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Chapter 1Introdu
tionThe key-words for this thesis are 'extra dimensions' and 'supersymmetry'. Both of them areoften used in re
ent arti
les on high energy physi
s. Nevertheless, the possibility that we livein a more than four dimensional universe may still sound exoti
 to some physi
ists. Also,supersymmetry is not visible in the spe
trum of the up-to-now dis
overed parti
les and someauthors (though surprisingly few) question its relevan
e to our world. Thus, a brief introdu
tionwhi
h justi�es the resear
h in this �eld seems to be ne
essary. In the next paragraphs we explainwhat are the theoreti
al motivations for the sear
h for extensions of the well-established andtested theories like the Standard Model (SM) and the General Relativity.The 
ontemporary theory of fundamental intera
tions is the Standard Model (SM). Thistheory des
ribes three of the four known for
es of nature (ele
tromagneti
, weak and strong) andhas been extremely su

essful in explaining phenomena of subnu
lear physi
s up to 
urrentlya

essible energies, whi
h are of the order of 100 GeV. The quantitative predi
tions of the SMare in perfe
t agreement with the experimental data; sometimes the a

ura
y is in
redible,just to mention the anomalous magneti
 moment of the ele
tron, for whi
h the experimentallymeasured value agrees with the theoreti
al 
al
ulation within 10�13 pre
ision.The SM is a quantum �eld theory whi
h respe
ts the Poin
ar�e invarian
e (Lorentz rotations+ spa
e-time translations). It is founded on the gauge prin
iple: the parti
les are assigned tovarious representations of the gauge group, whi
h is the lo
al symmetry group of the theory.In the 
ase of the SM the gauge group is SU(3)�SU(2)�U(1). The SU(3) fa
tor 
orrespondsto strong intera
tions, while the SU(2)�U(1) fa
tor 
orresponds to weak and ele
tromagneti
intera
tions. The latter is spontanously broken to U(1), by the va
uum expe
tation value ofthe s
alar �eld transforming as a doublet of SU(2). The 
onsequen
e of this me
hanism isthe existen
e of a fundamental, s
alar parti
le - the famous, though still not dis
overed Higgsboson.The SM is a 
onsistent theory. Although 
al
ulations of quantum 
orre
tions yield divergentresults, the theory is renormalizable - the divergen
ies 
an be absorbed into rede�nitions of theparameters in the lagrangian and one ends up with �nite and well-de�ned predi
tions for thes
attering 
ross-se
tions and other observables.Despite its 
onsiderable su

ess, most of the physi
ists tend to the opinion that the SM isnot the ultimate theory of nature and that the e�e
ts of the underlying, more fundamentaltheory should be
ome visible at higher energy s
ales. First, the SM 
ontains many arbitraryparameters. For example, the SM does not predi
t the mass of the ele
tron; it must be 
onsid-ered as the experimental input to the theory. The SM does not explain why quarks and leptonso

ur in three similar 
opies (generations) with the same quantum numbers. Also, one 
ould5



imagine other groups as symmetries of the theory; the 
hoi
e of the group and the representa-tions is restri
ted only by 
an
ellation of anomalies. Classi
al symmetries of �eld theories 
anbe broken by quantum e�e
ts - just mentioned anomalies. If lo
al symmetries are anomalousthen theory is in
onsistent be
ause, �rst of all, it is not unitary. The SM is anomaly free, butthe me
hanism behind it is not fundamental, rather it holds due to a mira
ulous interplay ofquantum numbers of the SM parti
les. Thus, the way the anomaly 
an
ellation works in theSM is a very important hint pointing towards physi
s beyond the SM.Next, the SM model su�ers from the so-
alled 'hierar
hy problem'. To retain the perturba-tivity of the theory (and thus to be able to perform 
al
ulations) the Higgs boson mass shouldnot be mu
h higher than 1TeV. But in general, in higher orders of the perturbation theory ,masses of s
alar parti
les re
eive quantum 
orre
tions proportional to the supposed ultraviolet
ut-o� of the theory set by the Plank s
ale (about 1019 GeV). Thus, to keep the physi
al Higgsboson mass to be below 1TeV, one must 
hoose very spe
ial values of the parameters of theoriginal Lagrangian, so that 'mira
ulous' 
an
ellations in the 
al
ulation of the physi
al Higgsboson mass 
ould hold. Su
h situation, usually des
ribed as the '�ne-tuning', is 
onsidered veryunlikely by the physi
ists, so other me
hanisms are proposed to explain why the value of theHiggs boson mass 
an be many orders of magnitude smaller than the Plank s
ale. The otherway to state the hierar
hy problem is to say that it is unnatural to have several di�erent masss
ales in one theory unless we have some symmetry to prote
t them. In the SM we have noexplanation why the ele
troweak s
ale (103 GeV) is hugely di�erent from the Plan
k s
ale.However, the most important drawba
k of the SM is that it 
annot 
onsistently in
orporategravity, the fourth fundamental for
e of nature. Indeed, trying to marry the SM with Einstein'sGeneral Relativity inevitably leads to unrenormalizable theory. Cal
ulation of quantum 
or-re
tions yields in�nities whi
h 
annot be absorbed into rede�nition of the parameters, and thetheory loses mu
h of its predi
tive power.It may seem strange, that the theory whi
h fails to des
ribe gravity is so su

essful. Thereason is that the e�e
ts of gravity in the experiments performed at 
urrently a

essible energiesare negligible due to the smallness of the gravitational 
oupling (Newton's 
onstant). However,at energies 
ompared to the Plan
k s
ale the strength of gravity be
omes 
omparable to thestrength of the other fundamental for
es, and the e�e
ts of gravity 
an no longer be negle
ted.If this expe
tation turns out to be 
orre
t, the SM is only an e�e
tive theory valid in a restri
tedenergy range. It is not 
lear what is the energy at whi
h the SM will �nally break down; it
annot be greater than the Plan
k s
ale, but most of the physi
ist expe
t new e�e
ts alreadyat energies of the order of 1TeV.It should be stressed that the above motivations for the sear
h of a 'new physi
s' are ratherof aestheti
al nature. Apart from them, there are several open problems whi
h may requireserious modi�
ations of the SM. The most spe
ta
ular problems of this kind are:1. For the 
onsisten
y of the SM it is 
ru
ial, that at least one elementary s
alar �eld ispresent in nature. But, the so-
alled Higgs boson still evades its dis
overy. This does notruin the foundations of the SM, as it is likely that the Higgs boson mass may be above100 GeV and this parti
le is ina

esible in the present a

elerators. The problem willreally begin, if the Higgs boson is not found in the next generation of a

elerators, whi
hwill probe physi
s up to a few TeV.2. The re
ent dis
overy of neutrino os
illations requires extending the SM, be
ause thisphenomenon 
an o

ur only if the netrinos are massive. The experimental data are stillinsuÆ
ient to favour one of the several possible extensions. One trivial possibility is6



that one adds a new set of parti
les (right-handed neutrinos) to the spe
trum, and theneutrino masses are in
orporated in the theory in a way analogous to the masses of theother fermions. However, it may turn out that to explain neutrino os
illation one has toadd a non-renormalizable term to the SM lagrangian whi
h would point towards a newphysi
s at higher energy s
ale and 
on�rm that the SM is merely an e�e
tive low energytheory. This issue is 
urrently the subje
t of extensive experimental studies.3. As noti
ed already by Einstein, the General Relativity admits the so-
alled 
osmologi
alterm in the a
tion without violating the general 
oordinate transformations invarian
e.This term 
an be interpreted as the energy density of the va
uum. Its presen
e modi�esthe solutions of the theory ex
luding the 
at Minkowski spa
e. Cosmologi
al observationsstrongly 
onstrain the magnitude of this hypotheti
al term and any fundamental theoryshould explain why the observed 
osmologi
al 
onstant is zero or very small. The SMitself does not des
ribe gravity, so one may think that this problem is not relevant. Butwhen we try to 
ombine the SM with the General Relativity, the energy of the zero-modeos
illations of the SM �elds leads to the estimate of the 
osmologi
al 
onstant more than100 orders of magnitude bigger than the 
urrent limits!. This dis
repan
y is even morestriking when 
ompared to the fantasti
 pre
ision of other predi
tions. So far no-one hasgiven a satisfa
tory explanation of the 
osmologi
al 
onstant problem whi
h may turnout to be an important 
lue pointing towards a new physi
s.Having enumerated the basi
 motivations to sear
h for physi
s beyond the SM, we reviewsome of the most popular dire
tions. All the ideas listed below will be relevant to the 
ontentof this thesis.One possible extension of the SM, whi
h is known under the name GUT (Great Uni�edTheory), is to extend the lo
al symmetry group [19℄. Instead of having three di�erent groupsglued together one 
ould have one group, whi
h is then spontaneously broken to the SM group.Many expli
it models of this kind were proposed, the most popular gauge groups being SU(5),SO(10), E6. Apart from aestheti
al reasons, an extension of this kind is suggested by theapparent uni�
ation (within 30 per
ent a

ura
y) of the SM gauge 
ouplings at energies oforder 1014 GeV. So far there has been no dire
t eviden
e for the relevan
e of GUT groups toour world. The most spe
ta
ular predi
tion of GUT theories is the proton de
ay, extensivelysear
hed for in some experiments.Another interesting possibility of extending the symmetries of the SM is supersymmetry.At the mathemati
al level this is equivalent to repla
ing the Poin
ar�e algebra of spa
e-timesymmetries with a superalgebra (graded Lie algebra). Physi
ally, one introdu
es in this waya symmetry between bosons and fermions. Supersymmetry possesses many beautiful featureswhi
h make a 
onsiderable number of physi
ist believe in its existen
e, despite the fa
t that forover 20 years from the theoreti
al dis
overy of supersymmetry there has been no experimentaleviden
e in its favour.Supersymmetry solves the hierar
hy problem. More pre
isely, it does not explain the hugeratio of the ele
troweak and Plan
k s
ales but renders this ratio stable against radiative 
orre
-tions. It is the symmetry between bosons and fermions whi
h leads to 'mira
ulous' 
an
ellationsamong quantum 
orre
tions to the Higgs boson mass. What is left are mild (logarithmi
 in the
ut-o�) divergen
ies, so the existen
e of a light s
alar �eld in the supersymmetri
 theory is moreplausible. An additional (and unexpe
ted at the beginning) virtue of supersymmetry is the fa
tthe simplest extension of the SM, known as the MSSM ( Minimal Supersymmetri
 StandardModel) leads to the gauge 
oupling uni�
ation within 1 per
ent a

ura
y. In the 
oming years,7



with the running of the next generation of a

elerators, physi
ists expe
t to gain eviden
es infavour or against supersymmetry. In parti
ular, we do not see any supersymmetri
 pattern inthe spe
trum of the up-to-now dis
overed parti
les. If supersymmetry is relevant to our worldthen new, yet undis
overed parti
les must exist, whi
h together with the SM parti
les, �t intorepresentations of the super-Poin
ar�e algebra.Even more ri
h in 
onsequen
es are models whi
h embed the SM in a theory with thenumber of spa
e-time dimensions higher than four. In fa
t, this idea dates ba
k to early daysof the quantum theory when Kaluza and Klein (KK) proposed that that we may live in a �vedimensional universe [22℄. In the models of the KK type the additional (usually more thanone) spa
e-like dimensions are 
ompa
t and their 
hara
teristi
 size is very small 
omparedto the length s
ales probed in experiments. It 
an be proven that isometries of the 
ompa
tdimensions give rise to gauge symmetries of the e�e
tive four-dimensional theory. Besides,models of the KK type predi
t that moduli of the 
ompa
ti�
ation (that is - deformations ofthe 
ompa
t manifold whi
h do not 
hange the energy of the system) be
ome dynami
al �eldsin the e�e
tive theory. Originally, it was hoped that with the help of extra dimensions one 
anexplain the abundan
e of various parti
les in our world by means of a simpler theory, maybejust a higher dimensional gravity. At the same time extra dimensions provide new possibilitiesfor adressing the hierar
hy problem as in these models the Plan
k s
ale is not a fundamentalquantity but merely a derived s
ale depending e.g on the volume of the 
ompa
t manifold.The idea of a higher dimensional universe has been revived with the development of stringtheories (see e.g. [27℄) whi
h in
lude the only known examples of 
onsistent quantum theoriesthat des
ribe gravity. The idea behind string theories is to repla
e point parti
les with extendedobje
t of one spatial dimension. The observed parti
les 
orrespond to various os
illation modesof the fundamental strings. Surprisingly enough, these theories turn out to be very 
onstrained,merely by the demand of their 
onsisten
y. To avoid ta
hyons in the parti
le spe
trum one isfor
ed to introdu
e supersymmetry and ends up with so-
alled Superstring Theories. We knowof only �ve examples of 
onsistent Superstring Theories, namely type I, IIA, IIB, heteroti
E8�E8 and heteroti
 SO(32). The number of spa
e-time dimension in whi
h the strings live isnot arbitrary; the Superstring Theories require ten dimensions. String theories 
ontain no freeparameters and, in prin
iple, on
e we de
ide on one of the �ve above mentioned realisationsthe whole dynami
s is in prin
iple determined.At low energies string theories redu
e to quantum �eld theories. In the 
ourse of the yearsstring va
ua have been 
onstru
ted, su
h that 
ompa
ti�
ations of string theories yield spe
traimitating the SM. Up to re
ently, the 
ompa
ti�
ation of the E8�E8 heteroti
 superstrings, inwhi
h six extra dimension 
url up to form a manifold known to mathemati
ians as the Calabi-Yau manifold, appeared to be most promising. This theory has many virtues: in the pro
ess of
ompa
ti�
ation one of the E8 fa
tors breaks down to E6. The latter is a good 
andidate forthe GUT group; the supersymmetry is preserved by the 
ompa
ti�
ation and is thus expe
tedto be broken at energies 
omparable to the ele
troweak s
ale; the se
ond fa
tor E8 
an serveas the gauge group of the so-
alled 'hidden se
tor' (whi
h is the preferred s
enario of super-symmetry breaking in the 
on
rete, phenomenologi
al models of low energy supersymmetry);the parameters of the SM 
an be expressed in terms of the topologi
al 
hara
teristi
s of the
ompa
t manifold.Re
ently, the monopoly of the heteroti
 strings has been broken. New va
ua of type I andtype II superstrings have been 
onstru
ted. At low energies these va
ua lead to physi
s very
lose to the one derived from the SM. Although these 
onstru
tions themselves are not of dire
t
on
ern in this thesis, they introdu
e in a natural way the notion of branes (pre
isely, D-branes8



are hypersurfa
es on whi
h open string are allowed to end). These obje
ts will be important inthe following. In the nomen
lature we use, p-branes are p+1 dimensional submanifolds in thehigher dimensional spa
e-time (note that a 4d spa
e-time 
orresponds to a three-brane). Theymay host various gauge as well as matter �elds, whi
h are 
on�ned on these submanifolds, inthe sense of not being allowed to propagate in the remaining transverse dimension.Independently of the string theories, even more re
ent motivation for the study of higherdimensional theories was given by the Randall-Sundrum (RS) model [11℄. Contrary to theSuperstring Theories, the RS model is not a 
onsistent, self-
ontained theory but rather an ad-ho
 
onstru
tion. The basi
 set-up 
onsists of a �ve dimensional gravity with a 
osmologi
al
onstant, whi
h allows for anti-de-Sitter solution. In addition, there are three-branes lo
atedat various points along the �fth dimension. Randall and Sundrum showed, that for some
on�gurations of those branes observers living on one of the brane would �nd that the gravityobeys the ordinary 4d Newton's law, in spite of the fa
t that the world is �ve dimensional andnone of the dimensions is 
ompa
t. Thus, we may be living in a higher dimensional universewithout simply noti
ing it!The modern understanding of Superstring Theories is that they are not �ve distin
t theoriesbut rather di�erent va
ua of an underlying, still to some extent hypotheti
al, 11-dimensionaltheory named M-theory. This view has emerged from the study of non-perturbative relations,the so-
alled dualities, between various Superstring Theories. It turned out that dual to someof the Superstring Theories are not any of the other ten-dimensional string theories but rathersome eleven-dimensional theory. Very little is known about the quantum formulation of M-theory (it is not even 
lear what M stands for). We know however that in the low energy limit(in this 
ase below the Plank s
ale) it redu
es to the 11 dimensional supergravity theory. Also,in addition to strings whi
h have one spatial dimension, brane obje
ts with p-spatial dimensionsshould be present in the M-theory.We now 
ome to the starting point of this thesis. Horava and Witten showed [2℄ that at lowenergies the strong 
oupling limit of the heteroti
 E8�E8 superstring theory redu
es to elevendimensional supergravity de�ned on the manifold whi
h is the produ
t of a smooth manifoldM10and the interval S1=Z2. In addition to eleven dimensional supergravity multiplet, the spe
trumof this model 
onsists of ten dimensional gauge multiplets in the adjoint representation ofE8 
on�ned to the boundaries of the manifold, in other words, to the �xed points of the Z2symmetry. As mentioned earlier, E8 �E8 superstring theory is phenomenologi
ally interestingand so is its strong 
oupling limit, be
ause to obtain the uni�
ation of gauge and gravitational
ouplings at one 
ommon s
ale, one must assume the string 
oupling mu
h greater than 1. Thus,in the interesting region of the parameter spa
e the fundamental theory may be des
ribed bythe Horava-Witten model.The question arises whether models 
ontaining �elds living in di�erent spa
e-time dimen-sions 
an be supersymmetri
. The answer should be positive in this 
ase, as we 
onsiderthe strong 
oupling limit of a supersymmetri
 theory but the question is non-trivial be
ausethe Horava-Witten model is not a 
omplete, 
onsistent des
ription of the M-theory. Horavaand Witten proved by a dire
t 
onstru
tion [3℄ that, in the framework of their model, super-symmetrization indeed 
an be 
ompleted, at least in the �rst order of the expansion in thegravitational 
onstant. However, the required modi�
ations appeared to be highly non-trivialand substantially a�e
ted the va
uum solution of the model [1℄.To make 
onta
t with the real world one must 
ompa
tify the Horava-Witten model tofour dimensions. It turns out that in order to have uni�
ation of gauge and gravitational
ouplings, the length of the eleventh dimension must be an order of magnitude greater than9



the 
hara
teristi
 size of the remaining six 
ompa
t dimensions [1℄. Thus, at the intermediateenergy s
ale, the universe should appear �ve-dimensional. Lukas et al. [4℄ managed to obtainthe e�e
tive �ve-dimensional theory resulting from the 
ompa
ti�
ation of the Horava-Wittenmodel on the Calabi-Yau three-fold (a manifold with three 
omplex , i.e six real dimensions).For the reason whi
h will be explained in detail in the next se
tions, this e�e
tive theory isnot a simple 5d supergravity, but its gauged version. Gauging of supergravities introdu
esprofound 
hanges in the theory. It implies the existen
e of potentials for the s
alar �elds and,generi
ally, the 
at spa
e 
an no longer be a va
uum solution. Apart from the se
tor livingin �ve dimensions (in the so-
alled bulk) the 
ompa
ti�ed Horava-Witten model 
ontains twoparallel 3-branes with gauge �elds and matter 
ontent whi
h depends on the spe
i�
 formof the 
ompa
ti�
ation. The supersymmetrization of the brane theory with the bulk theory(supersymmetrization of branes with bulk, in short) has not been performed before and one ofthe obje
tives of this thesis is to �ll this gap.In the following, we derive the supersymmetri
 
oupling of �elds 
on�ned to a 3-braneto 5d supergravity. Using the Noether pro
edure, we add new terms to the bulk and branelagrangian, whi
h are ne
essary to arrive at a lo
ally supersymmetri
 a
tion. More pre
isely,our set-up 
onsists of a �ve-dimensional N=2 supergravity on the manifoldM4�S1=Z2 
oupledto SU(2; 1)=U(2) non-linear sigma model. Two parallel 3-branes are lo
ated at x5 = 0 andx5 = �� and host a 4d gauge supermultiplet and a 
hiral matter supermultiplet. In the 
ontextof the 
ompa
ti�ed Horava-Witten model this 
orresponds to only one universal hypermultipletin the bulk, whi
h is equivalent to 
hoosing a spe
ial Calabi-Yau three-fold with Hodge numbersh1;1 = 1 h1;2 = 0. However, the 
onstru
tion we present is far more general and 
an be utilisedfor 
onstru
ting other supersymmetri
 5d models with branes, even those whi
h do not havestringy origin. In parti
ular, the brane potential term for the bulk s
alars whi
h arises inthe 
ompa
ti�ed Horava-Witten model 
an be repla
ed by a 
onstant brane tension, whi
himmediately leads to the supersymmetri
 version of the Randall-Sundrum model. Be
ausesupersymmetrization of the RS model is presently the subje
t of intensive study [15, 8℄, wepresent this extension in this thesis, although the RS model most probably 
annot be obtainedfrom the heteroti
 
ompa
ti�
ations of superstring theories.The outline of this thesis is as follows. In Se
tion 2 we brie
y review supergravity theoriesin various, relevant dimensions. In Se
tion 3 the Horava-Witten model and its 
ompa
ti�
ationto �ve dimensions is introdu
ed. Then we begin the presentation of the original results of thisthesis. In Se
tion 4 we present a detailed derivation of the supersymmetri
 
oupling of gaugeand matter �elds 
on�ned to 3-branes to 5d N=2 supergravity. Ne
essary modi�
ations ofthe supersymmetry transformation laws of bulk and brane �elds are also dis
ussed. To makethe pro
ess of supersymmetrization more transparent we start with a 4d gauge multiplet onthe brane and then we su

essively add matter �elds in the bulk and on the brane. Then we
arefully analyse the role of brane potentials, and their 
onne
tion to the 
osmologi
al termsin the bulk supergravity. In Se
tion 5 we derive the e�e
tive 4d theory. We �nd a va
uumsolution of the 5d theory whi
h preserves N=1 supersymmetry and 
ompa
tify our model onthis ba
kground. We dis
uss various 
ontributions to the e�e
tive 4d lagrangian 
oming fromthe moduli of the va
uum solution and from the fa
t that �elds on the branes a
t as sour
es inthe equations of motion of the bulk �elds. We determine the pre
ise form of the 
ompa
ti�edtheory in terms of the 
anoni
al 4d supergravity. In se
tion 6 we perform the redu
tion of the5d supersymmetry transformation law and �nally, in Se
tion 7, we 
omment on supersymmetrybreaking in the �ve-dimensional framework. 10



