We wish to distinguish c ≤ 1 Liouville from timelike Liouville (which is the topic of sec-
tion 13) because they do not arise in the same contexts and their spectrum might be different.

We recall that the spectrum of c ≤ 1 Liouville is p ∈ R.
This theory received an interpretation in terms of a loop model in [43]: it was shown

that the 3-point functions of both models agree.

12.2.1 Correlation functions

The 2-point function can be obtained by an analytical continuation from (9.23) [40, sec. 7.1,
81, sec. 3]

Ĝ(α) = − 1
β2

[
− πµγ(−β2)

]−(q+2α)/β
eiπ(q+2α)/βγ(β2 − 2αβ)γ(1/β2 + 2α/β − 1). (12.1)

As explained in section 10 the correct 3-point function for c ≤ 1 Liouville is given by
(10.3).

The limit where one of the dimension vanishes reads [40, sec. 7.1, 81]

Ĉ(α1, 0, α3) = lim
α2→0

Ĉ(α1, α2, α3) = 2π
β

[
−πµγ(−β2)β2+2β2

]−(q+α1+α3)/β
eiπ(q+α1+α3)/β×

× Υβ(β − q − α1 − α3)Υβ(β − α1 − α3)Υβ(β − α1 + α3)Υβ(β + α1 − α3)
Υβ(β)2 Υβ(β − 2α1)Υβ(β − 2α3) (12.2)

because the denominator has no poles, and the numerator has no zeros. This signals that
that the field with vanishing dimension ∆ = 0 is not the identity and that the quantity
Ĉ(α1, 0, α3) is a genuine 3-point function for this field and two other fields. In particular
the full 3-point function still depends on the position z2 of the second operator.

For equal momenta α1 = α3 the above formula gives correctly the 2-point function (12.1)

Ĉ(α, 0, α) = 2π
β
Ĝ(α). (12.3)

An important quantity is the reflection coefficient R(α): it can be extracted from the 3-
point function by computing C(q−α1, α2, α3) such that we do not need the 2-point function
to compute it.

12.2.2 The fake-identity operator

In this section we want to comment the status of the field V0 which is called fake identity
and which corresponds to zero dimension α = ∆ = 0. We stress again that it is different
from the identity

V0 6= id . (12.4)

In theories one encouters generally Ĉ(α1, 0, α3) is diagonal, meaning that Ĉ(α1, 0, α3) = 0
if α1 6= α3, and reproduces the 2-point function. This fact is due to the decoupling of
null vectors (recall that this decoupling implies differential equations on the correlation
functions). Hence one can conclude that the operator V0 is non-degenerate.

On the other hand the 2-point function is always diagonal because it involves fields with
equal conformal dimensions.

In [43] this object was interpreted in the equivalent loop model as a marking operator.
A similar problem occurs for the limit p → ∞ of minimal models M∞ (a non-rational

CFT) where the Hilbert space does not contain any state with conformal weight 0 (which
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means that there are no vacuum state) [73, 74]. There it is possible to define correlation
functions for the identity and the stress–energy tensor consistently even if the Hilbert space
does not contain the states corresponding to the field; what is important is that the Hilbert
space contains a state for every possible physical state of the system, and this completeness
may be used to insert the full sum over the states. Note that only a field of conformal weight
0 can have a non-vanishing one-point function, and this makes the OPE a bit subtle; a way
out is to introduce smeared field over the parameter value (this also allows to define the the
identity state as a limit of states, but which is not in the Hilbert space). In this context the
identity can be defined as [57, sec. 6, 73, 74]

id = lim
α→0

∂

∂α
V−iα. (12.5)

13 Timelike Liouville theory
13.1 Definition
For cm ≥ 25, quantities become purely imaginary: it is possible to make an analytic con-
tinuation of the parameters [40, sec. 7, 57, sec. 3]. The theory can still be Lorentzian or
Euclidean.

We define the following quantities 30

φ = iχ, Q = iq, b = −iβ, a = −iα, p = −iω. (13.1)

The formula for q in terms of β, for the central charge and for the weight become

q = 1
β
− β, c = 1− 6q2, ∆α = α(q + α). (13.2)

The Euclidean action is [57, sec. 3]

SL = 1
4π

∫
d2σ
√
h
(
− hµν∂µχ∂νχ− qRχ+ 4πµ e2βχ

)
. (13.3)

The name "timelike" comes from the negative sign in front of the kinetic term: the action is
not positive definite.

It may also be useful to not continue the Liouville mode and to work with φ: then the
action is complex but we do not have to worry about this negative kinetic term. Similarly
sometimes we will continue to use the original parameters even if they are complex.

Looking at the definition of the Coulomb gas (sec. C.5) we see that timelike Liouville is
very close: we just need to continue also φ.

This provides an interesting model for 4d quantum gravity, since the conformal factor
comes with the "wrong sign" [34, p. 19]. The second point is that this model is closer to 4d
gravity in the sense that cm ≥ 25 instead of cm ≤ 1, the last case being further from our
intuition on "normal" matter [67, p. 125, 8].

From the string theory interpretation, for β = 1 and hence q = 0 the potential corre-
sponds to a closed string tachyon growing exponentially with time (note that at X0 ≡ χ→
−∞ the tachyon is small and we recover flat space) [38, 81]. Moreover since this is a time
dependent background there is closed string pair production, thus timelike Liouville theory
provides a toy model to study tachyon condensation.

Timelike Liouville theory was used as the matter CFT in [50, 51].
30In Harlow et al. [40, sec. 7] they define a = iα, which implies that ∆α = α(α − q). McElgin is noting

q ≡ Λ [57].
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Interesting comments on the continuation also appeared in [38].
Since we had b ∈ (0, 1] we also have β ∈ (0, 1], implying c ≤ 1.
The main difference with (spacelike) Liouville theory with c ≤ 1 defined in section 10

comes from the spectrum which is different (the proposed 3-point function being identical).

13.2 Equations of motion and semi-classical limit
The equation of motion can be obtained from (13.3) or by an analytical continuation of the
spacelike result (6.24)

qR[h]− 2∆χ = 8πµβ e2βχ. (13.4)

The semi-classical limit corresponds to

β → 0, cm →∞, c→ −∞ (13.5)

and we define
χcl = βχ, λcl = µβ2 (13.6)

(noting that χcl = φcl since bφ = βχ, but λcl = −µcl). The equation of motion becomes

R[ e2χclh] = (R[h]− 2∆χcl) e−2χcl = 8πλcl. (13.7)

Solutions correspond to space of constant positive curvature [57, sec. 3, 40, sec. 7].

13.3 Classical solutions
13.4 States
Again we start by discussing the spectrum of timelike Liouville, and only later we will derive
it.

Considering states of the form

α = −q2 + iω, hα = −q
2

4 − ω
2 = c− 1

24 − ω2, (13.8)

there exists three categories of states:

• continuous real
ω ∈ R, h ≥ c− 1

24 ; (13.9)

• discrete imaginary

ω ∈ D = i

(
Nβ
2 + N

2β

)
, h ≤ c− 1

24 ; (13.10)

• continuous imaginary
ω ∈ iR− D, h ≤ c− 1

24 . (13.11)

States with ω ∈ iR are called magnetic in the language of [52, sec. 2.2], and the states ω ∈ D
already play a special role. They are not bounded from below.

All states appear to be normalizable in the minisuperspace.
The sector of states ω ∈ iR in the theory c = 1 (corresponding to Runkel–Watts) is

unitary. Otherwise since c < 1 the same sector contains some states with negative weights,
but they are bounded from below.
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13.5 Minisuperspace
Minisuperspace study can be found in [27, 49, 57, 76]31.

We consider the constant mode of space of the timelike Liouville field

χ(t, σ) = χ0(t). (13.12)

Taking a flat fiducial metric and performing a spacetime Wick rotation of the action (13.3),
we obtain the minisuperspace action

SL =
∫

dt L =
∫

dt
(
− χ̇2

0
2 − 2πµ e2βχ0

)
. (13.13)

The conjugate momentum is
π0 = δS

δχ̇0
= −χ̇0 (13.14)

which provides the Hamiltonian

H0 = π0χ0 − L = −π
2
0

2 + 2πµ e2βχ0 (13.15)

13.5.1 Canonical quantization

Including the zero-point energy and proceeding to the canonical quantization

π0 = −i d
dχ0

(13.16)

we obtain the Hamiltonian operator

H0 = 1
2

d2

dχ2
0

+ 2πµ e2βχ0 . (13.17)

We are now able to consider the eigenfunctions of this operator

H0ψω = −2ω2ψω. (13.18)

We note that ω corresponds to the analytical continuation p = −iω. But due to the different
sign the Hamiltonian is not self-adjoint [27, 30, 49, 57]. For this reason the naive solution
that is obtained on the line of the spacelike computation is not sufficient for selecting a set
of orthogonal states.

