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Chapter 1

Introduction

The key-words for this thesis are ’extra dimensions’ and ’supersymmetry’. Both of them are
often used in recent articles on high energy physics. Nevertheless, the possibility that we live
in a more than four dimensional universe may still sound exotic to some physicists. Also,
supersymmetry is not visible in the spectrum of the up-to-now discovered particles and some
authors (though surprisingly few) question its relevance to our world. Thus, a brief introduction
which justifies the research in this field seems to be necessary. In the next paragraphs we explain
what are the theoretical motivations for the search for extensions of the well-established and
tested theories like the Standard Model (SM) and the General Relativity.

The contemporary theory of fundamental interactions is the Standard Model (SM). This
theory describes three of the four known forces of nature (electromagnetic, weak and strong) and
has been extremely successful in explaining phenomena of subnuclear physics up to currently
accessible energies, which are of the order of 100 GeV. The quantitative predictions of the SM
are in perfect agreement with the experimental data; sometimes the accuracy is incredible,
just to mention the anomalous magnetic moment of the electron, for which the experimentally
measured value agrees with the theoretical calculation within 107! precision.

The SM is a quantum field theory which respects the Poincaré invariance (Lorentz rotations
+ space-time translations). It is founded on the gauge principle: the particles are assigned to
various representations of the gauge group, which is the local symmetry group of the theory.
In the case of the SM the gauge group is SU(3) x SU(2) x U(1). The SU(3) factor corresponds
to strong interactions, while the SU(2) x U(1) factor corresponds to weak and electromagnetic
interactions. The latter is spontanously broken to U(1), by the vacuum expectation value of
the scalar field transforming as a doublet of SU(2). The consequence of this mechanism is
the existence of a fundamental, scalar particle - the famous, though still not discovered Higgs
boson.

The SM is a consistent theory. Although calculations of quantum corrections yield divergent
results, the theory is renormalizable - the divergencies can be absorbed into redefinitions of the
parameters in the lagrangian and one ends up with finite and well-defined predictions for the
scattering cross-sections and other observables.

Despite its considerable success, most of the physicists tend to the opinion that the SM is
not the ultimate theory of nature and that the effects of the underlying, more fundamental
theory should become visible at higher energy scales. First, the SM contains many arbitrary
parameters. For example, the SM does not predict the mass of the electron; it must be consid-
ered as the experimental input to the theory. The SM does not explain why quarks and leptons
occur in three similar copies (generations) with the same quantum numbers. Also, one could
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imagine other groups as symmetries of the theory; the choice of the group and the representa-
tions is restricted only by cancellation of anomalies. Classical symmetries of field theories can
be broken by quantum effects - just mentioned anomalies. If local symmetries are anomalous
then theory is inconsistent because, first of all, it is not unitary. The SM is anomaly free, but
the mechanism behind it is not fundamental, rather it holds due to a miraculous interplay of
quantum numbers of the SM particles. Thus, the way the anomaly cancellation works in the
SM is a very important hint pointing towards physics beyond the SM.

Next, the SM model suffers from the so-called ’hierarchy problem’. To retain the perturba-
tivity of the theory (and thus to be able to perform calculations) the Higgs boson mass should
not be much higher than 1TeV. But in general, in higher orders of the perturbation theory |,
masses of scalar particles receive quantum corrections proportional to the supposed ultraviolet
cut-off of the theory set by the Plank scale (about 10'® GeV). Thus, to keep the physical Higgs
boson mass to be below 1TeV, one must choose very special values of the parameters of the
original Lagrangian, so that 'miraculous’ cancellations in the calculation of the physical Higgs
boson mass could hold. Such situation, usually described as the ’fine-tuning’, is considered very
unlikely by the physicists, so other mechanisms are proposed to explain why the value of the
Higgs boson mass can be many orders of magnitude smaller than the Plank scale. The other
way to state the hierarchy problem is to say that it is unnatural to have several different mass
scales in one theory unless we have some symmetry to protect them. In the SM we have no
explanation why the electroweak scale (10° GeV) is hugely different from the Planck scale.

However, the most important drawback of the SM is that it cannot consistently incorporate
gravity, the fourth fundamental force of nature. Indeed, trying to marry the SM with Einstein’s
General Relativity inevitably leads to unrenormalizable theory. Calculation of quantum cor-
rections yields infinities which cannot be absorbed into redefinition of the parameters, and the
theory loses much of its predictive power.

It may seem strange, that the theory which fails to describe gravity is so successful. The
reason is that the effects of gravity in the experiments performed at currently accessible energies
are negligible due to the smallness of the gravitational coupling (Newton’s constant). However,
at energies compared to the Planck scale the strength of gravity becomes comparable to the
strength of the other fundamental forces, and the effects of gravity can no longer be neglected.
If this expectation turns out to be correct, the SM is only an effective theory valid in a restricted
energy range. It is not clear what is the energy at which the SM will finally break down; it
cannot be greater than the Planck scale, but most of the physicist expect new effects already
at energies of the order of 1TeV.

It should be stressed that the above motivations for the search of a 'new physics’ are rather
of aesthetical nature. Apart from them, there are several open problems which may require
serious modifications of the SM. The most spectacular problems of this kind are:

1. For the consistency of the SM it is crucial, that at least one elementary scalar field is
present, in nature. But, the so-called Higgs boson still evades its discovery. This does not
ruin the foundations of the SM, as it is likely that the Higgs boson mass may be above
100 GeV and this particle is inaccesible in the present accelerators. The problem will
really begin, if the Higgs boson is not found in the next generation of accelerators, which
will probe physics up to a few TeV.

2. The recent discovery of neutrino oscillations requires extending the SM, because this
phenomenon can occur only if the netrinos are massive. The experimental data are still
insufficient to favour one of the several possible extensions. Omne trivial possibility is
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that one adds a new set of particles (right-handed neutrinos) to the spectrum, and the
neutrino masses are incorporated in the theory in a way analogous to the masses of the
other fermions. However, it may turn out that to explain neutrino oscillation one has to
add a non-renormalizable term to the SM lagrangian which would point towards a new
physics at higher energy scale and confirm that the SM is merely an effective low energy
theory. This issue is currently the subject of extensive experimental studies.

3. As noticed already by Einstein, the General Relativity admits the so-called cosmological
term in the action without violating the general coordinate transformations invariance.
This term can be interpreted as the energy density of the vacuum. Its presence modifies
the solutions of the theory excluding the flat Minkowski space. Cosmological observations
strongly constrain the magnitude of this hypothetical term and any fundamental theory
should explain why the observed cosmological constant is zero or very small. The SM
itself does not describe gravity, so one may think that this problem is not relevant. But
when we try to combine the SM with the General Relativity, the energy of the zero-mode
oscillations of the SM fields leads to the estimate of the cosmological constant more than
100 orders of magnitude bigger than the current limits!. This discrepancy is even more
striking when compared to the fantastic precision of other predictions. So far no-one has
given a satisfactory explanation of the cosmological constant problem which may turn
out to be an important clue pointing towards a new physics.

Having enumerated the basic motivations to search for physics beyond the SM, we review
some of the most popular directions. All the ideas listed below will be relevant to the content
of this thesis.

One possible extension of the SM, which is known under the name GUT (Great Unified
Theory), is to extend the local symmetry group [19]. Instead of having three different groups
glued together one could have one group, which is then spontaneously broken to the SM group.
Many explicit models of this kind were proposed, the most popular gauge groups being SU(5),
SO(10), Es. Apart from aesthetical reasons, an extension of this kind is suggested by the
apparent unification (within 30 percent accuracy) of the SM gauge couplings at energies of
order 10* GeV. So far there has been no direct evidence for the relevance of GUT groups to
our world. The most spectacular prediction of GUT theories is the proton decay, extensively
searched for in some experiments.

Another interesting possibility of extending the symmetries of the SM is supersymmetry.
At the mathematical level this is equivalent to replacing the Poincaré algebra of space-time
symmetries with a superalgebra (graded Lie algebra). Physically, one introduces in this way
a symmetry between bosons and fermions. Supersymmetry possesses many beautiful features
which make a considerable number of physicist believe in its existence, despite the fact that for
over 20 years from the theoretical discovery of supersymmetry there has been no experimental
evidence in its favour.

Supersymmetry solves the hierarchy problem. More precisely, it does not explain the huge
ratio of the electroweak and Planck scales but renders this ratio stable against radiative correc-
tions. It is the symmetry between bosons and fermions which leads to 'miraculous’ cancellations
among quantum corrections to the Higgs boson mass. What is left are mild (logarithmic in the
cut-off) divergencies, so the existence of a light scalar field in the supersymmetric theory is more
plausible. An additional (and unexpected at the beginning) virtue of supersymmetry is the fact
the simplest extension of the SM, known as the MSSM ( Minimal Supersymmetric Standard
Model) leads to the gauge coupling unification within 1 percent accuracy. In the coming years,
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with the running of the next generation of accelerators, physicists expect to gain evidences in
favour or against supersymmetry. In particular, we do not see any supersymmetric pattern in
the spectrum of the up-to-now discovered particles. If supersymmetry is relevant to our world
then new, yet undiscovered particles must exist, which together with the SM particles, fit into
representations of the super-Poincaré algebra.

Even more rich in consequences are models which embed the SM in a theory with the
number of space-time dimensions higher than four. In fact, this idea dates back to early days
of the quantum theory when Kaluza and Klein (KK) proposed that that we may live in a five
dimensional universe [22]. In the models of the KK type the additional (usually more than
one) space-like dimensions are compact and their characteristic size is very small compared
to the length scales probed in experiments. It can be proven that isometries of the compact
dimensions give rise to gauge symmetries of the effective four-dimensional theory. Besides,
models of the KK type predict that moduli of the compactification (that is - deformations of
the compact manifold which do not change the energy of the system) become dynamical fields
in the effective theory. Originally, it was hoped that with the help of extra dimensions one can
explain the abundance of various particles in our world by means of a simpler theory, maybe
just a higher dimensional gravity. At the same time extra dimensions provide new possibilities
for adressing the hierarchy problem as in these models the Planck scale is not a fundamental
quantity but merely a derived scale depending e.g on the volume of the compact manifold.

The idea of a higher dimensional universe has been revived with the development of string
theories (see e.g. [27]) which include the only known examples of consistent quantum theories
that describe gravity. The idea behind string theories is to replace point particles with extended
object of one spatial dimension. The observed particles correspond to various oscillation modes
of the fundamental strings. Surprisingly enough, these theories turn out to be very constrained,
merely by the demand of their consistency. To avoid tachyons in the particle spectrum one is
forced to introduce supersymmetry and ends up with so-called Superstring Theories. We know
of only five examples of consistent Superstring Theories, namely type I, IIA, IIB, heterotic
Eg x Eg and heterotic SO(32). The number of space-time dimension in which the strings live is
not arbitrary; the Superstring Theories require ten dimensions. String theories contain no free
parameters and, in principle, once we decide on one of the five above mentioned realisations
the whole dynamics is in principle determined.

At low energies string theories reduce to quantum field theories. In the course of the years
string vacua have been constructed, such that compactifications of string theories yield spectra
imitating the SM. Up to recently, the compactification of the Fg x Fg heterotic superstrings, in
which six extra dimension curl up to form a manifold known to mathematicians as the Calabi-
Yau manifold, appeared to be most promising. This theory has many virtues: in the process of
compactification one of the Ejy factors breaks down to Fg. The latter is a good candidate for
the GUT group; the supersymmetry is preserved by the compactification and is thus expected
to be broken at energies comparable to the electroweak scale; the second factor Eg can serve
as the gauge group of the so-called ’hidden sector’ (which is the preferred scenario of super-
symmetry breaking in the concrete, phenomenological models of low energy supersymmetry);
the parameters of the SM can be expressed in terms of the topological characteristics of the
compact manifold.

Recently, the monopoly of the heterotic strings has been broken. New vacua of type I and
type II superstrings have been constructed. At low energies these vacua lead to physics very
close to the one derived from the SM. Although these constructions themselves are not of direct
concern in this thesis, they introduce in a natural way the notion of branes (precisely, D-branes
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are hypersurfaces on which open string are allowed to end). These objects will be important in
the following. In the nomenclature we use, p-branes are p+1 dimensional submanifolds in the
higher dimensional space-time (note that a 4d space-time corresponds to a three-brane). They
may host various gauge as well as matter fields, which are confined on these submanifolds, in
the sense of not being allowed to propagate in the remaining transverse dimension.

Independently of the string theories, even more recent motivation for the study of higher
dimensional theories was given by the Randall-Sundrum (RS) model [11]. Contrary to the
Superstring Theories, the RS model is not a consistent, self-contained theory but rather an ad-
hoc construction. The basic set-up consists of a five dimensional gravity with a cosmological
constant, which allows for anti-de-Sitter solution. In addition, there are three-branes located
at various points along the fifth dimension. Randall and Sundrum showed, that for some
configurations of those branes observers living on one of the brane would find that the gravity
obeys the ordinary 4d Newton’s law, in spite of the fact that the world is five dimensional and
none of the dimensions is compact. Thus, we may be living in a higher dimensional universe
without simply noticing it!

The modern understanding of Superstring Theories is that they are not five distinct theories
but rather different vacua of an underlying, still to some extent hypothetical, 11-dimensional
theory named M-theory. This view has emerged from the study of non-perturbative relations,
the so-called dualities, between various Superstring Theories. It turned out that dual to some
of the Superstring Theories are not any of the other ten-dimensional string theories but rather
some eleven-dimensional theory. Very little is known about the quantum formulation of M-
theory (it is not even clear what M stands for). We know however that in the low energy limit
(in this case below the Plank scale) it reduces to the 11 dimensional supergravity theory. Also,
in addition to strings which have one spatial dimension, brane objects with p-spatial dimensions
should be present in the M-theory.

We now come to the starting point of this thesis. Horava and Witten showed [2] that at low
energies the strong coupling limit of the heterotic Fg X Eg superstring theory reduces to eleven
dimensional supergravity defined on the manifold which is the product of a smooth manifold M,
and the interval S;/Z,. In addition to eleven dimensional supergravity multiplet, the spectrum
of this model consists of ten dimensional gauge multiplets in the adjoint representation of
Es confined to the boundaries of the manifold, in other words, to the fixed points of the Z,
symmetry. As mentioned earlier, Fs X Eg superstring theory is phenomenologically interesting
and so is its strong coupling limit, because to obtain the unification of gauge and gravitational
couplings at one common scale, one must assume the string coupling much greater than 1. Thus,
in the interesting region of the parameter space the fundamental theory may be described by
the Horava-Witten model.

The question arises whether models containing fields living in different space-time dimen-
sions can be supersymmetric. The answer should be positive in this case, as we consider
the strong coupling limit of a supersymmetric theory but the question is non-trivial because
the Horava-Witten model is not a complete, consistent description of the M-theory. Horava
and Witten proved by a direct construction [3] that, in the framework of their model, super-
symmetrization indeed can be completed, at least in the first order of the expansion in the
gravitational constant. However, the required modifications appeared to be highly non-trivial
and substantially affected the vacuum solution of the model [1].

To make contact with the real world one must compactify the Horava-Witten model to
four dimensions. It turns out that in order to have unification of gauge and gravitational
couplings, the length of the eleventh dimension must be an order of magnitude greater than
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the characteristic size of the remaining six compact dimensions [1]. Thus, at the intermediate
energy scale, the universe should appear five-dimensional. Lukas et al. [4] managed to obtain
the effective five-dimensional theory resulting from the compactification of the Horava-Witten
model on the Calabi-Yau three-fold (a manifold with three complex , i.e six real dimensions).
For the reason which will be explained in detail in the next sections, this effective theory is
not a simple 5d supergravity, but its gauged version. Gauging of supergravities introduces
profound changes in the theory. It implies the existence of potentials for the scalar fields and,
generically, the flat space can no longer be a vacuum solution. Apart from the sector living
in five dimensions (in the so-called bulk) the compactified Horava-Witten model contains two
parallel 3-branes with gauge fields and matter content which depends on the specific form
of the compactification. The supersymmetrization of the brane theory with the bulk theory
(supersymmetrization of branes with bulk, in short) has not been performed before and one of
the objectives of this thesis is to fill this gap.

In the following, we derive the supersymmetric coupling of fields confined to a 3-brane
to 5d supergravity. Using the Noether procedure, we add new terms to the bulk and brane
lagrangian, which are necessary to arrive at a locally supersymmetric action. More precisely,
our set-up consists of a five-dimensional N=2 supergravity on the manifold M, x S;/Zs coupled
to SU(2,1)/U(2) non-linear sigma model. Two parallel 3-branes are located at z° = 0 and
2% = mp and host a 4d gauge supermultiplet and a chiral matter supermultiplet. In the context
of the compactified Horava-Witten model this corresponds to only one universal hypermultiplet
in the bulk, which is equivalent to choosing a special Calabi-Yau three-fold with Hodge numbers
hiy =1 hys = 0. However, the construction we present is far more general and can be utilised
for constructing other supersymmetric 5d models with branes, even those which do not have
stringy origin. In particular, the brane potential term for the bulk scalars which arises in
the compactified Horava-Witten model can be replaced by a constant brane tension, which
immediately leads to the supersymmetric version of the Randall-Sundrum model. Because
supersymmetrization of the RS model is presently the subject of intensive study [15, 8], we
present this extension in this thesis, although the RS model most probably cannot be obtained
from the heterotic compactifications of superstring theories.