Chapter 2Supergravities in 11, 5 and 4dimensionsSupersymmetry is a non-trivial extension of the Poin
ar�e symmetry. A

ording to the 
ele-brated Coleman-Mandula no-go theorem [24℄, the Poin
ar�e algebra is the largest possible Liealgebra of symmetries of a quantum �eld theory whi
h a
ts non-trivially on spa
e-time. Ex-tending further the algebra of symmetries leads to a trivial S-matrix, that is to no intera
tions.Supersymmetry evades the limitations of the Coleman-Mandula theorem, be
ause the mathe-mati
al 
on
ept behind it is a graded Lie algebra. If su
h an algebra is a symmetry algebra ofa theory then, apart from standard 
ommuting bosoni
 symmetries, we have anti-
ommutingfermioni
 symmetries. The supersymmetry 
harge Q 
ommutes with the momentum operatorP� and with generators of internal symmetries but does not 
ommute with the generators ofthe Lorentz rotations M�� . Thus, one-parti
le states in supermultiplets, whi
h are obtainedby a
ting su

essively with Q on a lowest weight state, have the same masses and internalquantum numbers but di�erent spins. Supersymmetry predi
ts, therefore, that parti
les area

ompanied by a number of superpartners with similar properties ex
ept for the spin. Sizeof supermultiplets, and thus a number of superpartners may vary depending on the 
hosenrepresentation of the superalgebra and dimensionality of the spa
e-time.In this thesis we 
onsider lo
al supersymmetry, that is symmetry generated by parameterswhi
h depend on spa
e-time 
oordinates. There are several reasons to prefer this option. Fromour experien
e with the SM we know that lo
al (gauge) symmetries play a more fundamentalrole in the theory than global symmetries (like baryon or lepton number 
onservation). Thisview is supported by the no-hair theorem of quantum gravity whi
h states that only lo
alsymmetries 
an be exa
t in the presen
e of gravitational e�e
ts. The reason spe
i�
 for su-persymmetry is that lo
ally supersymmetri
 theories ne
essarily in
lude gravity. This is easyto see from the supersymmetry algebra. The anti
ommutator of two supersymmetry 
hargesfQ; �Qg equals the momentum operator P and if the parameters on the left-hand side dependon spa
e-time 
oordinates the right-hand side is a lo
al translation whi
h vary from point topoint, in other words a general 
oordinate transformation. Thus we 
an expe
t that a theoryinvariant under lo
al supersymmetry is also invariant under general 
oordinate transformationswhi
h is the symmetry of the General Relativity.For our purpose we will not need the detailed mathemati
al formulation of supersymmetry.All we need to do is to represent the supersymmetry algebra on the �elds of our lagrangians. Werequire that the lagrangian we 
onsider is invariant up to a total derivative under in�nitesimallo
al supersymmetry transformations. This is analogous to representing gauge symmetries11



in the way we know from the Standard Model. The only di�eren
e is that in the 
ase ofsupersymmetry the in�nitesimal parameter of the transformations is an anti
ommuting spinor.Given the �eld 
ontent, supersymmetry �xes the form of the lagrangian up to a few arbitraryfun
tions. The possible supermultiplets that 
an be present in various spa
e-time dimensionsare determined by a more involved analysis [16℄.2.1 Eleven dimensional supergravityThere are several reasons to start our survey from eleven dimensions:1. This is the highest spa
e-time dimension in whi
h a 
onsistent, intera
ting supergravity
an be formulated.2. The �eld 
ontent of the 11d supergravity is very simple and the supersymmetry �xesuniquely the form of the lagrangian.3. Many supergravities in lower dimensions 
an be obtained by a trun
ation of the 11dsupergravity. In parti
ular, this is the 
ase with 5d N=2 and 4d N=1 supergravitieswhi
h will 
on
ern us further in this thesis.In eleven dimensions the gravity multiplet 
onsists of a vielbein emI , one gravitino  I and onethree form CIJK. I,J... are eleven dimensional ve
tor indi
es equal 0..9, 11.The vielbein formulation of gravity is equivalent to the more familiar metri
 formulation [23℄.The 
onne
tion between the two is given by gIJ = �mnemI enJ where � is the 
at 11d Minkowskimetri
. As is well-known, at any single point of the Riemannian manifold, a general metri

an be redu
ed to the 
at Minkowski metri
 by the appropriate 
hoi
e of a 
oordinate frame.Vielbeins 
an be 
onsidered as the basis ve
tors of this (lo
ally inertial) frame at a given point.The upper index, is a ve
tor index of SO(9,1) 
orresponding to the Lorentz symmetry of theMinkowski metri
. The kineti
 term for the vielbein is the standard Ri

i 
urvature s
alar, justlike in the four-dimensional General Relativity.The gravitino  I is a ve
tor-spinor �eld (spinor indi
es are suppressed). Spinors in oddD dimensional spa
es have 2(D�1)=2 
omponents [25℄, so in our 
ase  has 32 
omplex 
om-ponents. However, in 11 dimension we 
an impose the Majorana 
ondition and we e�e
tivelyend up with 32 real 
omponents (in the real Majorana basis). The kineti
 term is the Rarita-S
hwinger a
tion given in the �rst line of (2.1). In four dimensions gravitino des
ribes a spin3/2 elementary parti
le . Su
h parti
les has not been dis
overed, but they must be presentin any lo
ally supersymmetri
 theories. Therefore, if lo
al supersymmetry is relevant to ouruniverse, gravitinos must be either very heavy or light and very weakly intera
ting.The �eld C is anti-symmetri
 in its 3 indi
es, hen
e its name three-form. The notion ofn-form �elds is generally known be
ause in 4d n-forms do not introdu
e any new possibilities todes
ribe physi
s: a 0-form is just a s
alar-�eld, a 1-form is a gauge �eld (this is how gauge �eldsare presented in more geometri
ally oriented books) and a 2-form is equivalent to a (pseudo-)s
alar by the Hodge duality. In D dimensions one 
an 
onsider n-forms with n=0...D-2 aspropagating �elds. In D > 4 dimensions form �elds des
ribe essentially new obje
ts. Thekineti
 term, similarly to the ve
tor Abelian 
ase, is proportional to the square of the externalderivative dC. 12



The unique supergravity Lagrangian is [18℄:L11 = 1�211 e11 ( � 12R� 12 I�IJKDJ K � 148GIJKLGIJKL�p2192( � I�IJKLMN N + 12 � J�KL M)GJKLM � p23456�I1::I11CI1::I3GI4::I7GI8::I11 + (4fermi) )(2.1)In the above �11 is a gravitational 
onstant, e11 is the determinant of the 11d vielbein. Thegamma matri
es have dimension 32 � 32 and obey f�I ;�Jg = 2gIJ . The anti-symmetrizedprodu
ts of matri
es are de�ned as: �I1::In = �[I1::�In℄ = 1n!�I1:::�In � (permutations): The
ovariant derivative a
ting on the gravitino is DI J = �I J + 14!Imn�mn J and 
ontains thespin 
onne
tion ! de�ned by the formula:!Imn = 12eJm(�IenJ � �JenI)� 12eJn(�IemJ � �JemI)� 12eJmeKn (�JepK � �KepJ)epI (2.2)The four-form �eld strength G is de�ned as GIJKL = 24�[ICJKL℄, in short G = 6dC. Obviously,G satis�es the Bian
hi identity dG=0. Later, we shall see that 
oupling to YM �elds de�nedon boundaries requires rede�nition of G, so that the right-hand side of the Bian
hi identitybe
omes non-trivial.The four-fermion terms are also known, but we will not need them in further 
onsiderations.It is a 
ommon pra
ti
e to skip them when possible to avoid lengthy mathemati
al formulae.The 11d supergravity a
tion is invariant under the following lo
al supersymmetry transfor-mations: ÆemI = 12��m IÆ I = DI� + p2288(�JKLMI � 8gJI �KLM)�GJKLM + (three� fermi)ÆCIJK = �p28 ���[IJ K℄ (2.3)Note the derivative of the spinor parameter � in the transformation law of gravitino, whi
h
an be interpreted, in analogy to the Yang-Mills 
ase, that gravitino is the gauge �eld ofsupersymmetry. This is the justi�
ation of the previous statement that the gravitino must bepresent in lo
ally supersymmetri
 theories. The number of 
onserved supersymmetry 
hargesis 32 (
ounting ea
h 
omponent of Q separately). From the 4d point of view this number
orresponds to N=8 supersymmetry.2.2 Supergravities in �ve dimensionThe plural in the subtitle suggests that, 
ontrary to the 11d 
ase, 5d supergravity is notunique. Indeed, in 5d we have 
ertain freedom in 
hoosing the spe
trum of matter �elds, aswell as the sigma model whi
h governs their dynami
s. We 
an also 
onsider various numbersof supersymmetries. In this se
tion we 
on
entrate on the 
ase of N=2 supersymmetry whi
h
orresponds to eight 
onserved super
harges 1.Every lo
ally supersymmetri
 5d theory 
ontains the gravity multiplet whi
h 
onsists of themetri
 g�� (here we work with the vielbein ea�), two symple
ti
 Majorana gravitinos  A� and a1Some authors 
all it N=1 susy as it is the least possible number of supersymmetries in �ve dimensions. Weprefer to keep the label in N=2 be
ause of the similarity to N=2 supergravity in four dimension13



ve
tor �eld, in this 
ontext usually 
alled the graviphoton A�. The greek indi
es � � ... fromthe beginning of the alphabet are �ve dimensional and run over values 0..3,5. The reason weimpose symple
ti
 
onditions is that in �ve dimensions it is impossible to satisfy the standardMajorana 
ondition �
 � C��T = �, where C is a 
harge 
onjugation matrix, be
ause this leadsto a 
ontradi
tion � = (�
)
 = ��. Instead one 
an arrange spinors into pairs by demanding��A = (
AB�B)TC , where C is the 
harge 
onjugation matrix satisfying 
� T = C
�C�1 and 
is a symple
ti
 matrix whi
h squares to �1. In the 
ase of gravitinos the index A runs from 1to 2, and the symple
ti
 matrix is just the antisymmetri
 tensor �AB.The notation using symple
ti
 spinors makes expli
it another symmetry of the N=2 supergrav-ity a
tion. A theory with N supersymmetries possesses SU(N) R-symmetry, whi
h transformsthe super
harges into ea
h other. This symmetry, or rather its Z2 subgroup, so-
alled R-parity,is familiar to those a
quinted with the MSSM. For the 
ase at hand, this symmetry is SU(2)and the gravitino index A tranforms in the fundamental representation of the R-symmetrygroup. This index is raised and lowered with �AB; SU(2) invariant 
ontra
tion of spinors is�A�A � �AB�A�B, the 
onventions are �12 = �12 = 1. Note also somewhat unusual de�nition�A � �A.The lagrangian for the gravity multiplet alone takes the form:L5 = e5 1�2 ( � 12R� 12 �A
��
D� 
 A � 12F��F��� 112p2���
Æ�A�F�
FÆ� + i4p2( 
A
��
Æ Æ A + 2 �A �A)F�� + (four � fermi) ) (2.4)The form of the above lagrangian resembles the one of 11d supergravity, e.g. the 'topologi
al'term AFF is similar to the 11d CGG term. Thus, we 
an expe
t that 5d N=2 supergravity 
anbe obtained as a 
ompa
ti�
ation of 11d supergravity. This statement is almost 
orre
t, as we
an 
ompa
tify the 11d supergravity on the six-dimensional Calabi-Yau manifold leaving eightof thirty-two super
harges unbroken, whi
h indeed leads to N=2 supergravity. However, thispro
edure yields additional s
alars and fermion 
orresponding to the moduli of the 
ompa
ti-�
ation; e.g. one of the always present s
alar moduli is the volume of the 
ompa
t manifold.Be
ause of that, it is ne
essary to 
onsider a 
oupling of matter multiplets to the 5d gravitymultiplet.The gravity multiplet 
an be 
oupled to an arbitrary number of ve
tor multiplets whi
h
onsist of a ve
tor �eld, two symple
ti
 Majorana gauginos and a single real s
alar �eld. At thesame time, we 
an 
ouple hypermultiplets with two symple
ti
 Majorana hyperinos and fourreal s
alar �elds. It turns out that hypermultiplets and ve
tor multiplets 
ouple to the gravitymultiplet only and not to one another. In a supersymmetri
 lagrangian 
ontaining hyper- andve
tor multiplets, lengthy polynomials of s
alar �elds appear, whi
h are most 
onvieniently
hara
terized in terms of geometry on some Riemannian manifold. The arbitrariness lies in thefreedom to 
hoose one of those spe
ial geometries.It should be stressed that in �ve dimensions there are no supermultiplets with 
hiralfermions. To introdu
e 
hiral matter 
harged under Yang-Mills symmetries, one must lo
ateit on a 4d submanifold. The Yang-Mills ve
tor �elds 
an also be 
on�ned to the boundaryand this is the 
ase we study 
arefully in this thesis. At the same time we 
an have gaugesymmetries in the bulk with ve
tor �elds of the ve
tor multiplets and the graviphoton beingthe gauge �elds. This possibility will also be studied in the following, rather not for the virtueof having gauge symmetries, but in order to introdu
e potential for the s
alar �elds. Otherwise,in ungauged 5d supergravities, s
alar potentials are always absent.In the next subse
tions we follow 
losely the Appendix B of referen
e [5℄14



2.2.1 Coupling of ve
tor multipletsBelow we des
ribe 
oupling of nv Abelian ve
tor multiplets to the gravitational multiplet ofN=2 supergravity. We now have nv ve
tor �elds Ai�, 2nv symple
ti
 pairs of spinors (gauginos)�Ax, and nv real s
alars �x. The index A of the gauginos is the same as that of gravitino. It is
onvienient to group ve
tors with the graviphoton so that the index i = 0; 1::nv. The kineti
terms of the s
alars de�ne the sigma model: Lkin = �12gxy(�)���x���y If the ve
tor multipletsare 
oupled in a supersymmetri
 way, then gxy 
an be interpreted as a metri
 of a Riemannianmanifold MV with the very spe
ial geometry; in su
h the 
ase the s
alars �x 
an be intetheve
tor multiplets are 
oupled in a supersymmetri
 way, then gxy 
an be interpreted as a metri
of a Riemannian manifoldMV with the very spe
ial geometry; in su
h the 
ase the s
alars �x
an be interpreted as 
oordinates on MV .To see the stru
ture of MV one starts with a nv + 1-dimensional spa
e C with 
oordinates biand the metri
: Gij(b) = �12 ��bi ��bj lnK(b) (2.5)where K is a homogenous polynomial of degree three:K = dijkbibjbk (2.6)One then takes MV as the hypersurfa
e K = 6. Restri
ting ourselves to that submanifold wehave bi = bi(�x) and we 
an write the indu
ed metri
 as:gxy(�) = �bi��x �bj��yGij(b) (2.7)The rest of the lagrangian is detemined by the sigma model metri
. We restrain from givingthe lagrangian and the supersymmetry transformation laws until the subese
tion 2.2.4.2.2.2 Coupling of hypermultipletsIn this subse
tion we review 
oupling of nh hypermultiplets to the gravity multiplet. We aregiven 2nh symple
ti
 Majorana fermions (hyperinos) �a and 4nh real s
alars qu. As in theprevious 
ase, the 
entral obje
t is the metri
 h of the sigma-model: Lkin = �huv(q)���u���vAgain, to render the 
oupling possible, huv must have the interpretation of a metri
 of someRiemannian manifoldMH on whi
h the s
alars qu are the 
oordinates. One �nds that for N=2supergravity MH is a quaternioni
 manifold. Below we present basi
 fa
ts about quaternioni
geometry.A quaternioni
 manifold 
an be thought of as a generalization of a 
omplex manifold. Thename is due to the three 
omplex stru
tures JAB, whi
h satisfy the quaternioni
 algebra undermatrix multipli
ation. It is endowed with a triplet of K�ahler forms KAB satisfying:dK + ! ^K = 0 (2.8)!AB is a SU(2) part of the spin-
onne
tion. As the holonomy group of a 4nh dimensionalquaternioni
 manifold is by de�nition the produ
t SU(2) � Sp(2nh), the 
orresponding spin
onne
tion de
omposes into a sum of the SU(2) 
onne
tion !AB and the Sp(2nh) 
onne
tion �ab.In the 
ontext of N=2 supersymmetry, SU(2) is interpreted as the R-symmetry group and theindex A transforms in the same way as that of gravitino. Unlike the gauginos and gravitinos,the hyperinos �a are symple
ti
 Majorana with respe
t to the Sp(2nh) 
onne
tion, so the index'a' runs over values 1::2nh. 15



2.2.3 Gauging universal hypermultipletsIf the manifold MH admits isometries we 
an gauge them, modifying signi�
antly the stru
-ture of 5d supergravity. The pro
edure of gauging isometries of s
alar manifolds is similar togauging global symmetries in order to obtain ordinary supersymmetri
 Yang-Mills theories.The derivatives a
ting on �elds must be repla
ed with 
ovariant derivatives involving gauge�elds, and the potential for s
alar �elds must be added, whi
h in the super-Yang-Mills 
ase
orresponds to the so-
alled D-terms. The gauge �elds are provided by ve
tor multiplets andthe omni-present graviphoton from the gravity multiplet. Gauged isometries be
ome lo
al inthe spa
e-time sense.In this subse
tion we 
onsider only Abelian isometries as the general 
ase is not given in theliterature. We gauge only hypermultiplets; gauging of ve
tor multiplets is also possible, but wedo not utilize that 
onstru
tion in this thesis.Isometries that preserve the quaternioni
 stru
ture of MH are generated by the Killingve
tors satisfying the Killing equation rukv + rvku = 0, whi
h 
an be solved in terms of afun
tion PAB 
alled the prepotential:kuiKuv = �vPi + [!v;Pi℄ (2.9)Spa
e-time derivatives a
ting on the hypermultiplet s
alars must be repla
ed with 
ovariantderivatives: ��qu ! D�qu � ��qu + gAi�kui (2.10)Derivatives a
ting on the fermions have to be modi�ed as well, and those modi�
ations are allsummarized in the next subse
tion.The most signi�
ant aspe
t of gauging is the fa
t that it introdu
es, otherwise absent,potential for the s
alar �elds:V = �2GijtrP iPj + 4bibjtrP iPj + 12bibjhuvkui kvj (2.11)In the absen
e of potentials the simplest solution to the equations of motion of the 5d super-gravity is the 
at Minkowski spa
e. Compa
ti�
ation to 4d on su
h ba
kground is analogousto the standard Kaluza-Klein pro
edure. It does not break any of the supersymmetry andyields N=2 supergravity in four dimensions. Non-trivial potentials generi
ally forbid 
at spa
esolutions. The simplest solution are then so-
alled BPS solutions whi
h preseve exa
tly onehalf of supersymmetries. The solutions preserving 4d Poin
ar�e invarian
e usually depend onthe �fth, transverse 
oordinate; this is not 
ompatible with the standard Kaluza-Klein ansatzand makes the pro
ess of 
ompa
ti�
ation less straightforward. One spe
i�
 example of su
hpro
edure will be thoroughly studied in se
tion 5.Another interesting aspe
t of gauging is that fermion mass-like terms appear in the la-grangian. At �rst sight, this may seem strange, for graviton remains massless and one of the
ommon opinions about supersymmetry is that it requires the same masses for ea
h memberof a supermultiplet. But the above statement is true only for the 
ase of supersymmetry in the
at spa
e. Thus, the fermion mass terms are another indi
ation that we should not expe
t 
atspa
e solutions in gauged supergravities. 16