Using the change of variables
` = eβχ0 (13.19)

the Hamiltonian reads (
`2

d
d`2 + `

d
d` + 4(µ̂ `2 + ω̂2)

)
ψω = 0 (13.20)

where we defined
µ̂ = πµ

b2
, ω̂ = ω

b
. (13.21)

31The first analysis of timelike Liouville has been done in [30], but with a different point of view, and
hence different results.
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13.5.2 Naive wave functions

In equation (13.20) one recognize the Bessel equation (E.15) (see appendix E.2.1 for more
details). Depending on the value of 2iω̂ there are three possible solutions32

ψω(`) = αω J2iω̂(2
√
µ̂ `) + βω J−2iω̂(2

√
µ̂ `), ω̂ ∈ R, (13.22a)

ψp(`) = αp J2p̂(2
√
µ̂ `) + βp J−2p̂(2

√
µ̂ `), p̂ ≡ iω̂ ∈ R− Z

2 , (13.22b)

ψn(`) = αn Jn̂(2
√
µ̂ `) + βn Yn̂(2

√
µ̂ `), n̂ ≡ 2iω̂ ≡ 2p̂ ∈ Z, (13.22c)

and we have distinguished the types of wave functions by changing the index. We consider
only the case n > 0 due to the relations

J−n̂(`) = (−1)n̂Jn̂(`), Y−n̂(`) = (−1)n̂Yn̂(`), (13.23)

and also only the case ω̂, p̂ > 0 since the other can be simply obtained. The various hatted
quantities are

ω̂ = ω

b
, p̂ = p

b
, n̂ = n

b
. (13.24)

For `→∞ one has

ψω(`) ∼∞

√
1

π
√
µ̂ `

[
αω cos

(
2
√
µ̂ `− iπω̂ − π

4

)
+ βω cos

(
2
√
µ̂ `+ iπω̂ − π

4

)]
, (13.25a)

ψp(`) ∼∞

√
1

π
√
µ̂ `

[
αp cos

(
2
√
µ̂ `− πp̂− π

4

)
+ βp cos

(
2
√
µ̂ `+ πp̂− π

4

)]
, (13.25b)

ψn(`) ∼∞

√
1

π
√
µ̂ `

[
αn cos

(
2
√
µ̂ `− nπ

2 −
π

4

)
+ βn sin

(
2
√
µ̂ `− nπ

2 −
π

4

)]
. (13.25c)

Due to the factor `−1/2 all these functions tends to zero33 as `→∞ and this does not give
any conditions on the coefficients.

The behaviour of ψω near zero reads

ψω ∼0 αω
µ̂iω̂

Γ(1 + 2iω̂) `
2iω̂ + βω

µ̂−iω̂

Γ(1− 2iω̂) `
−2iω̂ (13.26a)

= αω
µ̂iω̂

Γ(1 + 2iω̂) e2iωχ0 + βω
µ̂−iω̂

Γ(1− 2iω̂) e−2iωχ0 . (13.26b)

In order to normalize the wave functions as a plane wave34 e2iωχ0 we take

αω = Γ(1 + 2iω̂) µ̂−iω̂, βω = αω γω (13.27)

where we have rescaled βω in order to normalize the full wave functions. With these coeffi-
cients one has

ψω(`) = Γ(1 + 2iω̂) µ̂−iω̂
(
J2iω̂(2

√
µ̂ `) + γω J−2iω̂(2

√
µ̂ `)
)

(13.28)

32The first two cases are formally the same, but we distinguish them for facilitating the analysis in later
steps.

33But note that there are real exponentials for ω̂ ∈ R, and since this is growing faster than a power-law,
the limit `, ω̂ →∞ might be diverging; what does this mean?

34Note that if one interpret the Liouville mode as the time direction [27, 76] then ω corresponds to the
energy and incoming waves would be e−2iωφ0 , but we prefer to work with a plus sign.
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with the asymptotic

ψω ∼0 e2iωχ0 +R0(ω) e−2iωχ0 , R0(ω) = γω
Γ(1 + 2iω̂)
Γ(1− 2iω̂) µ̂

−2iω̂. (13.29)

There is no mathematical criteria to fix γω, and one needs to additional principle to fix
its value. This is a consequence of the attractive potential which gives an Hamiltonian
unbounded from below [27, 76].

One could set γω = 1 to get a real wave functions. In [38, 80, 81] (see also [87, p. 24, 76,
sec. 2]) the value was fixed to

γω = − e2πω̂ (13.30)
for matching the analytic continuation of spacelike wave functions, using the formula (E.34).
The interpretation is that there is only one outgoing wave.

Sometimes the choice
αω =

√
2ω

sinh 2πω (13.31)

is made.
Now we turn to ψp whose expansion reads

ψp ∼0 αp
µ̂p̂

Γ(1 + 2p̂) `
2p̂ + βp

µ̂−p̂

Γ(1− 2p̂) `
−2p̂. (13.32)

As `→ 0 for p > 0 the second term blows up and we need to take

βp = 0. (13.33)

Then αp can be fixed by normalizing the integral∫ ∞
0

d`
`
ψp(`)2 = αp

4p̂2 = 1 =⇒ αp = 2
√
p̂ (13.34)

using (E.25). Hence the wave function is

ψp(`) = 2
√
p̂ J2p̂(2

√
µ̂ `). (13.35)

Finally we need to consider ψn for which

ψn(`) ∼0 αn
µ̂n̂/2

n̂! `n̂ − βn
(n̂− 1)!

π
µ̂−n̂/2 `−n̂. (13.36)

For n̂ > 0 and `→ 0 the second term is divergent which forces to take

βn = 0. (13.37)

Then by asking for a unit normed one can fix αn∫ ∞
0

d`
`
ψn(`)2 = αn

2n̂2 = 1 =⇒ αn =
√

2n̂. (13.38)

giving the wave function
ψn(`) =

√
2n̂ Jn̂(2

√
µ̂ `). (13.39)

As a conclusion we see that for 2iω̂ ∈ R there is no difference between integer or non-
integer parameters.

We cannot obtain a complete set of orthogonal wave functions, which is a consequence
of the fact that the Hamiltonian is not self-adjoint.
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13.5.3 Self-adjoint extension

For more details on the mathematical aspects, see appendix D.2.
From (D.18) the Hamiltonian (13.17)

H0 = 1
2

d2

dχ2
0

+ 2πµ e2βχ0 = β2

2

(
`

d
d`

)
+ 2µ̂ `2 (13.40)

is symmetric only if [
dχ(x)

dx ψ(x)∗ − χ(x) dψ(x)∗
dx

]∞
−∞

= 0. (13.41)

Once this condition is satisfied we want to find possible self-adjoint extensions. We
need to determine the deficiency indices d± which correspond to the number of independent
solutions to the equation

Hψ± = ±2i ψ±. (13.42)

We define the roots of i = e iπ2 and −i = e 3iπ
2 (with some rescaling) by

η+ = 2
β

e 3iπ
4 , η− = 2

β
e iπ4 . (13.43)

Since η± /∈ Z each equation has two independent solutions

ψ±1 (`) = Jη±(2
√
µ̂`), ψ±2 (`) = J−η±(2

√
µ̂`). (13.44)

The asymptotic behaviours are

J±η±(2
√
µ̂`) ∼0 `

±η± ∼ e±2βχRe η± (13.45)

Since Re η+ < 0 and Re η− > 0 the solutions ψ+
1 and ψ−2 are blowing up as `→ 0 and they

should be discarded. Hence the deficiency indices are

d± = 1 (13.46)

and there exists a 1-parameter self-adjoint extension. We will denote this parameter by ν0
(and also ν̂0 = ν0/β), and one has a U(1) unitary transformation

ψ−1 = e2iπν0ψ+
2 (13.47)

only if
ν0 ∈ [0, 1). (13.48)

Consider first wave functions (13.35) with p ∈ R. Then the condition (13.41) applied to
ψp1 and ψp2 reads

sin 2π(p̂1 − p̂2) = 0, (13.49)

which implies that the p are quantized

pn = ν0 + n

2 , n ∈ N (13.50)

where ν0 is identified with the smallest eigenvalue.35 We denote the corresponding wave
functions ψn

ψn(`) =
√

2(n̂+ ν̂0) Jn̂(2
√
µ̂ `). (13.51)

35This identification can be justified by a rigorous construction of the domains [27].
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and they are correspond to the functions (13.39) shifted by ν0, and one recovers these states
for ν0 = 0. Note that these states form an orthogonal set from the relation (E.27)∫ ∞

0

d`
`
ψn1(`)ψn2(`) = δn1,n2 . (13.52)

Let’s turn to the wave functions with ω ∈ R. Then the condition (13.41) applied to ψω
and to ψn corresponds to

γω = sinh π(ω̂ + iν̂0)
sinh π(ω̂ − iν̂0) . (13.53)

For ν0 = 0 one gets γω = 1. It is then possible to check that the condition (13.41) with ψω1

and ψω2 is fulfilled.36 One can also check that these wave functions form are orthogonal∫ ∞
0

d`
`
ψω1(`)∗ψω2(`) = δ(ω1 − ω2). (13.54)

Finally for the states to be all orthogonal we need∫ ∞
0

d`
`
ψn(`)ψω(`) = 0. (13.55)

A last check is that the states {ψω, ψn} is complete
∞∑
n=0

ψn(`)ψn(`′) +
∫ ∞

0
dω ψω(`)ψω(`′) = δ(`− `′). (13.56)

Hence the states of the form
p ∈ R− ν0 + Z

2 (13.57)

are excluded from the physical spectrum.