The outline of this thesis is as follows. In Section 2 we briefly review supergravity theories
in various, relevant dimensions. In Section 3 the Horava-Witten model and its compactification
to five dimensions is introduced. Then we begin the presentation of the original results of this
thesis. In Section 4 we present a detailed derivation of the supersymmetric coupling of gauge
and matter fields confined to 3-branes to bd N=2 supergravity. Necessary modifications of
the supersymmetry transformation laws of bulk and brane fields are also discussed. To make
the process of supersymmetrization more transparent we start with a 4d gauge multiplet on
the brane and then we successively add matter fields in the bulk and on the brane. Then we
carefully analyse the role of brane potentials, and their connection to the cosmological terms
in the bulk supergravity. In Section 5 we derive the effective 4d theory. We find a vacuum
solution of the 5d theory which preserves N=1 supersymmetry and compactify our model on
this background. We discuss various contributions to the effective 4d lagrangian coming from
the moduli of the vacuum solution and from the fact that fields on the branes act as sources in
the equations of motion of the bulk fields. We determine the precise form of the compactified
theory in terms of the canonical 4d supergravity. In section 6 we perform the reduction of the
5d supersymmetry transformation law and finally, in Section 7, we comment on supersymmetry
breaking in the five-dimensional framework.
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Chapter 2

Supergravities in 11, 5 and 4
dimensions

Supersymmetry is a non-trivial extension of the Poincaré symmetry. According to the cele-
brated Coleman-Mandula no-go theorem [24], the Poincaré algebra is the largest possible Lie
algebra of symmetries of a quantum field theory which acts non-trivially on space-time. Ex-
tending further the algebra of symmetries leads to a trivial S-matrix, that is to no interactions.
Supersymmetry evades the limitations of the Coleman-Mandula theorem, because the mathe-
matical concept behind it is a graded Lie algebra. If such an algebra is a symmetry algebra of
a theory then, apart from standard commuting bosonic symmetries, we have anti-commuting
fermionic symmetries. The supersymmetry charge Q commutes with the momentum operator
P, and with generators of internal symmetries but does not commute with the generators of
the Lorentz rotations M. Thus, one-particle states in supermultiplets, which are obtained
by acting successively with Q on a lowest weight state, have the same masses and internal
quantum numbers but different spins. Supersymmetry predicts, therefore, that particles are
accompanied by a number of superpartners with similar properties except for the spin. Size
of supermultiplets, and thus a number of superpartners may vary depending on the chosen
representation of the superalgebra and dimensionality of the space-time.

In this thesis we consider local supersymmetry, that is symmetry generated by parameters
which depend on space-time coordinates. There are several reasons to prefer this option. From
our experience with the SM we know that local (gauge) symmetries play a more fundamental
role in the theory than global symmetries (like baryon or lepton number conservation). This
view is supported by the no-hair theorem of quantum gravity which states that only local
symmetries can be exact in the presence of gravitational effects. The reason specific for su-
persymmetry is that locally supersymmetric theories necessarily include gravity. This is easy
to see from the supersymmetry algebra. The anticommutator of two supersymmetry charges
{Q,Q} equals the momentum operator P and if the parameters on the left-hand side depend
on space-time coordinates the right-hand side is a local translation which vary from point to
point, in other words a general coordinate transformation. Thus we can expect that a theory
invariant under local supersymmetry is also invariant under general coordinate transformations
which is the symmetry of the General Relativity.

For our purpose we will not need the detailed mathematical formulation of supersymmetry.
All we need to do is to represent the supersymmetry algebra on the fields of our lagrangians. We
require that the lagrangian we consider is invariant up to a total derivative under infinitesimal
local supersymmetry transformations. This is analogous to representing gauge symmetries
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in the way we know from the Standard Model. The only difference is that in the case of
supersymmetry the infinitesimal parameter of the transformations is an anticommuting spinor.
Given the field content, supersymmetry fixes the form of the lagrangian up to a few arbitrary
functions. The possible supermultiplets that can be present in various space-time dimensions
are determined by a more involved analysis [16].

2.1 Eleven dimensional supergravity
There are several reasons to start our survey from eleven dimensions:

1. This is the highest space-time dimension in which a consistent, interacting supergravity
can be formulated.

2. The field content of the 11d supergravity is very simple and the supersymmetry fixes
uniquely the form of the lagrangian.

3. Many supergravities in lower dimensions can be obtained by a truncation of the 11d
supergravity. In particular, this is the case with 5d N=2 and 4d N=1 supergravities
which will concern us further in this thesis.

In eleven dimensions the gravity multiplet consists of a vielbein e}’, one gravitino ; and one
three form Cy . 1,J... are eleven dimensional vector indices equal 0..9, 11.

The vielbein formulation of gravity is equivalent to the more familiar metric formulation [23].
The connection between the two is given by gr; = nmnef'e’; where n is the flat 11d Minkowski
metric. As is well-known, at any single point of the Riemannian manifold, a general metric
can be reduced to the flat Minkowski metric by the appropriate choice of a coordinate frame.
Vielbeins can be considered as the basis vectors of this (locally inertial) frame at a given point.
The upper index, is a vector index of SO(9,1) corresponding to the Lorentz symmetry of the
Minkowski metric. The kinetic term for the vielbein is the standard Ricci curvature scalar, just
like in the four-dimensional General Relativity.

The gravitino 7 is a vector-spinor field (spinor indices are suppressed). Spinors in odd
D dimensional spaces have 2(P~1/2 components [25], so in our case ¥ has 32 complex com-
ponents. However, in 11 dimension we can impose the Majorana condition and we effectively
end up with 32 real components (in the real Majorana basis). The kinetic term is the Rarita-
Schwinger action given in the first line of (2.1). In four dimensions gravitino describes a spin
3/2 elementary particle . Such particles has not been discovered, but they must be present
in any locally supersymmetric theories. Therefore, if local supersymmetry is relevant to our
universe, gravitinos must be either very heavy or light and very weakly interacting.

The field C is anti-symmetric in its 3 indices, hence its name three-form. The notion of
n-form fields is generally known because in 4d n-forms do not introduce any new possibilities to
describe physics: a 0-form is just a scalar-field, a 1-form is a gauge field (this is how gauge fields
are presented in more geometrically oriented books) and a 2-form is equivalent to a (pseudo-
)scalar by the Hodge duality. In D dimensions one can consider n-forms with n=0...D-2 as
propagating fields. In D > 4 dimensions form fields describe essentially new objects. The
kinetic term, similarly to the vector Abelian case, is proportional to the square of the external
derivative dC.
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The unique supergravity Lagrangian is [18]:

_ 1 1 1 ITK 1 IJKL
Ly = H—%lt?n ( - §R - §¢IF Dy — EGIJKLG

— 2 (o DI KEMN Y 4 120 DKM G ey — 2t C 1, Gy 1, Gy + (4fermi)(2-1)

In the above k17 is a gravitational constant, e; is the determinant of the 11d vielbein. The
gamma matrices have dimension 32 x 32 and obey {[';,T';} = 2¢;;. The anti-symmetrized
products of matrices are defined as: T1-In = Tl T/] = LTh T + (permutations). The
covariant derivative acting on the gravitino is Dy¢y = 0r¢py + iw;mnf‘mnw 7 and contains the
spin connection w defined by the formula:

%e,‘;ef(ﬁjep;( — Okepr)el (2.2)
The four-form field strength G is defined as Gryxr = 249;;Ck1), in short G = 6dC. Obviously,
G satisfies the Bianchi identity dG=0. Later, we shall see that coupling to YM fields defined
on boundaries requires redefinition of G, so that the right-hand side of the Bianchi identity
becomes non-trivial.
The four-fermion terms are also known, but we will not need them in further considerations.
It is a common practice to skip them when possible to avoid lengthy mathematical formulae.
The 11d supergravity action is invariant under the following local supersymmetry transfor-
mations:

1 1
Wrmn = 567{1(316nj - a]@nl) - 587{(616mJ - a]@ml) -

1
s = Sl
_ V2 JKIM _ o JpKLM o .
pr = Dm+288(FI 8g; T NG s + (three — fermi)

0Crk = —gﬁr[uwm (2.3)

Note the derivative of the spinor parameter 1 in the transformation law of gravitino, which

can be interpreted, in analogy to the Yang-Mills case, that gravitino is the gauge field of

supersymmetry. This is the justification of the previous statement that the gravitino must be

present, in locally supersymmetric theories. The number of conserved supersymmetry charges

is 32 (counting each component of Q separately). From the 4d point of view this number
corresponds to N=8 supersymmetry.

2.2 Supergravities in five dimension

The plural in the subtitle suggests that, contrary to the 11d case, 5d supergravity is not
unique. Indeed, in 5d we have certain freedom in choosing the spectrum of matter fields, as
well as the sigma model which governs their dynamics. We can also consider various numbers
of supersymmetries. In this section we concentrate on the case of N=2 supersymmetry which
corresponds to eight conserved supercharges !.

Every locally supersymmetric 5d theory contains the gravity multiplet which consists of the
metric g,s (here we work with the vielbein e2), two symplectic Majorana gravitinos ¢ and a

1Some authors call it N=1 susy as it is the least possible number of supersymmetries in five dimensions. We
prefer to keep the label in N=2 because of the similarity to N=2 supergravity in four dimension
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vector field, in this context usually called the graviphoton A,. The greek indices a 5 ... from
the beginning of the alphabet are five dimensional and run over values 0..3,5. The reason we
impose symplectic conditions is that in five dimensions it is impossible to satisfy the standard
Majorana condition A = CAT = ), where C is a charge conjugation matrix, because this leads
to a contradiction A = (A¢)¢ = —\. Instead one can arrange spinors into pairs by demanding
M = (Q4B)\5)TC , where C is the charge conjugation matrix satisfying v#T = Cy#C~! and Q
is a symplectic matrix which squares to —1. In the case of gravitinos the index A runs from 1
to 2, and the symplectic matrix is just the antisymmetric tensor e*?.

The notation using symplectic spinors makes explicit another symmetry of the N=2 supergrav-
ity action. A theory with N supersymmetries possesses SU(N) R-symmetry, which transforms
the supercharges into each other. This symmetry, or rather its Zy subgroup, so-called R-parity,
is familiar to those acquinted with the MSSM. For the case at hand, this symmetry is SU(2)
and the gravitino index A tranforms in the fundamental representation of the R-symmetry
group. This index is raised and lowered with ¢4?; SU(2) invariant contraction of spinors is

A ~A . >
A A4 = eap) AP, the conventions are €2 = €;5 = 1. Note also somewhat unusual definition

A=A A-
The lagrangian for the gravity multiplet alone takes the form:

—A
Ly =ess (— 3R — 500 7P Dyt 4 — 3 FapF™
== _i_ (e Zo .
_12{/56(16766“40“?,37}'56 + 4ﬂ(w7 ,-y /B’Y(Sw(sA + Qw wﬁ)]:aﬁ + (fOU/T _ ferml) ) (24)

The form of the above lagrangian resembles the one of 11d supergravity, e.g. the 'topological’
term AFF is similar to the 11d CGG term. Thus, we can expect that 5d N=2 supergravity can
be obtained as a compactification of 11d supergravity. This statement is almost correct, as we
can compactify the 11d supergravity on the six-dimensional Calabi-Yau manifold leaving eight
of thirty-two supercharges unbroken, which indeed leads to N=2 supergravity. However, this
procedure yields additional scalars and fermion corresponding to the moduli of the compacti-
fication; e.g. one of the always present scalar moduli is the volume of the compact manifold.
Because of that, it is necessary to consider a coupling of matter multiplets to the 5d gravity
multiplet.

The gravity multiplet can be coupled to an arbitrary number of vector multiplets which
consist of a vector field, two symplectic Majorana gauginos and a single real scalar field. At the
same time, we can couple hypermultiplets with two symplectic Majorana hyperinos and four
real scalar fields. It turns out that hypermultiplets and vector multiplets couple to the gravity
multiplet only and not to one another. In a supersymmetric lagrangian containing hyper- and
vector multiplets, lengthy polynomials of scalar fields appear, which are most convieniently
characterized in terms of geometry on some Riemannian manifold. The arbitrariness lies in the
freedom to choose one of those special geometries.

It should be stressed that in five dimensions there are no supermultiplets with chiral
fermions. To introduce chiral matter charged under Yang-Mills symmetries, one must locate
it on a 4d submanifold. The Yang-Mills vector fields can also be confined to the boundary
and this is the case we study carefully in this thesis. At the same time we can have gauge
symmetries in the bulk with vector fields of the vector multiplets and the graviphoton being
the gauge fields. This possibility will also be studied in the following, rather not for the virtue
of having gauge symmetries, but in order to introduce potential for the scalar fields. Otherwise,
in ungauged 5d supergravities, scalar potentials are always absent.

In the next subsections we follow closely the Appendix B of reference [5]
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2.2.1 Coupling of vector multiplets

Below we describe coupling of n, Abelian vector multiplets to the gravitational multiplet of
N=2 supergravity. We now have n, vector fields A%, 2n, symplectic pairs of spinors (gauginos)
A7 and n, real scalars ¢®. The index A of the gauginos is the same as that of gravitino. It is
convienient to group vectors with the graviphoton so that the index i = 0,1..n,. The kinetic
terms of the scalars define the sigma model: Ly;, = —% Gy (0) 00 9" 0%¢¥ If the vector multiplets
are coupled in a supersymmetric way, then g,, can be interpreted as a metric of a Riemannian
manifold My with the very special geometry; in such the case the scalars ¢* can be intethe
vector multiplets are coupled in a supersymmetric way, then g¢,, can be interpreted as a metric
of a Riemannian manifold My, with the very special geometry; in such the case the scalars ¢*
can be interpreted as coordinates on My, .

To see the structure of My one starts with a n, + 1-dimensional space C with coordinates b’
and the metric:

10 0
ij(b) = —=—=—=—=InK(b 2.
Gy (V) = —5 5~k (D) (25)
where C is a homogenous polynomial of degree three:
K = dijrb't'b* (2.6)

One then takes My, as the hypersurface I = 6. Restricting ourselves to that submanifold we

have b* = b'(¢®) and we can write the induced metric as:
bt o

= ——G;(b
aqsz a¢y l]( )
The rest of the lagrangian is detemined by the sigma model metric. We restrain from giving

the lagrangian and the supersymmetry transformation laws until the subesection 2.2.4.

Gay(9) (2.7)

2.2.2 Coupling of hypermultiplets

In this subsection we review coupling of n;, hypermultiplets to the gravity multiplet. We are
given 2n, symplectic Majorana fermions (hyperinos) A* and 4n, real scalars ¢“. As in the
previous case, the central object is the metric h of the sigma-model: Ly = —hyy(q)0ad" 0"
Again, to render the coupling possible, h,, must have the interpretation of a metric of some
Riemannian manifold My on which the scalars ¢" are the coordinates. One finds that for N=2
supergravity My is a quaternionic manifold. Below we present basic facts about quaternionic
geometry.

A quaternionic manifold can be thought of as a generalization of a complex manifold. The
name is due to the three complex structures .J%, which satisfy the quaternionic algebra under
matrix multiplication. It is endowed with a triplet of Kihler forms K4, satisfying:

dK +wAK =0 (2.8)

w’p is a SU(2) part of the spin-connection. As the holonomy group of a 4n; dimensional

quaternionic manifold is by definition the product SU(2) x Sp(2ny), the corresponding spin
connection decomposes into a sum of the SU(2) connection w4, and the Sp(2ny,) connection A4,
In the context of N=2 supersymmetry, SU(2) is interpreted as the R-symmetry group and the
index A transforms in the same way as that of gravitino. Unlike the gauginos and gravitinos,
the hyperinos A\* are symplectic Majorana with respect to the Sp(2n,) connection, so the index
’a’ runs over values 1..2n,,.
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2.2.3 Gauging universal hypermultiplets

If the manifold My admits isometries we can gauge them, modifying significantly the struc-
ture of 5d supergravity. The procedure of gauging isometries of scalar manifolds is similar to
gauging global symmetries in order to obtain ordinary supersymmetric Yang-Mills theories.
The derivatives acting on fields must be replaced with covariant derivatives involving gauge
fields, and the potential for scalar fields must be added, which in the super-Yang-Mills case
corresponds to the so-called D-terms. The gauge fields are provided by vector multiplets and
the omni-present graviphoton from the gravity multiplet. Gauged isometries become local in
the space-time sense.

In this subsection we consider only Abelian isometries as the general case is not given in the
literature. We gauge only hypermultiplets; gauging of vector multiplets is also possible, but we
do not utilize that construction in this thesis.

Isometries that preserve the quaternionic structure of My are generated by the Killing
vectors satisfying the Killing equation V,k, + V,k, = 0, which can be solved in terms of a
function P4 called the prepotential:

k;tKuv — avpz + [w’ua P’L] (29)

Space-time derivatives acting on the hypermultiplet scalars must be replaced with covariant
derivatives:

0uq" — Doq" = 00q" + g ALK (2.10)
Derivatives acting on the fermions have to be modified as well, and those modifications are all
summarized in the next subsection.

The most significant aspect of gauging is the fact that it introduces, otherwise absent,
potential for the scalar fields:

. . 1. .
V = —2GtrPPI - Abbitr PP + bW hu ki (2.11)

In the absence of potentials the simplest solution to the equations of motion of the 5d super-
gravity is the flat Minkowski space. Compactification to 4d on such background is analogous
to the standard Kaluza-Klein procedure. It does not break any of the supersymmetry and
yields N=2 supergravity in four dimensions. Non-trivial potentials generically forbid flat space
solutions. The simplest solution are then so-called BPS solutions which preseve exactly one
half of supersymmetries. The solutions preserving 4d Poincaré invariance usually depend on
the fifth, transverse coordinate; this is not compatible with the standard Kaluza-Klein ansatz
and makes the process of compactification less straightforward. One specific example of such
procedure will be thoroughly studied in section 5.

Another interesting aspect of gauging is that fermion mass-like terms appear in the la-
grangian. At first sight, this may seem strange, for graviton remains massless and one of the
common opinions about supersymmetry is that it requires the same masses for each member
of a supermultiplet. But the above statement is true only for the case of supersymmetry in the
flat space. Thus, the fermion mass terms are another indication that we should not expect flat
space solutions in gauged supergravities.
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2.2.4 The final form of the action and supersymmetry transforma-
tions

In this section we present the general action up to four-fermi terms and supersymmetry trans-
formation up to three-fermi terms of five-dimensional N=2 gauged supergravity with gauged
Abelian isometries of the hypermultiplet manifold .