2.2.4 The �nal form of the a
tion and supersymmetry transforma-tionsIn this se
tion we present the general a
tion up to four-fermi terms and supersymmetry trans-formation up to three-fermi terms of �ve-dimensional N=2 gauged supergravity with gaugedAbelian isometries of the hypermultiplet manifold .The a
tion is given by:S = ZM5 d5xe5�2 (Lkineti
 + Lfermi mass + Lfourfermi � g2V ) (2.12)Lkineti
 = �12R � 12 �A
��
D� 
 A � 12GijF i��F j�� � 112p2dijk���
Æ�Ai�F j�
F jÆ��12Gij��bi��bj � huvD�quD�qv � 12�Ax
�D��Ax � 12�a
�D��a+ i4p2( 
A
��
Æ Æ A + 2 �A �A � �Ax
���Ax � �a
���a)biF i�� + 12p2(�Ax 
�
�
 �A)bxiF i�
� i8p2(�Ax
���Ax)dijkbixbjyFk�� � i2(�Ax 
�
� �A)bxi ��bi + i(�a
�
� �A)V Aau D�qu (2.13)In the above formula nv ve
tor multiplet s
alars �x appear through nv+1 s
alars bi subje
tto the 
onstraint dijkbibjbk = 6; bix is short for �bi��x . V Aau denotes the vierbein of the quaternioni
manifoldMh, whi
h is 
onne
ted to the metri
 h through the formula:huv = V Aau V Bbv 
ab�AB (2.14)The gauge 
ovariant derivative a
ting on hypermultiplet s
alars is D�qu � ��qu + gAi�kui .We do not gauge ve
tor multiplets, so we have ordinary partial derivatives a
ting on the ve
tormultiplet s
alars 
ontained in bi �elds. The 
ovariant derivatives a
ting on fermion �elds are:D��a = r��a +D�qu�uab�b + gAi��ukvi V uAaVvAb�bD��Ax = r��Ax + ���y�xyz�Az +D�qu!uAB�Bx + gAi�PiAB�BxD� A� = r� A� +D�qu!uAB B� + gAi�PiAB B� (2.15)In these formulae, r denotes an ordinary spa
e-time 
ovariant derivative in
luding thespa
e-time spin 
onne
tion. The term involving ve
tor �elds Ai� is due to the gauging de-s
ribed in the previous subse
tion. The terms involving derivatives of s
alars are to render theexpression 
ovariant on the s
alar manifolds; these terms 
an be readily worked out by notingthat the SU(2) and Sp(2nh) indi
es are 
ontra
ted with the 
orresponding part of the spin
onne
tion , and the ve
tor index x is 
ontra
ted with the Christo�el 
onne
tion on the ve
tormultiplet manifold.The fermion mass terms are:Lfermi mass = � igp2biPABi  �A
�� �B + gp2bixPABi �xA
� �B + gp2V Au abikui �a
� �A+ig( 3p2dijkbixbjyPkAB + 3p2bixbjyGijbkPkAB)�xA�yB+ igp2V Aau bixkui �a�Ax � ig4p2V Aau V Bbv �ABbir[ukv℄i �a�b (2.16)As usually, we skip all four-fermion terms. We re
all that the potential V is given by:V = �2GijtrP iPj + 4bibjtrP iPj + 12bibjhuvkui kvj (2.17)17



Finally, we give the supersymmetry transformation laws. The supersymmetry parameter�A, like gravitino, is a Majorana symple
ti
 spinor and 
arries the R-symmetry SU(2) index.The three-fermion terms in the transformation laws of fermions are omitted:� Gravity multipletÆem� = 12�A
m �AÆ A� = D��A � i6p2(
 �
� � 4Æ��

)aiF i�
�A + igp23 biPABi 
��B (2.18)� Ve
tor multiplet + graviphotonÆAi� = � i2p2bi �A�A + 12p2bix�A
��AxÆ�Ax = bxi ( i2
���bi + 12p2
��F i��)�A + gp2bxi P iAB�BÆbi = � i2bix�A�Ax (2.19)� Hypermultiplet Æqu = i2V uAa�A�aÆ�a = �iV Aau 
�D�qu�A + g 1p2V Aau bikui �a (2.20)Note that only fermions re
eive 
orre
tions from gauging (always represented by the lastterm).2.3 Supergravity in four dimensionsIn this se
tion we follow 
losely the referen
e [17℄. In four dimensions the simplest (and the onlyphenomenologi
ally viable) supergravity theory is N=1 supergravity with four super
harges.The gravity multiplet 
ontains only two 
omponent �elds: spin 2 metri
 g�� and spin 3/2ve
tor spinor  �, whi
h in the 
ustomary formulation is subje
t to the Majorana 
ondition.The greek indi
es � � ... from the middle alphabet are four-dimensional and run over 0..3.As in �ve dimension, s
alar �elds and their superpartners 
an be 
oupled to the four di-mensional gravity multiplet. In four dimensions a s
alar multiplet 
ontains a spin 0 
omplexs
alar �eld zi and its spin 1/2 fermion superpartner �i; the index i 
ounts the number of s
alarmultiplets . The 
omplete lagrangian is determined by the kineti
 terms of the s
alars whi
h
an be written in terms of a sigma model metri
, also in this 
ase having the geometri
al inter-pretation. This time s
alar �elds parametrize a 
omplex manifold of the K�ahler type, and thekineti
 terms are determined by the K�ahler manifold metri
. For our purpose it is importantto know that this metri
 
an be expressed in terms of a K�ahler potential K:gij = � ��zi ��zjK(z; z�) (2.21)18



Even without gauging we 
an have a potential for s
alar �elds whi
h 
an be des
ribed in termsof a holomorphi
 fun
tion W 
alled the superpotential. It is usufel to de�ne:G = �K � ln(jW j2) (2.22)In this subse
tion we put the 4d Plan
k s
ale equal to one. Contrary to the 5d 
ase, in fourdimensions we 
an 
an introdu
e a Yang-Mills supermultiplet whi
h 
ontains a spin 1 ve
tor�eld Aa� and a spin 1/2 gaugino �a, both in the adjoint representation of the gauge group (a isthe group index). Gauge multiplets 
an be 
oupled to 4d supergravity and the s
alar multipletstransform in some representation of the gauge group. The basi
 fun
tion whi
h determines the
oupling is the gauge kineti
 fun
tion fab. It is a holomorphi
 fun
tion of z. The kineti
 termsof the gauge �elds are: Lgkin = �14RefabF a��F b�� (2.23)The 4d supergravity a
tion 
onsists of the following terms:S4 = 1�2 Z d4xe4(LBkin + Lpot + LD + LFkin + LFmass + L4fermi) (2.24)The determinant of the 4d vierbein is denoted e4. The bosoni
 kineti
 terms are:LBkin = �12R +GijD�ziD�z�j � 14RefabF a��F b�� � 14ImfabF a�� ~F b�� (2.25)The notation we use is Gi = �G�zi ,Gj = �G�(zj)� , and so on. Note the axion type 
ouplingsdetermined by the imaginary part of the gauge kineti
 fun
tion f .The potential part is: Lpot = exp(�G)(3 +Gk(G�1)klGl) (2.26)Whenever s
alars are 
harged under gauge symmetries, the so-
alled D-terms arise.LD = �12 g2Refab (GiT aji zj)(GkT blk zl) (2.27)The fermion kineti
 part of the lagrangian is:LFkin = �12 �
���D� � +Gij�i
�D��j+14Refab(��a
�D��b + 12�a
�
�� �F b�� � 12�aR
��bRGiD�zi)+18�a
5
��bD�Imfab � 14f iab�Ri
���bLF a�� + 18 �
5
��� �GiD�zi�Gji R�
�
��LjD�z�i � (Gijk + 12GikGj)�Ri
��kLD�zj (2.28)The terms des
ribed as 'fermi mass' 
ontain intera
tions bilinear in fermion �elds and poly-nomial in s
alar �elds. They be
ome real mass terms only when s
alars develop va
uum ex-pe
tation values: LFmass = 12e�G=2 L�
�� R� + 14e�G=2Gl(G�1)kl f �abk�aL�bR+e�G=2(Gij �GiGj �Gl(G�1)klGijk )�Ri�Lj � e�G=2Gi L�
��Li�12 igGiT aji zj R�
��aR + 2igGjiT akj zk�aL�iR + 12 ig(Ref)�1ab f b
kGiT aji zj�Rk�
L (2.29)19



The supersymmetry transformation laws are:Æem� = 12�
m �Æ L� = D��L + 12e�G=2
��R � 14�L(GiD�zi �GiD�z�i)� 116(2g�� � 
��)�L�a
5
��bfab + : : :ÆAa� = �12�
��aÆ�aR = �14
���RF a�� ig2 Ref�1ab GiT bji zj�R + : : :Æzi = �R�LiÆ�Li = 12
�D�zi�R � 12e�G=2(G�1)jiGj�L � 18�L(G�1)ki f �abk�aL�aR (2.30)We skipped all three-fermi terms ex
ept for those involving gaugino bilinears whi
h will beimportant in further dis
ussions.
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Chapter 3Horava-Witten modelAt the time when Horava and Witten 
onstru
ted their model, the 
ommon opinion was thatthe only phenomenologi
ally viable string theory is the E8 � E8 heteroti
 superstring theory.To understand the motivation of the authors we must �rst brie
y re
all the basi
 features oflow energy theories derived from the heteroti
 superstring theories.In the low energy limit (that is below the Plan
k s
ale) the weakly 
oupled E8 � E8 het-eroti
 string theory redu
es to the 10d Type I supergravity 
oupled to one E8�E8 Yang-Millsmultiplet. To make 
onta
t with the real world this theory is further 
ompa
ti�ed to fourdimensions on the ba
kground M4 � K, where M4 is the non-
ompa
t spa
e where we live,and K is a 
ompa
t six dimensional manifold. The number of super
harges of the Type I 10dsupergravity is 16 and 
orresponds to N=4 supersymmetry in 4d. However, if supersymmetry isrelevant to our TeV s
ale world it 
an be at most N=1 supersymmetry, so the 
ompa
ti�
ationmust somehow break the remaining supersymmetries. This 
an be a
hieved by 
hoosing for Ka 
omplex K�ahler Ri

i-
at manifold of SU(3) holonomy known as the Calabi-Yau three-fold.On
e we de
ide on the Calabi-Yau manifold, we obtain a number of remarkable predi
tions
on
erning the four-dimensional e�e
tive theory:1. If we want (for 
osmologi
al reasons) the non-
ompa
t part of the ba
kground M4 to bemaximally symmetri
, then by �eld equations it is ne
essarily the Minkowski 
at spa
e(de Sitter and anti-de Sitter spa
es are ex
luded); thus string theory 
an in prin
ipleprovide us with the explanation of the observed 
atness of the universe.2. The simplest 
hoi
e of the va
uum expe
tation value for the gauge �elds whi
h satis�es theequations of motions (pre
isely - the Bian
hi identity of the two-form �eld) breaks the E8gauge group to E6. The ex
eptional group E6 was proposed for the Grand Uni�ed Grouplong before the advent of the string phenomenolgy. It has a 
omplex representation 27whi
h 
an a

omodate one generation of the Standard Model �elds. The 
ompa
ti�
ationpredi
ts a number of supermultiplets in this representsation. Moreover, E6 
ontainsSO(10) and SU(5) as its subgroups so it 
an be broken to more standard and thoroughlyinvestigated GUT groups.3. Generi
ally, we get more than one 
opy of massless 27 (whi
h be
ome massive onlyafter supersymmetry breakdown and their masses are of the order of the ele
troweaks
ale). Thus, we have a natural explanation of the existen
e of generations in the SM.The predi
ted number of generations in the low energy world is one half of the Euler
hara
teristi
 of the Calabi-Yau three-fold and so the a
tual number of generations 
anbe understood on stri
tly topologi
al grounds.aaaaaa21



4. On
e we 
hoose to pla
e the SM matter in the representations of E6 we automati
allyget extra matter from the se
ond E8 se
tor whi
h 
ouples only gravitationally to theobservable parti
les; in other words we automati
ally get the so-
alled hidden se
tor - themost popular me
hanism of supersymmetry breaking in realisti
 model-building5. The 
ompa
ti�
ation universally yields also an axion so, in prin
iple, we are able to solvethe strong CP problem.The impresive su

ess of the heteroti
 string theory was shadowed by one disturbing fa
t: thegravitational and gauge 
oupling did not unify at the GUT s
ale but rather at a s
ale an orderof magnitude higher. Imposing the uni�
ation at the GUT s
ale required the string 
oupling
onstant mu
h bigger than one and thus out of the range in whi
h perturbative 
al
ulationsin string theory 
ould make any sense (note that string theories are formulated only perturba-tively).Shortly before the Horava-Witten model was 
onstru
ted the unexpe
ted relations (duali-ties) between various string theories had been dis
overed. It be
ame 
lear that taking the limitof large (aproa
hing in�nity) string 
oupling 
onstant 
ould lead to another theory whi
h wasnot ne
essarily a string theory. At that time it was known e.g. that the strong 
oupling limit ofthe type IIA superstring theory is an eleven dimensional theory provisionally named M-theory.Horava andWitten took seriously the message stemming from the (la
k of) gauge-gravitationaluni�
ation and 
onsidered the strong 
oupling limit of the E8�E8 heteroti
 superstring theory.They 
onje
tured [2℄ that in this limit one got M-theory 
ompa
ti�ed on M10 � S1=Z2 , whereM10 is a smooth 10d manifold and S1=Z2 is equivalent to the interval. In the low energy limitM-theory redu
es to 11d supergravity. Thus, the strong 
oupling limit of the E8 � E8 het-eroti
 string theory should 
orrespond to eleven dimensional supergravity on a manifold withboundaries. This 
onje
ture 
an be the starting point for phenomenologi
al 
onsiderations.What happens to gauge group present in the weakly 
oupled limit? Contrary to the ten-dimensional 
ase, there is no Yang-Mills supermultiplet in eleven dimensions, but in the Horava-Witten model we still have ten-dimensional boundaries of the interval at our disposal. Horavaand Witten found [3℄ that the 
onsisten
y of the model (pre
isely - the anomaly 
an
ellation)requires one YM supermultiplet in the adjoint of E8 at ea
h end of the interval. In a sense,the E8 � E8 of the weakly 
oupled limit is 
ut in two parts. The size �� of the eleventhdimension 
an be shown to 
orrespond to the strength of the string 
oupling; taking the limit�! 0 redu
es the Horava-Witten model ba
k to the ten-dimensional des
ription of the weakly
oupled 
ase and the two E8 fa
tors merge together.Though it was not 
lear from the begining whether a theory in whi
h part of the �elds residedon a lower-dimensional manifold 
ould be 
onsistently supersymmetrized, Horava and Wittenshowed [3℄ by the dire
t 
onstru
tion, that supersymmetrization was possible. One 
an expe
tthe supersymmetry of the string theory to survive in the strong 
oupling limit, whi
h makessupersymmetrization of the Horava-Witten model a non-trivial test of the 
onsisten
y of theentire set-up. In the 
ase of supergravities on smooth manifolds we 
an 
lassify possible theoriesand �eld representations by means of the so-
alled tensor 
al
ulus. In the 
ase of the Horava-Witten model, due to the presen
e of boundaries the 
ommutation relations be
ome singularand the tensor 
al
ulus does not work. So far a general formulation of lo
ally supersymmetri
theories with matter residing on submanifolds has not appeared.The pro
edure applied by Horava and Witten in order to 
ouple the Yang-Mills supermul-tiplet is known as the Noether method. The idea is to start with a globally supersymmetri
theory lagrangian. To promote this symmetry to a lo
al one, new terms are iteratively added22



to the lagrangian and to the transformation laws. At ea
h step the lagrangian is varied andthe modi�
ations of the lagrangian and supersymmetry transformations needed to 
an
el thevariation are guessed. It is not guaranteed that the pro
edure ends in �nite time, but if the
oupling is possible one usually needs only a few steps.3.1 11d supergravity on M10 � S1=Z2Before pro
eeding we must �rst de�ne our 11d supergravity on the manifold of whi
h onedimension (say, the eleventh) is an interval. M10�S1=Z2 is essentially a manifold with boundaryand we should spe
ify the appropriate boundary 
onditions for the eleven-dimensional �elds.However, there is a more 
onvenient way to deal with this problem. In the following, we workwith �elds de�ned on the smooth manifold M10 � S1 and impose a Z2 symmetry on the �eldsof 11d supergravity.We parametrize the 
ir
le S1 with the 
oordinate x11 whi
h extends from ��� to �� and weidentify the endpoints. The Z2 parity a
ts by x11 ! �x11. The �xed points of this symmetryoperation are ten-dimensional hypersurfa
es x11 = 0 and x11 = �� where the gauge �elds arelo
ated. Eleven dimensional �elds 
an be even (�(x11) = �(�x11)) or odd (�(x11) = ��(�x11))under Z2 . Note that the odd �elds must either vanish or be dis
ontinuous at the �xed points,hen
e they are not dynami
al �elds on the submanifolds where the gauge �elds live. Z2 takes�11 into ��11 so the eleventh derivative reverses the parity assignments.We require Z2 to be the symmetry of the eleven dimensional a
tion. In the following wesingle out ten dimensonal indi
es (0..9) whi
h are denoted with latin letters from the beginningof the alphabet A,B,... We de�ne gAB to be even so that the ten-dimensional part of the metri
is dynami
al at the �xed points; all the subsequent parity assignments follow from this 
hoi
e.The Ri

i s
alar R 
ontains the eleventh derivative of gA11 so those 
omponents must be odd.The similar reasoning leads to g11 11 being even: R 
ontains either two or no eleventh derivativesof this 
omponent of the metri
. Equivalently, in the vielbein language eaA and e1111 are even ande11A and ea11 are odd. In summary, the metri
 
omponents whi
h 
ontain odd number of '11' areodd.The parity assignments of the three-form �eld C follow from the 'topologi
al' term in thea
tion �I1::I11CI1::I3GI4::I7GI8::I11 . Let us suppose I1 = 11 (thus the remaining indi
es areten dimensional; otherwise the Levi-Civita tensor is zero). The two �eld strengths GABCDmultiplied by ea
h other are even, whatever parity is 
hosen for a single GABCD. Then thewhole expression is Z2 invariant only when we 
hose C11AB even and it follows that G11ABCmust be even. Next, the invarian
e of the kineti
 term G11ABCG11ABC together with the fa
tthat g11A is odd requires that GABCD is odd. In summary, an odd number of '11' in C or Gmeans that this 
omponent is even.A little less straightforward is the a
tion of Z2 on gravitinos. Consider the intera
tion term J�KL MGJKLM . From the previously obtained Z2 assignments of G it follows that  A�B11 Cis even and  A�BC D is odd. This is possible only if  A(x11) = �11 A(�x11). Then the formerexpression: A(x11)�B11 C(x11) = �11 A(�x11)�B11�11 C(�x11) = � A(�x11)�11�B11�11 C(�x11)=  A(�x11)�B11 C(�x11)is indeed even as one must anti-
ommute on
e with �B to anihilate two �11's. Similarly the latterexpression is odd as one must anti-
ommute twi
e. Analogous reasoning leads to  11(x11) =23



��11 11(�x11).If we want the supersymmetry transformations to 
ommute with Z2 we must also asignthe 
orre
t Z2 parity to the supersymmetry transformation parameter �. From the gravitinotransformation law Æ A = DA� + ::: we 
an read o� that the parity assignment of � must bethe same as that of the ten-dimensional 
omponents of the gravitino: �11�(x11) = �(�x11)One 
an easily 
he
k that with this assignments the rest of the terms in the 11d supergravitylagrangian as well as the supersymmetry transformation laws are Z2 invariant. Below wesummarize the Z2 properties of the 11d �elds:even oddeaA; e1111 e11A ; ea11C11AB; G11ABC CABC ; GABCD (3.1)�11 A(x11) =  A(�x11)�11 11(x11) = � 11(�x11)�11�(x11) = �(�x11) (3.2)3.2 Coupling 10d Yang-Mills supermultiplet to 11d su-pergravityIn this subse
tion we review the Horava-Witten 
onstru
tion following the referen
e [3℄. Westart with the 11d supergravity lagrangian given in (2.1). We know that this lagrangian pos-sesses lo
al supersymmetry and the supersymmetry transformations are given in (2.3). Nexta perturbation 
onsisting of a 10d ve
tor supermultiplet in the adjoint representation of E8 atea
h �xed point is added. In the folowing, the gauge group will not be important and the super-symmetri
 
oupling is possible for any group. We 
on
entrate only on the brane at x5 = 0; themodi�
ations required on the se
ond brane are identi
al. Following the standard terminologywe will 
all the interior of the 11d spa
e the 'bulk' and the boundaries will be des
ribed as the'branes'.Ten dimensional gauge supermultiplet 
ontains gauge �elds AaA and gauginos �a. The latinindi
es A,B,... are ten dimensional and run over values 0..9. a is a group index whi
h weoften suppress (it should not be 
onfused with the Sp(2nh) index of 5d symple
ti
 Majoranaspinors). In ten dimensions we 
an de�ne spinors whi
h satisfy both the Majorana and theWeyl 
onditions. The gaugino � is su
h a Majorana-Weyl spinor with de�nite 
hirality andsatis�es �11� = �. We add to the 11d supergravity a
tion the kineti
 terms for the gaugemultiplet: SYM = 1�2 ZM11 d11xe11Æ(x11)LYMLYM = �14F a��F ��a � 12�a�ADA�a (3.3)Classi
ally, � is a free parameter - the gauge 
oupling of E8. However gravitational and gaugeanomalies 
an
el out only if � is related to the gravitational 
oupling by the formula [3℄:�2 = 2�(4��2)2=3 (3.4)24



