DELIGNE-BEILINSON COHOMOLOGY

Hélépe Esnault* , Eckart Viehweg

In these notes we describe the Deligne cohomology of a complex
manifold as well as Beilinson's algebraic cohomology theory of a quasi-
projective complex manifold and some of its properties. In fact, most
of the content of our manuscript can be found (in a more compressed
form) in the first paragraph of Beilinson's article [3]. We tried to
include all details needed, and we hope that our presentation is

sufficiently "down to earth" to serve as an introduction to this theory.

We like to emphasize that credit for the ideas presented here
should be given to A. Beilinson, S. Bloch, P. Deligne and some other
mathematicians, whereas any possible inaccuracies and errors are due

to us (and to our efforts to be as explicit as possible).

In §1 we recall the definition of the (analytic) Deligne cohomo-
logy and - following [4] - we give S. Bloch's definition of the regulator
map for curves, hoping that the concrete description in this case may help
to understand the more formal calculations of the following chapters.
In“§2 Qe describe the Deligne-Beilinson (D - b) complex on &
good compactification of a quasiprojective (real or complex) manifold-
and the corresponding cohomology theory. The properties of the
D - b - cohomology arising from abstract nonsense are discussed and some
of the cohomology groups are determined. At the end of §2 we explain
to some extent the description of the D-B-—complex ZR(p)D by using

o
real ¢ forms.
The formal definition of the D-Db - cohomology using relative cohomo-
logy is explained in §4. This might be a more conceptional approach.
However, we have tried to avoid using the relative cohomology as far
as possible, although it forces us to use a rather artificial way of
defining the product on the D-b- complex (3.3).
In §3 the definition and properties of the product are explained. We
could not resist to include the calculations of all the compatibilities
and homotopies needed.

Without giving all details, we sketch in §5 the usual extensions of
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the definitions of the cohomology theory to simplicial schemes of

finite type over €. At the end of this section one constructs a complex
of sheaves in the Zarisky topology, which on open subvarieties describes
the D-Db- cohomology.

In §6 we recall the definition and some properties of the cycle class

in the De Rham cohomology (following [2],[9] and [1]). Especially we
explain the behaviour of those classes with respect to the Hodge
filtration. These constructions are needed in §7. There we first ex-
plain the relations between the Deligne cohomology of a projective
manifold and the intermediate Jacobian of Griffiths. We reproduce
Deligne's definition of the cycle class in the D - b - cohomology ([10])
and we compare it to the Abel-Jacobi map. Our presentation is slightly
different from the one given in [10]. Finally, in §8 we sketch the de-

finition of Chern classes of vector bundles in the D - DB - cohomology.
#e donot consider in this note Beilinson's description of the D-b

cohomology as an extension of Hodge structures.

Notations and conventions:

Throughout these notes X is a complex analytic variety. Even if
X happens to be algebraic, it is considered as an analvtic variety,
except if the index "Zar" 1is added. Correspondingly Qi denotes the
De Rham complex of holomorphic differential forms.
We use the notations of the derived category, whenever it is necessary
of bounded complexes (even if it is sometimes not explicitly mentioned) .
A nice introduction can be found in [6] or [14]. In particular we
constantly use the notation of a cone of a map £ : A —> B of
complexes. If the map just exists in the derived category we always
replace B by an injective resolution.
H* is the hypercohomology functor from the derived category of Z-
sheaves to the derived category of abelian groups whereas mHI(A") is
the g-th cohomology of the complex H'(A"). If A 1is a subring of

R we write
A(p) = (2imP . AccT .

Of course, for the purpose of this volume, one needs the cohomology
theory for real algebraic varieties. However, as explained in (2.1,II),
this theory is obtained from the one for complex varieties by a quite
simple procedure, "compatible with all the statements made in these

notes".



§1 The Deligne cohomology

The dilogarithm function and the regulator map on a Riemann

surface (after S. Bloch)

1.1. Following [5] we define the Deligne complex Z(p)D an ©P
14

a cdmplex analytic manifold X as
0 —> E(p) —> 0y —> Q) —> ... —> 271 — 0

(where Z(p) 1is in degree zero) and the Deligne cohomology as
9 (X,Z(p)) :=H(XZ(@)y o) -
HD, n ! p : D,an

For simplicity, in this paragraph, we drop the sub-script "an" and
write Z(p)v and »H% .

1.2. We define a multiplication

U 3(p)D ® Z(p')D ——é-Z(p'*p')v

(x.y if deg x =0
by XUy =1{xAdy if deg x > 0 and degy = p'
0 otherwise .,

U 1is a morphism of complexes. In fact, if we denote the differential
in z(p)D by d (where, of course, 4 : Z(p) —> OX is the

inclusion) and p = deg x and p' = deg y, we have:
x-dy - p=0, p'<p'’
. = = LIPS |
d(xUy) .= x-dy =dxady p o_r p p = dxUy+ (_1)udeY
dxady . p>0, p'=p'
0 otherwise

It is quite easy to show that U is associative.

1.3. Using thevusual arguments from homological algebra, or by
calculating the Cech-cohomology on a suitable cover we obtain a ring
structure on p@qH%(X,Z(p)). In fact: the product is antico?mutative,
i.e. for a€HI(X,Z(p)) and peHI(X,2(p')) aup= (-1 puya.

This will be shown in (1.6) for p=p'=g=qg'=1 and in a more general



set up in §3. For the reader who wants to check the anticommutativity_
directly we just reveal that the homotopy between x Uy and

TR .
(=1) 7K yUx .is given by:

‘hix @ y) =
(—1)ux1\y otherwise .

1.4. Examples for low values of p and q:

i) (p = 0) Obviously Z(0),=% and H%(X,Z(O)) is nothing but the

singular cohomoloagy 19¢x,%).

ii) (p =1, g=1) 1If 0§ denotes the sheaf of invertible holomorphic
functions, Z(1)D is quasi-isomorphic to 0;[-1] via x —> exp(x). ‘
For a suitable open cover {Ua} of X an element of H;(X,Z(1)) is

v

represented by a Cech-cocycle
(2itm_, ,F) € Ch@(1)) xc2(0)
aB "Ta
where the cocycle condition says

G(Fa) s = FB —Foc =2:|.1rm0tB .
Hence fa ¢ = exp(Fa) is the restriction of fEZHO(X,0§) and the

isomorphism
H (X,%(1)) — HO(X,0%)
D! UxX
maps the cohomology class of the cocycle to £.

iii) (p = 2, g=2) _The exponential x —> exp(y5}-) and multiplication
with f(Zin)-1‘ on QX defines a quasi-isomorphism:

Z(2), —> (0% _d log 9)1()[-1].

. v
Hence pEIH%(X,Z(Z)) can be described by a Cech-cocycle

((2in)2~naBY,HaB,Qa) e @(2)) x ¢ (0) x O

with



Ly 2 - _ -
~ An element of ZH1(X,0§ —> Q;) is .represented by
T, h% 0,01
‘Eas'wa)e C (0*) x Q ()
with 65&6 =1, d log 5a8==6ma .

The image of p under the isomorphism of the two cohomology

groups is given by
= 1 S
Eag = exp (37— HaB) and — £
iv) The multiplication

1 1 2
U s Hy(X,Z (1)) x Hy(X,Z (1)) —> H (X,Z(2))

. . . 2 .
(2im maB,Fa),(Zln naB'Ga) b— ((2iw) maBnBY,Zlﬂ msdas,FadGa)
can be written via the isomorphisms ii) and iii) as
v : 8O (x,0%) x 10 (x,0%) —> m'(x, 0% —> al)
) R ¢ X ¢ X
: Tag -1 dg 4
with fUg = (g v 337 Fo g). Hence, for a Cech cover {Ua} such

that log flU is defined (and denoted by loga f) one can describe
fug by the %ocylce (gas ,wa) with '

1 .
EIE(lOga £ - logB f) -1

= T cm— dj
EaB g and w, = 337 log f 5

1.5. P. Deligne (see [3], 1.3) interprets Iﬂ(x,0§——> Q;) as the
group of rank one bundles £ with holomorphic connection ¥

v
identifying (&,V) with the class of the Cech~cocycle (EaB,wa),
where EIUa e OUa- e, + € =Eug’e, and Ve =u,e..

By definition GEaB = 1 and the Leibniz rule
v eg = wg EaB e, =ga8 Wy ea-+d£a8 e,

implies Gwa==d log EGB' The group structure corresponds to the
e-product of bundles with connection and OX equipped with the usual



differential d 1is the unit. On the other hand each éech-cocycle comes
from a pair (§,V). We have (§,V) = (Ox,d) if and only if & has a
vnon-trivial flat. section, locally described by ua.ea with

Hg - Ea8==uq -and 0 =Vua-ea== uawaea-rdua-ea. Hence (§,V) = (Ox,d) if
and»only if Ea8==ua/u5 and w, = rilogua, that is, if (Eas,wa) is
(6,d) (Ay) for A, =1/u,.

If one looks: at the exact sequence
H' (X,0% —> 91) — (X,0%) —> H1(X ol)
' X ' p'¢
one finds thewell known fact that a rank one bundle with trivial first
De Rham Chern class has a holomorphic connection.

From now on we will identify the cohomology classes in]ﬁ(x,oi —>Q;)
with the isomorphic-classes of bundles with connection. The
product £fUg in (1.4, iv) defines for two functions f,gEﬁHo(x,0§) a

rank one bundle with connection, which we call «r(f,q).

Lemma 1.6. (see [4])
a)  r(f,g) e r(g,f) = (0,,d) for f,gemn’(x,0%).
b) r(1-g,9) = (0y,d) if  g,1-geH (X,04).

v
Proof. We choose a Cech-cover such that loga c, loga f (or loga(1 -q)

in part b)) are defined.

a) Then r(f,g) & r(g,f) 1is represented by

1" 1
EIF(lOgaf - long). ffTF(lOgag - long)

gaB = g r
-1 dg af
Wy = Fimilog,f 5 +log,g F) .

A flat section is given by

. . __._1_ .
Aa = exp( i logaf logag).

b) To obtain a flat section one has to find Aa satisfying

1
—-—-(log (1“(_?) _10g (1—9’))
ke/ka - g2;w a , B



AL N -q) d
and x, - 7im 0% (179 =2

o

The second differential equation leads to the solution

Ay, = exp (- 3%? f loga(1-g)§g)-

(S. Bloch's dilogarithm function).

Since loga(1-g)-log8(1-g) is constant on the components of

UaB one has

d
Ag/Ay = exp (1 f(1og, (1-g) - log, (1-9)))

n

exP(Zl'n’ (log (1-g) - log8(1 -g))loggqg) .