13.5.4 States

From the previous discussion it appears that the complete set of physical states is given by
the wave functions ψω and ψn. An important difference with the spacelike case is that all
three types of wave functions are normalizable.37

13.5.5 Correlation functions

13.6 Correlation functions
First attempts to compute correlation functions can be found in [81], but the authors got
only an expression of the 3-point function for β = 1 (q = 0, c = 1) by trying to continue
analytically from the spacelike formula, while the 2-point function is given only for α =
−q/2 + iω.

The main question is which 3-point function one should use. Indeed if some quantities
are obtained from spacelike Liouville by analytic continuation, the 3-point function can not
be obtained by direct analytical continuation from (9.12) because this formula acquires an
infinite accumulation of poles for b ∈ iR [81]. The point is that models with c ≤ 1 does
not depend smoothly on c, and the quantities are not analytic in a so we can not simply

36In fact only the condition at ` =∞ can be checked directly as the wave functions are only delta-function
normalizable at ` = 0, and they needs to be smeared with some distribution [27].

37In particular ψω is normalizable only because it is the sum of two Bessel functions.
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set a = iα [76]. At the level of the functions involved we can trace this to the fact that the
Barnes double Γ function is not defined for b ∈ iR except for specific values of b. On the
other hand the 2-point function and the Teschner’s recurrence relations can be continued
since they only involve normal Γ functions.

Hence there is two possibilities:

1. Use the second solution (10.3) to Teschner’s relations. This formula will be valid for
all values of the parameters, but it is difficult to interpret the fake identity and to
satisfy crossing symmetry [72].

2. Use the analytic continuation (11.10) of RWS theories. There is no fake identity but
the theory is defined only for some values of the parameters [40, p. 74].

14 Effective actions for 2d quantum gravity
Liouville effective action describes universally the coupling of conformal matter to gravity,
but this is not anymore the case for more general matter [19, 20]. Other effective actions
may appear, such as the Mabuchi and the Aubin–Yau actions.

To conform with the notation of [5, 19, 20] we change notations for this section: we will
denote by g0 the metric in the conformal gauge

g = e2φg0. (14.1)

Quantities constructed from the metric g0 will have an index 0; for example we denote by
A and A0 the area measured with the metric g and g0 respectively 38.

14.1 General properties
The effective action is defined by the relation

Z[g] = e−Seff[g0,g] Z[g0] (14.2)

where we write the dependence in φ in terms of g. In presence of non-conformal matter the
effective action is not given by Liouville anymore, and it may be non-local.

This action is antisymmetric

Seff[g, g′] = −Seff[g′, g] (14.3)

and satisfy the cocycle identity

Seff[g, g′′] = Seff[g, g′] + Seff[g′, g′′]. (14.4)

Other properties such as the relation with the trace of the energy tensor can be found
in [19, sec. 2.2].

14.2 Kähler potential
In two dimensions every manifold is Kähler and the Kähler potential is sufficient to construct
the full metric. For this reason it should be possible to trade the Liouville mode for the
Kähler potential [5, 19, 20].

38In the main text the area associated to g0 was denoted by A.
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The Kähler potential K is obtained from the relation

e2φ = A

A0

(
1− 1

2 A0∆0K

)
. (14.5)

For a given φ this relation defines the pair (A,K) uniquely (up to constant shift of K), and
positivity of the metric implies the inequality

∆0K <
2
A0

. (14.6)

The path integral measure is determined in [5].

14.3 Effective actions
The list of all interesting functionals and where they do appear is given in [19, sec. 3].

14.3.1 The area action

This is the simplest building block for the gravity action: if the action contains a function
of the area f(A), then the associated effective action will be [19, sec. 3.1.1]

Sf [g0, g] = f(A)− f(A0) (14.7)

and the corresponding trace of the energy tensor is

tf = 4πf ′(A). (14.8)

14.3.2 Liouville action

We recall the Liouville action without cosmological constant (5.15) (denoted previously by
sL) [5, sec. 2.2.1, 19, sec. 3.1.2]

SL[g0, g] = 1
4π

∫
d2σ
√
h
(
hµν∂µφ∂νφ+Rhφ

)
. (14.9)

The trace is
tL = R

2 . (14.10)

14.3.3 Mabuchi action

The Mabuchi action reads [5, sec. 2.2.2, 19, sec. 3.1.3]

SM [g0, g] =
∫

d2σ
√
g0

[
−πχK∆0K +

(
4χ
A0
−R0

)
K + 4

A
φ e2φ

]
, (14.11)

χ being the Euler number of the surface. This action is invariant under constant shift of K.
Note that the last exponential term also appears in logarithmic Liouville theory [4].

The energy tensor trace is
tM = 8π

A
(ψ + 1) (14.12)

where ψ is the Ricci potential
∆ψ = R− 4πχ

A
. (14.13)
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The equation of motion for K is
R = 4πχ

A
(14.14)

and classical solutions correspond to metric of constant curvature, similarly to Liouville
action.

The authors of [5, 19, 20] show that the effective action for a massive field is given by
the Mabuchi action to leading order in a smal mass expansion.

Note that pure Mabuchi is not perturbatively renormalizable but it is believed that the
theory admits a non-trivial UV fixed point [5, sec. 3.3].

14.3.4 Aubin–Yau action

The Aubin–Yau functional reads [19, sec. 3.1.4]

SAY [g0, φ] = −
∫

d2σ
√
g0

(
1
4 K∆0K −

K

A0

)
. (14.15)

This is not a function of the metric g because it is not invariant under shift of K. But we
can add a term proportionnal to K in order to build an invariant action.

15 Mabuchi action
We recall that Mabuchi action is given by (14.11)

SM =
∫

d2σ
√
g0

[
−2π(1− g)K∆0K +

(
8π(1− g)

A0
−R0

)
K + 4

A
φ e2φ

]
(15.1)

where
e2φ = A

A0

(
1− 1

2 A0∆0K

)
. (15.2)

Using this expression in the action we obtain a form without any φ

SM =
∫

d2σ
√
g0

[
πχ gµν0 ∂µK∂νK +

(
4πχ
A0
−R0

)
K

+ 2
A0

(
1− 1

2 A0∆0K

)
ln A

A0

(
1− 1

2 A0∆0K

)] (15.3)

where we have integrated by part the kinetic term.

15.1 Critical exponents
We consider the 1-loop effective action [5, sec. 2.2.3]

Seff[g0, g] = κ2

6 SL[g0, g] + β2 SM [g0, g] (15.4)

where κ2 = cL for conformal matter.
It is natural to define first the partition function at fixed area

Zeff[A] = 1√
A

∫
dK e−Seff (15.5)
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and then the gravitational partition function

Z =
∫

dA e−µAZeff[A]. (15.6)

Here we define the susceptibility by

Z[A] ∼ eγ−3. (15.7)

At tree level it is given by

γtree = (g − 1)κ
2

6 − 2β2 (15.8)

while at the next order it is

γ1-loop = (g − 1)κ
2

6 − 2β2 + 19− 7g
6 − 12β2

κ2 . (15.9)

Example 15.1 (Massive scalar fields) We consider the action for a massive scalar field
with conformal coupling [20, p. 7]

Sm = 1
4π

∫
d2σ
√
g (gµν∂µX∂νX + qRX +m2X2). (15.10)

We add another action of conformal matter with central charge cm.
We will be interested in the effective action to leading order in a small mass expansion

(details on the conditions are given in the above paper). We have

κ2 = 25− 3q2 − cm
6 , β2 =

{
q2

4 q 6= 0,
m2A
16π q = 0.