Note that the bulk a
tion is multiplied by 1=�2 and the boundary a
tion by 1=�2 � 1=�4=3.Thus the boundary a
tion 
an be 
onsidered a �rst order perturbation in �2=3. The relation 3.4
an be qualitatively established on the basis of the dimensional analysis, as � has dimension(mass)�3 and � - (mass)�9=2; the anomaly 
an
ellation analysis gives just the pre
ise form ofthis relation.The delta fun
tion is de�ned 
ovariantly:ZM11 d11xe11Æ(x11) = ZM10 d10xe10 (3.5)where M10 is the hypersurfa
e x11 = 0 inM11 and e10 is built from the ten dimensional 
ompo-nents of the vielbein. The above super-Yang-Mills lagrangian possesses global supersymmetryand the supersymmetry transformations are:ÆAaA = 12(��A�a)Æ�a = �14�AB�F aAB (3.6)Interestingly enough, the super-Yang-Mills a
tion exists only in 3, 4, 6 and 10 dimensions. Theform of the a
tion is always the same (but of 
ourse the dimensionality of spinors and gammamatri
es must be appropriate for a given spa
e-time dimension).The spinor parameter � is Majorana-Weyl. It is 
ru
ial for the whole 
onstru
tion toidentify � with the parameter of the lo
al supersymmetry transformations in 11d supergravity.Although in eleven dimensions we 
annot impose the Weyl 
ondition (su
h 
ondition would notbe invariant under general 
oordinate transformations as �11 is one of the matri
es of the 11dCli�ord algebra), enfor
ing the Z2 symmetry �11�(x11) = �(�x11) has the e�e
t that at the�xed point the 11d parameter � indeed satis�es the Weyl 
ondition �11� = �.We 
ompute the variation of the lagrangian (3.3) using the transformations (3.6) with a gen-eral x-dependent parameter �. The variation of the gauge kineti
 term F 2 yields� e2FABD[A(��B℄�)while the variation of the gaugino kineti
 term yields e4FAB(��AB�CDC�). Together they sumto ÆLYM = � e4FAB[DC(�(��AB�C + �ABC)�) + (��AB�CDC�)℄= e4 [FAB(DC��AB�C�) + FABDC(��ABC�)℄= e4FAB(DC��AB�C�) (3.7)In the �rst line the gamma matri
es identity ��AB�C + �ABC = �2gA[C�B℄ was used. Inthe last line we integrated by parts (this is allowed as the invarian
e of the a
tion requires thelagrangian to be invariant up to a total derivative) and used the Bian
hi identity for the �eldstrength D[AFBC℄ = 0.The variation (3.7) 
an be 
an
elled by adding a new term to the boundary lagrangian:LN = �e4( A
BC
A�)FBC (3.8)The part of the gravitino variation proportional to DA� in LN 
an
ells the variation of LYM .Note that in in the language of the 11d a
tion this term is multiplied by the delta fun
tion.This term is usually 
alled the Noether term. In fa
t, what we did was to 
ouple the Noether
urent (super
urrent) of a globally supersymmetri
 lagrangian to the gravitino, whi
h is the25



gauge �eld of supersymmetry [17℄, in analogy to what one does in lo
ally symmetri
 Yang-Millstheories.It turns out that more modi�
ations are needed. The hint is given by 
onsidering thevartiations of the form � F 2. These 
ome from varying the vielbein in the gauge kineti
 termand from varying gauginos in the Noether term. After some tedious manipulations one �ndsthat these variations do not 
an
el by themselves. What is left is:ÆL = e16 A�ABCDE�FBCFDE (3.9)The situation is remines
ent of what we en
ounter in 10d supergravity. There, the identi
al
al
ulations yield the same result and to 
an
el the variations of the form � F 2 one is for
ed tomodify the Bian
hi identity for the three-form �eld strength. In the framework of the Horava-Witten model we do not have any form �elds on the boundary, but we have the four-form�eld strength G in the bulk. Therefore, the natural idea is to 
an
el the above variation bymodifying the Bian
hi identity for G. It turns out that the 
orre
t solution is to repla
e G inthe bulk lagrangian with: Ĝ11ABC = G11ABC + �2p2�2 Æ(x11)!ABC (3.10)where ! is the Chern-Simons form satisfying:�[A!BCD℄ = 6F a[ABF aCD℄ (3.11)Another way to des
ribe the above 
orre
tions is to say that the Bian
hi identity for the modi�edfour-form �eld strength reads:(dG)11ABCD = �3p2�2�2 Æ(x11)F a[ABF aCD℄ (3.12)What is the me
hanism to 
an
el (3.9)? When we vary the 11d bulk lagrangian, we must 
he
k,in parti
ular, if the variations of the form � G 
an
el. Varying the gravitino kineti
 term and
onsidering the part of the gravitino transformation law proportional to G, we get an expressionof the form: ÆL =  A(Gamma0s)DB(�G11CDE) (3.13)When the derivative a
ts on the spinor � the variations 
an
el with the variations of gravitnoproportional toDA� in the  2G terms. In the pure 11d supergravity, the part with the derivativea
ting on G is identi
ally zero due to the Bian
hi identity dG=0. If the Bian
hi identity ismodi�ed as in (3.12) the derivative a
ting on G 
ontributes to the variation and pre
isely
an
els (3:9).Rede�nition of the �eld strength G must be supplemented by the modi�
ation of the su-persymmetry transformation law of G by a term:+ÆĜ11ABC = 3�2p2�2 Æ(x11)��[A�FBC℄ (3.14)It should be stressed that the modi�
ation of the Bian
hi identity is just a 
onvienent and
ompa
t way of saying that we add new boundary 
ouplings. In the 
ase at hand we 
ouplethe bulk �eld C to the polynomial built of the boundary gauge �elds.26



Another ne
essary boundary 
oupling 
an be determined by 
onsidering variations of theform ��GF whi
h originate from variation of  proportional to G in the Noether term andfrom variation of Ĝ proportional to F in the kineti
 term of G. These two variations do not
an
el and the left-over is: ÆL = �p2e96 ��BC�DEF�FBCGDEF11 (3.15)It is easy to see that to 
an
el the above a new term in the boundary lagrangian is needed:+L = p2e48 ��DEF�GDEF11 (3.16)The YM variation (3.6) of the gauginos is enough to ensure that variatons of the form ��FGindeed 
an
el out.The remaining 
orre
tions are four-fermi terms in the boundary lagrangian and three-fermiterms in the supersymmetry transformation laws. Although, to have 
on�den
e in the theoryit is very important to show that supersymmeti
 variation of the a
tion indeed vanishes afteradding these 
orre
tions, the a
tual 
al
ulations is tedious and not very spe
ta
ular. Therefore,we 
on
entrate only on a few interesting aspe
ts of this 
al
ulation, whi
h will be important inthe following se
tions.First, we shall take a 
loser look at modi�
ations of the gravitino transformation law. They
an be determined from the study of 4-fermi variations of the form D ���. They do not 
an
elby themselves and the gravitino transformation law must be supplemented with:+Æ A = � �2288�2 Æ(x11)(��BCD�)(�ABCD � 6gBA�CD)�+Æ 11 = � �2288�2 Æ(x11)(��ABC�)�ABC� (3.17)The obje
t of interest here is the delta fun
tion. It must be present, sin
e the variations wewant to 
an
el are on the boundary and we vary the gravitino kineti
 term whi
h lives in thebulk. But this may 
ause troubles. We have already gravitno intera
tions on the boundary (theNoether term) and su
h terms in the 11d a
tion are already proportional to the delta fun
tion.If we vary gravitino entering the boundary terms (3.17) we get singular variations whi
h areformally proportional to the delta squared. Even worse, su
h singular variations do not 
an
elout. Sin
e, su
h variations are proportional to �4�4 (w.r.t to the bulk a
tion) we have to admitthat the Horava-Witten model is valid only to the �rst order in perturbation in �2�2 � �2=3.Nevertheless, we 
an try to 
an
el at least some of the variations of order �4�4 . For example(3.17) in the Noether term and variation of Ĝ in the G�� intera
tion yield:ÆS = � Z d11xe11Æ2(x11) �21536�4 (��ABC�)(��ABC�DE�)FDE (3.18)whi
h 
an be easily 
an
elled by varying the gaugino in the new singular, quarti
 in gauginosintera
tion: +S = � Z d11xe11Æ2(x11) �21536�4 (��ABC�)(��ABC�) (3.19)An interesting observation is that this singular term is a part of a 'perfe
t square'. The situationis similar to what one en
ounters in ten-dimensional supergravity, where gauginos group into27



a perfe
t square (H + ��)2 with the three-form �eld strength (of 
ourse, in 10d there are nosingular terms). In the Horava-Witten model, gauginos 
ombine into the perfe
t square withthe four-form �eld strength G. The bulk kineti
 term of G, the boundary intera
tion G�� andthe singular term �4 
an be written as:Sps = � Z d11xe11 148(GABC11 � p2�28�2 Æ(x11)��ABC�)2 (3.20)This form suggests, that we 
ould formally get rid of the divergent term by rede�ning the�eld strentgh G. Thus, we 
an trust, that in spite of the singularities, the Horava-Witten modelis a sensible theory. Later we will see that singularities indeed drop out from the e�e
tivefour-dimensional theory.3.3 Higher derivative 
orre
tionsThe derivations of the previous subse
tion were limited to terms whi
h are at most se
ondorder in derivatives. However, plenty of physi
s is 
ontained in higher derivative intera
tions.To avoid gravitational and gauge anomalies we must in
lude terms proportional to R4 and F 4in the a
tion [3℄. The pre
ise form of these terms will not 
on
ern us in this thesis but thereare two 
orre
ions to the lagrangian whi
h will be important in the following dis
ussions.First, we found that the Bian
hi identity for the four-form �eld strength G must be mod-i�ed modi�ed. Anomaly 
an
ellation analysis introdu
es further, higher order in derivatives
orre
tions, so that the Bian
hi identity reads (up to �4�4 terms):(dG)11ABCD = �3p2�2�2 [(F (1)[ABF (1)CD℄�12 tr(R[ABRCD℄)Æ(x11)+(F (2)[ABF (2)CD℄�12 trRABRCD)Æ(x11���)℄(3.21)Note the fa
tors 1/2 appearing in front of the tra
es of the 
urvature tensor, whi
h will be
ru
ial in the subsequent dis
ussion, be
ause they forbid va
uum solutions with G=0.The se
ond modi�
ation we mention is the boundary term involving the 
urvature, so thatthe bosoni
 part of the boundary lagrangian reads:LYM = � e4�2 (F (1)ABF (1)AB � 12RABCDRABCD) (3.22)and similar terms are added on the se
ond brane. This modi�
ation will be helpful to determinethe boundary s
alar potential in the low energy theory.3.4 Compa
ti�
ation to �ve dimensionsIf theory is to des
ribe our physi
al world, it has to redu
e to a four dimensional e�e
tive �eldtheory at low energies. But the 
ompa
ti�
ation does not have to pro
eed in one step; theremay exist some intermediate s
ale, at whi
h the theory 
an e�e
tively be formulated in morethan four dimensions. This is the 
ase with the Horava-Witten model in an interesting regionof its parameter spa
e. To obtain the uni�
ation of gauge and gravitational 
ouplings, thesize of the eleventh (orbifold) dimension must be about an order of magnitude larger that the
hara
teristi
 length of the remaining six 
ompa
t dimensions. Thus, just below the Plan
ks
ale, the Horava-Witten model is des
ribed by a �ve dimensional theory.28



Generally, to obtain a low energy e�e
tive theory one has to perform the Kaluza-Kleinredu
tion. The extensive introdu
tion to KK redu
tion in the 
ontext of string theories 
anbe found in [27℄ and here we present only the most important key-words. We assume that theba
kground manifold on whi
h we 
ompa
tify is a dire
t produ
t M � K, where M is non-
ompa
t and parametrized with 
oordinates x and K is a 
ompa
t manifold with 
oordinates y.We write the �elds 	 of the original theory as a sum 	(x; y) = Pn �n(x)�n(y). The equationsof motion �	 = 0 of the original theory split into:(�M +�K)�(x)�(y) = 0 (3.23)The lapla
ian � has a di�erent meaning depending on the 
ontext; if 	 is a s
alar �eld it is anordinary lapla
ian, if 	 is a spinor it is the Dira
 operator. We demand that the �elds � areeigenve
tors of the lapla
ian �K on the manifold K with eigenvalue m2n. Then the equationsof motion take the form: (�M +m2n)�n = 0 (3.24)The linear independen
e of eigenve
tors of the lapla
ian was used. This is the equation of motionfor a �eld �n with mass mn. Thus, in the e�e
ive theory we get a tower of �elds with masses
orresponding to the eigenvalues of �K . On dimensional grounds we expe
t that generi
 massesare proportional to 1/R where R is the 
hara
teristi
 length s
ale of K. For phenomenologi
allyviable values of R, these masses are huge and the 
orresponing �elds de
ouple from the lowenergy theory. The only �elds that remain in the e�e
tive des
ription 
orrespond to mn = 0, inother words, to the zero-modes of �K . Usually, massless �n are also 
alled zero-modes. Belowwe determine only the zero-modes of bosoni
 �elds; if our ba
kground preserves supersymmetry,the zero modes of fermioni
 �elds must �t in supermultiplets.As was already mentioned, the Horava-Witten model is the strong 
oupling limit of theheteroti
 E8�E8 string theory. Phenomenologi
ally promising 
ompa
ti�
ations of that stringtheory are obtained on ba
kgrounds of whi
h the 
ompa
t 
omponent is a six-dimensionalCalabi-Yau manifold. It is then reasonable to 
ompa
tify the Horava-Witten model on a Calabi-Yau three-fold. A Calabi-Yau three-fold breaks exa
tly one fourth of the supersymmetries. Inthe 
ase of heteroti
 strings we have a ten dimensional theory with 16 super
harges, so thee�e
tive theory is four dimensional and possesses N=1 supersymmetry (4 super
harges). TheHorava-Witten model is eleven dimensional and has 32 super
harges, so its 
ompa
ti�
ationon a Calabi-Yau three-fold yields a �ve dimensional theory with 8 super
harges. Su
h theoryis 
alled N=2 5d supergravity and was des
ribed in the se
tion 2.2.The pre
ise form of the �ve dimensional e�e
tive theory was found in [5℄. The ba
kgroundmetri
 is given by: ds2 = V �2=3g��(x)dx�dx� + gij(y)dyidyj (3.25)gij is the metri
 on the Calabi-Yau and V is the Calabu-Yau volume de�ned by V =RCY qdet(gij). The fa
tor V �2=3 is to ensure that the �ve-dimensional metri
 g�� has the
anoni
al Einstein-Hilbert a
tion (that is, the kineti
 term of the metri
 is �12R). We have
hanged the notation, so that the original eleventh dimension has be
ome the �fth.Having de
ided on the 
ompa
t Calabi-Yau manifold we still have 
ertain freedom in 
hoos-ing its parameters. The equations of motion do not restri
t these parameters so they 
orrespondto massless s
alar �elds in the e�e
tive theory. They are 
alled the moduli of the 
ompa
ti�-
ation.Every Calabi-Yau manifold is endowed with the K�ahler form !. This is a 
losed two-form(d! = 0, usually we 
hose d�w = 0, so that it is also harmoni
) with one holomorphi
 and29



one anti-holomorphi
 index, that is a (1,1) form in the terminology of 
omplex manifolds. Thenumber of independent harmoni
 (1,1) forms on a Calabi-Yau three-fold is arbitrary and is
hara
terized by the Hodge number h1;1. The K�ahler form is thus a linear 
ombination of h1;1forms: !a�b = ai!ia�b (3.26)Another 
hara
teristi
 parameter of a Calabi-Yau three-fold is the Hodge number h2;1. Inthe usual aproa
h to 
ompa
ti�
ation it is assumed that h2;1 = 0. If this number is non-zero,a number of hypermultiplets in the 5d theory appears, but their stru
ture is independent ofthe spe
i�
 features of the Horava-Witten model. The Calabi-Yau three-folds have no otherindependent Hodge numbers. We have h00 = h30 = h03 = 1 h22 = h11 and the remainig hab arezero.The ai's be
ome the dynami
al �elds in the e�e
tive theory. However they are not inde-pendent of V, as the Calabi-Yau volume 
an be expressed as V = 16 R ! ^ ! ^ !. We have therelation 6V = dijkaiajak (3.27)where the Calabi-Yau interse
tion numbers are de�ned as dijk = R !i^!j ^!k. Thus, the �eldsai together with V des
ribe only h1;1 independent degrees of freedom.We must also determine the zero-modes 
orresponding to the three-form �eld C. In the �rstorder in �2�2 its equations of motion are dG = d�G = 0 whi
h are trivially satis�ed by G=0=dC.The 11d three-form �eld C survives in the e�e
tive 5d theory as a one 5d three form �eld (whi
hby duality 
orresponds to one real pseudos
alar), h1;1 ve
tor �elds Ai� and one 
omplex s
alar�. If C is harmoni
 its various 
omponents 
an be de
omposed in the following way:C��
(x)C�a�b = 16Ai�(x)!ia�bCab
 = 16�(x)
ab
Cab
 = 16 ��(x)
ab
 (3.28)In the �rst line we used h00 = 1 (the unique harmoni
 (0,0) form is just a 
onstant), while thelast two lines result from h30 = h03 = 1 and 
 is the unique harmoni
 (3,0) form on Calabi-Yau.Let us summarize the bosoni
 spe
trum of the �ve dimensional e�e
tive theory obtainedby the 
ompa
ti�
ation of the bulk a
tion. We have the 5d metri
 g��, h1;1 ve
tor �elds Ai�,h1;1 real s
alars ai (whi
h are subje
t to the 
onstraint (3.27)) , three s
alars V, �, and �� anda three-form C��
 . Our task is to interpret them as 
omponenents of 5d supermultiplets.Obviously, the metri
 belongs to the gravitational multiplet. Due to the de�nition (3.25 ithas the 
orre
t Einstein-Hilbert kineti
 term �12R. To 
omplete the bosoni
 part we need agraviphoton. We have the ve
tors �elds A and we expe
t that the graviphoton is their linear
ombination. The pre
ise formula is 23biAi� but it is not so important as the formulation of 5dsupergravity we gave in the previous se
tion pla
es all ve
tor �elds on equal footing.Of 
ourse, we 
an have only one gravitational multiplet, so the remaining ve
tor �elds must�t in h1;1 � 1 ve
tor multiplets. To 
omplete the ve
tor multiplets we have s
alars ai. If wede�ne: bi = V �1=3ai (3.29)30



then the �elds bi represent h1;1 � 1 degrees of freedom and are subje
t to 
onstraint:K(b) � dijkbibjbk = 6 (3.30)This is exa
tly 
ompatible with the formulation of dynami
s of s
alars belonging to ve
tormultiplets we presented in subse
tion 2.2.1. In the general formulation the symmetri
 tensord is arbitrary, while in the 
ompa
ti�ed theory it a
quires an interpretation of the Calabi-Yauinterse
tion numbers.The metri
 of the sigma model des
ribing s
alars b 
an be expli
itly expressed in terms ofthe harmoni
 forms on the Calabi-Yau manifold:Gij = 12V ZCalabi�Y au !i ^ (�!j) (3.31)The fun
tions K and Gij given above are suÆ
ient to re
over the 
oupling of the ve
tor multi-plets to 5d supergravity, as des
ribed in subse
tion 2.2.1We are left with three s
alars and one three form whi
h is equivalent to a s
alar. As wehave no ve
tors left, the natural guess is that these four s
alar degrees of freedom belong toa hypermultiplet. This multiplet is usually 
alled the universal hypermultiplet as the abovementioned moduli arise in any 
ompa
ti
ation of M-theory on Calabi-Yau. After dualizing thethree form to a s
alar � by G��
Æ = 1p2���
Æ�(��� � i(����� � �����)) the kineti
 terms of thehypermultiplet s
alars read:Skin = � R d5xe5 12�2 ( 12V 2 (��V ��V + ������) + 2V ����� ��+ i2V 2 (�������� � ��������)� 12V 2 ((��� ��)2 + (�����)2 � j�����j2) ) (3.32)In the languag used in the se
tion 2.2 this sigma model 
orresponds to the K�ahler potential:K = �ln(S + �S � 2� ��)S = V + � �� + i�: (3.33)If the 
ompa
ti�
ation of the Horava-Witten model were the standard KK redu
tion, thiswould be the whole story. But in the 
onsistent redu
tion we are not allowed to negle
t theba
kground value of the four-form �eld strength G. The reason is that we must satisfy theBian
hi identity (3.21), and G = 0 does not solve it. Thus, 
ompa
ti�
ation with G = 0 is not
onsistent as the solutions the theory 
ompa
ti�ed with G = 0 would not be the solutions ofthe original theory.In the 
ase of the heteroti
 E8 � E8 string theory the situation is mu
h simpler. TheBian
hi identity for the three-form �eld strength H reads (dH)ABCD � F (1)[ABF (1)CD℄+F (2)[ABF (2)CD℄�trRABRCD. As the spin 
onne
tion and the 
urvature on Calabi-Yau are SU(3) matri
es, we 
anput them equal to the SU(3) subgroup of, say, the �rst E8 and the demand that the vevs of these
ond E8 se
tor are equal to zero. This is what is usually referred to as the standard embedding.Then the Bian
hi identity redu
es to dH=0, the solution H=0 is perfe
tly legitimate, and the
ompa
ti�
ation is the standard KK redu
tion.In the 
ase of the Horava-Witten model, be
ause of the unfortunate fa
tor 1/2, there is nopossibility to 
an
el the right-hand side of the Bian
hi identity. However we 
an still keep thestandard embedding: trF (1) ^ F (1) = trR ^ RF (2) = 0 (3.34)31