The action is given by:

€5
S = d5 D) [' inetic E ermi mass E our fermi — 2V 2.12
Ms a:/@( kinetic + £ + L fourf gVv) (2.12)

—A . . R . .
Liinetic = =58 = 500 77 Dgthy 4 — 3G Fos 0 — 5 5dijue ™ AL Fh F,
—1G0ab 0D — huwDagq"Dq" — IX "4 Dyd sy — 1292 Do A,
i A —A ~Az ~a ; ~A ;
i (0 4+ 2050 — XN 4y = XA IBF L + 255 (Ve e B T,

i (YA i 1 i (YA a x i Y A a u
S\Z@()‘ ’Yaﬂ)\Az)dijkaxng;fgﬂ - 5()‘1‘7 ’Yﬂwa/})bi aﬂb + Z(Aa7 ’YﬂwaA)VuA Dﬂq (213)

In the above formula n, vector multiplet scalars ¢ appear through n, + 1 scalars b’ subject

to the constraint d;;xb'b’b* = 6; b is short for gg;. V.Aa denotes the vierbein of the quaternionic

manifold M}, which is connected to the metric A through the formula:

huv = VuAaV;;BanbeAB (214)

The gauge covariant derivative acting on hypermultiplet scalars is D,q¢" = 0.q" + g ALk}
We do not gauge vector multiplets, so we have ordinary partial derivatives acting on the vector
multiplet scalars contained in b fields. The covariant derivatives acting on fermion fields are:

Do\ = VA + Doq" AN + g AL 0,k2V A%V, 4, A0

DoA™ = VoA + 0,8"T50 MY + Doq wy A" + g ALP A
Doyf = Vatj + Dag"wu/50f + g AP 505 (2.15)
In these formulae, V denotes an ordinary space-time covariant derivative including the
space-time spin connection. The term involving vector fields A, is due to the gauging de-
scribed in the previous subsection. The terms involving derivatives of scalars are to render the
expression covariant on the scalar manifolds; these terms can be readily worked out by noting
that the SU(2) and Sp(2n,) indices are contracted with the corresponding part of the spin
connection , and the vector index x is contracted with the Christoffel connection on the vector

multiplet manifold.
The fermion mass terms are:

['ferm'i mass — _%bipiAB%Afyaﬂw,@B + g\/ﬁbipiABFAryawaB + %VuAabik?XaryawaA
+ig(%dijkb”bjy’PkAB + 3V267bIVG b PEAB) N 4\
LV AG RN N gy — 2LV Py b VIR RN (2.16)
As usually, we skip all four-fermion terms. We recall that the potential V is given by:
L L 1. .
V = —QGijtTPZPJ + 4bibjt7’P2PJ + §blbjhuvk;tk;} (217)
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Finally, we give the supersymmetry transformation laws. The supersymmetry parameter
¢, like gravitino, is a Majorana symplectic spinor and carries the R-symmetry SU(2) index.
The three-fermion terms in the transformation laws of fermions are omitted:

e Gravity multiplet
1

(5621 = §EA7mwaA
W (V7 = 4607 )aiFh et + gfblPAB (2.18)
6v/2 !

e Vector multiplet + graviphoton

SAL = ——bl%AeA-F—bzema)\A’”

2v/2 2v2 "
Az _ T i afl i T zAB
oA bl(27 Db +2\[7 Fig)e* + gV2biP

b = —%b;zAAAI (2.19)
e Hypermultiplet
U i u =Aya
dq" = —VAae A
SN = —iVANDog es + g— VA%%“ a (2.20)

5V

Note that only fermions receive corrections from gauging (always represented by the last
term).

2.3 Supergravity in four dimensions

In this section we follow closely the reference [17]. In four dimensions the simplest (and the only
phenomenologically viable) supergravity theory is N=1 supergravity with four supercharges.
The gravity multiplet contains only two component fields: spin 2 metric g,, and spin 3/2
vector spinor 1, which in the customary formulation is subject to the Majorana condition.
The greek indices p v ... from the middle alphabet are four-dimensional and run over 0..3.

As in five dimension, scalar fields and their superpartners can be coupled to the four di-
mensional gravity multiplet. In four dimensions a scalar multiplet contains a spin 0 complex
scalar field 2* and its spin 1/2 fermion superpartner \*; the index i counts the number of scalar
multiplets . The complete lagrangian is determined by the kinetic terms of the scalars which
can be written in terms of a sigma model metric, also in this case having the geometrical inter-
pretation. This time scalar fields parametrize a complex manifold of the Kéhler type, and the
kinetic terms are determined by the Kahler manifold metric. For our purpose it is important
to know that this metric can be expressed in terms of a Kahler potential K:

o 0
=2 9K
Jii 0z 0z (2,2")

(2.21)
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Even without gauging we can have a potential for scalar fields which can be described in terms
of a holomorphic function W called the superpotential. It is usufel to define:

G =K —In(|[W]?) (2.22)

In this subsection we put the 4d Planck scale equal to one. Contrary to the 5d case, in four
dimensions we can can introduce a Yang-Mills supermultiplet which contains a spin 1 vector
field Af, and a spin 1/2 gaugino x*, both in the adjoint representation of the gauge group (a is
the group index). Gauge multiplets can be coupled to 4d supergravity and the scalar multiplets
transform in some representation of the gauge group. The basic function which determines the
coupling is the gauge kinetic function f,,. It is a holomorphic function of z. The kinetic terms
of the gauge fields are:

1
Lgkin = —ZRefabF,j‘,,F””” (2.23)

The 4d supergravity action consists of the following terms:

1
S, = ? / d41‘64 (»CBkm + Epot + Lp 4+ Lrkin + Lrmass + £4fermz') (2.24)

The determinant of the 4d vierbein is denoted e,. The bosonic kinetic terms are:

1 , -1 1 .
L Brin = —§R + GiD,z D"z — ZRe fanFp F — ZIm fan L Fo (2.25)
The notation we use is G; = 33,G9 = %, and so on. Note the axion type couplings

determined by the imaginary part of the gauge kinetic function f.
The potential part is:
Lpor = exp(—G)(3 + GL(G MG (2.26)

Whenever scalars are charged under gauge symmetries, the so-called D-terms arise.

U@ e
L= _iRIZf -(G'T; T2 (GFT ) (2.27)

The fermion kinetic part of the lagrangian is:

»CFk:in = _l¢_u7quDu¢p + GZ_Z’YMD N
+iRefan (=X DX + GX TV P Fy, — sXEV X RG Dyzi)
X VX DpIm fop — 1 fi Ariv™ X5 F S, + 307577 1hy G D,z
~Glm" VAL Dyz" = (G + 5GLGI) Ar" M Dy (2.28)
The terms described as 'fermi mass’ contain interactions bilinear in fermion fields and poly-

nomial in scalar fields. They become real mass terms only when scalars develop vacuum ex-
pectation values:

EFmass = % _G/Q'QZ}L fylwleV + 6 G/QGl(G ) fabk:XLXR
+€7G/2(Gij - GlGj - Gl(G )fGZJ))\Ri)\Lj — € G/2G1¢L ’)/“)\Ll
— 519G T 2 ru X + 209 GIT XN, + 5ig(Ref) oy ' G T 22 mes, (229
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The supersymmetry transformation laws are:

m ]‘— m
deyt = ST " u
0ry = Duep+ g yuer — 7e0(G' Dz — GiDua™) = 16 (20 — Y )erX ™57 X fan + - -
1_
6AZ = _56%Xa
1 ; o
OXp = _ZVWGRFSV%RefJ,lGlﬂbJZjeR + ...
521‘ — ﬁ)\[ﬂ
1 1 L 1 ~ L
oA = 57" Dpzier = e~ (GT)iGier = gen(GT) fauXEXR (2.30)

We skipped all three-fermi terms except for those involving gaugino bilinears which will be
important in further discussions.
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Chapter 3

Horava-Witten model

At the time when Horava and Witten constructed their model, the common opinion was that
the only phenomenologically viable string theory is the Eg x Eg heterotic superstring theory.
To understand the motivation of the authors we must first briefly recall the basic features of
low energy theories derived from the heterotic superstring theories.

In the low energy limit (that is below the Planck scale) the weakly coupled Fg x Eg het-
erotic string theory reduces to the 10d Type I supergravity coupled to one Fg X Eg Yang-Mills
multiplet. To make contact with the real world this theory is further compactified to four
dimensions on the background My x K, where M, is the non-compact space where we live,
and K is a compact six dimensional manifold. The number of supercharges of the Type I 10d
supergravity is 16 and corresponds to N=4 supersymmetry in 4d. However, if supersymmetry is
relevant to our TeV scale world it can be at most N=1 supersymmetry, so the compactification
must somehow break the remaining supersymmetries. This can be achieved by choosing for K
a complex Kéhler Ricci-flat manifold of SU(3) holonomy known as the Calabi-Yau three-fold.
Once we decide on the Calabi-Yau manifold, we obtain a number of remarkable predictions
concerning the four-dimensional effective theory:

1. If we want (for cosmological reasons) the non-compact part of the background My to be
maximally symmetric, then by field equations it is necessarily the Minkowski flat space
(de Sitter and anti-de Sitter spaces are excluded); thus string theory can in principle
provide us with the explanation of the observed flatness of the universe.

2. The simplest choice of the vacuum expectation value for the gauge fields which satisfies the
equations of motions (precisely - the Bianchi identity of the two-form field) breaks the Fjg
gauge group to Eg. The exceptional group Eg was proposed for the Grand Unified Group
long before the advent of the string phenomenolgy. It has a complex representation 27
which can accomodate one generation of the Standard Model fields. The compactification
predicts a number of supermultiplets in this representsation. Moreover, Fg contains
SO(10) and SU(5) as its subgroups so it can be broken to more standard and thoroughly
investigated GUT groups.

3. Generically, we get more than one copy of massless 27 (which become massive only
after supersymmetry breakdown and their masses are of the order of the electroweak
scale). Thus, we have a natural explanation of the existence of generations in the SM.
The predicted number of generations in the low energy world is one half of the Euler
characteristic of the Calabi-Yau three-fold and so the actual number of generations can
be understood on strictly topological grounds.aaaaaa
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4. Once we choose to place the SM matter in the representations of Fg we automatically
get extra matter from the second FEg sector which couples only gravitationally to the
observable particles; in other words we automatically get the so-called hidden sector - the
most, popular mechanism of supersymmetry breaking in realistic model-building

5. The compactification universally yields also an axion so, in principle, we are able to solve
the strong CP problem.

The impresive success of the heterotic string theory was shadowed by one disturbing fact: the
gravitational and gauge coupling did not unify at the GUT scale but rather at a scale an order
of magnitude higher. Imposing the unification at the GUT scale required the string coupling
constant much bigger than one and thus out of the range in which perturbative calculations
in string theory could make any sense (note that string theories are formulated only perturba-
tively).

Shortly before the Horava-Witten model was constructed the unexpected relations (duali-
ties) between various string theories had been discovered. It became clear that taking the limit
of large (aproaching infinity) string coupling constant could lead to another theory which was
not necessarily a string theory. At that time it was known e.g. that the strong coupling limit of
the type ITA superstring theory is an eleven dimensional theory provisionally named M-theory.

Horava and Witten took seriously the message stemming from the (lack of) gauge-gravitational
unification and considered the strong coupling limit of the Eg x Eg heterotic superstring theory.
They conjectured [2] that in this limit one got M-theory compactified on My x S;/Z5 , where
Mj is a smooth 10d manifold and S;/Z, is equivalent to the interval. In the low energy limit
M-theory reduces to 11d supergravity. Thus, the strong coupling limit of the Egy x Ejg het-
erotic string theory should correspond to eleven dimensional supergravity on a manifold with
boundaries. This conjecture can be the starting point for phenomenological considerations.

What happens to gauge group present in the weakly coupled limit? Contrary to the ten-
dimensional case, there is no Yang-Mills supermultiplet in eleven dimensions, but in the Horava-
Witten model we still have ten-dimensional boundaries of the interval at our disposal. Horava
and Witten found [3] that the consistency of the model (precisely - the anomaly cancellation)
requires one YM supermultiplet in the adjoint of Fg at each end of the interval. In a sense,
the Fg x Fg of the weakly coupled limit is cut in two parts. The size mp of the eleventh
dimension can be shown to correspond to the strength of the string coupling; taking the limit
p — 0 reduces the Horava-Witten model back to the ten-dimensional description of the weakly
coupled case and the two Fjg factors merge together.

Though it was not clear from the begining whether a theory in which part of the fields resided
on a lower-dimensional manifold could be consistently supersymmetrized, Horava and Witten
showed [3] by the direct construction, that supersymmetrization was possible. One can expect
the supersymmetry of the string theory to survive in the strong coupling limit, which makes
supersymmetrization of the Horava-Witten model a non-trivial test of the consistency of the
entire set-up. In the case of supergravities on smooth manifolds we can classify possible theories
and field representations by means of the so-called tensor calculus. In the case of the Horava-
Witten model, due to the presence of boundaries the commutation relations become singular
and the tensor calculus does not work. So far a general formulation of locally supersymmetric
theories with matter residing on submanifolds has not appeared.

The procedure applied by Horava and Witten in order to couple the Yang-Mills supermul-
tiplet is known as the Noether method. The idea is to start with a globally supersymmetric
theory lagrangian. To promote this symmetry to a local one, new terms are iteratively added
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to the lagrangian and to the transformation laws. At each step the lagrangian is varied and
the modifications of the lagrangian and supersymmetry transformations needed to cancel the
variation are guessed. It is not guaranteed that the procedure ends in finite time, but if the
coupling is possible one usually needs only a few steps.

3.1 11d supergravity on M, x S1/7,

Before proceeding we must first define our 11d supergravity on the manifold of which one
dimension (say, the eleventh) is an interval. Mg xS;/Z5 is essentially a manifold with boundary
and we should specify the appropriate boundary conditions for the eleven-dimensional fields.
However, there is a more convenient way to deal with this problem. In the following, we work
with fields defined on the smooth manifold M;, x S; and impose a Zy symmetry on the fields
of 11d supergravity.

We parametrize the circle S; with the coordinate x'* which extends from —mp to mp and we
identify the endpoints. The Z, parity acts by z!! — —z!'. The fixed points of this symmetry
operation are ten-dimensional hypersurfaces z!' = 0 and z'' = 7p where the gauge fields are
located. Eleven dimensional fields can be even (¢(x'") = ¢(—z'")) or odd (¢(z"') = —p(—2z'"))
under Zs . Note that the odd fields must either vanish or be discontinuous at the fixed points,
hence they are not dynamical fields on the submanifolds where the gauge fields live. Z, takes
011 into —0q1 so the eleventh derivative reverses the parity assignments.

We require Zs to be the symmetry of the eleven dimensional action. In the following we
single out ten dimensonal indices (0..9) which are denoted with latin letters from the beginning
of the alphabet A,B,... We define g4p to be even so that the ten-dimensional part of the metric
is dynamical at the fixed points; all the subsequent parity assignments follow from this choice.
The Ricci scalar R contains the eleventh derivative of g4;1 so those components must be odd.
The similar reasoning leads to ¢g;1 11 being even: R contains either two or no eleventh derivatives
of this component of the metric. Equivalently, in the vielbein language €% and e}l are even and
el and e?, are odd. In summary, the metric components which contain odd number of 11’ are
odd.

The parity assignments of the three-form field C follow from the ’topological’ term in the
action €1 Oy .Gy, 1,Gr.1,, - Let us suppose I; = 11 (thus the remaining indices are
ten dimensional; otherwise the Levi-Civita tensor is zero). The two field strengths G apcp
multiplied by each other are even, whatever parity is chosen for a single G pcp. Then the
whole expression is Zs invariant only when we chose Ci14p even and it follows that Gi1apc
must be even. Next, the invariance of the kinetic term G114pcG" B¢ together with the fact
that ¢4 is odd requires that G apcp is odd. In summary, an odd number of ’11’ in C or G
means that this component is even.

A little less straightforward is the action of Zs on gravitinos. Consider the interaction term
O DKM G erar. From the previously obtained Zsg assignments of G it follows that @AFB“wC
is even and " TBCyP is odd. This is possible only if Pa(zt) = THaps(—2). Then the former
expression:

—A

w (xll)FBlle(xll) — mA(—xH)FBHFHwC(—xH) — _E
_ EA(_xll)l—\Blle(_l,ll)

A(—xll)FllFBHFHzpC(—xH)

is indeed even as one must anti-commute once with I'? to anihilate two I''"’s. Similarly the latter
expression is odd as one must anti-commute twice. Analogous reasoning leads to vy (z'") =
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_Fllwn(_xll)_

If we want the supersymmetry transformations to commute with Z, we must also asign
the correct Zs parity to the supersymmetry transformation parameter 7. From the gravitino
transformation law dy4 = Dan + ... we can read off that the parity assignment of 7 must be
the same as that of the ten-dimensional components of the gravitino: T'''n(z!t) = n(—z)

One can easily check that with this assignments the rest of the terms in the 11d supergravity
lagrangian as well as the supersymmetry transformation laws are Zs invariant. Below we
summarize the Zs properties of the 11d fields:

even odd
11 a
€4, €11 €45€11
Ci1an,Griape Capc,Gapep (3.1)

' (0") = (="
PGt = ()
byt = n(—ot) (32)

3.2 Coupling 10d Yang-Mills supermultiplet to 11d su-
pergravity

In this subsection we review the Horava-Witten construction following the reference [3]. We
start with the 11d supergravity lagrangian given in (2.1). We know that this lagrangian pos-
sesses local supersymmetry and the supersymmetry transformations are given in (2.3). Next
a perturbation consisting of a 10d vector supermultiplet in the adjoint representation of Eg at
each fixed point is added. In the folowing, the gauge group will not be important and the super-
symmetric coupling is possible for any group. We concentrate only on the brane at 2% = 0; the
modifications required on the second brane are identical. Following the standard terminology
we will call the interior of the 11d space the ’bulk’ and the boundaries will be described as the
‘branes’.

Ten dimensional gauge supermultiplet contains gauge fields A% and gauginos x*. The latin
indices A,B,... are ten dimensional and run over values 0..9. @ is a group index which we
often suppress (it should not be confused with the Sp(2n;) index of 5d symplectic Majorana
spinors). In ten dimensions we can define spinors which satisfy both the Majorana and the
Weyl conditions. The gaugino y is such a Majorana-Weyl spinor with definite chirality and
satisfies 'y = x. We add to the 11d supergravity action the kinetic terms for the gauge
multiplet:

1

SYM == ﬁ v dlll‘ellé(l‘n)ﬁy]\/f
11
1 1
Ly == FoF"" = §yarADAXa (3.3)

Classically, A is a free parameter - the gauge coupling of Eg. However gravitational and gauge
anomalies cancel out only if ) is related to the gravitational coupling by the formula [3]:

A2 = 2 (4mk?)?/3 (3.4)
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Note that the bulk action is multiplied by 1/x2 and the boundary action by 1/A2 ~ 1/k%3,
Thus the boundary action can be considered a first order perturbation in x%3. The relation 3.4
can be qualitatively established on the basis of the dimensional analysis, as A has dimension
(mass)™ and & - (mass)~*/?; the anomaly cancellation analysis gives just the precise form of
this relation.

