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The Definition of a Simplex

A simplex is defined as the point set consisting of the convex hull
of a set of linear independent points.

o Let {v;}"*! denote a linear independent point set containing
n+ 1 points. Henceforth named the vertex set and its
elements the vertices. The simplex, o, is defined as the point
set,

n+1 n+1
a,,E{v]szA;V,-, Z)\,‘=1, 0<Ai<1 Vi}
i=1 i=1

@ In three dimensional Euclidean space we can have up to four
linear independent vertices. This implies that n =0,1,2,3 are
the only possible choices in a three dimensional space.
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The Vertex Set Operation

Let {v;}"*! denote a linear independent point set containing n + 1
points and defining the point set of the simplex, op,.

vert(o,) = {vi}™ = {vi,va, ..., Vps1}

As short-hand notation we use the labeling o, = {v1, v2,..., Vpy1}
as the notation that defines the simplex.
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Simplex Dimension

The number of linear independent vertex basis vectors of the
point-set of the simplex will be denoted as the dimension of the
simplex. Thus we have

dim(o,) =n

forn=0,1,2,3,4 and so on.
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The Orientation of a Simplex

The orientation of a simplex is given by the ordering of the vertex
set up to an even permutation (even number of two element
swaps)

@ Thus, there exist only two classes of orientations
Example: given o, = {vi, o, v3} then

o {vi,va,v3}, {vo,v3,v1}, and {v3, v1, 2} are of same
orientation

o {wvo,vi,v3}, {v1,v3, v}, and {v3, vo, v1 } are of same
orientation

but {v1, v2,v3} and {vs, v1, v3} are of different orientations.
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More on Orientations

@ A zero-simplex (a single vertex) has no orientation

@ The two different orientations are often designated by a sign,
+1 or —1.

@ One convention for picking an orientation is to use the
determinant of the vertex basis,

sgn(o,) =sgn(det([(v2 —vi) (vs—w1) -+ (Vap1 —w1)]))

o If we are given the orientation sgn(o1) = sgn({vi, v»}) then
the opposite orientation is written as sgn({v2, v })

@ Or even more shorthand we use {v1, v} = —{w, v}
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Examples of Notation

So we have
o
sgn({vl, Vo, V3}) = sgn (det ([V2 -V v3— Vl]))

sgn({v1, v2,va}) = sgn({v2, v3,v1} = sgn({v3, v1, 2})
Sgl‘l({V2, Vi, V3}) = sgn({vl, V3, VQ}) = Sgl‘l({V3, Vo, Vl})

sgn({vl, Vo, V3}) = —sgn({vz, Vi, V3})
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A Simplex Face (Sub-simplex)

A face o, of a simplex o, is a simplex spanned by the subset of
vertices of {v;}""!

vert(on,) C vert(o,)

Observe
@ Any face is itself a simplex
@ By definition of a face any simplex is a face of itself.

If dim(op,) < dim(o,) we call o, a proper face of op,.
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The Boundary of a Simplex

We will define the boundary, T, of a simplex, o to denote the set of
faces having fewer elements in the vertex set than o.

Mon)={om | m<n A vert(oc,)C vert(cy)}

Thus for oo = {v1,v2,v3} (a triangle), the boundary is by our
definition

M(02) = {{v1,v2}, {v1,v3}, {va,v3}, {v1}, {va}, {v3}}

Thus, it is merely the edges and the vertices of the triangle.
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The Boundary Operator

A slightly different definition defines the boundary operator of o,
to be all faces having exactly n — 1 elements in their vertex sets.

don)={om | m=n—-1 A vert(o,) C vert(o,)}

Usually the orientations of the faces must be handled carefully.

@ The boundary operator yields a set of n+ 1 simplexes
I(on) = {oJm}J";rll where

O-Jr'n = (_1)j+1{‘/17 ) Oja ooy Vngl}

and ¥; means that v; is dropped.