The Bian
hi identity redu
es in this 
ase to(dG)11ABCD = �3p2 �22�2 [trR[ABRCD℄Æ(x5)� trR[ABRCD℄Æ(x5 � ��)℄ (3.35)Its right-hand side has non-zero delta fun
tion sour
es supported by the boundaries. Theequations of motion and the Bian
hi identity for G are now solved byGab
d = 14V �a�b
 �de �f!i e �f�i�(x5) (3.36)where the 
onstants �i are de�ned by the integrals:�i := ��2�2 ZCi trR ^R (3.37)over four-
y
le Ci 
orresponding to the harmoni
 !i. In 
onsequen
e, �i are proportional tothe Pontryagin index of Calabi-Yau and are quantized. The step fun
tion �(x5) takes values+1 for x5 2 (0; ��) and -1 for x5 2 (���; 0) .Taking into a
ount the non-zero ba
kround value of G essentially 
hanges the e�e
ive 5dtheory. Instead of the simple 5d supergravity we obtain its gauged version. Below we arguewhy the e�e
tive theory should be a gauged supergravity1. The non-zero G in the kineti
 term G2 in the 11d lagrangian leads in the e�e
ive theorythe potential term � 14V 2Gij�i�j. This term depends on the s
alar V and on the s
alars ofthe ve
tor multiplets (through the metri
 Gij). However, potentials for s
alar �elds aregenerally forbidden in ungauged 5d supergravities.2. Also on the boundaries, when we substitute the kineti
 terms� e4�2 (trF (1)ABF (1)AB�12trRABRAB)with their ba
kground values, we get the boundary potential p2V �ibi. In the next se
tionwe show, that supersymmetrization of su
h ba
kground potentials is possible only whenthe supergravity in the bulk is a gauged one.3. Redu
tion of the topologi
al term C�efG��
ÆGab
d yields the 
oupling of the form:1V 2�iAi���� (3.38)In ungauged supergravities ve
tor �elds do not 
ouple in this manner to s
alars but in thegauged version we re
ognize in (3.38) a part of the kineti
 term (D��)2 with the partialderivatives substituted with the 
ovariant derivatives. Hen
e, we see that the ve
tor�elds are the gauge �elds and that it is the �eld � of the universal hypermultiplet whi
hbe
omes gauged. From the kineti
 terms (3.32) we see that the sigma-model possessesa translational U(1) symmetry � ! � + 
onst, and in fa
t it is this symmetry whi
h isgauged.More detailed 
al
ulation proves that indeed all terms in the e�e
tive lagrangian �t into theframework presented in subse
tion 2.2.3. The fun
tions whi
h des
ribe the pre
ise form of thegauged lagrangian are:� Killing ve
tor ku = (0;�2; 0; 0) (3.39)32



� Prepotential gPAi B =  � 14V i�(x11)�i 00 14V i�(x11)�i ! (3.40)If instead of the standard embedding we used other solutions, the pre
ise form of gauging andthe above fun
tions would 
hange, but the general features of the e�e
tive theory would stayinta
t.This 
ompletes the des
ription of the e�e
tive bulk theory. We also have zero-modes of the10d boundary gauge �elds. We expe
t that they yield four dimensional gauge supermultipletsand some s
alar supermultiplets - their number and representation depends on the 
hoi
e of theembedding. In the next se
tion we determine the boundary theory using the Noether method,in the similar way as it was done in the original paper of Horava and Witten. One 
ould tryto obtain the boundary theory dire
tly from the redu
tion, but the method we use 
an beextended to more general �ve-dimensional theories with matter residing on branes, in
ludingtheories whi
h do not follow from the 
ompa
ti�
ation of a higher dimensional theory.
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Chapter 4Coupling of 5-dimensional supergravityto boundariesThe purpose of this se
tion is to repeat the Horava-Witten 
onstru
tion of supergravity 
oupledin a supersymmetri
 way to matter �elds on the boundaries, but this time, in the frameworkof �ve-dimensional supergravity de�ned on the M4 � S1=Z2 manifold and with YM multipletsliving on two 3-branes lo
ated at the Z2 �xed points. We restri
t ourselves to a spe
i�
 non-linear sigma model, namely the SU(2; 1)=(SU(2) � U(1)), 
oupled to 5d supergravity. Thesystem des
ribes the dynami
s of the universal moduli of the M-theory 
ompa
ti�
ation on aCalabi-Yau three-fold. In this se
tion we do not 
onsider ve
tor multiplets. It is not diÆ
ultto modify this 
onstru
tion to in
lude other multiplets.In the bulk theory we have the gravitational multiplet (ea�;  A;A�), and the universal hy-permultiplet (�a; V; �; �; �). We quote the kineti
 part of the 5d a
tion and write expli
itly thesigma-model metri
 and the symple
ti
 index of the Majorana spinors :S = � R d5xe5 1�2 ( � 12R + 34F��F�� + 12p2���
Æ�A�F�
FÆ� + 14V 2 (��V ��V + ������)+ 1V ����� �� + i4V 2 (�����D�� � �����D��)� 14V 2 ((�����)2 + (�����)2 � j�����j2)+(12 1�
��
D� 1
 + 1! 2) + (12�1
�D��1 + 1! 2) ) (4.1)The supersymmetry transformation laws are:Æem� = 12�1
m 1� + (1! 2)Æ 1� = D��1 � i4p2(
 �
� � 4Æ��

)F�
�1 + i4V D���1 + 14V (����� � �����)�1 � 1pV ����2Æ 2� = D��2 � i4p2(
 �
� � 4Æ��

)F�
�2 � i4V D���2 � 14V (��� �� � �����)�2 + 1pV �� ���1ÆA� = � i2p2 1��1 + (1! 2) (4.2)ÆV = ip2V (�1�1)� (1! 2)Æ� = + 1p2V (�1�1) + (1! 2) +qV2 (��1�2 � ���2�1)Æ� = � ipVp2 (�2�1) Æ�� = � ipVp2 (�1�2)Æ�1 = � i2p2V (�=(V + i�)� ���=� + ��=��)�1 + ip2V �=��2Æ�2 = + i2p2V (�=(V � i�) + ���=� � ��=��)�2 + ip2V �=���1 : (4.3)35



The Z2 proje
tion is de�ned in su
h a way that bosoni
 �elds (em� ; e55;A5; V; �) are even w.r.tthe orbifold dimension, and (em5 ; e5�;A�; �) are odd. The a
tion of Z2 on fermion �elds and onparameter � of supersymmetry transformations is de�ned as:
5 A� (x5) = (�3)A B B� (�x5) 
5 A5 (x5) = �(�3)A B B5 (�x5)
5�a(x5) = �(�3)a b�b(�x5) 
5�A(x5) = (�3)A B�B(�x5) (4.4)where 
5 = (�1 00 1); �3 = (1 00 �1) and A; a = 1; 2. Symple
ti
 Majorana spinors in 5d satisfy��A = (�A)TC5 with C5 = i
2
2
5 in 4d 
hiral representation. At the Z2 �xed points one half ofthe degrees of freedom is eliminated, whi
h means, that the number of super
harges is redu
edto one half. This leaves 4 super
harges 
orresponding to N=1 supersymmetry in 4d. Thuse�e
tively, at x5 = 0; x5 = ��, the se
ond supersymmetry is killed by Z2, and we 
an lo
ate3-branes with (
hiral) matter 
ontent 
hara
teristi
 for N=1 supersymmetry.It is 
onvenient to 
ombine two symple
ti
 Majorana spinors into one Majorana (in a fourdimensional sense) spinor even w.r.t to the �fth 
oordinate. We de�ne: � =   2L� 1R� !  5 =  � 1L5 2R5 ! � = p2V  �i�1Li�2R ! : (4.5)� =  �2L�1R ! : (4.6)These are the 
ombinations whi
h 
ouple to 4-dimensional spinors on the boundary. Usingthe above de�nitions we 
an re-express the �ve dimensional lagrangian (4.1) involving fermionsin terms of even (and odd) fermion 
ombinations. For example, the gravitino kineti
 term 
anbe expressed as �12( �
���D� �)+(odd). Sin
e, as already dis
ussed in 
hapter 3, the odd �eldsdo not 
ouple to the boundary, and we are interested in �nding supersymmetri
 
oupling to theboundary, we 
an negle
t the odd spinor 
ombinations and �elds in subsequent formulas. Thesupersymmetry transformations of the even bulk �elds expressed in terms of variables de�nedin (4.5) read: Æea� = 12(�
a �)Æe55 = 12(� 5)Æ � = D��� i2p2(
�� � 2g��)e55
5�F�5 � i4V ���
5�Æ 5 = �5�� � ip2
�
5�F�5 + 1pV (�5��L + �5 ���R)ÆA5 = i2p2( 5
5�)ÆV = 12(��)Æ� = i2(�
5�)Æ� = 12�=(V + i
5�)�+pV 1e55 (�5��L + �5 ���R) (4.7)Re
all, that the �fth derivative of an odd �eld is even. Thus, in the above transformation the�fth derivatives of � and ��L � ��1L, ��R � �2R should not be negle
ted.Our task is to 
ouple gauge and matter �elds on the boundary in su
h a way, that lo
alsupersymmetry is preserved. The strategy is similar to the one employed for the Horava-Wittenmodel; we start with a globally supersymmetri
 lagrangian and su

esively add new 
ouplingsto make the supersymmetry lo
al. It is impossible to give all the 
al
ulations leading to the36



�nal results in this thesis. Below we will present some sample 
al
ulations just to give a 
avourof what is going on but often we limit ourselves to presenting the �nal formulae without adis
ussion. The �nal form of the lagrangian 
an be found in the appendix.4.1 Pure 5d supergravity 
oupled to Yang-Mills super-multiplets on the braneWe now add matter on the boundary. It is 
onvenient to pro
eed in several steps. First, we
onsider only pure 5d supergravity and a Yang-Mills multiplet on the boundary. As long as wedo not adress the problem of anomalies, the gauge group is arbitrary. In the Horava-Wittenmodel 
ompa
ti�ed by using the standard embedding, the gauge group is E6 on one brane andE8 on the other.The a
tion of the four-dimensional super-Yang-Mills theory reads:S = Z d5xÆ(x5)e5 1g2LYMLYM = f [�14F a��F ��a � 12�aD=�a℄ (4.8)For the time being we keep the fa
tor f multiplying the kineti
 term unspe
i�ed. This a
tionis known to possess global supersymmetry and the transformations are:ÆAa� = �12(�
��a)Æ�a = 14
���F a�� (4.9)(Note the sign di�eren
e with respe
t to the 
onvention used in Chapter 3. We identify thespinor � parametrizing the Yang-Mills supersymmetry transformations with an even 
ombina-tion of 5d spinors, as de�ned in (4.5).The next few steps are 
ompletely analogous to the Horava-Witten model. If the abovetransformations are made lo
al, the supersymmetri
 variation of the YM a
tion is non-zero andis proportional to D�� is: ÆLYM = �e4F��(D��
��
��) (4.10)To 
an
el it, one is for
ed to add the so-
alled Noether term to the boundary a
tion:+L = fe4 ( �
��
��)F�� (4.11)When the gravitino in the Noether term is varied, the part of the gravitino transformation lawequal to D�� 
an
els ÆLYM . Sin
e we identi�ed � with the even 
ombination of 5d spinors, itis pre
isely the even 
ombination of 5d gravitinos  � given by (4.5) whi
h appears here.There is only one more term bilinear in fermion �elds that has to be added. Another partof the gravitino transformation law Æ � = � i2p2(
�� � 2g��)F�5, when applied to the Noetherterm yields:ÆLN = ief8p2e55 �
5(
�� � 2g��)
��
��F�5F�� = � 3ief8p2e55 �
5
��
��F�5F�� (4.12)37



The identities 
�� = 
�
� � g�� and 
�
��
� = 0 were used. This variation 
an be 
an
elledonly if we add a new term to to the boundary lagrangian.+L = 3i4p2 efe55 (�
5
��)F�5 (4.13)Varying the gaugino Æ� � 
��F�� 
an
els (4.12). Note that e55 appears expli
itly in the boundarylagrangian. It always a

ompanies the bulk �elds 
arrying the �fth world index, so that thea
tion is 
ovariant also from the 5d point of view.At this stage, one profound di�eren
e with respe
t to the Horava-Witten model appears.In the Horava-Witten model one �nds that after adding the Noether term, there exists a termin the variation of the Lagrangian proportional to F 2( �ABCDE�), whi
h does not 
an
el. Itspresen
e was the motivation to modify the Bian
hi identity for the 4-form G. Below we performthe 
orresponding 
al
ulation in the 5d framework and we �nd that the 
orresponding variationsdo 
an
el in the 4d 
ase. We need to 
he
k 
an
ellations of the variations proportional to F 2� .These originate from:1. Variation of the metri
 in the gauge kineti
 term:Lgkin = �ef4 g��g��F��F�� (4.14)Variations of the determinant and variations of the inverse metri
 are:Æe = eÆea�e�a = e2�
� � Æg�� = ��
(� �) (4.15)Hen
e the variation of the gauge kineti
 term yields:ÆLgkin = �ef4 (12�
� �F��F �� � 2�
(� �)F��F �� ) (4.16)2. Variation of the gaugino Æ� = 14
��F��� in the Noether term, whi
h yields:ÆLN = fe16( �
��
�
Æ��)F��FÆ� (4.17)To be able to 
ompare it with the previous variation one has to de
ompose the produ
tof gamma matri
es: 
��
�
Æ� =2
���g�Æ + 4
���g�Æ + 2
�Æ�g�� + 2
�g�Æg�� + 4
�g�Æg�� + 4
�g�Æg�� (4.18)The gamma matri
es with three indi
es vanish when 
ontra
ted with the gauge �eldstrength tensors: those with 
oeÆ
ient 2 
an
el against ea
h other and the one with
oeÆ
ient four vanishes when 
ontra
ted with the symmetri
 
ombination of the twogauge �eld strength tensors. The remainining three terms with a single gamma matrixyield:ÆLN = fe16 �(�2
�F ��F��+4
�F��F ��+4
�F ��F �� )� = fe4  �(�12
�F ��F��+2
�F��F ��)�(4.19)This indeed 
an
els with the variation of the gauge kineti
 term if the Majorana spinorsidentity �
� � = � �
�� is used. 38



Note that in this 
ase the 
al
ulation is almost the same as in the Horava-Witten model, butgamma matri
es antysymmetrized in �ve indi
es are trivially zero. Be
ause of that fa
t, thereis no un
an
elled variations proportional to F 2 left. Thus, having added the Noether term(4.11) and the term (4.12) we arrive at the lagrangian whi
h is already supersymmetri
 up to4-fermi variations.For supersymmetry variations to 
lose, one needs to add a 
olle
tion of four-fermi term, aswell as 3-fermi 
orre
tions to the supersymmetry variations of fermions. The analysis is oftenparallel to the 
ase of the ordinary 4d supergravity, as des
ribed in [10℄. The 
al
alution isvery tedious so instead of going through 
ompli
ated algebra we 
on
entrate only on the mostinteresting aspe
ts:1. The 
orre
tion to the gravitino transformation law:Æ � = Æ(x5)g2�2 f8 (g�� � 12
��)
5� (�a
5
��a) (4.20)has the delta fun
tion in front. This is ne
essary, be
ause the gravitino kineti
 term livesin �ve dimension, and this 
orre
tion must 
an
el the supersymmetri
 variation restri
tedto the boundary.2. One has to 
he
k the 
an
ellation of variations proportional to the �fth derivative of anodd bulk spinor (whi
h 
an be non-zero on the boundary). For example we have:ÆA� = � i2p2 1��1 + (1! 2)ÆF�5 = i2p2 1��5�1 + (1! 2) + : : :ÆL = 3i4p2 efe55 (�
5
��)ÆF�5 + : : : = �i 316 efe55 (�
5
��)( �R�5�1 +  �L�5�2) (4.21)To 
an
el (4.21) a term proportional to  5 has to be added:+L = 316 fe55 ( �
5 5)(�
5
��) (4.22)Varying Æ 5L = �iÆ 15 = �i�5�1, Æ 5R = iÆ 25 = i�5�2 
an
els (4.21).One 
an also 
he
k that variations proportional to the �fth derivative of the odd 
ombi-nation of the gravitino 
an
el.3. The four-gaugino term (present in 4d supergravity with the same numeri
al 
oeÆ
ient)is proportional to Æ2(x5). This is be
ause it should 
an
el the gravitino variation propor-tional to the gaugino �elds multiplied by the delta fun
tion, in the Noether term, whi
has a boundary term, is already proportional to the delta fun
tion. Using (4.20) we 
an
al
ulate ÆLN = � ef2�232g4 Æ(0)�
5(g�� � 12
��)
��
��F��(�
5
��)= �3ef2�264g4 Æ(0)�
��
5
��F��(�
5
��) (4.23)Thus, if we insist on supersymmetry in order (�g )4 we must add a singular term to thelagrangian: L�4 = �3ef 2�264g4 Æ(0)(�
5
��)(�
5
��) (4.24)39



However, one 
an formally get rid of this singular term by rede�ning the �eld strength ofthe graviphoton: F̂�5 = F�5 � if4p2 Æ(x5)e55 (�
5
��) (4.25)Repla
ing F with F̂ in the bulk a
tion reprodu
es F�2 
oupling as well as the singular�4 term. As we will see later in se
tion 5, due to the fa
t, that singular terms always
ombine into the perfe
t square stru
tures, the singular terms will dissapear from thefour-dimensional e�e
tive a
tion. Also, the gaugino bilinear in the transformation law of � mat
hes the perfe
t square stru
ture of F . This is not the 
ase for Æ 5, whi
h has aterm proportional to F�5, but no pie
es bilinear in gaugino �elds. The deviation of Æ 5from the perfe
t square stru
ture was also noted in the 11d framework in [13℄, and hasimportant 
onsequen
es for supersymmetry breaking.The lagrangian obtained at this stage (in
luding terms not dis
ussed here) is given in AppendixA as LYM in equation (A.2).4.2 Sigma model in the bulkWe now 
ouple the SU(2; 1)=U(2) non-linear sigma-model to 5d supergravity . In the bulkwe have therefore four real s
alar �elds (V; �; �; ��). Their fermion superpartner is a symple
ti
Majorana spinor �a, 
alled hyperino. We de�ne the even Majorana spinor � as in (4.5). We alsospe
ify the gauge kineti
 fun
tion f, whi
h appeared in the previous subse
tion, to be f = V .This 
hoi
e is motivated by the fa
t, that su
h a kineti
 term appears in the 
ompa
ti�edHorava-Witten theory. Supersymmetri
 
oupling is possible for more general gauge kineti
fun
tions, but it has not been worked out in this thesis. The presen
e of sigma model �eldsa�e
t the boundary Lagrangian in the following ways:1. The supersymmetry variation of the non-standard gauge kineti
 term produ
es a termproportional to (��)F 2. To 
an
el it, two new boundry terms are needed:+L = eg2 [�14�F�� ~F �� � 14(�
���)F��)℄ (4.26)We see, that the sigma �eld aquires an axion-type 
oupling.2. Supersymmetry variations of the bulk fermions  � and � 
ontain derivatives of the hy-permultiplet s
alars. When we vary these fermions in the boundary a
tion (e.g.  � inthe Noether term (4.11), or � in (4.26), we get new un
an
elled variations. It turns outthat the following terms are needed:+L = eg2 [� i8(�a
5
��a)��� � pV2e55 [(�L�R)�5� + (�R�L)�5�℄ (4.27)Note, that the odd �eld � now appears expli
itly in the boundary Lagrangian through its�fth derivative whi
h is even.Again, 4-fermi terms in the boundary Lagrangian and 3-fermi terms in the supersymmetrytransformation laws are needed to render the a
tion supersymmetri
. They are all given inAppendix A as LH in eq. (A.3). Here, we 
on
etrate on those, whi
h un
over the `perfe
t40



square stru
ture'. We get a bilinear in gaugino �elds 
orre
tion to the hyperino transformationlaw: +Æ� = Æ(x5)�2g2 V 22 [�L(�L�R) + �R(�R�L)℄ (4.28)A singular, quarti
 in gaugino term is needed, too:+L = �e �24g4 Æ2(x5)V 2(�L�R)(�R�L) (4.29)As before, we 
an formally get rid of this singularity. We de�ne a new variable:�5�̂ = �5� + �2g2 Æ(x5)V 3=22 (�L�R) (4.30)and repla
e �5� with �5�̂ in the bulk a
tion. This pro
edure reprodu
es the �5��2 
oupling aswell as the singular �4 term. Bilinear gaugino term in the transformation law of the hyperino� also mat
hes the perfe
t square stru
ture of �5�̂, but there is no gaugino bilinear in thetransformation law of  5 to 
omplete the perfe
t square with �5��2 (We noted in the previoussubse
tion, that also F does not 
ombine into the perfe
t square in Æ 5).4.3 S
alar multiplets on the boundaryTo make 
onta
t with the phenomenology, we should introdu
e s
alar multiplets living on theboundary, whi
h 
an provide us with known matter �elds su
h as quarks and leptons. As inthe 
ase of the Yang-Mills multiplet, we begin with a globally supersymmetri
 a
tion for amultiplet that 
onsists of a 
omplex s
alar C, and a Majorana spinor �:S = Z d5xe5Æ(x5)LSLS = �D�CD�C � �D=� (4.31)(Note, that we use a di�erent normalization of C, than the referen
e [5℄)Global supersymmetry transformation laws are:ÆC = (�R�L)Æ�L = 12D=C (4.32)If the transformations (4.32) be
ome lo
al, variation proportional to D�� appears, and must be
an
elled by the gravitino variation in the new term:+L = ( R�D=C
��L + h:
:) (4.33)The origin of this term is similar to the Noether term (4.11),and as in subse
tion 4.1, thepresen
e of  � 
auses new un
an
elled variations, whi
h must be 
an
elled by adding newterms to the boundary Lagrangian. The part of the gravitinovariation proportional to ��� is
an
elled by the variation of � in: +L = � i4V ���(�
5
��) (4.34)41