The delta function is defined covariantly:

d'ze;d(zt) = d"zeg (3.5)

M1 Mo

where M, is the hypersurface z'' = 0 in M;; and ey is built from the ten dimensional compo-
nents of the vielbein. The above super-Yang-Mills lagrangian possesses global supersymmetry
and the supersymmetry transformations are:

1
0A} = §(WFAX'I)

oY = —%FABUF/‘;B (3.6)
Interestingly enough, the super-Yang-Mills action exists only in 3, 4, 6 and 10 dimensions. The
form of the action is always the same (but of course the dimensionality of spinors and gamma
matrices must be appropriate for a given space-time dimension).

The spinor parameter 71 is Majorana-Weyl. It is crucial for the whole construction to
identify 1 with the parameter of the local supersymmetry transformations in 11d supergravity.
Although in eleven dimensions we cannot impose the Weyl condition (such condition would not
be invariant under general coordinate transformations as I''! is one of the matrices of the 11d
Clifford algebra), enforcing the Zs symmetry I''n(z!!) = n(—z'') has the effect that at the
fixed point the 11d parameter n indeed satisfies the Weyl condition I'''p = 7.

We compute the variation of the lagrangian (3.3) using the transformations (3.6) with a gen-
eral z-dependent parameter 7. The variation of the gauge kinetic term F? yields —£ F*# D, (70 gy x)
while the variation of the gaugino kinetic term yields ¢ Fy (70457 Dey). Together they sum
to

0Ly = = §Fap[De(@(=T4PTC + I45%)x) + (LAPT“Dex))

= £[Fap(Denl*PTCX) 4+ FapDe (7))
= EFAB(DCT]FABFCX) (3.7)
In the first line the gamma matrices identity —TI'APTC 4+ B¢ = —2¢4CT'Bl was used. In

the last line we integrated by parts (this is allowed as the invariance of the action requires the
lagrangian to be invariant up to a total derivative) and used the Bianchi identity for the field
strength D4 Fpey = 0.

The variation (3.7) can be cancelled by adding a new term to the boundary lagrangian:

e —
Ly = —Z(tbﬂBCVAX)FBC (3.8)

The part of the gravitino variation proportional to D n in Ly cancells the variation of Ly .
Note that in in the language of the 11d action this term is multiplied by the delta function.

This term is usually called the Noether term. In fact, what we did was to couple the Noether
curent (supercurrent) of a globally supersymmetric lagrangian to the gravitino, which is the

25



gauge field of supersymmetry [17], in analogy to what one does in locally symmetric Yang-Mills
theories.

It turns out that more modifications are needed. The hint is given by considering the
vartiations of the form niF2. These come from varying the vielbein in the gauge kinetic term
and from varying gauginos in the Noether term. After some tedious manipulations one finds
that these variations do not cancel by themselves. What is left is:

5L = %@FABCDEnFBCFDE (3.9)
The situation is reminescent of what we encounter in 10d supergravity. There, the identical
calculations yield the same result and to cancel the variations of the form 11 F? one is forced to
modify the Bianchi identity for the three-form field strength. In the framework of the Horava-
Witten model we do not have any form fields on the boundary, but we have the four-form
field strength G in the bulk. Therefore, the natural idea is to cancel the above variation by
modifying the Bianchi identity for G. It turns out that the correct solution is to replace G in
the bulk lagrangian with:

/{2

Guase = Guiape + \/5)\25(3711)WABC (3.10)
where w is the Chern-Simons form satisfying:
8[AwBCD] = 6F[(}4BF8'D} (3].].)

Another way to describe the above corrections is to say that the Bianchi identity for the modified
four-form field strength reads:

2
K
(dG)naBep = —3\/§§5($11)F[?4BF3D} (3.12)

What is the mechanism to cancel (3.9)7 When we vary the 11d bulk lagrangian, we must check,
in particular, if the variations of the form niG cancel. Varying the gravitino kinetic term and
considering the part of the gravitino transformation law proportional to G, we get an expression
of the form:

L = Ya(Gamma's)Dp(nGiicpr) (3.13)

When the derivative acts on the spinor n the variations cancel with the variations of gravitno
proportional to D47 in the 1/2G terms. In the pure 11d supergravity, the part with the derivative
acting on G is identically zero due to the Bianchi identity dG=0. If the Bianchi identity is
modified as in (3.12) the derivative acting on G contributes to the variation and precisely
cancels (3.9).

Redefinition of the field strength G must be supplemented by the modification of the su-
persymmetry transformation law of G by a term:

3K?2
V22
It should be stressed that the modification of the Bianchi identity is just a convienent and

compact way of saying that we add new boundary couplings. In the case at hand we couple
the bulk field C to the polynomial built of the boundary gauge fields.

+0Gh1apc = 0(z" )T ax Fiey (3.14)
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Another necessary boundary coupling can be determined by considering variations of the
form nyGF which originate from variation of ¢ proportional to G in the Noether term and
from variation of G proportional to F in the kinetic term of G. These two variations do not
cancel and the left-over is:

V2e_
5£ = —%T]FBCFDEFXFBcGDEFH (315)

It is easy to see that to cancel the above a new term in the boundary lagrangian is needed:

V2e
L=-——xI""
+ 18 X

"XGpEr (3.16)

The YM variation (3.6) of the gauginos is enough to ensure that variatons of the form nxyF'G
indeed cancel out.

The remaining corrections are four-fermi terms in the boundary lagrangian and three-fermi
terms in the supersymmetry transformation laws. Although, to have confidence in the theory
it is very important to show that supersymmetic variation of the action indeed vanishes after
adding these corrections, the actual calculations is tedious and not very spectacular. Therefore,
we concentrate only on a few interesting aspects of this calculation, which will be important in
the following sections.

First, we shall take a closer look at modifications of the gravitino transformation law. They
can be determined from the study of 4-fermi variations of the form Dvynyy. They do not cancel
by themselves and the gravitino transformation law must be supplemented with:

2

K
+0Y4 = — ;0 ) (XTBepx) (LAY — 6g5TP)n
288\
2
_ K 11\ (= ABC
+othy = T 5882 6(z ) (XL X)L anen (3.17)

The object of interest here is the delta function. It must be present, since the variations we
want to cancel are on the boundary and we vary the gravitino kinetic term which lives in the
bulk. But this may cause troubles. We have already gravitno interactions on the boundary (the
Noether term) and such terms in the 11d action are already proportional to the delta function.
If we vary gravitino entering the boundary terms (3.17) we get singular variations which are
formally proportional to the delta squared. Even worse, such singular variations do not cancel
out. Since, such variations are proportional to £ (w.r.t to the bulk action) we have to admit

A
that the Horava-Witten model is valid only to the first order in perturbation in % ~ x2/3,

)
Nevertheless, we can try to cancel at least some of the variations of order i—i For example

(3.17) in the Noether term and variation of G in the Gy interaction yield:

,‘<J2

1536A%

58 = — / e, 62 (z1) (xTanox) XTABCTPE ) Fpp (3.18)
which can be easily cancelled by varying the gaugino in the new singular, quartic in gauginos

interaction:
(2

15368 (XT aBox) (XTPCX) (3.19)

An interesting observation is that this singular term is a part of a 'perfect square’. The situation
is similar to what one encounters in ten-dimensional supergravity, where gauginos group into

+S = - /d”xen(SQ(x”)
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a perfect square (H + xx)? with the three-form field strength (of course, in 10d there are no
singular terms). In the Horava-Witten model, gauginos combine into the perfect square with
the four-form field strength GG. The bulk kinetic term of G, the boundary interaction G'xx and
the singular term x* can be written as:

V252
82

1
Sps = — /d11x6114_8(GAB011 — 5($11)YFABCX)2 (320)
This form suggests, that we could formally get rid of the divergent term by redefining the
field strentgh G. Thus, we can trust, that in spite of the singularities, the Horava-Witten model
is a sensible theory. Later we will see that singularities indeed drop out from the effective
four-dimensional theory.

3.3 Higher derivative corrections

The derivations of the previous subsection were limited to terms which are at most second
order in derivatives. However, plenty of physics is contained in higher derivative interactions.
To avoid gravitational and gauge anomalies we must include terms proportional to R* and F*
in the action [3]. The precise form of these terms will not concern us in this thesis but there
are two correcions to the lagrangian which will be important in the following discussions.

First, we found that the Bianchi identity for the four-form field strength G must be mod-
ified modified. Anomaly cancellation analysis introduces further, higher order in derivatives
corrections, so that the Bianchi identity reads (up to f—i terms):

2
(@G anen = ~3VIS (R FSh 5 tr(RianRen)d( )+ (FELEE) ~ 2 trRapRop)d(z' —mp)
(3.21)
Note the factors 1/2 appearing in front of the traces of the curvature tensor, which will be
crucial in the subsequent discussion, because they forbid vacuum solutions with G=0.
The second modification we mention is the boundary term involving the curvature, so that
the bosonic part of the boundary lagrangian reads:

e 1
Lyy = —E(F/(SJ;F(UAB - iRABCDRABCD) (3.22)
and similar terms are added on the second brane. This modification will be helpful to determine
the boundary scalar potential in the low energy theory.

3.4 Compactification to five dimensions

If theory is to describe our physical world, it has to reduce to a four dimensional effective field
theory at low energies. But the compactification does not have to proceed in one step; there
may exist some intermediate scale, at which the theory can effectively be formulated in more
than four dimensions. This is the case with the Horava-Witten model in an interesting region
of its parameter space. To obtain the unification of gauge and gravitational couplings, the
size of the eleventh (orbifold) dimension must be about an order of magnitude larger that the
characteristic length of the remaining six compact dimensions. Thus, just below the Planck
scale, the Horava-Witten model is described by a five dimensional theory.
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Generally, to obtain a low energy effective theory one has to perform the Kaluza-Klein
reduction. The extensive introduction to KK reduction in the context of string theories can
be found in [27] and here we present only the most important key-words. We assume that the
background manifold on which we compactify is a direct product M x K, where M is non-
compact and parametrized with coordinates x and K is a compact manifold with coordinates y.
We write the fields ¥ of the original theory as a sum ¥(z,y) =3, ¢n(2)xn(y). The equations
of motion AW = 0 of the original theory split into:

(An + Ax)o(z)x(y) =0 (3.23)

The laplacian A has a different meaning depending on the context; if W is a scalar field it is an
ordinary laplacian, if ¥ is a spinor it is the Dirac operator. We demand that the fields x are
eigenvectors of the laplacian Ax on the manifold K with eigenvalue m?. Then the equations
of motion take the form:

(Apr+m2)g, =0 (3.24)

The linear independence of eigenvectors of the laplacian was used. This is the equation of motion
for a field ¢, with mass m,,. Thus, in the effecive theory we get a tower of fields with masses
corresponding to the eigenvalues of Ax. On dimensional grounds we expect that generic masses
are proportional to 1/R where R is the characteristic length scale of K. For phenomenologically
viable values of R, these masses are huge and the corresponing fields decouple from the low
energy theory. The only fields that remain in the effective description correspond to m, = 0, in
other words, to the zero-modes of Ag. Usually, massless ¢,, are also called zero-modes. Below
we determine only the zero-modes of bosonic fields; if our background preserves supersymmetry,
the zero modes of fermionic fields must fit in supermultiplets.

As was already mentioned, the Horava-Witten model is the strong coupling limit of the
heterotic Fg x Ejy string theory. Phenomenologically promising compactifications of that string
theory are obtained on backgrounds of which the compact component is a six-dimensional
Calabi-Yau manifold. It is then reasonable to compactify the Horava-Witten model on a Calabi-
Yau three-fold. A Calabi-Yau three-fold breaks exactly one fourth of the supersymmetries. In
the case of heterotic strings we have a ten dimensional theory with 16 supercharges, so the
effective theory is four dimensional and possesses N=1 supersymmetry (4 supercharges). The
Horava-Witten model is eleven dimensional and has 32 supercharges, so its compactification
on a Calabi-Yau three-fold yields a five dimensional theory with 8 supercharges. Such theory
is called N=2 5d supergravity and was described in the section 2.2.

The precise form of the five dimensional effective theory was found in [5]. The background
metric is given by:

ds* = V3 g.s(x)da®da® + gi;(y)dy'dy’ (3.25)
gi; is the metric on the Calabi-Yau and V is the Calabu-Yau volume defined by V' =

Joy v/det(gi;). The factor V=2/3 is to ensure that the five-dimensional metric g,s has the

canonical Einstein-Hilbert action (that is, the kinetic term of the metric is —3R). We have
changed the notation, so that the original eleventh dimension has become the fifth.

Having decided on the compact Calabi-Yau manifold we still have certain freedom in choos-
ing its parameters. The equations of motion do not restrict these parameters so they correspond
to massless scalar fields in the effective theory. They are called the moduli of the compactifi-
cation.

Every Calabi-Yau manifold is endowed with the Kahler form w. This is a closed two-form
(dw = 0, usually we chose d*w = 0, so that it is also harmonic) with one holomorphic and
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one anti-holomorphic index, that is a (1,1) form in the terminology of complex manifolds. The
number of independent harmonic (1,1) forms on a Calabi-Yau three-fold is arbitrary and is
characterized by the Hodge number h; ;. The Kéhler form is thus a linear combination of h;
forms:

Wap = aiwial_) (326)

Another characteristic parameter of a Calabi-Yau three-fold is the Hodge number hy;. In
the usual aproach to compactification it is assumed that he; = 0. If this number is non-zero,
a number of hypermultiplets in the 5d theory appears, but their structure is independent of
the specific features of the Horava-Witten model. The Calabi-Yau three-folds have no other
independent Hodge numbers. We have hgg = h3g = ho3 = 1 hoo = hy; and the remainig hgy, are
7ero.

The a*’s become the dynamical fields in the effective theory. However they are not inde-
pendent of V, as the Calabi-Yau volume can be expressed as V = éfw A w A w. We have the
relation

6V = djjra‘a’a® (3.27)

where the Calabi-Yau intersection numbers are defined as d;jr = [ w; Aw;j Awg. Thus, the fields
a’ together with V describe only Ay independent degrees of freedom.

We must also determine the zero-modes corresponding to the three-form field C. In the first
order in ;—; its equations of motion are dG = d*G = 0 which are trivially satisfied by G=0=dC.
The 11d three-form field C survives in the effective 5d theory as a one 5d three form field (which
by duality corresponds to one real pseudoscalar), hi; vector fields A, and one complex scalar
&. If C is harmonic its various components can be decomposed in the following way:

Capy ()
1 .
Caal; = éAZa (x)wia?)
1
C’al)c = gf(x)Qabc
1-
CE = 66(1‘)9% (328)

In the first line we used hgy = 1 (the unique harmonic (0,0) form is just a constant), while the
last two lines result from hgy = ho3 = 1 and €2 is the unique harmonic (3,0) form on Calabi-Yau.

Let us summarize the bosonic spectrum of the five dimensional effective theory obtained
by the compactification of the bulk action. We have the 5d metric g.g, hi1 vector fields A%,
hi real scalars a’ (which are subject to the constraint (3.27)) , three scalars V, £, and £ and
a three-form Cyg,. Our task is to interpret them as componenents of 5d supermultiplets.

Obviously, the metric belongs to the gravitational multiplet. Due to the definition (3.25 it
has the correct Einstein-Hilbert kinetic term —%R. To complete the bosonic part we need a
graviphoton. We have the vectors fields A and we expect that the graviphoton is their linear
combination. The precise formula is %bi.Afl but it is not so important as the formulation of 5d
supergravity we gave in the previous section places all vector fields on equal footing.

Of course, we can have only one gravitational multiplet, so the remaining vector fields must

fit in hy; — 1 vector multiplets. To complete the vector multiplets we have scalars a’. If we
define:

b=V 3 (3.29)
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then the fields b’ represent h;; — 1 degrees of freedom and are subject to constraint:
K(b) = dijub' b =6 (3.30)

This is exactly compatible with the formulation of dynamics of scalars belonging to vector
multiplets we presented in subsection 2.2.1. In the general formulation the symmetric tensor
d is arbitrary, while in the compactified theory it acquires an interpretation of the Calabi-Yau
intersection numbers.

The metric of the sigma model describing scalars b can be explicitly expressed in terms of
the harmonic forms on the Calabi-Yau manifold:

1

Gij = =
J 2V Jcalabi—Y au

w; N\ (*w]') (331)
The functions K and G; given above are sufficient to recover the coupling of the vector multi-
plets to 5d supergravity, as described in subsection 2.2.1

We are left with three scalars and one three form which is equivalent to a scalar. As we
have no vectors left, the natural guess is that these four scalar degrees of freedom belong to
a hypermultiplet. This multiplet is usually called the universal hypermultiplet as the above
mentioned moduli arise in any compactication of M-theory on Calabi-Yau. After dualizing the
three form to a scalar o by Gasys = %eamge(@ea — i(£0:€ — £0.£)) the kinetic terms of the
hypermultiplet scalars read:

Skin = — [ @xes55 ( 5350V 0V + 0,00%0) + £0,£0°E

+517(§0a€0%0 — £00€0%0) — 533 ((€0a€)” + (€0a8)” — |€0atl) ) (3.32)
In the languag used in the section 2.2 this sigma model corresponds to the Kahler potential:

K = —In(S + S — 2£€)
S =V 4+ &€ +io. (3.33)

If the compactification of the Horava-Witten model were the standard KK reduction, this
would be the whole story. But in the consistent reduction we are not allowed to neglect the
background value of the four-form field strength G. The reason is that we must satisfy the
Bianchi identity (3.21), and G = 0 does not solve it. Thus, compactification with G = 0 is not
consistent as the solutions the theory compactified with G = 0 would not be the solutions of
the original theory.

In the case of the heterotic Eg x FEjg string theory the situation is much simpler. The
Bianchi identity for the three-form field strength H reads (dH)apcp ~ F[%LF(S%] + F[(:;Fgg] —
trRapRcp. As the spin connection and the curvature on Calabi-Yau are SU(3) matrices, we can
put them equal to the SU(3) subgroup of, say, the first Fg and the demand that the vevs of the
second FEg sector are equal to zero. This is what is usually referred to as the standard embedding.
Then the Bianchi identity reduces to dH=0, the solution H=0 is perfectly legitimate, and the
compactification is the standard KK reduction.