1.8. From now on, we consider a compact Riemann surface Y, a finite
set of points § and j : X =Y - S —> Y. We define 0§(*S) to be

the sheaf of meromorphic functions, holomorphic and invertible on X

and Q (log S) to be the sheaf of meromorphic differential forms,
‘holomorphlc on X and of logarithmic growth at §S. If f,gEﬁHO(Y,O§(fS))
the cocycle of r(f,g) is by (1,4, iv) in fact a cocycle in

0*(*5) —_— Q (log S).

For x€S 1let ord, :.O;(*S) —_ Zx denote the order of a zero
or pole and let res  : Q;(log~s) — C, denote the Cauchy-Poincaré

residue. We have resxd log = ordx,

1
kernel (| |ord ) = 0§ and kernel ([ ] res ) = QY .
XES XES

Altogether we obtain a distinguished triangle (see [6] or (2.2)
for this notation)

(1.9) e ged.y (0% d log, Q;) —> (03 (xS) d log, Q;(log s))

[1]N\\\ Z/ (ord,res)

(L] Zy e x exp(Zln) l—lm*[ 1]

XES XES XES

The components of the induced map

H'(¥,055) —> 2y (log ) —m'(y,] | exl-1]) = | | ¢k
X€S XES



5

v
are denoted by 9 . If on a Cech cover {Uu} of Y (gaﬁ'wa) represents
an element p of the left hand side, tgen Bx(p) = exp(Zin-resxwd) for
any o with x € Ua .

Lemma 1.10.

a) The natural map

© (O§(*S) — Q;(log S)) — Rj*(0§ —— Q;)
is a quasi-isomorphism.
b) 9 _r=71T where Tx is the "tame-symbol"

- ord _f-.-ord_g ord _f -ord_g
T (£,9) =[(-1) % og g )

Proof.
a) ¢ induces a morphism of the triangle (1.9) into the triangle

* . mk g.i. . * 1
EY _— RJ.,_‘(EX '9—-—> RJ:*(OX —> QX)

N

1] exi-11

XE€S

being an isomorphism at two corners.

- b) 8x° r and Tx are multiplicative in both arguments. As for

3x°r one has Tx(f,g)-Tx(g,f) = 1. If both, f and g are units one
has Bx-r(f,g) = 1 and Tx(f,g)‘= 1. From the definition of TX one
obtains Tx(1-g,g) = 1. If t is a local parameter at x we can write

£ = ut’ and g = v-th for local units u and v. By multiplicativity
and (1.6,a) the proof of b) is reduced to

a) £ a unit and g = t
B) £ =g =t,

where we may assume that all poles and zeroes of t are in S. Since

1 _ t _ t-1 1. _
r(t,t) @ r{z=g,t) = rig=g,t) = rl—g) = (0,4
(by (1.6,5)) and since the same holds for T, we have
I r(t,t) = o .r(t=-1,t) and T, (t,t) = T (t-1,t). Hence case B§)

follows from a). The explicit description of r(f,g) in 1.4, iv)



tells us that for a suitable cover of Y - S w, = 5%? 1ogaf'§%
o1 : I
and res w = 57 logaf(x). Therefore 3Xr(f,t) 1/f (x) Tx (f,t).

1.11. By Matsumoto's description of K2 of a field one has
Ky (T(Y)) = C(Y)* o,C(Y)*/<g @ (1-g),gcr(y) -{0,1}> .

On the other hand, r induces a map

1

T*(¥) 0 (¥)* = 1im B (¥-5,0% (+5) )®ZH0 (+-8,03:5)) — Lin B (¥-5,04+5) — QU (log S))

Sy

whose kernel contains all g e (1-g) (1.6,b). Therefore r factors
over

KZ(Q(Y)).

From (1.10,a) we have a commutative diagram

1l Ty

v

11 ey

K., (Y) > K, (C(Y))
2 2 XEX

l’r I3 1

: 1 . 1 o N 1 —% .
0 > H (Y,OY —> QY) —> éigim (Y,OY(*S) —> QY(lOg S)) —— i€£ el

where the first line is the exact sequence obtained from the Gersten-
Quillen resolution (we just need that this is a complex, which is easier
to prove ) and the second line is the exact sequence of the triangle
(1.9). Therefore we obtain

Theorem 1.12 (Bloch, [4]) r induces a map

r: K, (Y) —> gl (y,c*) = m'(y, 03 —> sz;)

(called the regulator map).

Remarks 1.13.

The description due to S. Bloch of the regulator map may serve as an
introduction to the constructions of §2. There we will define complexes

F'(p) such that on an open Riemann surface



X=Y-5s H (X,F(1) = HO(Y,O’}}(.*-S)) (2.12)
and such that
H2(X,F (2) =H' (X,0%* —> Q) = H'(¥,0%*S) —> Q. (log S))
’ Yy X Yy v J .

It will be even possible to realize F*(p) as a complex of sheaves in
the Zariski-topology, whereas for any algebraic manifold and g2 1

<p)

ud (X,Z(p) ) = ]Hq;;(X,Q'X

Zar Z

The reason why this construction is not necessary in the case of a

curve is just that the target group of the regulator map is

m%(X,F" (2)) and that 2>dimy . (2.13)

§2 The Deligne-Beilinson complex

In this section we want to generalize the definition of the Deligne
cohomology in several respects. In particular we want to explain
A. Beilinson's "theory with logarithmic growth along the boundary" which
- using GAGA - can be viewed as an algebraic version of the Deligne
cohomology (see [3]).

For the applications to higher regulators described in this volume,
A. Beilinson uses cohomology theories for real algebraic manifolds. The
difference between the complex algebraic and the real algebraic theory
only comes in when one calculates examples or when one tries to deter-
mine the image of the D-Db - cohomology in the Hodge filtration of the
De Rham cohomology. Hence, as long as it is not stated otherwise,
the definitions and results hold in either of the following situations:

2.1. I. X is an algebraic variety over T considered with the classical
topology and 0, denotes the sheaf of holomorphic functions .
H® is the hypercohomology viewed as a functor from the derived cate-

A9

gory (of complexes) of Z-sheaves on X to the derived category of abelian

groups and - for a complex F° of sheaves —]Hq(X,F') is thevq-th
cohomology of the complex H® (X,F°), as usual calculated by Cech-cohomo-
logy or using injective resolutions.



II) X is an algebraic varietyvover IR . Then a sheaf (or a complex
of sheaves) F on X 1is defined to be a pair (F,0) consisting of
a sheaf (or a complex) F on X(C) and an involution o compatible
with the complex conjugation F_ on X(C), i.e.: o:F > F_4xF.

Of course, all morphisms and quasi-isomorphisms of complexes are
supposed to be compatible with the involution chosen, <o> = Z/2
operates on :mq(x(m),F‘) and on the complex H® (X(T),F") (in the
derived category). If H'(ko>, ) denotes the group cohomology functor

on the derived category of abelian groups with o-action, we define

H (X,F") = H (ko> H  (X(T),F")) and IHq(X,F‘) as the g-th cohomology

of this complex. In down to earth terms ZHqu(X,F') is the abutment of a
spectral sequence Hp(<o>JHq(X(¢),F')) and, if F° is a complex of
sheaves over Q,.qu(X,F‘) are the invariants ZHq(X(E),F')O.

Examples:

On the constant sheaf T on X(C), there are two possible involutions:
F:L — F_,L =0T acting on € as identity and o0:C —> F__C
(oo} [e o] (o]

acting as complex conjugation. We always assume that the sheaf €

.

X(T)
co . . * = *
complex of R-valued C forms the involution chosen on AX(E) SX(E)QI$:

on X is the pair (I,0). Correspondingly, if S denotes the

is the one induced by o on the second factor. Restricting this

to the subcomplex Q. of holomorphic forms we obtain the involution

operating on the coe?é?éients of a differential form by conjugation.

On the algebraic differential forms this corresponds to the action of
Cal (C/R) induced by base change from TR to & on the algebraic Kihler
differentials. Denoting all those involutions by ¢ we remark that o
respects the Hodge decompostion of Hk(x(m),m) i.e.: O(Hk-p,p):=Hk~p,p.
2.2. Let u:A’" —> B’ be a morphism of complexes of sheaves on X.

The cone of u is the complex

Cone (A~ N B°) = C

with the differentials

PRSP SN Aq+2 o gd*]

(a,b) > (-d(a),ufa) +d(b)).



q
The natural inclusion BY — C& and the projection
complete the triangle

A'v———————> B*®
»[1& /
o
u

An arbitrary triangle in the derived category is distinguished, if it is

(where B '&—> C& —>> A°[1] 1is exact)

the imace of one of those just constructed. If one applies a derived

functor to a distinguished triangle one obtains a distinguished triangle,
For example if R

AN — 5 B
[1]\ /
-

is distinguished, then

H' (A°) —> H" (B")

R

I (C") (where H®- denotes the hypercohomology
functor in the derived category)

is distinguished and - regarding the cohomology of the complexes
H (A°), H (B°) and H'(C°) - one obtains the long exact sequence

g+1

oo —mI(A) —wY(B) —mI(C) —EYT ' (A) — ...

(see [6] or [14] for a nice introduction).

Lemma 2.3. Let wu, : Ai —> B" and Uy : A5, —> B’ Dbe two morphisms
of complexes and C° =Cone (Ai ® Aé 21:229-8‘)[41]. Then

111 —u2

c* Cone(A{ ——> Cone (Aé —=> B°))[-1]

-u u
Cone(Aé —2 5 Cone (Aa 1

> B*))[-1]

Proof. All three complexes are equal to A; ® Aé ® B;[—1] with the
differential s[-1]1 = -5 , i.e.:

(a1 1a,,b) l—>-(-d(a1) ,—d(az) $uy (a1) - u, (az) + d(b)).
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Corollary 2.4. Using the notations from 2.3. "we have three long exact

sequences:
a) —mi) —ul) ewiny — i@ ) —-uit () —
b) — m3(c’) — w4 ) — m(cone (4; —2—> 8°)) —-—>]qu+1(€")—->
c) ——>mq(¢') —> H1(4;) —> ¥ (Cone (A} 215 gy —>mq”<C°)—>.

2.5 Let X be a n-dimensional algebraic manifold (over T over R) .
A "good compactification" of X is a proper algebraic manifold X with
an embedding j : X — X such that D = X - X is a normal crossing
divisor (i.e.: locally in the analytic topology D has smooth components

intersecting transversally).

Let Qi (log D) be the De Rham complex of meromorphic forms on X,
holomorphic on X and with at most logarithmic poles along D. We have

a filtration of Q? (log D) Ly subcomplexes

Fg = (0 — Qg(log D) —> Q§+1(log D) — ... —> Q%(log D)).