Observe that from a “geometric point set” viewpoint
d(on) = I(on), only “topological set-wise” d(o,) # I'(on).

10
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The Closure of a Simplex

The closure operation is the union of the simplex and its boundary.
Here is a combinatorial notion of closure

c(on) =0,UT (o)
Thus for oo = {v1,Vv2,v3} we have

CI(UH) = {{Vl? V27V3}? {Vlv V2}7 {Vlv V3}a {V2? V3}7 {V1}7 {V2}7 {V3}}

From a point set viewpoint one could just as easily have used the
boundary operator d(o,) in place of ['(0,) in the above definition.
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The Closure of a Set of Simplexes

Given a set of simplexes K = {o?,..., 0"} the closure of K is

defined as
c(K) = U cl(c¥)
okek

13
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The Interior of a Simplex

We define the interior of a simplex as the point set of the simplex
minus the points on the boundary.

int(c,) = cl(o,) \ (on)

@ Observe that all point sets are closed. Thus the vertices of a
triangle are contained in the edges of the triangle and both
the vertices and the edges of the triangle are contained in the
triangle.

Observe from a point-set viewpoint we have
int(o,) = cl(o,) \ I(on).

15 ®
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Adjacent Simplexes

Two simplexes o' and ¢/ are said to be adjacent if and only if
o dim(c') = dim(o¥)
@ and they share a common face

ok =0'nol £0

@ and the dimension of the common face is exactly one lower
than the dimension of the simplexes

dim(c’)=n—-1

where n = dim(c’) = dim(o”)
We define the boolean binary relation adj(c’, o*) to be true if and
only if o' and ¢/ are adjacent simplexes and false otherwise.

16
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The Simplicial Complex

A simplicial complex is a finite collection I of simplexes and the
following two properties are always true

o Every face 0% C o/ of each simplex o/ € K is also a simplex in
K

@ Any intersection of two simplexes o/ and ¢/ from K is

0

o Nnol = P
cfe

18 .
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For each of simplex collections below determine which are
simplicial complexes
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The Star (one-ring) of a Simplex

Given o € K then the star operator is given by
star(c) = {op|on € K Avert(o) C vert(o,)}

That is the set of all simplexes that ¢ is a face of.
@ A top-simplex is defined as having star(c) = o

@ The dimension of a simplicial complex is equal to the highest
dimension top simplex in the simplicial complex

The star operator is sometimes called the co-boundary operator.

20 .
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The Discrete Manifold

An n-dimensional discrete manifold is an n-dimensional simplicial
complex that satisfies

@ For each simplex the union of all n-dimensional incident
n-simplexes forms an n-dimensional ball

@ or a half-ball if the simplex is on the boundary

Thus, each n — 1-dimensional simplex has exactly two adjacent
n-dimensional simplexes if not on the boundary and exactly one
n-dimensional simplex otherwise.

22
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Determine which examples are discrete manifolds and which are not
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That is It!

Questions?

24
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Further Reading

@ Siggraph Asia 2008 course notes: Discrete Differential
Geometry: An applied Introduction. (Read Chapters 7 and 8)

@ Marek Krzysztof Misztal, Deformable Simplicial Complexes,
PhD Thesis, IMM, DTU, 2010

25 ®
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Study Group

@ Do the training exercises and discuss the definitions of each
operation

@ If you have time do the “Extras For Self-Study " listed on a
later slide

26
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Answers for Self Training 2
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Extras For Self-Study

@ A Discrete Manifold is said to have consistent orientation if all
top-simplexes has the same orientation

@ The link of a simplex o € K from a simplicial complex K is
defined as

link(c)) = cl(star(0)) \ star(cl(0))

@ Chains, Co-chains and Skeletons and much more...

33
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What have We Learned?

e Geometry (=point-sets) and topology (= combinatorics) are
two different things

@ What we consider a nice mesh — the discrete manifold
@ Star and link operators — are nice for making local changes

@ Boundary and co-boundary operators are really useful for
finite volume methods etc..
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