(15.11)

16 Boundary Liouville theory
16.1 Action
The action of the boundary Liouville theory reads [52, sec. 2.1]

S = 1
4π

∫
M

d2σ
√
h
(
hµν∂µφ∂νφ+QRφ+ 4πµ e2bφ

)
+ 1

2π

∫
∂M

dσ
√
h
(
QKφ+ 2πλ ebφ

)
(16.1)

where K is the curvature of the boundary ∂M and λ is the boundary cosmological constant.
The normalization is such that ∫

M
R+ 2

∫
∂M

K = 4πχ. (16.2)

The bulk and boundary cosmological constants couple respectively to the area of the space-
time and to the length of the boundary

A =
∫
M

d2σ e2bφ, ` =
∫
∂M

dσ ebφ (16.3)

In order to work in complex coordinates, one maps the discM the the upper-half plane,
for which Im z ≥ 0 and the boundary is given by Im z = 0; we will denote by x the coordinates
on the boundary.

Usually Neumann boundary conditions are imposed to the Liouville field

i(∂ − ∂̄)φ = 4πλ ebφ(x). (16.4)
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16.2 Correlation functions
See [52].

Part IV

Applications
17 Cosmology
Many questions are still open in quantum cosmology and one may hope to address them
in the simpler context of 2d quantum gravity. In this case one needs to consider timelike
Liouville theory because it is closer to the 4d gravity; in particular it admits de Sitter
solutions. The first applications of Liouville to cosmology can be found in [8, 67].

More recently timelike Liouville theory has been used to study inflation in 2d [55, 60,
87]. Several models of inflation have been studied in [87]. It was then shown in [55, 60] that
the scalar sector of 4d perturbations can be exactly matched to 2d perturbations.

Part V

Appendices
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A Conventions
A.1 General notations
We denote by µ = 0, 1 the 2-dimensional indices and a = 0, . . . , d − 1 the d-dimensional
ones.

Flat euclidean and Lorentzian metrics are denoted by

euclidean: δµν = diag(1, 1) (A.1a)
Lorentzian: ηµν = diag(−1, 1) (A.1b)

Given an action S with metric gµν we define the stress–energy (or energy–momentum)
tensor by

Tµν = − 4π
√
g

δS

δgµν
(A.2)

The contravariant form is obtained from

Tµν = 4π
√
g

δS

δgµν
(A.3)

(note the minus sign of difference).
We define by g the absolute value of the determinant of the metric gµν

g = |det gµν | = ±det gµν (A.4)

where the plus and minus signs correspond respectively to Euclidean and Lorentzian signa-
tures.

We will also denote
φ̇ = ∂τφ, φ′ = ∂σφ. (A.5)

A.2 Complex coordinates
In the case of Lorentz signature, we have τ = it, such that

z = τ + iσ = i(t+ σ) (A.6)

and we see that z, z̄ correspond to light-cone coordinates σ± times a factor i.

A.3 Light-cone coordinates
Light-cone coordinates are defined by

σ± = t± σ. (A.7)

The line element is
ds2 = −dσ+dσ− (A.8)

such that the metric and its inverse are

η = −1
2

(
0 1
1 0

)
, η−1 = −2

(
0 1
1 0

)
. (A.9)
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A.4 Wick rotation
We consider a d-dimensional curved spacetime with metric gµν and coordinates xµ.

Wick rotation is a useful procedure which allows to replace a Lorentzian metric by an
euclidean metric in order to avoid complications that may arise in the first case due to the
fact that it is not positive-definite.

We can continue analytically from real to complex coordinates. Then Lorentzian and
euclidean coordinates correspond to different real sections of this complex spacetime [12].
An action that was originally invariant under real coordinate transformations will still be
invariant if the coordinates are complex, thus the form of the action will not change along
the different sections.

Euclidean quantities will be have an index E.
Locally the passage from Minkowski metric

ds2 = ηµνdxµdxν = −dt2 + dx2 (A.10)

to Euclidean metric
ds2
E = δµνdxµEdxνE = dτ2 + dx2 (A.11)

is done through the substitution of the real time x0 = t by the euclidean time x4 = τ [86,
sec. 3.4]

t = −iτ. (A.12)
The volume element is invariant under coordinate transformations 39

√
−g ddx =

√
−gE ddxE . (A.13)

The differential element and the determinant transform separately as

ddx = −i ddxE ,
√
−g = dτ

dt
√
−gE = i

√
−gE . (A.14)

The argument of the last square root is negative since gE > 0: this happens because we use
the formula that is adapted to Lorentzian metrics, but not for positive definite metric; the
solution is to insert the i into the square root 40. We thus get that

√
−g = √gE . (A.15)

This can also be understood by seeing that g = −gE , and then by transforming only the
differential. At the end we get

√
−g ddx = −i√gE ddxE . (A.16)

As we said the action and the Lagrangian are invariant under (A.12) because general
coordinate invariance is valid even for complex coordinates. Then the action becomes

S =
∫

ddx
√
−gL =

∫
ddxE

√
−gE L = −i

∫
ddxE

√
gE L

= i

∫
ddxE

√
gE LE = iSE

where we introduced the new quantities [67, p. 126]

S = iSE , L = −LE . (A.17)
39We write explicitly the sign of the determinant here.
40Or equivalently to remove the minus sign in the square root by using the branch

√
−1 = −i [12].
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The euclidean Lagrangian LE is positive definite and will be interpreted as an energy 41.
Since the Lorentzian and Euclidean Lagrangians differ by a sign, it will be the same for

the associated stress–energy tensor. We thus obtain the euclidean stress–energy tensor from
(A.2)

TE,µν = 4π
√
gE

δS

δgµνE
. (A.18)

In this way the expression for the two tensors (and especially for their traces) will agree in
both signatures.

Finally the partition function is

Z =
∫

dφ eiS =
∫

dφ e−SE . (A.19)

Since the Euclidean action is now positive definite, the minus sign in the partition function
gives exponential damping.

Example A.1 (Scalar field with potential) As an example look at the scalar Lagrangian
with potential

L = −1
2

(
(∂µφ)2 +m2φ2

)
− V (φ) (A.20)

which gives the equation of motion

(−∆ +m2)φ = V ′(φ). (A.21)

Plugging plane-waves into the free equation (V = 0) gives the mass-shell condition

p2 = −m2 (A.22)

and the Green function
G(p) = 1

p2 +m2 (A.23)

has a singularity.
Applying the Wick rotation gives

LE = 1
2

(
(∂µEφ)2 +m2φ2

)
+ V (φ), (A.24)

which is positive definite, and the equation of motion

(−∆E +m2)φ = −V ′(φ). (A.25)

with Green function
G(p) = 1

p2
E +m2 . (A.26)

This function has no singularity since plane-waves are not anymore solutions of the Klein-
Gordon equation (said another way, there is no particle in Euclidean space).

41Recall that L = T − V ; the Wick rotation changes the sign of T , such that E = −L. For scalar fields
this will be equal to the Hamiltonian of the system, but this will not be the case for fermions [22, sec. 2.3.2].
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Example A.2 (Schrödinger equation) In Lorentzian signature the Schrödinger equa-
tion reads

i
∂

∂t
ψ = Hψ (A.27)

where H is the Hamiltonian operator. Using plane waves in time

ψ = e−iEtψE (A.28)

we obtain the time-independent equation

Hψ = Eψ. (A.29)

Spatial momentum in H is replaced with the rule

p = −i d
dx. (A.30)

Doing the Wick rotation (A.12)
t = −iτ (A.31)

the Schrödinger equation is transformed into the heat equation

− ∂

∂τ
ψ = Hψ. (A.32)

Plane waves are
ψ = e−EτψE (A.33)

and the time-independent equation is the same (note that we did not transform the energy).
If we had chosen the other sign for the time in (A.12) then the wave would blow up. The
new momentum is related to the previous one by

p = −iπ. (A.34)

(as can be seen by looking at the example p = φ̇).

A.5 CFT parametrization
In this section we summarize various parametizations for the quantities of interest in CFTs.