The properties of logarithmic forms needed are (see [7]):

a) Since j 1is affine Rj*Qk==j*Qi. There are quasi-isomorphisms:
Rj,L —> Rj*Q).( = J*Qi( < Qk.'(lo‘; D)
and hence

19 x,r) =m? (X,05(log D)).

b) The natural maps

. w37 pP*+1 9% wF
Tp : H (X,FD ) — H (X,FD) and

v : m(X, L) — ®1(X,05(log D)) are injective.

Hq(X,E) carries a mixed Hodge structure, and the Hodge filtration
Fqu(X,m) is given by 1Im(t). Moreover the cokernel Hq(x,m)/Fqu(x,m)
of T is the same as Imq(i,ﬂ%p (log D)) where Q%p(log D) denotes
the complex



Y

0 — OX —_— Q% (log D) —> ... —> 95_1(log D) ——% 0.

The cokernel of Tp‘ is HYP(X,0P (109 D)).
: X

c) By GAGA, IHq(f,Fg) can be calculated using the corresponding

complex of algebraic differential forms in the Zariski Eopology.

d) qu(?,Fg) is independent of the good compactification chosen.

Definition 2.6. Let A be a subring of IR and A(p) = (2iﬂ)p'A c .
The Deligne-Beilinson complex (D - b - complex) of (X,X) is

= 3 —_— = 2 p €E-1 L] * -—
A(p)D A(p)D,X Cone (RJ*A(p) ® F, —> RJ*QX)[ 1] where ¢

and 1 are the natural maps and where Rj*ﬂi is represented in such

a way that both maps exist (for example by the direct image of an

injective resolution of Qi).

If £ : Y —> X 1is a morphism of algebraic manifolds we can choose
good compactifications Y and X such that f extends to f :Y —> X.
Thereby we obtain a morphism f*:A(p), < —> f,A(P), < .
D,X D,Y

2.7. Other descriptions: By (2.3) we may write as well:

A(p)y = Cone (F§ —> Rj,(Cone (A(p) —>.0,)))[-1] or

A(p), = Cone (Rj,A(p) —> Cone (F5 —> Rj,0;))[-1] .
Using the second desCription one sees immediately that Z(p)le is
quasi-isomorphic to the complex Z(p)v an defined in (1.1). A

14

quasi-isomorphism o : Z(p)v an Z(p)v|X is given by
Z (p) > OX > .. —> Qg-z —_ 95_1 —> 0
o u1£ - _T¢P~2 “pr p-1 ¢p+1 p
Z(p) —> Oy =g --- —> O "_7—> 0,00, > Oy eqy ...
1 p-1 P
for'ap(w)‘= (dm,w)'(—1)p and ai(w) = (—1)i-w . The proof follows

easily since sp_1(n) = (o,dn) and 6p(¢,n) = (=dy,-y+dn) .

Lemma 2.8. Imq(i,A(p)D) is independent of the good compactification

chosen.

Proof. IH'(i,A(p)D) is one edge of a distinguished triangle whose other
two edges,



v
B (X,Rj,A(p)) ®H (X,F5) and H' (X,Rj,0;),

remain quasi-isomorphic under 1* for a morphism T : X' — X

between good compactifications of X.

Since each manifold over € allows a good compactification we

can define:

Definition 2.9. ©Let X be an algebraic manifold (over € or R) .

Then the Deligne-Beilinson cohomology (or D - b cohomology) is

defined as

B3 (X,A(p)) = HI(X,a(p) )
Keeping in mind that Cone(Fg —_— Rj*Qi) is quasi-isomorphic to
Q§P (log D) and that Cone (Rj,A(p) —> RjxRy) = Rj, C/A(p) we can

rewrite (2.4) as:

Corollary 2.10. There are long exact sequences

a) —> Hi(X,A(p)) — HY(x,a(p)) @ FPEIx,0) — Y (x,0) —
. g+1
— 13" (x,a0)) — ...
g+1

b) —> HI(X,a(p)) — BI(X,a(p)) — w¥(x,0)/F° — 83" (x,A(p)) —>

c) — mix,ap) — FPEIx,0) — 8Yx,e/ap) — B (x,a(p)) —>

Proposition 2.12.

i) H%(X,A(p)) 0 for g<0 and p=z21.

1) B)(X,A(1)) (g8’ (X,3,0,/A(1)); »deHO(X,Q%(log D))}

iii) Let O(X);lg denote the group of algebraic invertible functions
on X. Then there is a natural map

p O(x);lg —> H;(X,AU)).

For A =Z the map p is an isomorphism.



At

Proof. Since Hq(X,E/A(p» =0 for g<0 and FpHO(X,E) =0
for pz1 i) follows from (2.10,c).

ii) We have a morphism of complexes

~ 1 .
A(1) := Cone(Fy —> j,Cone(A(1) —> Q) [-1]
A(1), = Cone(F] —> Rj,Cone(A(1) —>@5))[-1]

By (2.4,c) we obtain

0,= . 1, T 1.1 1 - .
0 — H (X,j,C/A(1)) — H (X,A(1)) —> F H (X,C) —> H (X,j,C/A(1))

I I | )

0 — 50 (x,C/A(1)) —> H;(X,A(1)) — rla' (x,0) —> B (X,C/A(1))

and - using the five - Lemma we find n to be an isomorphism.
A(1) 4is quasi isomorphic to

0 —> }(log D) ® 3,0,/a(1) —> 92(log D) @ 3,8; —> ...

(w,f) FH—— (+dw,+w-4df)

and H;(X,A(1)) is given by Ho(ker A) .

iii) The inclusion Z(1) —> A(1) induces HJ(X,Z(1)) —> Hj(X,A(1))

and we just have to consider Z = A.

Since
OX/Z(1) ——§—> Q; commutes,
exg\\y ///ﬂd.log
*
OX

and since @EIHO(X,j*O§) is meromorphic along D if and only if
d log ¢ € H'(X,0%(log D)), we obtain from ii) that

H%(X,%(1)) = {mEﬁHo(i,j*0§); ¢ meromorphic along D}.

By GAGA, the meromorphic functions 1lim HO(X,OX(v‘D)) are the same

as the algebraic functions. v

2.13. Remark. As in (1.1) one defines
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g = 49 b=
HU,an(X’A(p)) H(X,A(p) —> OX —_> ... —->S2X )

which - by (2.7) - is the same as ZHq(X,A(p)DIX). One has the

natural map

H%(X,A(p)) — H%lan(X,A(p)).

This map is - of course - an isomorphism if X 1is compact, but also

if p>dim X, since in this case
A(p)p = Cone (RI,A(P)—> Rj,05) [-11 = Rix(A(p)yy)

However, for example for g=p=1 and A = Z, we have just seen that
0(x)3y, = H) (X2 (1)) S H;,an(x,z(1)) = 1%(x,0%).

2.14. The "real" D-Db - cohomology

Let Sk be the complex of IR -valued ¢” forms over X(T) and
A}'( be the complex of C-valued ¢ forms. Since € = R (p) ® R(p-1)
for all p, one has maps '

QX —> A}'<=S° -&m( R(p) ® R(p-1)) —> S)'((p—‘l) :=S)'(®1R]R(p-1) .

m X

p-1

In the derived category those are the same as the projections

€ —> IR (p-1). Therefore we have quasi-isomorphisms
Cone (R(p) —> Q)'() —> S)'((p-1) .

We denote the induced maps FP —» j*Qi —_> j*Si(p-1) also by

D
ﬂp_1. Since Rj*S%(p—1) = j*Sk(p-1), (2.7) implies:
~J -
Lemma 2.15. Let IR(p)D := Cone (FE——IL;L4> j*SQ(p-1))[-1], and let
P : R(p)y —> R(p), be the morphism given by ppng = id, )
= . ae = . Th is asi*isomorphism,
ppl]R(p) 0 and pPIRJ*QX ﬂp-1 en  pp aqu P m

Gorollary 2.16.

a) For g=sp H%(X,IR(p)) is the g-th cohomology of the complex
7~

1 (x,R(p) 5) -

A7
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b)

i
ner ®,3,59; dn lies in In(# (%, 0% (log D)) > 10 (X,3,50))}

Hy (XR (1))

e’ ®,3,59; dner’ & axlog D))}

More precisely, if dn =1r0(q)) then dzn = —3—(0 .

c) If dim X = 1 then
2 1
HD(X,IR(Z)) = H (X,IR(1)) .
— .
Proof. ]R(p)D is the complex
. <0 . P2 . 1 +1 . P
0 —> 3,55(0-1) > ... > 3,85 “(-1) >2E(og D) @ 3487 ' (0=1) =" (log D)®3,Sy (p-1)—>.
where j*S}O{(p- 1) is in degree one. Since all the j*S;&(p— 1) are
acyclic one obtains a).
For p=g=1 a) implies that H;(X,IR(H) is the kernel of
- = . 0 - ' =
1 (%,04 (log D)) @ B*(%,3,8") —> 8% (X,92(1og D)) @ H(X,5,5,)
(9,n) > (dp,+me -dn).

If dn =n0w then -dzn = -;- and d¢ = 0, and we obtain the two
descriptions of H;I)(X,IRH)) given in b) .

~~/

c) 1is obvious since on a curve F12)=0 and ]R(2)D= j*S>'((1)[-1] is

quasi-isomorphic to Rj,R(1) [-1].

2.17. Remarks.

i) The isomorphism between the two explicit descriptions of
H)(X,R(1)) obtained in (2.12,ii) and (2.16,b) is given by
f b— ﬂO(f) =7 and df = 2dz(1r0(f)).

ii) Using the language of currents ([11], Chap. 3.1), one can rewrite

(2.16,b) in a slightly different way. For example, if X is a curve and

S = X-X, we write a, Resx(Zdzn) = Resx(dnp) for x€S. Since

a,n e u° (i,Q%(log D)), n has logarithmic poles and both, n and dn,

are integrable. If Td n denotes the current associated to dzn the
z



generalized Cauchy formula implies (loc. cit.)

dzTq , = 2i7 ) Res_(d n)é = im ] a §_

z XES(T)

where éx is the Dirac distribution. On the other hand, this equality

implies that dzn has at most logarithmic poles. Hence

=im ) a,8_.} .

1 _ 0,v Oy .
HD(XJR(1)) ={n€H (X,SX),n integrable and d4-T <8«

z°d n X€S ()

§3 Products
The aim of this section is to extend the definition of the product
given in (1.2) on Z(p), . to the full D - b complex of a pair
I

(X,X), where, as in § 2, X is a good compactification of X (See [3]).