The variation proportional to F�5 requires more profound modi�
ations. Not only the newterms of the form: +L = iF�5p2e55 (CD�C � CD�C)� iF�52p2e55 (�
5
��) (4.35)have to be added to the boundary lagrangian. One must also modify the supersymmetrytransformation law of the graviphoton:~ÆA5 = i�26g2 Æ(x5)(�R�L + h:
:) �C (4.36)These modi�
ation 
an be summarized by the rede�nition of the graviphoton �eld-strength:F̂�5 = F�5 + iV4p2 Æ(x5)e55 (�
5
��) + i�26g2 (CD�C � CD�C); (4.37)(The �rst term in (4.37) was determined in subse
tion 4.1).The supersymmetry transformation law of F̂�5, apart from standard 5d pie
e, re
eives a
orre
tion: ~ÆF̂�5 = i�23g2 Æ(x5)(�R�L + h:
:) �C (4.38)These modi�
ations are analogous to those required in the Horava-Witten model for the 
aseof the four-form �eld strength G. This 
ould have been expe
ted, be
ause in the 
ontext ofM-theory the 5d graviphoton �eld strength F 
omes from the redu
tion of G.To 
an
el the variation of � in (4.33), we must add 
orre
tions proportional to D�C to thegravitino transformation law. It turns out that these 
orre
tion 
an be obtained by repla
ingF�5 with F̂�5 in the transformation laws Æ � and Æ 5.The rest of the 
orre
tions to the boundary Lagrangian are 4-fermi terms, and are given inAppendix A as LS in eq. (A.4).If we want to introdu
e a superpotential W for s
alar �elds C, further modi�
ations of theboundary lagrangian are ne
essary. The derivation is fairly straightforward, and the resultsare given in Appendix A as LW in eq. (A.6). The interesting aspe
t of this 
onstru
tion theappearan
e of yet another perfe
t square stru
ture. It turns out that the W�5� 
oupling hasto be added, as well as singular terms Æ2(x5)W �W and Æ2(x5)W�2. This 
an be summarized bythe rede�ntion of the '� �eld strength':�5�̂ = �5� + �2e55g2 Æ(x5)V 3=24 (�L�R) + 2�2e55g2 �WÆ(x5) (4.39)This repla
ement of �5� with �5�̂ in the bulk � kineti
 term reprodu
es all the above men-tioned 
ouplings. Also the � and W parts of  5 (but not the gaugino part as noted earlier)transformation laws mat
h the perfe
t square stru
ture of �5�4.4 Supersymmetrizing bulk and boundary potentialsIn this se
tion we supersymmetrize potentials that are de�ned on the brane, but are fun
tionsof the bulk s
alars (this 
ase is di�erent from that 
onsidered in the previous subse
tion, wherewe supersymmetrized the potential W for the brane s
alar �elds). We know that su
h termsarise in the 
ompa
ti�
ations of the Horava-Witten model, but in this se
tion we 
onsider awider 
lass of potentials, whi
h do not ne

esarily originate from M-theory.42



We assume a s
alar potential Æ(x5) e�2 (��+ p2�V ) lo
alized on the �rst brane (note the deltafun
tion). The parameters � and � are 
onstants, while V is one of the bulk hypermultiplet�eld. The motivation for the 
onstant (�) part of this expression is that it will �nally lead usto the Randall-Sundrum exponential solutions. At the same time we allow for '
osmologi
alpotential' �=V for the hypermultiplet s
alar; this parti
ular form is motivated by the M-theoryexample and is a natural extension in the presen
e of hypermultiplets. More general potentialsare possible, but �-dependent terms in the potential break the translational U(1) symmetry� ! � + 
onst whi
h is useful when it 
omes to solving the strong CP problem, while �
annot appear in the boundary potential be
ause of parity assignments. We will be ableto supersymmetrize this a
tion by modifying the bulk a
tion only (thus, our 
onstru
tion isalternative to the one presented in [15℄). We initially put � = 0 and assume that only thegravity multiplet is present in the bulk. Consider a 
osmologi
al term of the form:LB = �Æ(x5) e�2� (4.40)e is the determinant built of the metri
 indu
ed on the brane. We want to supersymmetrizethis term. The supersymmetry variation of LB arises from varying e4:ÆL = 12Æ(x5)e�( 1�
��1 + (1! 2)) (4.41)We observe that, without further modi�
ation of the boundary a
tion, we 
an 
an
el thisvariation by modifying the gravitino transformation law:+Æ 1� = + �12�(x5)
��1+Æ 2� = � �12�(x5)
��2 (4.42)With this modi�
ation, when  is varied in the gravitino kineti
 term, the �fth derivative a
tingon the step fun
tion produ
es an expression multiplied by the delta fun
tion, whi
h pre
isely
an
els (4.41): Lkin � � e52�25 1�
�5��5 1� + (1! 2)ÆL = e5�25 ( 1�
��
5�5( �12�(x5)
��1)� (1! 2) = � e52�25�Æ(x5)( 1�
�
5�1)� (1! 2) + : : := � e52�25�Æ(x5)( 1�
��1) + (1! 2) + : : : (4.43)In the �rst line we used 
��
� = 3
� and �5�(x5) = 2Æ(x5) while in the se
ond line we used thefa
t that spinors have de�nite 
hirality on the boundary. In fa
t, to 
an
el (4.41) we need tomodify only Æ �, but we modify Æ 5 as well so as to maintain the 5d 
ovarian
e.Note that these 
orre
tions are 
ompatible with the Z2 symmetry de�ned by (4.4); forexample: 
5Æ 1�(x5) = � �12�(x5)
�
5�1(x5) = �12�(�x5)
��1(�x5) = Æ 1�(�x5) (4.44)But as soon as we add (4.42) the bulk theory is no longer supersymmetri
. In addition to theboundary term (4.43) the variations of the gravitino kineti
 term resulting from (4.42) yield:ÆLkin = � e5�25 �12�(x5)( 1�
��
D�

�1)� (1! 2)� e5�25 �4 �(x5)( 1�
��D��1)� (1! 2) (4.45)43



The above variation 
an be 
an
elled by adding a `gravitino mass term':L 2 = + e58�2��(x5)( 1�
�� 1� �  2�
�� 2�) (4.46)The gravitino variation Æ A� = D��A in (4.46) 
an
els (4.45), but now (4.42) yields the variationof the mass term (4.46) proportional to �2:ÆL 2 = + e54�2��(x5)( 1�
�� �12�(x5)
��1) + (1! 2)= e512�2�2( 1�
��1) + (1! 2) (4.47)whi
h 
an be 
an
elled by varying the determinat in the new '
osmologi
al term':LC = e56�2�2 (4.48)Moreover, in our framework, �(x5) has another dis
ontinuity at x5 = ��, so the �fth derivativein the gravitino kineti
 term yields an additional variation multiplied by Æ(x5 � ��) . Thisvariation 
an be 
an
elled by adding a 
osmologi
al term 
on�ned to that brane:LB0 = Æ(x5 � ��) e�2� (4.49)(The minus sign relative to (4.40) appears here be
ause �(x5) has a `step down' at x5 = ��).Note that the 
osmologi
al term (4.48) appeared with a plus sign. The relevant part of thebulk a
tion now reads S = �12 R (R � 13�2) whi
h admits the anti-de-Sitter solutions. In fa
t,the 
oeÆ
ient of (4.48) is pre
isely the one we need to obtain the Randall-Sundrum s
enario,as we will show shortly.The above mentioned 
orre
tions are still not suÆ
ient to supersymmetrize the bulk lagrangian.To a
hieve this goal we also need the 
oupling of the graviphoton to the gravitino:LA = � ie54p2�2 �(x5)� �( 1�
��
 1
)A� � (1! 2)� : (4.50)If we swit
h on the hypermultiplets, one 
an infer that to a
hieve 
an
ellation of variations ofthe form ��(x5)(��)��V the hyperino mass term is needed:L�2 = + e58�2 �(x5)� ��1�1 � (1! 2)� (4.51)The presen
e of the hyperino mass term indi
ates that to arrive at a fully supersymmetri
a
tion we must gauge some isometry of the hypermultiplet sigma model but this is worked outelsewhere [9℄.In addition, a graviphoton dependent 
orre
tion to the gravitino transformation law appears:Æ A� = � i2p2�(x5)�(�3)AB�BA�: (4.52)Note that that the presen
e of the step fun
tion 
ould potentially produ
e another delta fun
tionin the variation of the bulk lagrangian (more pre
isely, in the variation of the gravitino kineti
term, similarly as in ( 4.43) ). But this variation has the form ÆL � Æ(x5)�A�� and vanishes,be
ause A�, being odd, is zero on the brane. 44



Furthermore, we need 4-fermi terms in the bulk a
tion to 
omplete the supersymmetrization,but these are not given in this thesis. The a
tion we arrive at �ts in the framework of 5d gaugedsupergravity without matter. The gauged group is the U(1) subgroup of the R-symmetry SU(2)group. One 
an 
he
k that the terms found above 
ontaining the graviphoton 
an be arrangedinto the 
ovariant derivatives. The di�eren
e to the standard 
ase is that the 
harge �(x5)� hasopposite sign on the two sides of the brane 1. The prepotential whi
h des
ribe this gauging ispie
ewise 
onstant and takes the form:gPAB =  14p2 i�(x5)� 00 � 14p2 i�(x5)� ! (4.53)Let us now assume � = 0 and re-introdu
e the hypermultiplet in the bulk. Consider theboundary term: L = Æ(x5) e�2 p2�V : (4.54)The variation of the determinant 
an be 
an
eled by modifying Æ , similarly to the previous
ase: Æ 1� = �p212 �V �(x5)
��1Æ 2� = +p212 �V �(x5)
��2 : (4.55)We must also vary the hypermultiplet modulus V in (4.54) (ÆV = iVp2(�1�1 � �2�2)) and thisyields: ÆL = �iÆ(x5)e �V (�1�1 � (1! 2)) (4.56)This variation 
an be 
an
elled by modifying supersymmetry transformation law of the hyperino�: Æ�1 = i2V ��(x5)�1Æ�2 = i2V ��(x5)�2 : (4.57)A similar me
hanism works: in the variation of the hyperino kineti
 term the �fth derivativea
ts on the step fun
tion whi
h leads to a term whi
h pre
isely 
an
els (4.56). Note that it isonly the potential �=V whi
h 
auses the 
orre
tions to the hyperino transformation law. Asbefore, we need to supersymmetrize further. Two-fermi terms and, 
onsequently, a 
osmologi
alpotential is ne
essary:L = e52V �2��(x5) �p24 ( 1�
�� 1� � (1! 2)) + i(�1
� 1� + (1! 2)) + i3p24 (�1�1 � (1! 2))!(4.58)LC = � e56�2 �2V 2 (4.59)However, this time a minus sign relative to that of (4.48) appears, and anti-de-Sitter solutionis not allowed. Moreover, 
ontrary to the previous 
ase, the 2-fermi and 
osmologi
al terms1In the re
ent referen
e [28℄ the gauge 
harge is promoted to a supersymmetry singlet �eld45



are not enough to render the bulk lagrangian supersymmetri
. Closer inspe
tion shows, thatterms of the form �(� )��� do not 
an
el and the bulk lagrangian must be supplemented withthe 
oupling ����A�. In the 
ontext of 5d supergravity this means that the translations of thepseudos
alar � from the hypermultiplet are gauged, with the graviphoton being the gauge �eld.To re
apitulate, starting with the boundary term (4.54) we are led to 5d gauged supergravitysimilar to that studied in [4℄. The gauging 
an be des
ribed by the prepotential 3.40One 
ould also imagine other powers of V o

uring in (4.54), or more generally, some fun
tionf(V ). But then supersymmetrization is possible only if the bulk sigma model quaternioni
metri
 is found. In some simple 
ases one 
an appropriately rede�ne Re(S) and end up in thesame sigma model, however in general one has to sear
h for new sigma models with quaternioni
kineti
 metri
 that allow for gauging, whi
h is beyond the s
ope of this paper.The interesting question is if we 
an join both s
hemes dis
ussed in this se
tion and introdu
ein a supersymmetri
 way a boundary term LB = Æ(x5) e�2 (�� + p2�V ). The answer is yes andthe ne
essary steps are given in [9℄.
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Chapter 5Compa
ti�
ation to 4 dimensions
In order to investigate the phenomenologi
al 
onsequen
es of theories formulated in D > 4spa
e-time dimensions, one has to go to the e�e
tive four-dimensional des
ription, that is onehas to 
ompa
tify. If the additional 
ompa
t dimension are assumed to be small (whi
h is the
ase with the �fth dimension in our model), one keeps only massless Kaluza-Klein modes (zeromodes) in the e�e
tive des
ription; heavy Kaluza-Klein ex
itation de
ouple from the e�e
tivetheory. But in the 
ase at hand the 
ompa
ti�
ation is not a straightforward task be
auseone 
annot simply trun
ate the �ve-dimensional theory. By 'trun
ation' we mean ignoring thedependen
e of the �elds on the �fth 
oordinate; the integral over the 
ompa
t dimensions in thea
tion yields just the volume whi
h 
an be absorbed into the de�nition of the 4d gravitational
onstant. In the standard 
ase of Kaluza-Klein 
ompa
ti�
ation on 
at ba
kgrounds it 
anbe shown, that trun
ation is equivalent to ignoring the heavy Kaluza-Klein modes. But weshall see, that in the model dis
ussed in se
tion 4 the 
at spa
e is not a solution to to theequations of motion. The va
uum solution we will �nd, will depend on the �fth 
oordinate andthe zero modes will be the x5 independent ex
itations around this va
uum solution. In su
h
ases, simple trun
ation is not 
onsistent. Instead we have to 
arefully integrate out the x5dependen
e from the a
tion.The ba
kground solutions to the equations of motion depend dramati
ally on the 
hoi
e ofthe potential in the bulk (and on the boundary sin
e the two are 
onne
ted by supersymmetry).In this se
tion we assume the more general potential introdu
ed in subse
tion 4.4, sin
e for this
hoi
e, in 
ertain limits, we 
an obtain the pure M-theoriti
al solution, while in other limits theinteresting solution of the Randall-Sundrum type 
an be obtained. We want to 
ompa
tify ourmodel down to 4d and we demand that the e�e
tive theory has N=1 supersymmetry. Thus, wemust sear
h for the ba
kground solution whi
h preserves exa
tly four super
harges, that is halfof the 5d supersymmetry. The solutions, whi
h leave some portion of supersymmetry unbroken,�t into a very spe
ial 
lass of supersymmetri
 obje
ts, 
alled BPS states. It is generally believedthat they are stable, sin
e they minimize energy for a given 
harge. The best way to �nd su
hBPS solutions is to 
onsider �rst the supersymmetry transformation laws. We will see thatthe 
on�guration preserving an unbroken N=1 supersymmetry (whi
h are quite easy to �nd),automati
ally satis�es the equations of motion.For brevity, some formulae presented in the subsequent se
tion are written as if both � and�=V parts of the boundary potential were present although, as dis
ussed at the end of the last
hapter, the theory is supersymmetri
 only for � = 0 or for � = 0.47



5.1 BPS solutionThe supersymmetry transformation laws of fermions, in
luding modi�
ations found in the pre-vious paragraphs are: Æ A� = D��A � �(x5) 112(�� + p2�V )
�(�3)AB�BÆ�a = � i2p2V �5V 
5(�3)aB�B + ��(x5) i2V �a : (5.1)In the above formulas we negle
ted terms with 4d derivatives �� in order to preserve the 4dPoin
ar�e invarian
e of the ba
kground we seek. We also put � = A5 = 0 sin
e these �elds donot o

ur in the potential, so setting them to zero is 
onsistent with the equations of motion.Finally, we negle
ted �5� sin
e, as we show later in this thesis, non-zero expe
tation value ofthis term generi
ally breaks all supersymmetries.The ansatz for a stati
 solution is:ds2 = a(x5)dx�dx���� + b(x5)(dx5)2V = V (x5) (5.2)The relevant supersymmetry transformation laws evaluated for this ansatz are ( a prime denotes�5 and the world indi
es now refer to the 4d Minkowski metri
 ���):Æ A� = a04pab
�
5�A � �(x5)pa12 (�� + p2�V )
�(�3)AB�BÆ A5 = �5�A � �(x5)pb12 (�� + p2�V )
5(�3)AB�BÆ�a = � i2p2bV V 0(�3)aB
5�B + ��(x5) i2V �a: (5.3)The 
onditions for unbroken supersymmetry are equivalent to the requirement that the abovevariations of fermioni
 �elds vanish for va
uum 
on�gurations. This leads to the following
onditions: a0a = 13(�� + p2�V )�(x5)pbV 0 = p2��(x5)pb�5�A = pb12 (�� + p2�V )�(x5)�A: (5.4)In addition we need the
hirality 
onditions for the spinorial supersymmetry transformationparameters , whi
h break N=2 supersymmetry down to N=1:
5�1 = �1 
5�2 = ��2 (5.5)The 
hirality 
onditions arise be
ause of the �3 Pauli matri
es multiplying �A in (5.3). Theirpresen
e 
auses sign di�eren
e between the A=1 and A=2 
omponents of the supersymmetrytransformation, whi
h must be 
ompensated for by (5.5) if we want satisfy both Æ 1 = 0 andÆ 2 = 0.First, we 
he
k that if the parameters a; b; V of our ansatz satisfy the 
onditions (5.4),they automati
ally satisfy the equations of motion (with delta sour
es). To do this, it will be
onvienent to work with � � lnV . 48



Einstein's equations are 12Rg�� � R�� = T��, where T�� � 1e5 �Lmatter�g�� . Taking its tra
e andsubstituting ba
k for R we 
an express it in the equivalent form:R�� = �(T�� � 13T 

g��) � �S�� (5.6)For the ansatz (5.2) the 
omponents of the Ri

i tensor are:R�� = (a002b � a0b04b2 + (a0)22ab )���R55 = 2a00a � a0b0ab � (a0)2a2R�5 = 0 (5.7)For our lagrangian the tensor S de�ned in (5.6) takes the form:S�� = [(a3�2e�2� � a9(�� +p2�e��)2)��� � a3pb(�� +p2�e��)(Æ(x5)� Æ(x5 � ��))℄S55 = [ b3�2e�2� � b9(�� +p2�e��)2 + 12(�0)2 � 4pb3 (�� +p2�e��)(Æ(x5)� Æ(x5 � ��))℄S�5 = 0 (5.8)Note the delta fun
tions originating from the boundary potential. Though the T55 
ompo-nents of the energy-momentum tensor vanish on the boundary, S55 is non-zero as it 
ontains
ontributions from T�� . The (�5) 
omponents of the Einstein's equations are trivially satis�ed.The remaining 
omponents of the Einstein's equation together with the equation of motionfor � take the form: a002b � a0b04b2 + (a0)22ab + a3�2e�2� � a9(�� +p2�e��)2= a3pb(�� +p2�e��)[Æ(x5)� Æ(x5 � ��)℄2a00a � a0b0ab � (a0)2a2 + b3�2e�2� � b9(�� +p2�e��)2 + 12(�0)2= 4pb3 (�� +p2�e��)[Æ(x5)� Æ(x5 � ��)℄12�00 + a0a �0 � 14 b0b �0 + b�2e�2� � b3p2�e��(�� +p2�e��)= p2b�[Æ(x5)� Æ(x5 � ��)℄ (5.9)To 
he
k if these equations are satis�es, we re-write the relations (5.4) in the form whi
h ismore 
onvienient for our purpose. Dividing the �rst relation (5.4) by the se
ond we get:a0a = 13�0(1� �p2�e�) (5.10)We 
an also obtain a useful relation for b:b0b = 2pb b02pb = 2(p2�e���3a0a = 2a00a0 � 2a0a + 2p2��0p2���e� = 2a00a0 � 2a0a + 6a0a(1� �p2� e�)2So �nally: b0b = 2a00a0 � 2a0a + 6a0a(1� �p2�e�)2 (5.11)49