The central charge can be parametrized by

c = 1 + 6Q2 (A.35)

where
Q = 1

b
+ b. (A.36)

Momenta can be written
a = Q

2 + ip (A.37)

and the corresponding weights are

∆ = a(Q− a) = Q2

4 + p2. (A.38)

When c ≤ 1 is it useful to make an analytical continuation

Q = iΓ, b = −iβ, a = −iα, p = −iω. (A.39)

73



We will term by rational values the theories such that

β2 = −b2 = q

p
(A.40)

where p and q are coprime. In this case c ≤ 1.
Degenerate fields are such that

αr,s = Q

2 −
rb

2 −
s

2b , (A.41)

or in terms of the momentum
pr,s = i

(
rb

2 + s

2b

)
. (A.42)

B General relativity
The Laplacian on curved space (Laplace–Beltrami operator) is defined by

∆ = gµν∇µ∇ν = 1√
|g|
(
∂µ
√
|g|gµν∂ν

)
. (B.1)

The negative of the Laplacian is positive definite

(φ,−∆φ) ≥ 0 (B.2)

and in terms of exterior derivatives it reads

−∆ = dd† + d†d. (B.3)

The Green function for the Laplacian ∆ at finite area is defined by

∆G(σ, σ′) = 1
√
g
δ(σ − σ′)− 1

A
,

∫
d2σ′

√
g∆G(σ, σ′) = 0. (B.4)

The second term is essential in order to take into account the zero mode, or equivalently to
verify that the integral is vanishing since there is no boundary.

B.1 Einstein–Hilbert action
We have the formula

δ
√
g = −1

2
√
g gµνδg

µν (B.5)∫
d2σ
√
g φ δRµν = −

∫
d2σ
√
g
(
∇µ∇νφ− gµν∆φ

)
δgµν (B.6)

B.2 Weyl transformation
Under a Weyl transformation

gµν = e2ωhµν (B.7)
we have

gµν = e−2ωhµν , (B.8a)
√
g = e2ω

√
h, (B.8b)

∆g = e−2ω ∆h, (B.8c)
Rg = (Rh − 2∆hω) e−2ω. (B.8d)

The Laplacian is not invariant because of the g−1/2 factor [41].

74



B.3 Conformal gauge
Using diffeomorphisms we can fix the gauge. In most of this review we will choose the
conformal gauge

gµν −→ g′µν = e2φhµν . (B.9)

where hµν is some fixed (non-dynamical) metric. The above decomposition is left unchanged
under the transformation (emerging Weyl symmetry)

hµν = e2ωh′µν , φ = φ′ − ω. (B.10)

We now look how to rewrite δgµν in term of δφ. We have

δgµν = −2 e−2φ hµνδφ = −2 gµνδφ (B.11)

from which we get
δφ

δgµν
= −1

4 gµν , gµν
δφ

δgµν
= −1

2 . (B.12)

Hence if we have a variation with respect to gµν we can replace it by one with φ using the
chain rule

δ

δgµν
= δφ

δgµν
δ

δφ
= −1

4 gµν
δ

δφ
. (B.13)

C Matter models
In this appendix we will list various models for 2d matter coupled to gravity. Most of these
models are non-conformal and we will give the limit under which the conformal symmetry
is recovered. We will use the euclidean signature; Lorentzian models can be found using a
Wick rotation (app. A.4).

C.1 Minimal models
We consider models for which the central charge is parametrized as [85, sec. 3]

c = 1− 6q2 = 13− 6
(

1
β2 + β2

)
, q = 1

β
− β. (C.1)

The minimal models Mp,p′ are defined for rational β2 which corresponds to a pair of
integers (p, p′)

β2 = p′

p
∈ Q, p′ < p (C.2)

where the second condition comes from the fact that β < 1. Then the central charge reads

c = 1− 6 (p− p′)2

pp′
= 13− 6 p

2 + p′2

pp′
. (C.3)

Minimal models have the property to possess only a finite number of primary fields Φm,n
where

1 ≤ m ≤ p′ − 1, 1 ≤ n ≤ p− 1 (C.4)

and whose conformal dimensions are given by Kac formula and read

hm,n = αm,n(q + αm,n) = 1
4

[(
m

β
− nβ

)2
− q2

]
(C.5)
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and
αm,n = (n− 1)β

2 − m− 1
2β (C.6)

Virasoro representations are degenerated and have a null vector at level mn. There are

1
2(p− 1)(p′ − 1) (C.7)

independent fields after the identification of Φm,n and Φp′−m,p−n.
Two special classes exist for special values of p′:

• p′ = 1: topological series [57]

c = 13− 6
(

1
p

+ p

)
, (C.8)

these models contains logarithmic operators [21]. For p = 2 the central charge is
c = −2 which appears in several places and is the simplest logarithmic theory.

• m ≡ p′ = p+ 1: unitary (or principal) series Mm ≡Mp,p+1

c = 1− 6 1
m(m+ 1) , m ≥ 3, (C.9)

and in particular c ∈ [1/2, 1).

Zamolodchikov conjectured the existence of generalized minimal models for which β2 ∈
R−Q [85, sec. 3]. In this case the labels m and n of the fields Φm,n do not have any bound.
The conformal bootstrap for these models have been verified numerically in [72].

C.2 Models with a Lagrangian
We will consider action S derived from a Lagrangian L (we will omit the subscript m that
is present in the main text)

S[g, ψ] = 1
2π

∫
d2σ
√
gL. (C.10)

We recall that the energy tensor is given by

Tµν = 4π
√
g

δS

δgµν
(C.11)

and using the previous action it reads

Tµν = 2 δL
δgµν

− gµν L (C.12)

where the second term comes from the variation of √g.
The trace is obtaiend by contracting with gµν

T = 2 gµν δL
δgµν

− 2L. (C.13)

In the conformal gauge g = e2φh this last equation simplifies to (see app. B.3)

T = −δL
δφ
− 2L. (C.14)
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C.3 Scalar fields
For a scalar field X we will consider Lagrangian made from the usual kinetic term and a
potential

L = 1
2 g

µν∂µX∂νX + V (X) (C.15)

and under integration we have

gµν∂µX∂νX = −X∆X. (C.16)

The equation of motion is
−∆X + V ′(X) = 0. (C.17)

Using the expression (C.12) for the energy tensor we obtain

Tµν = ∂µX∂νX −
1
2gµν g

ρσ∂ρX∂σX + 2 δV

δgµν
− gµν V, (C.18a)

T = −δV
δφ
− 2V. (C.18b)

The kinetic term is conformal and the trace depends only of the potential. If the potential
does not depend on the conformal factor φ, then the non-invariance comes from the lonely
factor coming from √g.

Below we consider various potential: from each of these pieces it is possible to build a
bigger potential.

C.3.1 Massive field

For a massive scalar the potential is

V = m2

2 X2. (C.19)

The energy tensor reads 42 [19, sec. 4.2]

Tµν = −m
2

2 gµν (C.20)

and its trace of the energy tensor reads

T = −m2X2 (C.21)

and we see directly that the conformal limit is m = 0 which corresponds to a massless scalar.

C.3.2 Exponential potential

We look at the potential
V = µ e2aX . (C.22)

If X is a conformal field, then the vertex operator e2aX has conformal dimension

h = −a2. (C.23)

If we choose a = i then the conformal dimension is 1 and this potential corresponds to a
marginal deformation of the conformal theory.

42Note that Ferrari et al. [19] define the energy tensor with the Lorentzian formula (A.2) instead of (A.18).
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C.3.3 Sine–Gordon model

The potential for the Sine–Gordon model is [34, sec. 2.1, 58, 78, sec. 4.3]

V = µ(1− cos aX). (C.24)

We added the 1 to remove the constant from the cosine Taylor series: this amounts to
redefine the cosmological constant. For a ∼ 0 this model reduces to a massive scalar with
mass m2 = a2µ (we need to send µ→∞ such that m2 is fixed).

Since this potential is made from exponential and that (−a)2 = a2, at the quantum level
this term has conformal dimension 1 if a = 1. In this case it is just a marginal deformation.

The model name comes from the equation of motion

−∆X + µ sin aX = 0. (C.25)

Since this potential is made from vertex operators it can be coupled to gravity for any
value of a and it will receive a gravitational dressing (as discussed in sec. 5.6)

V = µ(1− e2ξφ cos aX) (C.26)

where φ is the Liouville field and ξ is such that V has conformal dimension 1. If this field
is the only one, all parameters are fixed [58]. In presence of other matter this operator can
be relevant, irrelevant or marginal depending on the value of a.

C.3.4 Sinh–Gordon model

This potential corresponds to the analytical continuation in a of the previous model

V = −µ(1− coshαX). (C.27)

It also reduces to the massive scalar field with mass m2 = α2µ for α ∼ 0.