3.1. Example: We define

Ug:alR) g1y ® AlQ)p 1y —> AP+ a) gy

(x -y if x€A(p), y€A(q)

Ix -y if xEA(p),y€§2}'(

by x U, y={xAy if xe€fP , yerd

XAY if xEQ}'(, yEFq

0 otherwise

where x (and y) are supposed to be a local section of A(p), FP

or Qi. For A =% this product is compatible under the quasi- 1somorphlsm

o described in (2.7) with the product defined in (1.1), i.e.

V)
z(p)D,an @ z(q)v,an - Z(p"'q)v,an
(o ® ) | l o
U
0
Z’-(p)D|X ® Z(q)le _— Z(p+q)vlX

is commutative.



Definition 3.2. Let o€ IR. Then we define a product

Ua : A(p)D ® A(q)D —> A(p +'q)D by the following table:

a £ w
q gq q ~
. 0 1-a ‘w
%p % " %q (1 -a)ay ug
fp O prfq (_”deg fP o fp/\w
wp oc-wp aq (1 -a)wp/\f 0

representing elements of

q -
A(qg) FD QX
A(p) A(p +q) 0 Qx
p pP+g
FQ 0 FD QX
Qx Qx QX 0

concentrated in one degree.

3.3. To make sense out of this definition ofa product one should inter-
prete this table in the following way:
On X we have the products

A(p) ® A(gq) —> A(p +q)
A(p) GQ}'( —_— QX
Qx ® A(q) —> QX
J*Fhe 0y —> o
. s % q .
QX ® j FD —> SZX

as described above. They fit together to define a product

. B “yr_ | V[
ua.Cone(A(p) ej*FD —_ QX)[ 1] ® Cone (A(q) EBJ*FD — QX)[ 1] —

—> Cone(A(p +q) —> Q) [-11.



One has to verify for

that

Here again §
the cone, shifted by

Sy u, v")

is as in (2.2) and -8

elements vy .and y'

of degree

§[-1]

and '

= ' —1yH '
Sy Uy vt (<D Py u, syt .

is the differential in

-1 . The left hand side is

- d
(1 oc)ap wq

-nM.o af +
: qua £ pAqu
) Fa o A wq

1-a)dw_A £+
(1-0a) mpAA q

(1-a) (-1)* T

af 0
P g

whereas the right hand side is

. 1- - f 0
o ap aq ( a)ap q
+(1--a)ap -aq ‘ +(1-a)ap-(-fq) +(1-oc)apdwq
a(—fp) a.q (—1)”;1a(-dfp)Awq
2p ., . —1) 2k
+(-1)""a fp aq +(-1) afq Adwp
o aq- dw (1-a)dubqu

-1yH (1=~ -
'+( IR a)pr( dfq)

Here the entries live

in

74



cxpdy B BT
_ A(q) (J*Fp) ok
1
‘A(p) 0 0 b
X X
cxpPy B pup!
(3*Fp) 0 o
ol Qb | bt 0
X X X

Taking injective resolutions of FD' Al ),Qi we obtain a product

A(p)D ® A(q)v —> RjxCone(A(p) ® j*Fg — Q}’() [-1] ® Rj*Cone (A(q)ej*Fg —
—_— Qé)[—1] —> Rj,Cone(A(p +q) —> QQ[—1] .

We complete this product to a product

A(p)D ® A(q)D —_— A(p-&q)v = Cone(Fg+q —_— Rj*Cone(A(pfq) —_ Qé))[—1]

by taking the usual wedge product Fg ® Fg e Fg+q . This is possible

since - by the following computations - the wedge product commutes with

the differentials in A( )D.One has

S(E_ A £) = [-af_af_ - (-1)¥ - £ Adf_,-f_Af_]
P q p q p q p q
. p+q . e e _ o) . e
in Fp 7 @ Rj,Ny whereas éfp [ dfp, fp] € F) ® RNy
6fp Ua fq = [-dfp A fq,—(1-—oc)fp A”fq] and similarly

1 - ) 2p
-1)Ff U Sf = [-(-1 af _,-(-1 £ Af_1].
(-1) p Yo Ofg [-(=1) pr q’ (-1) "o o " ql

3.4 Remark. The gquite complicated description of the product is

necessary, since at this stage, we tried to avoid the more formal
language of sheaves on pairs of topological spaces. Nevertheless, the
reader should compare the defintion with the definition of the tensor-
product of those pairs, given in (4.5 - 4.8). From now on, we just work
with the multiplication table (3.2) to verify the properties of the

product, and we leave it to the reader to distinguish whether a given
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expression lives on X or on X .

Proposition 3.5.

a) is anti-commutative. More generally, if vy and Yy' are

U, .
1/2
concentrated in degree pu and p' then

-YU -Yl = (_1)H'P'Y.U

o (1-a) Y -

b) U and U1 are associative.

0

c) The element (a0 =1, fo = 1) in A(O)D is a left-identify for
UO and a right-identity for U1.

d) For «,B € IR the products Uy, and UB are homotopic.
Proof:

We choose elements Yy and y' 1living in A(p)D and A(q)v in degree

p and pu'.

a) 1is obvious from the definition.'F?r example if
= ~ sxpPy M c | B b=

Y fp € (3 FD) and vy wq € QX , then

v= -k = (=1 HFe =1 = (=1 H .
YUaY (=1) afp/\wq (-1) awq/\fp (-1) Y U(1—a)Y .

b) Let Yy" be an element of A(r)D . Using a) it is enough to con-

sider UO. If vy,y' and Yy" represent all the three elements of A( )

()
D

two of the elements belong to Qk , then (Y(by')uoy" = YUO(Y'on")=0.
The same holds if two of the elements are belonging to A( ) and one

()

or all the three elements of F the associativity is obvious. If

to Fé ) or one to A( ) and two to FD . Since =0 both
UO'Q&@A( y and UO'Fé )gq: are zero. Hence the only cases left, where
one “of the two sides 'can “be nonzero, are (ap,aq,wr), (ap,wq,fr) and

H [ 1" . ] ”"
(wp,fq,fr) and both, (y UOY )UCY and yuo (y uoy) are

ap.aq-wr, ap'wq'\fr and wp/\fq/\fr respectively.

c) Again it is enough to consider uo and (1,1) on' is given by
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f w
8q i q
0 . 0 1-
1€Aa(0) 1 aq wq
0,0 _
1 G(FD) 0 ?qu—fq 0

d) The homotopy between U, and UB is given by

h i (A(p)y @ AlQ) pf—> A(p+q) 5"

- |
J»(—1)”(a-8)y/\y' if Y€Q§1and yreok 1
hivyey') =1

L0 otherwise

where - as usual - vy and Y' are elements of degree pu and ',

each in A( ), F or QX . We have to show that

()
D
YUY =Y UgY' = (b8 + 6h) (Yo ') =h(syay') + (1) Fn(y e 8y") +8(hiyoy')).

The left hand side is given by

0 ' | 0 (B—a)ap'wq
‘ Ay B
0 0 | (-1)" (o B)fp/\mq
(a—s)wp-aq (B—a)pr fq : 0 : in the notation of (3.2).

For the right hand side we remark first that h(dyey') = 0 if
y'#wq,h(yeéy')=0 if Y#wp and S8(h(yevy')) =0 if
(v,y') # (wp,wq). We have

= (=M (e . —1y2H Ty T -
(h$ + &h) (wp@wq) (=1) (o 8)dmp1«wq+ (=1)“F (o B)prdwq+ §((=1)"(as B)wp/\wq) =0,

h(S 6h = = - -—
( + )(ap@wq) h(dap@wq) (-1) (o B)apAwq '

4y B _ _ .
(hd + Sh) (fp®wq) (-1) (o= B)( fp)j\wq ’

hé + 8h -1)H = (=1)2H (o - .
(hd + )(wPOap) (-1) h(wpadaq) (-1) " (a B)wp a and

p
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(Bo#6h) (uy® £) = (-1)2* (o - Blug, A (-£).
3.6. Let €pt A(p)v —> RjsA(p) and
g :A(p)v — Fg be the projections

; €a €

€q : AlP)y —— Rj*A(p) ——> Rg*QX and

€F o) 1

1 . b . .

€9 .A(p)D —> Fy —> RJ*QX .

By definition of A(p)v (2.6) eQ-eé is the composition of two maps
in a distinguished triangle and hence eQ-sé is homotopic to the zero

map. We define products

e ®id

Uy : Alp)y ® Rj,A(q) S NN Rj,A(p) @ Rj,A(q) —> Rj,A(p+q)
g M o g A p+q
UF : A(p)D ® FD —_— FD_® FD —_ FD
and
eﬂa id . A .

Ug @ A(p)D @ Rj*Qi —_— Rj*QX ® Rj*Q% —_— Rj*QX .

Since U can - up to homotopy - also be defined as

Q

eée&id A
A(p)D ® RJ*SZX _— RJ*QX® RJ*QX — RJ*QX

the morphism
Rj,Alq) & FI =—— Rrj,a.

is compatible with U and, up to homotopy, with UQ.

1 = 1 )
and eF(Y UO Y') =y UF €Y as one

a'Vr

1y — 1

Moreover eA(Yuo:y ) =y UA €Y
easily verifies using the multiplication table (3.2).

For the natural map n : Rj*ﬂé‘——> A(q)D one has as well

Y U n(wq) = n(y Ug wq). Altogether we obtain:

Proposition 3.7. In the triangle
Rj,A(q) & F] > Rj .0,

/D\ /m




%

the operations of A(p)D éefined by U ,UF,UQ and U, are compatible

with the morphisms.

3.8. Since A(p)v has a flat resolution (of finite length) over
% ([6] V,6) one has a map A(p)v @L“A(q)v —> A(p)p @_A(q)p . Therefore

one has for all o € R a product

U, ARy ol A(q)v —> Alp+Q)yp

ané - by the usual constructions from homological algebra a prcduct on
the hypercohbmolog§}ABy (3.5,d) this produ¢£”ié‘independent of a .
(3.5) and (3.7) give immediately:

Theorem 3.9. Uy, inducéé a product U ,.makindﬂ peq H%(X,A(p)) into a
! .
bigraded ring with unit. For Y€ZH%(X,A(p)) and Y'EZH%'(X,A(p')) we
1)
have YUY =(—1)qq y' Uy. Moreover one has an operation of

nd q Pyd 1d ‘-
p?q D(X,A(p)) on peqH (X,A(p)) ., p?qF H¥(X,C) and ©6H®(X,T) coming

14
via €EprER and € from the standard products. The exact sequence

— 13 x,ap) — 8x,a0)) & FPEYx,0 — B XD — 1l (x,a(p))
is compatible with the operations.