In the case of the Horava-Witten model, because of the unfortunate factor 1/2, there is no
possibility to cancel the right-hand side of the Bianchi identity. However we can still keep the
standard embedding:

trFOANFO) =trRAR
F® =0 (3.34)
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The Bianchi identity reduces in this case to

2
K
(dG)llABCD = _3\/52—)\2[757"R[ABRCD]5(1'5) — t’I“R[ABRCD}(s(:L‘E) — 7rp)] (335)
Its right-hand side has non-zero delta function sources supported by the boundaries. The
equations of motion and the Bianchi identity for G are now solved by

1

Gade = Eéai)ci

I, jale(z”) (3.36)
where the constants o' are defined by the integrals:
. ,t<;2
o= -5 /C trRAR (3.37)

over four-cycle C; corresponding to the harmonic w;. In consequence, o' are proportional to
the Pontryagin index of Calabi-Yau and are quantized. The step function €(z°) takes values
+1 for 2° € (0,7p) and -1 for 2° € (—7p,0) .

Taking into acount the non-zero backround value of G essentially changes the effecive 5d
theory. Instead of the simple 5d supergravity we obtain its gauged version. Below we argue
why the effective theory should be a gauged supergravity

1. The non-zero G in the kinetic term G? in the 11d lagrangian leads in the effecive theory
the potential term — G o;r;. This term depends on the scalar V and on the scalars of
the vector multiplets (through the metric G;;). However, potentials for scalar fields are
generally forbidden in ungauged 5d supergravities.

2. Also on the boundaries, when we substitute the kinetic terms — 55 (trF/(,%F(l)AB—%trRABRAB)
with their background values, we get the boundary potential gaibi. In the next section
we show, that supersymmetrization of such background potentials is possible only when
the supergravity in the bulk is a gauged one.

3. Reduction of the topological term Ce.tGapy5Gabea yields the coupling of the form:

%ai.ﬁlgaaa (3.38)
In ungauged supergravities vector fields do not couple in this manner to scalars but in the
gauged version we recognize in (3.38) a part of the kinetic term (D,0)? with the partial
derivatives substituted with the covariant derivatives. Hence, we see that the vector
fields are the gauge fields and that it is the field o of the universal hypermultiplet which
becomes gauged. From the kinetic terms (3.32) we see that the sigma-model possesses
a translational U(1) symmetry o — o + const, and in fact it is this symmetry which is
gauged.

More detailed calculation proves that indeed all terms in the effective lagrangian fit into the
framework presented in subsection 2.2.3. The functions which describe the precise form of the
gauged lagrangian are:

e Killing vector
kE* = (0,-2,0,0) (3.39)
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e Prepotential

1

_ 1, 11y .
gpiAB:< 4Vze(x oy . 0 ) (3.40)

0 rie(z' oy

If instead of the standard embedding we used other solutions, the precise form of gauging and
the above functions would change, but the general features of the effective theory would stay
intact.

This completes the description of the effective bulk theory. We also have zero-modes of the
10d boundary gauge fields. We expect that they yield four dimensional gauge supermultiplets
and some scalar supermultiplets - their number and representation depends on the choice of the
embedding. In the next section we determine the boundary theory using the Noether method,
in the similar way as it was done in the original paper of Horava and Witten. One could try
to obtain the boundary theory directly from the reduction, but the method we use can be
extended to more general five-dimensional theories with matter residing on branes, including
theories which do not follow from the compactification of a higher dimensional theory.
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Chapter 4

Coupling of 5-dimensional supergravity
to boundaries

The purpose of this section is to repeat the Horava-Witten construction of supergravity coupled
in a supersymmetric way to matter fields on the boundaries, but this time, in the framework
of five-dimensional supergravity defined on the M, x S;/Zs manifold and with YM multiplets
living on two 3-branes located at the Z, fixed points. We restrict ourselves to a specific non-
linear sigma model, namely the SU(2,1)/(SU(2) x U(1)), coupled to 5d supergravity. The
system describes the dynamics of the universal moduli of the M-theory compactification on a
Calabi-Yau three-fold. In this section we do not consider vector multiplets. It is not difficult
to modify this construction to include other multiplets.

In the bulk theory we have the gravitational multiplet (e%, ", A,), and the universal hy-
permultiplet (A%, V, 0, £, €). We quote the kinetic part of the 5d action and write explicitly the
sigma-model metric and the symplectic index of the Majorana spinors :

S =—[dzess (— SR+ 2FupF0 + eV A Fo, Fre + 112 (0.V OV + 0,00%0)

170680 + 7 (£0aED0 — £0uED*0) — 7 ((£0a€)” + (£0a€)” — |€Dat]?)
(AP I Dgl 41— 2) + (AN DA +1 5 2) ) (4.1)

The supersymmetry transformation laws are:
dem = Lelymyl + (1 — 2)
01k = Dae' — 15 (187 — 46377) Faye' + 15 Dave + -(€04€ — EDaE)e! — D€’
02 = D€ — 7% T = 4007") Fiy€* = Gy Dace® — 37 (€0ad — £0al)€” + faa&
O Mo = —5isPle + (1 2) (4.2)

OV = V(M) — (1 2)
b7 = +LV(EN) + (1= 2) + /S (€A — £20)
¢ = —WE@EN) 06 = ~F (N
SN = — o (P(V + i) — EPE + EGE)E! + —ipee
ON = 4555 (D(V — o) + EPE — EPE)e® + A= PEe . (4.3)
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The Zq projection is defined in such a way that bosonic fields (el’;’l, ez, As, V,0) are even w.r.t
the orbifold dimension, and (e?, ez, A,, &) are odd. The action of Z, on fermion fields and on
parameter € of supersymmetry transformations is defined as:

Yty (7°) = (@) 5 (=2°) 59! (2°) = —(0*)* pef (—2%)
1A (27) = —(0%) e A (=27) et (2”) = (o) peP(—a) (4.4)

where v5 = (753),0° = (} %) and A,a = 1,2. Symplectic Majorana spinors in 5d satisfy
A = (x)TC5 with Cs = i72y29° in 4d chiral representation. At the Zy fixed points one half of
the degrees of freedom is eliminated, which means, that the number of supercharges is reduced
to one half. This leaves 4 supercharges corresponding to N=1 supersymmetry in 4d. Thus
effectively, at 2° = 0,2° = mp, the second supersymmetry is killed by Zs, and we can locate
3-branes with (chiral) matter content characteristic for N=1 supersymmetry.

It is convenient to combine two symplectic Majorana spinors into one Majorana (in a four

dimensional sense) spinor even w.r.t to the fifth coordinate. We define:
_ [ Vi _( Vi _ —iAL
Uy = ( o Us= | yat ) A= Vav | v (4.5)

e:<i> (4.6)

These are the combinations which couple to 4-dimensional spinors on the boundary. Using
the above definitions we can re-express the five dimensional lagrangian (4.1) involving fermions
in terms of even (and odd) fermion combinations. For example, the gravitino kinetic term can
be expressed as —5(1,7"? D,1,)+(odd). Since, as already discussed in chapter 3, the odd fields
do not couple to the boundary, and we are interested in finding supersymmetric coupling to the
boundary, we can neglect the odd spinor combinations and fields in subsequent formulas. The

supersymmetry transformations of the even bulk fields expressed in terms of variables defined
in (4.5) read:

563 = %(Eva%)
(562 = %(E'{bg,)
0y = Dyue — 555 (v — 20,)€37°€Fus — 770,07 €
5w5 = 8567 — %7#756.?“5 + ﬁ(ag)felj —+ 855612)
5A5 = 2%(%756)
oV = L(eN)
do = L(ey°N)
0N = 3P(V +iv°0)e + VV 35 (Os€er, + Ds€er) (4.7)

Recall, that the fifth derivative of an odd field is even. Thus, in the above transformation the
fifth derivatives of £ and €] = —e}, €5 = €% should not be neglected.

Our task is to couple gauge and matter fields on the boundary in such a way, that local
supersymmetry is preserved. The strategy is similar to the one employed for the Horava-Witten
model; we start with a globally supersymmetric lagrangian and succesively add new couplings
to make the supersymmetry local. It is impossible to give all the calculations leading to the
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final results in this thesis. Below we will present some sample calculations just to give a flavour
of what is going on but often we limit ourselves to presenting the final formulae without a
discussion. The final form of the lagrangian can be found in the appendix.

4.1 Pure 5d supergravity coupled to Yang-Mills super-
multiplets on the brane

We now add matter on the boundary. It is convenient to proceed in several steps. First, we
consider only pure 5d supergravity and a Yang-Mills multiplet on the boundary. As long as we
do not adress the problem of anomalies, the gauge group is arbitrary. In the Horava-Witten
model compactified by using the standard embedding, the gauge group is Fg on one brane and
FEg on the other.

The action of the four-dimensional super-Yang-Mills theory reads:

1
S = /d51‘5(1‘5)65?£YM
1

1
Ly = f[_ZF;uFWa - QYGDXG] (4.8)

For the time being we keep the factor f multiplying the kinetic term unspecified. This action
is known to possess global supersymmetry and the transformations are:

a 1 = a
0AT = —5(6’)/”)( )
a 1 14 a
X" = Z’y” ek, (4.9)

(Note the sign difference with respect to the convention used in Chapter 3. We identify the
spinor € parametrizing the Yang-Mills supersymmetry transformations with an even combina-
tion of 5d spinors, as defined in (4.5).

The next few steps are completely analogous to the Horava-Witten model. If the above
transformations are made local, the supersymmetric variation of the YM action is non-zero and
is proportional to D e is:

e -
0Lyy = = Fup(Duer™7"x) (4.10)
To cancel it, one is forced to add the so-called Noether term to the boundary action:
f@ 1 A VP A
+L = (0 ) o (4.11)

When the gravitino in the Noether term is varied, the part of the gravitino transformation law
equal to D,e cancels 0Ly . Since we identified € with the even combination of 5d spinors, it
is precisely the even combination of 5d gravitinos ¢, given by (4.5) which appears here.

There is only one more term bilinear in fermion fields that has to be added. Another part
of the gravitino transformation law d1, = —2\% (’yZ — 295)}'#5, when applied to the Noether
term yields:

ef 3ief
5L € Tl _ 9 aTH\AVP FosF,, = ————F€ Py xFasF, 4.12
N = v Vs(Y 97 VuxFos Fup sv2es T XFasFup (4.12)
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The identities y7# = y7* — ¢°# and y#v"P7, = 0 were used. This variation can be cancelled
only if we add a new term to to the boundary lagrangian.

3i ef
42 el

Varying the gaugino dx ~ v"?F,, cancels (4.12). Note that e} appears explicitly in the boundary
lagrangian. It always accompanies the bulk fields carrying the fifth world index, so that the
action is covariant also from the 5d point of view.

At this stage, one profound difference with respect to the Horava-Witten model appears.
In the Horava-Witten model one finds that after adding the Noether term, there exists a term
in the variation of the Lagrangian proportional to F2(yT4BPE¢) which does not cancel. Tts
presence was the motivation to modify the Bianchi identity for the 4-form G. Below we perform
the corresponding calculation in the 5d framework and we find that the corresponding variations
do cancel in the 4d case. We need to check cancellations of the variations proportional to F2ei).
These originate from:

+L = —=—(X7"V"X) Fus (4.13)

1. Variation of the metric in the gauge kinetic term:

ef vo
Lakin = ==79"9" Fuv Fyo (4.14)

Variations of the determinant and variations of the inverse metric are:
e
oe = edej el = §E’y“wﬂ SgM = —ey(Hy¥) (4.15)

Hence the variation of the gauge kinetic term yields:

ef 1

OLgin = = (56 Y P P — 2ey "y F,,F.0) (4.16)

2. Variation of the gaugino dx = iv”pF,,pe in the Noether term, which yields:

LN = {6(%7 VY7 €)F,,F (4.17)

To be able to compare it with the previous variation one has to decompose the product
of gamma matrices:

do

VPt
Q,Yupagu& + 4,.)/p;wgz/6 + Q,Yuéagup + Q,Yugpégua + 4,Yuguégpa + 4,Yaguégpu (418)

The gamma matrices with three indices vanish when contracted with the gauge field
strength tensors: those with coefficient 2 cancel against each other and the one with
coefficient four vanishes when contracted with the symmetric combination of the two
gauge field strength tensors. The remainining three terms with a single gamma matrix
yield:

/ fe—

1
ewﬂ( 29" Fy 447" Fyg PP 447 P F e = “0, (= 5y P F A 20 g F)e
(4.19)

This indeed cancels with the variation of the gauge kinetic term if the Majorana spinors
identity €y,1, = —1,7y,€ is used.

LN =
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Note that in this case the calculation is almost the same as in the Horava-Witten model, but
gamma matrices antysymmetrized in five indices are trivially zero. Because of that fact, there
is no uncancelled variations proportional to F? left. Thus, having added the Noether term
(4.11) and the term (4.12) we arrive at the lagrangian which is already supersymmetric up to
4-fermi variations.

For supersymmetry variations to close, one needs to add a collection of four-fermi term, as
well as 3-fermi corrections to the supersymmetry variations of fermions. The analysis is often
parallel to the case of the ordinary 4d supergravity, as described in [10]. The calcalution is
very tedious so instead of going through complicated algebra we concentrate only on the most
interesting aspects:

1. The correction to the gravitino transformation law:

91

| -
530" = 577 (XY x) (4.20)

81, = §(%) 5

has the delta function in front. This is necessary, because the gravitino kinetic term lives
in five dimension, and this correction must cancel the supersymmetric variation restricted
to the boundary.

2. One has to check the cancellation of variations proportional to the fifth derivative of an
odd bulk spinor (which can be non-zero on the boundary). For example we have:

dA, = —ﬁ@b_}tel +(1—2)
6F 5 = 2\1'/517;8561 +(1—=2)+...

L = 43—\}5%(?7 YEXVOF s + ... = —i%%(yf’vﬂx) (VurOs€t + 0, 1.05€?)  (4.21)

To cancel (4.21) a term proportional to 5 has to be added:

3 f

=27
* 166‘2(

0,7 05) (X X) (4.22)

Varying 8157, = —idhs = —idse!, disp = 1012 = i05€® cancels (4.21).

One can also check that variations proportional to the fifth derivative of the odd combi-
nation of the gravitino cancel.

3. The four-gaugino term (present in 4d supergravity with the same numerical coefficient)
is proportional to %(z°). This is because it should cancel the gravitino variation propor-
tional to the gaugino fields multiplied by the delta function, in the Noether term, which
as a boundary term, is already proportional to the delta function. Using (4.20) we can

calculate
2k = vo ~
0Ly = =L 0 (0 (9 = 57717 VX Fuo (X7°uX)
€ 2K,2 — . Vo —
= =2 5(0)ey Y X Fu (X7 YuX) (4.23)
Thus, if we insist on supersymmetry in order (5)4 we must add a singular term to the
lagrangian:
3ef2rk? _ _
£x4==-——6151—500(x757ux)Cx757“x) (4.24)
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However, one can formally get rid of this singular term by redefining the field strength of
the graviphoton:
. if 8(zP)

Fus = Fos —
S VIV R

Replacing F with F in the bulk action reproduces Fx? coupling as well as the singular
x* term. As we will see later in section 5, due to the fact, that singular terms always
combine into the perfect square structures, the singular terms will dissapear from the
four-dimensional effective action. Also, the gaugino bilinear in the transformation law of
1, matches the perfect square structure of F. This is not the case for d¢5, which has a
term proportional to F,5, but no pieces bilinear in gaugino fields. The deviation of d1)5
from the perfect square structure was also noted in the 11d framework in [13], and has
important consequences for supersymmetry breaking.

(X7 7uX) (4.25)

The lagrangian obtained at this stage (including terms not discussed here) is given in Appendix
A as Ly in equation (A.2).

4.2 Sigma model in the bulk

We now couple the SU(2,1)/U(2) non-linear sigma-model to 5d supergravity . In the bulk
we have therefore four real scalar fields (V, o, £, €). Their fermion superpartner is a symplectic
Majorana spinor A%, called hyperino. We define the even Majorana spinor A as in (4.5). We also
specify the gauge kinetic function f, which appeared in the previous subsection, to be f = V.
This choice is motivated by the fact, that such a kinetic term appears in the compactified
Horava-Witten theory. Supersymmetric coupling is possible for more general gauge kinetic
functions, but it has not been worked out in this thesis. The presence of sigma model fields
affect the boundary Lagrangian in the following ways:

1. The supersymmetry variation of the non-standard gauge kinetic term produces a term
proportional to (e\)F?. To cancel it, two new boundry terms are needed:

e 1 ~ 1 —
L= =30 P = 209" X)) (4.26)

We see, that the sigma field aquires an axion-type coupling.

2. Supersymmetry variations of the bulk fermions v, and A contain derivatives of the hy-
permultiplet scalars. When we vary these fermions in the boundary action (e.g. 1, in
the Noether term (4.11), or A in (4.26), we get new uncancelled variations. It turns out
that the following terms are needed:

5

e 1, , u
+L = 5[ (X" X" 0o —

p [— 3 —V[(YLXR)QSE + (Xrxz)05¢] (4.27)

5
2e3

Note, that the odd field £ now appears explicitly in the boundary Lagrangian through its
fifth derivative which is even.

Again, 4-fermi terms in the boundary Lagrangian and 3-fermi terms in the supersymmetry
transformation laws are needed to render the action supersymmetric. They are all given in
Appendix A as Ly in eq. (A.3). Here, we concetrate on those, which uncover the ‘perfect
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square structure’. We get a bilinear in gaugino fields correction to the hyperino transformation
law:

F1 = 309 5l () + en(Kuo) (4.9

A singular, quartic in gaugino term is needed, too:

2

L= —64“—9452(3:5)1/2(@“)(@”) (4.29)

As before, we can formally get rid of this singularity. We define a new variable:

3/2

R 2
&5=%5+§&@%—;%mxm (4.30)

and replace 05§ with 655 in the bulk action. This procedure reproduces the 95£x? coupling as
well as the singular y* term. Bilinear gaugino term in the transformation law of the hyperino
A also matches the perfect square structure of 855, but there is no gaugino bilinear in the
transformation law of 5 to complete the perfect square with 95&x? (We noted in the previous
subsection, that also F does not combine into the perfect square in d1)5).