We show how this works on the example of the �rst equation in (5.9). Away from the boundary,where the delta fun
tions do not 
ontribute, we have:l:h:s: = a002b � a0b04b2 + (a0)22ab + a3�2e�2� � a9(�� +p2�e��)2= 1b 24a002 � a04 (2a00a0 � 2a0a + 6a0a(1� �p2�e�)2 ) + (a0)22a 35+ a3�2e�2� � a9(�� +p2�e��)2= 1b [f�3(a0)22a 1(1� �p2�e�)2 + ab3 �2e�2�g+ f(a0)2a � a9(�� +p2�e��)2)g℄ = 0 (5.12)In the se
ond line we used (5.11) and in the last line (5.10). We must still satisfy the deltafun
tions on the right-hand side of the equations. From the Z2 properties of the metri
 andof the hypermultiplet �eld V we know that fun
tions a,b,� are even (and 
ontinuous), their�fth derivatives are odd and so 
an be dis
ontinous a
ross the boundaries. Thus, their se
ondderivatives 
an have delta fun
tion singularities. The 
oeÆ
ients of the delta fun
tion is equalto the dis
ountinuity of the �rst derivative or, equivalently, twi
e the boundary value of the�rst derivative.We again 
onsider the example of the �rst equation of (5.9). We need to satisfya002b = a3pb(�� +p2�e��)Æ(x5) (5.13)in the vi
inity of the �rst brane. But the above 
onsideration allow to re-express this equationas: a0b = a3pb(�� +p2�e��)�(x5) (5.14)whi
h is again the relation (5.10) if the equality pb = �0e��p2��(x5) is used. Thus, we have indeedshown that the �rst of the Einstein's equations (5.9) is satis�ed for the BPS 
on�guration (5.4).The remaining equations 
an be 
he
ked in the similar way.We 
an now solve the 
onditions (5.4). This 
an be easily done in the 
oordinate frame inwhi
h b = R20. The va
uum solution is:V = V0 + �p2R0 (jx5j � ��2 )g�� = a0 �1 + �p2R0V0 (jx5j � ��2 )�1=3 e�R0�3 jx5j���g55 = R20 (5.15)The 4d e�e
tive theory for the general potential is diÆ
ult to obtain (and it is not 
learif integrating out the �fth dimension makes sense in the general 
ase). In the following wedetermine the e�e
tive theory only in the M-theoreti
al (� = 0) limit. In this limit it is
ustomary to work in a di�erent 
oordinate frame in whi
h g55 6= 0. Then the solution is:g�� = 1R0H�g��g55 = R20H4V = V0H3H := 1 + �p2R03V0 (jx5j � ��2 ) (5.16)50



From the view-point of the e�e
tive 4d theory the integration 
onstants R0, V0 and �g�� be
omethe dynami
al �elds (moduli). They are de�ned in su
h way that �g�� is the 4d metri
 withthe standard Einstein-Hilbert kineti
 term, and V0 =< V >,R0 =< pg55 >, up to O(�2)
orre
tions (< : : : > denotes averaging by integrating over the �fth dimension) .The formulae (5.16) des
ribe the va
uum solution with vanishing all boundary �elds. Sin
ein the full lagrangian the bulk �elds 
ouple to gauge �elds on the boundary, allowing for non-zero boundary �elds 
hanges also the �eld 
on�guration in the bulk (in their equation of motionthis manifests itself as delta funtion sour
es). As mentioned earlier, we 
annot simply ignorethis ba
k-rea
tion. Negle
ting all quantum 
orre
tions, we 
an a

ount for the dependen
e ofbulk �elds on the boundary dynami
s by repla
ing the bulk �elds in the 5d a
tion with thesolutions of their equations of motion. Having done this we integrate over the �fth dimension.Due to the 
ompli
ated non-linear sigma model in the bulk, the quest for the exa
t solutionis a hopeless task. Instead, we 
an simplify the problem by taking a spe
i�
 limit. We willassume that: �5� >> ���. This 
orresponds to the limit of small 4d momenta 
ompared tothe momentum along x5. In the following we will simply negle
t ��.One more assumption turns out to be very helpful. The boundary a
tion is suppresed by aparameter �2g2 , and 
onsequently, the sour
es for the bulk �elds are suppressed by this parameter.Thus, we 
an write down the solution as a series in �2g2 . We will be able to solve the equationsof motion in the �rst order in �2g2 .5.2 Solving equations for the even �eldsIn our model, the even bosoni
 �elds in the bulk are: (g�� ; g55;A5; V; �). There are no (�5)A5terms in the bulk so A5 is not ex
ited in the limit we 
onsider.The pro
edure of extra
ting gauge �eld dependen
e of even bulk �elds was des
ribed in[7℄. Here, we quote only basi
 results. The detailed form of the solution is not important tous, be
ause, as we show in the next subse
tion, to the order we perform the 
al
ulations thee�e
tive theory depends only on the ba
kground value of the even �elds (with the ex
eption ofthe �A5 dependen
e of �B).We write a generi
 even bulk �eld � as a sum: � = �va
+�B, where �va
 is the 
orrespondingba
kground solution given by (5.16). Then �B satis�es an equation of the form:�5�5�B = J1Æ(x5) + J2Æ(x5 � ��)� 12��(J1 + J2) (5.17)where Ji are boundary sour
es for �. The part of the r.h.s without the delta fun
tion 
omesfrom integrating �va
 out of the equation of motion. It yields the (x5)2 dependen
e of thesolution. The delta fun
tions provide the boundary 
onditions for the �fth derivative. Re
all,that the �fth derivative of the even �eld is odd, and in prin
iple 
an be dis
ontinuous at Z2�xed points. The 
oeÆ
ient of the delta fun
tion equals this dis
ontinuity, so the boundaryvalue of �5� equals pre
isely one half of this 
oeÆ
ient. Moreover, we require that < �B >vanishes. The detailed 
al
ulation shows that to the �rst order in �2g2 and � we 
an write:VB = �2R30V 202��p�g [J1V ((x5)2 � 2��x5 + 23(��)2) + J2V ((x5)2 � 13(��)2)�2R0V 202��p�g ℄�B = 2�(jx5j � ��)A5 + �2R30V 202��p�g [J1�((x5)2 � 2��x5 + 23(��)2) + J2�((x5)2 � 13(��)2)℄51



(gB)�� = �2R302��p�g [(J1g)��((x5)2 � 2��x5 + 23(��)2) + (J2g)��((x5)2 � 13(��)2)℄ (5.18)where Ji� denotes a derivative of the i-th boundary lagrangian with respe
t to the �eld �.The �A5 dependen
e of the solution for �B arises be
ause of the gauge 
ovariant derivativeD�� = ��� + 2��(x5)A� a
ting on � in the lagrangian; the �fth derivative a
ting on thestep fun
tion a

ompanying � yields a delta fun
tion, whi
h e�e
tively a
ts as a sour
e in theequation of motion.5.3 Solving equations for the odd �eldsWe begin with �. It 
ouples to the boundary theory through its �fth derivative, and thusa
quires a non-trivial gauge �eld dependen
e. The relevant terms in the Lagrangian are:� e5�2V g55�5��5 �� + e5g2e55�5�[Æ(x5)(�pV2 (�R�L)1 + 2V W ) + Æ(x5 � ��)� pV2 (�R�L)2℄ (5.19)We ignored �4 terms in the bulk sin
e they 
ontribute only at order (�2g2 )3. As justi�ed before,we also negle
ted derivatives other than �5.The equation of motion for � is:�5( e5�2V g55�5 ��) = �2g2 �5[e5Æ(x5)(�pV2 (�R�L)1 + 2V W )� e5Æ(x5 � ��)pV2 (�R�L)2℄ (5.20)Substituting for the bulk �elds their va
uum solutions (5.16), and integrating twi
e, we obtain:�5 ��H�3 = �22g2 (V0R0)3=2[Æ(x5)(��21 + 4(V0R0)3=2WH�3(0))� Æ(x5 � ��)�22℄ + f (5.21)�(x5)�� = 14�0H4f + h (5.22)We de�ned: �21 := (�R�L)1  H(0)R0 !3=2 �22 := (�R�L)2  H(��)R0 !3=2 (5.23)The integration 
onstants f ,h 
an be 
al
ulated using boundary 
onditions. Mat
hing deltafuntions in (5.21) requires that �� has dis
ontinuities at x5 = 0 and x5 = ��. One half of thisdis
ontinuity is the boundary value for �. One 
an 
al
ulate:f4�0 = �24g2 (V0R0)3=2��21H3(0)� �22H3(��) + 4(V0R0)�3=2WH4(0)�H4(��) (5.24)h = �24g2 (V0R0)3=2��21H3(0)H4(��)� �22H3(��)H4(0) + 4(V0R0)�3=2WH4(��)H4(0)�H4(��) (5.25)In the same way we solve the equation of motion for the 4d 
omponents of the graviphoton,whi
h also 
ouples to the boundary through its �fth derivative. The result is:�5A� � ��A5 =�23R0g2 [Æ(x5)(� 3i4p2V0R0�21 �H2(0)� ip2(CD� �C � �CD�C) + i2p2�2�)+Æ(x5 � ��)(� 3i4p2V0R0�22 �H2(��))℄ +Hf� (5.26)52



A� = H2 f�2�0 + ��A5x5 + g� (5.27)[�21 � := (�
5
��)1(H(0)R0 )3=2 �22 � := (�
5
��)2(H(��)R0 )3=2 �2� := (�
5
��)(H(0)R0 )1=2℄As before f� and g� are spe
i�ed by the boundary 
onditons:f�2�0 = �26g2 (� 3i4p2V0R0(�21 �H2(0)+�22 �H2(��)� ip2 (CD� �C� �CD�C)+ i2p2 �2�)+��A5��H2(0)�H2(��)g� = �26g2 (� 3i4p2V0R0(�21 �+�22 �)H2(0)H2(��)� ip2 (CD� �C� �CD�C)H2(��)+ i2p2 �2�H2(��))H2(0)�H2(��)+��A5��H2(��)H2(0)�H2(��) (5.28)Note, that there is no arbitrary integration 
onstant (they are all spe
i�ed in terms of thematter �elds on the boundary) in the solutions for � and A�. Thus, there will be no zero modes
orresponding to these �elds in the e�e
tive 4d theory.The other odd �elds in the bulk do not 
ouple to the boundary, so they are not ex
ited.5.4 First order 
ompa
ti�
ationWe brie
y review the 
ompa
ti�
ation in the (�2g2 )0 and (�2g2 )1 order. This step is well-knownsin
e the e�e
t of the non-trivial ba
kground is visible only at (�2g2 )2 (thus, to up to this orderwe 
an simply trun
ate the 5d a
tion). Gravity enters at (�2g2 )0. The de�nition of 4d moduli in(5.16) is 
hosen su
h, that the Ri

i s
alar R built out of �g�� is 
anoni
ally normalized in thisorder. The 4d gravitational 
onstant 1�24 
an be expressed in terms of its 5d 
ounterpart as:1�24 = 2���25 (5.29)The superpartner of the graviton is the gravitino  � whi
h originates from the even part of the5d gravitino. To give the 
orre
t normalization to the gravitino kineti
 term we must res
ale: � ! (R0)�1=4 �. We have also kineti
 terms for the moduli V0; �0 whi
h are zero-modes of the
orresponding hypermultiplet s
alars, as well as for the moduli R0;A5 whi
h are zero-modes ofg55 and the �fth 
omponent of the graviphoton, respe
tively:�24LKIN = p�g[� 14V 20 (��V0��V0 + ���0���0)� 34R20 (��R0��R0 + 2��A5��A5)℄ (5.30)The boundary a
tion enters in (�2g2 )1 order. We have two gauge se
tors: (A�;�)1 and (A�;�)2with kineti
 terms: g2Lgaugekin = p�g 2Xn=1[�14V0(F��F ��)n � 14�0(F�� ~F ��)n℄ (5.31)We get also a kineti
 term for the s
alar C:g2LKIN = � 1R0D�CD� �C (5.32)53



There are no (�)1 
orre
tions to bulk kineti
 terms, be
ause R ��0 d5x �(y � ��2 ) = 0. Thus, inthe �rst order�2g2 and � , the 4d e�e
tive supergravity 
an be des
ribed by the K�ahler potentialG and the gauge kineti
 fun
tions fi:G = ln(S + �S) + 3ln(T + �T � 23 �24g2C �C)� ln(64W �W ) (5.33)f1 = f2 = S (5.34)The numeri
al fa
tor 
oming with the superpotential W 
an be read o� from the bilinearfermioni
 terms as given in LW in Appendix A. TheW �W term enters at (�2g2 )2, and we will obtainit after integrating out � (so far W �W o

urs as a singular term in the boundary Lagrangian).The moduli �elds S and T are de�ned as: S = V0 + i�0T = R0 � �23g2C �C + ip2A5 (5.35)The superpartners of the modulus C is the boundary fermion �, and of the modulus S theeven part of bulk hyperino �. To have fermion kineti
 terms normalized as in [17℄, we res
ale:� ! (R0)1=4�, � ! (R0)1=4�. The supersymmetry transformation laws suggest, that thesuparpartner of T is  5, but as yet, it has no kineti
 term. To obtain the kineti
 term we usethe fa
t, that the gravitino kinetiti
 term in the bulk mixes  5 with  �. To diagonalize it, andto obtain a legitimate kineti
 term of  5 we must rede�ne the 4d gravitino:( �)4d :=  � + i2R0
�
5 5 (5.36)We 
an de�ne the fermion superpartner of the modulus T:�TL = (R0)�1=4[ L 5 + 2�243g2 �C�L℄ (5.37)The � dependent 
orre
tion is ne
essary here, be
ause of the terms involving C in the de�nitionof ReT.5.5 Higher order 
orre
tionsHaving solved the equation of motion we 
an pro
eed with �nding �2 ,��2g2 and (�2g2 )2 
orre
tionsto the e�e
tive 4d theory.First, we should 
omment on the 
osmologi
al potential. In the 5d bulk theory, we havethe 
osmologi
al term �2V 2 . What happens in 4d e�e
tive theory? There is a general argument,that su
h a 
osmologi
al term should be absent. Indeed, the ba
kground solution (5.16) wasobtained under the assumption of N=1 supersymmetry and vanishing expe
tation value ofthe superpotential W. This, in turn, is equivalent to vanishing of the potential energy at itsminimum (although potential in 4d supergravity is given by �3exp(�G) whi
h is not semi-positive de�nided, this expression is zero if < W >= 0). It is reassuring to see that the 4d
osmologi
al potential vanishes if we expli
itly 
al
ulate it our framework.54



In the 5d bulk there are three terms whi
h 
ontribute to the 4d va
uum energy: the 
urvatures
alar R, the kineti
 term of V and the original 5d potential. We 
an simplify the 
al
ulationsusing the relations (5.10, 5.11) whi
h for � = 0 redu
e to:a0a = 13 V 0V (5.38)b0b = 2a00a0 + 4a0a (5.39)Using (5.39) we 
an re-write the 
urvature tensor given by (5.7) in the form R�� = � (a0)22ab ��� ,R55 = �5(a0)2a2b , so the 
ontribution from the Ri

i s
alar is:�12R = �12(g��R�� + g55R55) = 7(a0)22a2b (5.40)Using (5.38), the kineti
 term of V 
ontributes:�14g55(V 0V )2 = �9(a0)24a2b (5.41)while the 5d 
osmologi
al potential 
an be re-written using the �rst relation of (5.4) 1V = 3a0p2�pbaand 
ontributes: � �26V 2 = �3(a0)24a2b (5.42)These three 
ontributions sum to (a0)22a2b . Inserting this in the solution (5.16) and integratingover the �fth dimension yields the 4d e�e
tive potential:Vbulk = R 2��0 dx5a2pb (a0)22a2b= 2 R ��0 dx5 �29V 20 1R0H2 = 29 �2R0V 20 R ��0 dx51+p2�R03V0 (x5���2 )= p2�3R20V0 ( 1H(0) � 1H(��)) = 2�2��9R0V 20 11�(p2�R0��6V0 )2 (5.43)We should not forget about the delta fun
tions in R. The singular part of the se
ond derivativeof the metri
 is: a00 = 2p2�3V0 (Æ(x5)� Æ(x5 � ��)) (5.44)From (5.7) we see that the singularities of the Ri

i tensor areR�� � p2�3bV0 (Æ(x5)� Æ(x5 � ��))���R55 � 4p2�3aV0 (Æ(x5)� Æ(x5 � ��))) R � 8p2�3abV0 (Æ(x5)� Æ(x5 � ��)) (5.45)Putting this into the a
tion yields an additional 
ontribution to the potential:Vsing = �12 R 2��0 dx5a2pb 8p2�3abV0 (Æ(x5)� Æ(x5 � ��)) = � 4p2�3R20V0 ( 1H(0) � 1H(��))= � 4p2�3R20V0 �p2R0��3V0 11�(p2�R0��6V0 )2 = � 8�2��9R0V 20 11�(p2�R0��6V0 )2 (5.46)55



The last 
ontribution 
omes from the boundary potentials.Vbound = p2�(a2V (0)� a2V (��)) =p2�R20V0 ( 1H(0) � 1H(��)) = 2�2��3R0V 20 11�(p2�R0��6V0 )2 (5.47)Thus, we see that: V4d = Vbulk + Vsing + Vbound = 0 (5.48)and no tree level 
osmologi
al potential appears in the 4d e�e
tive lagrangian. The 
an
ellationworks as well even if there is no se
ond brane and the �fth dimension is in�nite. Su
h a situationis equivalent to negle
ting 1=H(��); various 
ontributions 
an
el in the same way as previously.Of 
ourse we 
annot 
laim that the 
osmologi
al 
onstant problem is solved as there is noth-ing to prevent the 
osmologi
al potential to appear at the one-loop level after supersymmmetrybreaking (whi
h must ne
essarily o

ur if the model is to des
ribe the physi
al world). Theanalysis 
an be repeated for the 
ase of more general bulk/boundary potential we 
onsideredbefore. The result is the same but the 
al
ulations are a little bit more tri
ky, be
ause for thesolution (5.4) we 
annot do the integrations over x5 expli
itly.Another point of view on this issue is given in [14℄, in whi
h 
onditions for vanishing of the
osmologi
al 
onstant derived from the requirement of 
onsisten
y of the Einstein's equationsare dis
ussed.Next, we 
onsider 
orre
tions to the 4d e�e
tive a
tion 
oming from the non-trivial x5dependen
e of V. We 
an represent V as a sum:V = Vva
 + VB where Vva
 is the va
uumexpe
tation value of V as given in (5.16), and VB takes into a

ount ba
k-rea
tion of theboundary; it is given to �rst order in �2g2 in (5.18). There are three sour
es of 
orre
tions to thee�e
tive lagrangian, that 
ontain no more than two spa
e-time derivatives:1. Integrating out VB in the kineti
 term of V;2. Expanding the boundary term e5p2�V (Æ(x5)� Æ(x5 � ��)) to the �rst order in VB;3. Substituting V with Vva
 in the rest of the boundary Lagrangian.The 
ontribution from 1. is:+LEFF = � 14�2 R 2��0 dx5e5g55(�5(Vva
+VB)Vva
+VB )2 = � 14�2R30 R 2��0 dx5p�g(3V0H2H0+V 0B)V0H3+VB )2 =� 12�2 R ��0 dx5p�g[9(H0)2H2 (1� 2V0H3VB ) + 6H0V0H4V 0B℄ + (� V 2B) (5.49)The zeroth order term 
ontributes to the 
osmologi
al potential, whi
h we 
al
ulated before.The term proportional to VB(H 0)2 without the �fth derivative is of order (�)2 �2g2 . Thus we areleft with:+LEFF = �p�g p2��2V 20 R20 Z ��0 dx5 V 0BH4 = �p�g p2��2V 20 R20 [VB(��)� VB(0)℄ +O(�2) (5.50)while the 
ontribution from 2. is:+LEFF = + p2��2V 20 R20 [VB(��)� VB(0)℄ +O(�2) (5.51)The 
ontributions (5.49) and (5.50) 
an
el against ea
h other, so in the �rst order in � thee�e
tive theory does not depend on the form of KK modes of V. If we wanted to go beyond the56



�rst order approximation, the 
ontribution from the non-trivial gauge dependen
e of VB woulda�e
t the e�e
tive theory.The same situation o

urs in the 
ase of the 
ontribution from the metri
. The 
ontributionoriginating from expansion of the 
urvature R 
an
els in order (�)1 against the 
ontribution
oming from expanding the the determinant in the boundary term �V .Situation is di�erent in the 
ase of the � �eld. The solution of its equation of motion is:� = �0 + 2�A5(jx5j � ��2 ) + (gauge) (5.52)where (gauge) denotes the gauge �elds dependen
e, whi
h is relevant only for higher derivativeterms. Thus, the 
ovariant derivative D5�B = �5�B � 2��(x5)A5 vanishes, and we are left withthe 
ontribution from inserting the solution for � in the boundary a
tion, as well as from theD� part of the 
ovariant derivative in the bulk a
tion.We have not determined yet those terms in the e�e
tive Lagrangian whi
h result fromintegrating out the odd �elds in the bulk. The equations of motion have been solved expli
itlyin subse
tion 5.3. First, let us 
onsider �. This �eld o

urs in our a
tion as a 'perfe
t square':S� = � Z d5xe5 1V ���̂���̂ (5.53)Where the hat denotes the modi�ed �fth derivative (4.39) whi
h we repeat here:�5�̂ = �5� + �2e55g2 Æ(x5)V 3=22 (�L�R) + 2�2e55g2 �WÆ(x5) (5.54)(We have negle
ted terms in the equation (5.53) proportional to �2D� and �4, as the yield onlyhigher order 
ore
tions).Inserting the solution (7.2) and negle
ting all 4d derivatives yields:+LEFF = � p�g�2V0R30 R 2��0 dx5H3jf j2= �14p�g �24V 20g4 j � �21H3(0)� �22H3(��) + 4W (V0R0)�3=2j2 +O(�2) (5.55)Similarly, integrating out the kineti
 term of the graviphoton yields:+LEFF = � 32�24R20p�g[��A5+ �243p2g2 (�3i4 V0R0(�21 �H2(0)��22 �H2(��))�i(CD� �C� �CD�C)+ i2�2�)℄2(5.56)Note, that all the delta fun
tions have 
an
elled out. Although the original 5d theory hadsingularities of the Æ2 type, the e�e
tive theory is perfe
tly well de�ned (supposedly, to allorders in �). The singularities have 
an
elled pre
isely, due to the perfe
t square stru
ture ofthe odd �elds.Having identi�ed possible sour
es of 
orre
tions to the e�e
tive theory, we 
an now inter-pret the resulting Lagrangian in terms of fun
tions G; f de�ned sin subese
tion (2.3) , whi
hunambigously des
ribe 4d supergravity. We expe
t non-trivial 
orre
tions to the kineti
 fun
-tions of gauge �elds. As explained previously, the only 
ontribution 
omes from inserting theba
kground solution into the boundary lagrangian, whi
h results in:+LEFF = �14p�gV0[H3(0)(F��F ��)(1) � [H3(��)(F��F ��)(2)℄= �14p�g[(V0 � �p22 ��R0)(F��F ��)(1) + (V0 + p22 ���R0)(F��F ��)(2)℄ +O(�2) (5.57)57