C.3.5 Non-minimal coupling

The non-minimal (or conformal) coupling to the metric is given by [20]

V = q

2 RX. (C.28)

The trace of the classical energy tensor in the conformal gauge is [19, sec. 4.2]

T = q∆gX. (C.29)

using the fact that
Rg = (Rh − 2∆hφ) e−2φ, ∆g = e−2ω ∆h (C.30)

and

T = −q2 X
δR

δφ
− q RX = qX(Rh − 2∆hφ) e−2φ + q e−2φ∆hX − q RX (C.31)

(after two integrations by part).
We obtain the full energy tensor from (B.6)

Tµν = −q
(
∇µ∇νφ− gµν∆φ

)
. (C.32)

We will consider the quantum version of this potential below (sec. C.5).
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C.4 Polyakov action
We want to construct the most general action for Xa (a = 1, . . . , d) scalar fields coupled to
gravity – it is called the Polyakov action. These fields are in the vector representation of
the (global) euclidean group (rotations and translation)

E(d) = O(d) nRd. (C.33)

In addition to renormalizability, diffeomorphism invariance and at most second order in
derivatives, the total action should be invariant under these (internal) euclidean transfor-
mations.

C.4.1 Symmetries and action

Under a transformation (R, c) ∈ E(d), where R is a rotation and c a translation, the scalar
fields transform as

X ′a = R b
a X

b + ca. (C.34)

Xa are scalars under diffeomorphisms (4.2) and do not transform

X ′a(σ′µ) = Xa(σµ). (C.35)

We also recall that they do not transform under Weyl symmetry (4.3).
The matter action can depend only on Xa derivatives since it is invariant under trans-

lations and the only possibility is [48]

Sm[g,X] = 1
4π

∫
d2σ
√
g gµν∂µX

a∂νXa. (C.36)

We will generally discard d-dimensional indices. It is invariant under Weyl transformation
(4.3)

Sm[g,X] = Sm[ e2ωg,X]. (C.37)

Since the action Sm is quadratic we can evaluate (4.15) as a Gaussian integral, but we
need to take care of the zero mode; we will defer its treatment to a later section.

C.4.2 Equations of motion and stress–energy tensor

Using (4.16) the matter stress–energy tensor reads

T (m)
µν = ∂µX · ∂νX −

1
2gµν g

ρσ∂ρX · ∂σX (C.38)

and it is traceless. The equation of motion for gµν is just

T (m)
µν = 0. (C.39)

The variation of Sm (C.36) with respect to X gives

∆Xa = 0 (C.40)

where ∆ is the Laplacian on the spaceM.

79



C.5 Coulomb gas
We consider a free scalar field φ in the presence of a background charge q [22, chap. 9, 34,
sec. 1.4]. Its action reads

S = 1
4π

∫
d2z
√
g (gµν∂µφ∂νφ+ iqRφ) . (C.41)

The corresponding stress–energy tensor T = Tzz gets a new term

T = −(∂φ)2 + iq∂2φ, (C.42)

and the associated central charge is

c = 1− 6q2. (C.43)

As an effect of the charge, the central charge is shift to c < 1 for q ∈ R. Because T is
imaginary, the theory is not unitary for arbitrary value of q, but the spectrum is unitary for
specific values of q (especially it contains the minimal models); they can be found using the
Kac table.

By computing the OPE between e2aφ and T we can prove that

ha = a(q − a). (C.44)

The momentum of the state created by such a vertex operators is

ipφ = a− iq

2 . (C.45)

Vertex operators are not anymore invariant under a→ −a but they are under

a −→ q − a. (C.46)

C.6 Fermionic fields
The Lagrangian for a massive fermion (massive Ising model) is

L = i ψ̄γµ∂µψ +mψ̄ψ. (C.47)

When coupling it to gravity we need to use a covariant derivative

Dµ = ∂µ + ωµσ
3 (C.48)

where ωµ is the spin connection.

D Mathematical tools
D.1 Gaussian integrals
The Gaussian integral for one scalar is∫ ∞

−∞
dx e−ax

2
=
√
π

a
. (D.1)

For a n-dimensional Gaussian integral where the measure is not normalised one has∫
dnx exaMabxb = (detM)−1/2

∫
dxn e−xaxa . (D.2)
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This can be written as ∫
dµ(xa) exaMabxb = (detM)−1/2 (D.3)

where the canonical measure is

dµ(xa) = dnx∫
dxn e−xaxa . (D.4)

In particular this ensures that the integral is one when M = 1.

D.2 Self-adjoint extension
A good reference on self-adjoint extension is [49, app. A] (see also [27, sec. 2.2, 57, sec. 3]).

Let H be an Hilbert space with scalar product 〈·|·〉, and A a linear operator on a domain
D(A) ⊂ H.

Considering χ ∈ H, the adjoint A† is defined by

〈χ|Aψ〉 =
〈
A†χ

∣∣ψ〉 , ∀ψ ∈ D(A). (D.5)

The domain D(A†) of the adjoint is defined by all χ ∈ H that satisfy this relation. Another
way to define the adjoint is

〈χ|Aψ〉∗ =
〈
ψ
∣∣A†χ〉 . (D.6)

The operator A is said to be symmetric (or Hermitian) if

D(A) ⊂ D(A†), A†|D(A) = A. (D.7)

A symmetric operator is called self-adjoint if

D(A) = D(A†). (D.8)

An operator B is an extension of A if

D(A) ⊂ D(B), B|D(A) = A. (D.9)

A symmetric operator A can be extended to a self-adjoint operator Ã if there exists a
domain such that

D(A†) ⊃ D(Ã†) = D(Ã) ⊃ D(A). (D.10)

We now review when conditions are met for such an extension.
First the domain D(A†) can be decomposed as

D(A†) = D(A) +K+ +K− (D.11)

where43
K±(A†) = ker(A† ± i). (D.12)

The deficiency indices are defined

d± = dimK±, (D.13)

and hence they correspond to the number of linearly independent solutions to the equations

A†ψ = ±i ψ. (D.14)
43The number ±i can be replaced by any pair of complex conjugate numbers.
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The operator A admits a self-adjoint extension if

d ≡= d+ = d−, (D.15)

in which case there the extension is characterized by d parameters.
In the following we compute the conditions such that the momentum and Hamiltonian

operators

P = −i d
dx, H = − d2

dx2 . (D.16)

are symmetric for wave functions defined on some interval [a, b]. We will compute P † and
H† using the formula (D.6) using ψ, χ ∈ H.

Consider first P

〈χ|Pψ〉∗ =
(∫ b

a

dx χ(x)∗
(
−i d

dx

)
ψ(x)

)∗

=
∫ b

a

dx
(
−i d

dx

)
χ(x) ψ(x)∗ + i

[
χ(x)ψ(x)∗

]b
a

after integrating by part, giving Since the first term is recognized to be 〈ψ|Pχ〉, P is sym-
metric if [

χ(x)ψ(x)∗
]b
a

= 0. (D.17)

We now turn to H

〈χ|Hψ〉∗ =
(∫ b

a

dx χ(x)∗
(
− d2

dx2

)
ψ(x)

)∗

=
∫ b

a

dx dχ(x)
dx

dψ(x)∗
dx −

[
χ(x) dψ(x)∗

dx

]b
a

=
∫ b

a

dx
(
− d2

dx2

)
χ(x)ψ(x)∗ +

[
dχ(x)

dx ψ(x)∗ − χ(x) dψ(x)∗
dx

]b
a

using two integration by parts. Since the first term is 〈ψ|Hχ〉, the Hamiltonian is symmetric
if [

dχ(x)
dx ψ(x)∗ − χ(x) dψ(x)∗

dx

]b
a

= 0. (D.18)

Note that an Hamiltonian that does not contain any other derivative term will require the
same condition.

Example D.1 (Particle on a line) Consider a particle on the line [0, 2π] with wave func-
tion ψ(x) ∈ L2(C) ∫ 2π

0
dx |ψ(x)|2 <∞. (D.19)

From the condition (D.17) P is symmetric if

χ(2π)ψ(2π)∗ − χ(0)ψ(0)∗ = 0. (D.20)

One needs to define a domain for each function; then the boundary term vanishes if one
takes

D(P ) = {ψ ∈ L2 | ψ(2π) = ψ(0) = 0}, (D.21)
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but then there is no need to impose any condition on functions in the dual space

D(P †) = {χ ∈ L2}. (D.22)

Then in some sense D(P †) > D(P ) and the operator is not self-adjoint P 6= P †. The
physical interpretation is that the boundary conditions break invariance by translation.

One can check thatH = H† because there are two integration by parts, and the boundary
term vanishes only if D(P †) = D(P ).