4.3 Scalar multiplets on the boundary

To make contact with the phenomenology, we should introduce scalar multiplets living on the
boundary, which can provide us with known matter fields such as quarks and leptons. As in
the case of the Yang-Mills multiplet, we begin with a globally supersymmetric action for a
multiplet that consists of a complex scalar C, and a Majorana spinor (:

S = /d5:1:e55(:c5)£5
Ls=—-D,CD"C — (X (4.31)

(Note, that we use a different normalization of C, than the reference [5])
Global supersymmetry transformation laws are:

6C = (€rz)
51 = L0 (4.32)

If the transformations (4.32) become local, variation proportional to D,e appears, and must be
cancelled by the gravitino variation in the new term:

+L = (Y, PCY*CL + hec.) (4.33)

The origin of this term is similar to the Noether term (4.11),and as in subsection 4.1, the
presence of 1), causes new uncancelled variations, which must be cancelled by adding new
terms to the boundary Lagrangian. The part of the gravitinovariation proportional to 0,0 is
cancelled by the variation of ( in:

0

—W@ﬂ(?f’v‘% ) (4.34)

41

L=



The variation proportional to F,5 requires more profound modifications. Not only the new
terms of the form:

o P iF o
2e?

= e (CD*C — CD*C) — T(WW"C) (4.35)

have to be added to the boundary lagrangian. One must also modify the supersymmetry

transformation law of the graviphoton:
iK? _

0A; = 6—g25(:1:5)(ERCL + h.c.)C (4.36)

These modification can be summarized by the redefinition of the graviphoton field-strength:

N iV 8(zP)
Vo

(The first term in (4.37) was determined in subsection 4.1).
The supersymmetry transformation law of F,s, apart from standard 5d piece, receives a
correction:

S 2
1K — —
(XY 7ux) + 6—g2(CD“C —CDrO), (4.37)

iK?

gﬁ;ﬁ = 3—926(1’5)(ER<L + hC)C’ (438)
These modifications are analogous to those required in the Horava-Witten model for the case
of the four-form field strength G. This could have been expected, because in the context of
M-theory the 5d graviphoton field strength F comes from the reduction of G.

To cancel the variation of ¢ in (4.33), we must add corrections proportional to D,C' to the
gravitino transformation law. It turns out that these correction can be obtained by replacing
F 5 with .7:'#5 in the transformation laws 0, and 615.

The rest of the corrections to the boundary Lagrangian are 4-fermi terms, and are given in
Appendix A as Lg in eq. (A.4).

If we want to introduce a superpotential W for scalar fields C, further modifications of the
boundary lagrangian are necessary. The derivation is fairly straightforward, and the results
are given in Appendix A as Ly in eq. (A.6). The interesting aspect of this construction the
appearance of yet another perfect square structure. It turns out that the W o5& coupling has
to be added, as well as singular terms §2(z°)WW and 6%(x°)W 2. This can be summarized by

the redefintion of the ’¢ field strength’:

(2 V3/2 9k2 _
§(z° X% ——W§(2° 4.39
5 (z°) 1 (XTXxRr) + iy (z°) (4.39)
This replacement of J5¢ with 855 in the bulk & kinetic term reproduces all the above men-
tioned couplings. Also the A and W parts of ¢5 (but not the gaugino part as noted earlier)

transformation laws match the perfect square structure of 05&

B5€ = D5E + -

4.4 Supersymmetrizing bulk and boundary potentials

In this section we supersymmetrize potentials that are defined on the brane, but are functions
of the bulk scalars (this case is different from that considered in the previous subsection, where
we supersymmetrized the potential W for the brane scalar fields). We know that such terms
arise in the compactifications of the Horava-Witten model, but in this section we consider a
wider class of potentials, which do not neccesarily originate from M-theory.
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We assume a scalar potential §(2°)-%(—A + @) localized on the first brane (note the delta
function). The parameters o and A are constants, while V is one of the bulk hypermultiplet
field. The motivation for the constant (A) part of this expression is that it will finally lead us
to the Randall-Sundrum exponential solutions. At the same time we allow for ’cosmological
potential’ a/V for the hypermultiplet scalar; this particular form is motivated by the M-theory
example and is a natural extension in the presence of hypermultiplets. More general potentials
are possible, but o-dependent terms in the potential break the translational U(1) symmetry
o — o0 + const which is useful when it comes to solving the strong CP problem, while &
cannot appear in the boundary potential because of parity assignments. We will be able
to supersymmetrize this action by modifying the bulk action only (thus, our construction is
alternative to the one presented in [15]). We initially put @« = 0 and assume that only the
gravity multiplet is present in the bulk. Consider a cosmological term of the form:

Ly = —5(x5)%/\ (4.40)

e is the determinant built of the metric induced on the brane. We want to supersymmetrize
this term. The supersymmetry variation of Lp arises from varying ey:

6L = %5(:1:5)6A(_;7%1 + (1 = 2)) (4.41)

We observe that, without further modification of the boundary action, we can cancel this
variation by modifying the gravitino transformation law:

1 A

_ s 1
+o1p, = +126(x )Va€
A
+6y2 = —ﬁe(xf’)yae? (4.42)

With this modification, when ¢ is varied in the gravitino kinetic term, the fifth derivative acting
on the step function produces an expression multiplied by the delta function, which precisely
cancels (4.41):

Lyin D —575277”51'35% +(1—2)
0L = Sy O (f5e(a”)we’) — (1= 2) = =5 A3(2") (D "e) — (1 = 2) + ...
= —%Aé(xf’)(gb_bfy”el) +(1—=2)+... (4.43)

In the first line we used y*/v, = 37 and Ose(x°) = 26(x°) while in the second line we used the
fact that spinors have definite chirality on the boundary. In fact, to cancel (4.41) we need to
modify only ¢, but we modify 15 as well so as to maintain the 5d covariance.

Note that these corrections are compatible with the Zs symmetry defined by (4.4); for
example:

A A
7551@(:1:5) = —Ee(:r5)*yufy5el(:c5) = Ee(—f)vﬂel(—x‘r’) = 5¢i(—x5) (4.44)

But as soon as we add (4.42) the bulk theory is no longer supersymmetric. In addition to the
boundary term (4.43) the variations of the gravitino kinetic term resulting from (4.42) yield:

es A —
8 Lin = —;256(505)( 1P Dgryye') — (1 — 2)
5
es A — .
—K—%ZG(SUE’)(%V ’Dge') — (1 = 2) (4.45)
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The above variation can be cancelled by adding a ‘gravitino mass term’:
€ 1 A 12 A0
Ly =+ 5 Me(a®) D1y 0y — U2y*uh) (4.46)

The gravitino variation 097 = D,e” in (4.46) cancels (4.45), but now (4.42) yields the variation
of the mass term (4.46) proportional to A%

0Ly = +%Ae(w5)($ aﬂAe(ﬁ)mgel) +(1—2)

(Ware) + (1 —2) (4.47)

1

which can be cancelled by varying the determinat in the new ’cosmological term:

Lo=-—A 4.48
Moreover, in our framework, ¢(z°) has another discontinuity at z°> = 7p, so the fifth derivative
in the gravitino kinetic term yields an additional variation multiplied by 6(z° — 7p) . This
variation can be cancelled by adding a cosmological term confined to that brane:

e

L = 62" — ﬂ'p)?A (4.49)

(The minus sign relative to (4.40) appears here because ¢(z°) has a ‘step down’ at z° = 7p).
Note that the cosmological term (4.48) appeared with a plus sign. The relevant part of the
bulk action now reads S = —3 [(R — $A?) which admits the anti-de-Sitter solutions. In fact,
the coefficient of (4.48) is precisely the one we need to obtain the Randall-Sundrum scenario,
as we will show shortly.

The above mentioned corrections are still not sufficient to supersymmetrize the bulk lagrangian.

To achieve this goal we also need the coupling of the graviphoton to the gravitino:
— _ii 5 1 aBy, 1 .
La= 4\/§K26(x )A ((w o) Ag — (1 — 2)) : (4.50)

If we switch on the hypermultiplets, one can infer that to achieve cancellation of variations of
the form Ae(z”)(\e)d,V the hyperino mass term is needed:

Ly = +%e(x5)A (NA — (1 — 2)) (4.51)

The presence of the hyperino mass term indicates that to arrive at a fully supersymmetric
action we must gauge some isometry of the hypermultiplet sigma model but this is worked out
elsewhere [9)].

In addition, a graviphoton dependent correction to the gravitino transformation law appears:

Syt = —ZLG( YA () AP A, (4.52)
Note that that the presence of the step function could potentially produce another delta function
in the variation of the bulk lagrangian (more precisely, in the variation of the gravitino kinetic
term, similarly as in ( 4.43) ). But this variation has the form 6L ~ 6(2°)A A€ and vanishes,
because A, being odd, is zero on the brane.
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Furthermore, we need 4-fermi terms in the bulk action to complete the supersymmetrization,
but these are not given in this thesis. The action we arrive at fits in the framework of 5d gauged
supergravity without matter. The gauged group is the U(1) subgroup of the R-symmetry SU(2)
group. One can check that the terms found above containing the graviphoton can be arranged
into the covariant derivatives. The difference to the standard case is that the charge ¢(z°)A has
opposite sign on the two sides of the brane *. The prepotential which describe this gauging is
piecewise constant and takes the form:

L (5
a [ 7ate(”)A 0
9Pr = ( 0 —ﬁﬁie(xf’)/\

Let us now assume A = 0 and re-introduce the hypermultiplet in the bulk. Consider the
boundary term:
e \/ia

k2 V
The variation of the determinant can be canceled by modifying i, similarly to the previous
case:

(4.53)

L =46(z") (4.54)

V2O sy, L
3, D Ve(x )Vat
\/§ «
2 _ 5\ 2
o =+ 15 Ve(:r )Vak” . (4.55)

We must also vary the hypermultiplet modulus V in (4.54) (6V = %(6_1)\1 — €2)?)) and this
yields:
5L = —i5(:1:5)e%(6_1)\1 —(1-2) (4.56)

This variation can be cancelled by modifying supersymmetry transformation law of the hyperino
Al

i
SN = —ae(2”) e
2V (=)
i
6N = —ae(25)e. 4.57
ae(s?) (457
A similar mechanism works: in the variation of the hyperino kinetic term the fifth derivative
acts on the step function which leads to a term which precisely cancels (4.56). Note that it is
only the potential «/V which causes the corrections to the hyperino transformation law. As
before, we need to supersymmetrize further. Two-fermi terms and, consequently, a cosmological

potential is necessary:

% ne(a®) ( V2, — 3vV2 —

= S 0e(a®) (L@ ) — (1 - 2) +i(Ty ) + (1= 2)) + i (A — (1 - 2))
(4.58)

es a
Lo = _F,;W (4.59)

However, this time a minus sign relative to that of (4.48) appears, and anti-de-Sitter solution
is not allowed. Moreover, contrary to the previous case, the 2-fermi and cosmological terms

In the recent reference [28] the gauge charge is promoted to a supersymmetry singlet field
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are not enough to render the bulk lagrangian supersymmetric. Closer inspection shows, that
terms of the form a(e)d,o do not cancel and the bulk lagrangian must be supplemented with
the coupling adzo.A°. In the context of 5d supergravity this means that the translations of the
pseudoscalar ¢ from the hypermultiplet are gauged, with the graviphoton being the gauge field.
To recapitulate, starting with the boundary term (4.54) we are led to 5d gauged supergravity
similar to that studied in [4]. The gauging can be described by the prepotential 3.40

One could also imagine other powers of V occuring in (4.54), or more generally, some function
f(V). But then supersymmetrization is possible only if the bulk sigma model quaternionic
metric is found. In some simple cases one can appropriately redefine Re(S) and end up in the
same sigma model, however in general one has to search for new sigma models with quaternionic
kinetic metric that allow for gauging, which is beyond the scope of this paper.

The interesting question is if we can join both schemes discussed in this section and introduce
in a supersymmetric way a boundary term Lp = §(2°)5(—A + @) The answer is yes and
the necessary steps are given in [9].
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Chapter 5

Compactification to 4 dimensions

In order to investigate the phenomenological consequences of theories formulated in D > 4
space-time dimensions, one has to go to the effective four-dimensional description, that is one
has to compactify. If the additional compact dimension are assumed to be small (which is the
case with the fifth dimension in our model), one keeps only massless Kaluza-Klein modes (zero
modes) in the effective description; heavy Kaluza-Klein excitation decouple from the effective
theory. But in the case at hand the compactification is not a straightforward task because
one cannot simply truncate the five-dimensional theory. By ’truncation” we mean ignoring the
dependence of the fields on the fifth coordinate; the integral over the compact dimensions in the
action yields just the volume which can be absorbed into the definition of the 4d gravitational
constant. In the standard case of Kaluza-Klein compactification on flat backgrounds it can
be shown, that truncation is equivalent to ignoring the heavy Kaluza-Klein modes. But we
shall see, that in the model discussed in section 4 the flat space is not a solution to to the
equations of motion. The vacuum solution we will find, will depend on the fifth coordinate and
the zero modes will be the 2° independent excitations around this vacuum solution. In such
cases, simple truncation is not consistent. Instead we have to carefully integrate out the z°
dependence from the action.

The background solutions to the equations of motion depend dramatically on the choice of
the potential in the bulk (and on the boundary since the two are connected by supersymmetry).
In this section we assume the more general potential introduced in subsection 4.4, since for this
choice, in certain limits, we can obtain the pure M-theoritical solution, while in other limits the
interesting solution of the Randall-Sundrum type can be obtained. We want to compactify our
model down to 4d and we demand that the effective theory has N=1 supersymmetry. Thus, we
must search for the background solution which preserves exactly four supercharges, that is half
of the 5d supersymmetry. The solutions, which leave some portion of supersymmetry unbroken,
fit into a very special class of supersymmetric objects, called BPS states. It is generally believed
that they are stable, since they minimize energy for a given charge. The best way to find such
BPS solutions is to consider first the supersymmetry transformation laws. We will see that
the configuration preserving an unbroken N=1 supersymmetry (which are quite easy to find),
automatically satisfies the equations of motion.

For brevity, some formulae presented in the subsequent section are written as if both A and
a/V parts of the boundary potential were present although, as discussed at the end of the last
chapter, the theory is supersymmetric only for A = 0 or for a = 0.
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5.1 BPS solution

The supersymmetry transformation laws of fermions, including modifications found in the pre-
vious paragraphs are:

1 V2a
8 = Daet — (o) (A V() e
1
I\ = 2\/_V85V*y (0)5e? +ae(x5)ﬁea. (5.1)

In the above formulas we neglected terms with 4d derivatives 0, in order to preserve the 4d
Poincaré invariance of the background we seek. We also put ¢ = A5 = 0 since these fields do
not occur in the potential, so setting them to zero is consistent with the equations of motion.
Finally, we neglected 05¢ since, as we show later in this thesis, non-zero expectation value of
this term generically breaks all supersymmetries.

The ansatz for a static solution is:

ds’ = a(z®)dz"dz" 1, + b(a®)(dz")?
vV = V($5) (5.2)

The relevant supersymmetry transformation laws evaluated for this ansatz are ( a prime denotes
05 and the world indices now refer to the 4d Minkowski metric 7,,):

Ot = 79 yset — e(a”) Yo (—A 4 Y2) 7, (0%) e
St = Dse™ — e(a®) Yg (= A + Y22)75(0%) e”
N = —2\/;—“/ "(0%) 5 5€7 + ve(5) 51" (5.3)

The conditions for unbroken supersymmetry are equivalent to the requirement that the above
variations of fermionic fields vanish for vacuum configurations. This leads to the following
conditions:

F=ias Y)e(a?) Vb
— \/_ae( 5)\/_
Bse = g( A+ Y20)e(25) e, (5.4)
In addition we need thechirality conditions for the spinorial supersymmetry transformation
parameters , which break N=2 supersymmetry down to N=1:

vse' = €' yze2 = —¢2 (5.5)

The chirality conditions arise because of the o Pauli matrices multiplying ¢ in (5.3). Their
presence causes sign difference between the A=1 and A=2 components of the supersymmetry
transformation, which must be compensated for by (5.5) if we want satisfy both ' = 0 and
5?2 = 0.

First, we check that if the parameters a, b, V' of our ansatz satisfy the conditions (5.4),
they automatically satisfy the equations of motion (with delta sources). To do this, it will be
convienent to work with ¢ = [nV.
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substituting back for R we can express it in the equivalent form:

Einstein’s equations are %Rga,g — Rop = Top, where Tp = . Taking its trace and

1
Rap = =(Tas = 3T719ap) = —Sas (5.6)

For the ansatz (5.2) the components of the Ricci tensor are:

Ry, = (% — ¥ 4 @2,

2b 4b? 2ab

Ry =0 (5.7)

For our lagrangian the tensor S defined in (5.6) takes the form:

S =[(§0%e™?? = §(=A+ V20e 2 )nu — 35 (= A+ V20e ?)(0(2°) — 6(a° — 7p))]

Sss = [50%€7%0 — (=N + V2ae7?)” + 5(¢')* — T(_A +v20ae7?)(6(2°) — 8(2 — mp))]
Sys =0 (5.8)

Note the delta functions originating from the boundary potential. Though the T55 compo-
nents of the energy-momentum tensor vanish on the boundary, Ss5 is non-zero as it contains
contributions from 7),,. The (15) components of the Einstein’s equations are trivially satisfied.

The remaining components of the Einstein’s equation together with the equation of motion
for ¢ take the form:

all albl (a/)2 a 9 9 a
+ +—a6’¢———A+ 20e?)?
26 4b*>  2ab 3 ( V2 )
A+ V20 ) —6(2° -
=3 \[( 7)[6(=") = o p)]

20" b (@) b 5 oy 7 1
_A D) d\2 - N2
a ab a? 3ae 9( + V2ae ) +2(¢)

f( A +V2ae ?)[5(2%) — 8(a” — mp)]

1 1 b
2¢ gb - ——q§ + bale 2 — 3\/§ae’¢(—/\+ V2ae?)