This implies the following modi�
ation of the gauge kineti
 fun
tions:f1 = S � p22 ���Tf2 = S + p22 ���T (5.58)For 
onsisten
y, the imaginary part of the moduli �elds S,T should have axioni
 
ouplings.They are provided by inserting the solution for � into the boundary axioni
 term:+LEFF = �14p�g[(�0 + �B(0))F�� ~F ��)(1) + (�0 + �B(��))F�� ~F ��)(2)℄= �14p�g[(�0 � ���A5)F�� ~F ��)(1) + (�0 � ���A5)F�� ~F ��)(2)℄ (5.59)exa
tly as required by (5.58) (Note p2 in the de�niton of Im T).A

ording to the results of subse
tion (2.3) the gaugino kineti
 term should be multipliedby �12Ref . Instead, in the e�e
tive theory we obtain:+LEFF = �12p�g(R0)�3=2[(�D=�)(1)H9=2(0) + (�D=�)(2)H9=2(��)℄ (5.60)The gauge kineti
 fun
tions (5.58) require H3 instead of H9=2, so to have gauginos 
orre
tlynormalized, the following res
aling has to be performed:�(1) !  H(0)R0 !�3=4 �(1)�(2) !  H(��)R0 !�3=4 �(2) (5.61)Likewise, the 
orre
t normalization of the Noether term, as well as of the 
oupling of the gauginoto the hyperino, requires the res
aling: � ! �HR0�1=4  ��! �HR0��1=4 � (5.62)Another modi�
ation due to the �x5 dependen
e of the ba
kground solution appears in thekineti
 term of matter �eld C. Inserting the ba
kground (5.16) into the 
orresponing boundaryterm yields: +LEFF = �p�gH(0)R0 D�CD� �C = p�g(� 1R0 + �p26V0��)D�CD� �C (5.63)Thus we have to modify both the K�ahler potential and the de�nition of the modulus S:ln(S + �S)! ln(S + �S + �243g2�p2��C �C)ReS ! V0 � �246g2C�p2��C �C (5.64)58



Similarly to the 
ase of other fermions, bringing the 
oeÆ
ient multiplying the kineti
 term of� (superpartner of C) to the 
orre
t form given in subse
tion 2.3 requires the res
aling:� !  H(0)R(0)!�1=4 � (5.65)Finally, a

ording to subse
tion 2.3 a term: �14f;i(�i
���)F�� should appear. In our boundaryLagrangian we �nd instead: �Æ(x5)e5 14(�
���)F�� (5.66)and no other terms of this form appear in the 
ourse of the 
ompa
ti�
ation. Therofore, wemust de�ne the superpartner of S as:�S =< �� �p2(jx5j � ��) 5 > (5.67)The same result 
an be obtained by solving the equation of motion for �a and identyfying theS fermion with the zero mode of this solution.The K�ahler potential given by the �rst order solution (5.33) 
ontained the superpotenialW, and the formula for G was derived from the 2-fermi terms in the e�e
tive lagrangian. ThejW j2 term appears in the e�e
tive a
tion (with the 
orre
t 
oeÆ
ient) after integrating out the� �eld. Generally, integrating out the odd �elds provides us with higher order terms requiredby the K�ahler potential derived from the �rst order redu
tion (another example of this kindare quarti
 gaugino terms).To summarize, we 
olle
t below the results obtained in this se
tion for the K�ahler potentialG, the gauge kineti
 fun
tion f, and the de�nitions of the moduli �elds.G = ln(S + �S + �243g2�p2��C �C) + 3ln(T + �T � 23 �24g2C �C)� ln(64W �W ) (5.68)f1 = S � p22 ���T f2 = S + p22 ���T (5.69)S = V0 � �246g2�p2��C �C + i� �S =< � HR0�1=4 (�� �p2(jx5j � ��) 5) >T = R0 � �23g2C �C + ip2A5 �T =< � HR0�1=4 [ 5 + 2�243g2 ( �C�L + C�R)℄ >C �C = �H(0)R0 �1=4 �A(1)� ~�(1) = �H(0)R0 �3=4 �(1)A(2)� ~�(2) = �H(��)R0 �3=4 �(2) (5.70)
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Chapter 6Redu
tion of the supersymmetrytransformation lawsIn the pre
eding se
tions we have determined the form of the 4d e�e
tive theory by dire
t
ompa
ti�
ation of the 5d lagrangian. Although the fun
tions G and f are suÆ
ient to re-
onstru
t the rest of the supergravity lagrangian, an interesting 
onsisten
y 
he
k would beto obtain expli
itly the 
omplete 4d lagrangian by integrating out the �fth dimension. Thisis rather diÆ
ult as, e.g., the 4-fermi terms re
eive 
ontributions that are of higher order in�. Another approa
h is to redu
e 5d supersymmetry transformation laws to 4d, and 
he
k ifthey are 
onsistent with the results (5.68). This has the advantage that 
orre
tions from thenon-trivial � dependen
e of the fun
tions G and f 
an be seen at lower order in the expansionin � and �2. As an example we present how to determine the gauge kineti
 fun
tions from thetransformation laws of the superpartners of the moduli s
alars.First, we need to determine what is the 4d parameter of supersymmetry in terms of its 5d
ounterpart. To this end, we need to solve the Killing eqution for 5d spinor whi
h is just the
ondition Æ A5 = 0 in (5.3). This 
ondition 
an be easily solved with the general potential:�1R = e��R0jx5j12 �1 + �p2R0V0 (jx5j � ��2 )�1=12 a�1=40 �R�2L = e��R0jx5j12 �1 + �p2R0V0 (jx5j � ��2 )�1=12 a�1=40 �L (6.1)Sin
e �2L = �i�2�1 �R (the 5d Majorana 
ondition) the spinor � is Majorana in the 4d sense.The appearan
e of the fa
tor a0 in (6.1) yields 
anoni
al form of the redu
ed 4d supersym-metry transformation law of the gravity multiplet. Then � depends only on x� and has theinterpretation of the parameter of supersymmetry transformations in the 4d theory.We again put � = 0 and 
hoose the 
oordinate frame g55 = R20H4. The Killing spinor is then�1R = HR0 1=4�R. First we determine gaugino bilinears in the transformation law of the modulus Tsuperpartner �T . As in (5.68) it is de�ned as �T =< ( HR0 )1=4[ 5 + 2�243g2 ( �C�L +C�R)℄ >. The C�part is unimportant as there are no gauginos in the transformation law of the C superpartner.The relevant part in the transformation law of  5 reads:Æ 5L = 1pV �5��L (6.2)Note that here �5� does not appear as a perfe
t square. Inserting in this expression the solution61



for the Killing spinor as well as the solution for � and other bulk �elds yields:Æ 5L = �2g2 �HR0��1=4 V0R02 (�H2(0)(�1)2Æ(x5)�H2(��)(�2)2Æ(x5���))�L� 1pV0R0H2 �HR0��1=4 f�L(6.3)where f is de�ned as: f4�0 = �24g2 (V0R0)3=2��21H3(0)� �22H3(��)H4(0)�H4(��) (6.4)Thus the transformation law of �T is:Æ�T = 12�� R 2��0 � HR0�1=4 Æ 5= 12�� 23�0pV0R0 (H3(��)�H3(0))f�L � 12�� �2g2 V0R02 (H2(0)(�1)2 +H2(��)(�2)2)�L= 2�243g2V0R0(��21H3(0)� �22H3(��))H3(��)�H3(0)H4(0)�H4(��)�L��24g2 V0R02 (H2(0)(�1)2 +H2(��)(�2)2)�L (6.5)The se
ond part of the above expression would be absent if Æ 5 respe
ted the perfe
t squarestru
ture. The gaugino bilinears would the enter in the zeroth order in � violating the 
anoni
alform of the supersymmetry transformation law. Instead, after expanding in � the result to the�rst order is: Æ�TL = � �2412g2R20�p2�� ��21 � �22� �L : (6.6)Similarly, we 
an 
al
ulate the supersymmetry transformation law of the superpartner of themodulus S: Æ�SL = �242g2V 20 ��21 + �22� �L (6.7)Re
alling form subse
tion (2.3) that in 4d supergravity, s
alar gaugino 
ondensates in thetransformation law of the fermions �S;�T are multiplied by 18f;S (G�1)SS and 18f;T (G�1)TT ,respe
tively, the result (6.6,6.7) indeed agrees with (5.68). We stress that the agreement is dueto the perfe
t square stru
ture in Æ� and the la
k thereof in Æ 5. Thus, when we 
al
ulateÆ�T the linear part of the solution for �5� 
an
els to zeroth order in � with the delta fun
tionso

uring in this solution, leading to the 
orre
t form of f;T . Note also, that the admixture of 5 in the de�nition of �S is 
ru
ial to obtain the 
orre
t form of f;S.From the transformation laws (6.6,6.7) it 
an be read o� that presen
e of gaugino 
onden-sates breaks supersymmetry in the 4d e�e
tive theory. Although one 
an adjust �21 = ��22 sothat the 
ondesates 
an
el in the regular part of the solution (7.2) for �5� and in 
onsequen
e inÆ�S, but then the non-zero 
ondensate 
ontribution appears in Æ�T due to the above mentionedla
k of the perfe
t square stru
ture in Æ 5. However, if we allow for boundary s
alar �elds,appropriately adjusting their superpotentials we have the possibility to 
an
el the 
ontributionof the 
ondensates.
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Chapter 7Gaugino 
ondensation andsupersymmetry breaking in �vedimensionsSimilarly to models derived from the heteroti
 string theory, in the theory formulated in se
tion4 there is the possibility to break supersymmetry by gaugino 
ondensation on the hidden and/orvisible branes. The supersymmetry breaking is 
ommuni
ated from one brane to another bythe expe
tation value of the hypermultiplet �eld �. This me
hanism works be
ause �, althoughodd, 
ouples to gauginos on the boundaries through its �fth derivative (a toy-model of thiskind is studied in [21℄). The equation of motion for the � �eld in the presen
e of the gaugino
ondensates on the branes is:1�2�5(e5g55V �5�) = �5  �e4pV2g2e55 (Æ(x5)(�L�R)1 + Æ(x5 � ��)(�L�R)2)! : (7.1)We are interested in the solution for �5� (and not for � alone) be
ause it is just this expressionwhi
h enters the relevant formulae. For � = 0 we obtain the solution:�5�H�3 �22g2 (V0R0)3=2 ��Æ(x5)�21 � Æ(x5 � ��)�22�+ C (7.2)C = �23g2�p2��(V0R0)3=2��21H3(0)� �22H3(��)H4(0)�H4(��) (7.3)It is worth noting, that in the 5d theory gaugino 
ondensates break the supersymmetry Inthe presen
e of the 
ondensates we have no way to satisfy simultanously Æ A� = 0 with anyother of the remaining 
onditions for unbroken supersymmetry. Indeed, neither �5� nor the
ondensates do not alter the transformation law of  �, so in parti
ular, the 
onditions resultingfrom Æ A� = 0 in
lude the 
hirality 
onditions (5.5). But in su
h a 
ase, the 
ondensates in theformulae for Æ�a and Æ A5 multiply the supersymmetry parameter �, whi
h is of the 
hiralityopposite to other �'s o

uring in these transformation laws. Thus, 
onditions Æ A5 = 0 andÆ�a = 0 
annot be satis�ed.
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Chapter 8Con
lusions
Let us summarize the 
ontent of this thesis. Having prepared the ne
essary ba
kground inse
tions 2 and 3, in se
tion 4 we presented the �ve dimensional 
onstru
tion analogous to theHorava-Witten 
onstru
tion in eleven dimensions. Pre
isely, we derived a lo
ally supersymmet-ri
 lagrangian whi
h 
onsists of two se
tors: the 5d bulk supergravity 
oupled to one 'universal'hypermultiplet, the 4d 
hiral matter and the YM �elds on the brane. This thesis does notdes
ribe general 
ompa
ti�
ation of the Horava-Witten model on Calabi-Yau threefolds. Real-ization of su
h programm would require 
onsidering an arbitrary number of hyper- and ve
tormultiplets in the bulk. Instead, we 
on
entrated on some general features of 5d lo
ally su-persymmetri
 theories 
ontaining 
hiral matter 
on�ned to 3-branes. The 
lass of potentialswe 
onsidered was wider than those obtained in the 
ompa
ti�
ation of the Horawa-Wittenmodel. We show that gauge and matter �elds residing on the brane 
an be supersymmetrizedby modifying the brane a
tion only but one has to modify the supersymmetry transformationlaws of both brane and bulk �elds. On the other hand we show that the boundary potentialterms for bulk s
alars 
an be re
on
iled with supersymmetry by modifying the bulk a
tion andthe supersymmetry transformation laws of the bulk �elds. The 
oupling of the 4d Yang-Millsand matter �elds to the bulk �elds does not depend neither on the boundary nor on the bulkpotentials. In parti
ular, the 'visible' brane a
tion would have the same form in the supersym-metri
 version of the Randall-Sundrum s
enario. In the original RS model, the intera
tions ofthe bulk with the brane �elds yield spe
i�
 experimental signatures [26℄ whi
h may be seenat the Tevatron and LHC. In the supersymmetri
 version of this model the phenomenologi
al
onsequen
es may be even ri
her, as e.g. the gravitino and its massisve KK modes intera
t withthe SM �elds. The a
tion obtained in this thesis 
an be the starting point for phenomenologyin the framework of the supersymmetri
 RS model or modi�
ations thereof.In se
tion 5 the supersymmetry preserving 
ompa
ti�
ation to four dimensions of theHorava-Witten model is studied. Generally, our results 
on�rm the 
on
lusions of referen
e[6℄, where the e�e
tive theory was obtained by dire
t 
ompa
ti�
ation from eleven dimensionsdown to four. We analyze 
ontributions to the e�e
tive a
tion and interpret them in terms ofthe 
anoni
al form of 4d supergravity as given in [17℄. For example, we study the 
an
ellationof various 
ontributions to the 4d tree-level 
osmologi
al 
onstant; as advo
ated, its vanishingis ne
essary for the 
onsisten
y of the 
ompa
ti�
ation. In addition, we express the 
anoni
allynormalized fermion �elds of the 4d theory in terms of their 5d 
ounterparts. In se
tion 6 wepoint out that the e�e
tive theory 
an also be 
onsistently dedu
ed from the redu
tion of the5d supersymmetry transformation laws. 65
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Appendix A
This appendix 
ontains the full Langrangian of �ve-dimensional N=2 gauged supergravity onM4 � S1=Z2 
oupled to non-linear sigma model SU(2; 1)=U(2) and to YM multiplets (Aa�; �a)on two parallel branes pla
ed at x5 = 0 and at x5 = ��. Matter multiplet (C; �) on the "visible"brane, transforming under gauge group, is in
luded. This Langrangian 
ontains the followingparts: S = R d5xe5[LBULK + LYM1Æ(x5) + LYM2Æ(x5 � ��)+LH1Æ(x5) + LH2Æ(x5 � ��) + L27Æ(x5) + LW Æ(x5) + L�Æ(x5)� L�Æ(x5 � ��)℄ (A.1)LBULK is given by eq. 4.1. LYM and LH part 
ontains gauge �elds living on the brane. Of
ourse, gauge �elds should have an appropriate index 
orresponding to its lo
ation, e.g. Aa (1)�for the part of the a
tion multiplied by Æ(x5). Only the even part of bulk fermions appearshere;  �; � is de�ned in terms of �ve-dimensional symple
ti
 Majorana spinors  A� ; �a in (4.5).g2LYM = �V4 F a��F a�� � V2 �aD=�a + V4 ( �
��
��a)F a�� + 3i4p2 Ve55 (�a
5
��a)F�5+ V32( �
�
� �)(�a�a) + V32( �
�
5
� �)(�a
5�a)� V8 ( � �)(�a�a)+V8 ( �
5 �)(�a
5�a) + V32( �
5
� �)(�a
5
��a)� V16( �
�
5 �)(�a
5
��a) + 316 1e55 ( �
5 5)(�a
5
��a)+ 3�264g2 Æ(x5)V 2(�a
5
��a)(�b
5
��b) (A.2)g2LH = �14�F a�� ~F a�� � 14(�
���a)F a�� � i8(�a
5
��a)��� � pV2e55 [(�aL�aR)�5� + (�aR�aL)�5�℄�14(�
���a)( �
��a)� 18( �
��)(�a�a)�18( �
�
5�)(�a
5�a)� i8e55 ( 5
5�)(�a�a)� i8e55 ( 5�)(�a
5�a)+ 164V (�a
5
��a)(�
5
��) + 364V (�a
5�a)(�
5�) + 364V (�a�a)(��)� �216g2 Æ(x5)V 2[(�a�a)(�b�b)� (�a
5�a)(�b
5�b)℄ (A.3)If we in
lude matter on the visible brane, we have to add following 
ouplings:g2LS = �D�CpD�Cp � �D=�+( R�D=Cp
��pL + h:
:) + iF�5p2e55 (CpD�Cp � CpD�Cp)� iF�52p2e55 (�
5
��)� i4V ���(�
5
��) + 1e55 ( � 5)[� i8(�
5
��) + i4(CpD�Cp � CpD�Cp)℄+( �
���5 �)[� 116(�
5
��)� CpD�Cp � CpD�Cp)℄� 18( �
5
� �)(�
5
��)67



+ 116V 2 (�
5
��)[�12(�
5
��)� (CpD�Cp � CpD�Cp)℄� 12V (CT aC)(CT aC)+12( �
��a)(CT aC) + (2i�aRCT a�L) + h:
:)� i2V (��a)(CT aC)��2g2 Æ(x5)[� 116(�
5
��)(�a
5
��a) + 124(�
5
��)(�
5
��)+ 124(CpD�Cp � CpD�Cp))(CpD�Cp � CpD�Cp))� 112(�
5
��)(CpD�Cp � CpD�Cp)℄(A.4)(A.5)g2LW = � 2V �W�Cp �W�Cp � 2pV �2W�Cp�Cq (�pR�qL) + 2pV �W�Cp ( L�
��pL)+ 1pVW ( L�
�� R�) + 2V 3=2 �W�Cp (�R�pL)� 1V 3=2W ( L�
��L)� 2V e55W�5� + iV 3=2e55W ( R5�L)+�2g2 Æ(x5)[� 4VWW �pVW (�aR�aL)℄ + h:
: (A.6)The boundary 
osmologi
al term must appear if �ve-dimensional supergravity is gauged:�2L� = p2�V (A.7)The supersymmetry transformation laws of the YM and matter multiplets are:ÆAa� = �12(�
��a)Æ�a = 14
��� [F a�� + ( �
��a)℄ + 18V 
5�a (�
5�) + 14V 
5� (�a
5�)� i2V � (CT aC)ÆCp = (�R�pL)Æ�pL = 12[D�Cp � ( R��pL)℄ 
��R + 18V �pL (�
5�)� 1pV �W�Cp�L (A.8)One has to modify supersymmetry transformation laws of the even 
ombinations of the bulkfermions: �2g2 Æ � =M� YM1Æ(x5) +M� YM2Æ(x5 � ��) +M� 27Æ(x5) (A.9)M�YM = V8 (g�� � 12
��)
5� (�a
5
��a)M�27 = (g�� � 12
��)
5� [16(CpD�Cp � CpD�Cp)� 112(�
5
��)℄ (A.10)�2g2 Æ 5 = +N27Æ(x5) +NW Æ(x5) (A.11)N27 = e55
�� [ i6(CpD�Cp � CpD�Cp)) + i6(�
5
��)℄NW = 2ie55pV (W�L �W�R) (A.12)�2g2 Æ� = PYM1Æ(x5) + PYM2Æ(x5 � ��) + PW Æ(x5) (A.13)68



PYM = V 24 [�(�a�a)� 
5�(�a
5�a)℄PW = �2pV (W�L +W�R) (A.14)
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