3.10. The product on the "real" D - b cohomology
We return to the notations introduced in (2.14). On
ﬁi(p)v = Cone(Fg “Tp-1, j*Sg(p-1))[—1] one defines a product

~ S~ ~ ~
U s IR(p)D ® IR(q)D.—,—>]R(p+q)D

~given by
£
q °q
deg £

f £ £ - o
D p/\ q (-1) ﬂp%/\sq
S [ 7 _f
p ATatq | O

Lemma 3.11.

a) U 1is a morphism of complexes.

b)

pp+q° U, is homotopic to T o (pp ® pq) (where

P : R(p) ~ . _ . . .
p D ——>ZR(p)D is the quasi-isomorphism given in (2.15)).



Proof: a) For Yy and Y' of degree p and p'

' +43!
s(yoay') € (FEFHHH T o 5 b "H (peg-1)

is (again the differentials are written as §6[-1] = =6 )
: 2
- £ - (-1)* 0,(-1)*r_af +(-1)“Mn_£ _Ads
[dfp/\q(1) fp/\dfq, [0,(=1) m p/\Sq( ) moEpA q]
- f Af
Tprg-1Fp"g) ]
[0,ds_aT_f +(—1)“’1s Am_@&f 11 0
P 949 P 4 g

whereas
Syuy' 1is

[-Af A £, =T € AT E ] [o,-(-1)“+1npdfp Asg]
[O,dsp/\anq] 0
and (-1)Pyusy' is
[—(—1)Efp/\dfq,—(—1)2“wpfp AT gy (0, (-1) % £ nds ]
[0, (—1)”sp A (T af )] 0
Since
Tfp+q_1 (fp/\ fq) = T\'p+q_1 ((ﬂp_1fp+ 'ﬂ‘pfp) A (Tl'qfq+ Trq_1 fq)) = ﬂp—1fp A ‘ﬂ'qfq+ ﬂpfp/; ‘ITq_1 fq

we obtain a).



%S
b) The homotopy is

—1\ M v - B veok =1
(-1) ‘lTpY/\TI’q_1Y if Y(.QX and vy GQX

hivey') =
0 otherwise .

We have to verify that

~

LB ! = 1 — p’ ' !
oY Upgy Posg (Y Ug Y") =h(8yey') + (-1) hiy e 8y )+6(h(Y®j )).

The left hand side is (see (3.2))

0 -
0 ap 1Tq_1wq
0 0 - £ AT LW
=Nty A Tga1¥g
f -
0 Tl'p_.]ﬂ)p/\'ﬂ'q q 0
“Tpeq-1{9p A £y

As in the proof of (3.5d) all the terms occuring on the right hand side
are evidently zero except

(-1)2”(1r W_AT

h3+sh = =DM aw :
(hs+ )(wpowq) (-1) (TTp AT Uq) + %M1

AT g ¢ A )+ (-1 )”(d(npcqpmq_1'wq))=o,

hd 6 = h = - -
(hé+8h) (_ap® wq) (cSap ® wq) ( 1)ap Tq-1%g

= (_qy k1 -
(hS + 6h) (fp@wq) = (=1) 1Tp( fp) A wq_1wq

waAaf)+m waAr £ .

o (=) 2K - - -
(hé+8h) (wp@fq) =1)""1 w_Am (fq) : Trp+q__1 My -1 gg

pp g1

Example 3.12.

. ~
Let [¢9,n] and [¢',n'] represent two elements of ]H1 (X,]R(1)D). Then

[lo,n] T [0', n'l1=10 A @', NAT O - 0 A n'l.

As we have seen in (2.16)
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H) (X, R(1) ) = {ner’(X,3,59);: d,necr’(X,05(log D))}

where ¢ corresponds to 2dzn. Hence the product of two elements

n and n' is given by
' - L - ’ .
[4-d_n A d,n',2-(n-mdn' - n'-mdn)l]

. 2, < T _ 12

In particular, if dim X = 1 and therefore Fé = 0, nun' 1is represented
by 2-nemdn' - 2:n'-m.dn in BO(X,S;(1))/aB’ (x,50(1)) = H (X, R(1)) .

§ 4 Relative cohomology

~In [3] the D - b - cohomology is defined using relative cohomology.

This approach, giving :H’(Y,A(p)v) as a derived functor on the category

of sheaves on pairs of topological spaces, applied to (Fg,Rj*Cone(A(p)—>Qi)),
will be needed in § 5 to define a D - b - complex on X in the
Zariski-topology. One also defines a tensor product on this derived

category, to obtain the product for the D - b - complexés in the
Zariski-topology. In fact, using this tensor product one can simplify

the definition (3.2) and clarify the constructions described in (3.3).

4.1. Let j : T —> T be a continuous morphism of topological spaces.

A sheaf on (T,T) is a triple Fogp = (F, F,¢) where F is a sheaf on

—_ L7

T, F is a sheaf on T and ¢ : F —> j,F a morphism of sheaves. .

Correspondingly a morphism o : F is a pair of morphisms

T,T F
— — — 4
0:F —> F', a: F—> F' such that ap=0¢'a.

4.2. Let Sh(T,T) denote the category of sheaves on (T,T). It is easy
to see that Sh(T,T) has enough injectives. For example: if T and

I are injective sheaves on T and T respectively, the triple

J=m=TJ=Te 3,1,J=1, pr,) is injective in Sh(T,T). If Fz
T’T * . _— 2 — T’T

is any sheaf we can find 7,1 such that T : FT<> 1 and p :F — 1.
Then (T ®poy,p) defines an inclusion FT T s Jf T - Therefore each

’ ’
sheaf has a resolution by those "special injective sheaves".

4.3. Consider the functor

r® . Sh(T,T) —> Ab  defined as

-0 _
I (Fg ) = Ker (8(T,F) 22— 80(T,F)).



Obviously Fo is left exact. If Df(T,T) is the derived category
of compléxes_of sheaves in Sh(T,T), bounded below, we define

+ +
R'* : D (T,T) —> D (Ab)

to be the derived functor of PO

Proposition 4.4.

a) If F% o = (F",F»9") is a complex of sheaves on (T,T) then
4
_ R, ]
RT'(E% T ) = Cone®™' (T, F") —— H (T,F))y[-11.
’

b) If X is a good compactification of the algebraic manifold X and
if A(p)D XX denotes the complex (Fg,Cone(A(p) —§>‘Qé),—1) on

— g

(X,X) then H%(X,A(p)) is the g-th cohomology of

RI‘. (A(p)vli’x )-

Proof. It is enough to verify a) for the special injective sheaf

JT p defined in (3.2). On the right hand side of the equality we have
’
the cone of '
N e 0 I N _ 40
- (Tr,J) = (T,I) ® H (T,I) —= MW" (T,J) = H (T,I),

which is quasi-isomorphic to HO(T,T). On the other hand RF'(JT T)==RFO(JT T)=
—_— — 14 14
HO(T,I) as well.

b) By (2.7) H%(X,A(p)) is the g-th cohomology of N
m%immwgﬂéxunmm@)—>%nbﬂ)=@mmwi§p—+mW&mmm@%>@nH4L

4.5. TFor two complexes of sheaves

Foo= (F,F,0) and 6%, = (G°,67,y")
T,T
we define the tensor product Fé T ® G% T to be the complex (E ,E",n")
with
E'=F ® G and (for p " = ¢" ® id - id & y°)
E* = Cone((3*F" & G*) @ (F & 3*C°) 2> F'eG")[-1].

The connecting morphism n° - is - on the level of sheaves - defined by



N

nle enid e Yewts id) 601 X — 4, (3*FLe 61) @ 3, (Fe 3% @ (3, F lei6t ) .

Since pl - n* is the zero map nt commutes with the differentials

and 1n° is a morphism of complexes.

4.6. If C(T,T) denotes the category of complexes of sheaves on (T,T) .
and K(T,T) the corresponding homotopy category we have thereby
constructed a bifunctor e . C(T,T) xC(T,T) —> C(T,T). Since the &
product respects homotopies it also defines the bifunctor

® : K(T,T) xK(T,T) —> K(T,T). For a fixed complex ET,T '

FT,T ® respects triangles and if both F and F are flat FT,T® maps
exact complexes to exact ones. Hence FT,T ® respects quasi-isomorphisms
in this case. Sh(T,T) has enough flat sheaves (for example, if P on

T and P on T are flat and ; L > F and P £—>F both surjective,

(P, *P © P, id ® 0) maps surjectively to (F,F,0) via (0,9 o p + p)).

The standard machinery of derived categories and derived functors

shows the existence of a left derived functor

o' : D (F,T) xD (T,T) —> D (T,T).
(see [14], for example).
From now on we assume that T and T have finite cohomological
dimension. Then both RI'® and o' are defined on the derived category
of bounded complexes.

4.7. If Hg o = (A, H ,v") is a third complex of sheaves, a pairing N
U s FT,T ® GT,T —_> HT,T (and - using flat resolutions as in 3.8
= L G - i i i
FT,T ® CT,T —> HT,T) is given by a pair
Uz = F' o G° —> H° and

U, : Cone((j*F" ® G*)®(F" ©3*3°) &> F* 0 G*) [-1]—> H"

compatible with n° and vy° . Taking the special injective resolutions

described in (4.2) one obtains from U a pairing

U : RT (FT,T) ® RT (GT,T) —> RT (HT,T)' and

c
(X3

. . L . . . .
RT (FT,T) ® RT (GT,T) —> RT (HE, ) .

T



4.8. If - as in (4.4,b' - we consider on (X,X) the complexes

G= = A(q)v’s(-’x and Hi’x = A‘P+q’v,2,x ,

the multiplication table (3.2) defines pairings

APy %,x o A(q)v,i,x — Alpralp 3 x -

In fact, the first calculation made in (3.3) shows that Ua,X is
well defined and the second part of (3.3) shows at the same time that
Ua,i is a morphism of complexes and that U, = (Ua,i'ua,x) is
compatible with the morphisms n° from (4.5) and Y'=-1 . Hence (3.2)

defines a product

RI (A(p)y 3. x) @ RIT(Al@)y g ) —> RIT(A(P+a)g g o)

which - on the cohomology of the complexes - coincides with (3.9) and

is independent of a .

§ 5 Extensions and complements

5.1 The definitions and properties of the D - b - cohomology given in
§2 and §3 carry over to the case of separated simplicial schemes 2Z. of
finite type over [ :

As in [8], 8.3, we can find a diagram X}GJADX.g—£L>Z. where p
satisfies cohomological descent and where X. is proper and smooth

and D. = X. - X. is a normal crossing divisor. We define H%(X.,A(p))
as the hypercohomology (in the sense of cohomology of simplicial 'schemes)
of Cone (Rj4A(p) ® Fg;——é Rj*Qi.)[-1]. As in (2.8) one obtains
the independence of H%(X.,A(p)) of the compactification X. .