Example D.2 (Particle on a circle) On a circle we have P † = P since one can impose
periodic boundary conditions. In particular the operator P admits a one-parameter exten-
sion if one takes the domain to be

D(P ) = {ψ | ψ(2π) = eiθψ(0)}, D(P ) = D(P †). (D.23)

Physically this is due to a magnetic flux inside the circle (Aharonov–Bohm effect).

E Special functions
E.1 Gamma and beta functions
The gamma function reads

Γ(x) =
∫ ∞

0
dt e−ttx−1. (E.1)

For integer argument it reduces to the factorial

Γ(n) = (n− 1)! (E.2)

It satisfies the recursion relation

Γ(x+ 1) = xΓ(x). (E.3)

The asymptotic formulas are

Γ(x) ∼0
1
x
− γe +O(x), (E.4a)

Γ(x) ∼∞
√

2π e−xxx− 1
2 (E.4b)

where γe is the Euler constant.
An analytic continuation can be obtained from the relation

Γ(1− x)Γ(x) = π

sin πx. (E.5)

For y ∈ R, the gamma function satisfies

Γ(z)∗ = Γ(z∗). (E.6)

The beta function is
B(x, y) =

∫ 1

0
dt tx−1(1− t)y−1 (E.7)
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We can obtain the equivalent forms

B(x, y) =
∫ ∞

0
dt tx−1

(1 + t)x+y = Γ(x)Γ(y)
Γ(x+ y) (E.8)

We define the little gamma function

γ(x) = Γ(x)
Γ(1− x) = sin πx

π
Γ(x)2. (E.9)

From the properties of the Γ-function one can deduce

γ(x+ 1) = −x2 γ(x). (E.10)

One also has
γ(x)γ(−x) = − 1

x2 . (E.11)

It has the following asymptotic

γ(x) ∼0
1
x
− 2γe + 2γ2

ex+O(x2), (E.12a)

γ(x) ∼∞
sin πx
x

(
1
x

)1−2x
exp

(
1

12x − 2x
)
. (E.12b)

It has zeros at x = n+ 1, n ∈ N∗, and poles at x = −n, n ∈ N with residue

Res γ(−n) = (−1)n
(n!)2 . (E.13)

There is an integral representation for |Rex| < 1/2

γ(x+ 1/2) =
∫ ∞

0

dt
t

[
2x e−t − sinh xt

sinh t/2

]
. (E.14)

E.2 Bessel function family
Properties of Bessel functions can be found in [61, chap. 10].

E.2.1 Bessel functions

Bessel differential equation is

x2f ′′ + xf ′ + (x2 − ν2)f = 0 (E.15)

admits J±ν(x) (Bessel functions of first kind) as solutions if ν /∈ N. For integer parameter,
they are associated to the generating function

exp x2

(
t− 1

t

)
=
∑
n∈Z

Jn(x)tn. (E.16)

If we have the equation

x2f ′′ + xf ′ + (a2x2 − ν2)f = 0 (E.17)

then the change of variable y = ax does not change the derivative terms as the first two
terms are invariant under rescaling of x, and we get the solution J±ν(ax).
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If n = ν ∈ Z then J±n(x) are not linearly independent since

J−n = (−1)nJn n ∈ Z. (E.18)

In this case one has to introduce Bessel functions of second kind Yν(x) (denoted sometime
Nν)

Yν(x) = Jν(x) cos(νx)− J−ν(x)
sin(νx) , (E.19)

the limit where ν is an integer being regular. This function also satisfies

Y−ν = (−1)νYν ν ∈ Z. (E.20)

Note that the pair (Jν , Yν) are always independent solutions, but it is not of common usage
to use this pair for ν /∈ Z.

Asymptotic forms at infinity are pure imaginary exponentials

Jν(x) ∼∞
√

2
πx

cos
(
x− πν

2 −
π

4

)
, Yν(x) ∼∞

√
2
πx

sin
(
x− πν

2 −
π

4

)
(E.21a)

while near the origin one has

Jν(x) ∼0
1

Γ(ν + 1)

(x
2

)ν
, Yν(x) ∼0 −

Γ(ν)
π

(
2
x

)ν
− Γ(−ν)

π

(x
2

)ν
cosπν. (E.21b)

The latter are not valid for x ∈ −N∗, in which case one can use the relation (E.18). The
leading term in Yν(x) is the first if

Re ν > 0 or ν ∈ −N + 1
2 , (E.22)

otherwise it is the second one.
Note that for complex ν and real x one has

Jν(x) = Jν(x). (E.23)

Hence for pure imaginary ν and real x the (independent) functions J±ν(x) are complex
conjugate. This also holds for Yν(x).

The integral of two functions reads∫ ∞
0

dx
x
Jν(x)Jν′(x) = 1

ν + ν′
sin π

2 (ν − ν′)
π
2 (ν − ν′) (E.24)

if Re(ν + ν′) > 0, otherwise the integral does not converge (for example with ν, ν′ ∈ iR). If
ν = ν′ then one finds ∫ ∞

0

dx
x
Jν(x)2 = 1

2ν . (E.25)

Moreover for
ν = ν0 + 2m+ 1, ν = ν0 + 2n+ 1 (E.26)

we find that ∫ ∞
0

dx
x
Jν(x)Jν′(x) = δm,n

2(2m+ ν0 + 1) . (E.27)
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E.2.2 Hankel functions

Hankel functions are to Bessel functions what exponentials are to trigonometric functions

H(±)
ν (x) = Jν(x)± i Yν(x), H(2)

ν (x) = Jν(x)− i Yν(x) (E.28)

where we have defined H(+)
ν (x) ≡ H(1)

ν (x) and H(−)
ν (x) ≡ H(2)

ν (x). They behave as

H(±)
ν (x) ∼

√
2
πx

exp
[
±i
(
x− νπ

2 −
π

4

)]
. (E.29)

E.2.3 Modified Bessel functions

Modified Bessel functions Iν(x) and Kν(x) are solutions of the differential equation

x2f ′′ + xf ′ − (x2 + ν2)f = 0. (E.30)

The modified Bessel functions have exponential behaviour.
One has the asymptotic forms

Iν(x) ∼0
1

Γ(ν + 1)

(x
2

)ν
, Kν(x) ∼0

Γ(ν)
2

(
2
x

)ν
+ Γ(−ν)

2

(x
2

)ν
, (E.31a)

Iν(x) ∼∞
ex√
2πx

, Kν(x) ∼∞
√

π

2x e−x (E.31b)

If ν is integer, then there is an extra factor ln x in the second term for the limit of Kν at 0
(note also that the second term is subleading with respect to the first one).

The derivative of the Bessel function is
dKν(x)

dx = −1
2

(
Kν−1(x) +Kν+1(x)

)
, (E.32)

and
x

dKν(x)
dx = νKν(x)− xKν+1(x). (E.33)

In terms of Bessel functions they are given as

Iν(x) = i−νJν(ix),

Kν(x) = π

2
I−ν(x)− Iν(x)

sin(πν) .
(E.34)

E.3 Υb function
References on the Υb(x) function may be found in [40, app. A]. For the moment we just list
the properties we need.

E.3.1 Definitions

It depends on a parameter b and we also define

Q = b+ 1
b
. (E.35)

The function is defined by

ln Υb(x) =
∫ ∞

0

dt
t

(
(Q/2− x)2 e−t −

sinh2 t
2 (Q/2− x)

sinh tb
2 sinh t

2b

)
. (E.36)
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This formula is defined only for Rex ∈ [0, Q] but it admits an analytical extension over the
entire complex plane. It is not convergent for b ∈ iR.

We have the special values

Υb(0) = Υb(Q/2) = 1. (E.37)

If one write
x = Q

2 + ip (E.38)

the

ln Υb(p) =
∫ ∞

0

dt
t

(
−p2 e−t +

sin2 tp
2

sinh tb
2 sinh t

2b

)
. (E.39)

The first thing to note is that Υb(p) is an even function of p.

