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The Definition of a Simplex

A simplex is defined as the point set consisting of the convex hull
of a set of linear independent points.

Let {vi}n+1 denote a linear independent point set containing
n + 1 points. Henceforth named the vertex set and its
elements the vertices. The simplex, σn, is defined as the point
set,

σn ≡

{
v | v =

n+1∑
i=1

λivi ,
n+1∑
i=1

λi = 1, 0 ≤ λi ≤ 1 ∀i

}

In three dimensional Euclidean space we can have up to four
linear independent vertices. This implies that n = 0, 1, 2, 3 are
the only possible choices in a three dimensional space.
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The Vertex Set Operation

Let {vi}n+1 denote a linear independent point set containing n + 1
points and defining the point set of the simplex, σn.

vert(σn) ≡ {vi}n+1 = {v1, v2, . . . , vn+1}

As short-hand notation we use the labeling σn ≡ {v1, v2, . . . , vn+1}
as the notation that defines the simplex.
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Simplex Dimension

The number of linear independent vertex basis vectors of the
point-set of the simplex will be denoted as the dimension of the
simplex. Thus we have

dim(σn) ≡ n

for n = 0, 1, 2, 3, 4 and so on.
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The Orientation of a Simplex

The orientation of a simplex is given by the ordering of the vertex
set up to an even permutation (even number of two element
swaps)

Thus, there exist only two classes of orientations

Example: given σ2 = {v1, v2, v3} then

{v1, v2, v3}, {v2, v3, v1}, and {v3, v1, v2} are of same
orientation

{v2, v1, v3}, {v1, v3, v2}, and {v3, v2, v1} are of same
orientation

but {v1, v2, v3} and {v2, v1, v3} are of different orientations.
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More on Orientations

A zero-simplex (a single vertex) has no orientation

The two different orientations are often designated by a sign,
+1 or −1.

One convention for picking an orientation is to use the
determinant of the vertex basis,

sgn(σn) ≡ sgn(det(
[
(v2 − v1) (v3 − v1) · · · (vn+1 − v1)

]
))

If we are given the orientation sgn(σ1) = sgn({v1, v2}) then
the opposite orientation is written as sgn({v2, v1})
Or even more shorthand we use {v1, v2} = −{v2, v1}
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Examples of Notation

So we have

sgn({v1, v2, v3}) = sgn
(
det

([
v2 − v1 v3 − v1

]))

sgn({v1, v2, v3}) = sgn({v2, v3, v1} = sgn({v3, v1, v2})

sgn({v2, v1, v3}) = sgn({v1, v3, v2}) = sgn({v3, v2, v1})

sgn({v1, v2, v3}) = −sgn({v2, v1, v3})
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A Simplex Face (Sub-simplex)

A face σm of a simplex σn is a simplex spanned by the subset of
vertices of {vi}n+1

vert(σm) ⊆ vert(σn)

Observe

Any face is itself a simplex

By definition of a face any simplex is a face of itself.

If dim(σm) < dim(σn) we call σm a proper face of σn.
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The Boundary of a Simplex

We will define the boundary, Γ, of a simplex, σ to denote the set of
faces having fewer elements in the vertex set than σ.

Γ(σn) ≡ {σm | m < n ∧ vert(σm) ⊆ vert(σn)}

Thus for σ2 = {v1, v2, v3} (a triangle), the boundary is by our
definition

Γ(σ2) = {{v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, {v3}}

Thus, it is merely the edges and the vertices of the triangle.
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The Boundary Operator

A slightly different definition defines the boundary operator of σn
to be all faces having exactly n − 1 elements in their vertex sets.

∂(σn) ≡ {σm | m = n − 1 ∧ vert(σm) ⊆ vert(σn)}

Usually the orientations of the faces must be handled carefully.

The boundary operator yields a set of n + 1 simplexes
∂(σn) = {σjm}n+1

j=1 where

σjm = (−1)j+1{v1, . . . , v̂j , . . . , vn+1}

and v̂j means that vj is dropped.