-1 O} ' 1 k
5.2 If X.«34>%x.—LB 2. is a second diagram and
- ! ' - _
(t,t) : (X.,X.)—>(X.,X.) a morphism, compatible with p and p', one

knows, that T* is an isomorphism on the cohomology with values in A(p)

3,"

and €. Moreover (loc, cit.) T, is an isomorphism on the F-filtration

o ]
on the DeRham cohomology. By (2.10, a) T* : H%(X.,A(p))——)H%(X.,A(p))
is an isomorphism as well. Since two diagrams as in (5.1) are dominated
by a third one (loc. cit.) we can define:

Z .



73

Definition 5.3. The D - b - cohomology of Z. is

H3 (2.,A(p)) := H} (X. ,A(p)) .

Remarks 5.4. If f : Y, —> Z., 1is a morphism of simplicial schemes

one has - choosing the smooth hypercoverings and compactifications

in the right way - the obvious map

£% : HJ(Z.,A(p)) —> Hj(Y.,A(p)).
The exact sequences (2.10) exist as well for simplicial schemes, the
definition and the properties of the product remain unchanged. As in
(2.1,II) the D - b - cohomology exists as well for simplicial schemes

over 1R.

5.5. Sheafification of the Zariski topology

Theorem. Let X be a smooth algebraic manifold.

a) There exists a complex A(p) of sheaves in the Zariski topology

D,Zar
on X such that for all open subvarieties X' < X one has

q ' - 9 '
HD(X ;A(P)) = H (XzarIA(p)

D,Zar) :

b) We have natural morphisms

cy ¢ A —> A(O)D,Zar and SRR 0§,Zar[-1] — A(1)D,Zar .

(c1 induces on X'<X the morphism p described in (2.12,iii)).

c) In the derived category of sheaves in the Zariski-topology we have
a product

L

A(p)D,Zar ® A(q)D,Zar A(p"'q)I),.Zar

inducing on X' < X the product defined in (3.9).

Proof. Let V be the category of complex algebraic manifolds (or
real ones - in case 2.1,II). We denote by 1 the category of pairs
(V,V), where V 1is a proper complex (or real) algebraic manifold and

VeV the complement of a normal crossing divisor.
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We define a sheaf F,,, on 1 to - be a collection of sheaves
F" = (fV,F ,wv) on (V,V) (as in 4.1), together with a morphism
£* -(FV, V'@V) —> (£ FU,f*F ,f*mU) . for each morphism
f : (U,U) — (V,V), satisfying (f.g)* =g*of* and id* = id. One
denotes by Sh(ll) the category of sheaves on 1II. As in (4.2) one finds
that Sh(ll) has enough injectives. If o:I —> V is the "forget-functor!
o((V,V)) =V, one defines for F,,, € Sh(I) the direct image
0, Fery tO be the Zariski sheaf on V associated to the presheaf

X }— _Llim . I"(Fg x)r

(X,X)eo " (X)

where FO is the functor described in (4.3), and where the limit is
taken over the direct family 0—1(X) of all good compactifications of
X. 0, : Sh(I) —> Sh(V) is left exact. Let Ro, : D' () —> D' (V) be

the derived functor. Since

0 . 0
H (X,0,(F3z o)) = 1lim I'(Fs )
xR X,X — X, X
o (X)
one has for a complex xr%« ©Of sheaves on 1T : ’ ~
HY(X,R0,F,,,) = 1lim RIZ Fz o)
_1 !
(X)
Let A(p)v - be the complex of sheaves introduced in (4.4,b).
14 14
Then we define A(p)D,Zar := RG*A(p)D,*,* . From (4.4) and (2.9) one
obtains '
= i q — = i =
H (X, AR)p o) = lin  RYAR), 3 ) = lin  HEAE),) = HXAE).
o1 (x) o1 (x)

b) Since A(O)D is Quasi-isomorphic to the constant sheaf A
H%(X',A(O)) = A for each connected open subvariety X' of X and

we obtain Cq - Similarly, by (2.12,i) we can describe A(p)D,Zar for
p>0 by a complex starting in degree 1 and (2.12,iii) gives on each open

subvariety X' < X the morphism

1 (x) ) —H (g A, ) = Rer@ g B0),, )Y S

¢ Zar’ }(Zar

;2o )alg

H (g s (B (1) 5002)).



c) By (4.8) the products U, from (3.2) define products on the com-
plexes A( ), 3 , for all (X,X) €I. The product

L

Alplp, , ® Ald)p —> Alp+d)y

Ttk r %

in the derived category gives

: L L
A(p)D,Zar ® A(q)D,Zar —> Ro, (A(p)vl*'* ] A(q)D,*,*) — RO, (A(p+q)D,*,*) = A(p+q)D,Zar .

§ 6 The cycle map in the De Rham cohomology

In [10] one finds the definition (due to P. Deligne) of the class
of a cycle in the Deligne cohomology. Before describing this construction
in a slightly modified way (§ 7) we recall some of the properties of the
cycle class in the De Rham cohomology. Especially we will need that
those cycle classes behave well with respect to the F-filtration (6.10).
Since we do not know any reference we sketch a proof. We thank F. ElZein

and J.L. Verdier for useful conversations on those fopics.

6.1. Let Y be an algebraic manifold over € and n€Y be an
irreducible subvariety of codimension p. We will frequently use some
properties of the local cohomology with support in n (see for example
[14]):

a) If F° 1is a complex of sheaves and Y'c Y an open subvariety one

has an exact sequence

p . p . p . | ,p+1 .
...—-—>]Hn__Y,(Y,F ) —>]Hn(Y,F ) ——>]Hnny.(Y', iytr) —-—>]hn_Y.(Y,F ) = ...

0.

b) If F 1is a locally free OX sheaf and j<p one has H%(Y,F)

c) Assume that n - Y'#n. Then b) applied to the cycle n - Y
implies that

P ‘e P 1 o
Hn(Y,F ) —> hnnY,(Y ,FIY,).

d) Let F° be a complex of locally free Ox sheaves with Ft = 0

for 1i<p. Then IH%(X,F’) =0 for j<2p and

]Hflp(X,F') S Hﬁ(X,Fp) .
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In fact, one has the spectral sequence associated to the
A
"filtration bete"
- . . C i
By = H%(X,Fl) =:m: Jx,F).
By b) H%(X,Fl) =0 for Jj<p and - of course - for 1ic<p.
Hence EiJ =0 for all i+j<2p. For i+ j=2p one obtains that

1
E§P=5M§p(X,F') is embedded in E?p==H§(X,Fp).
The example we have in mind is: If FP  denotes the F-filtration
of Qi (see 2.5) then one has an inclusion

2p P D P
][-In (X,FF) &— hn (X,QX).

6.2. Since n is smooth at the general point one can find divisors

D1,...,Dp on Y and an open affine subvariety Y' of Y such that
Di==DiIWY' are non singular divisors intersecting transversally and

such that

n
n'=nnyY' = n D!
- 1

[ V2 R
tUy=¥"=Ddili 4, ..o

element of HP'1(Y7-n‘,Q§,_n,) given by the éech—cocycle

is a covering of Y'-n'. Let c(n') be the

dt.A...aAdt : P
L P on = Y' -

t1-...-tp i=1

Di ’

)
U1,...,p

where ty is the defining equation of Di . By (6.1,a) we have a map

-1 ‘ D o)
uP (Y'-—n',Qg,_n,) —_ H%;(Y',Q&,) ’

surjective since Y' is affine. We denote the image of c(n') by
cQ(Y',n'). Moreover, by (6.1,c) we have an inclusion

. 4P p P v oP
1 e Hn(Y,QY)‘l—> Hn'(Y ,Qy,) .

Theorem 6.3. ([2] and [9])

There exists a cycle class cQ(n) =cql¥,n) of n on Y, lying in
BY (Y,05) such that




l(c (Y,n)) = cQ(Y',n') .

Remark 6.4. a) F. ElZein [9] shdws in addition that Q(n) can be

defined by a cocycle in the closed differential forms (Qp)cl. There-

fore (n) is the image of a class Cp (n) in ZHZP(Y FP), unlquely
determlned by (6.1,4).

b) The image of cg(n) in Jﬁfﬁl (¥,9;) = H%ﬁl (Y,r) is denoted by

cm(n)é Of course, one can also consider the fundamental class of n

in HIﬁI(Y,Z) or - after multiplication with (2im)P - in Hl (Y,Z(p)).
We denote it by ¢, (n). The image of cy (n) is again c; (n). In fact,
by the description of (6.2) and (6.3) it is enough to consider the case
p = 1. For divisors the equality of the two classes easily follows from

the definition of cz(n) (see [7]).

Remark 6.5. Let D be a normal crossing divisor on Y, containing n.

Then the image of cQ(n) in P*(Y Q (log D)) 1is zero.

Proof.  Keeping the notations from (6.2) it is enough to show that the

image of c(n') in HP—1(Y'-n’,Q§. , (log(Y' l\D))) is zero. We may
choose the divisors D'1,...,Dp such that D = U1D1 for some r.

Then the cocycle

dt1A...Adt
t1"70 °tp
. p—-1,.D P
in C* (QY,(log(Y'n D))) extends to U! 1 = Y' - U D! and
(n') =0 TrlreeeaP i=r+]
c = 0.

6.6. Let f : X —> Y Dbe a birational morphism, isomorphic over
X =Y - n, such that D = f—1(n) is a normal crossing divisor. One
has natural maps
#P(v,0P) £X 5 #P(%,0B) %5 #P(X,9R(log D))

n "y D ' D'7'7X - °

Proposition. The image of CQ(U) in Hg(i,ﬂg(log D)) is zero.