= V2ba[5(2°) — 5(2° — 7p)] (5.9)

To check if these equations are satisfies, we re-write the relations (5.4) in the form which is
more convienient for our purpose. Dividing the first relation (5.4) by the second we get:

a 1, Ay
— == e 5.10
e LU o (5.10)
We can also obtain a useful relation for b: ,
b_’_lb’_(\/_aea’A — 20 _ 2a+2\/§a¢'_2a”_2_a’+ 6L
b Vb2vh 39 a' V2a—Ae? a 1 (I-FA-ed)?
So finally:
Voo 24" 2d 6%
=/ 2 a 5.11
b @ 0 (1= Ao (5.11)
[0
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We show how this works on the example of the first equation in (5.9). Away from the boundary,
where the delta functions do not contribute, we have:

a’ a'b (a/)Q a
l.h.s. = — — — - 2,-2¢ _ —A 2 —p\2
s 50 4b2+ b +3ae 9( +V2ae )
1a" d 24" 2d < (a')? a 9 26 @ _
— |- a 2 — 2(=A + V2ae )2
b |2 4(a’ a+(1_\/%a@¢)2)+ 50 | T39°€ 9( +V2ae7?)
1 3(&')2 1 ab o (a')2 a B
AL EY —— — (A +V2ae "))} =0 (5.12
il (1—ﬁe¢)2+ ol P+ {7 - S(-A+ V2ae )] (5.12)

In the second line we used (5.11) and in the last line (5.10). We must still satisfy the delta
functions on the right-hand side of the equations. From the Zs properties of the metric and
of the hypermultiplet field V we know that functions a,b,¢ are even (and continuous), their
fifth derivatives are odd and so can be discontinous across the boundaries. Thus, their second
derivatives can have delta function singularities. The coefficients of the delta function is equal
to the discountinuity of the first derivative or, equivalently, twice the boundary value of the
first derivative.

We again consider the example of the first equation of (5.9). We need to satisfy

55 = 3\[( A+ V2ae ?)5(2°) (5.13)

in the vicinity of the first brane. But the above consideration allow to re-express this equation
as:

a
— = A+ V206 ?)e(2” 5.14
F = )e(s”) (514
which is again the relation (5.10) if the equality v/b = 7%% is used. Thus, we have indeed

shown that the first of the Einstein’s equations (5.9) is satisfied for the BPS configuration (5.4).
The remaining equations can be checked in the similar way.

We can now solve the conditions (5.4). This can be easily done in the coordinate frame in
which b = RZ. The vacuum solution is:

V =V +av2R, (|z°] — )

x 1/3  —RgA
Guw = Qo (1 +av2{8 (|27 - 7’3)) e 7,
gs5 = R§ (5.15)

The 4d effective theory for the general potential is difficult to obtain (and it is not clear
if integrating out the fifth dimension makes sense in the general case). In the following we
determine the effective theory only in the M-theoretical (A = 0) limit. In this limit it is
customary to work in a different coordinate frame in which gs5 # 0. Then the solution is:

9w = 7 H G
55 = R3H4
V =V,H?
H =1+ a¥2B (55| — 22) (5.16)
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From the view-point of the effective 4d theory the integration constants Ry, V; and g, become
the dynamical fields (moduli). They are defined in such way that g,, is the 4d metric with
the standard Einstein-Hilbert kinetic term, and V5 =< V' >Ry =< ,/gs5 >, up to O(c?)
corrections (< ... > denotes averaging by integrating over the fifth dimension) .

The formulae (5.16) describe the vacuum solution with vanishing all boundary fields. Since
in the full lagrangian the bulk fields couple to gauge fields on the boundary, allowing for non-
zero boundary fields changes also the field configuration in the bulk (in their equation of motion
this manifests itself as delta funtion sources). As mentioned earlier, we cannot simply ignore
this back-reaction. Neglecting all quantum corrections, we can account for the dependence of
bulk fields on the boundary dynamics by replacing the bulk fields in the 5d action with the
solutions of their equations of motion. Having done this we integrate over the fifth dimension.

Due to the complicated non-linear sigma model in the bulk, the quest for the exact solution
is a hopeless task. Instead, we can simplify the problem by taking a specific limit. We will
assume that: 05¢ >> 0,¢. This corresponds to the limit of small 4d momenta compared to
the momentum along z°. In the following we will simply neglect d,,.

One more assumption turns out to be very helpful. The boundary action is suppresed by a
parameter ;—;, and consequently, the sources for the bulk fields are suppressed by this parameter.

Thus, we can write down the solution as a series in ’;—;. We will be able to solve the equations

. . . 2
of motion in the first order in ’;—2.

5.2 Solving equations for the even fields

In our model, the even bosonic fields in the bulk are: (g,,, gs5, A5, V,0). There are no (9s).A4s
terms in the bulk so Aj is not excited in the limit we consider.

The procedure of extracting gauge field dependence of even bulk fields was described in
[7]. Here, we quote only basic results. The detailed form of the solution is not important to
us, because, as we show in the next subsection, to the order we perform the calculations the
effective theory depends only on the background value of the even fields (with the exception of
the aAds dependence of o).

We write a generic even bulk field ¢ as a sum: ¢ = ¢4+ ¢, where ¢, is the corresponding
background solution given by (5.16). Then ¢p satisfies an equation of the form:

8585d)3 == J16($5) + JQ(S(I‘E) — 7Tp) (Jl + JQ) (517)

_%

where .J; are boundary sources for ¢. The part of the r.h.s without the delta function comes
from integrating @,,. out of the equation of motion. Tt yields the (z°)? dependence of the
solution. The delta functions provide the boundary conditions for the fifth derivative. Recall,
that the fifth derivative of the even field is odd, and in principle can be discontinuous at Zs
fixed points. The coefficient of the delta function equals this discontinuity, so the boundary

value of J5¢ equals precisely one half of this coefficient. Moreover, we require that < ¢p >

K2

vanishes. The detailed calculation shows that to the first order in Pz and « we can write:

K2R3V 509 s 2 5 5o 1 o K2RV
pu— —_ 2 — - —
0= G () = 2+ )+ a0 = 5
5 K2RV 5\2 5, 2 2 52 L 2
op =2a(|]z’] — 7p)As + 270/ [J1o((2°)° = 2mpx® + g(ﬂ'p) )+ Joo ((2°)% — §(7rp) )]
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(I8 = 5 (Tl (07 = 20p0° + 200 + (e () = ()] 619

where J;, denotes a derivative of the i-th boundary lagrangian with respect to the field ¢.
The aAs dependence of the solution for op arises because of the gauge covariant derivative
Doo = 0,0 + 2ae(z°) A, acting on o in the lagrangian; the fifth derivative acting on the
step function accompanying « yields a delta function, which effectively acts as a source in the
equation of motion.

5.3 Solving equations for the odd fields

We begin with £&. It couples to the boundary theory through its fifth derivative, and thus
acquires a non-trivial gauge field dependence. The relevant terms in the Lagrangian are:

970560°€ + e 355[ (2? )(—E(YRXL)1 £ 2W) + 0 = mp) — E(YRXL)Z] (5.19)

_nv 2 Vv 2

We ignored £* terms in the bulk since they contribute only at order (’“—j) . As justified before,
we also neglected derivatives other than 0Os.

The equation of motion for £ is:

&5 _ K2 VV 2 VV

65(/42Vg5585§) = ?65[656(x5)(_T(YRXL)1 + VW) —es0(z” — WP)T(YRXL)Q] (5.20)
Substituting for the bulk fields their vacuum solutions (5.16), and integrating twice, we obtain:
O (VR PB(%) (X} + s WHE0) — 60—l 4/ (5.21)
H73 292 040 1 (%RO)?’/Z 2 .
e(z%)€ = —H4f +h (5.22)
We defined: 32 ”
H(O H(rm
o= oo (G0) g = o (T52) (5.9
0 0

The integration constants f,h can be calculated using boundary conditions. Matching delta
funtions in (5.21) requires that £ has discontinuities at z° = 0 and 2° = 7p. One half of this
discontinuity is the boundary value for £&. One can calculate:

/o “—(VR o2 —XTH?(0) — x3H(mp) + 4(VoRo) */*W

o~ i HA(0) — H'(mp) (5.24)
2 3 4 2173 (1 4 VRy) 32 .
b - Q(VR o2 —X{H*(0)H"(mp) — xgé{l((())plflftli(();; 4(VoRo) **WH (mp) (5.25)

In the same way we solve the equation of motion for the 4d components of the graviphoton,
which also couples to the boundary through its fifth derivative. The result is:

65./4“ - au.Af) =
507 [0(27) (= 25 VoRox? ,H2(0) — J5(CD,C = OD,C) + 55(2)+
0(2° — mp) (=25 VoRox3  H* (mp))] + H [, (5.26)
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A, = 2f”, + 0, A52° + g, (5.27)

)]

D = (X001 (B2 X3, = (X7 7002 ()22 (2 o= (CrPy,0) (B
As before f, and g, are specified by the boundary conditons:

& (B VoRo(x} , H2(0) 43, H2(mp)~ —5(CDuC—CDLC)

2a’ H2(0)—H?2(mp)
(= VoRo (X x5 ) HP (0B (mp)— 5 (CDRC—C Dy C)H? (mp)+ L= G H (7p)
Iu = H2(0)—H2(np)

S5 CR)+0u AsTp

Oy AsmpH?(m
+ g (5.28)

Note, that there is no arbitrary integration constant (they are all specified in terms of the
matter fields on the boundary) in the solutions for £ and A,,. Thus, there will be no zero modes
corresponding to these fields in the effective 4d theory.

The other odd fields in the bulk do not couple to the boundary, so they are not excited.

5.4 First order compactification

We briefly review the compactification in the (Z—j)o and (Z—j)l order. This step is well-known
since the effect of the non-trivial background is visible only at (2—2)2 (thus, to up to this order

we can simply truncate the 5d action). Gravity enters at (’;—;)0. The definition of 4d moduli in
(5.16) is chosen such, that the Ricci scalar R built out of g, is canonically normalized in this
order. The 4d gravitational constant K—12 can be expressed in terms of its 5d counterpart as:

4

12
— == (5.29)
kg ks

The superpartner of the graviton is the gravitino ¢, which originates from the even part of the
5d gravitino. To give the correct normalization to the gravitino kinetic term we must rescale:
Y, — (Ro)~Y*4,,. We have also kinetic terms for the moduli Vj, op which are zero-modes of the
corresponding hypermultiplet scalars, as well as for the moduli Ry, A5 which are zero-modes of
gs5 and the fifth component of the graviphoton, respectively:

K2Lrin = \Vg[— 4V —(0,Vo0"Vy + 0,000" 09) — I R2 (0,Ro0" Ry + 20, A50" As)] (5.30)
0

K2

The boundary action enters in (%5)! order. We have two gauge sectors: (A,;x)1 and (A,; X)a

with kinetic terms:

o

2

1 ~
gQ'Cgaugekin = Z __‘/0 FMVF ) - ZUO(FuuFuu)n] (531)

We get also a kinetic term for the scalar C:

1 ~
gQEK[N = —R—ODMCDMC (532)
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There are no ()" corrections to bulk kinetic terms, because [j” d°z o(y — %) = 0. Thus, in

the first orderg—i and « , the 4d effective supergravity can be described by the Kahler potential
G and the gauge kinetic functions f;:

_ - 2K2 _ -
G=1In(S+58)+3n(T+T - 5%CC) — In(64WTW) (5.33)

fi=f=S5 (5.34)

The numerical factor coming with the superpotential W can be read off from the bilinear
fermionic terms as given in Ly in Appendix A. The WW term enters at (’;—;)2, and we will obtain

it after integrating out ¢ (so far WW occurs as a singular term in the boundary Lagrangian).
The moduli fields S and T are defined as:

S = VE) + iO’g
2
T=Ry— 3";—9200 +iV2A; (5.35)

The superpartners of the modulus C is the boundary fermion (, and of the modulus S the
even part of bulk hyperino A. To have fermion kinetic terms normalized as in [17], we rescale:
A — (R)Y*X, ¢ — (Ry)Y*¢. The supersymmetry transformation laws suggest, that the
suparpartner of T is 5, but as yet, it has no kinetic term. To obtain the kinetic term we use
the fact, that the gravitino kinetitic term in the bulk mixes 5 with 1,. To diagonalize it, and
to obtain a legitimate kinetic term of 5 we must redefine the 4d gravitino:

(wu)4d = wu + QL‘RO'V;L’YE)'LPB (536)

We can define the fermion superpartner of the modulus T:
T —1/4 2K3
Ap = (Ro)™ Mer s + 3—920<L] (5.37)

The ¢ dependent correction is necessary here, because of the terms involving C in the definition
of ReT.

5.5 Higher order corrections

Having solved the equation of motion we can proceed with finding o? ,ozg—.j and (;—;)2 corrections
to the effective 4d theory.

First, we should comment on the cosmological potential. In the 5d bulk theory, we have
the cosmological term 3—22 What happens in 4d effective theory? There is a general argument,
that such a cosmological term should be absent. Indeed, the background solution (5.16) was
obtained under the assumption of N=1 supersymmetry and vanishing expectation value of
the superpotential W. This, in turn, is equivalent to vanishing of the potential energy at its
minimum (although potential in 4d supergravity is given by —3exp(—G) which is not semi-
positive definided, this expression is zero if < W >= 0). It is reassuring to see that the 4d
cosmological potential vanishes if we explicitly calculate it our framework.
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In the 5d bulk there are three terms which contribute to the 4d vacuum energy: the curvature
scalar R, the kinetic term of V and the original 5d potential. We can simplify the calculations
using the relations (5.10, 5.11) which for A = 0 reduce to:

a 1V’
—=-— 5.38
a 3V ( )
b 2ad"  4d
- = — 5.39
b a * a ( )
Using (5.39) we can re-write the curvature tensor given by (5.7) in the form R, = —%nﬂy,
Rss — —55;22, so the contribution from the Ricci scalar is:
1 1 7(a')?
- — (o 55 — 4
2R 9 (g Ruu + g R55) 2(12[) (5 0)
Using (5.38), the kinetic term of V contributes:
1o Vs 9(a')?
_Z —)2 = _ 5.41

while the 5d cosmological potential can be re-written using the first relation of (5.4) % = ﬁi“\l/{;a

and contributes:

_of __3) (5.42)
612 4a%b '
These three contributions sum to (2‘2,2)2 Inserting this in the solution (5.16) and integrating
over the fifth dimension yields the 4d effective potential:
Vit = J§™° dx‘r’aZ\/E(Q%)z
_ s 5 1 _ 2 a? T dax®
= 2] S T = Sweg o 1+—‘/§3R:(x57%‘3)
0
V) 1 1 _ 2d27 1
= 3R3?/0(H(0) - H(ﬂp)) = 9R0V§ 1 (Lafore ), (5.43)
0

We should not forget about the delta functions in R. The singular part of the second derivative
of the metric is:
S — 2V 2

3V
From (5.7) we see that the singularities of the Ricci tensor are

V2a

(8(2°) = 6(a® — mp)) (5.44)

Ry ~ 3 (0) = 0 = )
4120
~ S(2°) — §(2° —
55 3aV, (6(z”) (=" —7p))
8 2a
=R~ 6(z°) — 6(2" — 5.45
S (0a%) 00 = 7)) (545
Putting this into the action yields an additional contribution to the potential:
2 a o
V;ing = _% fO ? dx’a® bg;ﬁfo (5(1‘5) - 6(1‘5 - 7Tp)) = _3?}\{/‘(2?\/0 (H%U) - H(irp))
- _ 41/ 2c CM\/iRoﬂ'p 1 —_ _ 8a27rp 1 (5 46)
3R;Vo 3V 1,(@0&)2 IRV 1,(@0&)2 :
V0 V0
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The last contribution comes from the boundary potentials.

Viound = \/_a(aV( ) o %(ﬂ'p)) =

V2a (1 1 _ 2a2m 1
RgVO(H(o) o H(ﬂp)) - 3R0V§ lf(ﬁg‘gonpp (5-47)
0
Thus, we see that:
V;ld = V;)ulk + Vtsing + %ound =0 (548)

and no tree level cosmological potential appears in the 4d effective lagrangian. The cancellation
works as well even if there is no second brane and the fifth dimension is infinite. Such a situation
is equivalent to neglecting 1/H (7 p); various contributions cancel in the same way as previously.

Of course we cannot claim that the cosmological constant problem is solved as there is noth-
ing to prevent the cosmological potential to appear at the one-loop level after supersymmmetry
breaking (which must necessarily occur if the model is to describe the physical world). The
analysis can be repeated for the case of more general bulk/boundary potential we considered
before. The result is the same but the calculations are a little bit more tricky, because for the
solution (5.4) we cannot do the integrations over ° explicitly.

Another point of view on this issue is given in [14], in which conditions for vanishing of the
cosmological constant derived from the requirement of consistency of the Einstein’s equations
are discussed.

Next, we consider corrections to the 4d effective action coming from the non-trivial z°
dependence of V. We can represent V as a sum:V = V,,. + Vg where V4. is the vacuum
expectation value of V as given in (5.16), and Vz takes into account back-reaction of the
boundary; it is given to first order in ’;—; in (5.18). There are three sources of corrections to the
effective lagrangian, that contain no more than two space-time derivatives:

1. Integrating out Vg in the kinetic term of V;
2. Expanding the boundary term e;¥22(5(z%) — §(2® — mp)) to the first order in Vp;
3. Substituting V with V,,. in the rest of the boundary Lagrangian.

The contribution from 1. is

T vac T 3VoH?H' V’
+Lprr = —15 [77 dxe 955(%)2 = — g o’ dv VG ) =
_W fOﬂp dx5\/§[ H? (1 o VOHQSVB) VH4 VB] + ( VB2) (5'49)

The zeroth order term contributes to the cosmological potential, which we calculated before.
. . . . . 2

The term proportional to Vz(H')? without the fifth derivative is of order (a)23—2. Thus we are

left with:

_ V2a V2a 2
+LEpr = —ﬁm/o i = —\/_ 2V2R2 [VB(WP) VB(O)] + 0(04 ) (5-50)
while the contribution from 2. is:

V2a

ayaplVe(Te) = Va(0)] + O(a”) (5.51)

+LErF = +———=

The contributions (5.49) and (5.50) cancel against each other, so in the first order in « the
effective theory does not depend on the form of KK modes of V. If we wanted to go beyond the

56



first order approximation, the contribution from the non-trivial gauge dependence of Vg would
affect the effective theory.

The same situation occurs in the case of the contribution from the metric. The contribution
originating from expansion of the curvature R cancels in order (a)! against the contribution
coming from expanding the the determinant in the boundary term {-.

Situation is different in the case of the o field. The solution of its equation of motion is:

o = 0o + 2ad5(|z°] — %”) + (gauge) (5.52)

where (gauge) denotes the gauge fields dependence, which is relevant only for higher derivative
terms. Thus, the covariant derivative Dsog = Os0p — 2ae(:c5)A5 vanishes, and we are left with
the contribution from inserting the solution for ¢ in the boundary action, as well as from the
D,, part of the covariant derivative in the bulk action.