E.3.2 Symmetries and recursion relations

This function is symmetric around Q/2

Υb(Q/2− x) = Υb(x) (E.40)

and satisfies recursion relations

Υb(x+ b) = γ(bx) b1−2bx Υb(x), (E.41a)
Υb(x+ b−1) = γ(b−1x) b 2x

b −1 Υb(x). (E.41b)

where γ(x) is defined in (E.9).
Using these relation we note that

Υb(x+Q) = b−2+2x( 1
b−b) γ(xb+ 1)γ(b−1x) Υb(x). (E.42)

E.3.3 Zeros and limits

The zeros of the function are at

x = mb+ n

b
, mn ≤ 0, m, n ∈ Z. (E.43)

Especially we see that Υb(0) = 0 and that the Taylor series at x = 0 is

Υb(x) ∼ xΥ′b(0) +O(x2). (E.44)

The function has no poles.
One has the asymptotic formula for small b [57, p. 7]

Υb(bx) = Υb(b)
b1−x

Γ(x) . (E.45)

E.3.4 Analytical continuation

In order to study the analytical continuation of Υb we define the function [40, sec. 7.1]

Hb(x) = Υb(x)Υib(−ix+ ib) (E.46)
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with Re b > 0, Im b < 0 so that we can use the integral formula (E.36). This function is
entire and has simple zeros on a lattice generated by b and 1/b, and from the recursion
relations (E.41) it satisfies

Hb(x+ b) = e iπ2 (2bx−1)Hb(x), Hb(x+ 1/b) = e iπ2 (1−2x/b)Hb(x). (E.47)

We can observe from the Jacobi ϑ1 function (E.54) and its recursion equations (E.59)
that

e iπ2 (x2+x/b−xb)ϑ1(x/b, 1/b2) (E.48)

satisfies the same recursion relations as Hb(x). The ratio of the two functions is doubly
periodic and entire in x so that it depends only on b. We can find this function by setting
x = b/2 + 1/2b. The end result is

Hb(x) = exp
[
iπ

2

(
x2 + x

b
− xb+ b2

4 −
3

4b2 −
1
4

)]
ϑ1(x/b, 1/b2)

ϑ1(1/2 + 1/2b2, 1/b2) . (E.49)

The exponent can also be written(
x− Q

2

)2
+ 2x

b
− 1
b2
− 3

4 . (E.50)

Then with this formula we can study the upsilon function for imaginary b

Υib(−ix+ ib) = Hb(x)
Υb(x) . (E.51)

The argument function ϑ1 in the denominator of Hb reaches the real τ -axis where there is
a violent singularity running all along, and this is the boundary of the analytical extension
of ϑ1. Then for generic values of x and b the function Υb can not be continued to b ∈ iR.

We ave seen that for q = 1 the function ϑ1 is a periodic Dirac distribution, and products
and quotients of Dirac distributions is not defined.

E.4 Jacobi ϑ functions
Jacobi ϑ functions are quasi-periodic functions of two complex variables (z, τ) and they
appear in the context of elliptic functions 44 [22, app. 10.A, 36, sec. XII.4.12, 37, app. 8.A,
40, sec. 7.1, 57, sec. 6, 61, chap. 20].

We introduce the variables

q = eiπτ , w = e2iπz. (E.52)

E.4.1 Definitions

The Jacobi θ-functions denoted by ϑk(z, τ), with k = 1, . . . , 4, are solutions of the heat
equation

i

π

∂2ϑk
∂z2 + 4 ∂ϑk

∂τ
= 0. (E.53)

44We will follow Witten’s convention; for example ϑ1(z, τ) corresponds to EllipticTheta[1, πz, q] for
Mathematica.
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We will consider mainly the first theta function

ϑ1(z, τ) = i
∑
n∈Z

(−1)n eiπτ(n−1/2)2
eiπz(2n−1) (E.54a)

= i
∑
n∈Z

(−1)nq(n−1/2)2
wn−1/2 (E.54b)

= −2
∑
n∈N

(−1)nq(n−1/2)2
sin(2nπz). (E.54c)

Shifting the sum gives also

ϑ1(z, τ) = −i
∑
n∈Z

(−1)nq(n+1/2)2
wn+1/2 (E.54d)

= 2
∑
n∈N

(−1)nq(n+1/2)2
sin
(
2(n+ 1)πz

)
. (E.54e)

Using this last expression we can note that ϑ1 is odd for its first argument [57, p. 21]

ϑ1(−z, τ) = −ϑ1(z, τ) (E.55)

and that
ϑ1(0, τ) = 0. (E.56)

It is defined only for Im τ > 0 or |q| < 1. To see it we consider the partial series
∑
un

and we use D’Alembert test∣∣∣∣un+1

un

∣∣∣∣ =
∣∣∣∣∣q(n+1/2)2

wn+1/2

q(n−1/2)2wn−1/2

∣∣∣∣∣ = |q|2n|w| = e−2πn Im τ e−2π Im z. (E.57)

The ratio tends to zero if |q| < 1 or if Im τ > 0, and the unit circle |q| = 1 is a natural
boundary of analyticity (we can not impose any condition on z because of the periodicity
– see next section). The value Im τ = 0 is very singular because it means that the torus
degenerates to a line, and all zeros collapse to the real axis of z [12].

There is also a branch cut for q ∈ [−1, 0[ due to the factor q1/4; this corresponds to
z = 1 + iy with y ∈ R.

For fixed q the function is entire.
This function admits the following infinite product representation

ϑ1(z, τ) = q1/4
∏
n>0

(1− q2n)(1− q2nw)
(
1− q2(n−1)w−1) (E.58a)

= 2q1/4 sin πz
∏
n>0

(1− q2n)(1− q2n e2πiz)(1− q2n e−2πiz) (E.58b)

= 2q1/4 sin πz
∏
n>0

(1− q2n)(1− 2q2n cos 2πz + q4n). (E.58c)

E.4.2 Periodicities and zeros

It satisfies [36, p. 347, 37, p. 70, 72, 61, sec. 20.7]

ϑ1(z + 1, τ) = e−iπϑ1(z, τ) = −ϑ1(z, τ), (E.59a)
ϑ1(z + τ, τ) = eiπ(1−τ−2z)ϑ1(z, τ) = − e−iπ(τ+2z)ϑ1(z, τ), (E.59b)

ϑ1(z, τ + 1) = e iπ4 ϑ1(z, τ), (E.59c)

ϑ1(z,−1/τ) = −i
√
−iτ eiπτz

2
ϑ1(zτ, τ). (E.59d)
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The first two relations come from the double quasi-periodicity in z, and the two others from
the modular properties of τ . We have explicitly written the phases in order to compare later
with other θ-functions.

Under a general modular transformation [37, p. 72]

τ −→ aτ + b

cτ + d
(E.60)

the ϑ1 and its derivative transforms as

ϑ1

(
z

cτ + d
,
aτ + b

cτ + d

)
= ω
√
cτ + d exp

(
iπcz2

cτ + d

)
ϑ1(z, τ), (E.61a)

ϑ′1

(
z

cτ + d
,
aτ + b

cτ + d

)
= ω(cτ + d)3/2 exp

(
iπcz2

cτ + d

)[
ϑ′1(z, τ) + 2iπz

cτ + d
ϑ1(z, τ)

]
(E.61b)

where ω is an eighth-root of unity.
Its (simple) zeros for z lie at

z = m+ nτ, m, n ∈ Z. (E.62)

E.4.3 Derivatives

By convention a prime denotes the derivative with respect to the first variable.
The logarithmic derivative is

ϑ′1(z, τ)
ϑ1(z, τ) − cotπz = 4

∑
n>0

q2n

1− q2n sin(2πnz) (E.63)

valid for |Im z| < Im τ .
The value of the derivative at z = 0 is [36, p. 347]

ϑ′1(0, τ) = 2πq1/4
∏

(1− q2n)3 = 2πη(z)3 = π ϑ2(0, τ)ϑ3(0, τ)ϑ4(0, τ) (E.64)

where η(z) is the Dedekind function.
Under a modular transformation one gets

ϑ′1

(
0, aτ + b

cτ + d

)
= e iπ4 (cτ + d)3/2 ϑ′1(0, τ). (E.65)

E.4.4 Limits

At τ = 0 or q = 1 we have (after shifting 2n− 1 to 2n)

ϑ1(z, 0) = −
∑
n∈Z

(−1)n e2iπnz, (E.66)

and for z ∈ R. Similarly for τ = 1 or q = −1 we get

ϑ1(z, 1) = − e iπ4
∑
n∈Z

(−1)n e2iπnz. (E.67)

These sum represents (periodic) Dirac distributions.
Defining the periodic step function

θ(x) =
{
−1 −1/2 < x < 0
+1 0 < x < 1/2

(E.68)

we have [76, sec. 8]

lim
ε→0+

ε
ϑ′1(z, 1 + iε)
ϑ1(z, 1 + iε) = −2πz + π θ(z/2), z ∈ ]− 1, 1[. (E.69)
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E.5 Distributions
E.5.1 Periodic distributions

The periodic delta function (also called the Dirac comb) is denoted by

δ(x) ≡ III(x) =
∑
n∈Z

e2iπnx =
∑
n∈Z

δ(x− n) (E.70)

(we sometimes use the same symbol for both the usual and periodic delta functions, their
sense will be clear from the context).
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