Proof. One would like to say that f*cg(n) is the sum of cycle

classes of codimension p cycles and that (6.5) implies (6.6). However
to get hold of f*cg(n) we have to use the description of cycle
classes given by B. Angéniol and M. Lejeune-Jalabert [1]:

33
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Let M° be a perfect complex of OX sheaves on Y. The first
Atiyah class k& € Ext1(M',Q§ o M) is the obstruction for M to
have a holomorphic connection. One defines the p-th Atiyah class
Aﬁ. as the p-th exterior power of A;. in Extp(M',Qg ol M'). If
M® is acyclic outside of a subvariety ZcY one uses the isomorphism

Extp(M',Q§ @L M*) = 1im Extp(OZ AQL M',Qg o M*)
m i

and the trace

p L . P oL y- p P
Ext (Ozm ® M ’QY ® M) —> Ext (Ozm,QY)

3 - J Zp 3 1 P p=p P
to define the p-th Newton class Vi in lim Ext (OZ ,QY) HZ(Y,QY)

(see [1]1, § II). m mn

As shown in the proof of II, 2.5.3 (loc. cit.) cQ(n) is - up to
a constant - the same as the p-th Newton class nv% . By II, 4.2.1
x*P = P i P * D oL - N ] i
£ Ao ALf*On in Ext* (Lf On,QX ® Lf*On). The trace is compatible

WitthU1lbaCkS ([131,v, 3.9.3) and one obtains f*ﬂvg = DVEf*O .
n n

Therefore (6.6) follows from:

Lemma 6.7. Let M® be a perfect complex of sheaves on X, exact

outside of D. Then u(Dvﬁ.) = 0 for

o : HE(X,08) — BB (X,28 (log D).
Proof. We denote by o as well the morphism

ExtP (U M o 9B) — ExtP (M, M @ oL (1og D))
and we call a(kﬁ.) the logarithmic Atiyah class of M" .

Case I: Assume that M° ' is quasi-isomorphic to a locally free sheaf
on a smooth divisor D' D. We may write M° =(M_1C—94> MO) for
locally free 0X - modules M_1 and MO. On a suitable dech cover

. . r. ev
{u;} we have isomorphisms M ly, = 0y.

for D'NU, , wi==m|Ui can be given by a diagonal matrix with 1

and, if fi is an equation

and £, in the diagonal. As in [1], II, 1.5 the logarithmic Atiyah
v

class is represented by a Cech-cocycle of morphisms

r+p-k P
—> M ® QX(log D)}U~ -

55(10,...,ik) : .
O,o-a,lk

Mt .
lUiO,...,lk
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In our situation only r=0, k=p and r=-1, pzkz2p-1 may occur.
We claim, that a(AM ) can be represented by a cocycle Gg(io,...,ip).
Since o (AP ) is obtained from a(AM ) by exterior product (II, 1.4
loc.cit), 1t is enough to verify this for p=1. Since M'IUi has a
logarithmic connection for all i, a(l&. U.) is zero. This means in
particular that 611(1) is for all i on’ U, a coboundary in the
corresponding complex. Hence we can change the whole cocycle to obtain

the representation wanted.

(Explicitly, if we use the notations from II, 1.5 (loc. cit)

11(10) = d(inIU_ ) = B-df where B 1is a diagonal matrix having only
i
1 or 0 in the diagonal. We have a morphism
af -1, -1 1
Bf : M IUi — M o 9y (log D)IUi
0 0
and (1 ) = @0, - B%? . If d' denotes the differential in the

dech complex we hgve to changeiﬂwa&ech cocycle Gp(l) by 4° (B——) to

obtain the representation wanted.)

Since M® is acyclic outside of D we may pass to the limit and
obtain a(AM ) as a Cech cocycle in

o ! . p - . .
Hom (M IUi “‘,M ® Q%(log D) ) = lim Hom(0, ® M lU. M @Q%(log D),U )
0...1p lO'f'lp m m 0...1p O...lp

By definition of the trace map in [13], V, 3.7,the trace map can be
calculated on a &ech—cbvering. Hence a(DvE.) is represented by a
collection of elements of
3 D
l%m Hom(OD ,Qx(log D)IU , ).

|
U, : :
p | lo...lp

m i...1
0
Those groups however are zero.

To reduce the qeneral case to case I, we need that the logarithmic
Newton classes a( v .) with support in D are additive for exact
sequences of perfect complexes, acyclic outside of D. In fact, the
proof in [1], II, 4.3 uses just the additivity of the trace ([13],v, 3.7.7)

and carries over to logarithmic Newton classes with support.

Case II: If D'ce D is smooth and M® quasi-isomorphic to a- OD,-module,

we can take an 0 locally free resolution N. Since N 1is bounded

Dl
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‘and
O+NTT 5 s NS50) > (0>NFT o ee. 2K 520> (0>NF +0)
is exact, case II follows from case I.

Case III: If M® 1is quasi-isomorphic to any 0? - coherent sheaf F
with support in D, we can filter F by Fm = Fo® OX(— E miDi)' For

. — i=1 .
E|==(m1,...,mi+1,....,mr) Em/ﬁg, is an ODi—sheaf and We are in case II.

Case IV: If M" 1is any perfect complex, acyclic outside of D, we use

the surjection

8

M1 > o> WS T8 TS 5 0) > (0> WS/Im §__ > 0)
with kernel
0+ MT > ... >uST s §_o > 0) <= (0> M T > ... 45725 Ker §_ *0)

to reduce the proof of (6.7) to case III.

g#g; The definitions of the cycle classes with values in P, FP, €
and Z are - as usual - extended to the group 7P (Y) of codimension

p-cycles. For example, for n=2=L viny G.ZP(Y) one defines
cq) = Z vyemult(ng)-coln;) 4]

in H?nl(Y,Qg), where |[|nl 1is the support of n. If, keeping the
notations from (6.6), £ : X —> Y is a birational morphism, isomorphic
over X =Y - [n} and such that f-1(|nl) = D 1is a normal crossing
crossing divisor one obtains as well that af*(cn(n)) = 0.

Remark 6.9. One can consider the statement corresponding to (6.6) for

Cp instead of Cq ¢ If Fé denotes the F-filtration of Qﬁ(log D)

it would be nice to know that cF(n) is mapped to zero under

2p D 2p .z P
]Hlnl (Y,F) ——9~]HD (X,FD).

~ Without this we still obtain:



(Proposition 6.10. If Y 1is a complete algebraic manifold and if
cF(n) lies in the kernel of ZM??I(Y,FP) ——9€M2P(Y,Fp), then CF(n)

lies in the image of the composed map

2p-1

(x,FP) —> m%® (v,FP).

. 12P-1 % P
T : H (X,FD) —> H In

Proof. ©Under the assumption (n) lies in the kernel of
Inl(Y ,0P ) — H*(Y Qp) and by (6.1,a) in the image of uP~ 1(X Qp)

(6.6) and the commutatlve diagram

#7 (%08 (log D)) —> BP7N(x,0B) —— B, (X,98 (1og D))
A

Y = Oof*

- 1
gP 1(x,n§) —— & (v,9P)

In

with exact first row implies that cQ(n) lies in the image of 10Y.

One has a commutative diagram

P71 (%,5P) £ #°71(%,0B (10g D))

Tl ll-‘Y

2P I p p
D (LER) > B (v,

B' 1is injective (6.2,d) and, since X is compact, B is surjective
(2.5).

7 The cvcle map in the Deligne cohomolo

7.1. Let Y Dbe a complete algebraic manifold, n a codimension p
cycle and X = Y - [nl. We define HTnI(Y,Z(p)D) as the‘hypercohomology,

group HT |(Y,Z(p)v).' By definition of Z(p)D as a cone (2.6) we have

In
an exact sequence (2.2)

— 221 0 > ¥P (v,200),) — P, ¥2E)HOEP (v,FH & ¥P (v,0) — ...
Inl Ini D Inl Inl inl

Since 2p-1 4is smaller than the real codimension ?§l1(Y C) = 0.

Moreover, since 6 1is the difference of the two natural maps € and

1, epz}n),cTJn)) is zero (see 6.4). Therefore we may regard



(cz(n),cF(n)) as an element of :H?ﬁl(Y,Z(p)D), and we call it cD(n).
By the forget morphism '

2p 2p

we obtain the cycle class of n without support, called ¥(n) in

the sequel.

Remark 7.2. If Y 1is non compact and Z(p)v is the D - b - complex
on a good compactification Y, the same construction works with
2E|(Y F instead of Iﬁfﬁl(Y,Fp) . However, since the class

In (¥-v) °
Cp (¥,n) of the closure n of n is already defined as an element of

297

ZM2P (Y,FP) we can as well compactify first and use at the very end the map

Inl
2p s 2p

to get classes in the D - b - cohomology of Y.

7.3. Let n be a codimension p-cycle and n' a codimension g-cycle.
If both intersect properly n-n' is a codimension p+ g cycle. The
product U : Z(p)v o Z(q)v —> Z(p+q)v defined in (1.1) (see also §3)

gives

2(pP+q) (v
(Y, Z(p)v) @JH| I(Y Z(q)p) —_ ]hln | (Y,Z(p+q)v) .

[
.

Inl

Proposition 7.4. If n and n' intersect properly
CD(n)lJCD(n') = CD(n->n') and yM)uyMm') = yv(n-n").

Proof. The second equality follows from the first one. By (3.7) the
cup product is compatible with the usual products on H?'l(Y,Z(.)) and

Hi

first equality follows from the corresponding ones for Cq and Cp

(Y,F*). Since cp is uniquely determined by Cup and Cp + the

(see [9], for example).

The same argument proves:

Proposition 7.5. If g : ¥Y' —> Y 1is a morphism and n a codimension

p cycle such that g*n 1is of codimension p as well, then
grey(n) = Glg*n) in 12, (¥ Z()p) and g*(¥(n) = ¥(g*n) in
P(Y ,mpn



Proposition 7.6. Let n, and P be two rationally equivalent

codimension p «cycles on Y. Then »w(n1)=¢(n2).

Proof. By definition of rational equivalence there is a codimension

1 1 Z 1%
and x1,x262P such that Ny = 1k(£) for

T ¢ Y = Y><{xk}C=——:>'YXZ]P1 . If 1T is an isomorphism of P! with

p cycle & on Yx1Ip

T(X1) =Xy 1? * (idxT)*(§) = Ny- T* acts on H'(IP1 ,Z) as identity.
Hence (idxT1)* 1is the identity on H" (Y x Eﬂ
E° (Y x H>1,Fp) as well. By (2.10,a) (idxT1)* 1is the identity on

H%p(Y x®,zZ (p)) and

/Z) and therefore on

Piny= 1+ (1aXTDFE(E)) = FW(E)) = ¥(ng).

Corollary 7.7. Let CH'(Y) = p@O CHp(Y) be the Chowring of Y,
el P . 4P TH - 2p

i.e.: CH Z* (Y) /rat.eq. and HD(Y) pgo HD (Y,Z(p)). Then

Yy defines a ring-homomorphism

Y : CH (Y) — Hb(Y).

Moreover, ¢ is compatible with g* : CH(Y) — CH"(Y') for
g: Y —> Y. ' '

Proof. By (7.6) ¢ factors over CH'(Y). Using the moving Lemma it
is enough to verify the compatibility of ¢ with the product for
cycles intersecting properly, and to verify the compatibility of ¢
with g* for cycles n with codim (n) = codim (g*n) . This has been
done in (7.4) and (7.5).