We have not determined yet those terms in the effective Lagrangian which result from
integrating out the odd fields in the bulk. The equations of motion have been solved explicitly
in subsection 5.3. First, let us consider £. This field occurs in our action as a 'perfect square’:

1 ~ =
_ / A es = 0a60°€ (5.53)
Where the hat denotes the modified fifth derivative (4.39) which we repeat here:
. K> V32 2>
05€ = D€ + 65926(:55) 5~ (Xixr) + 55 Wil %) (5.54)
5 e3g

(We have neglected terms in the equation (5.53) proportional to £2Do and £*, as the yield only
higher order corections).
Inserting the solution (7.2) and neglecting all 4d derivatives yields:

+LErr = Vo R3 fo%p dx® H?|f|?

= — VG| = XH?(0) — X3H?(p) + AW (VoRo) 2?4+ O(a?) (5.55)

Similarly, integrating out the kinetic term of the graviphoton yields:

K2 30 _ . i
3\/3 S (= VoRo (3 H?(0)=x5 . H(mp)) =i(C D, C=CD,C)+5 )1
(5.56)

Note, that all the delta functions have cancelled out. Although the original 5d theory had
singularities of the 6% type, the effective theory is perfectly well defined (supposedly, to all
orders in «). The singularities have cancelled precisely, due to the perfect square structure of
the odd fields.

Having identified possible sources of corrections to the effective theory, we can now inter-
pret the resulting Lagrangian in terms of functions G, f defined sin subesection (2.3) , which
unambigously describe 4d supergravity. We expect non-trivial corrections to the kinetic func-
tions of gauge fields. As explained previously, the only contribution comes from inserting the
background solution into the boundary lagrangian, which results in:

+Lerr = 2R2 V[0, A5+

e = = VAV HY0) (B ™)) — [ () () )

o (O a%pm)w JF)O 1 (T + ?amm)(mw‘”)@’l +0(?)  (5.57)
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This implies the following modification of the gauge kinetic functions:
2
fi=5—- gompT
2
fo=5+ gaﬂpT (5.58)

For consistency, the imaginary part of the moduli fields S, T should have axionic couplings.
They are provided by inserting the solution for ¢ into the boundary axionic term:

1 - -
+LErr = —Z\/ﬁ[(ffo +05(0))Fu F™) Y + (00 + op(1p)) Flu F™) )]
1 - -
= —Villoo — ampAs) Fu ™) + (o0 — ampAs) Fu )] (5.59)
exactly as required by (5.58) (Note v/2 in the definiton of Tm T).

According to the results of subsection (2.3) the gaugino kinetic term should be multiplied
by —%Ref. Instead, in the effective theory we obtain:

e =~ V(R PO HO(0) + ()P B mp) (5.60)

The gauge kinetic functions (5.58) require H? instead of H 92 50 to have gauginos correctly
normalized, the following rescaling has to be performed:

(o))"
X(1>_><L> NG

H _3/4
@ (M) e (5.61)

Likewise, the correct normalization of the Noether term, as well as of the coupling of the gaugino
to the hyperino, requires the rescaling:

VY — <R£0>1/4 Yy

H —1/4
P <E> A (5.62)

Another modification due to the az® dependence of the background solution appears in the
kinetic term of matter field C. Inserting the background (5.16) into the corresponing boundary
term yields:

+£EFF— —\/_ ( )D CD”C \/_(—i—i‘Oé\/i

an p)D,CD"C (5.63)

Thus we have to modify both the Kahler potential and the definition of the modulus S:
2
In(S+S8)—In(S+ S+ 3K—;2a\/§7rpC’C_')
2
ReS — Vg — %Ca\/ﬁﬂpC’C’ (5.64)
g
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Similarly to the case of other fermions, bringing the coefficient multiplying the kinetic term of
¢ (superpartner of C) to the correct form given in subsection 2.3 requires the rescaling:

¢ — (%) 1/4§ (5.65)

Finally, according to subsection 2.3 a term: —1 f;(A“y*x)F,, should appear. In our boundary
Lagrangian we find instead:

1
_6(1‘5)651()‘71“1)()}7;“/ (566)

and no other terms of this form appear in the course of the compactification. Therofore, we
must define the superpartner of S as:

AS =< X — aV2(|2°| — mp)aps > (5.67)

The same result can be obtained by solving the equation of motion for A and identyfying the
S fermion with the zero mode of this solution.

The Kéhler potential given by the first order solution (5.33) contained the superpotenial
W, and the formula for G was derived from the 2-fermi terms in the effective lagrangian. The
|W|? term appears in the effective action (with the correct coefficient) after integrating out the
¢ field. Generally, integrating out the odd fields provides us with higher order terms required
by the Ké&hler potential derived from the first order reduction (another example of this kind
are quartic gaugino terms).

To summarize, we collect below the results obtained in this section for the Kahler potential
G, the gauge kinetic function f, and the definitions of the moduli fields.

2 2
G = In(S + 8+~ 5av/2mpCC) + 3in(T + T - ;’”"_;CC) CIn(GAWT) (5.68)
g g

2 2
fi=S— gompT fa=S+ gompT (5.69)

2 - 1/4
S=TV - 6—;204\/§7rp00 +ioc A =< (Rio) (A = av2(|2°| = mp)s) >

K2 - 1/4 2 =
T =Ry =5 5CC+ iV2A; AT =< ()" [ihs + 53 (CC + CCr)] >

\ H(0)\ /4
¢ ¢ = ( R(O)) C
1 ~ H(0))3/4
2 ~ H(m 3/4
A‘[(L ) X(Z) — ( ]({Op)) X(2)

(5.70)
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Chapter 6

Reduction of the supersymmetry
transformation laws

In the preceding sections we have determined the form of the 4d effective theory by direct
compactification of the 5d lagrangian. Although the functions G and f are sufficient to re-
construct the rest of the supergravity lagrangian, an interesting consistency check would be
to obtain explicitly the complete 4d lagrangian by integrating out the fifth dimension. This
is rather difficult as, e.g., the 4-fermi terms receive contributions that are of higher order in
«. Another approach is to reduce 5d supersymmetry transformation laws to 4d, and check if
they are consistent with the results (5.68). This has the advantage that corrections from the
non-trivial & dependence of the functions G and f can be seen at lower order in the expansion
in o and k2. As an example we present how to determine the gauge kinetic functions from the
transformation laws of the superpartners of the moduli scalars.

First, we need to determine what is the 4d parameter of supersymmetry in terms of its 5d
counterpart. To this end, we need to solve the Killing eqution for 5d spinor which is just the
condition d¢' = 0 in (5.3). This condition can be easily solved with the general potential:

12| R 2
ch=e " (1 022" - T)) gt

2
1/12
ARg|z 7Tp —1/4
&= (1+avE (- D)) o' (61)
Since €7 = —io?eR* (the 5d Majorana condition) the spinor 7 is Majorana in the 4d sense.

The appearance of the factor ao in (6.1) yields canonical form of the reduced 4d supersym-
metry transformation law of the gravity multiplet. Then 7 depends only on z* and has the
interpretation of the parameter of supersymmetry transformations in the 4d theory.

We again put A = 0 and choose the coordinate frame gs5 = RZH*. The Killing spinor is then

€h = ﬁl/ ng. First we determine gaugino bilinears in the transformation law of the modulus T

superpartner AT As in (5.68) it is defined as A” =< (£5)/*[v5 + 254 4(C¢ + CCr)] >. The C¢
part is unimportant as there are no gauginos in the transformatlon laW of the C superpartner.
The relevant part in the transformation law of 5 reads:

05, = %%fq (6.2)

Note that here 05¢ does not appear as a perfect square. Inserting in this expression the solution
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for the Killing spinor as well as the solution for £ and other bulk fields yields:

K2 (H\ V' VR, 1 oy !
5 :_<_> _H20 25 5_H2 25 5 - H2<—>
v = (f) g HHO) 0 o) ) (vl <)~ P (3 . e
where f is defined as:
dof 42t 0 H*(0) — H*(mp) '
Thus the transformation law of A7 is:
- 1/4
ONT = 5 5™ (75)  0vs
= s e (HP(mp) — HP(0)) f, — 5555 Y95 (H2(0) (x1)? + H2(7p) (x2)*)11
K2 3(np)—H3
= T VoRy (=X H(0) — x3H? (7)) s,
K,2
— 1 (H?(0)(x1)? + H?(7p) (x2)*) (6.5)

The second part of the above expression would be absent if di5 respected the perfect square
structure. The gaugino bilinears would the enter in the zeroth order in a violating the canonical
form of the supersymmetry transformation law. Instead, after expanding in « the result to the
first order is: ,
Ky
12¢g
Similarly, we can calculate the supersymmetry transformation law of the superpartner of the
modulus S:

SAT — —

s Riov2mp (X3 = X3) e - (6.6)

2
K
A7 = 2—;2%2 (Xt +x3) me (6.7)

Recalling form subsection (2.3) that in 4d supergravity, scalar gaugino condensates in the
transformation law of the fermions A, AT are multiplied by §f,s (G)¢ and 1 fr (G )T,
respectively, the result (6.6,6.7) indeed agrees with (5.68). We stress that the agreement is due
to the perfect square structure in dA and the lack thereof in d¢5. Thus, when we calculate
SAT the linear part of the solution for 05 cancels to zeroth order in o with the delta functions
occuring in this solution, leading to the correct form of fr. Note also, that the admixture of
5 in the definition of A® is crucial to obtain the correct form of fg.

From the transformation laws (6.6,6.7) it can be read off that presence of gaugino conden-
sates breaks supersymmetry in the 4d effective theory. Although one can adjust x? = —x3 so
that the condesates cancel in the regular part of the solution (7.2) for 95§ and in consequence in
dA®, but then the non-zero condensate contribution appears in §A” due to the above mentioned
lack of the perfect square structure in d15. However, if we allow for boundary scalar fields,
appropriately adjusting their superpotentials we have the possibility to cancel the contribution
of the condensates.
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Chapter 7

Gaugino condensation and
supersymmetry breaking in five
dimensions

Similarly to models derived from the heterotic string theory, in the theory formulated in section
4 there is the possibility to break supersymmetry by gaugino condensation on the hidden and/or
visible branes. The supersymmetry breaking is communicated from one brane to another by
the expectation value of the hypermultiplet field £&. This mechanism works because &, although
odd, couples to gauginos on the boundaries through its fifth derivative (a toy-model of this
kind is studied in [21]). The equation of motion for the £ field in the presence of the gaugino
condensates on the branes is:

64\/‘7

B 2g2e?

1 e 55
— 05 ( 55_

K2

556) = 0 ( (3(a") (Xt + 3 — 70) (mmz)) . (7.1)

We are interested in the solution for d5¢ (and not for £ alone) because it is just this expression
which enters the relevant formulae. For A = 0 we obtain the solution:

355 K2 3/2 5\ 2 5 2

H-3 2—92(%}30) (—5(x )xi —6(z” — 7rP)X2) +C (7.2)
;2 —2H3(0) — y2H3(np

C = 3_9204@@(%}30)3/2 1H4 (é))_ Hj(ﬂpg ) (7.3)

It is worth noting, that in the 5d theory gaugino condensates break the supersymmetry In
the presence of the condensates we have no way to satisfy simultanously MJ;‘ = 0 with any
other of the remaining conditions for unbroken supersymmetry. Indeed, neither ds¢ nor the
condensates do not alter the transformation law of v, so in particular, the conditions resulting
from 51&2‘ = 0 include the chirality conditions (5.5). But in such a case, the condensates in the
formulae for A% and §2' multiply the supersymmetry parameter e, which is of the chirality
opposite to other ¢’s occuring in these transformation laws. Thus, conditions dis = 0 and
OA® = 0 cannot be satisfied.
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Chapter 8

Conclusions

Let us summarize the content of this thesis. Having prepared the necessary background in
sections 2 and 3, in section 4 we presented the five dimensional construction analogous to the
Horava-Witten construction in eleven dimensions. Precisely, we derived a locally supersymmet-
ric lagrangian which consists of two sectors: the 5d bulk supergravity coupled to one "universal’
hypermultiplet, the 4d chiral matter and the YM fields on the brane. This thesis does not
describe general compactification of the Horava-Witten model on Calabi-Yau threefolds. Real-
ization of such programm would require considering an arbitrary number of hyper- and vector
multiplets in the bulk. Instead, we concentrated on some general features of 5d locally su-
persymmetric theories containing chiral matter confined to 3-branes. The class of potentials
we considered was wider than those obtained in the compactification of the Horawa-Witten
model. We show that gauge and matter fields residing on the brane can be supersymmetrized
by modifying the brane action only but one has to modify the supersymmetry transformation
laws of both brane and bulk fields. On the other hand we show that the boundary potential
terms for bulk scalars can be reconciled with supersymmetry by modifying the bulk action and
the supersymmetry transformation laws of the bulk fields. The coupling of the 4d Yang-Mills
and matter fields to the bulk fields does not depend neither on the boundary nor on the bulk
potentials. In particular, the ’visible’ brane action would have the same form in the supersym-
metric version of the Randall-Sundrum scenario. In the original RS model, the interactions of
the bulk with the brane fields yield specific experimental signatures [26] which may be seen
at the Tevatron and LHC. In the supersymmetric version of this model the phenomenological
consequences may be even richer, as e.g. the gravitino and its massisve KK modes interact with
the SM fields. The action obtained in this thesis can be the starting point for phenomenology
in the framework of the supersymmetric RS model or modifications thereof.

In section 5 the supersymmetry preserving compactification to four dimensions of the
Horava-Witten model is studied. Generally, our results confirm the conclusions of reference
[6], where the effective theory was obtained by direct compactification from eleven dimensions
down to four. We analyze contributions to the effective action and interpret them in terms of
the canonical form of 4d supergravity as given in [17]. For example, we study the cancellation
of various contributions to the 4d tree-level cosmological constant; as advocated, its vanishing
is necessary for the consistency of the compactification. In addition, we express the canonically
normalized fermion fields of the 4d theory in terms of their 5d counterparts. In section 6 we
point out that the effective theory can also be consistently deduced from the reduction of the
5d supersymmetry transformation laws.
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Appendix A

This appendix contains the full Langrangian of five-dimensional N=2 gauged supergravity on
My x S1/Zj coupled to non-linear sigma model SU(2,1)/U(2) and to YM multiplets (Af, x*)
on two parallel branes placed at 5 = 0 and at x5 = mp. Matter multiplet (C, ¢) on the ”visible”
brane, transforming under gauge group, is included. This Langrangian contains the following
parts:

S == f d5£L‘65[EBULK + £YM16(2E5) + EYM26(2E5 — ﬂ'p)
+Lg10(x°) + Lg2d(x® — 7p) + Lo76 (%) + Lwd(x®) + Lod(25) — Lod(2® — mp)] (A1)

Lpurk is given by eq. 4.1. Ly and Ly part contains gauge fields living on the brane. Of
course, gauge fields should have an appropriate index corresponding to its location, e.g. Az(l)
for the part of the action multiplied by §(z®). Only the even part of bulk fermions appears
here; 1, A is defined in terms of five-dimensional symplectic Majorana spinors w;‘, A% in (4.5).

g Lyn = —TFLF™ — SXTIX + T (0,0 X) S, + 35 (XX ) Fus
+35 (0,7 1) (XX) + 35 (07" ) (X X) — % (0,0 (XX“)
+K(%75w“)(?75x“) + LW, 7,0") (X x%)
15 7Y VP X?) + 1555 (0,7 70s) (X7 x?)

+ 2556 (27) V2 ("X (¢ X" (A.2)
Ly = —ioF8,Fuw — L(Xyrx®)Fo — 1(x"y 1 x") 0,0 — %[(WLX%)(%E + (X px%)05E]
—1 (" )(zmpx ) — £, "N (XX
—5( 7“75A)(x_ ") = 5 (@A) (X = g () (7 x)

XY (A7) + 2= (XX (A A) + 22 (X x®) (AA)
)V (X)) (X"x%) = (X*°x*) (X*7°x)] (A.3)

If we include matter on the visible brane, we have to add following couplings:

16g

9°Ls = —D,C?D*C, — CIX
+(@ Ry IOHCL + hc) + 22 (CPDIC, — CDHCP) — 5765 (C9C)
00 (TPC) + A )[4 (T#) + 3(CPDAT, — Ty DrOm)]
+(@,7"5,) [— & ((v*C) — CPD,Cy, — CpD,CP)] — 10,7 7* 1) ((7°7,€)
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‘ Y’9"¢) — (CPD*C,, — C,D*C?)] — 53(CT “C)(UT“C)
+%@,ﬂ“x“)(0 °C) + (2ixRCT*Cr) + h.c.) — 7=(Ax )( “C)

—556(2%) [~ 15 (CY PO (X 7,x") + 24(@ 7”()(? ’
+5;(C?D,C, — C,D,C?))(CPD*C, — C,DHC?)) — 15(Cy 4 ()(CP

D, — T, %)

Pl =~ RL AT — 2 BTt 4 2B ()
=W (W, V" Vro) + o7 o (ArCE) — AW (Y, 7" AL)
—V%EW&){ + WW(¢R5AL)
+536(2) [ EWW = VVIV (x5x)] + hoc. (A.6)

The boundary cosmological term must appear if five-dimensional supergravity is gauged:
K2 Lo = ﬂ% (A7)

The supersymmetry transformation laws of the YM and matter multiplets are:

1

04, = —5 X
1 _ 1 1 i
a _ ., m a a A5 e (=45 . 5 a
ox 27 [Ey + WX+ g7 X" (7°A) + Vv n (X*°A) = o (CT°C)
oC? = (ﬁRCﬁ)
1 — _ 1 oW
5C£ = §[DI,C"’ - (¢Rp<£)] v'nr + _CL ( °A ) Wa—?an (A-S)

One has to modify supersymmetry transformation laws of the even combinations of the bulk

fermions:

/{2

?61&” = MM YM16(2E5) + MM YM26(2E5 — 7Tp) + MM 276(1‘5) (Ag)
v 1 o
My = 59" - 57“”)7577 (X7 7,x%)
1 1 . 1 _
My, = (g — 57’“’)7577 [E(CprCp - CpD,C") — E(Cv"’%()] (A.10)
2
%5% = +Npd(2%) + Niwd (%) (A.11)

Nor = e [£(C"D,Cy = GyD,C") + £ (0 0)]

2
%(S)\ = PYM16(1‘5) + PYM26(1‘5 — 7Tp) + ,Pw(S(lﬁ) (A13)
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2
Pyu = Z[n(%“x“)—v"’n(%“v"’x“)]

Pw = —2VV(Wnp, +Wng) (A.14)
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