Observe that from a “geometric point set” viewpoint
∂(σn) ≡ Γ(σn), only “topological set-wise” ∂(σn) 6= Γ(σn).
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Self Training 1
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The Closure of a Simplex

The closure operation is the union of the simplex and its boundary.
Here is a combinatorial notion of closure

cl(σn) ≡ σn ∪ Γ(σn)

Thus for σ2 = {v1, v2, v3} we have

cl(σn) = {{v1, v2, v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, {v3}}

From a point set viewpoint one could just as easily have used the
boundary operator ∂(σn) in place of Γ(σn) in the above definition.
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The Closure of a Set of Simplexes

Given a set of simplexes K = {σ1, . . . , σN} the closure of K is
defined as

cl(K) ≡
⋃

σk∈K

cl(σk)
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Self Training 2
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The Interior of a Simplex

We define the interior of a simplex as the point set of the simplex
minus the points on the boundary.

int(σn) ≡ cl(σn) \ Γ(σn)

Observe that all point sets are closed. Thus the vertices of a
triangle are contained in the edges of the triangle and both
the vertices and the edges of the triangle are contained in the
triangle.

Observe from a point-set viewpoint we have
int(σn) = cl(σn) \ ∂(σn).
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Adjacent Simplexes

Two simplexes σi and σj are said to be adjacent if and only if

dim(σi ) = dim(σj)

and they share a common face

σk = σi ∩ σj 6= ∅

and the dimension of the common face is exactly one lower
than the dimension of the simplexes

dim(σk) = n − 1

where n = dim(σi ) = dim(σj)

We define the boolean binary relation adj(σi , σk) to be true if and
only if σi and σj are adjacent simplexes and false otherwise.
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Self Training 3
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The Simplicial Complex

A simplicial complex is a finite collection K of simplexes and the
following two properties are always true

Every face σk ⊂ σj of each simplex σj ∈ K is also a simplex in
K
Any intersection of two simplexes σi and σj from K is

σi ∩ σj =

{
∅
σk ∈ K
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Self Training 4

For each of simplex collections below determine which are
simplicial complexes
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The Star (one-ring) of a Simplex

Given σ ∈ K then the star operator is given by

star(σ) ≡ {σn|σn ∈ K ∧ vert(σ) ⊂ vert(σn)}

That is the set of all simplexes that σ is a face of.

A top-simplex is defined as having star(σ) = σ

The dimension of a simplicial complex is equal to the highest
dimension top simplex in the simplicial complex

The star operator is sometimes called the co-boundary operator.
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Self Training 5
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The Discrete Manifold

An n-dimensional discrete manifold is an n-dimensional simplicial
complex that satisfies

For each simplex the union of all n-dimensional incident
n-simplexes forms an n-dimensional ball

or a half-ball if the simplex is on the boundary

Thus, each n − 1-dimensional simplex has exactly two adjacent
n-dimensional simplexes if not on the boundary and exactly one
n-dimensional simplex otherwise.

22



Self Training 6

Determine which examples are discrete manifolds and which are not
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That is It!

Questions?
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Further Reading

Siggraph Asia 2008 course notes: Discrete Differential
Geometry: An applied Introduction. (Read Chapters 7 and 8)

Marek Krzysztof Misztal, Deformable Simplicial Complexes,
PhD Thesis, IMM, DTU, 2010
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Study Group

Do the training exercises and discuss the definitions of each
operation

If you have time do the “Extras For Self-Study ” listed on a
later slide
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Answers for Self Training 1
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Answers for Self Training 2

28



Answers for Self Training 3
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Answers for Self Training 4
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Answers for Self Training 5
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Answers for Self Training 6
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Extras For Self-Study

A Discrete Manifold is said to have consistent orientation if all
top-simplexes has the same orientation

The link of a simplex σ ∈ K from a simplicial complex K is
defined as

link(σ)) ≡ cl(star(σ)) \ star(cl(σ))

Chains, Co-chains and Skeletons and much more...
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What have We Learned?

Geometry (=point-sets) and topology (= combinatorics) are
two different things

What we consider a nice mesh – the discrete manifold

Star and link operators – are nice for making local changes

Boundary and co-boundary operators are really useful for
finite volume methods etc..
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