7.8. Griffith's intermediate Jacobian

Recall that Y is a complete algebraic manifold. Ry (E{E}dgge subgroup
Fqu(Y,E) of Hq(Y,E) is isomorphic to ZHq(Y,Fp) and the quotient
group Hq(Y,C)/Fp is isomorphic to qu(Y,Q;p). Since

2p-1

FPy (Y,t) n FPu (Y,C) = 0

2p-1
. 2p-1 . 2p-1 P . .
the image of H (Y, Z(p)) in H (y,T)/F is a lattice and

3P (v)y = P Vy,0) /8%P N (v, 2 (p)) + FPEPPT (v, @) =P (¥,95P) /8°P" (v 2 (p))

is a complex torus, called the p-th intermediate Jacobian of Y. We

denote by ng(Y) the Hodge cycles of Y, i.e.



2]

HF(Y) = Ker (2P (v,z (p)) © m?P(v,rP) €% u?®(v,0)).

This coincides with the usual definition, since
1
PP 15%P (v ) n PP u%P(v,L) = 0 and therefore

Ker(e - 1) = 8—1(Hp’p)r1H2p(Y,Z(p)). The exact sequence (2.10,a)
implies:
(7.9) 0 —> JP(Y) — H%p(Y,Z(p)) ——9-H§%Y) — 0

is exact.

By (3.7) the cup product respects the exact sequence (7. 9). Hence

JP(Y) is an ideal of the commutative ring
§ D P(y,z(p)).

J°(Y)
Hy (Y)

]

Proposition 7.10.

J"(Y) 1is an ideal of square zero.

Proof. An element of J°(x) is represented by an element of
IH29—1(Y,Q;p) or, by Hodge theory, of H (Y,Q ) The differential

k+2=2p
<
d is zero on Hk(Y,Qé) and (7.10) follows from the definition of . U

given in (1.2).
Let us return to the cycle map

v o: 2P (Y) —> H§P(Y,Z(p)).

By construction € ow : Zp(Y) —> HZP(Y,Z(p)) and factors through
1oy 3 P (y) — H P(y,FP) are the usual cycle maps. Hence, if Hp(Y)h
denotes the subgroup of cycles homologous to zero, € oy and 1oy
are zero on ZP(Y)h. By (7.9) we obtain a lifting of

' . 7P P
w‘ZP(Y)h to wo A (Y)h —> J°(Y). In fact, by (7.7) wo factors through

CHP(Y)h = Zp(Y)h/rat.eq.

Theorem 7.11. wo is the Abel Jacobi map.

Instead of the original definition by currents we use (proposed in [10])

7.12. The description of the Abel-Jacobi map using mixed Hodge structures.

Let n be a codimension p cycle on Y. One has the exact sequence



8 2

0o — 8P Vv, z(p)) B> wP T (x,2(p)) — F?ﬁu (Y,2(p)) —> HP(Y,2(p))—>. .

where X = Y - |nl. All the cohomology groups carry mixed Hodge

structures and the morphisms in the exact sequence respect them.
2p
Inl
of n, and since those cycle classes are by construction (6.4) of

Since H (Y,Z(p)) is generated by the cycle classes of the components

type (p,p), the cokernel of B 1is of type (p,p) and B induces

isomorphisms

1P~ (v,c) /FPe?P (v, o) = 8%P71 (x,0) /FPE?PT T (x, )
and
(7.13) JP(v) = w?P 7V (x,c) /2P (v,z (p)) + FPEZP TV (x,0).

Regarding the exact sequence one finds that for n € Zp(Y)h the
2P~ T (%2 (p))
uniquely determined up to Im(B). We denote by é;Tn) as well the
image in P N (x,0). By (7.13) é;Tn) defines an element wé(n)EJp(Y).

P~
fundamental class %Z(n) is the image of a class Cz(n)EI{

Definition 7.14. ( El Zein and Zucker, [10] )

wb : ZP(Y)h e Jp(Y) is called the Abel Jacobi map .

Proof of 7.11. Consider the commutative diagram of exact sequences:

P (v) S 8P (v,2(p)) —> HP(v,Z(p) @ P (¥,FP) —> E°P(y,O)

N A A /
P
2P 2p 2p .y w0, & .2p
H —
0 — “U(Lzm”m—éHmﬂmzmH?mmﬁLF) —>HmﬁL¢L
pl
- y— ! -
1P (x,z ()0 BP7! (x,7P) & w?P7T (x,q)
A
B
u
1?P~ 1y, @)
For r1€Zp(Y)h we have p(CZ(n), c.(n)) = 0 . Therefore
~—— “ , F
(gz(n), CF(n)) = o'(cz(n), CF(n)) for some

2

~ —~ — -
(&g ), () en® T x,z(p)) @ P71 (x,FP).

95
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~ o~ ' 2p-1
Since G(QZ(H),CF(n)) = 0, 9'(Cz(n),c (n)) 1lies in B (u“P (y,T)).

By the snake-lemma one finds wo(n) to be the image of

_1 I d ~ . p ~/ . . .

B 6'(qz(n),CF(n)) in J(Y). By (6.10) CF(n) lies in the image
of

m2P] ()—(,Fg) - PPr?P 1V (x,0) —> w2P T (x,FP).
~ —~ —~
Therefore 9'(gz(n),CF(ﬂ)) and 9'(QZ(U),0) define the same element in

2P~V (x,0) /FPe?P V (x,0) + 2PV (v,z(p))

and by (7.13) 1y, (n) = y5(n).

Remarks.a) The construction of the Abel-Jacobi map and of the cycle map
in the Deligne cohomology has been done in [10] and [3] in a slightly
different way. At first glance it seems surprising that the proof of
(7.11) in [10] or [3] does not need the statement like (6.10).

However, the proof given there uses a description of the Abel-Jacobi
map by currents, which is different from the one given in (7.12).

If one assumes that 'both coincide , it proves (6.10) directly, without
studying the pullback of cycles. On the other hand one can use (6.10)
to show that wé is the same as the Abel-Jacobi map defined by currents.
b) A different treatment of these topics can also be found in the Chap-
ter by U.Jannsen (81.21-23) in this book.

§ 8 Chern classes in the Deligne-Beilinson cohomoloqgy

8.1. Let X be an algebraic manifold or - uéing § 5 - any simplicial
scheme of finite type over €. In this section we sketch two methods
to define Chern classes

2p
cp(E) € Hj (X,Z (p))

for locally free Ox—sheaves E (called bundles in the seguel}) of rank r

on X. They should depend just on the isomorphism class and satisfy

A) (Functionality) For any morphism

f : Y —> X one has f*gp(E) = Cb(f*E)'

B) (Compatibility with the Chern~classes in H'( ,Z))
cp(E) is mapped under € : H;p(X,Z(p)) —_— HZP(X,Z(p)) to the usual

Chern classes of E.



Of course we can as well consider Chern classes in H%p(X,A(p))
for any subring A of IR. However those are just the image of the

classes in H;p(XfZ(p)).

Proposition 8.2. The Chern classes are uniquely determined by conditions
A and B.

Proof. The classifying space BG = BGLr(m) is a simplicial scheme of
finite type over € and, as proved in [8] there are elements c¢

of pure weight (p,p), such that
H® (BG,Z) = Z[c1,...,cr] .

Therefore H2p—1(BG,m) =0 and 1 :ZHZP(BG,FP) — HZP(BG,E) is an
isomorphism. By (2.10,a) or (2.10,b)

€ 3 ng(BG,Z(p)) —> HZP(BG,Z(p))
is an isomorphism, and the Chern classes of the universal bundle Egn
are uniquely determined by B. If. E on X 1is any bundle of rank «r
one can take a hypercovering p : Z0 —> X such that p*E 1is trivial
on each zZ, - Then there is a morphism £ : Z. —> BG such that
£XE "
Since the D - b cohomology of 2. and X are isomorphic (5.2) one
obtains (8.2).

= p*E., By A the Chern classes of p*E are uniquely determined.

8.3. For a non-singular variety A.Grothendieck defines in [12] Chern
classes ig(E) of vector bundles E 1in the Chow group cHP (X) . Those

are functional and, under the cycle map c,, , compatible with the Chern

Z ~4
classes in HZP(X,Z(p)). Therefore cp(E) = w(cp(E)) defines Chern

classes for vector bundles on X, satisfying A and B by (7.7) and
(6.4). Of course, one has to use (5.1-3) to extend this definition to

arbitrary simplicial schemes of finite type over .

8.4. A second construction of Chern classes is based on (2.12,iii) and
the splitting principle:
Recall that for an algebraic manifold X we constructed an isomorphism

o 0MIE — H;(X,%(H).

By (5.5,b) p induces a morphism (in the derived category) of complexes



of sheaves in the Zarisky topology
. *

Taking hypercohomology of sheaves in the Zarisky topology this gives

a map

c, : H'(X,0%) —> H(X,Z(1)).

Since invertible sheaves correspond to elements of H1(X,O§) we can
use c, to define the first Chern class of an invertible sheaf.

The induced morphism
L A
0% —> z(1)9,Zar[1] —> Z(1)[1]
is in the derived category the "edge" morphism of the exponential
sequence. This shows, that s(c1(L)) is the first Chern class of L

in H2(X,2(1)).

Proposition 8.5. Let E be a vector bundle of rank r on X,

m: P= PP(E) —> X the corresponding projective bundle and
OI>“) the tautological invertible sheaf on I . Then for all qgq,q'
~ T

H3 (P ,2(q")) < 7@

T8y TrEL CP(X,E(Q' -p)) U ey (0p (1P

1

0 D

Proof. As is well known, the same maps are isomorphisms for H'( ,Z(.)),
H°( ,C) and by [8] for H'( ,F'). By (3.9) the cup product is compatible
with the exact sequence (2.10,a) and therefore (8.5) holds.

8.6. Now one can define Chern classes of rank r vector bundles in

the way of Hirzebruch and Grothendieck:

r
In Hf)r(P,%(r)) ‘tz ’IT*ng(X,Z(p)) Uc (0 (1)) P

p=1

we have a relation

T P r-p
pzo(—ﬂ . n*yp U c (0 (1)) =0

. 2p - : =
with Yp € HD (X,Z (p)) and Yo = 1. We define cp‘E) = Y. .



; | 7?

As in [12] one shows that the Chern classes obtained are functorial
and additive. Since the usual Chern classes can be defined by the

splitting principle as well, one obtains (8.1,B).
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